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ABSTRACT 

Heavy construction and mining general contractors record on a daily basis large 

amount of operational data. Nevertheless, this information is rarely used to enhance 

the knowledge and capabilities of the companies that spent great amount of money 

and resources recording it. This research presents different approaches on how to 

process this data to convert it in useful information. The prime goal of this analysis is 

to determine a suitable and convenient method to obtain and present historical 

productivities of key equipment, in order to provide a tool to aid estimating and 

generate reference information to support decision making. 

Estimating construction operation productivity is mostly experience-based due to the 

complexity involved. However, predominantly empirical practices do not secure a 

reliable estimate because of the absence of a binding mechanism that relates the 

present case to past patterns (Chao and Skibniewski 1994). This study involved the 

analysis of the historical productivity of more than 230 hauling units, 160 excavator 

units, and 150 units of support equipment. The historical data has been recorded for 

about three years and represent the operations of one of the largest contractors on the 

Alberta Oil Sands in eleven different projects. 

Data mining, artificial neural networks and summarization tools proved to assist 

effectively in the assessment of historical productivities and in the identification of the 

attributes that most influence the results. Multiple ANN configurations were evaluated 

in the determination of hauling trucks and excavators productivities. Ward net 

architectures that include different activation functions applied to hidden layer slabs 

performed better than standard backpropagation nets since they are able to detect 

different features in a pattern processed through a network. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

In western Canada as in the rest of the world, heavy construction and mining general 

contractors record on a daily basis large amount of operational data. Nevertheless, this 

information is rarely used to enhance the knowledge and capabilities of the companies 

that spent great amount of money and resources recording it. 

Several elements impact the productivity of heavy construction equipment. The 

production rate of a construction operation is constrained by not only the applied 

technology’s capacities that are subject to the physical job conditions such as work 

dimensions and environment factors, but also its utilization rate or operating efficiency 

that is influenced by management circumstances. Estimating construction operation 

productivity is predominantly an experience-based task due to the complexity 

involved. According to experience, a contractor can intuitively adjust the standard rates 

in productivity handbooks to estimate for an operation in given project conditions. 

Nonetheless, such empirical practices do not guarantee a solid estimate because of the 

absence of a binding mechanism that relates the present case to past patterns (Chao 

and Skibniewski 1994). 

Figure 1-1 shows a basic earthmoving operation where a set of hauling trucks are 

loaded by a single excavator. The cycle time of the process involves four main 

activities: loading, hauling, dumping and returning. 
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Figure 1-1   Excavation and Hauling Operation 

1.2 Scope of research 

This research focuses on the evaluation of historical operational data for the purpose 

of assessing the productivity of heavy construction and mining equipment. It presents 

different approaches on how to convert raw data into useful information. 

1.3 Research Objectives 

The aim of this research is to determine a suitable and convenient method to obtain 

and present historical productivities of key equipment in order to provide a tool to aid 

estimating and generate reference information to support decision making. To realize 

this goal, the following objectives have been attained: 
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 Implement, combine and compare different analysis tools and procedures to 

assess historical productivities of earthmoving operations. 

 Identify common factors that affect the quality of the data being recorded and 

propose approaches to mitigate their effects. 

 Analyze the sensitivity of different parameters of artificial neural networks in 

the evaluation of earthmoving operational data. 

1.4 Thesis Organization 

This thesis is composed of five chapters. Chapter 1 presents the motivation, general 

goal, objectives and the scope of the research. Chapter 2 gives a comprehensive 

overview of the current methodology to estimate earthmoving operations, and the 

state of the art of data mining and artificial neural networks used for productivity 

prediction. Chapter 3 summarizes an extensive analysis of earthmoving operations 

using summarization tools. Chapter 4 describes the use of data mining techniques and 

artificial neural networks in the assessment of earthmoving operations’ productivities. 

Chapter 5 provides a summary report of activities performed, as well as a set of 

conclusions and contributions made by this MSc research. 

1.5 Confidentiality 

Confidential information has been used in the development of this research. 

Nevertheless, none of this information is released or published on this document. The 

author has taken special care in removing or modifying confidential data from tables, 

charts and other results. As part of this investigation a great amount of appendixes was 

generated for the general contractor, these appendixes has been declared confidential 

and not included as part of this thesis. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

Equipment productivities of earthmoving operations have been deeply studied during 

the last fifty years. Current equipment specifications include sophisticated charts to 

compute their productivities in dependence of multiple external factors. There are 

numerous analytical methods that can be used to plan or analyze a construction 

operation. However, in most cases, analytical techniques require abstractions which 

tend to reduce confidence in model predictions (AbouRizk, Halpin and Hill 1991). 

In today’s increasingly competitive market, the contractor is required to plan and 

estimate an earthmoving contract as accurately as possible at tender stage and, if the 

contract is awarded, focus in control site operations to minimize cost. However, as it is 

widely recognized, production estimates at a tender stage are difficult to calculate 

accurately and at a construction stage, production targets are hard to maintain (Smith, 

Osborne and Forde 1995). 

2.1.1 Simulation 

In recent years the use of special purpose simulation systems in the analysis of 

earthmoving operations has expanded its popularity. Special purpose simulation (SPS) 

can be defined as a computer-based environment built to enable a practitioner who is 

knowledgeable in a given domain, but not necessarily in simulation, to model a project 

within that domain in a manner where symbolic representations, navigation schemes 

within the environment, creation of model specifications and reporting are completed 

in a format native to the domain itself (AbouRizk and Hajjar 1998). 

Simulation studies are appropriate for the analysis of earthmoving operations for 

numerous reasons including: repetition of given operations, dynamics of resource 

interactions, external factors that need to be included in the analysis and the 
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randomness associated with such systems (Hajjar and AbouRizk 1996). During the 

coursework of his master studies, the author was in contact with these simulation 

techniques, specifically with the use of the simulation tool Simphony. Simphony is a 

simulation platform for building general and special purpose simulation models. It is a 

Microsoft Windows based computer system developed with the objective of providing 

a standard, consistent and intelligent environment for both the development as well as 

the utilization of the construction of Special Purpose Simulation (SPS) tools (Hajjar 

and AbouRizk 1999). This research does not cover at this point any simulation 

technique as one of the tool to approach the analysis of the historical construction 

operational information. 

2.2 Earthmoving Operations 

Earthwork projects involve moving specific amounts of earth from a set of source 

locations to a set of destinations. Construction contractors use diverse methods and 

equipment to move earth depending primarily on their equipment availability and 

hauling distance (Kannan, Martinez and Vorster 1997). 

The problem of accurate estimation of earthmoving productivity has intrigued many 

researches for decades; however a model that predicts the output of such operations 

with a satisfactory degree of confidence for all situations is not yet available (S. Smith 

1999). Figure 2-1 presents a simplified overview of the estimation process of an 

earthmoving operation. 
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Figure 2-1   Earthmoving production process. 
(Peurifoy, Schexnayder and Shapira 2006). 

2.2.1 Excavators 

The current practice to estimate the production rate of an excavator considered as an 

independent machine can be simplified in six steps (Peurifoy, Schexnayder and Shapira 

2006). 
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 Step1. Obtain the heaped bucket load volume from manufacturers’ data sheet. 

This would be a loose volume (lcm) value. 

 Step2. Apply a bucket fill factor based on the type of machine and the class of 

material being excavated. 

 Step3. Estimate a peak cycle time. This is a function of machine type and job 

conditions to include angle of swing, depth or height of cut, and in the case of 

loaders, travel distance. 

 Step4. Apply an efficiency factor. 

 Step5. Conform the production units to the desired volume or weight units (lcm 

to bcm or t). 

 Step6. Calculate the production rate. 

Production in this case is material carried per load * cycles per hour. In the case of 

excavators, this formula can be refined and written as per Equation 2-1. 

            
                     

 
  

 

        
  

 

       
          

 2-1 

where, 

Q = bucket capacity (lcm) 

F = bucket fill factor 

AS:D = angle of swing and depth (height) of cut correction 

t = cycle time in seconds 

E = efficiency (min per hour) 

2.2.2 Hauling trucks 

Hauling trucks provide relatively low hauling costs because of their high travel speeds. 

The productive capacity of a truck depends on the size of its load and the number of 

trips it can make in an hour. The number of trips completed per hour is a function of 

cycle time. Truck cycle time has four components: (1) load time, (2) haul time, (3) 

dump time, and (4) return time. Examining a match between truck cargo body size and 
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excavator bucket size yields the size of the load and the load time. The haul and return 

cycle times will depend on the weight of the truck, the horsepower of the engine, the 

haul and return distances, and the condition of the roads traversed. Dump time is a 

function of the type of equipment and conditions in the dump area (Peurifoy, 

Schexnayder and Shapira 2006). 

2.2.2.1 Calculating truck production 

Step 1. Number of bucket loads. The first step in analyzing truck production is to 

determine the number of excavator bucket loads it takes to load the truck (Equation 

2-2). 

                                 
                    

                     
 2-2 

Step 2. Load time. The actual number of bucket loads placed on the truck must be an 

integer number. If the number of bucket loads is rounded down to an integer lower 

than the balanced number of loads (subscript LI), the loading time will be reduced; but 

the load on the truck is also reduced (Equation 2-3). The truckload in such cases will 

equal the bucket volume multiplied by the number of bucket loads (Equation 2-4). 

                                                        2-3 

                       

                                         
2-4 

If the division of the truck cargo body volume by the bucket volume is rounded to the 

next higher integer (subscript HI) and that higher number of loads is placed on the 

truck, excess material will spill off the truck. In such case, the loading duration equals 

the bucket cycle time multiplied by the number of bucket swings (Equation 2-5). But 
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the volume of the load on the truck equals the truck capacity, not the number of 

bucket swings multiplied by the bucket volume (Equation 2-6). 

                                                        2-5 

                                                  2-6 

Always check the load weight against the gravimetric capacity of the truck (Equations 

2-7 and 2-8). 

                       

                                            ⁄   
2-7 

                                                   2-8 

Step 3. Haul time. Based on the gross weight of the truck with the load, and 

considering the rolling and grade resistance from the loading area to the dump point, 

haul travel speeds can be estimated using the truck manufacturer’s performance chart, 

see Figure 2-2. While performance charts indicates the maximum speed at which a 

vehicle can travel, the vehicle will not necessarily travel at this speed. A performance 

chart makes no allowance for acceleration or deceleration. In addition, other travel 

route conditions and safety can control travel speed (Peurifoy, Schexnayder and 

Shapira 2006). The anticipated effective speed is what should be used in calculating 

travel time (Equation 2-9). 

                 
                  

                 
             2-9 
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Figure 2-2   Performance Chart for a Caterpillar 777F Off-Highway Truck 
(Taken from: AEHQ5749-01 (5-07) - 777F Off-Highway Truck specifications – © 2007 Caterpillar) 

Step 4. Return time. Based on the empty vehicle weight, and the rolling and grade 

resistance from the dump point to the loading area, return travel speeds can be 

estimated using the truck manufacturer’s performance chart. Return time can be 

computed using Equation 2-10. 

                   
                  

                 
             2-10 
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Step 5. Dump time. Dump time will depend on the type of hauling unit and 

congestion in the dump area.  

Step 6. Truck cycle time. The cycle time of a truck is the sum of the load time, the 

haul time, the dump time, and the return time (Equation 2-11). 

                                                               2-11 

Step 7. Number of trucks required. The number of trucks required to keep the 

loading equipment working at capacity is given by Equation 2-12 

                           
                      

                          
 2-12 

Step 8. Production. The number of trucks must be an integer number. If an integer 

number of trucks lower than the balanced number of trucks is chosen, then the trucks 

will control production (Equation 2-13). 

                 ⁄
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When an integer number of trucks greater than the balanced number of trucks is 

selected, production is controlled by loading equipment (Equation 2-14). 
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                 ⁄

                    
      

                          
 

2-14 

As a rule, it is better to never keep the loading equipment waiting (Peurifoy, 

Schexnayder and Shapira 2006). 

Step 9. Efficiency. The production calculated before is based on a 60-min working 

hour. That production should be adjusted by an efficiency factor (Equation 2-15). 

                                  
                       

      
 2-15 

Step 10. Production in desired units. Finally, this production can be converted as 

necessary into bank cubic meters or tonnes by using material property information 

specific to the job. 

2.3 Data mining 

Today’s world is overwhelmed with data. The volume of data in our lives continues to 

increase and there’s no end in sight. As the volume of data increases, inexorably, the 

proportion of it that people understand decreases, alarmingly. Lying hidden in all this 

data is information, potentially useful information, which is rarely made explicit or 

taken advantage of.  

Data mining is defined as the process of discovering patterns in data. The process 

must be automatic or (more usually) semiautomatic. The patterns discovered must be 

meaningful in that they lead to some advantage, usually an economic advantage. The 

data is invariably present in substantial quantities (Chakrabarti, et al. 2009). 
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2.3.1 Data preprocessing 

Real-world databases are full of noisy, missing, and inconsistent data because of their 

typically huge size and their likely origin from multiple, heterogeneous sources. There 

are a number of data preprocessing techniques. Data cleaning can be applied to 

remove noise and correct inconsistences in the data. Data integration merges data 

from multiple sources into a coherent data store, such a data warehouse. Data 

transformations, such as normalization, may be applied. Data reduction can reduce the 

data size by aggregating, eliminating redundant features, or clustering, for instance. 

Figure 2-3 summarize some of the data preprocessing forms. 

 

Figure 2-3   Forms of data preprocessing (Chakrabarti, et al. 2009). 
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2.4 Artificial Neuronal Networks 

Artificial neural networks (ANNs) represent a different computational approach. In 

contrast to more conventional analytic methods, ANNs are an information processing 

technology that attempt to simulate, in a gross manner, the networks of nerve cell 

(neurons) of the biological (human or animal) central nervous system (Graupe 2007). 

As the brain, ANNs learn from experience, generalize from previous examples to new 

ones and abstract essential characteristics from inputs containing irrelevant data. A 

large variety of possible ANN applications now exist for non-computer specialist. 

Therefore, with only a very modest knowledge of the theory behind ANNs, it is 

possible to tackle complicated problems in a researcher’s own area of specialty with the 

ANN technique. There is currently available a wide range of ANN models, in terms of 

topology and mode of operation. According to (Boussabaine 1996), each model can be 

specified by the following seven major concepts. 

1. A set of processing neurons. 

2. A state of activation for each neuron. 

3. A pattern of connectivity among the neurons or topology of the network. 

4. A propagation method to propagate the activities of the neurons through the 

network. 

5. An activation rule to update the activities of each node. 

6. An external environment that provides information to the network and 

interacts with it. 

7. A learning method to modify the pattern of connectivity by using information 

provided by the external environment. 

Figure 2-4 presents a three-layered ANN. The input and Output layers are responsible 

for communication with the outside world. 
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Figure 2-4   Example of an ANN with three layers 

Figure 2-5 illustrates the functioning of the nodes. In a very simple scenario, a node 

receives inputs from two previous nodes X(1) and X(2), respectively modified by 

weight factors W(1) and W(2). The node computes the addition of these values 

X(1)*W(1) + X(2)*W(2), and delivers an output using a transfer function which can 

take a variety of forms. 

 

Figure 2-5   Typical ANN node 

ANNs can be supervised or unsupervised. Supervised networks predict output based 

on the patterns observed in the input and output data that has been used for 
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―learning‖ or ―training‖. Unsupervised networks are used to classify sets of data into a 

specific number of categories, without learning from other data sets (Mather 1998). 

The work within this research only deals with supervised networks. In this type of 

ANN, the input layer broadcast a pattern to all the hidden nodes, the system then 

computes an output using the procedure presented in Figure 2-5. The final output is 

compared with the target value that the trainer has previously specified. The difference 

yields the output error, and it is time to decide if further learning is necessary. If more 

learning is required, the output nodes calculate the derivatives of the error with respect 

to the weights and the result is sent back through the systems and the connection 

weights are corrected. Once the weights has been upgraded the feed-forward 

computation start over again. 

Chapter four on this document presents the implementation of artificial neural 

networks on the analysis of the historical earthmoving operational information. 
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CHAPTER 3 EARTHMOVING PRODUCTIVITY 

ANALYSIS BASED IN HISTORICAL DATA 

3.1 Introduction 

This chapter summarizes how the historical operational data of the one biggest 

construction contractors in the oil sands industry in northern Alberta was analyzed 

through about seven months of research assistantship. The analyzed historical data had 

been recorded for more than three years in eleven different projects. 

The specific objectives of the analysis were: 

 Determine truck productivities as a function of the haul distance, categorized by 

truck model and project. 

 Determine excavators and major loading equipment productivities categorized by 

excavator model and project. 

 Obtain historical ratios between number of trucks and number of graders, as well 

as the historical relation between total project production in bcm and number of 

dozers required. 

 Analyze the overall quality and consistency of the data contained in the databases. 

 Recommend further analysis of operational data, as well as new and better 

procedures to perform the analysis. 

 Suggest novel beneficial approaches for data collection. 

3.2 Hauling truck productivity analysis 

This section describes how the analysis of the historical information related to hauling 

operations of more than 230 hauling units was performed. The main goal of this 

analysis was to produce productivity curves as a function of the hauling distance. 
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3.2.1 Equipment models 

This research cover ten trucks models grouped in four categories see Table 3-1. Figure 

3-2 shows a picture of a 777 Hauling Truck. 

Table 3-1   Hauling truck models and categories 

Equipment 
Function 

Equipment 
Category 

Equipment 
Model 

Hauling 
trucks 

Trucks - 280t+ 

EH4500 

EH5000 

930E-AC 

Trucks - 220-280t 

793C 

793D 

830E 

Trucks - 120-220t 
785C 

785D 

Trucks - 80-120t 
777D 

777F 

 

Figure 3-1   Hauling truck models  
(Picture from: AEHQ5749-01 (5-07) - 777F Off-Highway Truck specifications – © 2007 Caterpillar) 
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3.2.2 Methodology 

Different actions were carried out to clean, combine, condense, and organize the data 

in order to obtain the productivity information for the main truck models analyzed. 

The operational data in its basic state was contained in 47 tables. The first step was to 

identify what relevant data was needed for the analysis. With this in mind, certain 

information was grouped into three main tables (master tables). These tables 

represented data of three different natures: 1) hauling production data, 2) equipment 

timing data from availability and utilization records and 3) equipment timing data 

coming from accounting sources. This particular assembly assisted in the comparison 

of analogous information that was being recorded on different places and/or for 

different purposes; it also helped in the identification of data collection issues. 

3.2.2.1 Pivot Tables 

Pivot tables are the key engine in this analysis. They are used as the main tool to 

organize, classify and group the information in a meaningful way. Four Pivot tables 

were built for the hauling productivity analysis of each truck model. The three master 

tables described before were the data source of these pivot tables. 

3.2.2.2 Shift weighted hauling distance 

Most of the information related to earthmoving operations is recorded by the foreman 

at the end of the shift. The information is then input into a data management system. 

This schema contributes to the fabrication of information; principally, the durations of 

individual tasks within a shift. For instance, when one hauling unit performs different 

tasks during one shift (e.g. different hauling distance, material type, loading unit, etc.) 

the hauling time recorded into the databases for each different task is often a not very 

accurate estimation of the duration of the truck operations, see Figure 3-2. If those 

individual times are used to produce the ratio between the number of hauled loads and 

the time spent, the results will not be a real representation of the actual truck 

productivity.  
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Even if the recorded individual times are not reliable, the information could still be 

useful being that the summation of all these durations closely represents the total 

operating hours for the shift. 

  

Figure 3-2   Different tasks performed by a truck unit during one shift. 

To mitigate this issue, all the activities performed by a truck unit during a given shift 

were compressed on one productivity datum, as the relation between the total number 

of loads and the operating hours during the shift (Figure 3-3). The correspondent 

hauling distance for this productivity is called Shift weighted hauling distance (dw) and 

it is computed as per Equation 3-1. 








n

i

i

n

i

ii

W

L

dL

d

1

1

*

 3-1 

where, 

Li = Number of loads for task i performed by a truck unit during a specific shift. 

di = haul distance for task i 
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Figure 3-3   Shift weighted hauling distance (dW). 

Figure 3-4 shows how the use of the shift weighted hauling distance substantially 

reduces the dispersion on the results. 

 

Figure 3-4   Condensing productivity information using dW. 
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3.2.2.3 Data clean up 

As with most real-life datasets, the recorded operational data contains abundant 

erroneous values and typing mistakes. Before any conclusion can be reached, the data 

has to be reviewed, cleaned up and filtered, to improve its quality. The sources of the 

inconsistencies are often very difficult to identify. However, the pivot tables created 

for this analysis facilitate the identification of unusual and/or unrealistic values. The 

following are examples of the logic behind the set of checks used to clean up the data. 

a) Look for unusual and or unrealistic hauling distances. e.g. 0 km, 100 km, 10000 km, 

etc. 

b) Unrealistic values for the ratio Loads/hr. e.g. Loads/hr≥ 10, 10 loads/hr is equivalent 

to one load every 6 minutes; allowing 2 minutes for loading and 2 minutes for dumping and 

maneuver in load area and dump point, only two minutes remain for hauling and returning, 

something extremely difficult to achieve even for short hauling distances. 

c) Unrealistic values for the ratio Hr/Loads (e.g. Hr/Loads ≥ 5). Cycle times are rarely 

higher than 2 hours. 

d) Unusual values of the ratio Loads/hr for the correspondent hauling distance. e.g. 

Loads/hr≥ 5, when hauling distance ≥ 10. 5 loads/hr is equivalent to one load every 12 

minutes; allowing 2 minutes for loading and 2 minutes for dumping and maneuver in load area 

and dump point, 8 minutes remain for hauling and returning, which could be achieved on 10 km 

with an average speed of 150km/hr. 

e) Unusual values of the ratio Hr/Loads for the correspondent hauling distance. e.g. 

Op.Hr/load≥2, when hauling distance ≤ 5.0 km. 

f) Artificial rules of correspondent hauling times for low values of number of loads 

(e.g if load count = 1 then hauling time = 0.25hr or 0.5hr) 

Even though it was possible to correct some of this erroneous information by chasing 

the right value in the neighborhood of the entry, for most of the cases the correct 

value cannot be inferred and the haul records of the unit during the corrupted shift 

had to be discarded. 
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Since most of the erroneous entries or corrupted shifts were identified, it was possible 

to generate a summary of the quality improvement operations. The clean-up chart 

summarizes where and when problems in the data were found. It serves as an 

assessment of the performance of different projects regarding data collection. As an 

example, the Figure 3-5 presents the quality improvement summary corresponding to 

the 777 truck model. 

 

Figure 3-5   Clean up summary Truck Model 777. 

3.2.2.4 Hauling Productivity Equation 

Once the clean-up actions have been performed, productivity of the truck model was 

plotted in an XY scatter chart in terms of loads per hour versus hauling distance. At 

this point, it is possible to make a regression and extract an equation that represents 

the productivity of the truck model as a function of the hauling distance. Most of the 

existing commercial software allows several regression forms: exponential, linear, 

logarithmic, polynomial, power. Among these types, the logarithmic regression was 

found to be usually the best fit to represent the haul truck productivity, see Figure 3-6. 
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Figure 3-6   Different regression forms for hauling truck productivity. 

On the other hand, the representation of an earthmoving operation through a 

logarithmic equation seemed to be quite suspicious (the logarithmic equation form 

does not intercept the y axis and cannot reflect fixed time component of the cycle 

time). Seeking for a more satisfactory equation form, a reconsideration of the analysis 

was made. 

Total cycle time for a hauling unit is generally a combination of: 

1. Fixed time 

2. Hauling time (Loaded) 

3. Return time (Empty) 

In general, hauling and returning durations depend of the distance, while the durations 

of loading and dumping activities are independent of it, and could be fairly assumed to 

be constant value, see Figure 3-7.  
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a) b) 

Figure 3-7   a) Cycle time main components - b) Type components of the cycle time. 

Therefore, the following formulation for Productivity (P) is developed, see Equations 

3-2 to 3-8.  
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3-4 

where, C1 is a constant that represent the fixed time component of the cycle time.  

)(/

1

1 dSdC
P


  3-5 

where, S(d) is the average truck speed and d is the haul distance. 

Several forms for the average speed were proposed. However, the collected 

information did not support a very detailed analysis regarding the average speed; 

therefore the average speed was conveniently assumed to be a constant. 

Cycle 
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Time 
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t* = f(d) 
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Then, 

21 /

1

CdC
P


  3-6 

Where, C2 is a constant that represent the average speed. 

The last equation form is not normally available in conventional software packages. 

Nevertheless, the following modification offers a convenient approach to compute the 

required constants. 

21 /
1

CdC
P

  3-7 

dCC
P

.
1

31 
 

3-8 

Thus, the inverse of the productivity in hours per load has the form of a linear 

equation. 

Finally, the productivity data could be plotted as operating hours per load 

(Op.Hr/Load) versus shift weighted hauling distance (dW) allowing a linear regression 

in which the needed constants could be computed, see Figures 3-8 and 3-9.  

In general, this new equation offers better correlation than the previous logarithmic 

one, and in addition, the results at short distances are more accurate using this novel 

approach. The developed equation is also more intuitive given that its two constants 

keep a close relation to the fixed time component of the cycle time and the average 

speed of hauling and returning. 
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Figure 3-8   Operational hours per load versus shift weighted hauling distance. 

 

Figure 3-9   Productivity equation of hauling trucks 
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3.2.3 Results 

The analysis procedure and main results were summarized in a single page layout for 

each individual truck model. These layouts contain: 

 Loads/hauling time versus hauling distances using raw information. 

 Loads/operating hour versus shift weighted hauling distance (dW) using raw 

information. 

 Quality improvement summary. 

 Operating hours per load (input information for a linear regression). 

 Final productivity information colored by project and general productivity 

equation. 

As an example, the results of the productivity analysis for the truck model 785 are 

presented in Figure 3-10. In some cases detailed results by projects are also offered. A 

graph that shows this situation for the truck model 785 is presented in Figure 3-11. 

Please note that to maintain the confidentiality of this information Vertical axes values 

are omitted and project names have been changed. 
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Figure 3-10   Hauling truck productivity summary – Models: 785C & 785D. 
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Figure 3-11   Hauling truck productivity - Models: 785C & 785D by project 
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3.2.4 Weighted linear regression 

The results presented before in section 3.23 were obtained assuming that each data 

point provides equally precise information. This assumption, however, is debateable 

for this specific application. It is believed that the level of accuracy of the productivity 

ratio (loads/hour) increases when larger numbers of loads are used. 

This section aims to illustrate how a modification of the previously used linear 

regression approach could lead into better values of the square of the correlation 

coefficient (r squared). 

Section 3.2.2 described how a linear regression on scatter chart of the ratio hours per 

load versus the hauling distance could be used to find the intercept and the slope of 

the equation 3.9. 

dCC
P

.
1

31   3-9 

If the ―1/P‖ values are called ―y‖, the hauling distances values ―d‖ are called ―x‖ and 

the constants ―C1‖ and ―C3‖ are called ―a‖ and ―b‖ respectively, then equations 3.9, 

3.10 and 3.11 could be used to obtain the intercept ―b‖, slope ―a‖ and correlation 

coefficient ―r‖ of the linear regression. 

     
∑    ̅     ̅ 

∑    ̅  
 3-10 

    ̅     ̅ 3-11 

r  
∑    ̅     ̅ 

√∑    ̅  ∑    ̅  
 3-12 

Where,  ̅ is the average of the hauling distances ―d‖ and  ̅ is the average of the hours 

per load values ―1/P‖. 
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As mentioned before, if we assume that the level of accuracy of the productivity ratio 

loads per hour increases when larger numbers of loads are used, and if we accept that 

the increment in this truthfulness is proportional to the number of loads used to 

compute the productivity ratio; then the equations 3-10, 3-11 and 3-12 used to 

compute the intercept ―b‖, slope ―a‖ and correlation coefficient ―r‖ of the linear 

regression can be replaced for equations 3-13, 3-14 and 3-15. 

     
∑      ̅     ̅ 

∑      ̅  
 3-13 

    ̅     ̅ 3-14 

r  
∑      ̅     ̅ 

√∑      ̅  ∑     ̅  
 3-15 

Where ―i‖ is the number of loads associated with the hours per load ratio.  

The use of equations 3-10 to 3-12 on the historical information of hauling trucks 

resulted on larger values for the square of the correlation coefficients (r squared), 

revealing the advantage of using a weighted linear regression with the ability to attach a 

level of quality (proportional to the number of loads hauled during the shift) to each 

productivity ratio data point. 

3.2.5 Hauling truck productivity range 

Due to the high dispersion on the hauling truck productivity charts, it could be 

desirable to represent these results using a range instead of a single productivity 

equation. With the productivity equation as foundation, it is possible to find a pair of 

―sister equations‖ that will define a productivity range. The range can be built so it 

limits encompasses a given percentage of data points. 

The methodology to find these ―sister equations‖ is simple. Using Goal Seek, which is 

part of a suite of commands sometimes called what-if analysis tools, is possible to find 

a factor that modify the slope and intercept of the of the original linear regression (or 
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only the intercept) so that the number of data points between the sister equations is a 

given percentage of the total number of data points on the scatter chart. For example, 

Figure 3-12 presents the linear regression of a hours-per-load versus hauling distance 

chart and the corresponding sister equations. The goal was that 75% of the data points 

were inside the range; this was achieved by modifying the intercept with the y axes of 

the original linear regression by 56.22%. In Figure 3-12 the intercept of the original 

productivity equation was 0.2595, thus the intercept of the sister equation 1 is then 

0.2595*(1+0.5622) = 0.4051, and the intercept of the sister equation 2 is 0.2595*(1-

0.5622) = 0.1139. 

Figure 3-13 presents the results and the productivity range in loads per hour versus 

hauling distance. 

 

Figure 3-12   Hauling productivity range hours/load vs. hauling distance – a. 
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Figure 3-13   Hauling productivity range loads/hour vs. hauling distance – a. 
 

It is also possible to obtain this productivity range and the sister equations by 

modifying both the intercept and the slope of the original linear regression. 

Figure 3-14 the same linear regression of a hours-per-load versus hauling distance 

chart and the corresponding new sister equations. The goal was also that 75% of the 

data points were inside the range; this was achieved by modifying the intercept with 

the y axes and the slope of the original linear regression by 23.74%. In Figure 3-14 the 

intercept of the original productivity equation was 0.2595, thus the intercept of the 

sister equation 1 is then 0.2595*(1+0.2374) = 0.3211, and the intercept of the sister 

equation 2 is 0.2595*(1-0.2374) = 0.1979. Likewise, the slope of the original 

productivity equation was 0.0713, therefore the slope of the sister equation 1 is then 

0.0713*(1+0.2374) = 0.0882, and the slope of the sister equation 2 is 0.2595*(1-

0.0713) = 0.0544. Figure 3-15 presents the results and the productivity range in loads 

per hour versus hauling distance. 
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Figure 3-14   Hauling productivity range hours/load vs. hauling distance – b. 

 

Figure 3-15   Hauling productivity range hours/load vs. hauling distance – b.  
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3.3 Excavator productivity analysis 

3.3.1 Introduction 

This section presents the analysis of the historical information related to the operation 

of excavator units. Cumulative frequency productivity curves are generated for the 

major loading equipment models and classified by project. 

3.3.2 Equipment models 

This research cover fifteen different excavator models grouped in four categories for a 

total of more than 150 individual units, see Table 3-2. Figure 3-16 shows pictures of a 

Hydraulic shovel EX5500 and an excavator EX1900. 

Table 3-2   Excavator models and categories 

Equipment 
Function 

Equipment 
Category 

Equipment 
Model 

LOADING 
UNITS 

Shovels - Electric 495HF 

Shovels - Hydraulic 
EX8000 

EX5500 

Excavators - Medium 

EX3600 

EX2500 

EX1900 

EX1800 

EX1200 

Excavators - Small 

EX850 

EX800 

EX750 

EX600 

EX550 

EX450 

ZX450LC-3 
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Figure 3-16   Hydraulic shovel EX5500 and Excavator EX1900  
Hitachi. Retrieved March 13, 2011, from:  

http://www.hitachi-c-m.com/global/products/excavator/large/ex5500-6/index.html 
http://www.hitachi-c-m.com/global/products/excavator/large/ex1900-6/index.html 

3.3.3 Methodology 

The methodology implemented for the analysis of excavator models is very similar to 

the one described for the analysis of hauling equipment. 

3.3.3.1 Master tables 

The analysis uses the same three ―master‖ tables that were created in the hauling 

analysis. These tables group the data in: 1) hauling production information, 2) 

equipment timing data from availability and utilization recordings and 3) equipment 

timing data coming from accounting sources. As it was described before, these three 

master tables connect relevant information coming from the original 47 tables in the 

DBMS. 
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3.3.3.2 Excavator Model Information 

In this step the information from the three 

master tables is filtered by excavator model and 

combined into a single source. The purposes of 

this breakdown are classification and reduction 

of the amount of data to be processed to a 

quantity suitable to manipulate with the 

available computer resources. 

 

3.3.3.3 Pivot Tables 

Pivot tables again are the key engine in the analysis. They are used as the main tool to 

organize, classify and group the information in a meaningful way. The source data of 

the pivot table used for the loading productivity analysis are the three master tables. 

These pivot tables classify the information by excavator unit, date, shift and project. 

They are also oriented to obtain the relation between the total number of bcm 

performed by the excavator unit during a specific shift, and the operating hours 

extracted from the Availability and Utilization (A&U) information, all this through the 

inclusion of calculated fields. 

3.3.3.4 Arranging the results 

After the classification and grouping made by the pivot tables, the data is ranked from 

the lowest to the highest productivity value and the correspondent cumulative 

frequencies are computed. 

3.3.3.5 Cumulative frequency 

Cumulative frequency tells how often the value of the variable is less than or equal to a 

particular reference value. 

Hauling 
Production 

Master 
Table  

A&U 
Master 
Table  

Just1 
Master 
Table 



~ 39 ~ 

A cumulative frequency graph is a very convenient way to present information visually, 

it also allows other information to be inferred. For example, from a cumulative 

frequency graph, we can obtain the median (or middle) mark. The median is the mark 

which half of all computed productivities exceed and half do not reach. 

It is also possible to find the upper and lower quartile marks from the graph, as well as 

different percentiles. 

As an example, Figures 3-17 and 3-18 present the results of the productivity analysis 

for Electric Shovel - 495HF and Hydraulic shovel - EX8000 models. 

 

 

 

Figure 3-17   Productivity cumulative frequency excavators 495HF and EX8000 a). 

 

EX8000   90th percentile:  

XXXX bcm/hr 

EX8000   50th percentile:  

XXXX bcm/hr (Median) 

EX8000   Lower quartile Q1:  

XXXX bcm/hr 
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Figure 3-18   Productivity cumulative frequency excavators 495HF and EX8000 b). 

3.3.4 Results 

The results of the analysis are represented by a graph of cumulative frequency versus 

bcm (bank cubic meter) per operating hour, for every excavator model. Additionally, 

cumulative frequency curves are also produced for every project in which units of the 

excavator model are or were present. 

  

495HF Inter-quartile range 
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3.4 Performance history of equipment units 

3.4.1 Introduction 

The purpose of this analysis was to offers an overall performance picture of each 

individual piece of equipment analyzed during the research. The information contained 

in these summary charts is grouped on a monthly basis and cover the following three 

modules: 

1. Comparison of operating hours coming from three sources: 

a. Hauling detail information 

b. Timing data from availability and utilization information, and 

c. Timing data from accounting sources. 

2. Location of the unit. This module is a diagram that summarizes where and 

when the unit has been operating. Information regarding the transfers of the 

unit from one project to another and the fraction of the month that the unit 

was working for each project is captured using three different series (Max, Min 

and Average). 

3. Total bcm transported or excavated (depending if the performance history 

summary refers to a hauling truck or to an excavator) during the month. 

These three sets of information together, provide an overall idea of the equipment unit 

life and it is a useful tool to identify trends and problems in productivity and/or data 

collection. 

3.4.2 Results 

Figure 3-19 presents the performance history for a 793 truck unit. In this specific case, 

a problem regarding operating hours is clearly identified at the top of the graph; a 

zoom into the operating hours was convenient for a better visualization of the values. 

Performance history summaries for each analyzed haul and excavator unit were 

produced using the same pivot tables described before for excavator and truck 

productivities and following a systematic procedure. 



~ 42 ~ 

 

Figure 3-19   Example of cumulative frequency excavator productivity curve a) 
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3.5 Support Equipment 

This section presents the analysis of the historical information related to the operations 

of support equipment (Graders and Dozers) and their relation with the operations of 

hauling or loading equipment, as well as with the overall production. The analysis is 

divided in two modules: Graders-Trucks and Dozers-Excavators.  

3.5.1 Equipment 

This analysis cover the information from the totality of trucks and excavators studied 

before plus the historical operational data from the dozers and graders models that 

support the operations. Around 43 grader units from eight different models and more 

than 200 dozer units grouped on seven different model types are part of the present 

analysis. Table 3-3 and 3-4 organize respectively these grader and dozer models. Note 

that the last column of these tables contains a multiplier factor used to convert a 

specific model equipment unit into the equivalent number of base model units. Figure 

3-20 shows pictures of a 16M Grader and a D10T Dozer. 

Table 3-3   Grader models and categories 

Equipment 
Function 

Equipment 
Category 

Model  
Group 

Equipment 
Model 

Blade  
Lenght 

% base 
model 

GRADERS 

Graders - 
Small 

14 ft 

14G 14 ft 88% 

14H 14 ft 88% 

976 14 ft 88% 

Graders - 
Medium 

16 ft 

16G 16 ft 100% 

16H 16 ft 100% 

16M 16 ft 100% 

Graders - 
Large 

24 ft 
24H 24 ft 150% 

24M 24 ft 150% 
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Table 3-4   Dozer models and categories 

Equipment 
Function 

Equipment 
Category 

Model  
Group 

Equipment Model 
Flywheel 
Power 

% base 
model 

DOZERS 

Dozers 
Small 

D5  
& Less 

450 70 hp (52 kW) 23% 

450 LGP 74 hp (55 kW) 24% 

D32 80 hp (60 kW) 26% 

D37 85 hp (63 kW) 27% 

D41 110 hp (82 kW) 35% 

D5H 96 hp (72 kW) 31% 

D5H LGP 96 hp (72 kW) 31% 

D5G 96 hp (72 kW) 31% 

D5N 96 hp (72 kW) 31% 

D6 

D6D 140 hp (104 kW) 45% 

D6H LGP 140 hp (104 kW) 45% 

D6M 140 hp (104 kW) 45% 

D6M LGP 140 hp (104 kW) 45% 

D6N LGP 150 hp (112 kW) 48% 

D6R 165 hp (123 kW) 53% 

D6R LGP 165 hp (123 kW) 53% 

D6T LGP 165 hp (123 kW) 53% 

D6T XW 165 hp (123 kW) 53% 

850 185 hp (138 kW) 60% 

D7 D7R LGP 240 hp (179 kW) 77% 

Dozers 
Medium 

D8 

D8N 285 hp (213 kW) 92% 

D8R 310 hp (231 kW) 100% 

D8T 310 hp (231 kW) 100% 

D9 
D9R 410 hp (306 kW) 132% 

D9T 410 hp (306 kW) 132% 

Dozers 
Large 

D10 

D10N 520 hp (388 kW) 168% 

D10R 580 hp (433 kW) 187% 

D10T 580 hp (433 kW) 187% 

D375A5 606 hp (452 kW) 195% 

D11 

D11R 850 hp (634 kW) 274% 

D475A5 900 hp (671 kW) 290% 

D11T 850 hp (634 kW) 274% 
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Figure 3-20   Grader 16M and Dozer D10T 
(Pictures from: AEHQ5734-01 (1-07) - 16M Motor Grader specifications - © 2007 Caterpillar 

AEHQ5592-01 (7-07) - D10T Track-Type Tractor specifications - © 2007 Caterpillar) 

3.5.2 Methodology 

The methodology implemented for the analysis of support equipment follows the path 

of loading and hauling productivity analyses with some variations. The analysis in this 

section focuses only on those projects in which the activities of the secondary 

equipment represent support of the operations of the primary equipment instead of 

general mining or heavy construction tasks. 

The new input information of the analysis is the 

combination of the hauling data contained in 

the hauling production master table and the 

information of the availability and utilization 

broken-down by equipment category. 

 

Hauling 
Production 

Master 
Table  

A&U 
Master 
Table  



~ 46 ~ 

Two main pivot tables are used in this analysis. The first one generates monthly 

categorized information related to operating hours of graders and trucks model 

groups, as well as bcm production and average hauling distances, while the second 

generates monthly categorized information related to operating hours of dozers and 

excavator model groups, as well as bcm production.  

The information is then extracted from the pivot tables and prepared to plot. Line, 

column and staked area charts are the final result of the analysis. The use of an analysis 

built template allows this process to be semi-automatic. In order to present an 

appropriate comparison of equipment operating hours, different equipment models 

are transferred into a base equipment model. This transformation is based on the main 

feature of the equipment, as follows: tons capacity for trucks, blade width for graders, 

bucket size for excavators, and horse-power for dozers. 

3.5.3 Results 

3.5.3.1 Truck-Graders 

The results summary for the interaction between trucks and graders project-specific 

includes: 

 Total grader operating hours by model group (staked area series). 

 Total grader operating hours in equivalent 16ft grader units (line series). 

 Total truck operating hours by model group (staked area series). 

 Total truck operating hours in equivalent 777 truck model units (line series). 

 Ratio between equivalent operating hours of trucks and graders. 

 Total production in bcm. 

 Average hauling distance. 

Figure 3-21 describes these results for a specific project, while Figure 3-22 presents an 

example of the summary chart for project J. 
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Figure 3-21   Support equipment analysis Truck vs. Graders 
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Figure 3-22   Support equipment analysis Truck vs. Graders 
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3.5.3.2 Excavators-Dozers 

The results summary chart for the interaction between excavators, dozer and project 

production includes: 

 Total dozer operating hours by model group (staked area series). 

 Total dozer operating hours in equivalent D8 dozer units (line series). 

 Total excavator operating hours by model group (staked area series). 

 Total excavator operating hours in equivalent 10m³ bucket size excavator model 

units (line series). 

 Total production in bcm. 

 Ratio between equivalent operating hours of excavators and dozers based on 

equivalent units. 

 Ratio between bcm production and operating hours of dozers. 

Figure 3-23 presents an example of the summary chart for project J.  
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Figure 3-23   Support equipment analysis Truck vs. Graders  
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3.6 Conclusions and recommendations 

This Chapter has described the analysis of historical information regarding the 

operations of major hauling and loading equipment as well as support equipment. 

Productivity curves and equations were built and presented as the output of the 

analysis. It also presented a methodology to represent the performance summaries of 

equipment units involved in the earthmoving operations. All these results represent a 

valuable tool for estimating. 

Practical knowledge contained in the results includes: 

 Differences in project performances (easily recognized from the productivity 

curves for hauling and loading). 

 Project characteristics (e.g. hauling distance ranges, project scale, equipment 

models involved, etc.) 

 Problems in the data collection at different sites and periods (contained in the 

quality improvement summary). 

 Productivity charts (can be used to forecast hauling and loading units required in 

new projects). 

 Historical ratios between primary and support equipment compared to 

accomplished production. 

This analysis involved detailed reviews of the data that is contained in a large DBMS of 

a major construction contractor. Through the analysis, multiple sources of errors and 

inconsistencies were identified. The errors range from erroneous data being entered 

(such us 10,000 km haul distances) to duplicate data (same haul unit entered at two 

sites).  

Results from this analysis could be combined to extract handy information e.g. how 

many units of a given truck model should be used for a specific type of excavator. This 

is possible with the combination of the average hauling distance, the productivity 

information of trucks and excavators, and certainly, expert knowledge. 



~ 52 ~ 

CHAPTER 4 ANALYZING EARTHMOVING 

PRODUCTIVITY USING DATA MINING AND 

NEURONAL NETWORKS 

4.1 Introduction 

In the construction management field, data mining and ANNs will perhaps look as 

components of complicated systems that use expert-given rules or statistical inference 

techniques to provide decision support for experts, help decision makers perform at a 

higher level, assist in the training of inexperienced personnel and help scenario 

planning (i.e. what  if?) by managers (Boussabaine 1996). This research aims to 

incorporate Neural Networks into a system oriented to the enhancement of managerial 

decision making on the heavy construction and superficial mining earthmoving 

operations field. 

With the use of data mining techniques and the utilization of artificial neural network 

tools this chapter presents the study of the influence of the following variables on the 

productivity of haul trucks: hauling distance, excavator model utilize for loading, 

material type, temperature or season and average slope of the hauling path. Likewise, it 

studies the influence of the material type, project, temperature or season, and the size 

of the truck that is being served, on the productivity of the excavators. 

4.2 Nominal vs. numerical variables 

Nominal, or categorical, variables contain values that lack the properties of order, 

scale, or distance between them. If these variables will be used in any kind of 

algorithms, it is important to retain the lack of order or scale in categorical variables. 

Consequently, it is not desirable that a nominal variable be converted into a series of 

integers. Ordinal variables are categorical variables with the notion of order added to 

them (e.g. low, medium, high). Real measures, or continues variables, are the easiest to 
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use and interpret as they have all desirable properties of variables: order, scale, and 

distance (Chakrabarti, et al. 2009). 

One particular goal for this chapter is to analyze the convenience of using numerical 

variables instead of nominal ones as the main input type of ANNs. For example, will it 

be better to use the mean temperature of the day instead of the season of the year as 

an input of an ANN in order to represent surrounding conditions? Figure 4-1 shows 

the Daily Max, Min and Mean temperatures in Fort McMurray from Jun-07 to Feb-09. 

Table 4-1 and 4-2 presents the different nominal attributes extracted from the 

historical operational information that is being analyzed in this research, and the 

correspondent numerical attributes that could be used instead in the analysis of hauling 

trucks and excavator productivities. 

 

Figure 4-1   Daily Max, Min and Mean temperatures in Fort McMurray. 
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Table 4-1   Input type approaches for the evaluation of hauling truck productivities. 

Attribute  
description 

Input type #1 
Nominal variables as  
main type of input 

Input type #2 
Numerical variables as 

main type of input 

Distance Distance Distance 

Excavator  
model 

495HF 
EX8000 
EX5500 
EX3600 
EX2500 
EX1900 

EX1800 
EX1200 
EX850 
EX800 
EX750 
EX600 

EX550 
EX450 

EX330/350 
EX300 
EX200 

Excavator  
bucket size 

Material type 

Granular 
Muskeg 
Oilsand 

Overburden 

Rock - High 
Rock - Medium 

Slop 

Material 
density 

Project 
C,  D,  E,  F,  H,  I,   

J,  L,  M,  O,  S 
C,  D,  E,  F,  H,  I,   

J,  L,  M,  O,  S 

Time of year 
Fall,  Winter,   

Spring,  Summer 
Daily mean  
temperature 

Hauling  
conditions* 

Average path slope* Average path slope* 

* Available for the data coming from only one project. 

Table 4-2   Input type approaches for the evaluation of excavator productivities. 

Attribute  
description 

Input type #1 
Nominal variables as  
main type of input 

Input type #2 
Numerical variables as 

main type of input 

Material type 

Granular 
Muskeg 
Oilsand 

Overburden 

Rock - High 
Rock - Medium 

Slop 

Material 
density 

Project 
C,  D,  E,  F,  H,  I,   

J,  L,  M,  O,  S 
C,  D,  E,  F,  H,  I,   

J,  L,  M,  O,  S 

Time of year 
Fall,  Winter,   

Spring,  Summer 
Daily mean  
temperature 

Truck 
category 

Trucks - 280t+ 
Trucks - 220-280t 
Trucks - 120-220t 
Trucks - 80-120t  
Trucks - 40-80t 

Truck model 
 size 
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4.3 Data mining 

Data mining is defined as the process of discovering patterns in data. Moreover, data 

mining is not only used for predictions, but it is frequently used to gain knowledge 

from data, which it certainly sounds like a good idea if you can do it (Chakrabarti, et al. 

2009). 

The system used for data mining in this research is called WEKA. The Waikato 

Environment for Knowledge Analysis (WEKA) is recognized as a landmark system in 

data mining and machine learning as it has achieved widespread acceptance within 

academia and business circles, and has become a widely used tool for data mining 

research (Hall, et al. 2009). 

4.3.1 Visualizing 

A scatter plot is one of the most effective graphical methods for determining if there 

appears to be a relationship, pattern, or trend between two numeric attributes 

(Chakrabarti, et al. 2009) plus it gives the ability to easily identify outliers. Figure 4-2 

shows different examples of scatter plots. The productivity information for hauling 

trucks and excavator models was plotted using the selected data mining tool, which 

offers the opportunity to visualize the interaction of every input attribute with the rest 

and with the output, see Figure 4-3. 

It was also possible to plot with a single click the way in which different input 

attributes affect the output values. See Figure 4-4, where histograms of loads per hour 

values of one model of truck are plotted with different colors representing several 

input attributes (project, excavator model being used, and material type). Figure 4-5 

presents similar information, but instead of histograms, a set of scatter plots of 

productivity versus hauling distance is presented colored by project, excavator model 

and material type. 
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Figure 4-2   Examples of scatter plots. 
a) Positive correlation b) Negative correlation c) No observed correlation. 

4.3.2 Filtering and transforming 

Data mining tools were also useful to filter the data and get rid of outliers. The analysis 

of different attributes was made only for those attributes in which the number of 

instances was higher than the 0.1% of the total number of events (i.e. generally more 

than ten instances). Transforming nominal or categorical attributes into a set of binary 

fields was possible using a simple nominal-to-binary filter. After this transformation, 

the data sets were ready for ANN implementation. 

 



~ 57 ~ 

 

Figure 4-3    Scatter plots - productivity parameters of a particular excavator model. 
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Figure 4-4   Histograms of loads/hour -793 Truck model. 
by project, excavator model, and material type. 
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Figure 4-5 Loads/hour vs. distance - 793 Truck model  
by project, excavator model, and material type. 

Truck 793 
Loads/hr vs. 
hauling distance 
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• Project 
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4.4 Artificial Neuronal Networks 

This section studies the development and implementation of artificial neural networks 

(ANNs) as a mean of improving the abilities of an estimator to predict heavy 

construction equipment productivity rates. ANNs are information processing 

technologies that attempt to simulate, in a gross manner, the networks of nerve cell 

(neurons) of the biological (human or animal) central nervous system (Graupe 2007). 

As the brain, ANNs learn from experience, generalize from previous examples to new 

ones and abstract essential characteristics from inputs containing irrelevant data.  

The system used on this research to develop ANNs is Neuroshell ® 2. NeuroShell 2 is 

a software program developed by Ward Systems Group®, Inc. that enables you to 

build sophisticated custom problem solving applications without programming.  You 

tell the network what you are trying to predict or classify, and NeuroShell 2 will be able 

to "learn" patterns from training data and be able to make its own classifications, 

predictions, or decisions when presented with new data (NeuroShell 2 Help n.d.). 

Figure 4-6 presents the display of the NeuroShell 2 advanced options screen in which 

the independent modules that may be used to create a neural network application are 

shown. 

The software also allows the user to obtain the relative contribution of every input 

parameter, as well as to track graphically the training average error. Figures 4-7 and 4-8 

respectively show the relative contribution factors and training average error evolution 

for one of the ANN configurations that evaluate the productivity for the hauling truck 

model 785. 
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Figure 4-6   The NeuroShell 2 Advanced Options screen display 

 

Figure 4-7   Relative contribution factors - Truck model 785. 
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Figure 4-8   Training average error evolution - Truck model 785. 

The hauling truck and excavator operational information that was pre-processed using 

data mining techniques is the foundation matter of the ANNs that are developed on 

this section. Note again that this information represents the operation information of 

more than 380 pieces of equipment between hauling trucks and excavators, collected 

for more than three years in eleven different projects. 

One of the objectives of this research is to analyze the sensitivity of different 

parameters of artificial neural networks in the evaluation of earthmoving operational 

data. With this in mind, the influence of different input types, ANN architectures, and 

number of hidden nodes on the performance of the ANN are evaluated in this section. 

Other ANN parameters such as learning rate, momentum, and initial weights will not 

be evaluated on this research.   

4.4.1 Architectures 

Neuroshell® 2 offers to the ANN developer a wide range of network architecture 

options (see Figure 4-9). After a fairly varied evaluation, and using the rule of thumb, 

two different architectures were selected to be assessed on this research: Four layers – 

Standard connections and Ward net with three hidden slabs and different activation 

functions. Both of these architectures are backpropagation networks. Backpropagation 
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networks are known for their ability to generalize well on a wide variety of problems. 

That is why they are used for the vast majority of working neural network applications. 

(NeuroShell 2 Help n.d.) 

 

Figure 4-9   Network architecture options 

4.4.1.1 Four layers – Standard connections 

This is the standard type of backpropagation network in which every layer is 

connected or linked to the immediately previous layer. It has four different layers 

including one input layer, one output layer and two hidden layers; see Figure 4-10. The 

number of nodes on the input layer depends on the model of equipment analyzed and 

the type of input, the number of nodes on the hidden layers varies and is a parameter 

that will also be analyzed. The output layer has only one node (equipment 

productivity). 
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Figure 4-10   Standard backpropagation network with four layers. 

 

4.4.1.2 Ward net with three hidden slabs and different activation functions 

Hidden layers in a neural network are known as feature detectors. Ward Systems 

Group invented three different backpropagation network architectures with multiple 

hidden layers. Different activation functions applied to hidden layer slabs detect 

different features in a pattern processed through a network. For example, a network 

design may use a Gaussian function on one hidden slab to detect features in the mid-

range of the data and use a Gaussian complement in another hidden slab to detect 

features from the upper and lower extremes of the data.  Thus, the output layer will get 

different "views of the data."  Combining the two feature sets in the output layer may 

lead to a better prediction (NeuroShell 2 Help n.d.). This section will assess the 

performance of the 3 hidden slabs ward neural network architecture, see Figure 4-11. 
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Figure 4-11   Ward backpropagation net with three hidden slabs. 

 

4.4.2 Number of Hidden Neurons 

In Backpropagation networks, the number of hidden neurons determines how well a 

problem can be learned.  If you use too many, the network will tend to try to 

memorize the problem, and thus not generalize well later.  If you use too few, the 

network will generalize well but may not have enough ―power‖ to learn the patterns 

well.  Getting the right number of hidden neurons is a matter or trial and error, since 

there is no science to it. The software default number of hidden neurons for a 3 layer 

network is computed following Equation 4-1. For more hidden slabs, divide the 

number above by the number of hidden slabs. 

                     

                                                               
4-1 
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This default manner to compute the number of hidden neurons is the first approach 

of number of hidden nodes to be analyzed and it is denoted by the letter A, as STD-A 

and WARD-A for the different architectures using this approach. The second manner 

of computing the number of hidden neurons was selected using the rule of thumb, and 

use the product of the number of inputs parameter and the number six. This approach 

is denoted with the letter B (e.g. STD-B and WARD-B). 

4.5 Results 

This section presents a comparative summary of the performances of different ANN 

configurations that aim to evaluate hauling truck and excavator productivities. The 

parameter used in order to perform this comparison is the square of the correlation 

coefficient (r squared). The correlation coefficient r (Pearson’s Linear Correlation 

Coefficient) is a statistical measure of the strength of the relationship between the 

actual vs predicted outputs. The r coefficient ranges from -1 to +1.  The closer r is to 

1, the stronger the positive linear relationship, and the closer r is to -1, the stronger the 

negative linear relationship. It is possible to get the same results by using the 

Correlation Scatter Plot and graphing actual vs predicted outputs. Another comparison 

using the coefficient of multiple determination R Squared is offered as an appendix, 

see Appendix A. The formula used for the correlation coefficient r is given by 

Equation 4-2. 

   
    

√        

 4-2 

where,  

      ∑    
 ∑   ∑  

 
 4-3 

      ∑    
 ∑   

 
 4-4 
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      ∑    
 ∑   

 
 4-5 

Where n equals the number of patterns, x refers to the set of actual outputs, and y 

refers to the predicted outputs. 

4.5.1 Haul truck productivity 

4.5.1.1 r-squared - ANN – different architectures 

Figure 4-12 presents the comparison summary between different analyzed 

architectures. Four different ANN configurations were generated for twenty six sets of 

data. On the data set description, the first three characters are a hint of which type of 

input is used, ABC represents nominal input type and 123 refers to numerical input 

type (see section 4.2). The second part of the name string has two different values All 

or OB, this refers to the number of projects that the set of data contain. OB means 

that the data contains only one project in which material type is overburden; in those 

data sets the hauling path average slope parameter was available. The last part of the 

name string refers to the equipment category and model. 

The results clearly show the low performance of every analyzed ANN configuration. 

Nevertheless, it can be noted that ward net architectures got higher correlation values 

compared with four layer architectures. The difference in the ANN performance 

depending on how the number of hidden neurons is computed (-A or -B) is minor. 

Figure 4-12 presents these results graphically. 
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Figure 4-12   r-squared comparison summary - ANN architectures – Hauling trucks. 

4.5.1.2 r-squared - ANN – different input types 

Figure 4-13 aims to summarize which type of input (nominal or numerical) result in 

better ANN performance. The values in this figure come from the Ward-A 

configuration. As it is shown, ANN configurations that include all the projects resulted 

in higher r-square values. Nominal inputs perform slightly better than numerical ones. 
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Figure 4-13   r-squared Input type comparison summary – Hauling trucks. 

4.5.1.3 ANN vs. summarization tools analysis 

Figure 4-14 presents a comparison between the results obtained using ANN and Data 

mining versus the results obtained in chapter three using summarization tools and only 

the hauling distance as a productivity feature. In general the analysis using ANN 

reached better correlations, and there is no a tangible influence in which type of input 

is preferred (numerical or nominal).  
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Figure 4-14   r-squared Input type comparison summary – Hauling trucks. 

4.5.2 Excavator productivity 

A similar analysis than the one produced for hauling trucks was made for the excavator 

models.  

4.5.2.1 r-squared - ANN – different architectures 

Figure 4-15 presents the comparison summary between the analyzed ANN 

architectures (Ward and Standard). The results clearly show very low correlation 

values, nevertheless, it can be noted that ward net architectures are associated with 

higher r-squared values than standard four layer architectures. 
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Figure 4-15   r-squared comparison summary - ANN architectures – Excavators. 

4.5.2.2 r-squared - ANN – different input types 

Figure 4-16 aims to summarize which type of input (nominal or numerical) result in 

better ANN performance when analyzing excavator productivities. The values in this 

table come from the Ward-A configuration. As it is shown, nominal inputs perform 

somewhat better than numerical ones. 
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Figure 4-16   r-squared comparison summary – ANN input types – Excavators. 
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CHAPTER 5 CONCLUSIONS AND RECOMENDATIONS 

This study involved the analysis of the historical operational data of more than 230 

hauling units, 160 excavator units, and 150 units of support equipment. The data was 

recorded for more than three years and represents the operations of one of the largest 

contractors on the Alberta Oil Sands in eleven projects. 

Multiple analysis tools were implemented throughout the analysis. The use of them 

was more complementary than competitive. Data mining, artificial neural networks 

and summarization tools proved to assist effectively in the assessment of historical 

productivities and in the identification of the attributes that most influence the results. 

Most of the information related to earthmoving operations is recorded by the foreman 

at the end of the shift. The information is then input into a data management system. 

This schema contributes to fabricate information, e.g. durations of individual task 

within a shift. Consolidating the shift operations information into a single datum could 

improve the accuracy of the results as it was shown in this study with the use of the 

shift weighted hauling distance. 

This research has described the analysis of historical information regarding the 

operations of hauling and loading equipment as well as support equipment. 

Productivity curves, equations and ranges were built and presented as one of the 

outputs of the analysis. The research also proposed a methodology to represent 

performance summaries of equipment units involved in the earthmoving operations; 

those summaries offer a valuable overall picture to executive staff and project 

managers. A novel approach was presented on how to compute historical ratios 

between primary and support equipment compared to accomplished production, the 

results could certainly assist in project resource allocation. 

The research involved a detailed review of the data contained in a large DBMS of a 

major heavy construction contractor. The quality of the recorded information is 
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affected by multiple sources of errors and inconsistencies. It is paramount to establish 

standard forms and better procedures for data collection. Only valuable information 

should be recorded and used. Multiple recording should be avoided by unifying input 

platforms. 

Results of the poor data quality are the very low correlations that were obtained in the 

analysis. Through the use of data mining techniques and artificial neural networks it 

was possible to include more variables into the analysis, leading into slightly better 

results. 

Multiple ANN configurations were evaluated in the determination of hauling trucks 

and excavators productivities. Ward net architectures that include different activation 

functions applied to hidden layer slabs performed better than standard 

backpropagation nets because they are able to detect different features in a pattern 

processed through a network. There was not a strong effect on the way in which the 

number of hidden neurons was computed. Nominal input type reached slightly better 

correlations than numerical type when evaluating the productivity of excavators; but 

still the obtained correlations were very low. 
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APENDIX A – ANN COMPARISON RESULTS USING R-

SQUARED 

The coefficient of multiple determination, R Squared, is a statistical indicator usually 

applied to multiple regression analysis. It compares the accuracy of the model to the 

accuracy of a trivial benchmark model wherein the prediction is just the mean of all of 

the samples. A perfect fit would result in an R squared value of 1, a very good fit near 

1, and a very poor fit less than 0. If the ANN predictions are worse than what could be 

predicted by just using the mean of the sample case outputs, the R squared value will 

be less than 0. Equation A-1 is used for the coefficient of multiple determination R 

squared. 

    
   

    
 A-1 

where,  

     ∑    ̂   A-2 

      ∑    ̅   A-3 

Where y is the actual value,   ̂ is the predicted value of y, and  ̅ is the mean of the y 

values. 
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Hauling truck productivities 

R-squared - ANN – different architectures 

 

R-squared - ANN – different input types 
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Excavator productivity 

R-squared - ANN – different architectures 

 

 R-squared - ANN – different input types 
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