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ABSTRACT

Heavy construction and mining general contractors record on a daily basis large
amount of operational data. Nevertheless, this information is rarely used to enhance
the knowledge and capabilities of the companies that spent great amount of money
and resources recording it. This research presents different approaches on how to
process this data to convert it in useful information. The prime goal of this analysis is
to determine a suitable and convenient method to obtain and present historical
productivities of key equipment, in order to provide a tool to aid estimating and

generate reference information to support decision making.

Estimating construction operation productivity is mostly experience-based due to the
complexity involved. However, predominantly empirical practices do not secure a
reliable estimate because of the absence of a binding mechanism that relates the
present case to past patterns (Chao and Skibniewski 1994). This study involved the
analysis of the historical productivity of more than 230 hauling units, 160 excavator
units, and 150 units of support equipment. The historical data has been recorded for
about three years and represent the operations of one of the largest contractors on the

Alberta Oil Sands in eleven different projects.

Data mining, artificial neural networks and summarization tools proved to assist
effectively in the assessment of historical productivities and in the identification of the
attributes that most influence the results. Multiple ANN configurations were evaluated
in the determination of hauling trucks and excavators productivities. Ward net
architectures that include different activation functions applied to hidden layer slabs
performed better than standard backpropagation nets since they are able to detect

different features in a pattern processed through a network.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

In western Canada as in the rest of the world, heavy construction and mining general
contractors record on a daily basis large amount of operational data. Nevertheless, this
information is rarely used to enhance the knowledge and capabilities of the companies

that spent great amount of money and resources recording it.

Several elements impact the productivity of heavy construction equipment. The
production rate of a construction operation is constrained by not only the applied
technology’s capacities that are subject to the physical job conditions such as work
dimensions and environment factors, but also its utilization rate or operating efficiency
that is influenced by management circumstances. Estimating construction operation
productivity is predominantly an experience-based task due to the complexity
involved. According to experience, a contractor can intuitively adjust the standard rates
in productivity handbooks to estimate for an operation in given project conditions.
Nonetheless, such empirical practices do not guarantee a solid estimate because of the
absence of a binding mechanism that relates the present case to past patterns (Chao

and Skibniewski 1994).

Figure 1-1 shows a basic earthmoving operation where a set of hauling trucks are
loaded by a single excavator. The cycle time of the process involves four main

activities: loading, hauling, dumping and returning,.
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Figure 1-1 Excavation and Hauling Operation
1.2 Scope of research

This research focuses on the evaluation of historical operational data for the purpose
of assessing the productivity of heavy construction and mining equipment. It presents

different approaches on how to convert raw data into useful information.
1.3 Research Objectives

The aim of this research is to determine a suitable and convenient method to obtain
and present historical productivities of key equipment in order to provide a tool to aid
estimating and generate reference information to support decision making. To realize

this goal, the following objectives have been attained:



* Implement, combine and compare different analysis tools and procedures to

assess historical productivities of earthmoving operations.

* Identify common factors that affect the quality of the data being recorded and

propose approaches to mitigate their effects.

® Analyze the sensitivity of different parameters of artificial neural networks in

the evaluation of earthmoving operational data.
1.4 Thesis Organization

This thesis is composed of five chapters. Chapter 1 presents the motivation, general
goal, objectives and the scope of the research. Chapter 2 gives a comprehensive
overview of the current methodology to estimate earthmoving operations, and the
state of the art of data mining and artificial neural networks used for productivity
prediction. Chapter 3 summarizes an extensive analysis of earthmoving operations
using summarization tools. Chapter 4 describes the use of data mining techniques and
artificial neural networks in the assessment of earthmoving operations’ productivities.
Chapter 5 provides a summary report of activities performed, as well as a set of

conclusions and contributions made by this MSc research.
1.5 Confidentiality

Confidential information has been used in the development of this research.
Nevertheless, none of this information is released or published on this document. The
author has taken special care in removing or modifying confidential data from tables,
charts and other results. As part of this investigation a great amount of appendixes was
generated for the general contractor, these appendixes has been declared confidential

and not included as part of this thesis.



CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Equipment productivities of earthmoving operations have been deeply studied during
the last fifty years. Current equipment specifications include sophisticated charts to
compute their productivities in dependence of multiple external factors. There are
numerous analytical methods that can be used to plan or analyze a construction
operation. However, in most cases, analytical techniques require abstractions which

tend to reduce confidence in model predictions (AbouRizk, Halpin and Hill 1991).

In today’s increasingly competitive market, the contractor is required to plan and
estimate an earthmoving contract as accurately as possible at tender stage and, if the
contract is awarded, focus in control site operations to minimize cost. However, as it is
widely recognized, production estimates at a tender stage are difficult to calculate

accurately and at a construction stage, production targets are hard to maintain (Smith,

Osborne and Forde 1995).
2.1.1 Simulation

In recent years the use of special purpose simulation systems in the analysis of
earthmoving operations has expanded its popularity. Special purpose simulation (SPS)
can be defined as a computer-based environment built to enable a practitioner who is
knowledgeable in a given domain, but not necessarily in simulation, to model a project
within that domain in a manner where symbolic representations, navigation schemes
within the environment, creation of model specifications and reporting are completed

in a format native to the domain itself (AbouRizk and Hajjar 1998).

Simulation studies are appropriate for the analysis of earthmoving operations for
numerous reasons including: repetition of given operations, dynamics of resource

interactions, external factors that need to be included in the analysis and the

~ 4 ~



randomness associated with such systems (Hajjar and AbouRizk 1996). During the
coursework of his master studies, the author was in contact with these simulation
techniques, specifically with the use of the simulation tool Simphony. Simphony is a
simulation platform for building general and special purpose simulation models. It is a
Microsoft Windows based computer system developed with the objective of providing
a standard, consistent and intelligent environment for both the development as well as
the utilization of the construction of Special Purpose Simulation (SPS) tools (Hajjar
and AbouRizk 1999). This research does not cover at this point any simulation
technique as one of the tool to approach the analysis of the historical construction

operational information.
2.2 Earthmoving Operations

Earthwork projects involve moving specific amounts of earth from a set of source
locations to a set of destinations. Construction contractors use diverse methods and
equipment to move earth depending primarily on their equipment availability and

hauling distance (Kannan, Martinez and Vorster 1997).

The problem of accurate estimation of earthmoving productivity has intrigued many
researches for decades; however a model that predicts the output of such operations
with a satisfactory degree of confidence for all situations is not yet available (S. Smith
1999). Figure 2-1 presents a simplified overview of the estimation process of an

earthmoving operation.
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Figure 2-1 Earthmoving production process.
(Peurifoy, Schexnayder and Shapira 20006).

2.2.1 Excavatots

The current practice to estimate the production rate of an excavator considered as an

independent machine can be simplified in six steps (Peurifoy, Schexnayder and Shapira

20006).



e Stepl. Obtain the heaped bucket load volume from manufacturers’ data sheet.
This would be a loose volume (Icm) value.

e Step2. Apply a bucket fill factor based on the type of machine and the class of
material being excavated.

e Step3. Estimate a peak cycle time. This is a function of machine type and job
conditions to include angle of swing, depth or height of cut, and in the case of
loaders, travel distance.

e Step4. Apply an efficiency factor.
e Step5. Conform the production units to the desired volume or weight units (Iem

to bcm or t).

e Step6. Calculate the production rate.

Production in this case is material carried per load * cycles per hour. In the case of

excavators, this formula can be refined and written as per Equation 2-1.

Production — 3,600 sec X Q X F X (AS:D) E y 1
roauction = t 60 minhr ~ volume 21
correction
where,

Q = bucket capacity (lcm)

F = bucket fill factor

AS:D = angle of swing and depth (height) of cut correction
t = cycle time in seconds

E = efficiency (min per hour)
2.2.2 Hauling trucks

Hauling trucks provide relatively low hauling costs because of their high travel speeds.
The productive capacity of a truck depends on the size of its load and the number of
trips it can make in an hour. The number of trips completed per hour is a function of
cycle time. Truck cycle time has four components: (1) load time, (2) haul time, (3)

dump time, and (4) return time. Examining a match between truck cargo body size and
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excavator bucket size yields the size of the load and the load time. The haul and return
cycle times will depend on the weight of the truck, the horsepower of the engine, the
haul and return distances, and the condition of the roads traversed. Dump time is a
function of the type of equipment and conditions in the dump area (Peurifoy,
Schexnayder and Shapira 2000).

2.2.2.1  Calenlating truck production

Step 1. Number of bucket loads. The first step in analyzing truck production is to
determine the number of excavator bucket loads it takes to load the truck (Equation

2-2).

Truck capacity (lem)

Balanced number of bucket loads = Bucket capacity (lem)

Step 2. Load time. The actual number of bucket loads placed on the truck must be an
integer number. If the number of bucket loads is rounded down to an integer lower
than the balanced number of loads (subscript LI), the loading time will be reduced; but
the load on the truck is also reduced (Equation 2-3). The truckload in such cases will

equal the bucket volume multiplied by the number of bucket loads (Equation 2-4).

Load time;; = Number of bucket loads;; X Bucket cycle time 2-3

Truckload;;(volumetric)

= Number of bucket loads;; X Bucket volume

If the division of the truck cargo body volume by the bucket volume is rounded to the
next higher integer (subscript HI) and that higher number of loads is placed on the
truck, excess material will spill off the truck. In such case, the loading duration equals

the bucket cycle time multiplied by the number of bucket swings (Equation 2-5). But



the volume of the load on the truck equals the truck capacity, not the number of

bucket swings multiplied by the bucket volume (Equation 2-6).

Load timey; = Number of bucket loadsy; X Bucket cycle time 2-5

Truckloady;(volumetric) = Truckvolumetric capacity 2-6

Always check the load weight against the gravimetric capacity of the truck (Equations
2-7 and 2-8).

Truckload (gravimetric)

= Vol.load (lcm) x Unit weight (loose vol.t/lcm)

Truckload (gravimetric) < Rated gravimetric payload? 2-8

Step 3. Haul time. Based on the gross weight of the truck with the load, and
considering the rolling and grade resistance from the loading area to the dump point,
haul travel speeds can be estimated using the truck manufacturer’s performance chart,
see Figure 2-2. While performance charts indicates the maximum speed at which a
vehicle can travel, the vehicle will not necessarily travel at this speed. A performance
chart makes no allowance for acceleration or deceleration. In addition, other travel
route conditions and safety can control travel speed (Peurifoy, Schexnayder and
Shapira 20006). The anticipated effective speed is what should be used in calculating

travel time (Equation 2-9).

Haul time (min) = Haul distance (km) % 60 (min/h 2.9
aul time (min) = Haul speed (km/h) (min/hr)




Gross Weight

0 50 100 150 200 250 300 350 400 Ib x 1000
I | I | [ | |
0 20 40 60 80 100 120 140 160 180 200 kg x 1000
Ibx kgx L e I L R e I T T
1000 1000
70 .
150 el EL
1 =
140 ©° i :
130 60 :
1200 55y + I £ 5
1st Gear z P
1m0 so0|% ! 2 0% 1
] —
100 ' | : 1 & 2
i | E o259 4 ©.=
90| 4 : 123
= 40| § t = o
1} ED ] E =1 E o
g 35| 4 2 _20% 4 g 3
= 70 1 £ 1l e=s
o 30 - i — =
60 I 5% - ET
25 : 12 E
50 s - =
a0l 20 2 10%
30 1° fﬂffff“’gxf -
20 10 i 5%
10 - 5 | Torque Converter Drive mmmm r ]
Direct Drive H i
o plE=m—— 1 2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 km/h
L [N I Y Y A A

0 5 10 15 20 25 30 35 40 45 mph
Speed

Figure 2-2 Performance Chart for a Caterpillar 777F Off-Highway Truck
(Taken from: AEHQ5749-01 (5-07) - 777F Off-Highway Truck specifications — © 2007 Caterpillar)

Step 4. Return time. Based on the empty vehicle weight, and the rolling and grade
resistance from the dump point to the loading area, return travel speeds can be
estimated using the truck manufacturer’s performance chart. Return time can be

computed using Equation 2-10.

Ret time (min) = Haul distance (km) < 60 (min/h 210
eturn time (min) = Z— speed (km/h) (min/hr)

~10 ~



Step 5. Dump time. Dump time will depend on the type of hauling unit and

congestion in the dump area.

Step 6. Truck cycle time. The cycle time of a truck is the sum of the load time, the

haul time, the dump time, and the return time (Equation 2-11).

Truck cycle time = Load;j,. + Haulipme + Dumpyime + Returngpe 2-11

Step 7. Number of trucks required. The number of trucks required to keep the

loading equipment working at capacity is given by Equation 2-12

Truck cycle time (min)

Balanced number of trucks = - -
Excavator cycle time (min)

Step 8. Production. The number of trucks must be an integer number. If an integer
number of trucks lower than the balanced number of trucks is chosen, then the trucks

will control production (Equation 2-13).

Production (lcm/h)

= Truck load (lcm) X Number of trucks
60 min 2-13

X
Truck cycle time (min)

When an integer number of trucks greater than the balanced number of trucks is

selected, production is controlled by loading equipment (Equation 2-14).

~11 ~



Production (lcm/h)

60 min i
= Truck load (LCM) x 2-14

Excavator cycle time (min)

As a rule, it is better to never keep the loading equipment waiting (Peurifoy,

Schexnayder and Shapira 20006).

Step 9. Efficiency. The production calculated before is based on a 60-min working

hour. That production should be adjusted by an efficiency factor (Equation 2-15).

Working time (min/hour) 215

Adjusted production = Production X
justed production roduction 50 min

Step 10. Production in desired units. Finally, this production can be converted as
necessary into bank cubic meters or tonnes by using material property information

specific to the job.
2.3 Data mining

Today’s world is overwhelmed with data. The volume of data in our lives continues to
increase and there’s no end in sight. As the volume of data increases, inexorably, the
proportion of it that people understand decreases, alarmingly. Lying hidden in all this
data is information, potentially useful information, which is rarely made explicit or

taken advantage of.

Data mining is defined as the process of discovering patterns in data. The process
must be automatic or (more usually) semiautomatic. The patterns discovered must be
meaningful in that they lead to some advantage, usually an economic advantage. The

data is invariably present in substantial quantities (Chakrabarti, et al. 2009).

~ 12 ~



2.3.1 Data preprocessing

Real-world databases are full of noisy, missing, and inconsistent data because of their
typically huge size and their likely origin from multiple, heterogeneous sources. There
are a number of data preprocessing techniques. Data cleaning can be applied to
remove noise and correct inconsistences in the data. Data integration merges data
from multiple sources into a coherent data store, such a data warehouse. Data
transformations, such as normalization, may be applied. Data reduction can reduce the
data size by aggregating, eliminating redundant features, or clustering, for instance.

Figure 2-3 summarize some of the data preprocessing forms.

Data cleaning
Data integration
Data transformation —2,32,100,59,48 —» —0,02,0.32, 1.00,0.59,0.48
Data reduction Attributes Attributes
Al A2 A3 o  Al26 - Al A3 . AllS

T1 g Tl

w .

£ T V]

5 T3 -

‘é’ T4 & T1456

[..4 e
T2000

Figure 2-3 Forms of data preprocessing (Chakrabarti, et al. 2009).
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2.4 Artificial Neuronal Networks

Artificial neural networks (ANNs) represent a different computational approach. In
contrast to more conventional analytic methods, ANNs are an information processing
technology that attempt to simulate, in a gross manner, the networks of nerve cell
(neurons) of the biological (human or animal) central nervous system (Graupe 2007).
As the brain, ANNs learn from experience, generalize from previous examples to new
ones and abstract essential characteristics from inputs containing irrelevant data. A
large variety of possible ANN applications now exist for non-computer specialist.
Therefore, with only a very modest knowledge of the theory behind ANNE, it is
possible to tackle complicated problems in a researcher’s own area of specialty with the
ANN technique. There is currently available a wide range of ANN models, in terms of
topology and mode of operation. According to (Boussabaine 1996), each model can be

specified by the following seven major concepts.

1. A set of processing neurons.

2. A state of activation for each neuron.

3. A pattern of connectivity among the neurons or topology of the network.

4. A propagation method to propagate the activities of the neurons through the
network.

5. An activation rule to update the activities of each node.

6. An external environment that provides information to the network and
interacts with it.
7. A learning method to modify the pattern of connectivity by using information

provided by the external environment.

Figure 2-4 presents a three-layered ANN. The input and Output layers are responsible

for communication with the outside world.

~14 ~
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Connection

weights

Figure 2-4 Example of an ANN with three layers

Figure 2-5 illustrates the functioning of the nodes. In a very simple scenario, a node
receives inputs from two previous nodes X(1) and X(2), respectively modified by
weight factors W(1) and W(2). The node computes the addition of these values
X(M*W(1) + X(2)*W(2), and delivers an output using a transfer function which can

take a variety of forms.

X(D)

Output = F(Z)

7= X(1)* 2)*W (2
<o X)W (1) + X(2*W(2)

Figure 2-5 Typical ANN node

ANNS’s can be supervised or unsupervised. Supervised networks predict output based

on the patterns observed in the input and output data that has been used for
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“learning” or “training”’. Unsupervised networks are used to classify sets of data into a
specific number of categories, without learning from other data sets (Mather 1998).
The work within this research only deals with supervised networks. In this type of
ANN, the input layer broadcast a pattern to all the hidden nodes, the system then
computes an output using the procedure presented in Figure 2-5. The final output is
compared with the target value that the trainer has previously specified. The difference
yields the output error, and it is time to decide if further learning is necessary. If more
learning is required, the output nodes calculate the derivatives of the error with respect
to the weights and the result is sent back through the systems and the connection
weights are corrected. Once the weights has been upgraded the feed-forward

computation start over again.

Chapter four on this document presents the implementation of artificial neural

networks on the analysis of the historical earthmoving operational information.
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CHAPTER 3 EARTHMOVING PRODUCTIVITY
ANALYSIS BASED IN HISTORICAL DATA

3.1 Introduction

This chapter summarizes how the historical operational data of the one biggest
construction contractors in the oil sands industry in northern Alberta was analyzed
through about seven months of research assistantship. The analyzed historical data had

been recorded for more than three years in eleven different projects.

The specific objectives of the analysis were:

Determine truck productivities as a function of the haul distance, categorized by

truck model and project.

e Determine excavators and major loading equipment productivities categorized by

excavator model and project.

e Obtain historical ratios between number of trucks and number of graders, as well
as the historical relation between total project production in bem and number of

dozers required.
e Analyze the overall quality and consistency of the data contained in the databases.

e Recommend further analysis of operational data, as well as new and better

procedures to perform the analysis.

e Suggest novel beneficial approaches for data collection.
3.2 Hauling truck productivity analysis

This section describes how the analysis of the historical information related to hauling
operations of more than 230 hauling units was performed. The main goal of this

analysis was to produce productivity curves as a function of the hauling distance.
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3.21 Equipment models

This research cover ten trucks models grouped in four categories see Table 3-1. Figure

3-2 shows a picture of a 777 Hauling Truck.

Table 3-1 Hauling truck models and categories

Equipment Equipment Equipment
Function Category Model
EH4500
Trucks - 280t+ EH5000
930E-AC
793C
Hauling ~ Trucks - 220-280t 793D
trucks 830E
785C
Trucks - 120-220t
785D
777D
Trucks - 80-120t
7TTF

Figure 3-1 Hauling truck models
(Picture from: AEHQ5749-01 (5-07) - 777F Off-Highway Truck specifications — © 2007 Caterpillar)
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3.2.2 Methodology

Different actions were carried out to clean, combine, condense, and organize the data

in order to obtain the productivity information for the main truck models analyzed.

The operational data in its basic state was contained in 47 tables. The first step was to
identify what relevant data was needed for the analysis. With this in mind, certain
information was grouped into three main tables (master tables). These tables
represented data of three different natures: 1) hauling production data, 2) equipment
timing data from availability and utilization records and 3) equipment timing data
coming from accounting sources. This particular assembly assisted in the comparison
of analogous information that was being recorded on different places and/or for

different purposes; it also helped in the identification of data collection issues.
3.2.2.1  Pivot Tables

Pivot tables are the key engine in this analysis. They are used as the main tool to
organize, classify and group the information in a meaningful way. Four Pivot tables
were built for the hauling productivity analysis of each truck model. The three master

tables described before were the data source of these pivot tables.
3.2.2.2  Shift weighted hanling distance

Most of the information related to earthmoving operations is recorded by the foreman
at the end of the shift. The information is then input into a data management system.
This schema contributes to the fabrication of information; principally, the durations of
individual tasks within a shift. For instance, when one hauling unit performs different
tasks during one shift (e.g. different hauling distance, material type, loading unit, etc.)
the hauling time recorded into the databases for each different task is often a not very
accurate estimation of the duration of the truck operations, see Figure 3-2. If those
individual times are used to produce the ratio between the number of hauled loads and
the time spent, the results will not be a real representation of the actual truck

productivity.
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Even if the recorded individual times are not reliable, the information could still be
useful being that the summation of all these durations closely represents the total

operating hours for the shift.

One shift

-,
o

Material A
Material B
Material C
Material D

Figure 3-2 Different tasks performed by a truck unit during one shift.

To mitigate this issue, all the activities performed by a truck unit during a given shift
were compressed on one productivity datum, as the relation between the total number
of loads and the operating hours during the shift (Figure 3-3). The correspondent
hauling distance for this productivity is called Shift weighted hauling distance (d,)) and

it is computed as per Equation 3-1.

n

DL,

_ =l -
d, =+—— 31

n

2L

i=1

where,
Li = Number of loads for task i performed by a truck unit during a specific shift.

di = haul distance for task i
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# Loads C

H Distance C
H Time C
# Loads B # Loads D
H Distance B H Distance D
H Time B H Time D
# Loads A dy # Loads E
H Distance A Total #Loads H Distance E
H Time A Total hauling Time H Time E

Figure 3-3 Shift weighted hauling distance (dw).

Figure 3-4 shows how the use of the shift weighted hauling distance substantially

reduces the dispersion on the results.

Hauling productivity
versus hauling distance

using

raw data

Loads/Op.Hr

Loads/Hauling time

10

» Project A
« Project B
 Project C

Project D
* ProjectE
+ Project F

- Project G

8 0 l 2 3 4 5 6 7 8 9 171 12 13 16
Hauling distance [km]
i 5 Trrojectr ,
) - Project G
Hauling productivity
] versus hauling distance
1]
1 H using d Shift weighted
gt . .
H hauling distance
oy
‘\ T T /
0 1 2 3 4 b 6 7 8 9 10: 21 120 43 14 45 16

Shift Weighted Hauling Distance [km]

Figure 3-4 Condensing productivity information using dW.
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3.2.2.3  Data clean up

As with most real-life datasets, the recorded operational data contains abundant
erroneous values and typing mistakes. Before any conclusion can be reached, the data
has to be reviewed, cleaned up and filtered, to improve its quality. The sources of the
inconsistencies are often very difficult to identify. However, the pivot tables created
for this analysis facilitate the identification of unusual and/or unrealistic values. The

following are examples of the logic behind the set of checks used to clean up the data.

a) Look for unusual and or unrealistic hauling distances. e.g. 0 &z, 100 k2, 10000 ks,
et

b) Unrealistic values for the ratio Loads/ht. eg Loads/hr= 10, 10 loads/ hr is equivalent
to one load every 6 minutes; allowing 2 minutes for loading and 2 minutes for dumping and
manenver in load area and dump point, only two minutes remain for hanling and returning,
something exctremely difficult to achieve even for short hauling distances.

¢) Unrealistic values for the ratio Hr/Loads (e.g. Ht/Loads = 5). Cycle times are rarely
higher than 2 hours.

d) Unusual values of the ratio Loads/hr for the correspondent hauling distance. eg
Loads/hr= 5, when hanling distance = 10. 5 loads/hr is equivalent to one load every 12
minutes; allowing 2 minutes for loading and 2 minutes for dumping and manenver in load area
and dump point, 8 minutes remain for hauling and returning, which conld be achieved on 10 fmr
with an average speed of 150km/ br.

e) Unusual values of the ratio Hr/Loads for the correspondent hauling distance. eg
Op.Hr/ load=2, when hanling distance < 5.0 k.

f) Artificial rules of correspondent hauling times for low values of number of loads

(e.g if load count = 1 then hauling time = 0.25hr or 0.5hr)

Even though it was possible to cotrect some of this erroneous information by chasing
the right value in the neighborhood of the entry, for most of the cases the correct

value cannot be inferred and the haul records of the unit during the corrupted shift

had to be discarded.
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Since most of the erroneous entries or corrupted shifts were identified, it was possible
to generate a summary of the quality improvement operations. The clean-up chart
summarizes where and when problems in the data were found. It serves as an
assessment of the performance of different projects regarding data collection. As an
example, the Figure 3-5 presents the quality improvement summary corresponding to

the 777 truck model.

# of Shifts which data were corrected or deleted

90
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80 M Project I B Project D OProject ]
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Figure 3-5 Clean up summary Truck Model 777.

3.2.24  Hauling Productivity Equation

Once the clean-up actions have been performed, productivity of the truck model was
plotted in an XY scatter chart in terms of loads per hour versus hauling distance. At
this point, it is possible to make a regression and extract an equation that represents
the productivity of the truck model as a function of the hauling distance. Most of the
existing commercial software allows several regression forms: exponential, linear,
logarithmic, polynomial, power. Among these types, the logarithmic regression was

found to be usually the best fit to represent the haul truck productivity, see Figure 3-6.
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Figure 3-6 Different regression forms for hauling truck productivity.

On the other hand, the representation of an earthmoving operation through a
logarithmic equation seemed to be quite suspicious (the logarithmic equation form
does not intercept the y axis and cannot reflect fixed time component of the cycle
time). Seeking for a more satisfactory equation form, a reconsideration of the analysis

was made.
Total cycle time for a hauling unit is generally a combination of:

1. Fixed time
2. Hauling time (Loaded)
3. Return time (Empty)

In general, hauling and returning durations depend of the distance, while the durations
of loading and dumping activities are independent of it, and could be faitly assumed to

be constant value, see Figure 3-7.
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{ Hauling Dumpingw
Loading o Returning Fixed Vﬁriile)le
C.ycle ‘ Time ok = f(d)
a) b)

Figure 3-7 a) Cycle time main components - b) Type components of the cycle time.

Therefore, the following formulation for Productivity (P) is developed, see Equations
3-2 to 3-8.

1(L
p L(Load) oa_d) 32
Cycle time
1 (Load)
= . . - - 3-3
Fixed time +Variable time
1
P-_ ~ 3-4
C,+t(d)
where, C1 is a constant that represent the fixed time component of the cycle time.
1
P=———— 3.5
C, +d/s(d)

where, S(d) is the average truck speed and d is the haul distance.

Several forms for the average speed were proposed. However, the collected
information did not support a very detailed analysis regarding the average speed;

therefore the average speed was conveniently assumed to be a constant.
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Then,

1

P=———— 3-6
C,+d/C,

Where, C2 is a constant that represent the average speed.

The last equation form is not normally available in conventional software packages.
Nevertheless, the following modification offers a convenient approach to compute the

required constants.
1
E = Cl +d /C2 3-7

1
E =C1 +C3.d 3-8

Thus, the inverse of the productivity in hours per load has the form of a linear

equation.

Finally, the productivity data could be plotted as operating hours per load
(Op.Ht/Load) versus shift weighted hauling distance (dy,) allowing a linear regression
in which the needed constants could be computed, see Figures 3-8 and 3-9.

In general, this new equation offers better correlation than the previous logarithmic
one, and in addition, the results at short distances are more accurate using this novel
approach. The developed equation is also more intuitive given that its two constants
keep a close relation to the fixed time component of the cycle time and the average

speed of hauling and returning.
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Figure 3-8 Operational hours per load versus shift weighted hauling distance.
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Figure 3-9 Productivity equation of hauling trucks
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3.2.3 Results

The analysis procedure and main results were summarized in a single page layout for

each individual truck model. These layouts contain:

Loads/hauling time versus hauling distances using raw information.

Loads/operating hour versus shift weighted hauling distance (dy) using raw

information.
Quality improvement summary.
Operating hours per load (input information for a linear regression).

Final productivity information colored by project and general productivity

equation.

As an example, the results of the productivity analysis for the truck model 785 are

presented in Figure 3-10. In some cases detailed results by projects are also offered. A

graph that shows this situation for the truck model 785 is presented in Figure 3-11.

Please note that to maintain the confidentiality of this information Vertical axes values

are omitted and project names have been changed.
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Figure 3-10 Hauling truck productivity summary — Models: 785C & 785D.
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3.2.4 Weighted linear regression

The results presented before in section 3.23 were obtained assuming that each data
point provides equally precise information. This assumption, however, is debateable
for this specific application. It is believed that the level of accuracy of the productivity

ratio (loads/hour) increases when larger numbers of loads are used.

This section aims to illustrate how a modification of the previously used linear
regression approach could lead into better values of the square of the correlation

coefficient (r squared).

Section 3.2.2 described how a linear regression on scatter chart of the ratio hours per
load versus the hauling distance could be used to find the intercept and the slope of

the equation 3.9.

1
E:C1 +C,d 39

If the “1/P” values are called “y”, the hauling distances values “d” ate called “x” and
the constants “C,” and “C;” are called “a” and “b” respectively, then equations 3.9,

3.10 and 3.11 could be used to obtain the intercept “b”, slope “a” and correlation

b

coefficient “s” of the linear regression.
e f)O_’ ~¥) 310
X(x —x)?
a=79y — bx 3-11
r= 2& D0y 3.12

L(x-0)2 E(y-¥)?

Where, X is the average of the hauling distances “d” and ¥ is the average of the hours

pet load values “1/P”.
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As mentioned before, if we assume that the level of accuracy of the productivity ratio

loads per hour increases when larger numbers of loads are used, and if we accept that

the increment in this truthfulness is proportional to the number of loads used to

compute the productivity ratio; then the equations 3-10, 3-11 and 3-12 used to
c .

compute the intercept “b”, slope “a” and correlation coefficient “r” of the linear

regression can be replaced for equations 3-13, 3-14 and 3-15.

ik -D )

b= 3-13
Yi(x —x)?

a= 7y — bx 3-14

S ix-DO-) 315

T Ric-022io-7?
Where “1” is the number of loads associated with the hours per load ratio.

The use of equations 3-10 to 3-12 on the historical information of hauling trucks
resulted on larger values for the square of the correlation coefficients (r squared),
revealing the advantage of using a weighted linear regression with the ability to attach a
level of quality (proportional to the number of loads hauled during the shift) to each

productivity ratio data point.
3.2.5 Hauling truck productivity range

Due to the high dispersion on the hauling truck productivity charts, it could be
desirable to represent these results using a range instead of a single productivity
equation. With the productivity equation as foundation, it is possible to find a pair of
“sister equations” that will define a productivity range. The range can be built so it

limits encompasses a given percentage of data points.

The methodology to find these “sister equations” is simple. Using Goal Seek, which is
part of a suite of commands sometimes called what-if analysis tools, is possible to find

a factor that modify the slope and intercept of the of the original linear regression (or
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only the intercept) so that the number of data points between the sister equations is a
given percentage of the total number of data points on the scatter chart. For example,
Figure 3-12 presents the linear regression of a hours-per-load versus hauling distance
chart and the corresponding sister equations. The goal was that 75% of the data points
were inside the range; this was achieved by modifying the intercept with the y axes of
the original linear regression by 56.22%. In Figure 3-12 the intercept of the original
productivity equation was 0.2595, thus the intercept of the sister equation 1 is then
0.2595*%(1+0.5622) = 0.4051, and the intercept of the sister equation 2 is 0.2595*(1-
0.5622) = 0.1139.

Figure 3-13 presents the results and the productivity range in loads per hour versus

hauling distance.
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Figure 3-12 Hauling productivity range hours/load vs. hauling distance — a.
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Figure 3-13 Hauling productivity range loads/hour vs. hauling distance — a.

It is also possible to obtain this productivity range and the sister equations by

modifying both the intercept and the slope of the original linear regression.

Figure 3-14 the same linear regression of a hours-per-load versus hauling distance
chart and the corresponding new sister equations. The goal was also that 75% of the
data points were inside the range; this was achieved by modifying the intercept with
the y axes and the slope of the original linear regression by 23.74%. In Figure 3-14 the
intercept of the original productivity equation was 0.2595, thus the intercept of the
sister equation 1 is then 0.2595%(1+0.2374) = 0.3211, and the intercept of the sister
equation 2 is 0.2595%(1-0.2374) = 0.1979. Likewise, the slope of the original
productivity equation was 0.0713, therefore the slope of the sister equation 1 is then
0.0713*%(1+0.2374) = 0.0882, and the slope of the sister equation 2 is 0.2595%(1-
0.0713) = 0.0544. Figure 3-15 presents the results and the productivity range in loads

per hour versus hauling distance.
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3.3 Excavator productivity analysis

3.3.1 Introduction

This section presents the analysis of the historical information related to the operation
of excavator units. Cumulative frequency productivity curves are generated for the

major loading equipment models and classified by project.
3.3.2 Equipment models

This research cover fifteen different excavator models grouped in four categories for a
total of more than 150 individual units, see Table 3-2. Figure 3-16 shows pictures of a

Hydraulic shovel EX5500 and an excavator EX1900.

Table 3-2 Excavator models and categories

Equipment Equipment Equipment
Function Category Model
Shovels - Electric 495HF
EX8000
EX5500
EX3600
EX2500
Excavators - Medium EX1900
EX1800
EX1200
EX850
EX800
EX750
Excavators - Small EX600
EX550
EX450

Z.X450LC-3

Shovels - Hydraulic

LOADING
UNITS
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Figure 3-16 Hydraulic shovel EX5500 and Excavator EX1900
Hitachi. Retrieved March 13, 2011, from:
http:/ /www.hitachi-c-m.com/global/products/excavatot/large /ex5500-6/index.html
http:/ /www.hitachi-c-m.com/global/products/excavatot/large /ex1900-6/index.html

3.3.3 Methodology

The methodology implemented for the analysis of excavator models is very similar to

the one described for the analysis of hauling equipment.
3.3.3.1  Master tables

The analysis uses the same three “master” tables that were created in the hauling
analysis. These tables group the data in: 1) hauling production information, 2)
equipment timing data from availability and utilization recordings and 3) equipment
timing data coming from accounting sources. As it was described before, these three

master tables connect relevant information coming from the original 47 tables in the

DBMS.
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3.3.3.2  Excavator Model Information

In this step the information from the three [
. — Justl?
master tables is filtered by excavator model and Master ‘.
~ - ; . ) Table ~/
combined into a single source. The purposes of [ ¢
" \> )
this breakdown are classification and reduction MggsLtL(Jer } g
of the amount of data to be processed to a Table/gj\/Hauling\/Z-g
\/ H Production Fb
quantity suitable to manipulate with the \ Mast;tler /
Table '
available computer resources. /\>

3.3.3.3 Pwot Tables

Pivot tables again are the key engine in the analysis. They are used as the main tool to
organize, classify and group the information in a meaningful way. The source data of
the pivot table used for the loading productivity analysis are the three master tables.
These pivot tables classify the information by excavator unit, date, shift and project.
They are also oriented to obtain the relation between the total number of bcm
performed by the excavator unit during a specific shift, and the operating hours
extracted from the Availability and Utllization (A&U) information, all this through the

inclusion of calculated fields.
3.3.3.4  Arranging the results

After the classification and grouping made by the pivot tables, the data is ranked from
the lowest to the highest productivity value and the correspondent cumulative

frequencies are computed.
3.3.3.5  Cumulative frequency

Cumulative frequency tells how often the value of the variable is less than or equal to a

particular reference value.
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A cumulative frequency graph is a very convenient way to present information visually,
it also allows other information to be inferred. For example, from a cumulative
frequency graph, we can obtain the median (or middle) mark. The median is the mark

which half of all computed productivities exceed and half do not reach.

It is also possible to find the upper and lower quartile marks from the graph, as well as

different percentiles.

As an example, Figures 3-17 and 3-18 present the results of the productivity analysis
for Electric Shovel - 495HF and Hydraulic shovel - EX8000 models.

1.0 """"’""’"’"’""””""’""’"""’""’”””"""”””""”*”” ‘ajioge
P T S S S p——
0s —o— Project ) - 495HF Project J - 495HF
—o— Project J- EX8000 Mean: BCM;EF
‘ ‘ STDEVP( o ): BCM/hri
0.7 50th percentile: BCM/hn
90th percentile: BCM/hn
06 Project J - EX3000
S o,
g Mean: BCM/hr]
g _ STDEVP (o ): BCM/hn
e 05 - s s s s ] 50th percentile: BCM/hr]
£ 90th percentile: BCM/hr
E
304
0.3
0.2
0.1
0.0 -oom

BCM/hr

EX8000 Lower quartile Q1:
XXXX bem/hr

EXB8000 90t percentile:
XXXX bem/hr

EXB8000 50t percentile:
XXXX bem/hr (Median)

Figure 3-17 Productivity cumulative frequency excavators 495HF and EX8000 a).
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495HF Inter-quartile range

Figure 3-18 Productivity cumulative frequency excavators 495HF and EX8000 b).

3.3.4 Results

The results of the analysis are represented by a graph of cumulative frequency versus

bem (bank cubic meter) per operating hour, for every excavator model. Additionally,

cumulative frequency curves are also produced for every project in which units of the

excavator model are or were present.
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3.4 Performance history of equipment units
3.4.1 Introduction

The purpose of this analysis was to offers an overall performance picture of each
individual piece of equipment analyzed during the research. The information contained
in these summary charts is grouped on a monthly basis and cover the following three

modules:

1. Comparison of operating hours coming from three sources:
a. Hauling detail information
b. Timing data from availability and utilization information, and
c. Timing data from accounting sources.

2. Location of the unit. This module is a diagram that summarizes where and
when the unit has been operating. Information regarding the transfers of the
unit from one project to another and the fraction of the month that the unit
was working for each project is captured using three different series (Max, Min
and Average).

3. Total bem transported or excavated (depending if the performance history

summary refers to a hauling truck or to an excavator) during the month.

These three sets of information together, provide an overall idea of the equipment unit
life and it is a useful tool to identify trends and problems in productivity and/or data

collection.
3.4.2 Results

Figure 3-19 presents the performance history for a 793 truck unit. In this specific case,
a problem regarding operating hours is clearly identified at the top of the graph; a
zoom into the operating hours was convenient for a better visualization of the values.
Performance history summaries for each analyzed haul and excavator unit were
produced using the same pivot tables described before for excavator and truck

productivities and following a systematic procedure.
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3.5 Support Equipment

This section presents the analysis of the historical information related to the operations
of support equipment (Graders and Dozers) and their relation with the operations of
hauling or loading equipment, as well as with the overall production. The analysis is

divided in two modules: Graders-Trucks and Dozers-Excavators.
3.51 Equipment

This analysis cover the information from the totality of trucks and excavators studied
before plus the historical operational data from the dozers and graders models that
supportt the operations. Around 43 grader units from eight different models and more
than 200 dozer units grouped on seven different model types are part of the present
analysis. Table 3-3 and 3-4 organize respectively these grader and dozer models. Note
that the last column of these tables contains a multiplier factor used to convert a
specific model equipment unit into the equivalent number of base model units. Figure

3-20 shows pictures of a 16M Grader and a D10T Dozer.

Table 3-3 Grader models and categories

Equipment Equipment Model Equipment Blade % base

Function Category Group Model Lenght model
14G 14 ft 88%
Graders - 14 fe 14H 14 fr 88%
Small

976 14 ft 88%
GRADERS Grad 16G 16 ft 100%
racers - 16 ft 16H 16 ft 100%

Medium
16M 16 ft 100%
Gradetrs - 24 ft 24H 24 ft 150%
Large 24M 24 ft 150%
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Table 3-4 Dozer models and categories

Equipment Equipment Model : Flywheel % base

Fqunlztion Coilatsgory Group Equipment Model Py:\]xrer model

450 70hp (52kW)  23%

450 LGP Tahp (55kW)  24%

D32 80hp (GOKW)  26%

D37 85hp (63kW)  27%

&Iiiss D41 110hp (82kW)  35%

D5H 96hp (72kW)  31%

D5HLGP  9hp (72kW)  31%

D5G 96hp (72kW)  31%

D5N 96hp (72kW)  31%

Dozers DG6D 140 hp (104 kW)  45%

Small D6H LGP 140 hp (104 kW) 45%

DoM 140 hp (104 kW) 45%

D6M LGP  140hp (104kW)  45%

D6 DGNLGP 150 hp (112kW)  48%

Do6R 165 hp (123 kW) 53%

DOZERS DO6R LGP 165 hp (123 kW) 53%

D6TLGP  165hp (123kW)  53%

DOT XW 165 hp (123 kW) 53%

850 185 hp (138 kW) 60%

D7 D7R LGP 240 hp (179 kW) 77%

D8N 285hp 213kW)  92%

D8 D8R 310 hp (231 kW) 100%

Dozers DST 310 hp (231 kW)  100%
Medium

. D9R 410 hp (306 kW) 132%

DIT 410 hp (306 kW) 132%

D10N 520 hp (388 kW) 168%

510 D10R 580 hp (433 kW)  187%

D10T 580 hp (433 kW)  187%

[ioze“ D375A5  60Ghp (452kW)  195%

e D11R 850 hp (634 kW) 274%

D11 D475A5 900 hp (671 kW) 290%

DI1T 850 hp (634 kW)  274%
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Figure 3-20 Grader 16M and Dozer D10T
(Pictures from: AEHQ5734-01 (1-07) - 16M Motor Grader specifications - © 2007 Caterpillar
AEHQ5592-01 (7-07) - D10T Track-Type Tractor specifications - © 2007 Caterpillat)

3.5.2 Methodology

The methodology implemented for the analysis of support equipment follows the path
of loading and hauling productivity analyses with some variations. The analysis in this
section focuses only on those projects in which the activities of the secondary
equipment represent support of the operations of the primary equipment instead of

general mining or heavy construction tasks.

The new input information of the analysis is the

combination of the hauling data contained in

the hauling production master table and the /
/ Hauling
information of the availability and utilization \K Producti%n ) ))
Master
broken-down by equipment category. <a Table S\

~ 45 ~



Two main pivot tables are used in this analysis. The first one generates monthly
categorized information related to operating hours of graders and trucks model
groups, as well as bem production and average hauling distances, while the second
generates monthly categorized information related to operating hours of dozers and

excavator model groups, as well as bem production.

The information is then extracted from the pivot tables and prepared to plot. Line,
column and staked area charts are the final result of the analysis. The use of an analysis
built template allows this process to be semi-automatic. In order to present an
appropriate comparison of equipment operating hours, different equipment models
are transferred into a base equipment model. This transformation is based on the main
feature of the equipment, as follows: tons capacity for trucks, blade width for graders,

bucket size for excavators, and horse-power for dozers.
3.5.3 Results
3.53.1  Truck-Graders

The results summary for the interaction between trucks and graders project-specific

includes:

e Total grader operating hours by model group (staked area series).

e Total grader operating hours in equivalent 16ft grader units (line series).

e Total truck operating hours by model group (staked area series).

e Total truck operating hours in equivalent 777 truck model units (line series).
e Ratio between equivalent operating hours of trucks and graders.

e Total production in bem.

e Average hauling distance.

Figure 3-21 describes these results for a specific project, while Figure 3-22 presents an

example of the summary chart for project J.
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Figure 3-22 Support equipment analysis Truck vs. Graders
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3.5.3.2  Excavators-Dozers

The results summary chart for the interaction between excavators, dozer and project

production includes:

e Total dozer operating hours by model group (staked area series).

e Total dozer operating hours in equivalent D8 dozer units (line series).

e Total excavator operating hours by model group (staked area series).

e Total excavator operating hours in equivalent 10m* bucket size excavator model
units (line series).

e Total production in bem.

e Ratio between equivalent operating hours of excavators and dozers based on

equivalent units.

e Ratio between bem production and operating hours of dozers.

Figure 3-23 presents an example of the summary chart for project J.
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Figure 3-23 Support equipment analysis Truck vs. Graders
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3.6 Conclusions and recommendations

This Chapter has described the analysis of historical information regarding the
operations of major hauling and loading equipment as well as support equipment.
Productivity curves and equations were built and presented as the output of the
analysis. It also presented a methodology to represent the performance summaries of
equipment units involved in the earthmoving operations. All these results represent a

valuable tool for estimating.

Practical knowledge contained in the results includes:

e Differences in project performances (easily recognized from the productivity
curves for hauling and loading).

e Project characteristics (e.g. hauling distance ranges, project scale, equipment
models involved, etc.)

e Problems in the data collection at different sites and periods (contained in the
quality improvement summary).

e Productivity charts (can be used to forecast hauling and loading units required in
new projects).

e Historical ratios between primary and support equipment compared to

accomplished production.

This analysis involved detailed reviews of the data that is contained in a large DBMS of
a major construction contractor. Through the analysis, multiple sources of errors and
inconsistencies were identified. The errors range from erroneous data being entered
(such us 10,000 km haul distances) to duplicate data (same haul unit entered at two

sites).

Results from this analysis could be combined to extract handy information e.g. how
many units of a given truck model should be used for a specific type of excavator. This
is possible with the combination of the average hauling distance, the productivity

information of trucks and excavators, and certainly, expert knowledge.
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CHAPTER 4 ANALYZING EARTHMOVING
PRODUCTIVITY USING DATA MINING AND
NEURONAL NETWORKS

4.1 Introduction

In the construction management field, data mining and ANNs will perhaps look as
components of complicated systems that use expert-given rules or statistical inference
techniques to provide decision support for experts, help decision makers perform at a
higher level, assist in the training of inexperienced personnel and help scenatio
planning (i.e. what if?) by managers (Boussabaine 1996). This research aims to
incorporate Neural Networks into a system oriented to the enhancement of managerial
decision making on the heavy construction and superficial mining earthmoving

operations field.

With the use of data mining techniques and the utilization of artificial neural network
tools this chapter presents the study of the influence of the following variables on the
productivity of haul trucks: hauling distance, excavator model utilize for loading,
material type, temperature or season and average slope of the hauling path. Likewise, it
studies the influence of the material type, project, temperature or season, and the size

of the truck that is being served, on the productivity of the excavators.

4.2 Nominal vs. numerical variables

Nominal, or categorical, variables contain values that lack the properties of order,
scale, or distance between them. If these variables will be used in any kind of
algorithms, it is important to retain the lack of order or scale in categorical variables.
Consequently, it is not desirable that a nominal variable be converted into a series of
integers. Ordinal variables are categorical variables with the notion of order added to

them (e.g. low, medium, high). Real measures, or continues variables, are the easiest to
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use and interpret as they have all desirable properties of variables: order, scale, and

distance (Chakrabarti, et al. 2009).

One particular goal for this chapter is to analyze the convenience of using numerical
variables instead of nominal ones as the main input type of ANNs. For example, will it
be better to use the mean temperature of the day instead of the season of the year as
an input of an ANN in order to represent surrounding conditions? Figure 4-1 shows

the Daily Max, Min and Mean temperatures in Fort McMurray from Jun-07 to Feb-09.

Table 4-1 and 4-2 presents the different nominal attributes extracted from the
historical operational information that is being analyzed in this research, and the

correspondent numerical attributes that could be used instead in the analysis of hauling

trucks and excavator productivities.

Daily Temperatures
FORT MCMURRAY CS [ALBERTA]
Latitude: 56°39'04.000" N Longitude: 111°12'48.000" W Elevation: 368.80 m
40
30 |
20 l 1 n l ]
10 1 I
0 S S S E—
10 —
20 |
-30
-40 |
-50
S S S & g g Z g 2 3 3
5 & 8 E g g 8 5 g g 8
— %] [a) = — %] [a) = — A A
——Max Temp =——Min Temp =——Mean Temp

Figure 4-1 Daily Max, Min and Mean temperatures in Fort McMurray.
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Table 4-1 Input type approaches for the evaluation of hauling truck productivities.

Attribute InPut type #1 Input type H2
. . Nominal variables as Numerical variables as
description . . ) :
main type of input main type of input
Distance Distance Distance
495HF EX1800
EX8000 EX1200 E§i§8
Excavator EX5500 EX850 EX330/350 Excavator
model EX3600 EX800 EX300 bucket size
EX2500 EX750 EX200
EX1900 EX600
Granular .
. Muskeg Rock - ngh Material
Material type . Rock - Medium .
Oilsand gl density
Overburden °p
Proiect C, D, E, F, H, I, C, D, E F H, I,
J I, LM, O, S I, LM O, S
. Fall, Winter, Daily mean
Time of year .
Spring, Summer temperature
Hauling « .
conditions* Average path slope Average path slope

* Available for the data coming from only one project.

Table 4-2 Input type approaches for the evaluation of excavator productivities.

Attribute InPut type #1 Input type H#2
. Nominal variables as Numerical variables as
description . . . .
main type of input main type of input
Granular .
. Muskeg Rock - ngh Material
Material type . Rock - Medium .
Oilsand 3l density
Overburden °op
Proiect C, D, E, F H, I C, D, E, F H, I
: LLMO,S LLMOS
. Fall, Winter, Daily mean
Time of year .
Spring, Summer temperature

Trucks - 280t+
Trucks - 220-280t
CT;“COk Trucks - 120-220¢ TruCki;nOdel
ategory Trucks - 80-120t stze

Trucks - 40-80t
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4.3 Data mining

Data mining is defined as the process of discovering patterns in data. Moreover, data
mining is not only used for predictions, but it is frequently used to gain knowledge
from data, which it certainly sounds like a good idea if you can do it (Chakrabarti, et al.

2009).

The system used for data mining in this research is called WEKA. The Waikato
Environment for Knowledge Analysis (WEKA) is recognized as a landmark system in
data mining and machine learning as it has achieved widespread acceptance within

academia and business circles, and has become a widely used tool for data mining

research (Hall, et al. 2009).
4.3.1 Visualizing

A scatter plot is one of the most effective graphical methods for determining if there
appears to be a relationship, pattern, or trend between two numeric attributes
(Chakrabarti, et al. 2009) plus it gives the ability to easily identify outliers. Figure 4-2
shows different examples of scatter plots. The productivity information for hauling
trucks and excavator models was plotted using the selected data mining tool, which
offers the opportunity to visualize the interaction of every input attribute with the rest

and with the output, see Figure 4-3.

It was also possible to plot with a single click the way in which different input
attributes affect the output values. See Figure 4-4, where histograms of loads per hour
values of one model of truck are plotted with different colors representing several
input attributes (project, excavator model being used, and material type). Figure 4-5
presents similar information, but instead of histograms, a set of scatter plots of
productivity versus hauling distance is presented colored by project, excavator model

and material type.
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Figure 4-2 Examples of scatter plots.
a) Positive correlation b) Negative correlation c) No observed correlation.

4.3.2 Filtering and transforming

Data mining tools were also useful to filter the data and get rid of outliers. The analysis
of different attributes was made only for those attributes in which the number of
instances was higher than the 0.1% of the total number of events (i.e. generally more
than ten instances). Transforming nominal or categorical attributes into a set of binary
fields was possible using a simple nominal-to-binary filter. After this transformation,

the data sets were ready for ANN implementation.
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4.4 Artificial Neuronal Networks

This section studies the development and implementation of artificial neural networks
(ANNSs) as a mean of improving the abilities of an estimator to predict heavy
construction equipment productivity rates. ANNs are information processing
technologies that attempt to simulate, in a gross manner, the networks of nerve cell
(neurons) of the biological (human or animal) central nervous system (Graupe 2007).
As the brain, ANNs learn from experience, generalize from previous examples to new

ones and abstract essential characteristics from inputs containing irrelevant data.

The system used on this research to develop ANNSs is Neuroshell ® 2. NeuroShell 2 is
a software program developed by Ward Systems Group®, Inc. that enables you to
build sophisticated custom problem solving applications without programming. You
tell the network what you are trying to predict or classify, and NeuroShell 2 will be able
to "learn" patterns from training data and be able to make its own classifications,
predictions, or decisions when presented with new data (NeuroShell 2 Help n.d.).
Figure 4-6 presents the display of the NeuroShell 2 advanced options screen in which
the independent modules that may be used to create a neural network application are

shown.

The software also allows the user to obtain the relative contribution of every input
parameter, as well as to track graphically the training average error. Figures 4-7 and 4-8
respectively show the relative contribution factors and training average error evolution
for one of the ANN configurations that evaluate the productivity for the hauling truck
model 785.
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Figure 4-8 Training average error evolution - Truck model 785.

The hauling truck and excavator operational information that was pre-processed using
data mining techniques is the foundation matter of the ANNs that are developed on
this section. Note again that this information represents the operation information of
more than 380 pieces of equipment between hauling trucks and excavators, collected

for more than three years in eleven different projects.

One of the objectives of this research is to analyze the sensitivity of different
parameters of artificial neural networks in the evaluation of earthmoving operational
data. With this in mind, the influence of different input types, ANN architectures, and
number of hidden nodes on the performance of the ANN are evaluated in this section.
Other ANN parameters such as learning rate, momentum, and initial weights will not

be evaluated on this research.
4.4.1 Atrchitectures

Neuroshell® 2 offers to the ANN developer a wide range of network architecture
options (see Figure 4-9). After a fairly varied evaluation, and using the rule of thumb,
two different architectures were selected to be assessed on this research: Four layers —
Standard connections and Ward net with three hidden slabs and different activation

functions. Both of these architectures are backpropagation networks. Backpropagation
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networks are known for their ability to generalize well on a wide variety of problems.
That is why they are used for the vast majority of working neural network applications.

(NeuroShell 2 Help n.d.)
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Figure 4-9 Network architecture options

4.4.1.1  Four layers — Standard connections

This is the standard type of backpropagation network in which every layer is
connected or linked to the immediately previous layer. It has four different layers
including one input layer, one output layer and two hidden layers; see Figure 4-10. The
number of nodes on the input layer depends on the model of equipment analyzed and
the type of input, the number of nodes on the hidden layers varies and is a parameter
that will also be analyzed. The output layer has only one node (equipment

productivity).
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Figure 4-10 Standard backpropagation network with four layers.

4.4.1.2  Ward net with three hidden slabs and different activation functions

Hidden layers in a neural network are known as feature detectors. Ward Systems
Group invented three different backpropagation network architectures with multiple
hidden layers. Different activation functions applied to hidden layer slabs detect
different features in a pattern processed through a network. For example, a network
design may use a Gaussian function on one hidden slab to detect features in the mid-
range of the data and use a Gaussian complement in another hidden slab to detect
features from the upper and lower extremes of the data. Thus, the output layer will get
different "views of the data." Combining the two feature sets in the output layer may
lead to a better prediction (NeuroShell 2 Help n.d.)). This section will assess the

performance of the 3 hidden slabs ward neural network architecture, see Figure 4-11.
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Figure 4-11 Ward backpropagation net with three hidden slabs.

4.4.2 Number of Hidden Neurons

In Backpropagation networks, the number of hidden neurons determines how well a
problem can be learned. If you use too many, the network will tend to try to
memorize the problem, and thus not generalize well later. If you use too few, the
network will generalize well but may not have enough “power” to learn the patterns
well. Getting the right number of hidden neurons is a matter or trial and error, since
there is no science to it. The software default number of hidden neurons for a 3 layer
network is computed following Equation 4-1. For more hidden slabs, divide the

number above by the number of hidden slabs.

# of hidden neurons =

41
1/2 (Inputs + Outputs) + (# of patterns used for training)*/?
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This default manner to compute the number of hidden neurons is the first approach
of number of hidden nodes to be analyzed and it is denoted by the letter A, as STD-A
and WARD-A for the different architectures using this approach. The second manner
of computing the number of hidden neurons was selected using the rule of thumb, and
use the product of the number of inputs parameter and the number six. This approach

is denoted with the letter B (e.g. STD-B and WARD-B).

4.5 Results

This section presents a comparative summary of the performances of different ANN
configurations that aim to evaluate hauling truck and excavator productivities. The
parameter used in order to perform this comparison is the square of the correlation
coefficient (r squared). The correlation coefficient r (Pearson’s Linear Correlation
Coefficient) is a statistical measure of the strength of the relationship between the
actual vs predicted outputs. The r coefficient ranges from -1 to +1. The closer r is to
1, the stronger the positive linear relationship, and the closer 1 is to -1, the stronger the
negative linear relationship. It is possible to get the same results by using the
Correlation Scatter Plot and graphing actual vs predicted outputs. Another comparison
using the coefficient of multiple determination R Squared is offered as an appendix,
see Appendix A. The formula used for the correlation coefficient r is given by

Equation 4-2.

SSxy

r = —
J/55:x5S,,, 2

where,

SSyy

2
SSxx = zxz - (2x) 4-4

n
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2
58,y = Z - 2y .

n

Where n equals the number of patterns, x refers to the set of actual outputs, and y

refers to the predicted outputs.
4.5.1 Haul truck productivity
4.5.1.1  rsquared - ANN — different architectures

Figure 4-12 presents the comparison summary between different analyzed
architectures. Four different ANN configurations were generated for twenty six sets of
data. On the data set description, the first three characters are a hint of which type of
input is used, ABC represents nominal input type and 123 refers to numerical input
type (see section 4.2). The second part of the name string has two different values All
or OB, this refers to the number of projects that the set of data contain. OB means
that the data contains only one project in which material type is overburden; in those
data sets the hauling path average slope parameter was available. The last part of the

name string refers to the equipment category and model.

The results clearly show the low performance of every analyzed ANN configuration.
Nevertheless, it can be noted that ward net architectures got higher correlation values
compared with four layer architectures. The difference in the ANN performance
depending on how the number of hidden neurons is computed (-A or -B) is minor.

Figure 4-12 presents these results graphically.
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Figure 4-12 r-squared comparison summary - ANN architectures — Hauling trucks.
r-squared - ANN — djfferent input types

4.5.1.2
configuration. As it is shown, ANN configurations that include all the projects resulted

Figure 4-13 aims to summarize which type of input (nominal or numerical) result in
better ANN performance. The values in this figure come from the Ward-A
in higher r-square values. Nominal inputs perform slightly better than numerical ones.
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Figure 4-13 r-squared Input type comparison summary — Hauling trucks.

4.5.1.3  ANN vs. summarization tools analysis

Figure 4-14 presents a comparison between the results obtained using ANN and Data
mining versus the results obtained in chapter three using summatization tools and only
the hauling distance as a productivity feature. In general the analysis using ANN
reached better correlations, and there is no a tangible influence in which type of input

is preferred (numerical or nominal).
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Figure 4-14 r-squared Input type comparison summary — Hauling trucks.

4.5.2 Excavator productivity

A similar analysis than the one produced for hauling trucks was made for the excavator

models.
4.5.2.1  rsquared - ANN — different architectures

Figure 4-15 presents the comparison summary between the analyzed ANN
architectures (Ward and Standard). The results clearly show very low correlation
values, nevertheless, it can be noted that ward net architectutes are associated with

higher r-squared values than standard four layer architectures.
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Figure 4-15 r-squared comparison summary - ANN architectures — Excavators.

4.5.2.2  rsquared - ANN — different input types

Figure 4-16 aims to summarize which type of input (nominal or numerical) result in
better ANN performance when analyzing excavator productivities. The values in this
table come from the Ward-A configuration. As it is shown, nominal inputs perform

somewhat better than numerical ones.
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Figure 4-16 r-squared comparison summary — ANN input types — Excavators.
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CHAPTER 5 CONCLUSIONS AND RECOMENDATIONS

This study involved the analysis of the historical operational data of more than 230
hauling units, 160 excavator units, and 150 units of support equipment. The data was
recorded for more than three years and represents the operations of one of the largest

contractors on the Alberta Oil Sands in eleven projects.

Multiple analysis tools were implemented throughout the analysis. The use of them
was more complementary than competitive. Data mining, artificial neural networks
and summarization tools proved to assist effectively in the assessment of historical

productivities and in the identification of the attributes that most influence the results.

Most of the information related to earthmoving operations is recorded by the foreman
at the end of the shift. The information is then input into a data management system.
This schema contributes to fabricate information, e.g. durations of individual task
within a shift. Consolidating the shift operations information into a single datum could
improve the accuracy of the results as it was shown in this study with the use of the

shift weighted hauling distance.

This research has described the analysis of historical information regarding the
operations of hauling and loading equipment as well as support equipment.
Productivity curves, equations and ranges were built and presented as one of the
outputs of the analysis. The research also proposed a methodology to represent
performance summaries of equipment units involved in the earthmoving operations;
those summaries offer a valuable overall picture to executive staff and project
managers. A novel approach was presented on how to compute historical ratios
between primary and support equipment compared to accomplished production, the

results could certainly assist in project resource allocation.

The research involved a detailed review of the data contained in a large DBMS of a

major heavy construction contractor. The quality of the recorded information is
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affected by multiple sources of errors and inconsistencies. It is paramount to establish
standard forms and better procedures for data collection. Only valuable information
should be recorded and used. Multiple recording should be avoided by unifying input

platforms.

Results of the poor data quality are the very low correlations that were obtained in the
analysis. Through the use of data mining techniques and artificial neural networks it
was possible to include more variables into the analysis, leading into slightly better

results.

Multiple ANN configurations were evaluated in the determination of hauling trucks
and excavators productivities. Ward net architectures that include different activation
functions applied to hidden layer slabs performed better than standard
backpropagation nets because they are able to detect different features in a pattern
processed through a network. There was not a strong effect on the way in which the
number of hidden neurons was computed. Nominal input type reached slightly better
correlations than numerical type when evaluating the productivity of excavators; but

still the obtained correlations were very low.
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APENDIX A — ANN COMPARISON RESULTS USING R-
SQUARED

The coefficient of multiple determination, R Squared, is a statistical indicator usually
applied to multiple regression analysis. It compares the accuracy of the model to the
accuracy of a trivial benchmark model wherein the prediction is just the mean of all of
the samples. A perfect fit would result in an R squared value of 1, a very good fit near
1, and a very poor fit less than 0. If the ANN predictions are worse than what could be
predicted by just using the mean of the sample case outputs, the R squared value will
be less than 0. Equation A-1 is used for the coefficient of multiple determination R

squared.

_ SSE

R? =
SSyy

A-1

where,
SSE= ) (7= 9)’ Az

SSyy = Z(y - J_’)z A-3

Where y is the actual value, ¥ is the predicted value of y, and ¥ is the mean of the y

values.
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