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ABSTRACT 

 

 

Classical fault detection methods do not completely satisfy the reliability 

requirement for complex and highly nonlinear stochastic systems. One solution to 

this problem is to use more advances fault detection methods such as multiple 

models to simulate system in different operating conditions. 

This study focuses on fault detection and identification (FDI) of suspension strut 

and particle filter is used as estimator in interacting-multiple-model-based (IMM-

based) structure. The main idea of the IMM-based diagnosis algorithm is that the 

actual system is assumed to have uncertain (failure status) parameter vector 

affecting the matrices defining the structure of the model. Then, a model set is 

defined to model each of these different parameters and each model is in certain 

probability drawn from model set. By calculating these probabilities one can 

determine the mode in effect at each sampling time and perform fault detection 

and diagnosis and determine the presence of a particular failure mode.  
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Chapter 1: Introduction 

 

 

1.1 Motivation and Statement of the Problem  

A fault is an undesirable state of a system which affects system function. It may 

reduce productivity in the system, or in severe case may lead to breakdowns and 

catastrophes with serious consequences (e.g. Chernobyl or Bhopal disasters). 

Systems at risk of failure may need high level of reliability or may not be 

economical to modify them, but they may be monitored, in which case faults must 

be accurately detected and identified. There is a need for improved fault detection 

and identification (FDI) systems to continuously evaluate the condition of the 

monitored system without interrupting operation, by recognizing anomalous 

behavior due to system fault.  

Furthermore, in many systems, performance requirements continually increase, 

resulting in a high degree of sophistication and automation, with corresponding 

complexity. Also, because of ever-increasing demand for safety, reliability and 

maintainability as well as more strict environmental legislations, there is a 

growing need for development of more reliable and accurate systems. 

FDI methods have been well developed over the past three decades, as a field of 

study (Ding, 2007; Gertler, 1998; Isermann, 2006) and applied to several 

industrial applications (Mehra, 1998; Rigatos, 2009; Wang and Syrmos, 2008). 

 Most research on FDI has focused on linear systems  and fault detection and 

identification for nonlinear systems has not been investigated to a great extent. 

For nonlinear systems, a general framework does not exist, the FDI methods for 

nonlinear systems have been developed based on specific assumptions and they 



2 

 

have their own limitations. Some of these methods can address specific kind of 

nonlinearities or can just apply to systems working around particular operating 

point. For stochastic systems, much of development in fault detection schemes 

assumes that noises and disturbances are Gaussian. These fault detection methods 

do not completely satisfy the reliability requirements for complex and nonlinear 

systems with wide operating range and cannot meet customer's needs and 

expectations. Thus, developing an integrated and more reliable FDI solution, that 

can perform fault detection and identification for wider range of nonlinear 

stochastic systems, is highly desirable and necessary. Nonlinear FDI methods are 

usually complex but they can be facilitated by faster computers and also extensive 

number of sensors collecting different types of signals related to information on 

equipment operating condition. 

A good example of modern complex systems is a mining haul truck (Figure 1.1). 

This heavy industrial equipment works in very harsh environments and it 

demands a high degree of reliability to keep the productivity of the mining 

operation (Bongers and Gurgenci, 2008). Harsh and highly variable operating 

conditions pose many reliability challenges for trucks and they are prone to a 

variety of faults. Off-road haul trucks are usually driven on rough, unpaved roads 

and on mining benches for loading, hauling, and on soft uneven ground to dump 

overburden and gangue material. A significant amount of energy is translated into 

vertical motion in these trucks, due to these uneven ground and road bumps. This 

undesirable vertical motion is dampened by the vehicle suspension system that 

must be responsive and tough. Strut is the key element in vehicle suspension 

system and incurs continual motion during harsh operating conditions (Figure 

1.1). This ongoing motion causes strut performance to degrade over time, due to 

wear of the seals and loss of hydraulic fluid, or by failure of the control valves in 

strut. A single collapsed strut can cause serious structural damage and tire wear. 

Tires are a major operating expense of off-high-way trucks. Although currently 

preventive maintenance is being used for struts, strut failure rates are not 
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predictable. Therefore an automated fault detection system to detect and identify 

anomalies in the struts would improve fleet reliability significantly.  

There are some techniques developed for anomaly detection and diagnosis for 

suspension system. FDI applications to strut problem have been reported in both 

automobile industry (Börner et al., 2000; Fisher et al., 2003; Isermann et al., 2002; 

Majjad, 1997) and railway industry (Goda and Goodall, 2004; Goodall, 2006; Li 

and Goodall, 2004; Mei and Ding, 2007). Most of the studies are concerned with 

model-based techniques which use mathematical models to generate additional 

output signals and compare it with the original measurable parameters; however, 

these researches have been based on approximate linear suspension dynamic 

models and they usually not consider fault diagnosis. Strut in mining haul truck is 

a nonlinear system with different types of faults and it operates in a harsh 

operating condition with multiple operating points and there is a need to develop 

an FDI method that can handle nonlinearity and different operating conditions and 

noises in mining truck’s strut. 

 

Figure 1.1: Mining haul truck and strut suspension (http://www.howstuffworks.com) 
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1.2 Objectives  

The main objective of this study is to propose an FDI technique for truck 

suspension strut as a nonlinear dynamical system. This study will focus on the 

observer-based method, because of its abilities to deal with nonlinear systems. 

The idea of observer-based fault detection is to generate estimations of measured 

signals using a model of the monitored process, and compare the measurements 

with their estimations so as to generate a symptom signal that carries diagnostic 

information about system faults. However, the presence of noises and 

disturbances is inevitable. Therefore, the aim is to design observers such that the 

effect of noises and some disturbances on the residual signal is reduced, while the 

effect of a faults is considerably increased. This study provides a framework for 

an automated fault detection and diagnosis system for a mining truck suspension 

strut as a nonlinear system with the aim of reducing fault detection time, false 

alarm rates, undetected faults and unscheduled maintenance downtime. The FDI 

scheme should be able to reliably detect the presence of anomalies in strut with 

presence of non-Gaussian noises and isolate the problem, and identify the type of 

fault. 

 

1.3 Organization  

This study provides a brief literature review about available fault detection 

methods and then it gives a detailed explanation about interacting multiple model 

fault detection approach. Lately, the application of this specific approach is 

demonstrated on mining truck suspension strut as the application area for which 

this research is targeted. Following the first chapter of this thesis, a review of 

literature and relevant background in fault detection methods and more 

specifically model based fault detection methods is presented in Chapter 2. 

Fundamental theories of interacting multiple model (IMM) fault detection method 

are explained in Chapter 3. Application of particle filter in IMM structure for fault 
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detection and diagnosis is discussed in Chapter 4 and algorithm for application of 

the particle filter is then provided. The results of application of data-driven 

methods for fault detection and diagnosis of suspension strut as a preliminary 

work showing limitations of conventional fault detection and isolation (FDI) 

methods for suspension strut are presented in Chapter 5 followed by the results of 

application of IMM-based FDI method on hydraulic two tank problem as a bench 

mark problem and suspension strut problem. Finally, Chapter 6 discusses future 

applications of this work as well as conclusions from this study. 
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Chapter 2: Literature Review 

 

The task of fault detection and isolation is to determine whether there is a fault or 

not and to identify the fault, from the observation and the knowledge of the 

process. The international federation of automatic control (IFAC) technical 

committee on fault detection supervision and safety of technical processes 

(SAFEPROCESS) standardized the definition of the terminology used in fault 

diagnosis. These definitions are as follows:  

Fault: A deviation of at least one characteristic property or parameter of the 

system from the acceptable, usual, or standard condition. 

Failure: A permanent interruption of a system's ability to perform a required 

function under specified operating conditions in a way that it has to be shut down. 

Fault Detection: Determination of faults present in a system and the time of fault 

occurrence. 

Fault Isolation: Determination of the kind, location, and time of the occurrence of 

a fault. 

Fault Identification: Determination of the size and the time-varying behavior of a 

fault. 

Fault Diagnosis: Determination of the kind, size, location, and the time of the 

occurrence of a fault. It includes fault detection and identification. 

Monitoring: A continuous real-time task of determining the conditions of a 

physical system, by recording information, recognizing and indicating anomalies 

in the system behavior. 

Linear and nonlinear systems: Definition of the terminology used in this report 

are as follows: 
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Linear systems satisfy the properties of superposition and homogeneity. The 

principle of superposition states that for two different inputs, x and y, in the 

domain of the function f,  ��� 	 
� � ���� 	 ��
� 
The property of homogeneity states that for a given input, x, in the domain of the 

function f, and for any real number , ���� � ���� 
Any function that does not satisfy superposition and homogeneity is nonlinear. 

Stochastic system: Systems contain some element of random or stochastic 

behavior are called stochastic systems. Unlike a deterministic system, a stochastic 

system does not always produce the same output for a given input, hence they are 

unpredictable and they don’t have a stable pattern or order. 

Operating point: the operating point is a specific point within the operation 

characteristic of a dynamic system and it defines system’s overall state at a given 

time. Properties of the system and the outside influences and parameters 

determine the operating point of a system. 

Sensor fault: sensor fault can be observed as measurements that are unavailable, 

incorrect or unusually noisy.  

Actuator fault: an actuator fault corresponds to the variation of the control input 

signal applied to the system or a problem in the actuator such as stuck control 

valve. The actuator faults can be defined as any abnormal operation of any 

element in the actuator subsystem such that the control command from the 

controller output cannot be delivered to manipulated variables entirely. 

Component fault: Structural changes or changes in the process itself which occur 

due to hard failures in equipment are called component fault.” 
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 First-order Markov process: A random process that has n possible states when it 

is moving through time is considered to be a first-order Markov process if the 

state at the next time period is only reliant on the current state of the system. 

Gaussian and non-Gaussian noise: When frequency distribution of the noise in 

the system obeys a Gaussian distribution it is called Gaussian noise, otherwise it 

is called non-Gaussian noise. 

Once the fault detection and diagnosis has been done, it is possible to make a 

decision on the action to be taken. The whole process -fault detection, diagnosis, 

evaluation and action- forms a supervision system (Isermann, 1984), as shown in 

Figure 2.1. 

 

Figure 2.1: Supervision loop (Li, 1991) 

The earliest fault detection methods simply monitored a particular signal and 

raised an alarm when it exceeded a predefined value. A more advanced technique 

used to identify faults in the system was hardware redundancy, which entails 

replicating the hardware (such as actuators and sensors) in the plant and running it 

in parallel with the current hardware. Any discrepancy between the channels will 

indicate a fault. The major drawback of hardware redundancy is the cost of 

replicating hardware, which is often prohibitively expensive and in some 

applications this method may not be physically possible. Research on fault 

detection and isolation first began in the early 1970s by Beard (1971) and Jones 

(1973), who considered analytical redundancy instead of hardware redundancy. 

The analytical redundancy-based approach is a health monitoring software that 
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calculates the differences between estimates and measurements of the system 

states and generate residuals using a system process model. Analytical 

redundancy-based approaches can be more applicable and cheaper compared to 

hardware redundancy techniques, because the hardware are not replicating and 

also no additional faults are introduced into the system.  They require an accurate 

model, and significant computing power and data storage (Bhagwat et al., 2003; 

Yen and Ho, 2003). 

Analytical fault detection methods can be commonly categorized in three main 

classes, namely model-based, data-driven, and Knowledge-based fault detection 

(Ding, 2008; Venkatasubramanian et al., 2003a; Venkatasubramanian et al., 

2003b; Venkatasubramanian et al., 2003c; Chen and Patton, 1999; Patton et al., 

1998). The method employed is, however, dependent on the type and nature of 

system unit to be monitored and information that we can get from the system 

through sensors and also knowledge that we have about the system. All these 

approaches generate characteristic signals or information that can be used to 

monitor the system. Brief explanations of these methods are given below: 

• Data-Driven – In data-driven approaches, it is unnecessary to assume the 

availability of models and only the availability of a large amount of historical 

process data is assumed. This method for fault detection is based on analysis 

of the measured output signals. The measured output is analyzed or filtered to 

yield features and further information regarding the detection of faults. These 

features can be in time or frequency domain, some examples are the signal 

mean, variance, skewness, kurtosis, crest factor or the power in a certain 

frequency band.  

• Knowledge-Based – Sometimes a process is too complex to be modeled 

analytically and also a regular data-driven fault detection approach is not 

reliable. In that case, knowledge from past experience or process history can 

be used to develop an evidential process model for fault detection. This 

technique is based on a qualitative model of the system. Qualitative process 
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knowledge can be used to evaluate relations between measured signals and the 

current operating conditions and to classify faulty behavior of the system. 

Different techniques of knowledge based methods are available such as: 

causal analysis, expert systems, pattern recognition, etc.  

• Model-Based – Fault conditions are determined from deviations between a 

theoretical model and the physical process. Different approaches for model-

based fault detection have been developed. These approaches use first-

principles knowledge to develop a mathematical model of the system and to 

calculate process quantities such as outputs, parameters or states, which are 

called features. By comparing these features from the model with actual 

values from the process, and analyzing the differences or residuals, symptoms 

can be generated that can be used in fault detection and diagnosis. 

Data-driven techniques for FDI do not require model information because they 

rely on data measured from the system, and take advantage of signal processing 

and pattern classification techniques. These techniques are often used to detect 

discrete changes in a process (Freeman et al., 2013). To identify patterns that 

classify normal or fault conditions, the time-domain and frequency-domain signal 

processing techniques may be used (Zhou et al., 2010). The main advantage of 

data-driven techniques is their ability to transform the high dimensional data into 

a lower dimension, without losing any important information (Chiang et al., 

2001). Data-driven approaches are  generally classified as non-statistical (e.g. 

neural networks (NN)) or statistical (e.g. principal component analysis (PCA), 

partial least squares (PLS) and statistical pattern classifiers) methods (Yang, 

2004).  

The use of  PCA and PLS in process analysis and fault diagnosis was reviewed by 

MacGregor and Kourti et al. (1995) and  Wise and Gallagher (1996). Nomikos 

and MacGregor (1994) applied multivariate projection methods to batch processes 

using multi-way PCA. To handle nonlinearity, Qin and McAvoy (1992) proposed 

a combined approach of a neural network PLS method, in which the PLS 
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modeling integrated with feedforward networks. Dong and McAvoy (1996) used a 

nonlinear PCA method to deal with nonlinearity. Raich and Cinar (1996) 

proposed an integrated statistical methodology that integrated PCA with 

discriminate analysis techniques, using distance-based and angle-based 

discriminants. Moreover, Dunia et al. (1996) and Qin and Li (1999) utilized PCA 

for sensor fault detection, identification and reconstruction. Most real processes 

are time-varying; but a PCA model is time invariant; and so it should be updated. 

To overcome this problem Qin (1998) and Li et al. (2000) proposed an adaptive 

monitoring approach using recursive PLS.  Luo et al. (1999) and Zhang et al. 

(1999) proposed multiscale PCA (MSPCA) as another variant of the PCA 

approach which integrates PCA and wavelet analysis. Later in 2008, Hongxing et 

al. (2008) presented the enhancement of fault detection by combining PCA and 

wavelet packet transformation. Wu and Huang (2008) developed a kernel PCA 

method integrated with a wavelet transform to modify fault monitoring in a 

nonlinear chemical process. To enhance the fault detection  accuracy, Xia et al. 

(2008) proposed a new algorithm  based on the kernel PCA and wavelet packet 

transform. In addition, Ning et al. (2010) developed a novel PCA method 

integrated with wavelet denoising and the results showed that wavelet denoising 

improved the accuracy of fault detection. 

Data-driven methods can be used to extract fault information from signals 

measured in nonlinear systems but they have their limitations. The main downside 

of data-driven techniques is that numerous false alarms are generated by the fault 

detection system, because these techniques do not consider the dynamic 

interrelationship between the measured signals of the system. Wavelet transform 

integrated with PCA has been applied on haul truck suspension system for fault 

detection (as described in Chapter 5). Results showed that this data-driven method 

can detect the fault in this system; but, because of nonlinear nature of the process, 

this method shows poor result in some parts of the studied data. The other 

problem is that there are some disturbances and noise in the system that cannot be 
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modeled as a Gaussian signal; and so there is a need for more sophisticated FDI 

method to handle non-Gaussian noises and disturbances in the system.   

Knowledge-based methods use neural networks or fuzzy system techniques to 

handle nonlinearities in the systems. Some typical problems in these methods 

include the network selection, the training algorithms and the representation of 

system dynamics by neural networks or fuzzy system. Another problem is that 

they do not give insight into the physical model of the system, therefore the output 

of their model does not have physical meaning and it is hard to interpret them and 

diagnose the fault. 

If the dynamic behaviour of a system can be well described by an accurate 

mathematical model, then analytical model-based methods are the most powerful 

fault diagnosis methods (Li and Kadirkamanathan, 2001). 

The general procedure of model-based FDI is as follows. 1) A residual is 

generated from the difference between real measurements or system parameters 

and estimates of these measurements or parameters by a mathematical model. 2) 

After residual generation, the residual is evaluated by extracting features from the 

residual. A common approach is simple threshold checking. 3) Finally, the 

decision making step analyzes the result of the evaluation of a set of residuals by 

using numerical and statistical techniques for the likelihood of faults. It returns a 

decision as to which fault(s) have occurred and which component is faulty in the 

supervised system. 

Once fault detection and diagnosis has been done, it is possible to make a decision 

on the action that needs to be taken depending on the type and extent of the fault. 

Figure 2.2 illustrates the general and conceptual structure of a model-based fault 

diagnosis system. 
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Figure 2.2: General Structure of Model-Based Fault Diagnosis Systems (Yang, 2004) 

In general, three main model-based approaches are used to generate residuals 

(Freeman et al., 2013). The first is parameter estimation (Isermann, 1994). This 

approach is based on the assumption that the faults are reflected in some 

parameters of the system, often related to physical parameters. Hence, in order to 

identify faults, the system parameters are estimated on-line using well-known 

parameter estimation techniques. The residuals in this approach are essentially the 

difference between the on-line estimates of the system parameters and their 

corresponding values under fault-free conditions. 

The second is the parity space approach (Chow and Willsky, 1984), where the 

residual is generated using so-called parity functions defined over a time window 

of system input and output data. The parity space method is based on simple 

algebraic projections and geometry and the basic idea behind this method is to 
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provide an appropriate check of the parity or consistency of the various 

measurements within the monitored system.  

Finally, the third approach to residual generation is the observer-based methods 

(or filter-based, or state estimation-based) (Chen and Patton, 1999).  

Kinnaert et al. (2000) designed a model-based diagnosis system to detect actuator, 

sensor and component faults in a gas-liquid separation unit and validated it by 

simulation. Thumati and Jagannathan (2010) developed a novel model-based fault 

detection and prediction (FDP) method for nonlinear multiple-input–multiple-

output (MIMO) discrete-time systems. The performance of the proposed method 

is demonstrated by a fourth-order MIMO satellite system (Thumati and 

Jagannathan, 2010). 

Model-based FDI based on neural network and fuzzy methods were applied by 

several researchers. For example, a new structure of partially connected neural 

networks (PCNN), and a conventional, fully connected neural network (FCNN) 

was used as identification techniques for nonlinear systems to generate residuals 

for fault detection purposes (Fekih et al., 2007).  

Gertler et al. (1993) used the parity equation residual generation method for fault 

diagnosis of systems modeled by a linear dynamic core with static input and 

output nonlinearities (hybrid or Hammerstein model). Krishnaswami et al. (1995) 

used the nonlinear autoregressive moving average modeling with exogenous 

inputs (NARMAX) method for system identification to apply a nonlinear parity 

equation residual generation (NPERG) FDI scheme, for diagnosing faults in an 

automobile engine. 

Although there are some application of parity space method to nonlinear systems, 

it should be noted that this method sensitive to measurement noise and process 

noise (or disturbance) because it does not have closed-loop structure like 

observers or filters (Sobhani-Tehrani, 2008). 
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There are some researches on the application of parameter estimation method for 

nonlinear system. The most important issue for parameter estimation based 

diagnosis for nonlinear systems is model complexity. It is difficult to use this 

method in real time application because parameter estimation for the nonlinear 

model is a multivariate nonlinear optimization problem (venkatasubramanian et 

al, 2003b). 

The basic observer-based approach is to reconstruct the outputs of the system 

from the measurement or subset of measurements by using observers or filters, 

and defining the residuals as the difference between the actual measurements and 

the model-based estimates. This residual can be used for fault detection. 

Observer-based methods are one of the most popular approaches to model-based 

FDI (Isermann and Balle, 1997) and various observer-based fault-detection 

methods have been developed (Frank, 1987) and each of them has certain merit 

and applicability.  

Observers are often used in control systems to estimate non-measurable states 

(which is usually the case in health monitoring systems). An observer is 

essentially a system model, and can fall into one of two categories (Samy and Gu, 

2011, Alrowaie et al., 2012): a Luenberger observer (used in a deterministic 

setting) or a Kalman filter (used in a stochastic setting). The estimation errors of 

the Luenberger observer (often simply referred to as observer) or the innovation 

sequence of the Kalman filter can be used as residuals for FDI purposes. Figure 

2.3 shows the schematic diagram of an observer-based residual scheme.  
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Figure 2.3: Schematic diagram of observer-based residual generator 

Residual generation schemes that utilize the theory of nonlinear observers were 

proposed in several studies (Hengy and Frank, 1986; Himmelspach, 1992; Seliger 

and Frank, 1991). A nonlinear observer estimates the output of the system to 

calculate the residual for fault detection (Bhagwat et al., 2003b). Zolghadri et al. 

(1996) applied two nonlinear observer-based FDI schemes to a laboratory 

hydraulic installation under digital control. The practical results demonstrated that 

faults can be successfully detected and isolated using both methods. Pertew et al. 

(2007) proposed new LMI (linear matrix inequality) observer design for Lipschitz 

nonlinear systems which offers extra degrees of freedom compared to classical 

Lipschitz observers. The proposed observer applied for sensor fault detection and 

diagnosis in nonlinear Lipschitz systems. 

The kalman filter (KF) is the most broadly used and popular filter for linear 

stochastic systems. Mehra and Peschon (1971) used the residuals of KF for fault 

detection. Isermann (1984) developed an algorithm using KF state estimation 
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process 
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Measurements 

Process 

Input 

Residual 

+ 
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techniques for pipeline leak detection. The EKF is the linearized form of the KF 

that can be used for nonlinear systems (Bhagwat et al., 2003a). Dalle Molle and 

Himmelblau (1987) proposed FDI method by parameter estimation using EKF for 

evaporator. Li and Olson (1991) used EKF for FDI of a closed-loop simulated 

nonlinear distillation process. For real-time applications, the use of a single filter 

for all measurements and models is inconvenient and usually inapplicable 

(Bhagwat et al., 2003a).  In order to solve this problem several techniques have 

been suggested. For example, Gelb (1974) simplified the model equations by 

decoupling them and using separate local EKF. Fathi et al. (1993) designed 

separate local EKFs based on models of each component instead of a single 

complex filter. Also Bhagwat et al. (2003a) used the separate filters to overcome 

this problem during practical implementation. 

Since representing all possible system modes with a single model is often 

impractical, the use of multiple model-based approaches for modeling and control 

purposes has become popular. The multiple model (MM) approach is a very 

powerful tool for estimation, control and modeling problems and it has attracted 

considerable research interest in the recent decades (Li and Bar-Shalom, 1993, 

Willsky and Jones 1974). It has been used in target tracking problem and also 

fault detection and diagnosis scheme for systems with different kind of faults 

(Willsky, 1976). Banerjee et al. (1997) reported the challenges in state estimation 

of a nonlinear plant that operates in multiple modes and makes transitions 

between them. To overcome this problem they identified local linear models at 

each operating points and used them to develop a control system.  Johansen and 

Foss (1999) introduced multiple model-based techniques that decompose a broad 

range of processes operating regimes into a set of separate operating regimes and 

develop local models. Also, Sun and Hoo (1999) employed multi-linear method 

and proposed a dynamic transition controller to control the single-input single-

output (SISO) nonlinear processes. The performance of the method was 

demonstrated by simulation of pH neutralization process. Galan et al. (2000) also 

used a multi-linear model to design H-infinity control of nonlinear plants. This 
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method was applied on a bench-scale pH neutralization continues stirred-tank 

reactor (CSTR).  

To apply multiple model-based (MM) approaches for FDI, a model set containing 

local models corresponding to different fault conditions and normal conditions of 

the system may be developed. A multiple model contains a bank of filters based 

on the model of each system mode which works in parallel. The overall state is 

estimated by weighted sum of the outputs of all filters based on the probability of 

occurrence. Bhagwat et al. (2003b) proposed a model-based fault detection 

method that decomposes the nonlinear transient systems into multiple linear 

modeling regimes. Kalman filters and open-loop observers were used for state 

estimation and residual generation based on the resulting linear models. The 

method was validated against experimental data obtained during the startup 

transition of highly nonlinear pH neutralization reactor in the laboratory. 

In MM-based approaches, the filters are running in parallel without mutual 

interaction (that is, “non-interacting” MM estimation). This method is effective 

for a systems without structural or parametric (mode) changes (Raghappriya et al., 

2012). To overcome this downside of a non-interacting MM approach, interacting 

multiple model (IMM) approach, that handles abrupt changes in the dynamic of 

system by switching from one model to another model in a probabilistic manner, 

was developed. The IMM estimator was first introduced by Bar-Shalom and 

Fortmann (1988), and then Efe and Atherton (1997) applied it to fault detection 

(Donders, 2004). Thereafter, some studies have been conducted on IMM-based 

FDI which implemented along with different filters such as KF, EKF and UKF for 

estimating states and mode probabilities. 

Hayashi et al. (2006) applied an IMM algorithm for fault detection of railway 

vehicles. The KF was used to estimate the mode probabilities and states of vehicle 

suspension. The simulation results indicated that the algorithm is effective for 

railway vehicle suspension fault detection. Gadsden and Habibi (2011) used IMM 

algorithm for fault detection and diagnosis of hybrid electric vehicle (HEV) 
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battery system. The smooth variable structure filter (SVSF) was used instead of 

the KF in this algorithm. Gadsden (2012) also reported successful application of 

IMM-SVSF method for fault detection and diagnosis of an electrohydrostatic 

actuator (EHA). Raghappriya et al. (2012) proposed an IMM algorithm for 

detection and diagnosis of multiple faults. The reliability of the proposed method 

was illustrated by an aircraft example with multiple failures of sensors, actuators, 

and other component failures. 

For the nonlinear system FDI problem, Extended Kalman filter (EKF) is usually 

applied instead of Kalman filter (Wang and Syrmos, 2008). Mehra et al. (1998) 

proposed a novel IMM-EKF approach for FDI in nonlinear systems. The basic 

idea is to describe each failure mode by a separate model and to combine the 

outputs of EKFs based on different models in a near-optimal way. This approach 

was applied to a problem of spacecraft autonomy for FDI of sensor and actuator 

failures. The results demonstrated that this IMM-FDI filter successfully manages 

both permanent and transient failures. Kadirkamanathan et al. (2001) also used an 

IMM estimator that includes a number of EKFs running in parallel. The results of 

simulated and real data showed that IMM estimator is an effective method for 

tracking rapid trajectory changes. Wang and Syrmos (2008) applied the IMM-

EKF algorithm for the detection and diagnosis of sensor and actuator faults with 

the purpose of condition monitoring of the electro-hydraulic actuator (EHA) 

system. The results demonstrated that IMM estimation algorithm yields more 

robust detection and estimation. 

IMM-based method based on the Unscented Kalman filter (UKF) can be used for 

FDI in case of complex systems. Tudoroiu et al. (2006 and 2007) applied IMM 

method based on the UKF algorithm for FDI of partial (soft) and total (hard) 

faults of the satellite attitude control system’s actuators. The method was 

implemented based on a high-fidelity and highly nonlinear model of a commercial 

satellite attitude control system. The results of numerical simulations showed that 

the method is more accurate, less computationally demanding, and more robust 
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with the potential of extending to a number of other engineering applications 

compared to other model-based fault detection, diagnosis and isolation strategies. 

When the system is highly nonlinear and the noises are non-Gaussian, the 

performance of EKF and UKF decreases, and may even it becomes divergent 

(Ristic et. al., 2004; Souibgui et al., 2011). Handschin and Mayne (1969) 

proposed the use of Monte Carlo simulation techniques for non-linear non-

Gaussian state estimation but it was not popular due to high computational load. 

Recently due to increase in computational power of modern computers, the Monte 

Carlo filter has become popular (Li and Kadirkamanathan, 2001; Li and 

Kadirkamanathan, 2004). Sequential Monte Carlo (SMC) methods, also known as 

particle filtering (PF), have gained particular attention (Kadirkamanathan et al., 

2001; Orchard and Vachtsevanos, 2009). The main advantage of particle filters is 

that they can handle any functional nonlinearity and system or measurement noise 

of any probability distribution (Kadirkamanathan et al., 2001). Unlike a 

conventional EKF-based approach that uses only the mean and covariance of an 

approximate Gaussian distribution, PF  approach utilizes the complete probability 

distribution information of the state estimates for fault detection (Li and 

Kadirkamanathan, 2001; Kadirkamanathan et al., 2002). PFs approximate the 

required probability density function (PDF) by groups of particles in the state 

space. As the number of particles increases, they effectively provide a good 

approximation to the required PDF (Chen et al., 2005). The major drawback of PF 

is the computational load associated with the number of particles used. Thus it is 

often necessary to compromise between computation time and the quality of 

results, especially in the system with limited computational resources such as 

mobile robots (Zajac, 2011). Rigatos (2009) evaluated the performance of the PF 

against EKF for mobile robot fault diagnosis. The results demonstrated the 

effectiveness of PF. 

Li and Kadirkamanathan (2001) developed a PF based MM approach for fault 

detection and identification by combining PF with Bayesian inference. They 
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showed the effectiveness of the proposed method by experimental results. 

Kadirkamanathan et al. (2002) also developed another PF based MM approach for 

FDI by combining PF with the likelihood ratio (LR) test. The simulation results 

on a highly nonlinear system exhibited the effectiveness of the proposed method. 

Li and Kadirkamanathan, in their previous works, assumed that the knowledge on 

all possible faults of the system is available, and each of the possible faults can be 

described by a known model. Later in 2004, they modeled faults as the unknown 

changes in the parameters of the system and proposed the adaptive Monte Carlo 

filters which integrated with the likelihood ratio test (Li and Kadirkamanathan, 

2004). Also Souibgui et al. (2011) combined PF with the innovation based fault 

detection techniques to develop a fault detection and isolation scheme. The 

simulation results on a highly nonlinear system exhibited the success of the PF. 

Alrowaie et al. (2012) proposed the algorithm to modify the log-likelihood ratio 

test presented in Kadirkamanathan et al. (2002) and Kadirkamanathan and Li 

(2004) as it derives the likelihood function through an approximation that is not 

applicable to all types of nonlinearities. Recently, Bruno (2013) also discussed 

Rao-Blackwellized particle filtering as a method that is suitable for many 

applications such as fault detection.  

A summary of the pros and cons of some of discussed methods are summarized in 

Table 2.1. 

 

Table 2.1: Summary of the pros and cons of the discussed methods 

FDI 

Methods 
Pros Cons 

Hardware 

Redundancy 
• Accurate and fault tolerant.   

• The cost of replicating hardware 

is too expensive. 

• May not be physically possible 

in some applications. 
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Data 

Driven 

• Ability to transform the high 

dimensional data into a lower 

dimension, without losing any 

important information 

• Easy to apply 

• Do not consider the dynamic 

interrelationship between the 

measured signals of the system, 

result in generation of numerous 

false alarms by the fault 

detection system. 

• Do not perform well in the 

presence of disturbances 

Model 

Based 

• The dynamic behaviour of 

system can be well-described 

by perfect mathematical 

models, thus the analytical 

model-based methods are the 

most powerful fault diagnosis 

methods. 

• Robust under the effect of 

noise and adaptable 

• Requires greater computing 

power and data storage. 

• Difficult to apply using complex 

models 

MM 

• Effective when it is 

impractical to represent all 

possible system modes with a 

single model. 

• Do not work well for the 

problems having large structural 

or parametric changes including 

failure or damage.  

IMM 

• Handle abrupt changes in the 

dynamic of system by 

switching from one model to 

another model in probabilistic 

manner  

• More accurate and promising 

for FDI scheme compared to 

MM algorithm because it 

considers interactions between 

different modes. 

• Computationally expensive 
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IMM-KF 
• Powerful and common tool for 

FDI. 

• Do not work for nonlinear 

systems 

IMM-

EKF 

• Powerful method for systems 

with simple nonlinearity 

working around single 

operating point. 

• Poor performance when the 

system is highly nonlinear and 

the distribution is non-Gaussian 

IMM-

UKF 

• More accurate, and more 

robust compared to other 

model-based FDI strategies. 

• Derivative-free alternative to 

EKF, and provides superior 

performance at an equivalent 

computational complexity.  

• Poor performance when the 

system is highly nonlinear and 

the distribution is non-Gaussian 

PF 

• Utilizes the complete 

probability distribution 

information of the state 

estimates for FD.  

• Applicable to general non-

linear systems with non-

Gaussian noise and 

disturbances.  

• As the number of particles 

increases, they effectively 

provide a good approximation 

to the required PDF. 

• The computational complexity 

does not increase with 

increasing the number of 

states. 

• High computational load 

associated with the number of 

particles used.  
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Chapter 3: Background on Multiple Model Fault 

Detection Methods 

 

In this section basic concept of IMM-based FDI method is described and 

theoretical background and mathematical equations of this method are mentioned. 

3.1 Multiple Model (MM)-Based FDI 

Faults can be classified in three different classes according to their location, each 

yielding a different kind of models: sensor faults, actuator faults, and component 

faults (Witczak, 2007). Systems may be subject to changes due to different faults 

and variations caused by these changes may significantly alter the dynamic 

behavior of the system. Therefore, in model based fault detection, a suitable 

model of faults that represents the effects of a fault on the system is important and 

it is hard and sometimes infeasible to model all possible faults in the system with 

a single model. Each of these faults can be modeled with different model and all 

these model can work together to simulate the system in different modes. 

Consider a system that is subjected to a series of possible qualitative changes that 

make it switch, over time, among a countable set of models. Each of these models 

can be related to an operation mode or different fault of the system and the system 

jumps from one mode to the other. Then a filter is designed for each choice of 

system model, which results in a bank of single model-based filters. This bank of 

filters (or more precisely multiple models) can simulate continuous changes in the 

base states, and as well as jumps in system modes. They run in parallel, each 

based on a model matching a particular mode of the system or a particular fault. 

Usually one model in the bank is associated with the healthy operational mode 

and the rest of the models correspond to various possible fault scenarios in the 

system. However, multiple models associated with healthy operational mode can 
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also co-exist in the bank, if the system structure changes during healthy 

operations.  

The main idea of the MM-based diagnosis algorithm is that the actual system is 

assumed to have uncertain (failure status) parameter vector affecting the matrices 

defining the structure of the model. Then, a model set is defined to model each of 

these different parameters and parameters are assumed to take only discrete values 

to map the corresponding system models. Each system model is in certain 

probability drawn from models set designed to represent the all possible system 

behavior pattern. Then by calculating these probabilities one can determine the 

mode in effect at each sampling time. The whole model set is a hybrid estimator 

which estimates a state of a hybrid system. Hybrid states involve two types of 

components: those varying continuously (state of the conventional system), 

known as base states, and those that may jump only, known as modes or modal 

state. The diagnostic scheme uses the residual computed from comparing each of 

these estimator outputs to real model output to detect which fault is present. The 

residual is fed to the fault detection and identification module. This module uses 

the residual to calculate the probability of the different modes of operation and 

give out a warning signal to indicate the presence of a particular failure mode. 

In MM algorithm each model operates independently without mutual interaction. 

Such an approach is quite effective in handling problems with various operating 

conditions but fixed structure or parameters. Whereas in reality the system 

structure or parameters do indeed change as a system component, a sensor or an 

actuator fails (Kim et al., 2008). Therefore, MM algorithm does not work well for 

the problems having large structural or parametric changes including failure or 

damage.  
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3.1.1 Interacting Multiple Model (IMM)-Based FDI 

To make MM algorithms more suitable for FDI problem, new interacting multiple 

model-based FDI (IMM-FDI) approaches have been proposed (Mehra and 

Peschon, 1971). The IMM differs from the non-interacting MM algorithm in that 

the single model based filters interact with each other and thus result in improved 

performance. The IMM based estimator consists of a bank of single-model-based 

estimators running in parallel at each cycle as shown in Figure 3.1. The initial 

state estimates at the beginning of each cycle for each estimator are the mixture of 

all most recent estimates from single-based estimator. The IMM algorithm has 

more accurate state estimation compared to an MM algorithm and consequently 

more precise estimation of the posterior probability of each mode. Theoretical 

analysis and research results demonstrate that the IMM-FDI approach 

significantly improves the FDI performance in terms of fast detection and proper 

identification (Ru et al., 2008). 
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Figure 3.1: Block diagram of IMM-based FDI approach (Zhang and Li, 1998a) 

In IMM modeling, the base state estimation is analogous to classical state 

estimation. The modal state estimation is, however, quite different. The IMM-

based FDI approach assumes that the actual system at any time can be modeled 

sufficiently accurately by a stochastic hybrid system: 

��� 	 1� � ������, ����,��� 	 1�� 	 ���� (1) 


��� � ������,����� 	 ���� (2) 

where � ∈ ���  is the base state vector; 
 ∈ ���  is the (mode-dependent) 

measurement vector; � ∈ ��� 	is control input vector; � ∈ ��� 	and � ∈ ���  are 

mutually independent discrete-time process and measurement noises; ���� is the 
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discrete-value that represents the current active system mode or model state at 

time �, and the set of all possible system mode is  � !"#, "$, … , "&'. 
It can be observed from the hybrid system defined in Equation (1) and (2) that 

system outputs are in general noisy and mode-dependent. Therefore, the mode 

information imbedded (i.e., not directly measured) in measurement sequences. 

The transition between the different models can be described as a first-order 

Markov process and transition probability between pairs of modes is denoted as: 

Π � )*## *#$ … *#&*$#⋮*&#
*$$ … *$&⋮ 			⋱ 				⋮*&$ … *&& -  (3) 

and 

.*/0 � 1,														1 � 1,… , 20  (4) 

where	*/0 	is the transition probability from mode �/	to mode �0. 
In the IMM method, it is assumed that a set of 3  models has been set up to 

approximate the hybrid system (1)-(2) by the following 3 pairs of equations: 

��� 	 1� � �0�����, ����� 	 ���� (5) 


��� � �0������ 	 ����                                       4 � 1,… ,3 (6) 

where 3 5 2  and subscript 4  denotes quantities pertaining to model "0 ∈  . 

System state and output equations may be different structures for different 4. 
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Given that the probabilistic state-space formulation as Equation (5) and (6), the 

Bayesian approach provides a rigorous framework for the hybrid state estimation 

problem. In the Bayesian approach, the posterior probability density function 

(PDF) of the hybrid state 6��7, �7|97�  is constructed based on all available 

information. If the posterior PDF is known, various estimates of the hybrid state, 

(i.e. base state and modal state) can be derived. The marginal distribution of the 

posterior PDF is derived as:  

6��7|97� �.6��7|�7 � �/,97�6��7 � �/|97�:
/;#  (7) 

On the other hand, the fault diagnosis problem is to provide a distribution over the 

discrete set,   at each time step. This distribution can be obtained from the 

marginal distribution of the posterior PDF. 

6��7|97� � <6��7, �7|97� =�7 (8) 

The above equation can determine the mode in effect at each cycle time. 

Observation is being updated at every time step, so new information can plug into 

the estimation process to make it more accurate. A recursive state estimation 

scheme can be designed to use new information in every time step. The posterior 

PDF, 6��7, �7|97�, can be recursively estimated in two stages: prediction and 

update. The prediction stage involves using the state transition model to obtain the 

predicted PDF, 6��7, �7|97>#�, of the hybrid state at time k. The predicted PDF 

can be expressed as: 

6��7, �7|97>#� � <6��7, �7>#, �7|97>#� =�7># (9) 
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where 6��7, �7>#, �7|97>#� � ∑ 6��7|�7>#, �7�6��7|�7>#�6��7>#, �7>#|97>#�@ABC  

The probabilistic model of the state transition 6��7|�7>#, �7� is defined by the 

state-space Equation (5) and the known statistics of ���� . 6��7|�7>#�  and 6��7>#, �7>#|97>#� are available from last iteration.  

At time step k, a new observation y(k) becomes available and can be used to 

update the predicted PDF via Bayes’ rule. 

6��7, �7|97� � 6�
7|�7,�7�6��7, �7|97>#�D∑ 6�
7|�7,�7�6��7, �7|97>#�@A =�7 (10) 

Where 6�
7|�7, �7� is the mode-conditional likelihood function defined by the 

measurement model (6) and the known statistics of ���� and 6��7, �7|97>#� can 

be calculated from Equation (9). Equations (9) and (10) form the basis for the 

recursive hybrid state estimation scheme. Then 6��7, �7|97� can be used to find E/�� 	 1� � 6��7F#|97F#�, the estimation of the probability of mode i, at each 

time step. 

By using the information provided by the model probabilities, both fault detection 

and diagnosis can be achieved. The fault decision can be made by 

E0�� 	 1� � max/ E/�� 	 1� 						1 � 1,… ,3 

In this equation, we are looking for mode with the highest probability and E0 is the probability of mode j which has the biggest probability among all 

mode probabilities, E/ i=1, … ,N. A fault decision threshold,  EJ , can be 

defined and E0 can be compared with this threshold. If E0 is greater than the 

threshold, fault j is happened. 

 

(11) 
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If E0 
Kgreather	than	threshould	then	system	is	in	mode		4	and	fault	4	occuredotherwise	no	fault	occured  

It provides not only fault detection but also the information of the type, location, 

size and fault occurrence time, that is, simultaneous detection and diagnosis. 

In IMM method, models are interacting with each other so at each time step k 

estimated posterior PDF for each model is the mixture of all posterior PDF from 

all models. Therefore, another stage called initialization stage should be added to 

prediction and update stage to perform interaction between the models. In this 

stage each filter is reinitialized by mixing the all most recent estimates from the 

single-model-based filters. 

The probability of each mode in the next time step should be predicted as the 

initial value for next step state estimation. Based on the assumption that the 

transition between system modes is described as a first-order Markov process, the 

predicted mode probability for each mode E0�� 	 1|�� can be calculated from 

estimated probability of each mode by Bayesian algorithm and transition 

probability between the modes as: 

E0�� 	 1|�� � ∑ */0E/���/                      1 � 1,… ,3 (12) 

This recursive estimate scheme is only a conceptual solution and cannot be 

determined analytically. A method is needed to approximate the posterior state 

distribution (6��7, �7|97� ) in the IMM algorithm. A recursive filter can be used 

to approximate the posterior state distribution. A model-based recursive filter has 

to be designed based on each model in the IMM model set in order to estimate 

system states. This model set generally consists of one model to represent healthy 

behavior of the system and multiple models with embedded fault model to 
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represent different possible faults in the system. An increase in robustness is 

expected, because each filter uses additional knowledge about the expected fault. 

Various stochastic filtering techniques can be used for this purpose. Kalman 

filtering is a powerful and common tool for this kind of applications. Using a bank 

of Kalman filters was pioneered by Magill (Magill, 1965) who used a parallel 

structure of estimators in order to estimate a sampled stochastic process. The 

extended Kalman filter (EKF) has become a standard technique used in a number 

of nonlinear systems. Because of the linearization, this filter is not applicable to 

highly nonlinear systems and calculating the Jacobian matrix is a drawback. To 

overcome this limitation, unscented Kalman filter (UKF) is developed. UKF 

represents a derivative-free alternative to EKF, and provides superior performance 

at an equivalent computational complexity. It operates on the premise that it is 

easier to approximate a Gaussian distribution than it is to approximate an arbitrary 

nonlinear function. Instead of linearizing using Jacobian matrices, UKF uses a 

deterministic sampling approach to capture the mean and covariance estimates 

with a minimal set of sample points. Although UKF is a relatively powerful tool 

for nonlinear system, it has some disadvantages. It is not applicable to a system 

with non-Gaussian noise sources; and it is not a truly global approximation based 

on a small set of trial points. 

In recent years, a new state estimation technique, called particle filtering, has been 

developed (Ristic et. al., 2004; Doucet, 2001). For highly nonlinear systems with 

non-Gaussian additive noises, UKF is not applicable, whereas particle filters can 

be a good alternative (Ristic et. al., 2004). 

The particle filter builds a discrete estimation of the conditional probability 

density given the measurement information. It has several interesting features, 

which make it potentially attractive for nonlinear system modeling (Goffaux and 

Wouwer, 2005):  
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• It is a nonlinear state estimation technique which does not require 

assumptions on the model equations. 

• Discrete-time measurements are easily accommodated. 

• It is a general method which handles non-Gaussian process and 

measurement noise. 

• The particle filter is almost insensitive to state dimension and the 

computation load depends more on the number of particles. 

The main drawback of this method is that, it is computationally expensive. 

However, thanks to the availability of ever-increasing computational power, these 

methods are already used in real-time applications in different fields (Doucet, 

2001). 

A particle filter approximates an unknown probability distribution using a 

weighted set of samples. The main objective of particle filtering is to track a 

variable of interest as it evolves over time. The basic idea of particle filtering is to 

use a random measure !�7/ . �7/ '/;#]  to characterize the posterior distribution of the 

state, ��7|97�, where !�7/ '/;#]  is a set of support points (particles) with associated 

weights !�7/ '/;#]  , that each weight signifies quality of that specific particle. 

Particle filter algorithm is recursive in nature and operates in two phases: 

prediction and update. After each action, each particle is modified according to 

the existing model (prediction stage). Then, each particle’s weight is re-evaluated 

based on the latest sensory information available (update stage). The weights are 

normalized such that  ∑ �7// � 1. Then the posterior density at time k can be 

approximated as: 

6��7|97� ^.�7/_��7 ` �7/ �]
/;#  (13) 
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To summarize, despite the capability of IMM-based FDI method, the detection 

and identification of the faults in a stochastic nonlinear system remain a 

challenging problem. Introduction of nonlinearity and non-Gaussian noise into the 

system, raises new challenges in fault detection, such as how to model the 

nonlinearities in the systems while keeping it simple and applicable and how to 

handle non-Gaussian noise in the system and avoiding false alarms due to noise in 

the system. Furthermore, the requirements of real-time system monitoring raise 

additional challenges due to the constraints of online memory and computation 

capabilities.  

In order to accomplish FDI for a nonlinear stochastic system, research is needed 

to overcome the following challenges: 

• Develop an FDI method that can handle nonlinearities in the system by 

considering available computational capabilities and available online memories. 

• The FDI method should be able to operate even in the presence of non-Gaussian 

noise in the system. 

According to characteristics of particle filter presented above, it seems that 

particle filter can be combined with interacting multiple model (IMM) approach 

to accomplish fault detection and diagnosis to handle a nonlinear system with 

non-Gaussian noise. 
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Chapter 4: IMM-FDI Method with Particle Filter 

Estimator 

 

 

4.1 IMM-PF-Based Fault Detection Method 

According to pros and cons of different filters and FDI methods  (provided in 

Table 2.1), an IMM-based FDI method based on particle filter estimation would 

be the most promising method to handle a nonlinear system with non-Gaussian 

noise. In this work a particle filter is adopted to be used as an estimator along with 

IMM-based FDI algorithm. 

The detail of the proposed IMM-based FDI algorithm is as follows (Arulampalam 

et al. 2002; Cui et al., 2005; Yang et al., 2006): 

Step 1: Interacting and mixing of the estimates 

1.1 Compute the predicted mode probability from k to k+1, Ê0�� 	 1|��: 
Ê0�� 	 1|�� �. */0E/���,				4 � 1,2, … , 3:

/;#  (14) 

where N is the number of the modes. 

1.2 Compute the mixing probability at k, E/0���: 
E/0��� � */0 c E/���Ê0�� 	 1|�� 	,			1. 4 � 1, … , 3 (15) 

1.3 Compute the mixing a priori probability density from k to k+1, 6̂0d�����|
����: 
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6̂0d�����|
���� �. 6̂/�����|
����:
/;# c E/0 ,							4 � 1,… ,3 (16) 

Step 2: Model-conditional filtering 

2.1 ∀4 ∈ fdraw M samples �̅0h��� according to mixing a priori probability density 6̂0d�����|
���� 
2.2 Compute the predicted state from k to k+1, �i0h�� 	 1�: 
�i0h�� 	 1� � �0 j�̅0h���, ����k 	 ����,			4 � 1,… ,3	&	m � 1,… ,f (17) 

where M is the number of the particles. 

2.3 Compute the predicted output of samples from k to k+1: 


i0h�� 	 1� � �0 j�i0h�� 	 1�k ,				4 � 1,… ,3	&	m � 1,… ,f (18) 

2.4 Compute the probability weights at k+1: 

op0h�� 	 1� � =q�7,0� j
�� 	 1� ` 
i0h�� 	 1�k ,					4 � 1,… ,3	&	m � 1,… ,f (19) 

2.5 Normalize the probability weights: 

o0h�� 	 1� � op0h�� 	 1�∑ op0h�� 	 1�]h;# 	 , 4 � 1,… ,3	&	m � 1,… ,f (20) 

2.6 Find the mean of the state over the sample set: 

�̅0�� 	 1� �.o0h�i0h�� 	 1�]
h;# ,						4 � 1,… ,3	&	m � 1,… ,f (21) 

2.7 Compute the covariance of the state over the sample set: 
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rs0�� 	 1�
�.o0h j�̅0�� 	 1� ` �i0h�� 	 1�k j�̅0�� 	 1� ` �i0h�� 	 1�kJ]

h;# ,						 
	4 � 1,… , 3&	m � 1,… ,f 

(22) 

2.8 Compute the probability density function for state in mode j after f Gaussian 

densities: 

6̂0���� 	 1�t
�� 	 1�� �.o0h3 j�i0h�� 	 1�, u0�� 	 1�rs0�� 	 1�k]
h;# ,						 

	4 � 1,… , 3	&	m � 1, … ,f 

(23) 

where u0 is the scaling factor and it can be calculated as ϑw � 0.5f>$ z{⁄  (dw is the 

dimension of the state space). 

Step 3: Updating the mode probability at k+1, E�� 	 1�: 
3.1 Compute the residual covariance over the sample set: 

}~0�� 	 1�
�.o0h ��0 j�̅0�� 	 1�, ����k]

h;#
` 
i0h�� 	 1�� ��0 j�̅0�� 	 1�, ����k ` 
i0h�� 	 1��J 

4 � 1,… ,3	&	m � 1, … ,f 

(24) 

3.2 Compute the innovations over the sample set: 

�0h�� 	 1� � 
�� 	 1� ` 
i0h�� 	 1�,							4 � 1,… , 3	&	m � 1, … ,f (25) 
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3.3 Compute the likelihood function at k+1, �0h�� 	 1�: 
�0h�� 	 1� � 3 j�0h�� 	 1�; 0, }~0�� 	 1�k ,								4 � 1,… ,3	&	m � 1,… ,f (26) 

3.4 Compute the mean of the likelihood over the sample set: 

�0�� 	 1� �.o0h�0h �� 	 1�]
h;# ,						4 � 1,… ,3	&	m � 1,… ,f (27) 

3.5 Update the mode probability at k+1, E�� 	 1�: 
E0�� 	 1� � E0����0�� 	 1�∑ E0����0�� 	 1�:0;# ,								4 � 1,… ,3 (28) 

Step 4: Detecting fault at k+1: 

4.1 Compute the mode probability vector at k+1, E��� 	 1�: 
E��� 	 1� � �E#�� 	 1� E$�� 	 1� … E:�� 	 1�� (29) 

4.2 Compute the maximum value of the mode probability vector components: 

Emax � max0 �E0�� 	 1�� ,								4 � 1,… ,3 (30) 

4.3 Detect the index of the maximum value of the mode probability vector 

components and subsequently assign: index = j 

4.4 Apply fault decision-FDI logic: 

If Emax � EJ���&��hz	then a fault occurred and the index of the fault mode is j, 

otherwise no fault occurred. 

The particle-filter-based approach introduced above allows statistical 

characterization of both discrete and continuous-valued states, as new feature data 

(measurements) are received. As a result, at any given instant of time, this 
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framework provides an estimate of the probability associated with each fault 

mode, as well as a PDF estimate for meaningful physical variables in the system. 

Once this information is available within the FDI module, it is conveniently 

processed to generate proper fault alarms and to report on the statistical 

confidence of the detection routine. 
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Chapter 5: Anomaly Detection in Mining Haul Truck 

Suspension System 

 

 

As mentioned earlier the objective in this project is to apply the proposed FDI 

method on the suspension strut problem and investigate the performance of the 

method. Most of the studies into FDI of suspension system apply model-based 

methods; and there are few studies use data-driven methods (Wei et. al., 2012). 

Bond graph modeling and simulation is used to solve the problem of detecting and 

isolating faults in vehicle suspensions (Silva et al., 2007). In (Li and Goodall, 

2004; Wei et al., 2011), the authors derived a fault detection approach for the rail 

vehicle suspension systems based on Kalman filter. A model-based fault diagnosis 

scheme using an Utkin observer is presented for fault diagnosis in position 

sensors of a quarter standard bus suspension (Moncada and Marin, 2011). 

Moreover, a particles filter is applied by Li et al. (2007) for the parameter 

estimation and parameter changes identification to indicate the health condition of 

the suspension system. While it is true that a model-based condition monitoring 

methods can perform very well when the system model is accurate, it should be 

noted that they are expensive methods and hard to implement. Because of the 

oscillatory nature of the behavior of the suspension system and also some issues 

in measuring the road roughness, signal-based method is applied to this problem 

at the first place as the most available and simple FDI tool for this kind of 

systems. 
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5.1 Anomaly Detection in Mining Haul Truck Suspension 

System Applying Wavelet Analysis 

A combination of continuous wavelet transform and PCA algorithm is applied for 

fault detection of truck suspension strut. The FDI method applied to both 

analytical model and operational truck data. The details of this FDI method and 

results are reported as a journal article (Hajizadeh and Lipsett, 2014). 

To develop an automated fault detection system for a strut, some features of the 

anomalies should be investigated. Detectable features of anomalies are 

challenging to collect from a mining vehicle undercarriage. Off-high-way trucks 

usually have a payload measurement system to monitor production in the mine by 

measuring the internal pressure in the four suspension struts of each truck and 

applying an empirical relationship to estimate the mass of the payload. The 

pressure data that is gathered by these existing sensors for payload measurement 

can be used for suspension strut fault detection, making implementing an FDI 

system much more simple than one requiring installation of additional sensors and 

a data logger. Condition monitoring of the strut may thus also improve payload 

monitoring accuracy. 

Pressure of the fluid within the strut is related to a payload weight within the 

dump body and also it is subject to oscillations while the dump is traveling. 

Although these oscillations will vary in frequency and magnitude, their natural 

frequencies and their frequency components with relative maximum energy are 

almost the same in a normal strut. Therefore local faults and transient phenomena 

in dynamic systems can be identified from its effect in the frequency components 

of the signal. 

Pressure signals have transient feature components that have local energy 

distribution in the time and frequency. A standard power spectrum analysis is 

therefore likely to yield misleading results. Wavelet analysis is one of the most 

efficient methods to analyze oscillatory signals for time-varying systems (Lin and 



42 

 

Zuo, 2003) and it can be used instead of standard power spectrum analysis to 

tackle time varying systems. The continuous wavelet transform (CWT) is a 

powerful tool to approach the natural frequencies of the system and the frequency 

components of the signal with relative maximum energy, and can be used on 

sequences of sampled data.  

Once the frequency features have been extracted from strut pressure signals by 

wavelet, a ranking and classification scheme is applied to determine whether a 

fault is likely to be present or not. Principal Component Analysis (PCA) is one 

approach for feature ranking and classification based on the assumption of linear 

contributions of features to the classification.  

 

5.1.1  Fault Detection and Identification with CWT and PCA 

In this study continuous wavelet transform (CWT) is considered because it reveals 

the signal content in far greater detail than discrete wavelet transform (DWT) 

(Özgönenel et al., 2005).  

The continuous wavelet transform is defined by the following equation (Lee and 

White, 2000): 

�����, �� � < ������,�∗ ���=��
>� � 1√� < �����∗ �� ` �� � =��

>�  (31) 

The transformed signal is a function of two variables, a and b, the translation and 

scale parameters, respectively, ψ(t) is the transforming function localized both in 

time and frequency, called the mother wavelet, a template for generating the other 

window functions. The function ��,���� is obtained by applying the operation of 

shifting in the time domain (b-translation) and scaling in the frequency domain (a-

translation) to copies of the mother wavelet. 
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Scale b is the position parameter in wavelet transform and it determines the 

position of the wavelet function on time axes. Scale a is the scale parameter in 

wavelet transform and it determines how much the wavelet function is stretched 

or compressed. There is an inverse relationship between scale a and frequency of 

the signal. The higher scales correspond to the most "stretched" wavelets that can 

detect slowly changing features or low frequencies. The lower scales correspond 

to compressed wavelets that can detect finer features with higher frequencies. It 

should be noted that there is no precise relationship and mapping between the 

scale and the frequency. They generally can be related by defining a pseudo-

frequency, ��, corresponding to scale a. The center frequency, F�, of the wavelet 

can be used to calculate the corresponding frequency of  scale a: 

F� � F��T (32) 

where � is scale, T is the sampling period, F� is the center frequency of the 

wavelet function in Hz and F� is the pseudo-frequency corresponding to the scale 

a, in Hz. 

Any signal processing performed on a computer must be performed on a discrete 

signal and CWT in computer is actually a discrete process. However, unlike the 

discrete wavelet transform, the CWT is not limited in the set of scales and 

positions at which it operates and it can operate at every scale. The continuous 

nature of the wavelet function is kept up to the point of sampling the scale-

translation grid used to represent the wavelet transform. The CWT is also shifted 

smoothly over the full domain of the analyzed function and it can be considered 

continuous in terms of shifting. It is much easier to interpret the result obtained 

from CWT and to draw conclusion from the data. 

Various wavelets are available for wavelet applications and wavelets that have a 

good time-frequency localization property are more desirable to use for fault 

detection (Zhao et al., 2004). In this work, different analyzing wavelets, are 
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examined (Haar, Mexican hat, Daubechies and complex Morlet) and among them 

Morlet wavelet shows better performance in detecting fault.  

The Morlet wavelet has large similarity with the impulse generated by strut faults; 

and so it is applicable to extract features of the fault out of the signal (Lin and Qu, 

2000).  

The definition of complex Morlet wavelet function is: 

������� � 1�*��  $/¡¢£� >�¤ ¢¥⁄
 (33) 

First both real and imaginary part of the Morlet wavelet is considered and the 

result shows that real part is sufficient to extract the features from pressure data 

set. Therefore, in this study, the real-part of the complex Morlet wavelet is used: 

���� � � ¦√2* ∙  >¨¤©¤ $⁄ � ∙ ��2�ª«�� (34) 

The square of the modulus of the CWT can be interpreted as an energy-density 

distribution over the (a,b) time-scale plane.  

The energy of a signal on this plane is mainly concentrated around the so-scaled 

ridges of the wavelet transform. The contribution of signal energy in the specific 

scale a, and the translation b, is defined by a two-dimensional wavelet energy-

density function E(a,b) called a scalogram: 

¬��, �� � t�����, ��t$ (35) 

Wavelet transform coefficients can enhance measured data from system and 

create indicators which are useful for detection of faults by making the fault more 

apparent in the time-frequency energy distribution (scalogram). To have an 

operational fault detection system, a classifier is needed to automate the 
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classification based on features extracted by the wavelet. In this study, PCA is 

used for classification of these features. 

PCA is a multivariate analysis technique that is used for dimension reduction. It 

projects a high-dimensional space onto a space that has significantly fewer 

dimensions and it simplifies the feature selection by reducing the feature space 

dimension (Chiang et al., 2001). PCA can be defined as a linear transformation of 

the original correlated data into a new set of uncorrelated data. In this way, PCA 

is a good technique to transform the set of original wavelet coefficients into a new 

set of uncorrelated coefficients that explain the trend of the measured data. A 

scalogram obtained from a wavelet has a large space of scales; and PCA can 

project and reduce this space onto a smaller space. The indicators obtained from 

scalogram can be stored in a matrix which entry (i,j) of this matrix is the value of 

the scalogram for scale �0 computed at time	�/. The scalogram is examined as a 

function of the scales and only those scales that show more sensitivity are retained 

to form the reduced subspace.  

Consider ®¯�c@ to be the matrix of scalogram after normalizing it to have zero 

mean and unit variance, where each row corresponds to a time instant and each 

column is associated to one of the selected scales. PCA transforms   by 

combining the variables as a linear weighted sum as: 

° � ± (36) 

where V is the principal component loadings matrix, and T is the principal 

component score matrix which contains the principal components of the system. 

The principal component loadings denote the  direction  of  the  hyperplane  that  

captures  the  maximum  possible  residual  variance  in  the measured  variables,  

while  maintaining orthonormality  with  the  other  loading  vectors. 

V  can be obtained by constructing the covariance matrix of X and applying 

singular value decomposition: 
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² � 1³ ` 1J (37) 

² � ±´±J (38) 

where the diagonal matrix Λ®¯@c@  contains the non-negative real eigenvalues 

of decreasing magnitude �¶# · ¶$ · ⋯ · ¶@ · 0�. ±ϵ¯ºcº is a unitary matrix, 

and the columns of matrix ±  are the eigenvectors of ²  (also called loading 

vectors). The eigenvectors define the  hyperplane  that  captures  the  maximum  

possible variance  in  the X and the  eigenvalues  indicate  the variance captured 

by the corresponding eigenvector. 

The transformation matrix r®¯@c� is generated choosing the first a eigenvectors 

or a first columns of 	± corresponding to the first a principal eigenvalues. The 

purpose of P is to reduce the dimension space of the measured variables. The a 

largest singular values are typically retained to capture the variations of the data 

optimally while minimizing the effect of random noise. The projections of the 

observations in X into the lower-dimensional space are contained in the score 

matrix °s  (Chiang et al., 2001): 

°s � r (39) 

The projection of °s  back into the �–dimensional observation space is s 
s � °srJ (40) 

where the difference between  and s is the residual matrix ¬: 

¬ �  ` s (41) 

The PCA model partitions the measurement space into two orthogonal subspaces s and ¬ which are called the score space and residual space, respectively. The 
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score space represents data variations according to the principal component model 

and the residual space represents data variation not captured by the model. 

Having established a PCA model based on the scalogram of healthy strut pressure, 

Hotelling’s °$  statistic and square prediction error (SPE) or »  statistic can be 

used to do the monitoring. The T$	and » statistics, along with their appropriate 

thresholds, are able to detect different types of faults, and they can be used 

together to utilize their abilities (García-Álvarez, 2009). The T$	and » statistics 

are common PCA metrics that indicate how well a particular sample fits a specific 

PCA model (Wise and Gallagher, 1996). The » statistic refers to the sum of the 

squared residuals. Figure 5.1 shows that the » statistic is the distance that a data 

point is outside the subspace of the PCA model. The T$	 statistic, on the other 

hand, is the distance from the origin of the PCA model to the data point, within 

the subspace of the PCA model. 

 

Figure 5.1: The ¼½	and ¾ statistics representation for a data point with respect to PCA 
model 

Hotelling’s T$ statistic can be calculated as the sum of squares of a new process 

data vector �i  characterized by the normal operation: 
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°$ � �iJrΛ�>#rJ�i (42) 

where Λ� is a square matrix formed by the first a rows and columns of Λ. 

The system can be monitored at each sampling time by comparing the Hotelling’s °$ statistic obtained for each data with a predefined threshold. This threshold can 

be computed as follows: 

°$ 5 °∝$ � �³$ ` 1��³�³ ` �� �À��, ³ ` �� (43) 

where �∝��, ³ ` �� is the upper 100% critical point of the F-distribution with a 

and n-a degrees of freedom. The °$  statistic with Equation (43) defines the 

normal process behavior, and an observation vector outside this region indicates a 

fault in the system. A °$ statistic can be interpreted as measuring the systematic 

variations of the process and violation of the °$ statistic indicates that variations 

are out-of-control. The °$ statistic is based on the first a principal components, 

therefore it is sensitive to inaccuracies in the PCA space corresponding to the 

smaller singular values.  

The portion of the observation space corresponding to the � ` � smallest singular 

values can be monitored more robustly by using the » statistic. The » statistic is 

calculated as the sum of squares of the residuals; and it can detect new events and 

random variations of the system. The scalar value » is associated with the noise in 

the system and it shows fitness of the sample to the PCA model: 

» �  J  (44) 

  � �Á ` rrJ�� (45) 

where e is the residual vector. Another threshold »�  for »  can be defined as 

follows: 
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»� � "#��d�Â�2"$"# 	 1 	 "$�d��d ` 1�"#$ � CÃÄ (46) 

with 

"/ � . Å0$/@
0;�F# 																												�d � 1 ` 2"#"Æ3"$$  (47) 

where �Â  is the value of the normal deviate corresponding to the �1 ` � 
percentile. Given a level of significance,  , violation of the »  statistics from 

threshold »�  indicates that the characteristic of the measurement noise has 

changed and or an unusual event has occurred. Every time an unusual event 

happens, it changes the covariance structure of the model and therefore the 

residual passes the threshold. 

 

5.1.2  Half Car Simulation for Verification of the FDI Method 

To study the performance of the FDI method for the strut application in a 

controlled situation with different road and strut conditions, an analytical half-car 

dynamic suspension system is considered. This analytical model allows normal 

and faulty strut behaviour to be modeled; and their response to the same road 

pattern (system input) can be analyzed to classify normal and faulty struts. This 

model of strut can be utilized in application of IMM-based FDI method to 

analytical strut model as well. A general half-car model is used in this analysis as 

shown in Figure 5.2.  
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Figure 5.2: One-half-car model (Modified from Stribrsky et al., 2003) 

The vehicle suspension model consists of a single sprung mass (car body) 

connected to two masses representing the front and rear wheel assembly masses at 

each end. The sprung mass is free to heave and pitch, which comprises four states: 

vertical displacement, vertical velocity, pitch angular displacement, and pitch 

angular velocity. The other masses are free to bounce vertically with respect to the 

sprung mass. The suspension elements between the sprung mass and wheel/axle 

masses are initially modeled as nonlinear viscous dampers and linear spring 

elements, while the tires are modeled as simple linear springs without damping 

components. This model is used to simulate the response of the suspension system 

of a vehicle when driven over a rough terrain.  

The equations of motion for the car body and the front and rear wheels are 

(Stribrsky et al., 2003):   

�ÈÉ� 	 ��#�ÈÊ�# ` ÈÊË#�|ÈÊ�# ` ÈÊË#| 	 ��$�ÈÊ�$ ` ÈÊË$�|ÈÊ�$ ` ÈÊË$|	 ��#�È�# ` ÈË#� 	 ��$�È�$ ` ÈË$� � 0 
(48) 
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ÁªÉ 	 �#���#�ÈÊ�# ` ÈÊË#�|ÈÊ�# ` ÈÊË#| 	 ��#�È�# ` ÈË#��` �$���$�ÈÊ�$ ` ÈÊË$�|ÈÊ�$ ` ÈÊË$| 	 ��$�È�$ ` ÈË$�� � 0 

(49) 

�Ë#ÈÉË# ` ��#�ÈÊ�# ` ÈÊË#�|ÈÊ�# ` ÈÊË#| ` ��#�È�# ` ÈË#�	 �Ë#�ÈË# ` È�#� � 0 

(50) 

�Ë$ÈÉË$ ` ��$�ÈÊ�$ ` ÈÊË$�|ÈÊ�$ ` ÈÊË$| ` ��$�È�$ ` ÈË$�	 �Ë$�ÈË$ ` È�$� � 0 

(51) 

Table 5.1 summarizes the parameters used to simulate the vehicle in a half-car 

model (Gao et al., 2007). 

  Table 5.1: Parameters of the half car model (Gao et al., 2007) 

Parameters Values Parameters Values � 1749 kg ��# 66824 N/m Á 3443 kg.m
2 ��$ 18615 N/m �Ë# 87 kg ��# 7190 N.s/m �Ë$ 140 kg ��$ 7000 N.s/m �# 1.271 m �Ë# 101115 N/m �$ 1.716 m �Ë$ 101115 N/m 

 

The relative displacement È�# ` ÈË#  and velocity ÈÊ�# ` ÈÊË#  of each tire with 

respect to vehicle chassis, respectively, can be calculated by solving the above 

system in the first-order form.  
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Figure 5.3: Schematic of a hydraulic damper strut 

A schematic of a strut assembly is illustrated in Figure 5.3, which consists of a 

piston that moves up and down in fluid-filled cylinder. The piston is fastened via 

the piston rod to the chassis of the vehicle and the cylinder is connected to the 

wheel. The cylinder is divided in two parts by the piston.  The interior volume 

above the piston is the rebound chamber, and the volume below the piston is the 

compression chamber. A chamber is surrounding the cylinder namely reserve 

chamber and it is partially filled with shock absorber fluid (liquid) and partially 

filled with a gas. During the compression stroke, fluid from the compression 

chamber is forced up through the piston orifices and valves into the rebound 

chamber. Fluid equivalent to rod volume being inserted into the rebound chamber 

is also forced down through the orifices at the bottom of the cylinder into the 

reserve chamber. During a rebound stroke, fluid returns back to compression 

chamber. 

Here, for simplification of the model, fluid in the strut is considered to be 

incompressible because the change in the density of oil in the strut due to pressure 

change in strut is negligible and also considering the pressure inside the strut, it is 

assumed that there is no change in the volume of cylinder due to change in fluid 
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pressure. Also, all the notches and control valves in the strut are modeled as a 

simple orifice.  

Orifice equations are used to model flow. To satisfy continuity requirements, net 

flow from the compression chamber must be equal to the equivalent fluid 

displacement due to piston movement. It can be shown in the following equation 

(Harvey et al., 1977): 

Ì« � Ì$# 	 Ì$Æ � �ÍÎ 	 Í��ÈÊ (52) 

where Ì$# is flow from compression chamber into rebound chamber, Ì$Æ is flow 

from compression chamber into reserve chamber, and AÐ, and AÑ are the area of 

the piston in the rebound side and the area of the piston rod, respectively. ÈÊ is 

relative velocity of tire with respect to chassis i.e., (ÈÊ�# ` ÈÊË#). The net flow rate 

to or from rebound chamber is equal to the equivalent flow rate due to the piston 

movement minus volume of the rod inserting into or withdrawing from cylinder. 

This is equal to flow through the orifices: 

Ì$# � ÍÎÈÊ � `³}z#�#�2 |6$#| Ò⁄ sgn�6$#� (53) 

Similarly, the oil flow through the cylinder orifice Ì$Æ can be expressed as 

Ì$Æ � Í�ÈÊ � `}z$�$�2 |6$Æ| Ò⁄ sgn�6$Æ� (54) 

From Equations (53) and (54), the pressure difference across the compression 

chamber and rebound chamber and also pressure difference across compression 

chamber and reservoir are thus expressed as: 
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6$# � ` Ò2³$}z#$ �ÍÎ�#�
$ |ÈÊ|ÈÊ (55) 

6$Æ � ` Ò2}z$$ �Í��$�
$ |ÈÊ|ÈÊ (56) 

Assuming that the gas in the reservoir is an ideal gas that undergoes a reversible, 

adiabatic process, then the instantaneous pressure of the gas column in the 

reservoir 6Æis given by: 

6Æ � 6d��d �Æ⁄ �Ó (57) 

where 6d , �d  are the initial pressure and volume of the gas in the reservoir 

(assumed to be constant for given mass). The instantaneous volume of the gas 

column �Æ is related to the relative motion across the hydraulic damper: 

�Æ � �d 	 Í�È (58) 

This formulation assumes nonlinear constitutive relationships between damper 

pressures and vertical velocity of tire with respect to vehicle chassis. From initial 

values of  6d  and �d , Equations (55) to (58) can be solved to find 6$#and 6$ , 

pressure difference across compression chamber and rebound chamber and 

pressure in the compression chamber, respectively. 

Table 5.2 shows the parameters in the damper equations that are being used in this 

study (Dixon, 2007; Harvey et al., 1977). 
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Table 5.2: Parameters of the hydraulic damper 

Parameters Values Parameters Values 

 860   0.7 

 0.1   

    
   334  

   1.4 

 

Utilizing the defined half car model and constitutive relationship for strut, a 

propagation simulation will yield pressure in the strut by using known road 

condition data as an input.  

The three most likely faults in a strut are: 

1. Under-pressure strut; which occurs because of leakage of fluid from the 

strut, and can decrease the damping effect of strut and its efficiency; 

2. Leaking through the clearance between the piston and cylinder inside the 

strut; 

3. Broken control valve in the strut. There are control valves or blow-off 

valves inside the strut. They have a pre-loaded valve spring and will not open 

until a specified differential has built up across the valve. These valves may be 

stuck or their spring may not work properly. Thus, flow through the valves will 

change and as a result damping effect of strut may change. 

To study the performance of FDI method, the most likely faults in strut need to be 

simulated separately in the lumped-parameter suspension model. Under-pressure 

strut is modeled by considering the initial pressure of the strut less than the 

required amount. Leakage from piston into cylinder can be analyzed by 

considering it as flow between parallel plates when one plate moves in its own 

plane and adding this term into the equation that shows flow from compression 

ρ 3/ mkg 1dC

2dC pA 23101.2 m−
×

rA 23102 m−
× 1a 25104 m

−
×

2a 25104 m−
× 0p kPa

0v
33102.1 m−

× γ
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chamber into the rebound chamber. In the strut model that we have developed for 

simplification, control valves on piston are modeled by two simple orifices. In 

healthy model of strut two orifices are considered on the piston. To simply model 

third fault or more precisely broken control valve in the strut, just one orifice is 

considered on the piston to simulate that one of the control valves is stuck. 

Road profile is the main source of excitation in simulation of the vehicle dynamic 

and an accurate road model is very important. Each road profile is different from 

others and even for analyzing different parts of the same road they can be 

considered to be a sample of a random population (Morello et al., 2011). A road 

profile can fit the category of stationary Gaussian random noise and a pseudo-

random input can approximate fairly well a real road profile (Dodds and Robson, 

1973; Rill, 2012). So, in this study irregularities of a road are described by a zero-

mean Gaussian random noise produced by MATALB. It can model usual 

irregularities of different shapes in the road but it cannot model the sharp 

variations of the road profile such as potholes. Furthermore, Off-road haul trucks 

are usually driven on rough, unpaved roads and road profile for this specific 

application might be different and irregularities might have different pattern and 

there might be some sharp variations in the road profile that should be modeled 

differently. This needs more investigation on the road profile of the mining 

benches; but for sake of simplicity in this part for data-driven FDI method 

Gaussian irregularities are considered, even though system inputs may in fact be 

non-Gaussian in some operating conditions. To study the effect of different faults 

in the strut on the spectral representation of vertical motion of the vehicle body 

and on the strut pressure, four different vehicle models (one healthy and three 

different faulty models) are simulate to go over a road which is modeled as a zero-

mean Gaussian random noise with a constant speed in MATLAB. The first 

scenario is a reference case when strut is operating in its normal condition and it 

has no fault. Three other scenarios were examined, representing three fault cases. 

Solving the differential equations in MATLAB using an ODE solver with fixed 

time step yields the response of the system over a period of time: displacement 
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and rotation of chassis, displacement of wheels, and pressure in the dampers. In 

this study pressure in the damper (the pressure difference between the 

compression chamber and rebound chamber) is of particular interest. 

Wavelet analysis is applied to the damper pressure data obtained from simulation 

to extract time-frequency features and to assess whether fault detection and 

identification can be done using this technique, for different kind of faults. 

Sometimes it is easier to compare wavelet transforms of two different signals by 

calculating the total signal energy distribution at a specific scale a for each signal. 

Total signal energy distribution at a specific scale can be calculated by adding 

together all signal energy in different translations at that scale, as follows: 

¬��� � < ¬��, ��=�F�
>�  (59) 

Figures 5.4 and 5.5 show energy diagram results of pressure in the strut, obtained 

by application of the wavelet transform to four different normal and faulty 

scenarios to determine the dominant frequency. Figure 5.4 is the total signal 

energy distribution for different scenarios to different pseudo-random road 

profiles. Figure 5.5 is the total signal energy distribution for different scenarios to 

the same pseudo-random road profile. By comparing these figures, generally it is 

shown that the increase in energy is a result of fault one and two in the system. 

Moreover, changes of the peak frequency can be seen in faults one and three. 

These results indicate that this approach can be applied to detect a faulty 

suspension strut from normal suspension behaviour. 
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Figure 5.4: Simulated signal energy distribution of pressure signal p2 at a specific scale 
 for different road profiles 

 

Figure 5.5: Simulated signal energy distribution of pressure signal p2 at a specific scale 
 for the same road profile 

a

a
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For the industrial case, there is a potential issue with sampling rate. The sampling 

rate in the data logger installed on a haul truck is very slow, only 1 Hz. To study 

the effect of down-sampling on the performance of the CWT fault detection 

method, the pressure signal from the simulation of the half-car model was down-

sampled by a factor of six. CWT is then applied to this down-sampled data. The 

result is represented in Figure 5.6. Although down-sampling changed the peak 

frequency of the signals, different faults still have different energy of the signals 

or the peak frequencies. 

 

 

Figure 5.6: Simulated signal energy distribution of down-sampled data pressure signal p2 
at a specific scale  for different road profile 

 

5.1.3  Application of the FDI Method on Actual Truck Data 

To investigate effectiveness and performance of the proposed FDI method in an 

industrial application, the method is applied to six-month operating strut pressure 

time-series data of a haul truck recorded at 1 Hz sampling rate. This six-month 

dataset contains normal and faulty strut pressure data, as well as a maintenance 

a
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history of when struts were fixed in this period. The analysis is based on the 

assumption that strut failure artifacts could be found from a process data set and 

the maintenance history, using continuous wavelet transform. 

By knowing time and date that struts were fixed, two sets of healthy and one set 

of faulty pressure data can be separated from the overall set of data for the six-

month period. One of the healthy data set is used to train the PCA model and two 

other data sets are used to test it. 

First, CWT is applied to training healthy strut pressure data and resulted 

scalogram is shown in Figure 5.7. The energy distribution obtained from applying 

CWT to healthy pressure data is used to train the PCA model. Number of 

principal components as well as upper control limits for °$ and » statistics can be 

obtained from this healthy pressure data set. 
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Figure 5.7: Scalogram for training healthy strut pressure data set 

 

Once the PCA model is formed, the next task is to test performance and reliability 

of this model by applying this to a set of faulty pressure data set as well as healthy 

pressure data set. Therefore, after training the PCA model by healthy training 

pressure data as mentioned above another set of healthy data and a set of faulty 

data are separated from the rest of pressure dataset. CWT is applied to these 

datasets and energy distribution for each time and frequency are obtained. The 

resulting scalograms of these datasets are shown in Figures 5.8 and 5.9.  

-4 

(kPa) 
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Figure 5.8: Scalogram for test healthy strut pressure data set 

 

 

Figure 5.9: Scalogram for faulty strut pressure data set 

-4 

-4 
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CWT processing yields two matrices, which are then scaled using the mean and 

standard deviation of the training data. The PCA model obtained from training 

data set is used to evaluate the °$and » statistics for the test set of healthy and 

faulty data. If either of the °$ or » statistics test exceeds the upper limit, then this 

measurement is considered to be an alarm for a binary classification of no-fault 

vs. fault. If there is some consecutive established number of alarms, according to 

some criterion to reject excursions due to noise for a single datum, then an 

uncommon event has occurred. The result of the °$ and » statistics for healthy 

and faulty data set and corresponding threshold for each test are represented in 

Figure 5.10 and 5.11,  respectively. In Figure 5.10, monitoring results for healthy 

data are shown. It can be seen from the figures that the value of 	°$  and » 

statistics tests exceeds the thresholds for some sample numbers; but tests were 

passed and the thresholds are set to be greater than value of 	°$ and » statistics 

for most of the test. In Figure 5.11, a faulty strut is monitored using PCA. In this 

case, both the °$and » statistics are greater than the predefined threshold, from 

which the FDI method determines that there is a fault in the strut. 
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Figure 5.10: PCA result for healthy strut pressure data set 

 

 

Figure 5.11: PCA result for faulty strut pressure data set 
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Although vibration-based condition monitoring methods are well developed, the 

linear nature of the eigenvalue decomposition is likely sensitive to changes in the 

system inputs (different road patterns at different times). Data-driven method used 

in this study is a good and simple solution to problem of fault detection in strut, 

but as it is observable from Figure 5.10 there are considerable number of false 

alarms in the results. The nonlinear nature of the process and also non-Gaussian 

noises in the system leads to poor results in applied data-driven FDI approach. 

Also, as mentioned above, the sampling rate in the data logger installed on haul 

truck is very slow, only 1 Hz, and this low sampling rate might be lower than the 

Nyquist frequency of the system and can cause aliasing in the signal lead to losing 

some information in the measured signal and inaccurate fault detection. Road 

roughness in paved road can be roughly modeled as white noise with Gaussian 

distribution. However, Variations of nonstationary effects such as root mean 

square of the road profile are bigger in unpaved mine benches and also transient 

changes are more probable compared to a paved road. Therefore, it is not realistic 

to consider road profile in mining benches as a signal with Gaussian distribution. 

For this reason, it is more general to model road pattern in mine benches as a 

system input with non-Gaussian distribution. This non-Gaussian input and 

environmental noise sources and also nonlinearities in the system can lead to non-

Gaussian process and measurement noises (Yin and Zhang, 2012). Therefore, 

there is a need for more complicated method to tackle these complexities in the 

system. On the other hand, data-driven method is not able to accomplish both 

fault detection and identification and a fault diagnosing scheme needs to be 

applied to attain this task. The proposed model-based method in section 4.1 can 

handle these deficiencies in applied data-driven method and it can be applied on 

nonlinear systems with non-Gaussian noises and also it has the advantage of being 

able to perform both fault detection and fault diagnosis. In the coming sections of 

this thesis a hybrid model-based FDI method is applied primarily on a bench mark 

problem to show its performance in a more controlled situation  and then on a 

suspension strut as the main focus in this research. 
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5.2 Application of IMM-Based FDI Method in a Two Tank 

Hydraulic System as a Benchmark Problem 

The proposed FDI scheme has been implemented on a two-tank system to verify 

its performance on a common benchmark. The motivation for this case study was 

to determine the relative advantages of applying particle filter in IMM structure 

for fault detection of nonlinear systems with non-Gaussian noise compare to 

application of Kalman filter. Due to nonlinear behavior of a two-tank hydraulic 

system, it can be used as a good example to show the utility of nonlinear fault 

detection and isolation (FDI) techniques and it has been widely used as a 

benchmark study in many contributions (Khan et al., 2010). This benchmark 

problem is a hydraulic system and it can give some insight into modeling and 

fault detection of the suspension strut problem which can be considered as a 

hydraulic system as well. 

The system under consideration comprises of two identical cylindrical tanks with 

a cross section ². The schematic diagram of the considered system is shown in 

Figure 5.12. The tanks are coupled by a connecting cylindrical pipe with a cross 

section ²� and an outflow coefficient E#$. The nominal outflow is located at tank 

2; it also has a circular cross section ²� and an outflow coefficient E$d. 

Using the mass balance equations, the system can be described by the following 

equations: 

² =m#���=� � o#��� ` o#$��� (60) 

² =m$���=� � o#$��� ` o$d��� (61) 
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Figure 5.12: Two-tank system 

Where m# represents level in tank 1, m$ represents level in tank 2, o#	represents the 

inflow rate to tank 1, o#$ represents the flow-rate from tank 1 to tank 2, and o$d 

represents the outflow rate from tank 2. These unmeasured flow rates can be 

determined using the Torricelli-rule as 

o#$��� � E#$²�sgn�m#��� ` m$���� c �2Ô|m#��� ` m$���| (62) 

o$d��� � E$d²��2Ôm$��� (63) 

 

The system model is described by two nonlinear first-order differential equations 

as: 

=m#���=� � o#���² ` E#$²�sgn�m#��� ` m$���� c �2Ô|m#��� ` m$���|²  
(64) 

=m$���=� � E#$²�sgn�m#��� ` m$���� c �2Ô|m#��� ` m$���|² ` E$d²��2Ôm$���²  
(65) 
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The numerical values of the plant parameters are listed in Table 5.3. 

Table 5.3: Parameters of the two-tank system (Theilliol et al., 2002) 

Variable Symbol Value 

Tank cross sectional area ² 1.54 c 10>$m$ 

Inter tank cross sectional 

area 
²� 5 c 10>Öm$ 

Outflow coefficient 
E#$ E$d 

0.46 

0.6 

Maximum flow rate o# 1 c 10>×mÆs># 

 

Two different faults are considered in this system. These faults are as follows: 

• Leak in tank 1: The leak is assumed to be circular in shape and with 

Outflow coefficient E#$. So, the leakage rate is E#$²��2Ôm#��� 
• Leak in tank 2: Analogously to the case of leakage in tank 1, the leakage 

rate is E$d²��2Ôm$��� 
To apply IMM-based fault detection method on this case study three models are 

needed: one model to simulate healthy mode and two more models to simulate 

faulty modes of the systems. Leak in tank 1 is modeled by adding another term to 

Equation (64) that models the leakage from tank 1. Models for two-tank system 

with leakage in tank 1 are presented as follows: 

=m#���=�
� o#���² ` E#$²�sgn�m#��� ` m$�����2Ô|m#��� ` m$���|² ` E#$²��2Ôm#���²  

(66) 
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=m$���=� � E#$²�sgn�m#��� ` m$���� c �2Ô|m#��� ` m$���|² ` E$d²��2Ôm$���²  
(67) 

 

Similarly, leakage in tank 2 can be modeled by adding a term to Equation (65) 

that models the leakage from tank 2. The system model for this fault is as follows:  

=m#���=� � o#���² ` E#$²�sgn�m#��� ` m$�����2Ô|m#��� ` m$���|²  
(68) 

=m$���=�
� E#$²�sgn�m#��� ` m$�����2Ô|m#��� ` m$���|² ` E$d²��2Ôm$���²

` E$d²��2Ôm$���²  

(69) 

The goal of this work is to detect whether or not the system is faulty (fault 

detection) and, when it is faulty, to indicate the location of the fault (fault 

isolation). To perform this task, it is assumed that only the measurements of the 

water levels (m# and m$), which are influenced by leakages are available. These 

measurements are generated by simulating the behaviour of the system in 

MATLAB for 3000s for three different conditions, one healthy operating 

condition and two faulty, in the following situations: 

• The system is not faulty. The system is non-faulty from t=0 s to t=1000 s; 

• The system is faulty because of leakage in tank 1. From t=1000 s to 

t=2000 s, there is a leakage in tank 1; 

• The system is faulty because of leakage in tank 2. From t=1000 s to 

t=3000s , there is a leakage in tank 2; 

For the first part of this study the noise in the system is assumed to have Gaussian 

distribution. Therefore, a zero-mean normal distribution measurement noise  with 
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standard deviation equal to 0.02 is added to both m# and m$, respectively.  The three 

models of the system are simulated in MATLAB using an ODE solver with fixed 

time step to get real system behavior in healthy and faulty conditions. The time 

step is considered to be 1s and the system is simulated for 3000 time steps from 

the initial conditions m# � 1�  and m$ � 0 . Simulation is started with healthy 

system and from t=1000s first fault (leak in tank 1) is introduced to the system 

and then at t=2000s the type of fault is changed from fault one to fault two (leak 

in tank 2). The input flow is assumed to be o# � 1 c 10>×mÆs>#  in this 

simulation. The two tank system is generally a very slow system with the Nyquist 

frequency (f) around 0.1 Hz. Therefore, the sampling rate  f_s is considered to be 

1 Hz by knowing the Nyquist frequency in the system and using f_s=(10~20)f to 

calculate the desired sampling rate. The two-tank system itself acts as a low pass 

filter for the process noise; however, for the measurement noise the selected 

sampling rate may perform as a low pass filter that filters out high-frequency 

components of measurement noise and causes some nonlinear artifacts in the 

measurement noise. 

As mentioned before different kind of filters (linear Kalman filter (KF), Extended 

Kalman filter (EKF), Unscented Kalman filter (UKF) and Particle filter (PF)) can 

be used to approximate the posterior state distribution in IMM-FDI method. In 

addition to PF-based FDI method described in Section 4.1, KF, EKF, and UKF –

based FDI have also been considered for both comparison and performance 

evaluation for the proposed particle-filtering-based technique. Given the 

analytical model of two-tank system, the four filters are designed. The two-tank 

analytical model is being linearized around its operating point to design Kalman 

filter and Extended Kalman filter but for unscented kalman filter and particle filter 

the nonlinear model is being utilized. Level data obtained from simulation of 

analytical model and input flow used in simulation are being applied to estimate 

the water level in the tanks by IMM estimators in MATLAB.  
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Levels simulated by the analytical model in MATLAB and levels estimated by 

IMM-PF model are plotted together in Figure 5.13 and 5.14 to demonstrate the 

tracking performance of the designed multiple particle filter model. 

 

Figure 5.13: Level of tank 1 from analytical two-tank model and particle filter (Gaussian 

noise) 
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Figure 5.14: Level of tank 2 from analytical two-tank model and particle filter (Gaussian 

noise) 

 

 As mentioned before in section 3.1 the likelihood function can be obtained from 

estimated system output by IMM filter and calculating the measurement 

innovation. The likelihood function can be used for determining the probability of 

each mode of the system. Each of the applied different filter structure should be 

designed for three different system modes to estimate system output for each of 

these modes. IMM-FDI method uses innovation and covariance of innovation 

calculated for each mode to evaluate probability of each mode in every sampling 

time. After calculating different modes probability, system mode with highest 

probability is selected as mode which is in effect in the system at that sampling 

time. The results are shown in Figures 5.15 to 5.18 for different kind of filters. 

The red vertical lines indicate two different operating conditions of the system 

and the time of system changes from one mode to another mode. Mode 1, 2, and 3  

represent healthy system, leak in tank 1, and leak in tank 2, respectively, in these 

figures.  
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Figure 5.15: Mode is in effect in each sampling time with Kalman filter as estimator 

(Gaussian noise) 
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Figure 5.16: Mode is in effect in each sampling time with EKF as estimator (Gaussian 

noise) 
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Figure 5.17: Mode is in effect in each sampling time with UKF as estimator (Gaussian 

noise) 
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Figure 5.18: Mode is in effect in each sampling time with particle filter as estimator 

(Gaussian noise) 

 

To simplify the comparison between different filters, the result of the 

classification for each filter is presented in Tables 5.4 to 5.7 by demonstrating 

confusion matrix for each of them. A simple way to define the classification 

accuracy of a fault diagnosis method is to calculate the confusion matrix, which 

summarizes the classification performance of a classifier with respect to some test 

data. Confusion matrix is a square array of numbers set out in rows and columns 

where each column of the matrix represents the instances in a predicted mode, 

while each row represents the instances in an actual mode. Diagonals represent 

correct classification according to reference data and off-diagonals represent 

misclassification. 
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Table 5.4: Confusion matrix for KF 

  Predicted Mode 

  
Healthy Fault 

1 

Fault 

2 

A
ct

ua
l M

od
e 

Healthy 716 169 115 

Fault 1 5 975 20 

Fault 2 37 250 713 

 

Table 5.5: Confusion matrix for EKF 

 Predicted Mode 

 
Healthy Fault 

1 

Fault 

2 

Healthy 886 8 106 

Fault 1 18 948 34 

Fault 2 0 9 991 

 

  

Table 5.6: Confusion matrix for UKF 

  Predicted Mode 

  
Healthy Fault 

1 

Fault 

2 

A
ct

ua
l M

od
e 

Healthy 940 0 60 

Fault 1 23 997 0 

Fault 2 2 32 966 

 

Table 5.7: Confusion matrix for PF 

 Predicted Mode 

 
Healthy Fault 

1 

Fault 

2 

Healthy 958 40 2 

Fault 1 17 983 0 

Fault 2 12 27 961 

 

 

The confusion matrix can be used for calculating different classification indices. 

The simplest index that can be calculated from confusion matrix is overall 
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classification accuracy. The classification accuracy depends on the number of 

samples correctly classified and is calculated as following: 

classification	accuracy � the	number	of	sample	cases	correctly	classified	the	total	number	of	sample	cases  

where the number of sample cases correctly classified can be calculated by adding 

up all the diagonal elements in confusion matrix, and the total number of sample 

cases can be calculated by adding up all elements in confusion matrix. Table 5.8 

shows the classification accuracy and error rate for each of the different filters. 

Table 5.8: Classification accuracy (Gaussian noise) 

 KF EKF UKF PF 

Classification 

accuracy 
0.801 0.942 0.968 0.967 

 

The results of simulation experiment for system with Gaussian noise show that 

EKF, UKF and PF demonstrate relatively good results in detecting and identifying 

the fault in the system. To demonstrate the advantage of particle filter-based 

IMM-FDI method over other type of filters (KF, EKF, UKF) for system with non-

Gaussian noise, the same analysis on two-tank system is performed but with non-

Gaussian noise. Noise with bimodal distribution is added to both m#  and m$  as 

measurement noise.  The utilized bimodal measurement noise is a mixture of two 

Gaussian noise which their means are 0.05 and -0.05 and their standard deviation 

is 0.02 and with bimodal ratio of 1.5. In this case, the analytical model is 

simulated with MATLAB and IMM-FDI scheme is tested with all four filters that 

are used before with Gaussian noise. Similarly, the probability of each mode is 

evaluated and system mode with highest probability is selected. The results of 

each applied filter are shown in Figures 5.19 to 5.22. Moreover, the classification 

result for each filter is presented as confusion matrix in Tables 5.9 to 5.12. 
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Figure 5.19: Mode is in effect in each sampling time with KF as estimator (non-Gaussian 
noise) 
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Figure 5.20: Mode is in effect in each sampling time with EKF as estimator (non-
Gaussian noise) 
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Figure 5.21: Mode is in effect in each sampling time with UKF as estimator (non-
Gaussian noise) 
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Figure 5.22: Mode is in effect in each sampling time with particle filter as estimator 
(non-Gaussian noise) 
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Table 5.9: Confusion matrix for KF 

  Predicted Mode 

  
Healthy Fault 

1 

Fault 

2 

A
ct

ua
l M

od
e 

Healthy 710 163 127 

Fault 1 100 769 131 

Fault 2 149 275 576 

 

Table 5.10: Confusion matrix for EKF 

 Predicted Mode 

 
Healthy Fault 

1 

Fault 

2 

Healthy 942 0 58 

Fault 1 109 976 0 

Fault 2 157 10 833 

 

  

  

Table 5.11: Confusion matrix for UKF 

  Predicted Mode 

  
Healthy Fault 

1 

Fault 

2 

A
ct

ua
l M

od
e 

Healthy 891 47 62 

Fault 1 70 831 99 

Fault 2 12 16 972 

 

Table 5.12: Confusion matrix for PF 

 Predicted Mode 

 
Healthy Fault 

1 

Fault 

2 

Healthy 969 8 23 

Fault 1 24 973 3 

Fault 2 71 50 879 

 

 

The classification accuracy is then calculated for each filter and presented in 

Table 5.13. 
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Table 5.13: Classification accuracy (non-Gaussian Noise) 

 

 KF EKF UKF PF 

Classification 

accuracy 
0.685 0.871 0.898 0.940 

The results of simulation experiment and investigating the confusion matrix and 

accuracy rate for different filters demonstrate that particle filter performs better 

compared to other filters.  Particle filter exhibits promising performance in 

detecting different faults. Also the rate of missed faults and false alarms are quite 

low in this method. This performance is very noticeable in terms of the 

classification accuracy which PF achieves higher accuracy compared to KF based 

techniques. This difference in classification accuracy is mainly caused by the fact 

that the KF-based methods perform poorly for systems with non-Gaussian noises, 

whereas the PF is able to handle non-Gaussian noises in the system. 

 

5.3 Implementation on An Analytical Dynamic Suspension 

Model 

Since the result shows that PF demonstrates better performance compared to UKF 

and EKF, the IMM-PF FDI method is implemented for strut suspension condition 

monitoring in this section.  

An automotive damper is inherently non-linear due to the fluid orifice damping 

mechanism (Panananda et.al., 2012), although a linear viscous damping model is 

commonly used to represent an automotive fluid damper in the literature since this 

is an adequate model for their purpose (e.g. frequency analysis). However, as 

stated before for IMM-based FDI an accurate model of the system is very 

important and better model can lead to better performance in fault detection and 
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diagnosis. Therefore, a nonlinear analytical half-car dynamic suspension model is 

used to simulate the strut suspension system and to test IMM-based FDI method. 

In this study the nonlinearity in suspension damper is modelled with a nonlinear 

square damping term.  The half car dynamic system is elaborated in detail in 

section 5.1 and its schematic is shown in Figure 5.2. The road roughness is the 

input to the model and wheels displacement is the output of the system.   

Equations 48 to 51 represent the equations of motion for the car body and the 

front and rear wheels. The constraints are given by 

È�# � È� ` �#ª (70) 

È�$ � È� ` �$ª (71) 

After putting È�#, È�$ from equations (70) and (71) into equation (48),(49), 

(50),(51)  the half car model equations are being simplified as follow: 

�ÈÉ� 	 ��#�ÈÊ� ` �#ªÊ ` ÈÊË#�|ÈÊ� ` �#ªÊ ` ÈÊË#|	 ��$�ÈÊ� ` �$ªÊ ` ÈÊË$�|ÈÊ� ` �$ªÊ ` ÈÊË$| 	 ��#�È� ` �#ª ` ÈË#�	 ��$�È� ` �$ª ` ÈË$� � 0 
(72) 

ÁªÉ 	 �#���#�ÈÊ� ` �#ªÊ ` ÈÊË#�|ÈÊ� ` �#ªÊ ` ÈÊË#| 	 ��#�È� ` �#ª ` ÈË#��` �$���$�ÈÊ� ` �$ªÊ ` ÈÊË$�|ÈÊ� ` �$ªÊ ` ÈÊË$| 	 ��$�È� ` �$ª ` ÈË$��� 0 

(73) 

�Ë#ÈÉË# ` ��#�ÈÊ� ` �#ªÊ ` ÈÊË#�|ÈÊ� ` �#ªÊ ` ÈÊË#|` ��#�È� ` �#ª ` ÈË#� 	 �Ë#�ÈË# ` È�#� � 0 

(74) 

�Ë$ÈÉË$ ` ��$�ÈÊ� ` �$ªÊ ` ÈÊË$�|ÈÊ� ` �$ªÊ ` ÈÊË$|` ��$�È� ` �$ª ` ÈË$� 	 �Ë$�ÈË$ ` È�$� � 0 

(75) 
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To build the IMM model, the half car model (equations (72) to (75)) needs to be 

converted into the first order differential equation form. For doing this the 

following variables substitution is considered. These can be considered as states 

of the system.  


# � È�  


$ � ÈÊ�  


Æ � ª  


× � ªÊ   


Ö � ÈË#  


Ú � ÈÊË#  


Û � ÈË$  


Ü � ÈÊË$  

And finally the suspension system equations become: 


Ê# � 
$ (76) 


Ê$ � 

���#�
# 	 �#
Æ ` 
Ö� 	 ��$�
# ` �$
Æ ` 
Û�	 ��#�
$ 	 �#
× ` 
Ú�|
$ 	 �#
× ` 
Ú|	 ��$�
$ ` �$
× ` 
Ü�|
$ ` �$
× ` 
Ü|�/`� � 0 

(77) 


ÊÆ � 
× (78) 


Ê× (79) 
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� ��#��#�
# 	 �#
Æ ` 
Ö� ` �$��$�
# ` �$
Æ ` 
Û�	 �#��#�
$ 	 �#
× ` 
Ú�|
$ 	 �#
× ` 
Ú|` �$��$�
$ ` �$
× ` 
Ü�|
$ ` �$
× ` 
Ü|�/`Á 

ÊÖ � 
Ú (80) 


ÊÚ � ���#�
# 	 �#
Æ ` 
Ö� 	 �Ë#�`
Ö 	 È�#�	 ��#�
$ 	 �#
× ` 
Ú�|
$ 	 �#
× ` 
Ú|�/�Ë# 

(81) 


ÊÛ � 
Ü (82) 


ÊÜ � ���$�
# ` �$
Æ ` 
Û� 	 �Ë$�`
Û 	 È�$�	 ��$�
$ ` �$
× ` 
Ü�|
$ ` �$
× ` 
Ü|�/�Ë$ 

(83) 

It is assumed that 
Ö and 
Û, displacement of front and rear wheels, respectively, 

are measureable in the system. And the output equation is as follow: 

�È# È$� � Þ00 00 00 00 10 00 01 00ß
àáá
ááá
áâ
#
$
Æ
×
Ö
Ú
Û
Üãä
äää
ääå
 

(84) 

To generate a component fault in the course of a simulation, one way is to build a 

new model, whose components are already faulty. Therefore, to apply IMM-FDI 

scheme, the half car model suspension system should be modeled separately for 

each of its working conditions e.i. healthy and faulty working conditions. These 

models are used to generate the wheel’s displacement signals and different faults 

in strut. 
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Two faults are considered in this study.   

1. Internal leakage through the piston seal in strut which causes increase in 

the damping effect of the strut and it is modelled by bigger damping 

coefficient 

2. Broken control valve in strut which causes decrease in damping effect of 

the strut and it is modelled by smaller damping coefficient 

Thus, three main operating conditions are distinguished: the normal condition 

reflects the fact that the strut is healthy, meanwhile the two faulty conditions that 

indicate two faults explained above. Therefore simulation is taken in three 

situations of the damper condition with three different damping coefficients to 

model healthy system and two above mentioned faults. That is to say, three 

different situations are studied when the vehicle runs on with healthy strut, strut 

with internal leakage and strut with broken control valve. To generate 

measurement data associated with displacement of front and rear wheels, the half-

car dynamic suspension model is simulated in MATLAB subjected to road 

excitation with nominal parameter values presented in table 5.1 (Gao et al., 2007). 

Simulation test lasts for 72 seconds during which internal leakage fault is 

introduced into the healthy system at the 24th second and broken control valve 

fault is introduced to the system at 48th second. The vehicle velocity is assumed 

to be 10 km/h. Three bumps of height 2cm are considered on the road in this 

simulation which each of these bumps are exciting the suspension system in 

different operating condition.  

It is also assumed that only wheel’s displacement is measurable and the 

measurement is contaminated  by a noise with bimodal distribution. The utilized 

bimodal measurement noise is a mixture of two Gaussian noises which their 

means are 0. 0003 and -0. 0003 and their standard deviation is 0. 0001 and with 

bimodal ratio of 1.5. Figures 5.23 and 5.24 show the displacement of the front and 

rear wheels, respectively. As shown in Figures 5.23 and 5.24, it is observable that 

fault one causes smaller excitation because of bump in the car body and it is 
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dampen away faster whoever fault two results bigger displacement due to bump 

with more oscillation than  normal.  

 

Figure 5.23: Front wheel displacement 
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Figure 5.24: Rear wheel displacement 

Given that noise in the system is assumed to have bimodal distribution, particle 

filter is applied as estimator in IMM approach for this study. Figure 5.25 shows 

the results obtained when the proposed FDI approach is applied to simulation data 

from strut model in different operating conditions. It indicates the mode of the 

system with biggest probability at each sampling time. The red vertical lines 

discriminate between two different operating conditions of the system and they 

show the time that system switches from one mode to another mode. In these 

figures mode 1, 2, and 3  represent healthy system, internal leakage, and broken 

control valve, respectively. 
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Figure 5.25: Mode is in effect in each sampling time 

 

Table 5.14: Confusion matrix 

  Predicted Mode 

  Healthy Fault 1 Fault 2 

A
ct

ua
l M

od
e 

Healthy 278 11 14 

Fault 1 13 265 25 

Fault 2 12 49 242 
 

The performance of this FDI method as confusion matrix is shown in Table 5.14 

and the classification accuracy is calculated to be 0.863.  

F
au

lt
 1

 is
 in

tr
od

uc
ed

 

F
au

lt
 2

 is
 in

tr
od

uc
ed

 



92 

 

As it is obvious in Figure 5.25, there are some misclassification during the 

classification process of the system. To reduce the misclassification rate of the 

FDI method, the mode calculated by IMM filter is feed through a 4 points moving 

average filter. The results of classification are shown in Figure 5.26. 

 

Figure 5.26: Mode is in effect in each sampling time after applying moving average filter 
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Also, the classification performance is illustrated in Table 5.15. The classification 

accuracy after applying the moving average filter is increased to 0.883.  

Table 5.15: Confusion matrix after applying moving average filter 

  Predicted Mode 

  Healthy Fault 1 Fault 2 
A

ct
ua

l M
od

e Healthy 279 16 8 

Fault 1 14 265 24 

Fault 2 4 40 259 
 

 

As shown in Figure 5.26, the moving average filter improves the classification 

accuracy but still there are some misclassification observable in this figure. One 

way to avoid these misclassification is to define appropriate threshold and if the 

probability for a specific faulty mode exceeds the threshold for a number of times 

the alarm indicator would be activated. 

To study the effect of noise strength in performance of FDI method the model is 

simulated with the same type of noise but different intensity. In this part the 

means are 0.0006 and -0.0006 and the standard deviation is 0.00025 and with 

bimodal ratio of 1.5. The same structure of IMM model with the same number of 

particles in particle filter is implemented. The results are shown in Table 5.16 and 

classification accuracy for this analysis is 0.625. It can be concluded that the 

IMM-PF method shows poor classification results for system with bigger noise 

intensity. One way to overcome this problem is to increase the number of particles 

which causes longer computational time. So there is always a compensation 

between the performance of FDI method and available computational power. 
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Table 5.16: Confusion matrix for system with bigger noise intensity 

  Predicted Mode 

  Healthy Fault 1 Fault 2 

A
ct

ua
l M

od
e Healthy 217 40 46 

Fault 1 44 191 68 

Fault 2 28 115 160 
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions 

In this research fault detection method for nonlinear systems is studied. Condition 

monitoring of mining haul truck suspension strut was the focus of study in this 

research. Initially, data-driven fault detection method is applied for FDI of strut 

by utilizing strut pressure as observable variable. Combination of continuous 

wavelet transform and PCA is used to handle the task of fault detection for strut. 

By application of the wavelet transform, it was possible to extract some features 

in fault categories to determine specific boundaries for each group of faults, and 

to classify the probable faults in the system according to the corresponding 

boundary. PCA is used for ranking the feature extracted by CWT. The nonlinear 

nature of the process and also non-Gaussian noises in the system leads to poor 

results in applied data-driven FDI approach. Also, the applied data-driven method 

was not able to do fault identification and fault diagnosing. Therefore, a hybrid 

model-based FDI method is applied on suspension strut to have more reliable FDI 

method . An interacting multiple model fault detection approach for fault 

detection and diagnosis is applied on hydraulic two-tank system as benchmark 

problem with different filters, e.g.  KF, EKF, UKF, PF. These different filters are 

used to construct IMM structure and  to compare their performance with nonlinear 

stochastic system in IMM structure. The results show that PF performs better  in 

fault detection and diagnosis of nonlinear stochastic systems and it can tackle 

nonlinearities and non-Gaussian noises in the system. Lastly, the IMM-based FDI 

method is applied on an analytical half car model to investigate its  performance 

on the suspension strut. Two different faults are considered in this study for half 

car model and it is being simulated for three different situations (healthy and two 

faulty situation). The results are reported as confusion matrix and classification 



96 

 

accuracy. These results show that IMM-PF demonstrate promising results in fault 

detection and diagnosis of suspension strut. The results can be improved by 

applying a predefined threshold for probability of occurrence of each specific 

fault in the system and compare the calculated probability for each fault with 

corresponding  threshold. This can help to reduce the rate of misclassification and 

false alarms. 

 

6.2 Future Work 

For further study the half car model system and corresponding parameters can 

change in a way to simulate the real mining truck as close as possible. Another 

limitation in the modeling process is the road pattern that might not completely 

simulate the road profile in the mine. In the future study a displacement sensor 

can be installed on one haul truck in the fleet to log the road profile to provide 

better understanding of the irregularities and bumps in the mine haul roads. Road 

roughness (i.e. input to the system) is not measurable in the actual strut problem. 

Systems that some or all of the inputs to the system are completely unknown are 

called systems with unknown inputs. Regular estimators or filters cannot be used 

for state estimation of these systems, and special structure of them called 

unknown input observer should be used (Darouach, et al. 1994). One subject to 

study in the future would be adapting an unknown input observer to IMM-FDI 

structure. Another future work includes application of other kind of particle filters 

such as Rao-Blackwellized particle filter to improve the performance of IMM FDI 

method. Finally, another subject to study in the future would be application of the 

proposed method to a nonlinear system with variable transition matrix. 

 

 

  



97 

 

References 

Alrowaie, F., Gopaluni, R. B., Kwok, K. E. (2012). Fault detection and isolation 
in stochastic non-linear state-space models using particle filters. Control 
Engineering Practice, 20(10), 1016-1032. 

Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T. (2002). A tutorial on 
particle filters for online nonlinear/non-Gaussian Bayesian tracking, Signal 
Processing. IEEE Transactions on, 50 (2), 174-188. 

Banerjee, A., Arkun, Y., Ogunnaike, B., Pearson, R. (1997). Estimation of 
nonlinear systems using linear multiple models. AIChE Journal, 43(7), 1204-
1226. 

Bar-Shalom, Y., Fortmann, T. (1988). Tracking and data association. 
Mathematics in Science and Engineering, 179. Academic Press. 

Beard, R. V. (1971). Failure accommodation in linear systems through self-
organization. Man Vehicle Laboratory, MIT, Cambridge. 

Bhagwat, A., Srinivasan, R., Krishnaswamy, P. R. (2003a). Fault detection during 
process transitions: A model-based approach. Chemical Engineering 
Science, 58(2), 309-325.  

Bhagwat, A., Srinivasan, R., Krishnaswamy, P. R. (2003b). Multi-linear model-
based fault detection during process transitions. Chemical Engineering 
Science, 58(9), 1649-1670.  

 Bongers, D. R., Gurgenci, H. (2008). Fault detection and identification for 
Longwall machinery using SCADA data. Complex system maintenance, Springer 
Series in Reliability Engineering, Part F, 611-641. 

Börner, M., Straky, H., Weispfenning, T., Isermann, R. (2000). Model based fault 
detection of vehicle suspension and hydraulic brake systems.1st IFAC Conference 
on Mechatronic systems, Darmstadt, Germany. 

Bruno, M. G. S. (2013). Sequential monte carlo methods for nonlinear discrete-
time filtering. Synthesis lectures on signal processing, 11(1), 1-99. 

Chiang, L., Russell, E., Braatz, R. (2001). Fault detection and diagnosis in 
industrial systems. Springer, Nueva York. 

Chen, J., Patton, R. J. (1999). Robust model-based fault diagnosis for dynamic 
systems. Kluwer Academic Publishers, Norwell, Mass. 



98 

 

Chen, M. Z., Zhou, D. H., Liu, G. P. (2005). A new particle predictor for fault 
prediction of nonlinear time-varying systems. Developments in Chemical 
Engineering and Mineral Processing, 13(3-4), 379-388. 

Chow, E., Willsky, A. (1984). Analytical redundancy and the design of robust 
failure detection systems. IEEE Trans, on Automatic Control, 29(7), 603- 614. 

Cui, N., Hong, L., Layne, J. R. (2005). A comparison of nonlinear filtering 
approaches with an application to ground target tracking, Signal Processing, 85 
(8), 1469-1492. 

Dalle Molle, D. T., Himmelblau, D. M. (1987). Fault detection in a single-stage 
evaporator via parameter estimation using the Kalman filter. Industrial & 
Engineering Chemistry Research, 26, 2482–2489. 

Darouach, M., Zasadzinski, M., Xu, S. J. (1994). Full-order observers for linear 
systems with unknown inputs. IEEE Transactions on Automatic Control, 39(3), 
606-609. 

Ding, S. X. (2007). Model based fault diagnosis technique. Springer Verlag, 
Berlin. 

Dixon, J. C. (2007). The shock absorber handbook. John Wiley & Sons, Ltd, 
Chichester, UK. 

Dodds, C. J., Robson, J. D. (1973). The description of road rurface roughness. J. 
of Sound and Vibration, 31(2), 175-183. 

Donders, S. (2004). Fault detection and identification for wind turbine systems: A 
closed-loop analysis. Master’s Thesis, University of Twente. 

Dong, D., McAvoy, T. J. (1996). Batch tracking via nonlinear principal 
component analysis. AIChE J., 42(8), 2199-2208. 

Doucet, A., De Freitas, N., Gordon, N. (2001). Sequential Monte Carlo Methods 
in Practice. Springer-Verlag, New-York. 

Dunia, R., Qin, S. J., Edgar, T. F., McAvoy, T. J. (1996). Identification of faulty 
sensors using principal component analysis. AIChE J., 42(10), 2797-2812. 

Efe, M., Atherton, D. P. (1997). The IMM approach to the fault detection 
problem. Conference Proceedings SYSID ’97, 2, 625–630. 

Fathi, Z., Ramirez, W. F., Korbicz, J. (1993). Analytical and knowledge-based 
redundancy for fault diagnosis in process plants. AIChE J., 39(1), 42–56. 

Fekih, A., Xu, H., Chowdhury, F. N. (2007). Neural networks based system 
identification techniques for model based fault detection of nonlinear 



99 

 

systems. International Journal of Innovative Computing, Information and 
Control, 3(5), 1073-1085.  

Fisher, D., Kaus, E., Isermann, R. (2003). Fault detection for an active vehicle 
suspension. Proceeding of the American Control Conference, Denver, Colorado. 

Frank, P. M. (1987). Fault diagnosis in dynamic systems via state estimation – A 
survey. In Tzafestas, S. G. et al.  (Eds), System Fault Diagnostics, Reliability and 
Related Knowledge-Based Approaches, 1, 35-98.   

Freeman, P., Pandita, R., Srivastava, N., Balas, G. J. (2013). Model-based and 
data-driven fault detection performance for a small UAV. IEEE/ASME 
Transactions on Mechatronics. 

Gadsden, S. A., Habibi, S. R. (2011). Model-based fault detection of a battery 
system in a hybrid electric vehicle. Paper presented at the 2011 IEEE Vehicle 
Power and Propulsion Conference, VPPC 2011. 

Galan, O., Romagnoli, J. A., Palazoglu, A. (2000). Robust H infinity control of 
nonlinear plants based on multi-linear models: An application to a bench-scale pH 
neutralization reactor. Chemical Engineering Science, 55, 4435–4450. 

Gao, W., Zhang, N., Du, H. P. (2007). A half-car model for dynamic analysis of 
vehicles with random parameters. 5th Australasian Congress on Applied 
Mechanics, ACAM, Brisbane, Australia. 

García-Álvarez, D. (2009). Fault detection using Principal Component Analysis 
(PCA) in a Wastewater Treatment Plant (WWTP). 62th International Students 
Scientific Conference. 

Gelb, A. (1974). Applied optimal estimation. Cambridge, MA: MIT Press. 

Gertler, J. (1998). Fault detection and diagnosis in engineering systems. Marcel 
Dekker Inc. 

Gertler, J. J., Costin, M., Fang, X., Hira, R., Kowalczuk, Z., Luo, Q. (1993). 
Model-based on-board fault detection and diagnosis for automotive 
engines. Control Engineering Practice, 1(1), 3-17.  

Goda, K., Goodall, R. M. (2004). Fault detection and isolation system to a railway 
vehicle bogie, vehicle system dynamics. Supplement 41, 468-476. 

Goffaux, G., Wouwer, A. (2005). Bioprocess state estimation: Some classical and 
less classical approaches. Control and observer design for nonlinear finite and 
infinite dimensional systems, Lecture Notes in Control and Information Sciences, 
322, 111-128. 



100 

 

Goodall, R. (2006). Advanced control and monitoring for railway suspensions. 
KRRI Seminar, London. 

Hajizadeh, M., Lipsett, M. G. (2013). Anomaly detection in mining haul truck 
suspension struts. International Journal of Condition Monitoring (accepted with 
minor revision and revised revision is submitted).  

Handschin, J. E., Mayne, D. Q. (1969). Monte Carlo techniques to estimate the 
conditional expectation in multi-stage non-linear filtering. International Journal of 
Control, 9, 547–559. 

Harvey L. H. (1977). A study of the characteristics of automotive hydraulic 
dampers at high stroking frequencies. Ph.D. Thesis, Department of Mechanical 
Engineering, University of Michigan, USA. 

Hayashi, Y., Tsunashima, H., Marumo, Y. (2006). Fault detection of railway 
vehicles using multiple model approach. SICE-ICASE, International Joint 
Conference, 2812-2817. 

Hengy, D., Frank, P.M. (1986). Component failure detection via nonlinear state 
observers. IFAC Workshop, Kyoto (Japan). 

Hongxing, W., Zengpu, X., Congling, Z., Lin, Y. (2008). Method for extraction 
wavelet packets' coefficients in loudspeaker fault detection based on PCA. Paper 
presented at the Proceedings-2008 Pacific-Asia Workshop on Computational 
Intelligence and Industrial Application, PACIIA, 1, 864-868. 

Himmelspaeh, T. (1992). A model based sensor fault detection and isolation 
approach for smooth deterministic nonlinear dynamic systems with application. 
Ph.D. Thesis, University of Michigan., USA. 

Hoskins, J. C., Kaliyur K. M., Himmelblau, D. M. (1991). Fault diagnosis in 
complex chemical plants using artificial neural networks. AIChE J., 37(1), 137—
141. 

Isermann, R. (1984). Process fault detection based on modeling and estimation 
methods. Automatica, 20(4), 387-404. 

Isermann, R. (1994). Fault diagnosis via parameter estimation and knowledge 
processing. Automatica, 29(4), 815-835. 

Isermann, R. (2006). Fault diagnosis systems: An introduction from fault 
detection to fault tolerance. Springer Verlag, Berlin Heidelberg. 

Isermann, R., Balle, P. (1997 ). Trends in the application of model-based fault 
diagnosis of technical processes. Contr. Eng. Practice, 5,  707–719. 



101 

 

Isermann, R, Börner, M., Fischer, D. (2002). Mechatronic semi-active vehicle 
suspension. 1st International Symposium on Mechatronics, Chemnitz, Germany. 

Johansen, T. A., Foss, B. A. (1999). Multiple model approaches to modeling and 
control. International Journal of Control, 72(7,8), 575. 

Jones, H. L.  (1973). Failure detection in linear systems. MIT, Cambridge.. 

Kadirkamanathan, V., Li, P., Kirubarajan, T. (2001). Sequential monte carlo 
filtering vs. the IMM estimator for fault detection and isolation in nonlinear 
systems. Paper presented at the Proceedings of SPIE-the International Society for 
Optical Engineering, 4389. 263-274.  

Kadirkamanathan, V., Li, P., Jaward, M. H., Fabri, S. G. (2002). Particle filtering-
based fault detection in non-linear stochastic systems. International Journal of 
Systems Science, 33(4), 259-265.  

Khan, A. Q., Ding, S. X., Chihaia, C. I., Abid, M., Chen, W. (2010).  Robust fault 
detection in nonlinear systems: A three-tank benchmark application. Conference 
on Control and Fault Tolerant Systems Nice, France. 

Kim, S., Choi, J., Kim, Y., (2008). Fault detection and diagnosis of aircraft 
actuators using fuzzy-tuning IMM filter. IEEE Transactions on Aerospace and 
Electronic Systems, 44(3), 940-952. 

Kinnaert, M., Vrancic, D., Denolin, E., Juricic, D., Petrovcic, J. (2000). Model-
based fault detection and isolation for a gas-liquid separation unit. Control 
Engineering Practice, 8(11), 1273-1283. 

Krishnaswami, V., Luh, G.C., Rizzoni, G. (1995). Non-linear parity equation 
based residual generation for diagnosis of automotive engine faults. Contr. Eng. 
Practice., 3(10), 1385–1392. 

Li, P, Goodall, R. M. (2004). Model-based condition monitoring for railway 
vehicle system. Procedings of the UKACC International Conference on Control, 
University of Bath, UK. 

Li, P., Goodall, R., Weston, P., Ling, C.S., Goodman, C., Roberts, C. (2007). 
Estimation of railway vehicle suspension parameters for condition monitoring. 
Control Engineering Practice, 15(1), 43-55. 

Li, P., Kadirkamanathan, V. (2001). Particle filtering based likelihood ratio 
approach to fault diagnosis in nonlinear stochastic systems. IEEE Transactions on 
Systems, Man and Cybernetics Part C: Applications and Reviews, 31(3), 337-
343.  



102 

 

Li, P., Kadirkamanathan, V. (2004). Fault detection and isolation in non-linear 
stochastic systems - A combined adaptive monte carlo filtering and likelihood 
ratio approach. International Journal of Control, 77(12), 1101-1114.  

Li, R. (1991). Fault detection and diagnosis: Extended Kalman filter and neural 
networks. Ph.D. Thesis, Department of Chemical Engineering, University of 
Delaware, USA. 

Li, R., Olson, J. H. (1991). Fault detection and diagnosis in a closed loop non-
linear distillation process: Application of extended Kalman flters. Industrial & 
Engineering Chemistry Research, 30, 898–908. 

Li, T., Guo, L., Wu, L. (2008). Observer-based optimal fault detection using PDFs 
for time-delay stochastic systems. Nonlinear Anal., 9(5), 2337–2349. 

Li, W., Yue,  H. H., Valle-Cervantes, S., Qin, S. J.(2000). Recursive PCA for 
adaptive process monitoring. J. of Process Contr., 10, 471–486. 

Li, X. R., Bar-Shalom, Y. (1993). Design of an interacting multiple model 
algorithm for air traffic control tracking. IEEE Trans. Contr. Syst. Technol., 1, 
186-194. 

Lin, J., Qu, L. (2000). Feature extraction based on Morlet wavelet and its 
application for mechanical fault diagnosis. Journal of Sound and Vibration, 
234(1), 135-148.  

Lin, J., Zuo, M.J. (2003). Gearbox Fault Diagnosis using Adaptive Wavelet Filter.  
Mechanical Systems and Signal Processing, 17(6), 1259–1269. 

Luo, R., Misra, M. , Qin, S. J., Barton, R., Himmelblau, D. M. (1999). Sensor 
fault detection via multiscale analysis and dynamic PCA. Ind. Eng. Chem. Res., 
37, 1489-1495.  

MacGregor, J. F., Kourti, T. (1995) Statistical process control of multivariate 
processes. Contr. Eng. Practice 3(3), 403–414. 

Magill, D. T. (1965). Optimal adaptive estimation of samples stochastic 
processes. IEEE Trans. on Automat. Contr., (4), 434-439. 

Majjad, R. (1997). Estimation of suspension parameters. IEEE International 
Conference on Control Applications, Hartford, CT. 

Mehra, R. K., Peschon, J.  (1971). An innovations approach to fault detection and 
diagnosis in dynamic systems. Automatica, 7(5), 637–640. 

Mehra, R., Rago, C., Seereeram, S. (1998). Autonomous failure detection, 
identification and fault-tolerant estimation with aerospace applications. Paper 



103 

 

presented at the IEEE Aerospace Applications Conference Proceedings,  2, 133-
138. 

Mei, T. X., Ding, X. J. (2007). A model-less technique for the fault detection of 
rail vehicle suspension. 20th IAVSD Symposium, Berkeley, California, USA. 

Moncada, H. B., Marin, J. A. (2011). Fault detection for a bus suspension model 
using an Utkin observer. Electronics, Robotics and Automotive Mechanics 
Conference (CERMA), IEEE , 246-251. 

Morello, L., Rossini, L. R., Pia, G., Tonoli, A. (2011). Mechanical engineering 
series. The Automotive Body, Volume II: System Design. Springer, Netherlands. 
239-363. 

Ning, L., Zhang, Y., Wen, D. (2010). Industrial process fault detection based on 
wavelet denoising PCA. Paper presented at the 4th International Symposium on 
Computational Intelligence and Industrial Applications, ISCIIA, 134-138. 

Nomikos, P., MacGregor, J. (1994). Monitoring batch processes using multiway 
principal component analysis. AIChE J., 40(8), 1361-1375. 

Orchard, M. E., Vachtsevanos, G. J. (2009). A particle-filtering approach for on-
line fault diagnosis and failure prognosis. Transactions of the Institute of 
Measurement and Control, 31(3-4), 221-246.  

Özgönenel, O., Önbilgin, G., Kocaman, C. (2005). Transformer protection using 
the wavelet transform. Turk J Elec Engin, 13(1). 

Panananda, N., Ferguson, N. S., Waters, T. P. (2012). The effect of cubic 
damping in an automotive vehicle suspension model. International symposium on 
the computational modelling and analysis of vehicle body noise and 
vibration, Brighton, GB. 

Patton, R. J., Chen, J., Lopez-Toribio, C. J. (1998). Fuzzy observers for nonlinear 
dynamic systems fault diagnosis. Proc., 37th IEEE Conf. on Decision and 
Control, 1, 84–89. 

Pertew, A. M., Marquez, H. J., Zhao, Q. (2007). LMI-based sensor fault diagnosis 
for nonlinear Lipschitz systems. Automatica, 43(8), 1464-1469. 

Polycarpou, M. M., Helmicki, A. J. (1995). Automated fault detection and 
accommodation: A learning systems approach. IEEE Trans. Syst. Man Cybern., 
25(11), 1447-1458. 

Qin, S. J. (1998). Recursive PLS algorithms for adaptive data modeling. 
Computers and Chem. Eng., 22, 503-514. 



104 

 

Qin, S., Li, W. (1999). Detection, identification, and reconstruction of faulty 
sensors with maximized sensitivity. AICHE J., 45(9), 1963-1976. 

Qin, S. J., McAvoy, T. J. (1992). Nonlinear PLS modeling using neural networks. 
Computers and Chem. Eng., 16(4), 379-391. 

Raghappriya, M., Kanthalakshmi, S., Manikandan, V. (2012). Diagnosis of faults 
using IMM estimator. ARPN Journal of Engineering and Applied Sciences, 7(6), 
780-786.  

Raich, A., Cinar, A. (1996). Statistical process monitoring and disturbance 
diagnosis in multivariable continuous processes. AICHE J. 42(4), 995-1009. 

Rigatos, G. G. (2009). Fault detection and isolation based on fuzzy 
automata. Information Sciences, 179(12), 1893-1902.  

Rill, G. (2012). Road vehicle dynamics: Fundamentals and modeling. CRC Press, 
Taylor and Francis group. London. 

Ristic, B., Arulampalam, S., Gordon N. (2004). Beyond the Kalman filter: Particle 
filters for tracking applications. Artech House, Boston. 

Ru, J., Li, X. R. (2008). Variable-structure multiple-model approach to fault 
detection, identification, and sstimation. IEEE transaction on control systems 
technology, 16(5), 1029-1038. 

Samy, I., Gu, D. W. (2011). Fault detection and flight data measurement: 
Demonstrated on unmanned air vehicles using neural networks. Springer, New 
York..  

Seliger, R., Frank, P. M. (1991). Robust component fault detection and isolation 
in nonlinear dynamic systems using nonlinear unknown input observers. 
Proceedings of the IFACIIMACS Symposyium on Fault Detection, Supervision 
and Safety for Technical Processes- SAFEPROCESS 91, Baden-Baden, Germany, 
313-318. 

Silva, L., Delarmelina, D., Junco, S., M’Sirdi, N.K., Noura, H. (2007). Bond 
graph based fault diagnosis of 4W-vehicles suspension systems I: Passive 
suspensions, society for computer simulation. Journal of Simulation Series, 39(1), 
217-224. 

Sobhani-Tehrani, E. (2008). Fault detection, isolation, and identification for 
nonlinear system using a hybrid approach. Ph.D. Thesis, Concordia University, 
Canada. 

Sobhani-Tehrani, E., Khorasani, K. (2009). Fault diagnosis of nonlinear systems 
using a hybrid approach. Springer, New York. 



105 

 

Souibgui, F., BenHmida, F., Chaari, A. (2011). Particle filter approach to fault 
detection and isolation in nonlinear systems. Paper presented at the International 
Multi-Conference on Systems, Signals and Devices, SSD'11 - Summary 
Proceedings. 

Stribrsky, A., Hyniova, K., Honcu, J., Kruczek, A. (2003). Using fuzzy logic to 
control active suspension system of one-half-car model. Department of Control 
Engineering, Acta Montanistica Slovaca journal, 8(4). 

Sun, D., Hoo, K. A. (1999). Dynamic transition control structure for a class of 
SISO nonlinear systems. IEEE Transactions on Control Systems Technology, 
7(7), 622–629. 

Theilliol, D., Noura, H. and Ponsart, J. C. (2002). Fault diagnosis and 
accommodation of a three-tank-system based on analytical redundancy. ISA 
Transactions, 41(3), 365–382. 

Thumati, B. T., Jagannathan, S. (2010). A model-based fault-detection and 
prediction scheme for nonlinear multivariable discrete-time systems with 
asymptotic stability guarantees. IEEE Transactions on Neural Networks, 21(3), 
404-423.  

Tudoroiu, N., Khorasani, K. (2007). Satellite fault diagnosis using a bank of 
interacting kalman filters. IEEE Transactions on Aerospace and Electronic 
Systems, 43(4), 1334-1350.  

Tudoroiu, N., Sobhani-Tehrani, E., Khorasani, K. (2006). Interactive bank of 
unscented kalman filters for fault detection and isolation in reaction wheel 
actuators of satellite attitude control system. Paper presented at the IECON 
Proceedings (Industrial Electronics Conference), 264-269. 

Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S. N. (2003a). A 
review of process fault detection and diagnosis part I: Quantitative model-based 
methods. Computers and Chemical Engineering, 27(3), 293-311.  

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N. (2003b). A review of 
process fault detection and diagnosis part II: Qualitative models and search 
strategies. Computers and Chemical Engineering, 27(3), 313-326.  

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., Yin, K. (2003c). A 
review of process fault detection and diagnosis part III: Process history based 
methods. Computers and Chemical Engineering, 27(3), 327-346.  

Wang, X., Syrmos, V. L. (2008). Fault detection, identification and estimation in 
the electro-hydraulic actuator system using EKF-based multiple-model 
estimation. Paper presented at the 2008 Mediterranean Conference on Control and 
Automation-Conference Proceedings, MED'08,  1693-1698.  



106 

 

Wei, X., Lui, H., Qin, Y. (2011). Fault isolation of rail vehicle suspension systems 
by using similarity measure, service operations, logistics, and informatics (SOLI). 
2011 IEEE International Conference, 391-396. 

Wei, X., Jia, L., Liu, H. (2012). Data-driven fault detection of vertical rail vehicle 
suspension systems. UKACC International Conference, 589-594. 

Willsky, A. S. (1976). A Survey of design methods for failure detection in 
dynamic systems. Automatica, 12(6), 601–611. 

Willsky, A. S., Jones, H. L. (1974). A generalized likelihood ratio approach to the 
detection and estimation of jumps in linear systems. IEEE Trans. Automatic 
Control, 21, 108-112. 

Wise, B. M., Gallagher, N. B. (1996). The process chemometrics approach to 
process monitoring and fault detection. J. of Process Contr. 6(6), 329-348. 

Witczak, M. (2007). Modelling and estimation strategies for fault diagnosis of 
non-Linear systems, from analytical to soft computing approaches. Lecture notes 
in control and information sciences. Springer, Berlin.  

Wu, H., Huang, D. (2008). Improved kernel PCA based on wavelet for fault 
detection. Paper presented at the Proceedings - ISECS International Colloquium 
on Computing, Communication, Control, and Management, CCCM, 2, 8-12.  

Xia, S. X., Niu, Q., Zhou, Y., Zhang, L. (2008). Mine-hoist fault-condition 
detection based on the wavelet packet transform and kernel PCA. Journal of 
China University of Mining and Technology, 18(4), 567-570. 

Yang, Q. (2004). Model-based and data driven fault diagnosis with applications to 
process monitoring. Ph.D. Thesis, Department of Electrical Engineering and 
Computer Sciences, Case Western Reserve University, USA. 

Yang, N., Tian, W., Jin, Z. (2006). An interacting multiple model particle filter 
for manoeuvring target location, Measurement Science and Technology, 17 (6), 
1307-1311. 

Yen, G. G., Ho, L. (2003). Online multiple-model-based fault diagnosis and 
accommodation. IEEE Transactions on Industrial Electronics, 50(2), 296-312. 

Yin, L., Zhang, M. (2012) Minimum entropy fault detection for dynamic 
multivariate nonlinear non-Gaussian stochastic systems. Control and Decision 
Conference (CCDC), 24th Chinese, 4041 (4046), 23-25. 

Zajac, M. (2011). Adaptive particle filter for fault detection and isolation of 
mobile robots. Towards Autonomous Robotic Systems, 376-377 



107 

 

Zhang, H., Tangirala, A. K., Shah, S. L. (1999). Dynamic process monitoring 
using multiscale PCA. In “Proc. Of 1999 Canadian Conf. On Electrical and 
Comput. Eng., 1579-1584. 

Zhang, Y., Li, X. R. (1998a). Detection and diagnosis of sensor and actuator 
failures using IMM estimator. IEEE Transaction On Aerospace and Electronic 
Systems, 34(4), 1293-1311. 

Zhao, G., Jiang, D., Jinhui Diao, J. (2004). Application of wavelet time-frequency 
analysis on fault diagnosis for steam turbine. 5th International Conference of 
Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques, 
CETIM, Senlis, France. 

Zhou, J. H., Zhang, D. H., Ooi1, Luo, C. H., Mao, M. S., Wang, D. W. (2010). 
Comparative study of data driven and model based approaches of rotary machines 
fault detection and diagnosis. SIMTech technical reports, 11(4), 195-201 

Zolghadri, A., Henry, D., Monsion, M. (1996). Design of nonlinear observers for 
fault diagnosis: A case study. Control Engineering Practice, 4(11), 1535-1544. 

 


