
Chopping Up Trees to Improve Spatial Locality

in Implicit k-Heaps

Robert Niewiadomski, José Nelson Amaral

{niewiado, amaral, holte}@cs.ualberta.ca
Department of Computing Science, University of Alberta

Edmonton, AB, Canada

Abstract. Research on the performance of implicit k-heaps has shown
that aligning data with cache lines and increasing heap arity are effective
techniques for improving the data reference locality of heap operations.
The technique of tree blocking has long been used to enhance the data
reference locality of tree-based search methods. In this paper we propose
c-clustered tree blocking, a new tree blocking method designed to further
enhance the data reference locality of implicit k-heap operations. We
examine the effect of our method on the performance of a traditional
aligned implicit 2-heap using internal memory benchmarks based on the
Hold model. Our empirical results, reproduced on four contemporary
architectures, show that our method produces speedups of up to 2.0 in
either benchmark, while reducing data cache misses by up to 85% and
TLB misses by up to 65%. For larger heap arities our method matches
the performance of traditional implicit k-heaps while improving page
level locality.

1 Introduction

High memory latency and limited memory bandwidth are the most impor-
tant performance bottlenecks in modern computers. The ever-increasing gap
between processor speed and memory latency is providing stimulus for research
on cache-conscious algorithms. Compiler designers and programmers seek to in-
crease the reuse of data brought into the cache and to hide memory latency
through prefetching. A source of performance improvement that remains largely
untapped in the implementation of many algorithms is the implicit prefetching
that occurs within the memory hierarchy. This implicit prefetch results from the
difference between the size of the data transfer unit between layers of the memory
hierarchy and the size of the data unit referenced by a processor. For instance,
contemporary architectures implement 64-byte or 128-byte cache lines, but pro-
cessors reference individual 32-bit or 64-bit data elements. Therefore when one
data item is referenced, 7 or 15 additional items are brought into the cache. The
current processor design trend is in the direction of implementing even larger
cache lines. Standard data reuse techniques do not benefit from this implicit
prefetching because the additional data that is brought into the cache may not



be referenced in the first place. To tap this resource, we need to improve the
order in which data is referenced.

In this paper we revisit the design of a fundamental data structure: the im-
plicit k-heap. Classic applications of implicit k-heaps include priority queues and
the Heapsort algorithm. Priority queues have numerous applications in domains
such as discrete event simulation, operating system task scheduling, and greedy
algorithms. The Heapsort algorithm facilitates in-place sorting. The efficiency of
the heap implementation can significantly affect the performance of programs
employing either heap based priority queues or the Heapsort algorithm, partic-
ularly in the case of real-time systems.

We present the c-clustered implicit k-heap, as an alternative to the tradi-
tional implicit k-heap. The c-clustered implicit k-heap is based on a new form of
tree blocking, c-clustered tree blocking, designed to improve the data reference
locality of heap operations. The main contributions of this paper include:

– An examiniation of the mismatch between the memory layout of the tradi-
tional implicit k-heap and heap operation node access patterns.

– A description of c-clustered tree blocking and the c-clustered implicit k-heap.
– Experimental evidence that c-clustered implicit k-heaps produce speedups

of as much as 2.0 over traditional implicit k-heaps, in addition to incurring
less cache and TLB misses, in state-of-the-art computer architectures.

In Section 2 we examine heaps and heap operations, with emphasis on tra-
ditional implicit k-heaps. We describe a major shortcoming of the traditional
implicit k-heap in Section 3. The next section is then used to introduce the c-
clustered implicit k-heap. Section 5 contains a study of the performance of the
c-clustered implicit k-heap. Finally, the last two sections are dedicated to related
work and conclusions.

2 Heaps and Heap Operations

A heap is a data structure formed by a rooted tree that adheres to the heap-

property. A rooted tree T adheres to the heap-property if and only if for any
node k ∈ T , such that if p =Parent(k), Key(k) ≥Key(p).1 There are four
fundamental heap operations: Add(T, x) adds node x to T , RemoveMin(T )
removes from T the node with a key that is less-than or equal-to the smallest
key in T , DecreaseyKey(T, x, d) decreases the key of node x by d, where x is
a node in T and d is a positive value, and Remove(T, x) simply removes x from
T .

For instance, Figure 1(a) shows a 7-node heap after a copy of the root is
made and its leaf node, with key 18, is moved to the root. Figure 1(b) shows T
after the first down percolation of 18, and Figure 1(c) shows the tree after the
RemoveMin function has completed.

1 In this paper, the heap property refers to the min-heap property.



18

14 19 21 23

13

6

15

543

1 2

0

15 14

0

18 13 2319 21

1 2 3 4 5 6 7

18

14 19 21 23

13

6

15

543

1 2

0

15 14

0

18 13 2319 21

1 2 3 4 5 6 7

(a) Leaf moved to
root.

13

14 19 21 23

18

6

15

543

1 2

0

15 14

0

13 18 2319 21

1 2 3 4 5 6 7

13

14 19 21 23

18

6

15

543

1 2

0

15 14

0

13 18 2319 21

1 2 3 4 5 6 7

(b) After first swap.

13

18 19 21 23

14

6

15

543

1 2

0

15 18

0

13 14 2319 21

1 2 3 4 5 6 7

13

18 19 21 23

14

6

15

543

1 2

0

15 18

0

13 14 2319 21

1 2 3 4 5 6 7

(c) After down perco-
lation.

Fig. 1. RemoveMin Example

In a k-ary tree each node has at most k children. A spatially efficient storage
for a k-ary tree is a one-dimensional vector V [0, . . . , n − 1]. In an implicit k-ary
tree the indices of the parent, children, and sibling of V [i] are computed based
exclusively on the value of i. In the traditional node indexing scheme for k-ary
trees, the root’s index is 0 and the index of the parent of V [i] is computed by
⌊

(i−1)
k

⌋

. The indexes of the k children of V [i] are ki + 1 to ki + k. When k is

a power of 2, computing the index of the parent of V [i], or of V [i]’s first child,
requires two simple operations: a binary shift and an addition. A traditional im-

plicit k-heap, an implicit k-heap based on the traditional node indexing scheme,
is space efficient and has a computationaly efficient index computation method.

3 A Memory Layout Mismatch

In [6, 7] LaMarca and Ladner investigate the impact of data caches on the perfor-
mance of traditional implicit k-heaps. Their study indicates that efficient cache
utilization is key to improving heap operation performance. They recommend
two techniques for enhacing the data reference locality of heap operations. The
first technique minimizes the number of cache lines spanned by any set of sibling
nodes. The technique assumes k to be a power of 2 and aligns V such that V [0]
maps to the last b bytes of a cache line, where b is the number of bytes required to
store V [0]. This technique improves the spatial locality of data references made
by RemoveMin because the children of V [0] are more likely to fit in one cache
line. Their second technique increases the value of k. The height of a nearly
complete k-ary tree decreases as k increases. A shorter tree results in Add and
RemoveMin performing less percolations. In the case of RemoveMin, however,
a larger k may require RemoveMin to perform more comparisons at each level.
As k increases, RemoveMin degenerates toward a linear search of V . Thus, if k
is too large the benefits of increased fanout may disappear. LaMarca and Lad-



ner produce empirical evidence that their techniques improve the performance
of implicit k-heaps by reducing data cache misses.

The techniques outlined by LaMarca and Ladner work well. Could we fur-
ther improve the cache utilization of an implicit heap? Lets examine the Add

and RemoveMin operations in a traditional implicit 2-heap. Revisiting the ex-
ample of Figure 1, we now examine the node indexing and the implicit vector
representation at the bottom of each figure. We make two observations: (1) The
traditional node indexing scheme arranges nodes in memory in an order based on
a left-to-right breadth-first traversal of the heap, and (2) the node percolations
performed by heap operations exhibit node access patterns that are depth-first
oriented. For instance, Add and DecreaseKey traverse simple paths towards
the root, accessing one node at each visited tree level. RemoveMin traverses a
simple path that originates at the root and advances towards a leaf node. At each
traversed level, RemoveMin accesses one set of siblings. Consider the traversal
of the left-most root-to-leaf path in an aligned traditional implicit k-heap as
performed by the RemoveMin operation. The indices of the first node visited
in each level of the tree are: 0, 1, (k + 1), (k2 + k + 1), (k3 + k2 + k + 1) and
so forth. At each level k nodes are referenced. The distance between two sets of
k nodes referenced in succession grows exponentially with the distance from the
root. As a result, the spatial locality for references between tree levels is poor.
Thus, there is a mismatch between the memory layout of the traditional node
indexing scheme and the node access patterns of heap operations.

4 c-Clustered Implicit k-Heaps

Tree blocking is a form of data clustering where contemporaneously accessed
data items are grouped such that they reside in close proximity of each other
in memory thereby improving data reference locality. The conventional method
of tree blocking partitions the tree into disjoint sub-trees of some limited height
to produce a memory layout where the nodes of each sub-tree are packed into a
contiguous memory region. Tree blocking improves the spatial locality of memory
references made during traversals of root-to-leaf paths and leaf-to-root paths.

A major shortcoming of conventional tree blocking is that sibling nodes can
be the roots of the sub-trees produced by the blocking. Since the nodes of each
sub-tree are grouped in close proximity of each other in memory, sibling nodes
that are sub-tree roots may end-up in distant memory regions. As LaMarca and
Ladner point out, having sibling nodes adjacent to each other in memory can
enhance the data reference locality of the RemoveMin. Our c-clustered node
indexing scheme implements a form of tree blocking that ensures that siblings
reside in close proximity of each other in memory.

Given a blocking factor c, where c ≥ 1, the c-clustered blocking of a k-ary
tree is its decomposition into disjoint sets of sub-trees that share a common
parent node and have a height of at most c − 1.

Let T be a nearly complete k-ary tree with height h, where h is a multiple
of c. Given a blocking factor c, where c ≥ 1, the c-clustered blocking of T is



obtained via a two-step tree decomposition process. The first step partitions T
into h/c+ 1 layers: L0, ..., Lh/c. Layer L0 contains only the root node. Layer Li,
1 ≤ i ≤ h/c, contains nodes at depth d, where d ∈ [c(i − 1) + 1, c× i].

Lemma 1. Given a node a ∈ T , all children of a belong to the same layer Li.

Proof. Follows directly from the definition of a layer because all the children of
a have the same depth.

The second step partitions each layer of T into one or more group. A group
is the set of all nodes in Li that have a common ancestor at depth c(i − 1).
Because a tree node has exactly one ancestor at a given depth, the groups are
disjoint. Since a complete k-ary tree has exactly kc(i−1) nodes at depth c(i− 1),
Li features as many groups. It follows that for 1 ≤ i ≤ h/c, each group in Li is
composed of k sub-trees with a height of c−1. L0 has only one group containing
the root node of T .

Lemma 2. Given nodes x, y ∈ T , if Parent(x) = Parent(y), then x and y belong

to the same group.

Proof. The lemma is trivially true for L0 because L0 has a single node. For
groups in Li, i > 0, the proof follows immediately from the definition of a group,
since a group is formed by the set of all nodes in Li that share a single ancestor
at depth c × (i − 1).

The c-clustered node indexing scheme implements the c-clustered tree block-
ing of T . A c-clustered implicit k-heap is an implicit k-heap based on the c-
clustered node indexing scheme.

Definition 1. Given a c-clustered tree blocking of a k-ary tree, the c-clustered

node indexing scheme sequentially numbers the nodes of each group from left to

right and from top to bottom.

In the c-clustered node indexing scheme the root’s index in V is 0. We com-
pute the indices of the parent and child nodes of V [i] as follows.

B is the the number of nodes in each group:

B =
kc+1 − 1

k − 1
− 1 (1)

The number of the group to which V [i] belongs to is given by:

G(i) =

⌊

i − 1

B

⌋

if i > 0 (2)

The offset of node V [i] in the group G(i) is given by:

Offset(i) = (i − 1) mod B if i > 0 (3)

L is the offset of the leftmost and bottomost node in G(i):

L = B − kc if i > 0 (4)



Fig. 2. A 2-clustered implicit 2-heap.

Definition 2. The nodes in a group are divided into three categories:

i. V [i] is a top node if the parent of V [i] is not in the same group as V [i],
G(i) 6= G(Parent(i));

ii. V [i] is a bottom node if the children of V [i] are not in the same group as

V [i], G(i) 6= G(FirstChild(i));
iii. V [i] is an internal node if both the parent of V [i], and the children of V [i]

are in the same group as V [i], G(i) = G(Parent(i)) = G(FirstChild(i)).

It follows that node V [i] is a top node if and only if Offset(i) < k, a bottom node
if and only if Offset(i) ≥ L, an internal node if and only if k ≤ Offset(i) < L.

If Offset(i) < L then:

ParentOffset(i) = (G(i) − 1) mod kc + L + 1

ChildOffset(i) = (Offset(i) + 1) × k

Parent(i) = ParentGroup(i) × B + ParentOffset(i)

FirstChild(i) = i + ChildOffset(i) − Offset(i)

If Offset(i) ≥ L, then:

ParentOffset(i) = bOffset(i)/kc − 1

ChildOffset(i) = 0

Parent(i) = i − Offset(i) + ParentOffset(i)

FirstChild(i) = ChildGroup(i) × B + 1

When V [i] is a top node, its parent’s group number is:

ParentGroup(i) =

⌊

G(i) − 1

kc

⌋

if Offset(i) < L (5)



Similarily, when V [i] is a bottom node and Offset(i) ≥ L, its child’s group
number is:

ChildGroup(i) = (kc × G(i) + 1) + (L − Offset(i)) (6)

Two boundary cases need to be treated outside of the equations above. If i ≤ k
then Parent(i) = 0. If i = 0, then FirstChild(i) = 1.

Figure 2 shows a 2-clustered implicit 2-heap. The tree is divided vertically
into the three layers defined during the first step of the c-clustered tree blocking
process. Gray trapezoids outline the node groups produced during the second
step. Each trapezoid is annotated with the corresponding group’s group number.
Finally, all nodes are annotated to show the order in which they appear in V .

Theorem 1. Given the ith node in V in a c-clustered implicit k-heap, all chil-

dren of V [i] appear in a contiguous memory region.

Proof: Consecutive positions in a vector are placed in contiguous memory po-
sitions. Thus we have to show that the children of V [i] occupy consecutive posi-
tions in V . If V [i] is a top node or an internal node the theorem is trivially true
because of definition 1. If V [i] is a bottom node, then according to Lemma 2
the children of V [i] must belong to the same group. According to definition 2
all children of V [i] must be top nodes in their own group. Definition 1 specifies
that nodes at the same level within a group must be numbered consecutively.
Therefore the children of V [i] must be placed in consecutive positions of V .

In order to improve memory utilization we require the tree to be groupwise

nearly complete. A tree is groupwise nearly complete if:

i. All group layers, except for the last one, are completely populated with
nodes; and

ii. At the last group layer, all nodes occupy the leftmost groups in the layer.

Maintaining the groupwise nearly complete property is trivial. Although this
property can result in more node percolations, it greatly simplifies node index
computations.

When implementing c-clustered implicit k-heaps, we align the first node of
each group such that it maps to the first byte of a cache line. This alignment is
an adaptation of the LaMarca and Ladner alignment technique to minimize the
number of cache lines spanned by sibling nodes. We pad groups to match the
size of cache lines, which are powers of two, to improve dynamic memory usage.
During percolation we save the results of equations 5 and 6, thereby eliminating
the need to repeatedly compute equation 2. Our implementations perform at
most one multiplication per node percolation step; everything else is computed
via binary-shifts and bit-masks.

The crux of c-clustered implicit k-heaps is that the additional index compu-
tation time is likely to be amortized by the improved memory reference pattern.
However, for small heaps, c-clustered implicit k-heap performance is expected
to be worse than that of the traditional implicit k-heap because: (1) there is not
much latency to hide when the entire heap fits in the higher levels of the memory
hierarchy, and (2) padding can cause the heap to no longer fit into these levels.



5 Experimental Evaluation

We compared the performance of the c-clustered k-heap with that of the tradi-
tional k-heap using a benchmark based on the Hold model. The following is a
summary of our findings:

– When the heap does not fit in cache, the performance of a c-clustered 2-heap
can be twice the performance of a traditional 2-heap. Here, a c-clustered 2-
heap has superior data reference locality at the cache line and page levels.

– For larger values of k, the performance of c-clustered k-heaps is similar to
that of traditional k-heaps. Although c-clustered k-heaps have better page
level locality, it only offsets the index computation overhead.

5.1 Experimental Framework

We implemented a c-clustered implicit k-heap for various values of k and c. We
pad groups with enough nodes so that the first node maps to the begin of a cache
line. Our baseline is an efficient traditional implicit k-heap with LaMarca and
Ladner’s cache line alignment. Heap nodes contain a 32-bit key and a 32-bit data
field. We run these programs, compiled with GCC at -O3, in the four machines
described in Table 1. All machines have a virtual memory page of 4,096 bytes.

Table 1. Summary of our testbed systems (all systems ran a UNIX based OS).

System Processor
L1 Data L2 Data L3 Data L1 TLB L2 TLB Main
Cache Cache Cache Entries Entries Memory

Itanium
Itanium II 16 KB 256 KB 3 MB

32 128 2 GB
1.3 Ghz 64 byte lines 128 byte lines 128 byte lines

Power
Power4+ 32 KB 1,440 KB 128 MB

1,024 none 24 GB
1.7 Ghz 128 byte lines 128 byte lines 512 byte lines

Pentium
Pentium 4 8 KB 512 KB

none 128 none 1 GB
2.3 Ghz 64 byte lines 128 byte lines

Athlon
Athlon XP 64 KB 256 KB

none 32 256 1 GB
1.7 Ghz 64 byte lines 64 byte lines

Our benchmark, Hold, is based on the Hold model as described in [5]. For
a heap with p nodes, where each node has a randomly generated key between
zero and p − 1, Hold performs fetch-and-return cycles. A fetch-and-return cycle
consists of a RemoveMin followed by an Add. As a result, heap size oscillates
between p−1 and p nodes. The key for each Add is the value of the last removed
node’s key plus a random value between zero and p − 1. The hold period refers
to the number of fetch-and-return cycles executed. In our experiments we use a
hold period of 4p.

We measured the wall-clock time. Our random number generator is deter-
ministic, portable, and has low-overhead [10]. Each experiment requires less than



the 1 GB of memory available. Thus, memory traffic is constrained to internal
memory.

5.2 c-Clustered Heaps Outperform Traditional k-Heaps

The first experiment compares the performance of c-clustered 2-heaps to a tra-
ditional 2-heap. The best performace gains are for c = 3, but heaps with c = 2
and c = 4 also outperform traditional 2-heaps.2 Figure 3 presents the speedups
produced by a 3-clustered 2-heap over the traditional 2-heap for increasing val-
ues of m = log2 n, where n is the total number of elements in the heap. When
n is small, c-clustered heaps are slower than traditional binary heaps. However,
for large n the speedup of the c-clustered heap can reach between 1.5 on the
Athlon to 2.0 on the Pentium.

Fig. 3. Speedup k=2, c=3 vs. k=2. Points on the x-axis are annotated with labels
where the value of a label indicates the value of n at that point, where m = log2n.

The crosspoints in which a c-clustered 2-heap starts to outperform a tradi-
tional 2-heap reveals that the heap has to be large enough to exceed the capacity
of intermediate levels of cache, i.e., c-clustered heaps improve performance when
the data has to be stored to and fetched from main memory.

The improvements in Power are smaller because the payoff for a better mem-
ory reference pattern is greater when the penalty of accessing lower levels of the
hierarchy is higher. Power has a 128 MB L3 data cache with a latency of ap-
proximately 100 cycles. This latency is much smaller than the typical latency to
access main memory in the other systems. In the case of the Athlon, the smaller
improvement is likely due to limited bandwidth between the L1 and L2 caches,
i.e., the fill rate of an L1 cache line on a miss is one fourth of the same rate on
the other machines. With this limited fill rate, a c-clustered heap cannot fully
benefit from the implicit prefetching offered by large cache lines.

2 In some instances c = 2 outperforms c = 3 on the Athlon.



5.3 c-Clustering Improves Memory Reference Locality

Figure 4 is a study of the percentage reductions in the total number of L1, L2,
L3, and TLB misses incurred by a 3-clustered 2-heap compared to a traditional
2-heap. Results are presented for the Power and Itanium systems. For clarity
of presentation we only show results for instances where the c-clustered heap
produced miss reductions. As expected, for small values of n, the c-clustered
heap increases the number of misses because a small traditional 2-heap often
generates no cache misses. However, once the heap grows large enough we see
reductions in cache and TLB misses upwards of 85% and 65%, respectively.
These improvements are more than sufficient to offset the 30% to 35% increase
in the number of executed instructions observed in 3-clustered 2-heaps compared
to the traditional 2-heap.

(a) Power. (b) Itanium.

Fig. 4. Percentage reduction in the total number of misses incurred by our 3-clustered
2-heap compared to the traditional 2-heap. In the x-axis, m = log2n.

5.4 k-Heaps with Larger k Are Harder to Beat

Our next experiment compares the performance of c-clustered k-heaps against
traditional k-heaps for larger values of k. Our experimental results indicate that
k = 8 produces the best performance for traditional k-heaps. Figure 5 plots the
speedups produced by these heaps over the traditional 2-heap. Compare these
curves with the speedup curves of Figure 3 to notice that with the exception
of Power, the traditional 8-heap produces better speedups over the traditional
2-heap than the 3-clustered 2-heap. How did c-clustered heaps do with higher
values of k? We found the performance of 2-clustered 8-heaps to be on par with
that of the traditional 8-heap. Hardware event profiles show the 2-clustered 8-
heap incurring between 30% to 40% less TLB misses. Cache miss reductions



occured, but they never exceeded 15%. It is likely that these improvement are
insufficient to compensate for the overhead of the more complex index compu-
tations (10% to 15% more executed instructions). However, the improvements
in page level locality are significant. In particular, improved page level locality
is likely to pay larger dividends in instances where the heap resides primarily
on disk. Furthermore, current trends in microprocessor design have cache line
widths growing due to increased memory bandwidth requirements by the CPU.
Consequently, the performance of c-clustered k-heaps could improve in future
architectures due to the ability to pack more nodes into a single cache line.

Fig. 5. Speedup k=8 vs. k=2. In the x-axis, m = log2n.

6 Related Work

LaMarca and Ladner [6, 7] propose the techniques of alignment and increasing
tree arity as a means of enhancing traditional implicit k-heap performance. Their
empirical results show the implicit k-heap delivering better performance than
methods once thought to be superior [5]. For this they credit the increasing gap
between CPU speed and memory latency.

The technique of tree blocking appears to originate in the field of external

memory algorithms where data clustering is used to enhance the data reference
locality of path traversals in planar graphs [8, 9]. In [4] Chilimbi et al. apply
tree blocking to an explicit binary search tree to enhance the performance of
a commercial database application. A cache oblivious approach to implicit bi-
nary search tree blocking is presented in [1]. For top-to-bottom tree traversals
they use a combination of the traditional indexing scheme and a translation
step using four support vectors. The overhead of this approach results in poor
performance for small heaps, but the performance improves when the tree size
exceeds the main memory capacity. We experimented with a similar approach
for index computation in the c-clustered memory layout and found the com-
putational overhead to be too large when the heap resides in internal memory.
Chatterjee et al. [3] improve data reference locality for dense matrix codes.



Such techniques improve data fetching, but a compiler cannot re-index the array
V or insert padding to benefit from the implicit prefetching that occurs in the
memory hierarchy.

7 Conclusion

This is the only work that we are aware of that tailors tree blocking for im-
plicit k-heap implementations. We described an efficient tree blocking method
for implicit k-heaps, with the following properties: (1) we can perform cache line
alignment, (2) sibling nodes are placed contiguously in memory, (3) the overhead
for index computations is low enough to obtain performance improvements in
internal memory. The key intuition motivating c-clustering is to use the data
implicitly prefetched through large cache lines before referencing data further
afield. Future work will encompass a more comprehensive experimental and an-
alytical evaulation of c-clustered k-heaps in addition to exploring the implicit
binomial heap [2].

References

1. G. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary
trees of small height. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 39–48, 2002.

2. Svante Carlsson, J. Ian Munro, and Patricio V. Poblete. An implicit binomial
queue with constant insertion time. In SWAT 88, 1st Scandinavian Workshop on
Algorithm Theory, volume 318, pages 1–13. Springer, 1988.

3. Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra, and
Mithuna Thottethodi. Nonlinear array layouts for hierarchical memory systems.
In International Conference on Supercomputing, pages 444–453, 1999.

4. Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure
layout. In Conference on Programming Language Design and Implementation,
pages 1–12, 1999.

5. Douglas W. Jones. An empirical comparison of priority-queue and event-set im-
plementations. Communications of the ACM, 29(4):300–311, 1986.

6. Anthony LaMarca and Richard E. Ladner. The influence of caches on the perfor-
mance of heaps. ACM Journal of Experimental Algorithms, 1:4, 1996.

7. Anthony LaMarca and Richard E. Ladner. The influence of caches on the per-
formance of sorting. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
1997.

8. Anil Maheshwari and Norbert Zeh. A survey of techniques for designing i/o-efficient
algorithms. In G. Goos J. Hartmanis and J. van Leeuwen, editors, Algorithms for
Memory Hierarchies, chapter 3, pages 36–61. Springer, 2003.

9. Mark H. Nodine, Michael T. Goodrich, and Jeffrey Scott Vitter. Blocking for
external graph searching. Algorithmica, 16(2):181–214, 1996.

10. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing 2nd Edition, chapter
Chapter 7, Random Numbers, page 284. Cambridge University Press, 1992.


