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Abstract 
 

Public wildfire management agencies are presented with a momentous responsibility: to protect 

life, property and infrastructure from the devastation of wildland fire, while operating at a level of 

expenditure justifiable to taxpayers. At a time when climate change drives more extreme fire 

behaviour, agencies such as Alberta Wildfire must also be prepared to respond despite uncertain 

budgets. This thesis contributes by offering new empirical insights on wildfire suppression through 

two directions. Firstly, Chapter 2 focuses on the drivers of wildfire suppression costs. An empirical 

model seeks to explain how costs are affected by a series of environmental factors, such as time-

variant weather variables and time-invariant landscape characteristics, as well as by operational 

policy variables based on Alberta Wildfire’s organizational capacity and priorities. Results from 

regression analysis and machine learning show that while policy decisions have measurable 

impacts on abating costs, the bulk of expenditures is driven by environmental factors. Chapter 3 

studies risk aversion of Alberta Wildfire Incident Commanders (ICs). Through laboratory 

economic experiments, I seek to determine whether ICs, who are in a risky profession, exhibit risk 

preferences in laboratory experiments that are different from a control group. Results show that 

ICs’ experiment choices are not significantly different from those of typical experimental subjects 

across all risk elicitation tasks. However, among their colleagues, ICs with additional operational 

deployment experience tend to exhibit significantly lower levels of risk aversion. Findings from 

this study motivate further research into wildland firefighters’ risk preferences that will help 

decisionmakers better understand how individual risk perceptions impact resource allocation, and 

by extension, costs. Taken together, the novel insights generated from this thesis contribute to the 

multi-disciplinary field of wildfire suppression research.    



iii 

 

Preface 

 

Experimental research reported in this thesis was approved by the University of Alberta Research 

Ethics Board: 

• Chapter 3: “Risk Elicitation Economics Experiments”, Pro00106176, Feb. 01, 2021 

Financial support for this thesis was provided by Alberta Agriculture and Forestry, Wildfire 

Management Branch (Alberta Wildfire), through the Canadian Partnership for Wildland Fire 

Science (Canada Wildfire).  



iv 

 

Acknowledgements 

 

I would like to extend my gratitude to Alberta Wildfire for the funding and expertise contributed 

to this project, and to the Incident Commanders who took the time to complete the risk elicitation 

experiment. A special thanks to Cordy Tymstra, Dave Schroeder and Lynn Ducharme, who took 

the time to explain to us the mechanics and data of wildfire suppression. All references to “us” and 

“we” throughout this thesis include my supervisor, Bruno Wichmann, who has guided me through 

the research journey. From experiments to machine learning, Bruno has continually encouraged 

me to perform my absolute best. Muito obrigado. A big thanks to Vic Adamowicz and his research 

group, whose advice and feedback helped motivate me through the most challenging parts of this 

project. My friends and colleagues in REES, thank you for your comradery through coursework, 

socially distanced walks and ice creams breaks, and for the second set of eyes on coding 

conundrums that inevitably arose from time to time. Finally, I am particularly thankful to my 

family for their continued support and patience throughout the course of this degree.  

  



v 

 

Table of Contents 

 

Abstract .......................................................................................................................................... ii 

Preface ........................................................................................................................................... iii 

Acknowledgements ...................................................................................................................... iv 

Table of Contents .......................................................................................................................... v 

List of Tables ............................................................................................................................... vii 

List of Figures ............................................................................................................................... ix 

Chapter 1. Introduction ............................................................................................................... 1 

Chapter 2. Wildfire suppression expenditure ............................................................................ 2 

2.1. Introduction .......................................................................................................................... 3 

2.2. Related literature .............................................................................................................. 9 
2.2.1. Suppression expenditure regression analysis ............................................................ 9 

2.2.2. Heterogeneity in resource allocation between firefighters ..................................... 15 
2.2.3. Suppression strategy choice experiments ............................................................... 16 

2.2.4. Qualitative research on organizational drivers of expenditures .............................. 18 

2.3. Data ................................................................................................................................ 19 

2.4. Empirical model ............................................................................................................. 33 

2.5. Overview of empirical analysis ...................................................................................... 34 

2.6. Results ............................................................................................................................ 36 

2.7. Evaluating impacts of wildfire detection with Machine Learning ................................. 42 

2.8. Discussion ...................................................................................................................... 46 

2.9. Conclusion ...................................................................................................................... 52 

Chapter 3. Risk preference experiments with wildfire management..................................... 54 

3.1. Introduction .................................................................................................................... 55 

3.2. Related literature ............................................................................................................ 56 

3.2.1. Revealed risk preference in the economics laboratory ........................................... 57 
3.2.2. Risk self-evaluation in psychology and economics ................................................ 61 
3.2.3. Measuring risk preference consistency across economic elicitation methods ........ 63 
3.2.4. Comparing elicitation methods between economics and psychology .................... 69 
3.2.5. A review of empirical evidence of heterogeneity in risk aversion ......................... 72 

3.3. Experiment design .......................................................................................................... 74 
3.3.1. Revealed risk elicitation methods ........................................................................... 77 
3.3.2. Self-assessed risk elicitation method ...................................................................... 81 



vi 

 

3.3.3. Demographic survey ............................................................................................... 82 

3.4. Structural Parameter Estimation..................................................................................... 82 

3.4.1. Coding Choice Data ................................................................................................ 82 
3.4.2. CRRA utility function ............................................................................................. 85 
3.4.3. Structural estimation ............................................................................................... 85 
3.4.4. Applying Prospect Theory ...................................................................................... 87 
3.4.5. Accounting for heterogeneity between participants ............................................... 89 

3.5. Overview of empirical analysis ...................................................................................... 90 

3.6. Experimental results ....................................................................................................... 93 
3.6.1. Risk choice .............................................................................................................. 94 
3.6.2. Structural models: Expected Utility Theory ........................................................... 97 
3.6.3. Structural models: Prospect Theory ...................................................................... 111 

3.6.4. Between-task consistency ..................................................................................... 117 
3.6.5. Self-evaluated risk ................................................................................................ 119 

3.7. Discussion .................................................................................................................... 127 

3.8. Conclusion .................................................................................................................... 131 

Chapter 4. Conclusion .............................................................................................................. 132 

Bibliography .............................................................................................................................. 134 

Appendix A: Maps of the FPA and FAs ................................................................................. 149 

Appendix B: Auxiliary figures ................................................................................................. 150 

Appendix C: Auxiliary regressions ......................................................................................... 151 

Appendix D: Supplementary figures on experiment choices ................................................ 154 

Appendix E. Inconsistent players in MPL task ...................................................................... 156 

Appendix F: Investment Game: sensitivity of bins ................................................................ 158 

Appendix G: CRRA risk parameters for experiment choices .............................................. 161 

Appendix H: Self-reported risk by cohort, gender, and timeframe ..................................... 163 

Appendix I: Instructions for the Risk Elicitation Economics Experiment .......................... 166 

Appendix J: Supplementary literature review ....................................................................... 179 

J.1. Additional experimental measures in the economics laboratory ...................................... 179 

J.2. Eliciting risk attitudes outside of the economics laboratory ............................................. 180 

J.3. Risk behaviour research in other disciplines .................................................................... 181 

J.4. Comparing elicitation methods between economics and cognitive science ..................... 182 

Appendix K: Structural estimation of risk by IC level ......................................................... 184 

 

  



vii 

 

List of Tables 

 

 

 
Table 2.1 Count of wildfires responded by size class, calendar years 2015 to 2020 .................... 20 
Table 2.2  Summary statistics on wildfires, 2015 to 2020 ............................................................ 21 

Table 2.3 Variables used in development of regression equation. ............................................... 28 
Table 2.4 Summary statistics by wildfire size class ..................................................................... 31 
Table 2.5 OLS regression models on Log Expenditure (2020 dollars), by wildfire size class ..... 37 

Table 2.6 Estimates of expenditure proportion (Environment and Forest Area) .......................... 41 

Table 2.7 DML estimates of Reporting delay effect (𝛽), by size class ........................................ 45 
 

Table 3.1 Empirical evidence of heterogeneity in risk aversion ................................................... 73 

Table 3.2 Expected payoffs of four preference incentivized risk elicitation methods, based on 

literature vs simulated behaviour .................................................................................................. 76 

Table 3.3 Summary statistics for experiment participants ............................................................ 94 
Table 3.4 Mean choice across four tasks, compared between genders, controlled by cohort ...... 95 
Table 3.5 Mean choice across four tasks, compared between cohorts, controlled by gender ...... 95 

Table 3.6 Estimates of risk and noise parameters (𝜑, 𝜎) across tasks (homogeneous) ................ 97 

Table 3.7 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of characteristics across tasks 

(heterogeneous on cohort, gender, education, family status and age) .......................................... 98 

Table 3.8 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Total days in operational 

deployment in 2020 (units of 100 days) ..................................................................................... 102 

Table 3.9 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Double Time in 2020 (units 

of 100 days)................................................................................................................................. 102 

Table 3.10 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Extended period in 2020 

(units of 100 days) ...................................................................................................................... 103 

Table 3.11 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Extended period with 

Double Time in 2020 (units of 100 days) ................................................................................... 104 

Table 3.12 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Days as Duty Officer in 

2020 (units of 100 days) ............................................................................................................. 104 

Table 3.13 Estimates of risk parameters (φ) as functions of Total days in operational deployment 

from (year) to 2020 (units of 100 days) ...................................................................................... 106 

Table 3.14 Estimates of risk parameters (φ) as functions of Double Time from (year) to 2020 (units 

of 100 days)................................................................................................................................. 107 
Table 3.15 Estimates of risk and noise parameters (φ) as functions of Extended period from (Year) 

to 2020 (units of 100 days) ......................................................................................................... 108 
Table 3.16 Estimates of risk and parameters (φ) as functions of Extended period with Double Time 

from (year) to 2020 (units of 100 days) ...................................................................................... 109 



viii 

 

Table 3.17 Estimates of risk and parameters (φ) as functions of Days as Duty Officer (2020) (units 

of 100 days)................................................................................................................................. 110 

Table 3.18 Estimates of risk, noise, and probability weighting parameters (𝜑, 𝜎, 𝛾), ............... 112 

Table 3.19 Estimates of risk, noise, and probability weighting parameters (𝜑, 𝜎, 𝛾) on 

characteristics, MPL (all participants) ........................................................................................ 113 
Table 3.20 Proportion of participants with implied risk parameter consistency between tasks . 118 

Table 3.21 Comparing self-evaluated risk aversion between cohorts, timeframe controlled ..... 120 
Table 3.22 Comparing self-evaluated risk aversion between timeframes, controlled by cohort 121 
Table 3.23 OLS regression on PC1 of Experiment choices on PC1 of Self-evaluated risk (present)

..................................................................................................................................................... 124 
Table 3.24 OLS regression on PC1 of Experiment choices on PC1 of Self-evaluated risk (past)

..................................................................................................................................................... 124 
Table 3.25 OLS regression of Experiment choice PC1 on Self-evaluated risk by domain ........ 125 

Table 3.26 OLS regression on PC1 of experiment choices on self-evaluated risks, by domain 126 
 

Table C.1 OLS regression on the effect of Reporting delay on Log Cost by size class ............. 151 
Table C.2 OLS regression on the effect of Reporting delay on Report-extinguished phase duration 

by size class................................................................................................................................. 151 
Table C.3 OLS regression models, separated by wildfire size class (includes Military land) ... 152 

Table C.4 OLS and DML: Estimates of Reporting delay on Log cost ....................................... 153 
Table C.5 OLS and DML: Estimates of Reporting delay on Fire Duration .............................. 153 

 

Table E.1 Prevalence of MPL inconsistent decision (all participants) ....................................... 156 
Table E.2 Propensity of participants playing inconsistently in MPL (all participants) .............. 157 

 

Table F.1 Estimates of risk and noise parameters (𝜑, 𝜎) as a function of characteristics in INV, by 

bin size (all participants) ............................................................................................................. 159 
 

Table G.1 Elicitation method choices and their implied range of risk parameters ..................... 162 
 

Table H.1 Self-evaluated risk aversion between genders, controlled by cohort (present).......... 163 
Table H.2 Self-evaluated risk aversion between genders, controlled by cohort (past) ............... 163 
Table H.3 Self-evaluated risk aversion between cohorts, controlled by gender and cohort (present)

..................................................................................................................................................... 164 

Table H.4 Self-evaluated risk aversion between cohorts, controlled by gender (past) ............... 164 
Table H.5 Self-evaluated risk aversion between timeframe, controlled by cohort (females) ..... 165 
Table H.6 Self-evaluated risk aversion between timeframe, controlled by cohort (males) ........ 165 

 

Table K. 1 Estimates of risk and noise parameters (𝜑, 𝜎) by IC levels...................................... 185 

 

  



ix 

 

List of Figures 

 

 

 
Figure 2.1 Flowchart of Alberta Wildfire’s response protocol. ...................................................... 7 
Figure 2.2 Yearly counts and yearly expenditures by size class ................................................... 22 

Figure 2.3 Proportion of suppression expenditure incurred by Alberta Wildfire ......................... 22 
Figure 2.4 Log cost and Reporting delay by size class. ................................................................ 23 

 

Figure 3.1 Visualization of probability weights at different levels of 𝛾 (gamma)........................ 88 

Figure 3.2 Participant choices in four elicitation methods ........................................................... 96 
Figure 3.3 Estimates and confidence intervals (95%) of risk parameters in homogeneous and 

heterogeneous models by task ...................................................................................................... 99 

Figure 3.4 Distribution of estimated risk parameters (𝜑) functioned on characteristics ............ 100 
Figure 3.5 Estimates of risk parameters in EUT and PT models of MPL task, .......................... 114 

Figure 3.6 Probability weighting (γ) and Probability (p) for the median player in MPL ........... 116 
Figure 3.7  Count of participants within ranges of implied CRRA risk parameters. .................. 117 

Figure 3.8 Distribution of participants across an index of consistency between pairs of tasks .. 118 

Figure 3.9 Responses to self-evaluated domain-specific risks ................................................... 120 

Figure 3.10 Correlation between First Principal Components of Risk elicitation experiment choices 

and Domain-specific self-evaluated risk (present timeframe). ................................................... 123 

 

Figure A.1 Forest Protection Area (FPA) in Alberta .................................................................. 149 
Figure A.2 Forest Areas (FAs) in Alberta .................................................................................. 149 

 

Figure B.1 Report-extinguished phase duration and Reporting delay by size class .................. 150 
 

Figure D.1 Graphical representation of Table 3.4 ...................................................................... 154 
Figure D.2 Graphical representation of Table 3.5 ...................................................................... 155 

 

Figure F.1 Comparing estimates on risk parameter (𝜑) on characteristics in INV across bin sizes 

(all participants) .......................................................................................................................... 160 

 

Figure K. 1 Risk aversion estimators by Incident Commander certification levels ................... 186 



1 

 

Chapter 1. Introduction 

 
In 2019, Alberta Wildfire faced a particularly severe wildfire season in which nearly 1,000 

wildfires burned over a total of 880 thousand hectares. Expenditures incurred in fighting the flames 

totalled $570 million (MNP LLP, 2020). As climate change contributes to new fire weather 

extremes, wildfire management agencies like Alberta Wildfire are also embattled with challenges 

to provide suppression coverage while dealing with increased public scrutiny (Canton-Thompson 

et al., 2008) and uncertain budgets (Tymstra et al., 2020). In order to understand the drivers of 

wildfire suppression expenditures, I perform empirical analyses to discover how policy and 

environmental factors influence expenditures. In addition, I undertake an experiment that seeks to 

uncover the risk preferences of wildfire managers, who play a key role in providing suppression 

services, and incurring the expenses resulting from suppression. 

Chapter 2 focuses on “Wildfire suppression expenditures”, in which regression analysis 

and machine learning tools are applied to an expenditure model. While regression analysis 

uncovers the linear relationships between costs and various environmental and policy factors, ML 

allows us to estimate flexible functions that map environmental factors to key discretionary policy 

variables and expenditure. In Chapter 3, “Risk aversion in wildfire management” is explored 

through a series of risk elicitation methods common in the economic literature (Multiple Price List, 

Single Choice List, Certainty Equivalent Method and Investment Game), plus a self-evaluated risk 

survey. Through these revealed and stated risk preference tasks, I seek to discover how risk 

preferences differ between Alberta Wildfire Incident Commanders and control participants, as well 

as how risk preferences differ among Incident Commanders due to operational experience.  
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Chapter 2. Wildfire suppression expenditure 

 

 

 
Understanding the impacts of environmental and policy variables on wildfire expenditures is 

critical for wildfire management agencies, who must adapt to a challenging ecological future, often 

equipped with similarly challenging budgets. In this chapter, I apply regression analysis and 

machine learning methods to a dataset of over 5,000 wildfires suppressed by Alberta’s Wildfire 

Management Branch between 2015 and 2020. Results show that, while certain operational changes 

have meaningful (albeit modest) impacts on suppression costs, the bulk of wildfire suppression 

expenditures is driven by environmental factors such as weather and landscape.   

 

  



3 

 

2.1. Introduction 

Research in wildland fire science in Canada has flourished over the past 50 years, focusing on fire 

behaviour, risk analysis, forest management, and more recently, climate change impacts (for a 

review, see Coogan et al., 2021). In the recent 20 years, as suppression costs rise with increasingly 

severe fire seasons in Canada, there has been growing awareness among the public on the impacts 

and costs of wildfires (Owen, 2021; Popyk, 2021), and greater motivation amongst researchers to 

account and forecast wildfire suppression expenditures (Hope et al., 2016; Tymstra et al., 2020). 

In Alberta, the devastating 2016 Fort McMurray fire serves as a reminder of wildfire’s 

disruptive nature, which is captured in part by a large economic toll. Estimates of total damage 

range from the $3.7 billion as paid out by insurance (KPMG, 2017), to over $10 billion when 

accounting for costs incurred by the private and public sector, plus values of ecosystem loss (Alam 

et al., 2017). The Province of Alberta footed $400 million in responding to this wildfire through 

suppression efforts by the Ministry of Agriculture and Forestry’s Wildfire Management Branch 

(WMB or “Alberta Wildfire”), with additional funds for community recovery (KPMG, 2017; 

Lamoureux and Bellefontaine, 2016). 

Prior to the fire events of 2016, Alberta’s yearly wildfire expenditures were already 

experiencing a steady increasing trend (MNP LLP, 2016; Stocks and Martell, 2016). While Alberta 

Wildfire’s total yearly expenditures rarely exceeded $100 million prior to 2000, from 2000 to 

2016, annual costs regularly exceeded $200 million, and in 2015, exceeded $400 million1 (MNP 

LLP, 2016). Faced with the challenges presented by rising expenditures and uncertain budgets 

(Tymstra et al., 2020), as well as an increasingly severe and unpredictable wildfire future due to 

                                                 
1 All costs mentioned in this paragraph are in 2016 dollars. 
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climate change impacts (Flannigan et al., 2000; Robinne et al., 2016; Tymstra et al., 2021; Wotton 

et al., 2017), Alberta Wildfire is supporting research studies that address a pressing policy 

question: “How can wildland fire operations be made more efficient and effective?” 

In this chapter of the thesis, I discuss the effects of environmental and policy variables on 

fire-level suppression costs. Regression modelling uncovers the extent to which suppression costs 

are impacted by environmental variables such as weather, geography and location, and also by 

discretionary decisions taken under the guidance of Alberta Wildfire policy, including strategic 

delay, resource allocation under fire competition, and the prioritization of “values-at-risk”2. The 

next sections include a brief overview of related literature on wildfire suppression expenditure 

analysis, data and analytical applications, the empirical expenditure model, and results, followed 

by a discussion on the policy implications of these findings. However, firstly I provide some 

background information on wildfire management in Alberta and Canada, with additional focus on 

Alberta Wildfire’s operations and objectives. 

Background on wildfire management in Alberta and Canada 

Across present-day Alberta and throughout forested areas of North America, wildland fires, or 

wildfires, have historically been an integral part of ecosystems by reducing fuel buildup and 

promoting vegetative diversity (Groesch et al., 1992; Pausas and Keeley, 2019). Prior to European 

settlement, indigenous peoples played an active role within such ecosystems through their 

regimented use of prescribed fire to maintain an environment adaptable for hunting and other land-

based activities (Kimmerer and Lake, 2001; Lake and Christianson, 2019).  

                                                 
2 Values-at-risk are protected by Alberta Wildfire in descending order of priority: Human Life, Communities, 

Watershed and Sensitive Soils, Natural Resources, Infrastructure (Alberta Wildfire, 2017). 
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In the contemporary era, public authorities responsible for wildfire management have 

largely favoured full suppression of wildfires in all circumstances. In Canada, full suppression is 

prevalent in most jurisdictions, especially where human communities and infrastructure border 

fire-prone forests, in what is termed the “wildland-urban interface”, or WUI (Pyne, 2008). 

However, there remains a lack of consensus among wildfire researchers on whether full 

suppression serves as the best method to protect communities (Houtman et al., 2013; Johnson and 

Miyanishi, 2001; McFarlane et al., 2011; Riley et al., 2018). One concern in particular is fuel 

buildup: when a full suppression program deprives wildfire of its role in removing low-lying 

vegetation, future fires will be able to catch on to these sources of fuel, and are more likely to grow 

into larger, more devastating wildfires (Brown, 1983; Johnson et al., 2001). 

In Alberta, the provincial government, through Alberta Agriculture and Forestry’s Wildfire 

Management Branch, is responsible for suppressing all wildfires in the designated Forest 

Protection Area (FPA) that extends from the eastern slopes of the Rocky Mountains to the boreal 

forest of northern Alberta (see Figure A.1). The FPA is divided into 10 Forest Areas (FAs) with 

an Area Fire Centre in each FA. Wildfire detection and large-scale resource deployment is 

centrally coordinated from the Alberta Wildfire Coordination Centre (AWCC) in Edmonton. 

Municipal governments and federal governments are responsible for fire management within their 

own jurisdictions, however, there is mechanism for inter-agency collaboration for fires that cross 

boundaries: the Canadian Interagency Forest Fire Centre (CIFFC), jointly owned by federal, 

provincial and territorial agencies, coordinates inter-provincial resource deployments and 

information sharing (CIFFC, 2021). 

Within Alberta’s FPA are many residential and industrial infrastructures bordering the 

WUI. 370 thousand people are year-long residents in the FPA, and populations in these regions 
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are forecasted to increase substantially into the future (Government of Alberta, 2021). Even more 

people work and recreate within Alberta Wildfire’s jurisdiction, including up to 30 thousand 

rotational upstream energy workers (PetroLMI and ENFORM, 2015) in the boreal area, as well as 

recreationalists in the eastern slopes who make yearly visits in the millions (Colgan, 2021).  

Wildfire preparedness and response in Alberta 

While full suppression response is the most prominent and well-known approach of wildfire 

management, it is crucial to recognize it is only one of four pillars: mitigation, preparedness, 

response and recovery (Canadian Wildland Fire Strategy Assistant Deputy Ministers Task Group, 

2005). A hallmark mitigation/preparedness strategy is CIFFC’s FireSmart program which 

encourages WUI communities to build their resilience to wildfires through landscaping changes 

that mitigate the likelihood of flames reaching homes (FireSmart Canada, 2021). The adoption of 

FireSmart practices has proven effective in reducing wildfire damages both in simulated 

environments and in WUI communities across Canada (Ergibi and Hesseln, 2020; Labossière and 

McGee, 2017; Schroeder, 2010). Nevertheless, precautionary measures are not always sufficient 

by themselves in preventing the risks posed by forest fires, and response through suppression 

remains most commonly used and most funded approach by Canadian wildfire agencies (McGee 

et al., 2015). 

Wildfire suppression operations in Alberta 

Wildfires in the Forest Protection Area (FPA) are detected by Alberta Wildfire through air, ground, 

and water patrols and a network of manned lookout towers. Members of the public area also 

encouraged to report wildfires to the agency through a hotline. 

 While the yearly budget for pre-suppression preparedness hovers from $100 million to 

$200 million (MNP LLP, 2016), Alberta Wildfire is authorized to access a contingency fund for 
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emergency response, incurring costs as high as $750 million during a particularly intensive fire 

season, such as in 2019 (MacVicar, 2019). With the financial backing of the provincial 

government, Alberta Wildfire aims to meet two operational performance objectives: 1) to initiate 

suppression action before the wildfire reaches 2 hectares, and 2) to contain wildfire spread by 

10:00 hours the following day. In order to meet these objectives, Alberta Wildfire engages nearly 

660 permanent and seasonal wildland firefighters during the annual fire season, March 1 to 

October 31. Frontline firefighters across the FPA are supported by logistic coordinators of the 

Alberta Wildfire Coordination Centre (AWCC) in Edmonton. The response protocol is 

summarized in Figure 2.1. 

 

Figure 2.1 Flowchart of Alberta Wildfire’s response protocol. 

 

A detected wildfire is first reported to AWCC, which relays notification to the local Forest 

Area (FA) in which the fire is detected. Typically, four-person Helitack crews are the first to 

respond to a wildfire, arriving by truck, fire engine or helicopter. Initial Attack will generally 

provide the fastest and most cost-effective form of wildfire suppression, due to the small size and 

intensity of a nascent fire. However, if the fire has developed to an extent that it cannot be 

contained by Initial Attack, additional crews of 8 to 20 members are deployed for Sustained Action. 

(See Figure 2.1 for a chronological flowchart of suppression phases.) In addition to using manual 

tools, personnel on the ground also employ heavy equipment such as dozers, excavators and water 
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trucks. Airtankers and other aircraft are the most prominent tools in the wildfire management 

arsenal. While air deployments incur substantial costs, they are crucial for suppressing fires in 

locations deemed too remote, or with conditions too dangerous, for firefighters’ direct engagement. 

Nevertheless, crew members form the backbone of Alberta Wildfire’s wildfire response; every fire 

is attended by personnel on the ground to ensure full extinguishment.  

Wildfires are classified by size class based on their burn area: A (≤ 0.1 ha); B (> 0.1 ha to 

4 ha); C (> 4 ha to 40 ha); D (> 40 ha to 200 ha); E (>400 ha). As a fire develops in size, Alberta 

Wildfire protocols dictate that certain minimum resource levels must be deployed at each size 

class, per resource availability (Alberta Wildfire internal documents; personal communication). 

During a busy fire season, Alberta Wildfire may recruit emergency contractors on an as-needed 

basis, as well as request importation of manpower, equipment, and/or aircraft from other Canadian 

and international jurisdictions.  

Within our dataset of wildfires in the Alberta FPA from 2015 to 2020, we observe that 

yearly expenditures on wildfire suppression fluctuate between a low of $6.5 million to over $280 

million, while the yearly number of wildfires has gradually declined (see Figure 2.2 Yearly counts 

and yearly expenditures by size class in Section 2.3, Data, below). In this project, I discover how 

expenditures incurred during a wildfire suppression mission are influenced by environmental 

factors like environmental variables, as well as highlighting how decisions made by Alberta 

Wildfire managers are associated with expenditures. 
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2.2. Related literature  

2.2.1. Suppression expenditure regression analysis 

The wildfire issue in Canada has been studied rigorously by forest science researchers (Beverly et 

al., 2011; Flannigan et al., 2005, 2000; Hanes et al., 2019; Stocks et al., 1998), including work on 

capturing ex-post wildfire expenditures as well as forecasting future socio-economic costs (Hope 

et al., 2016; Stocks and Martell, 2016; Tymstra et al., 2020). Additionally, sociologists have 

studied the social effects of particularly devastating wildfires notably the 2016 Fort McMurray 

wildfire (Boulianne et al., 2018; Drolet et al., 2021; Verstraeten et al., 2021). To the best of our 

knowledge, empirical economic research on wildfire suppression expenditures has been missing 

in the Canadian literature.  

We look abroad for existing literature on expenditure analysis, and find in Hand et al. 

(2014) a thorough review of suppression expenditure modelling in the United States. Empirical 

research into wildfire expenditures was first motivated by a 2005 federal directive to establish 

performance measures for the United States Department of Agriculture’s Forest Service (USFS) 

and other federal agencies’ wildland fire suppression programs. This directive included a mandate 

on reporting the percentage of fires that exceeded a “Stratified Cost Index” (SCI), originally 

specified as expenditures per acre over energy release component, and later capturing fire intensity 

and size, regional variability, proximity to communities and other factors influencing suppression 

expenditures. Since 2006, SCI has become a catch-all term for all expenditure regression models 

within USFS. 

SCI has been incorporated in interagency federal wildfire framework as an indicator of cost 

effectiveness, although not necessarily one of performance. Instead, within the broader scope of 
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the mission to reduce the likelihood and occurrence of large, costly fires, expenditure models 

“highlight the budgetary consequences of reducing the incident of large fires” (Hand et al., 2014, 

p. 11). 

Previous to the 2005 directive, regression analysis had already been applied to expenditure 

modelling on other occasions, albeit with much fewer independent variables and smaller sample 

sizes (Donovan et al., 2004; Gonzalez-Caban, 1984). In response to the 2005 directive, Gebert et 

al. (2007) develop a regression model that explores how suppression expenditure per area burned 

is influenced by factors including: area burned, environment, values-at-risk, resource availability, 

initial suppression strategy and delay. Gebert et al. characterize fire environment by the aspect, 

slope and fuel type (grass, brush and timber) at the ignition point, a fire weather index from the 

nearest weather station to ignition, and a measure of fire intensity at the start of the burning period. 

Based on previous research into role of population in forested areas in influencing expenditures 

(Snyder, 1999), Gebert et al. define values-at-risk as the distance between ignition and nearest 

population centre as well as total housing value within certain radii from ignition. In addition, they 

control for designated wilderness lands, which are areas where USFS have different suppression 

protocols.  

In order to include the effect of operational decisions, Gebert et al. also add the delay time 

between ignition and discovery, as well as dummy variables that capture suppression strategy 

(confine and contain, referenced against control). To control for availability of suppression 

resources, Gebert et al. calculate the difference between the count of fires burning during the same 

time as fire 𝑖 and the average count of regional fires in the same period during previous years.  
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This model is applied to a sample of 1,550 large fires3 suppressed by the USFS from 1995-

2004, for which expenditures were in constant 2004 dollars. The dependent variable is expenditure 

over area, as Gebert et al. assert that “fire managers are accustomed to thinking in terms of cost 

per acre” (p. 189); cost per area is log form, to reduce heteroskedasticity among residuals due to 

the variation in wildfire size and costs. To account for geographic differences, western and eastern 

United States regions are analyzed separately. Endogeneity is an issue of concern in this model 

due to the possible two-way causality between cost/area and burned area. As suppression costs 

increase with area burned, theoretically, burned area has a negative relationship with suppression 

costs. Gebert et al. acknowledge this concern, but they argue endogeneity is mitigated by the 

heterogeneity of selected large fire events, which by definition are so large that they resist initial 

suppression efforts, the variable burned area is more likely to vary as a function of fire complexity 

rather than suppression effort.  

For both western and eastern models, area burned has a negative effect on cost/acre, while 

other environmental variables like slope and timber fuel have positive effects. As expected, both 

fire weather severity and initial fire intensity correlate positively and significantly with suppression 

expenditure. Gebert et al. express surprise in discovering, in the eastern model, that costs increase 

with distance to communities, because they expected fewer values-at-risk in remote areas; they 

consider it is possible that the further a fire is from town, the costlier it is to mobilize resources. 

Another surprise in the eastern model is the discovery that the initial strategy of confinement or 

containment over control cause costs per acre to double; Gebert et al. had expected the most 

aggressive strategy of control would cost more. In the western model, the effect of resource 

                                                 
3 Gebert et al. (2007) define large fires as those that exceeded the USFS “escaped” fire limit, being 100 ac (40 ha) 

prior to 2003 and 300 ac (121 ha) since 2003. They also exclude fires missing identifiable expenditure information 

(e.g. in some large fire complexes) or other explanatory variables. 
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availability is marginally significant in its modest negative impact on cost per acre, a finding that 

is consistent with the authors’ hypothesis that fewer resources (and thus lower expenditures) are 

available for each individual fire during a busy fire season. 

Using these estimators, Gebert et al. predict costs of a selection of out-of-sample fires that 

took place in the last year of the study period, 2004. Comparing these estimates to real expenditure 

values, they note the R-squared values for out-of-sample predictions (western model: 0.33; eastern 

model: 0.18) were significantly lower than those in the original model (0.45; 0.46). Gebert et al. 

acknowledge a key limitation in model is that it does not capture political and jurisdiction 

influences on suppression strategies, such as the pressure to aggressively fight fires beyond 

operational standards. Further, noting the large confidence intervals of the predicted 2004 out-of-

sample fire costs, they caution against implementing reforms based on the interpretation of results 

of expenditure regression models. Instead, Gebert et al. believe that regression analysis on 

expenditures is most beneficial in its ability to identify outliers, leading to further in-depth reviews 

on the fires that are significantly more, or less, expensive than expected. 

Following this article, additional research introduces variations of the suppression 

expenditure regression model by focusing on specific sets of policy and environmental variables 

that explain variations in expenditure. The following is a review of the suppression expenditure 

literature that follow Gebert et al. (2007). 

Effects of environmental variables 

Liang et al. (2008) investigate the impacts of solely environmental factors on USFS expenditures 

over a similar time period, although within a smaller sample set of 100 large wildfires (over 121 

ha) in the Rocky Mountains region of Idaho and Montana. The dependent variable is suppression 

expenditure in log costs. Among the environmental factors, which also include infrastructure 
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value, distance to WUI zones, fuel conditions, topography and location, Liang et al. discover that 

only fire size and proportion of private land have strong positive effects, accounting for more than 

half of the variation in expenditures. 

Effects of values-at-risk 

Throughout the wildfire expenditure literature, researchers generally only account for residential 

properties as values-at-risk (Bayham and Yoder, 2020; Clark et al., 2016; Gebert et al., 2007; Liang 

et al., 2008; Yoder and Gebert, 2012). This valuation is indicative of wildfire management 

agencies’ prioritization of human life and property, but it is also due to the difficulty of quantifying 

nonmarket resource values (Calkin et al., 2005; Venn and Calkin, 2011).  

While Gebert et al. (2007) and Liang et al. (2008) account for property values in their 

expenditure analysis, Clark et al. (2016) argue this variable is unnecessary because wildfire 

managers are more concerned about protecting a structure for its purpose as a primary residence 

over its assessed value. In their model specification, Clark et al. find that the property value effect 

is insignificant; instead, it is the spatial pattern of residential development in the affected fire area 

that explains expenditure variation. While an additional house within the fire area increases 

suppression expenditure by $100, the marginal cost suppression increases further with distance 

from the house to structures; as such, the marginal suppression cost for a very remote, rural 

residence reaches $225 thousand. Considering these findings, Clark et al. encourage Wildland-

Urbane Interface planners to disincentivize remote residential development, towards reducing 

public expenditure on wildfire suppression. 

The significance of the property value effect is inconsistent across the expenditure 

literature. Donovan et al. (2011) find that media coverage and political pressure are both 

significantly positive in their effects on suppression costs, while the value of protected structures 
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are insignificant. However, outside of the expenditure framework, Bayham and Yoder (2020) 

discover a significant relationship between aircraft deployment, an expensive resource, and the 

property value of threatened homes. 

Effects of suppression strategy decision 

Gebert and Black (2012) analyze 1,330 fires in the United States from 2006-2008, characterizing 

suppression strategies, in order of decreasing intensity, from direct to modified to limited. On 

average, direct suppression does result in lower total expenditure, because fires are kept small and 

last shorter. Yet when variables like area burned are held constant in a generalized linear mixed 

model, regression analysis demonstrates that limited suppression leads to lower costs in the form 

of expenditure per acre. Gebert and Black acknowledge that analysis trough the expenditure 

framework is limited in its scope, as it disregards other performance measures of wildfire 

suppression, particularly in a time when the wildfire research community is becoming more 

concerned about long-term implications of full suppression.  

Incorporating spatially and temporally descriptive data 

While most of the existing expenditure analysis literature focus on the effect of static fire 

conditions on cost per area of a fire (Donovan et al., 2011; Gebert et al., 2007; Liang et al., 2008), 

Hand et al. (2016) investigate how spatially and temporally descriptive environmental variables 

affect total expenditures. The authors argue that models that use ignition-point conditions (time 

and place of ignition) do not capture the management decisions and inherent expenditures that are 

made in response to a fire with space/time-variable conditions. As well, Hand et al. contend that 

total cost per fire is a superior variable over cost per area because the value of a fire’s total cost is 

more pertinent to wildfire managers. 
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Towards building their model, Hand et al. create spatially and/or temporally descriptive iterations 

of environmental variables. For instance, while predominant fuel type is captured in the ignition-

point model as a dummy variable, Hand et al. create spatially descriptive variables which are the 

proportions of burned area made up of brush/timber/slash fuel types; while ignition-point models 

use a single weather index at the start of the fire, Hand et al. calculate the standard deviation of 

this index throughout the duration of the fire, in order to capture spatial/temporal variation in 

weather. In addition, Hand et al. address the possibility of endogeneity of fire size (due to reverse 

causality of expenditure values) by instrumenting fire size on calendar year, seasonality, and 

dummy for an outlier region. 

When comparing the performance of their spatial-temporal heterogenous model to that of 

the ignition-point model on large USFS wildfires, Hand et al. find that the former captures 

variation modestly better4, while accounting for fire size endogeneity in model specification does 

not improve fit. Hand et al. promote the spatially descriptive model for its unique insights into the 

degree to which environmental variables impact expenditures, however, they acknowledge that 

general interpretations of these effects are consistent between spatially descriptive and ignition-

point models.  

2.2.2. Heterogeneity in resource allocation between firefighters 

To investigate the influence of heterogeneity among firefighters in wildfire suppression efficiency, 

Hand et al. (2017) study a set of 89 incident management teams (IMT) on large wildfire incidents 

in the US from 2007 to 2011. They estimate a linear model in which the dependent variable is the 

fire-line production capacity, a measure of suppression effort, of (𝐼𝑖𝑗𝑡) of IMT 𝑖 for fire 𝑗 on day 

                                                 
4 R-squared for the models in Hand et al. (2016): Spatially descriptive model: 0.669 (fire size exogenous); 0.648 (fire 

size endogenous); Ignition-point model: 0.636 (fire size exogenous); 0.634 (fire size endogenous) 
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𝑡. Having controlled for geography, seasonality, fire conditions and jurisdiction, Hand et al. find 

that 14% of variation in resource use is accounted by differences between IMTs. In all, 17 (14) of 

the 89 IMTs are significantly more (less) productive than the median level (p < 0.05). While this 

study offers preliminary insights into the IMT influence on heterogeneity in resource allocation, 

Hand et al. acknowledge it is limited in its ability to account for differences in management 

objectives, nor does it account for the efficacy of resource deployment. 

2.2.3. Suppression strategy choice experiments 

Beyond analysis of real-life wildfires, economists also use experiments in order to better 

understand the impact of risk behaviour on suppression strategy selection. Wibbenmeyer et al. 

(2013) theorize that an expected economic loss minimizer, the behaviour purportedly characterized 

by USFS fire management policy, makes rational decisions after having considered the conditions 

of the fire and the likelihood of its endangerment to values-at-risk. The authors develop a choice 

experiment for wildfire managers in which respondents are presented with three hypothetical 

wildfire scenarios, and tasked to select a preferred strategy for each. Each scenario includes unique 

characteristics: fire conditions, as probability of a certain area being burned, and values-at-risk, as 

the relative location of homes and watersheds to a potentially burned area. For each scenario, the 

choice set includes alternative strategies with varying levels of resource value-at-risk protection, 

resource allocation and personnel exposure, probability of success, and program cost. Respondents 

select both their personal choice, as well as the choice which they believe their agency would 

choose. 

Applying the Kahneman and Tversky (1979) prospect theory model, Wibbenmeyer et al. 

discover that their wildfire manager respondents exhibit non-expected utility in risk behaviour. 

When homes are at risk, respondents are more sensitive to the differences across choice sets in the 
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probability of suppression success rather than that of burn probability. To Wibbenmeyer et al., this 

behaviour is indicative that wildfire managers, who feel like they have no control over fire 

scenarios, wish to be able to control the probability of success through their choice. 

 Using the same dataset, Wibbenmeyer and Calkin collaborate again in Calkin et al. (2013), 

in which they focus on the differences between respondents’ preferred choice and the one they 

expect the agency would choose. Controlling for the effects of fire condition, values-at-risk, and 

the probability of suppression success, a wildfire manager is less likely to personally prefer a 

strategy when its cost increases. However, choices by respondents indicate that expenditure values 

are not significantly impactful to decisions taken by their upper management. These results lead 

Calkin et al. to discuss how management agencies are often pressured to prioritize social-political 

considerations over economic ones. This is particularly pertinent if a fire were to break through 

containment, as a wildfire management agency that has already incurred great expenses through a 

disproportionately high level of resource allocation is in a better position to contend that they are 

not liable for damages. 

Wibbenmeyer and Hand collaborate once again in Hand et al. (2015). In this paper, the 

researchers elicit risk behaviour from wildfire managers using a multi-attribute lottery experiment 

in the context of hypothetical wildfire scenarios. The experiment, inspired by the Holt and Laury 

(2002) method5, tasks participants with choosing between “safe” and “risky” wildfire suppression 

strategies. Each strategy also includes two possible outcomes: a “good” outcome has low levels of 

                                                 
5 The Holt and Laury (2002) method is a lottery choice game with a set of 10 paired lotteries. On each line, two 

lotteries are represented as Option A and Option B. Option A is a “safe” lottery in which the difference between its 

high/low payoffs is smaller than that of the “risky” Option B. Down the list, the high/low payoff values of Option A 

and Option B remain constant, while probabilities change such that an expected utility maximizer is induced to switch 

from Option A to Option B. Switching further down the line is indicative of higher risk aversion. 

 

This method is applied in Chapter 3. Risk aversion in wildfire management, and an example of this method can be 

found in Task “Orange” Decision, Appendix I: Instructions for the Risk Elicitation Economics Experiment. 



18 

 

firefighter fatality, property damage, and suppression costs, and a “bad” outcome with high levels. 

“Safe” strategies have moderate differences between good/bad attribute values, while “risky” 

strategies have large differences. As in Holt and Laury (2002), probabilities associated with 

good/bad outcomes change throughout the decision list. 

Experiment choices reveal that that wildfire managers are overwhelmingly risk averse in 

their suppression strategy choice, opting for a safe strategy even when the expected losses in the 

risky strategy are lower. In addition, through applying Prospect Theory, Hand et al. discover that 

participants tend to overweight low probabilities of outcomes and underweight high probabilities. 

Hand et al. conclude that wildfire managers are biased towards risk aversion in suppression 

management, a result that supports previous theoretical (Maguire and Albright, 2005) and 

empirical (Wilson et al., 2011) work.  

2.2.4. Qualitative research on organizational drivers of expenditures 

The reviewed literature, above, all speculate on the socio-political motivations for expenditure 

variation in wildfire management scenarios (real and hypothetical). However, not all factors 

influencing decision-making and suppression costs can be captured by quantitative data. 

Unobserved human factors, from the individual to the organizational level, can create a wildfire 

management environment in which large fire suppression expenditures seem to be an inevitable 

and insurmountable problem.  

To shed light on the role of individual/organizational effects on wildfire expenditures, 

Canton-Thompson et al. (2008) carry out in-depth interviews with 48 United States Forestry 

Service (USFS) firefighters across all levels of seniority. Senior firefighters lament that 

individualist attitudes among younger colleagues have led to less cohesion in wildfire 
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management, and more wasted time during decision-making. Further, as a changing organizational 

culture leads agency units to become silos, USFS is neglecting to properly fund pre-suppression 

programs, including the recruitment and training of professional firefighters.  Consequently, 

supplementary costs are incurred at the end of fire season as suppression expenditures due to the 

hiring of contractor firefighters. 

Changes in society-at-large also contribute to increased wildfire expenditures. Interviewees 

point to increasing population in the wildland-urban interface (WUI) as a pressure for intensive 

wildfire suppression; additionally, new residents in the WUI lack appreciation for the complexity 

of wildfires. Consequently, such residents often exert political pressure to obtain intensive fire 

suppression, even in situations where high resource allocation is excessively costly and 

unnecessary. Yet at the end of such a fire season, USFS faces the opposite form of political 

pressure: being criticized for the additional suppression expenditures incurred in meeting 

politically-driven suppression strategies. 

 

2.3. Data 

To determine the impact of policy and environmental variables on wildfire expenditure, we 

primarily use Alberta Wildfire’s internal datasets on operations and expenditure from calendar 

years 2015 to 20206, made available to us for the purpose of this project. We combine fire-level 

                                                 
6 Alberta Wildfire organizes operational and expenditure data by “fire year”. We received data on wildfires from 

January 2015 – December 2020. From January 2015 – December 2018, Alberta Wildfire defined the fire year as April 

1 to March 31. Starting in January 2019, the fire year follows the calendar year (January 1 to December 31). As 88% 

of wildfires in our dataset take place April – August, we believe that it is appropriate to reference wildfires by calendar 

year, and to incorporate calendar year instead of fire year in analysis. 
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observations of operation and expenditure data with geospatial data from public databases (Altalis, 

Government of Alberta GENESIS, Statistics Canada) to create a high-dimensional final dataset. 

Within Alberta Wildfire, fires are classified by their burn area, from size class A (<0.1 ha) 

to E (>400 ha); at each size class, operational protocols dictate that certain minimum resource 

levels must be met, per resource availability (Alberta Wildfire internal documents; personal 

communication). A cursory look at our Alberta Wildfire operational dataset, Table 2.1 , reveals 

that 65% of wildfires in Alberta’s Forest Protection Area (FPA) during the study period were 

suppressed before exceeding size class A, and nearly 90% before surpassing size class B.  

Table 2.1 Count of wildfires responded by size class, calendar years 2015 to 2020 

Calendar Year 
Size class   

Total 
A B C D E   

2015† 1089 514 107 44 64   1818 

2016 930 414 62 19 11   1436 

2017 852 296 52 24 20   1244 

2018 824 349 87 18 21   1299 

2019 635 272 61 16 21   1005 

2020 574 129 16 1 3   723 

Total 4904 1974 385 122 140   7525 
† Excluding fires from Jan 1 to Mar 31, 2015, for which we did not request expenditure data (n = 38)  

Size classes: A: 0 to 0.1 ha; B: >0.1 ha to 4 ha; C: >4 ha to 40 ha; D: >40 ha to 200 ha; E: >200 ha 

 

Table 2.2 shows summary statistics on wildfires. While the average total cost per fire is 

$101,292, the cost distribution is very wide and total cost standard deviation is $2.2 million. 11% 

of fires reported no costs. The average burned area is nearly 250 hectares, however, this variable 

also varies widely, with a standard deviation of 7,477 ha. Most fires responded by Alberta Wildfire 

take place on provincial land (72%) and a large majority of fires receive immediate suppression 

(94%). The reporting delay, measured as the hours between fire ignition and reporting to Alberta 
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Wildfire also ranges widely; however, a considerable number of time entries in the datasets contain 

likely transcription errors in the dataset7.  

Table 2.2  Summary statistics on wildfires, 2015 to 2020 
 N Mean Std Dev Min Max 

Total cost per fire ($, 2020) 7525 101,292 2,234,273 0.00 142,670,231 

Fires with no cost 7525 0.11 0.31 0.00 1.00 

Burned area (ha) 7525 248.85 7,477.54 0.01 485,124 

Provincial land 7525 0.72 0.45 0.00 1.00 

Immediate suppression 7524 0.94 0.24 0.00 1.00 

Reporting delay (hours) 7331 140.04 1,442.25 0.00 78,888.27 

 

Figure 2.2 shows that, a) while most fires have been suppressed as small fires at low cost, 

b) a significant proportion of yearly expenditures are attributed to large wildfires of class E, 

exceeding 200 hectares. Moreover, in some years, a large share of Alberta Wildfire’s operation 

expenditures can be accrued by just a handful of these large fires. In 2019, the total cost for all 

fires in our sample reach $282 million; half of this amount is accounted by one individual wildfire. 

Combined with the next four most expensive events, these wildfire operations make up 86% of the 

suppression expenditure in 2019 (Figure 2.3). 

                                                 
7 For a detailed explanation of these data errors and our resolution of these errors, see Exclusions of fire observations, 

below. 
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Figure 2.2 Yearly counts and yearly expenditures by size class 

a) Count of yearly Alberta Wildfire fires by size class 

b) Yearly suppression operation expenditures by size class (millions of 2020 dollars) 

 

 

Figure 2.3 Proportion of suppression expenditure incurred by Alberta Wildfire  

for the five largest fires in 2019 ($282 million total) 
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Delay in wildfire detection and reporting also affects suppression costs, particularly for 

small size class A and B wildfires, under 4 hectares. Reporting delay measures the hours between 

the time a wildfire starts (or is predicted to have started) to the time it is reported to the Alberta 

Wildfire Coordination Centre. Figure 2.4 shows that, there is a positive correlation between log 

suppression cost and Reporting delay in most subsets of wildfires8. However, this relationship is 

only significant size in class A and B (p < 0.01)9. 

 
Figure 2.4 Log cost and Reporting delay by size class. 

(excluding observations with ≥ 30-day Reporting delay) 

 

                                                 
8 We exclude observations in which Reporting delay exceeds 30 days, due to concerns with transcription errors in the 

dataset, as well as to mitigate outliers. (See Exclusions of fire observations, below) 
9 For a report on the significance of the effect of Reporting delay on Log Cost, see Table C.1 in Appendix C: Auxiliary 

regressions 
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Having considered how one variable, Reporting delay, impacts suppression expenditures, 

we continue onto the next section detailing how the fire-level variables are transformed or 

calculated from original datasets. 

Creating variables 

Firstly, we collapse itemized Alberta Wildfire expenses to the fire level in order to generate the 

total cost of suppression per fire, adjusted to 2020 dollars. Among the reviewed wildfire 

expenditure literature, we see some papers specifying cost per area as the dependent variable 

(Donovan et al., 2011; Gebert et al., 2007; Yoder and Gebert, 2012), some others using total cost 

(Clark et al., 2016; Hand et al., 2016; Hand et al. 2014, chap. 4; Liang et al., 2008), or both (Gebert 

and Black, 2012). We choose to focus on total suppression expenditure per fire, because we 

believe, as argued by Hand et al. (2016) in the US context, that fire-level total costs are much more 

salient to a wildfire management agency.. Hand et al. contend that suppression effort: i) is applied 

at a portion of the free-burning perimeter, and not on a per-unit area basis; ii) is affected by the 

size, shape and location of a wildfire relative to landscape and values-at-risk; iii) can be influenced 

by resource availability and unit cost of resources; and iv) can be adjusted in response to spatial 

and temporal variation in fire conditions. As such, Hand et al. assert that suppression effort is better 

reflected through total cost, rather than cost per area. Furthermore, we notice in summary reports 

(MNP LLP, 2020, 2017, 2016) and through our personal communication, Alberta Wildfire also 

considers expenditures as fire-level costs. Thus, we choose to define the dependent variable of our 

empirical model is the (log of) total cost of suppression on the fire-level, adjusted to 2020 dollars.  

Explanatory variables can be categorized into three categories: Fire environment, 

Operation, Values-at-risk (Table 2.3). Most variables are transformed or calculated from original 
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datasets using Stata, and data from geospatial sources has been manipulated with ArcGIS and 

Stata. All variables are specified at the fire-level. 

Most variables are sourced from Alberta Wildfire’s proprietary Fire Information Resource 

Evaluation System database (FIRES). Using original variables from FIRES, we create dummy 

variables for Fuel type, Fire type, and Jurisdiction. Some observations of Fire type are manually 

categorized because they were recorded in FIRES as string values rather than categorical values. 

Additionally, we use the recorded times for suppression phases10 to calculate two continuous 

variables: Other fires, a measure of resource availability, and Reporting Delay. Gebert et al. (2007) 

calculate a resource availability as the average number of fires in the same region in previous 

years; as we will control for the fixed effects of year, our variable is made of the number of 

concurrently burning fires on the assessment date of fire 𝑖, when the lead wildfire Incident 

Commander must consider what resources to order for initial suppression. When there are more 

fires burning across the province, we speculate that there are less resources available for 

immediately deployment to fire 𝑖11. Reporting Delay is the number of hours between the time of 

wildfire ignition (or predicted time of ignition) and the time when the fire is reported to Alberta 

Wildfire Coordination Centre. Reporting Delay is a key policy variable, as it serves as a measure 

of Alberta Wildfire’s detection and reporting apparatus. 

Alberta Wildfire also provided a dataset with daily weather observations for 499 weather 

stations throughout the FPA, across the timeframe of our study period. While some papers use a 

fire weather index to control for weather conditions (Clark et al., 2016; Gebert et al., 2007; Yoder 

                                                 
10 Wildfire suppression phases: start, report, arrival, assessment, being held, under control, extinguished, current 

(final evaluation). See Figure 2.1 for a visual display of the all chronological phases. 
11 As our Other fires variable is calculated from assessment date +/- 2 days, so imported and newly recruited resources 

should not meaningfully impact total resource availability. 
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and Gebert, 2012), following Bayham and Yoder (2020), we elect to calculate Temperature, Wind 

speed, Rain and Relative Humidity from raw values in the Alberta Wildfire weather dataset, 

focusing on values that capture the max/min/total weather conditions on assessment date 

plus/minus two days which would drive fire behaviour: maximum temperature, maximum wind 

speed, total rain fall and minimum relative humidity. These weather variables are created from 

mean observations of every weather station within 50 km from the coordinates of the fire ignition 

point12. We recognize there is the possibility of two-way causal relationship between fire weather 

and suppression costs, particularly in large, long-lasting fires. In such scenarios, it is possible that 

weather conditions drive fire behaviour, which in turn affects suppression costs, while 

simultaneously, costs reflect suppression efforts that will alter fire growth and behaviour, which 

in turn can impact regional weather conditions. To mitigate endogeneity, we focus on weather 

observations that drive a fire in its initial period, which we define as five days centered on the 

assessment date. 

Following Gebert et al. (2007), we control for the influence of topography on fire behaviour 

using calculated aspect and elevation variables. These variables are sourced from Altalis, a public-

private provider of geospatial data. Using the 100-metre raster projection of the Alberta Provincial 

Digital Elevation Model, we create dummy variables of South aspect and High elevation (over 

1250 m, which is approximately where the eastern slopes of the Rocky Mountains begin), and we 

account for elevation variation within the landscape as Elevation difference between the highest 

and lowest points within the “pseudo-burned area” of the fire. As geospatial data on wildfire 

                                                 
12 The range and accuracy of wildfire weather stations is highly dependent on local conditions, and after consulting 

Alberta Wildfire we were unable to determine range precision for stations in our dataset (personal communication). 

At the 50 km buffer, stations cover 7,522 of 7,525 ignition points in our dataset. For more research into fire weather 

specification, see Cai et al. (2019); Lawson and Armitage (2008); National Wildfire Coordinating Group (2019). 
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perimeter is not available for all fires, we define the pseudo-burn area as a circle originating from 

the ignition point with an area equal to the final burned area recorded in FIRES. 

Values-at-risk are the residential, industrial and infrastructure assets that are threatened by 

wildfire. In this model, Values-at-risk are dummy variables that indicate the presence of an asset 

within close distance to a wildfire. We define these assets using a variety of data sources: 

Community (Alberta Wildfire, internal dataset on wildfire community locations), national or 

provincial Park (Government of Alberta’s GENeric Enterprise Spatial Information Services, 

GENESIS), Power generation (GENESIS) and Road (Statistics Canada, National Road 

Networks). We select these assets because they represent some of the values-at-risk mostly 

commonly defined in the reviewed literature (Donovan et al., 2011; Gebert et al., 2007; Liang et 

al., 2008), and because communities, parks, power generating stations and roads have been present 

and stationary in the Forest Protection Area throughout our study period, from 2015 to 2020. These 

Values-at-risk variables also represent some of Alberta Wildfire’s protection priorities, which are 

in decreasing order of importance: Human Life, Communities, Watershed and Sensitive Soils, 

Natural Resources, Infrastructure (Alberta Wildfire, 2017). We could expect that the coefficient 

estimates on Values-at-risk to reflect Alberta Wildfire priorities (i.e. “important” values-at-risk 

receive more suppression expenditure), however we are cautious to interpret Values-at-risk solely 

through this lens. Values-at-risk may also capture unobserved attributes that can be a source of 

heterogeneity between individual wildfire suppression operations. Table 2.3 offers an overview of 

all variables used in the empirical model. 
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Table 2.3 Variables used in development of regression equation.  

Dependent variable: Wildfire suppression expenditures (2020 dollars, log form) 

Fire characteristics Variable definition Source Calculated 

Fire environment    

Weather Weather variables are max/min/total on 

assessment day +/- 2 days  

 

Temperature Maximum temperature (°C) FIRES yes 

Wind speed Maximum wind speed (km/h) FIRES yes 

Rain Total rainfall (mm) FIRES yes 

Humidity Minimum relative humidity (%) FIRES yes 

Fuel type Dummy variable* for Timber or Slash fuel types  

(reference: Open (grass, peat, moss) or Manmade) 

FIRES original 

Fire type Dummy variable for Crown fire type  

(reference: Ground or Surface) 

FIRES original 

High elevation Dummy variable for elevation over 1250 m Altalis yes 

Elevation difference Difference in elevation between highest and lowest 

elevation points of the pseudo-burned area† 

Altalis yes 

South aspect Dummy variable for mean aspect between 157.5-

202.5° 

Altalis yes 

Lake/River Dummy variable for lakes/rivers (within 3km). 

Surface water can serve as natural boundaries, and 

can be used to suppress fire. 

GENESIS yes 

 

 

 
 

Operation  

 
 

Other fires Number of wildfires across Alberta on assessment 

day 

FIRES yes 

Reporting delay Hours of delay between fire ignition and report FIRES yes 

Assessment result Dummy variable for the assessment decision for 

Delayed action (reference: Immediate Action) †† 

FIRES original 

Jurisdiction Dummy variables for land on which the fire started: 

provincial, indigenous (reference: private land) 

FIRES original 

    

Values-at-risk (Presence of value-at-risk within 3km) 
 

 

Community Dummy variable for town/hamlet/village/ 

settlement 

Alberta 

Wildfire 

yes 

Park Dummy variable for Provincial or National Park GENESIS yes 

Oil and gas Dummy variable for oil and gas facility GENESIS yes 

Power generation Dummy variable for power generating station GENESIS yes 

Road Dummy variable for road StatCan yes 
* For variables that are dummy variables, 1 = presence of the attribute; 0 = absence. 

† The pseudo-burn area is a circle centered on the ignition point, with the same area as the final burn area recorded in FIRES 

†† Delayed action includes categories: “Beyond Resources Capability”, “Delayed Action - Lower Priority”, “Delayed Action - 

No Resources Available” 
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Exclusions of fire observations  

The identifier of an observation in our empirical models is a fire. We focus on wildfires in which 

the Wildfire Management Branch responded from April 1, 2015 to December 31, 2020 (n = 7,525). 

Due to some gaps in data, as well as some outlier wildfire events, we make a series of exclusions 

so that the regression model has explanatory power. 

i. Missing weather observations: no Alberta Wildfire fire weather observations within 50 km 

of ignition point on all assessment +/- 2 days (n = 290) 

ii. Missing fuel type or fire type: values not recorded in FIRES (n = 921) 

iii. Missing Assessment delay: value not recorded in FIRES (n = 1) 

iv. Missing topographic data: missing from GENESIS elevation map (n = 2) 

v. Missing ignition / report times: values not recorded in FIRES (n = 194) 

vi. Reporting delay greater than 30 days: Exclusion of these observations (n = 446) serve two 

purposes: 

a. Wildfires that were unreported within a month of ignition may have some 

unobservable characteristics that make them unpredictable to suppress, and will 

also incur unexpected expenses, 

b. We notice a considerable number of possible transcription errors in the dataset, in 

which it appears month or year had been incorrectly entered (e.g., the ignition time 

is recorded as 2015-07-01 12:12, and reported time is 2015-08-01 12:45 or 2016-

07-01 12:45). Most of these errors were found in entries of smaller wildfires (size 

class A/B). As we are unable to discern erroneous entries from real observations, 

removing all observations of 30+ day delay will mitigate effects of both outliers 

and reporting error. 
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vii. Wildfire complexes: Generally, researchers acknowledge fire-level expenditures are 

difficult to determine within fire complexes (Gebert et al., 2007). In personal 

communication with Alberta Wildfire, we were informed that expenditure identification 

issues in fire complexes may exist within their database. (n = 101) 

viii. Turned-over: We exclude fires that had been turned over from Alberta Wildfire to another 

agency, as the total cost of suppression may not reflected in Alberta Wildfire’s 

expenditures dataset. (n = 668) 

ix. Military land: A set of observations of wildfires on Department of National Defense were 

excluded, as high costs were associated with these fires, likely due to the political and 

safety concerns for wildfire spread to military equipment such as munitions. (n = 30) 

 

Additionally, we exclude Fires with zero cost in the main OLS model (n = 839). We specify 

cost in log form and the natural logarithm is only defined for variables greater than zero. After 

these exclusions, the final number of observations used in the main empirical model is 5,098.  

Table 2.4, below, is a series of summary statistics tables for the variables used in the main 

empirical model, separated by size class. 
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Table 2.4 Summary statistics by wildfire size class 
 N Mean Std Dev Min Max 

      

Size class A (0 to 0.1ha)      

Temperature (°C) 3440 20.45 5.50 -9.10 33.00 

Wind speed (km/h) 3440 16.96 6.29 3.50 50.00 

Rain (mm) 3440 1.55 3.18 0.00 40.27 

Relative Humidity (%) 3436 36.02 10.59 10.00 89.00 

Fuel type: Timberslash 3054 0.56 0.50 0.00 1.00 

Fire type: Crown fire 3063 0.02 0.13 0.00 1.00 

South aspect 3518 0.22 0.41 0.00 1.00 

High elevation 3518 0.24 0.42 0.00 1.00 

Elevation difference (m) 3518 0.00 0.00 0.00 0.00 

Lake/River within 3km 3518 0.29 0.45 0.00 1.00 

Other fires 3518 27.26 28.14 0.00 125.00 

Reporting delay (hr) 3518 11.69 49.34 0.00 697.34 

Delayed suppression 3518 0.05 0.22 0.00 1.00 

Provincial land 3518 0.77 0.42 0.00 1.00 

Indigenous land 3518 0.14 0.35 0.00 1.00 

Community 3518 0.20 0.40 0.00 1.00 

Park 3518 0.05 0.22 0.00 1.00 

Power generation 3518 0.01 0.09 0.00 1.00 

Road 3518 0.74 0.44 0.00 1.00 

      

Size class B (>0.1 to 4ha)      

Temperature (°C) 1654 20.78 5.90 -2.50 33.40 

Wind speed (km/h) 1654 17.35 6.43 0.00 47.00 

Rain (mm) 1654 1.05 2.50 0.00 27.93 

Relative Humidity (%) 1646 34.91 10.21 11.00 100.00 

Fuel type: Timberslash 1726 0.60 0.49 0.00 1.00 

Fire type: Crown fire 1726 0.05 0.23 0.00 1.00 

South aspect 1725 0.21 0.41 0.00 1.00 

High elevation 1726 0.05 0.22 0.00 1.00 

Elevation difference (m) 1726 0.38 1.93 0.00 33.72 

Lake/River within 3km 1726 0.31 0.46 0.00 1.00 

Other fires 1726 26.55 27.70 0.00 125.00 

Reporting delay (hr) 1726 10.82 42.94 0.00 698.69 

Delayed suppression 1726 0.05 0.23 0.00 1.00 

Provincial land 1726 0.70 0.46 0.00 1.00 

Indigenous land 1726 0.23 0.42 0.00 1.00 

Community 1726 0.23 0.42 0.00 1.00 

Park 1726 0.01 0.12 0.00 1.00 

Power generation 1726 0.01 0.08 0.00 1.00 

Road 1726 0.57 0.50 0.00 1.00 
Note: See Table 2.3, above, for a detailed description of all variables. 
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Table 2.4 Summary statistics by wildfire size class (continued i.) 
 N Mean Std Dev Min Max 

      

Size class C (> 4 to 40 ha)      

Temperature (°C) 325 22.20 5.95 0.70 31.70 

Wind speed (km/h) 325 17.69 6.57 5.00 43.00 

Rain (mm) 325 1.04 2.76 0.00 25.23 

Relative Humidity (%) 324 33.97 9.62 12.31 59.67 

Fuel type: Timberslash 333 0.71 0.45 0.00 1.00 

Fire type: Crown fire 333 0.21 0.41 0.00 1.00 

South aspect 333 0.24 0.43 0.00 1.00 

High elevation 333 0.07 0.25 0.00 1.00 

Elevation difference (m) 333 7.02 17.04 0.06 230.07 

Lake/River within 3km 333 0.19 0.39 0.00 1.00 

Other fires 333 31.11 30.19 0.00 125.00 

Reporting delay (hr) 333 10.23 35.30 0.00 336.31 

Delayed suppression 333 0.07 0.26 0.00 1.00 

Provincial land 333 0.78 0.41 0.00 1.00 

Indigenous land 333 0.14 0.34 0.00 1.00 

Community 333 0.10 0.30 0.00 1.00 

Park 333 0.01 0.09 0.00 1.00 

Power generation 333 0.00 0.05 0.00 1.00 

Road 333 0.44 0.50 0.00 1.00 

      

Size class D (> 40 to 200 ha)      

Temperature (°C) 89 24.38 3.96 10.00 30.50 

Wind speed (km/h) 89 17.48 6.41 7.00 38.00 

Rain (mm) 89 0.69 1.75 0.00 9.45 

Relative Humidity (%) 89 33.37 8.81 17.00 61.81 

Fuel type: Timberslash 95 0.92 0.28 0.00 1.00 

Fire type: Crown fire 95 0.48 0.50 0.00 1.00 

South aspect 95 0.22 0.42 0.00 1.00 

High elevation 95 0.04 0.20 0.00 1.00 

Elevation difference (m) 95 13.39 20.32 0.61 132.79 

Lake/River within 3km 95 0.17 0.38 0.00 1.00 

Other fires 95 38.73 31.53 3.00 125.00 

Reporting delay (hr) 95 13.65 35.19 0.00 234.36 

Delayed suppression 95 0.18 0.39 0.00 1.00 

Provincial land 95 0.91 0.29 0.00 1.00 

Indigenous land 95 0.07 0.26 0.00 1.00 

Community 95 0.02 0.14 0.00 1.00 

Park 95 0.02 0.14 0.00 1.00 

Power generation 95 0.01 0.10 0.00 1.00 

Road 95 0.29 0.46 0.00 1.00 
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Table 2.4 Summary statistics by wildfire size class (continued ii.) 
 N Mean Std Dev Min Max 

      

Size class E (> 200 ha)      

Temperature (°C) 85 25.18 4.25 6.30 32.60 

Wind speed (km/h) 85 18.61 7.38 4.00 44.00 

Rain (mm) 85 0.82 3.21 0.00 24.70 

Relative Humidity (%) 85 31.80 8.77 12.31 58.35 

Fuel type: Timberslash 94 0.91 0.28 0.00 1.00 

Fire type: Crown fire 94 0.36 0.48 0.00 1.00 

South aspect 94 0.27 0.44 0.00 1.00 

High elevation 94 0.09 0.28 0.00 1.00 

Elevation difference (m) 94 116.91 246.20 2.41 1465.13 

Lake/River within 3km 94 0.16 0.37 0.00 1.00 

Other fires 94 40.49 33.08 1.00 125.00 

Reporting delay (hr) 94 24.48 65.81 0.00 435.81 

Delayed suppression 94 0.30 0.46 0.00 1.00 

Provincial land 94 0.99 0.10 0.00 1.00 

Indigenous land 94 0.00 0.00 0.00 0.00 

Community 94 0.02 0.15 0.00 1.00 

Park 94 0.02 0.15 0.00 1.00 

Power generation 94 0.00 0.00 0.00 0.00 

Road 94 0.10 0.30 0.00 1.00 

 

2.4. Empirical model   

To determine the impacts of policy and environmental factors on wildfire expenditures, we 

estimate the following model: 

𝑦𝑖𝑟𝑡𝑚 = 𝛽𝑊 ∙ 𝑊𝑖𝑟𝑡𝑚 + 𝛽𝑋 ∙ 𝑋𝑖𝑟𝑡𝑚 + 𝛽𝑉 ∙ 𝑉𝑖𝑟𝑡𝑚 + 𝜆𝑟 + 𝛿𝑡 + 𝜇𝑚 + 𝜀𝑖𝑟𝑡𝑚 

in which 𝑦𝑖𝑟𝑡𝑚 is the log of the total suppression expenditure (in 2020 dollars) incurred on fire 𝑖, 

in Forest Area region 𝑟, in year 𝑡, in the month of the year 𝑚. The log specification allows us to 

interpret the marginal effects of each independent variable as its impact to a percentage of cost. 

Categories of explanatory variables include: Fire environment (𝑊𝑖𝑟𝑡𝑚); Operational variables, 

including reporting delay, jurisdiction and other concurrent fires (𝑋𝑖𝑟𝑡𝑚); and Values-at-risk to be 

protected from wildfire, including communities, national and provincial parks and roads (𝑉𝑖𝑟𝑡𝑚). 
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Forest Area, Alberta Wildfire’s administrative subregion unit, year, and month are fixed effects 

represented by 𝜆𝑟 , 𝛿𝑡, 𝜇𝑚 (Descriptions of variables are in Table 2.3). 

In our specification we absorb the fixed effects of Forest Area region, year and month on 

wildfire suppression. We apply the a high-dimensional fixed effects regression function13 to split 

samples of wildfires. Wildfires are split by size class (from A to E), so that we control for any 

unobserved heterogeneity due to size class-specific standard operating procedures (Alberta 

Wildfire internal documents; personal communication). Separation of wildfires by size classes also 

serves to control the effects of wildfire size while also omitting Burned area, mitigating the 

potential for the area variable to be endogenous with our dependent variable, suppression 

expenditure (Gebert et al., 2007; Hand et al., 2016). 

 

2.5. Overview of empirical analysis  

Having controlled for Temperature, Wind speed, and other environmental factors, we anticipate 

that the model will discern the effect of discretionary policy choices made during wildfire 

suppression operations. 

We expect that to observe that an additional number of fires concurrently burning across 

the province creates complexity in suppression resource allocation, as reflected in a change in the 

level of suppression costs per fire. During a busy part of the fire season, “competition” for 

suppression resources may lead to either higher or lower suppression costs per fire. Higher costs 

can be incurred if a) existing resources are utilized beyond normal capacity (e.g. overtime 

                                                 
13 We employ the Stata package reghdfe (Gaure, 2010; Guimarães and Portugal, 2010), a linear Ordinary Least Squares 

regression function with high-dimensional fixed effects.  
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payments for staff, additional fuel costs for aircraft), or b) additional resources are made available 

to Alberta Wildfire (e.g. through emergency contracting, or borrowing resources from other 

jurisdictions). Lower costs per fire could also be observed due to: a) economies of scale in 

firefighting, whereby each additional concurrently burning wildfire is less expensive to supress 

because resources are distributed more efficiently across multiple wildfires, or b) lack of sufficient 

resources, such that each wildfire is allocated fewer resources than usual. 

In addition, this empirical model can uncover the relationship between wildfire detection 

times and suppression expenditures. A wildfire that has been promptly detected and reported is 

smaller in size and intensity. Such wildfires can be suppressed by Initial Attack resources in a 

quick and cost-effective manner. Delayed reporting means that a wildfire has the potential to 

develop in size and intensity in the absence of intervention. Large, fast-burning fires will require 

more personnel, equipment and/or aircraft for control and suppression, thus incurring a higher 

level of expenditure. 

 Through our empirical model, we are also interested in finding how the operational 

decision to delay immediate suppression will influence total suppression costs. Gebert and Black 

(2012) propose that direct suppression results in lower total expenditure, reasoning that a wildfire 

that does not receive immediate suppression may develop in a manner that will require more 

resources later on. 

In our model it will be possible to observe that wildfires in provincial and indigenous lands 

incur higher expenses than those on private lands, because of Alberta Wildfire’s jurisdictional 

mandate. With the inclusion of values-at-risks (communities, parks, power generating stations, 

roads), the model can demonstrate how priority infrastructure are protected, as demonstrated 

through heightened levels of suppression expenditure. The proximity to values-at-risk can have an 
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ambiguous effect on expenditures. Suppression of fires close to communities, parks and power 

generating stations may receive more expenditure, reflecting Alberta Wildfire’s mission to protect 

these values-at-risk. However, the effect of nearby roads on costs remains uncertain because they 

serve both as access for suppression units, thus reducing operational costs, but as key infrastructure 

requiring protection, may incurring higher costs. It is therefore difficult to interpret estimates of 

coefficients of values-at-risk variables given that our data does not have the variation to allow us 

to disentangle the effects of Alberta Wildfire’s mission (that is constant across the sampling 

period) from those of other expenditures confounding factors. 

 

2.6. Results 

Table 2.5 presents the coefficients of our empirical model estimated in a split sample approach 

where each split is determined by fire class (from A to E). Each column shows the results of one 

empirical model (or one split sample). For example, column A shows the estimates of the 2,965 

class A fires in our sample. The estimates represent the effect of a factor on the log expenditure in 

each wildfire suppression operation.  
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Table 2.5 OLS regression models on Log Expenditure (2020 dollars), by wildfire size class 
 A B C D E 

Fire environment      

Temperature (°C) 0.030** 0.034** 0.059** 0.080 0.380*** 

 (0.010) (0.012) (0.022) (0.114) (0.063) 

Wind speed (km/h) 0.001 0.017* 0.004 0.054** 0.000 

 (0.006) (0.008) (0.009) (0.020) (0.026) 

Rain (mm) -0.024* -0.005 -0.053** 0.007 -0.138*** 

 (0.012) (0.014) (0.017) (0.093) (0.025) 

Relative Humidity (%) -0.007 -0.007 0.035*** 0.049 0.063 

 (0.007) (0.005) (0.009) (0.034) (0.061) 

Fuel type: Timberslash 1.275*** 1.164*** 1.215*** 0.602* -0.669 

 (0.156) (0.071) (0.354) (0.275) (1.354) 

Fire type: Crown fire -0.173 0.482*** 0.094 0.211 0.248 

 (0.277) (0.130) (0.174) (0.112) (0.376) 

South Aspect (true south) 0.023 0.170* 0.087 -0.048 1.110* 

 (0.130) (0.077) (0.244) (0.394) (0.534) 

High elevation 0.085 0.210 0.537 0.000 0.000 

 (0.212) (0.155) (0.365) (.) (.) 

Elevation difference (m) 0.000 0.147*** 0.014 -0.005 0.007 

 (.) (0.025) (0.008) (0.003) (0.004) 

Lake/River within 3km -0.136 -0.047 0.115 0.248 0.184 

 (0.092) (0.068) (0.231) (0.415) (1.087) 

Operation      

Other fires -0.000 -0.002 -0.005 -0.001 -0.024** 

 (0.002) (0.002) (0.005) (0.008) (0.009) 

Reporting delay (hr) 0.002*** 0.002*** 0.001 -0.010 0.006 

 (0.000) (0.000) (0.002) (0.007) (0.005) 

Strategic delay -0.223* -0.465*** -1.532** -1.409*** -0.914 

 (0.102) (0.094) (0.601) (0.115) (0.722) 

Provincial land 0.276 0.401* 0.759* 0.049 0.000 

 (0.200) (0.194) (0.359) (0.156) (.) 

Indigenous land 0.315 0.001 0.100 -0.662 0.000 

 (0.172) (0.171) (0.442) (0.532) (.) 

Values-at-risk (within 3 km)      

Community -0.449*** -0.578*** 0.332 1.725*** 1.671 

 (0.086) (0.172) (0.484) (0.204) (1.071) 

Park 0.174 0.112 1.155 0.000 0.874 

 (0.193) (0.243) (0.632) (.) (1.567) 

Power generation 0.393 -0.194 1.178*** 3.268*** 0.000 

 (0.287) (0.418) (0.331) (0.365) (.) 

Road -0.573*** -0.318*** -0.398** -0.126 0.227 

 (0.076) (0.088) (0.145) (0.226) (0.875) 

N 2,965 1,644 323 85 81 

R-squared 0.431 0.522 0.536 0.617 0.564 
All models include corporate region, year, and month of the year fixed effects. Standard errors clustered at the corporate region are 

in parenthesis. Size classes: A: 0 to 0.1 ha; B: >0.1 ha to 4 ha; C: > 4 ha to 40 ha; D: >40 ha to 200 ha; E: >200 ha. 

* p<0.10, ** p<0.05, *** p<0.01 

 

 



38 

 

Results of these models are outlined below; a detailed discussion of these results follow in 

Section 2.8, below. In general, coefficients on Fire environment variables have the expected signs. 

Higher temperature and windspeed during the initial days of the fire exacerbate conditions, making 

fires more expensive to fight, while additional rainfall reduces costs. For every additional Celsius 

degree increase in temperature, the cost of suppressing class A and B fires increases by 3%; 

however, an additional degree makes class E fires (200 ha+) 38% more expensive. On average, an 

additional millimetre of rain during the initial fire period will reduce expenditures for a class E 

wildfire close to 14%. The significantly positive effect of relative humidity on class C fires is 

unexpected, because low relative humidity correlates with extreme fire weather (MNP LLP, 2017). 

However, given that relative humidity is a determinant of fire ignition (Adab et al., 2013; Plucinski 

et al., 2014; Vasilakos et al., 2009) and our observations are those of already ignited fires, it is 

possible that this variable is not as pertinent to determining fire behaviour and suppression costs. 

Additionally, it is possible that the variable South aspect, which identifies landscapes receiving 

more sunlight, may be capturing some of the variation that would be identified by Relative 

humidity. Indeed, suppression of class B and E fires on a south aspect is marginally significant in 

additional cost. 

Compared to the costs of fighting fires on grass or manmade fuels, suppression of class A, 

B and C wildfires are more than twice as expensive when flames catch on standing or slashed trees. 

As well, class B fires are 48% more expensive when flames reach tree crowns. The positive 

correlation between timber/slash fuel and higher suppression costs can be expected, as fires will 

tend to burn more intensely on these fuels (Clark et al., 2016; Gebert et al., 2007; Gebert and Black, 

2012). While fires above 1250 m elevation (mainly located in the eastern slopes and some parts of 

the Grande Prairie region) are not significantly more expensive, expenditures for class B fires 
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increase with landscape variation in the order of 15% per additional metre of elevation difference 

between the highest and lowest points. Lakes or rivers act as natural barriers or water sources for 

suppression; however, the results show that the presence of water bodies anywhere within a 3km 

radius of a fire is insignificant. 

Coefficients on Operations variables demonstrate the impact of Alberta Wildfire’s 

protocols and response strategies. For every additional fire that is concurrently burning in the 

province, Alberta Wildfire will spend less resources on each individual wildfire, although the 

impact of Other fires is only significant in large class E fires (>200 ha). Delay between fire ignition 

and reporting to Alberta Wildfire also significantly and positively impacts suppression costs of 

class A and B fires (up to 4 ha), though it is a relatively small impact of 0.2% for every additional 

hour.  

Results indicate that the strategic decision by the initial response team to delay immediate 

suppression action does not cause wildfire suppression to be more expensive. Compared to fires 

that receive immediate suppression, fires in which resource allocation is delayed (due to 

overwhelming fire conditions, resource non-availability or low suppression priority) have 

significantly reduced expenditures, by order of 47% for class B fires, 153% for class C fires and 

140% for class D fires. 

Alberta Wildfire’s jurisdiction is limited to provincial public lands in the Forest Protection 

Area, as well as select Government of Canada jurisdictions (including Indigenous Services, 

National Defense). Compared to suppression efforts on private land, class B and C wildfires on 

Crown land are marginally significant in receiving additional suppression expenditures 

(respectively, 40%, 76%). Suppression costs on indigenous lands (incl. First Nations and also 

Metis settlements) are not significantly different from costs on private land; however, it is possible 
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that some degree of variation may be captured by the Values-at-risk variable Community, which 

also includes communities on indigenous lands. While we exclude Military land from our main 

analysis due to relatively few observations (n = 30), Table C.3 shows that size class B and C fires 

on National Defense bases receive significantly more additional suppression costs, compared to 

fires with otherwise similar conditions off-base. 

The presence of certain Values-at-risk tend to also influence suppression expenditures. The 

effect of Community, the presence of a community within 3 km of ignition, reduces costs by 45% 

and 58% for size class A or B fires, respectively. However, if a wildfire close to a community 

grows to size class D levels (>40 ha to 200 ha), its suppression becomes 173% more expensive. 

The observed effect may be attributed to better detection/access for small fires close to 

communities, as well as an impetus to suppress large wildfires that threaten lives and property that 

are concentrated in communities. The cause of this effect is discussed further in Section 2.8, below. 

Larger fires also require additional suppression costs when a power generating station is 

within its 3 km vicinity; class C fires will 118% more costly, and class D, 327%. Access to the 

wildfire, as captured by Road within 3 km, makes suppression of fires up to 40 ha significantly 

less expensive, reducing costs by 57%, 32% and 40% respectively for classes A, B, and C. The 

presence of a national or provincial park within 3 km can induce more expenditures in suppressing 

class A, B, C and E fires, although this relationship is not significant. 

Estimating components of expenditure 

We estimate simplified expenditure models in order to determine what the proportions of 

expenditure variation can be attributed to environmental and policy variables: 

𝑦𝑖𝑟𝑡𝑚 = 𝛽𝑊 ∙ 𝑊𝑖𝑟𝑡𝑚 + 𝛽𝑟 ∙ 𝐹𝑟 + 𝛿𝑡 + 𝜇𝑚 + 𝜀𝑖𝑟𝑡𝑚 
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where 𝑊 is a vector of Fire environment variables and 𝐹 represents Forest Area dummy variables. 

We compute mean predicted expenditure per fire of each size class (mean �̂�)  by making partial 

predictions at the mean of Fire environment �̂�𝑊�̅� and Forest Area effects �̂�𝑟�̅�. While the effects 

on Fire environment variables are time and region specific, the estimates on Forest Area represent 

effects that are time-invariant. The Forest Area effect captures a wide array of policy impacts that 

are not captured in our dataset, including the influence of fixed regional managers, resource 

capacity and operational preparedness. Estimates from Forest Area demonstrate how operational 

conditions at the regional level impact costs; however, we recognize these estimates could also be 

capturing the impact of other unobserved environmental factors that are fixed over time. To make 

more accurate predictions, we exclude observations of wildfire that were above the 95th 

expenditure percentile of each size class. 

Table 2.6 Estimates of expenditure proportion (Environment and Forest Area) 

 Size class 

  A   B 

Count 3042  1582 

 $ %  $ % 

Mean total cost per fire 3040 100%  16542 100% 
      

Environment 2402 79%  12886 78% 

Forest Area 755 25%  104 1% 

Residuals -117 -4%  3552 21% 
Observations above 95% percentile of expenditure level per size class have been excluded. Year and month have been absorbed. 

As costs predictions are more robust in large samples without extreme values, in Table 2.6 

we report on the expenditure component estimates for size classes A and B (with, 3,042; 1,582 

observations, respectively). In the postestimation models for classes A and B, we observe Fire 

environment variables making up a large proportion of expenditures in suppressing fires under 4 

ha. For instance, Alberta Wildfire spends an average of $16,542 to suppress a class B (>0.1 to 4 

ha) wildfire; within this cost, $12,886 (78%) can be attributed to conditions that are beyond the 
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agency’s control, while $104 (1%) can be attributed to internal regional organization or 

unobserved time-invariant environmental factors.  

2.7. Evaluating impacts of wildfire detection with Machine Learning 

Thus far, we have focused on the impacts of wildfire suppression operations, and particularly, on 

how these impacts are reflected in expenditures. In this section, we highlight a critical policy 

variable that drives the momentum of every wildfire suppression mission: Reporting delay. 

Alberta Wildfire’s response framework begins as soon as a wildfire is detected in the Forest 

Protection Area (FPA), reported to the Alberta Wildfire Coordination Centre (AWCC) which 

relays the incident to its respective Forest Area region14. Only then are resources mobilized to the 

fire for assessment and suppression action, ending the response process at extinguishment. Within 

this strategic framework, the preliminary stages of detection and reporting are critical, because the 

early and precise detection of wildfires allows decisionmakers the necessary time and information 

to implement an appropriate response.  

Currently, wildfire detection depends largely on regular patrols by crews on the ground, on 

water, and in the air, as well as on public reporting. Alberta is also one of the last jurisdictions in 

Canada to keep an extensive network of manned lookout towers, which Alberta Wildfire maintains 

is critical for precise wildfire detection in a populous wildland-urban interface that covers much 

of the FPA (Cheek, 2021). In 2021, Alberta Wildfire has invested over $4.3 million in piloting the 

use of tools such as cameras and drones (CBC News, 2021; Cheek, 2021). This technological 

                                                 
14 see Appendix A: Maps of the FPA and FAs for maps of FPA and FA regions 
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renewal seeks to improve detection capacity, as well as to help the agency in its resilience to budget 

shocks that have impacted staffing in recent fire seasons (MacVicar, 2019). 

Existing empirical research has proven that early detection is critical for two measures of 

wildfire suppression outcome: total cost and fire duration. Early detection is proven to be essential 

for capping suppression costs (Steele and Stier, 1998), and response time correlates with the 

duration of suppression (Arienti et al., 2006; Hirsch et al., 2004). Through our initial reduced form 

exploration assuming a linear relationship between reporting delay and log costs, we observe that 

small wildfires (class A and B) are significantly less expensive to suppress when they were 

reported sooner. Figure 2.4 in Section  2.3: Data shows that, there is a positive correlation between 

log suppression cost and Reporting delay in most subsets of wildfires. Likewise, earlier reporting 

tends to diminish the time it takes to extinguish small and intermediate sized fires (see Figure B.1 

in Appendix B: Auxiliary figures). 

However, the true functional form of the relationship between reporting delay and 

measures of suppression outcome remains unclear. For example, we do not know the real 

parametric functional form of the influence of Temperature, Wind speed, Elevation, etc. on the 

suppression outcome; if the form is misspecified, our estimated coefficients on the effect of the 

policy variable on the suppression outcome may be biased and inconsistent. Thus, in addition to 

Ordinary Least Squares (OLS) modelling, we also apply a Machine Learning (ML) method in 

analyzing the effect of a key policy variable on wildfire suppression outcome. We are interested 

in how ML explores non-linear relationships between explanatory variables and the outcome of 

interest (costs or duration), as well as how ML captures the influence of confounding variables (in 

our case, those of the Fire environment) on our key policy variable, Reporting delay. In summary, 
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the application of ML overcomes a prominent shortcoming in OLS models: the assumption of a 

linear relationship between explanatory variables and outcome.  

However, typical supervised ML methods can also be too flexible, leading to both 

regularization and overfitting biases. To address these issues, Chernozhukov et al. (2018) propose 

the double/debiased machine learning (DML) method, in which regularization and overfitting are 

addressed via orthogonalization and cross-fitting methods15. In addition to these benefits, DML is 

also favourable for our dataset because this method is well suited to analyze data with relatively 

high dimensionality and small observation size. 

We apply DML to estimate a simplified model: the impact of Reporting delay, a measure 

of wildfire policy (𝑃) on wildfire suppression outcome (𝑌), controlling for Fire environment 

factors (𝑋) and year effects (𝛿). Two measures of wildfire suppression outcome (𝑌) are 

investigated: 1) Log cost per fire, the same dependent variable as our main empirical (Table 2.5), 

and 2) Fire duration between report status to extinguished status. DML is applied to the following 

partially linear model: 

𝑌𝑖𝑡 = 𝛽𝑃𝑖𝑡 + 𝑔(𝑋𝑖𝑡, 𝛿𝑡) + 𝜀𝑖𝑡      (1) 

𝑃𝑖𝑡 = 𝑚(𝑋𝑖𝑡, 𝛿𝑡) + 𝜇𝑖𝑡      (2) 

in which 𝑔(∙) and 𝑚(∙) are nuisance parameters and 𝛽 is the main parameter of interest, indicating 

the effect of policy variable Reporting delay (𝑃𝑖𝑡) on the wildfire suppression outcome of fire 𝑖 at 

                                                 
15 DML has been applied in various field settings, allowing flexible functions to capture the influence of a policy 

variable (P) on an outcome variable (Y), as well as the effect of confounding variables (X) on both P and Y. For 

example: temperature on an energy consumption policy variable and energy efficiency outcome (Burlig et al., 2020); 

weather on a public health policy variable and COVID-19 social distancing outcomes (Holtz et al., 2020); Airbnb 

rental property attributes on a professional/amateur renter policy variable and revenue outcomes (Casamatta et al., 

2022). 
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year 𝑡. Equation (1) models the process determining wildfire suppression outcomes, including 

policy variable 𝑃𝑖𝑡, while also allowing environmental variables (𝑋𝑖𝑡) and year (𝛿𝑡) influence 

outcomes through 𝑔(∙). Equation (2), though not of main interest, plays an important role in 

modeling of 𝑋𝑖𝑡 and 𝛿𝑡 on policy variable Reporting delay (𝑃𝑖𝑡). Both functions 𝑔(∙) and 𝑚(∙) are 

flexible in functional form and allow 𝑋𝑖𝑡 and 𝛿𝑡 to potentially influence both outcome and policy 

variable. 

We apply 400 iterations of the DML algorithm to our set of wildfires. In each iteration 𝑏 

the dataset is randomly split, and an orthogonalization process finds the residuals of 𝑃𝑖𝑡 and 𝑌𝑖𝑡 

from 𝑋𝑖𝑡 and 𝛿𝑡, in order to compute �̂�𝑏.16 Lastly, the algorithm averages �̂�1 … �̂�400 to obtain the 

empirical distribution �̂� which approximates its true distribution. To control for size effects and 

unobserved heterogeneity in environmental and policy factors due to size class, DML is applied 

separately across subsets of size class. Due to small sample sizes (n < 90), we do not estimate 

DML models for size classes D and E.  

Table 2.7 DML estimates of Reporting delay effect (𝛽), by size class 

 A B C 

Panel A: Log cost    

�̂� 0.00256*** 0.00243*** 0.00284*** 

 (5.2423e-06) (9.4944e-06) (3.1415e-05) 

N 2,965 1,645 324 

    

Panel B: Fire duration    

�̂� 0.11390*** 0.11707*** 0.71173*** 

 (2.8150e-04) (7.3472e-04) (8.3587e-03) 

N 3,247 1,668 327 
Size classes: A: 0 to 0.1 ha; B: >0.1 ha to 4 ha; C: > 4 ha to 40 ha. 

Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 

 

                                                 
16 Letting residual 1 be the residuals from a ML prediction (using random forests) of Y from X and 𝛿, and residual 2 

are the residuals from the random forest prediction of P from X and 𝛿, the orthogonalization is complete with when 

the estimate of 𝛽 is obtained by the OLS regression of residual 1 on residual 2 (Chernozhukov et al. (2018)). 
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In Table 2.7, we observe that every additional hour of Reporting delay increases 

suppression costs by a statistically significant measure of 0.24% or more across size classes A to 

C. Wildfire suppression operations also last longer when reporting is delayed. The estimates of 

Reporting delay can be interpreted as: for every additional hour of Reporting delay, class A fires 

will burn an additional 6 minutes 50 seconds (p < 0.01), class B for 7:01 (p < 0.01), class C for 

42:42 (p < 0.01).  

Overall, the estimates of �̂� in DML are similar to OLS estimates (for a comparison, see 

Table C.4 and Table C.5 in Appendix C: Auxiliary regressions). In addition to being robust to 

flexible functional forms, DML predicts the relationship between Reporting delay and suppression 

outcomes with greater precision, while also capturing the potential impact of Fire environment 

variables on Reporting delay.  

 

2.8. Discussion 

Results from a linear regression model on wildfire expenditures shed some light on how 

discretionary policy choices taken by Alberta Wildfire influences costs in suppressing wildfires in 

Alberta’s Forest Protection Area. Using a postestimation model, we find that 78%+ of wildfire 

expenditure can be attributed to the effects of Fire environment variables which are beyond the 

operational control of the Alberta Wildfire Management Branch. 

Operations 

During a busy period in the fire season, suppression costs tend to be lower per individual fire tend. 

For every additional fire that is concurrently burning in the province, suppression of a large class 

E fire (> 200 ha) receives 2.4% less in expenditure. This result can be interpreted in two manners: 
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Firstly, it is possible that Alberta Wildfire operations benefit from economies of scale, as the 

marginal cost of every additional resource is less than the previous one. Alternatively, it is possible 

that with more demand for resources across the entire Forest Protection Area, wildfire managers 

for each class E fire simply need to make do with less available resources. 

Delay between fire ignition and reporting to Alberta Wildfire is highly significant in 

modest costs to suppressing small fires. Every additional hour of delay makes class A (≤ 0.1 ha) 

and B fires (> 0.1 to 4 ha) 0.2% more expensive to suppress. While the additional cost is modest, 

considering that 90% of the 5,098 fires in our study sample are class A and B fires, such an impact 

can certainly add up throughout a fire season. This result demonstrate the importance of Alberta 

Wildfire’s detection protocol (Alberta Wildfire, 2019). Through a network of detection agents (air, 

water, ground patrol, and lookout towers) as well as engaged industry and citizen stakeholders, 

Alberta Wildfire’s array of instruments for wildfire detection is critical for keeping small both 

burned areas and expenditures. 

In addition, we observe a significant impact of the initial wildfire responder’s assessment 

decision between immediate suppression or delayed suppression. Results from the regression show 

that when suppression is delayed, either due to lower prioritization or resource capacity limits, this 

decision does not increase the total suppression cost. This strategy, which we call “strategic delay”, 

is highly significant in reducing suppression costs by 47% for class B fires, and up to 141% for 

larger class D fires (>40 ha to 200 ha). Thus, we are inclined to interpret this finding as one that 

demonstrates wildfire managers’ expertise in judgement, through which they are able to prioritize 

operational objectives while being cognizant of resource and expenditure limits. When a wildfire 

is evaluated as not requiring immediate attention, Alberta Wildfire will exercise a form of strategic 

delay in order to prioritize other operational objectives. 
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Alberta Wildfire’s costs of suppressing wildfires on provincial Crown land (public land 

and parks) is higher than those of fighting comparable fires on private land, but this effect is only 

marginally significant in class B and C. Suppression on indigenous land is not significantly 

different than on private land, however, it is likely that much of the expenditure variation is 

captured by the Community variable, which includes communities on First Nations and Métis 

settlements. 

Values-at-risk 

We use variables for Community, Park, Power generation, and Road to measure how Alberta 

Wildfire prioritizes values-at-risk through the level of expenditures incurred in their protection. In 

Table 2.5, we note that the presence of communities within 3 km of a small fire (class A and B, 

under 4 ha) makes suppression roughly half as expensive when compared to situations where there 

are no nearby communities. However, as wildfires increase in size, suppression costs increase due 

to the presence of communities within 3 km, a relationship that is significant for class D fires (> 

40 ha to 200 ha). We believe this is because small fires near communities are more likely to be 

noticed and reported by residents, and can thus receive prompt suppression. In contrast, when large 

fires are threatening communities, higher levels of suppression costs are incurred to protect human 

lives and residential infrastructure. 

 Likewise, sizable wildfires ranging from 4 ha to 200 ha (class C and D) are two to four 

times more expensive when they encroach on power generating stations. Understandably, Alberta 

Wildfire would allocate more resources towards ensuring key energy infrastructure are secure. As 

discussed above, there is uncertainty on the effect of roads on expenditures, as they are utilized as 

access for lower costs, yet they are also critical infrastructure that merit protection. In Table 2.5, 

we see that the presence of a road within 3 km of a wildfire makes it significantly less costly to 
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suppress when compared to remote fires with similar conditions. Cost reductions attributed to 

proximity to roads are: 57% for size class A fires (p < 0.01), 32% for class B (p < 0.01) and 40% 

for class C (p < 0.05). However, the cost reduction effect of roads drops out of significance for 

larger size classes, though it does become modestly positive in the model of size class E fires. 

These results demonstrate that while roads can facilitate access to resource mobilization for smaller 

wildfires, their impact on costs falls out for large wildfires. It is possible that suppression of large 

wildfires (class D, E) do not rely on access by roads, as those fire conditions necessitate additional 

air resources. 

While results from our main empirical model demonstrate how policy choices and value-

at-risk protection priorities impact costs, the postestimation and debiased machine learning (DML) 

analyses provide additional insight into the effects of wildfire suppression policy on cost variation. 

Postestimation results show that unobserved organization effects play a modest role in explaining 

cost variation, while  environmental factors drive much of wildfire expenditures. Results from 

DML show that prompt notification through the Alberta Wildfire’s detection and reporting 

apparatus is critical in reducing expenditures in size A to C, as well as duration of these fires.  

Policy implications 

Findings from this research are generally consistent with existing expenditure literature in 

estimates on fire environment properties, reporting delay protection of communities (Donovan et 

al., 2011; Gebert et al., 2007; Hand et al., 2016; Liang et al., 2008). Focusing on the interpretation 

of policy and environmental factor effects on wildfire expenditure, we highlight some key points 

of consideration for Alberta Wildfire. 

Firstly, we must recognize that the large proportion of expenses incurred in wildfire 

suppression is likely beyond the control of Alberta Wildfire policy. When compared to the impact 
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of unobserved Forest Area management effects, environmental factors such as temperature, wind 

speed, and elevation will drive the overwhelming majority of costs (78%+). Timber/slash fuel type 

is also a driver of higher expenditures, doubling the costs associated with wildfires up to 40 ha. 

While Alberta Wildfire can have an impact in reducing the flammable fuels in vulnerable areas, 

through fuel management and encouraging FireSmart in wildland-urban interface communities, 

extensive landscape changes could also spur negative environmental consequences (Rhemtulla et 

al., 2011). 

Secondly, we consider the impact of multiple concurrent wildfires, which also serves as a 

proxy for resource availability. While wildfire managers would appreciate having a wide array of 

resources and suppression strategies available at hand, it is possible that having an unlimited 

arsenal (and accompanying war chest) may not be optimal operationally, or financially. On one 

hand, additional resources will allow firefighters to undertake early and intense action through 

direct suppression and line construction to prevent wildfire spread. Yet on the other hand, 

availability of resources may also encourage excessive resource use beyond an optimal level of 

operational efficiency (Donovan and Brown, 2005; Gebert et al., 2007).  

In our main empirical model, we adapted Gebert et al. (2007)’s specification of resource 

availability (average number of wildfires in the region over previous years), by calculating the 

number of concurrent fires during fire 𝑖’s assessment day, +/- 2 days. In this model, we find that 

each fire incurs marginally fewer expenditures when additional fires are concurrently burning 

throughout the Forest Protection Area. This effect is significant (p < 0.05) for class E fires: for 

every additional wildfire concurrently burning, 2.4% fewer expenditures are incurred for each 

class E fire. While it is possible that Alberta Wildfire gains some form of economies-of-scale in 

suppression effort when scaling up resource deployment, particularly in fighting small wildfires, 
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it is more likely that the effect of resource availability on costs in class E fires may instead be 

indicative of resource strain. Thus, this finding would drive home the importance of keeping 

wildfires at a manageable size, such that additional resources can be made available when large 

wildfires need to be suppressed.  

Thirdly, we would like to bring attention to the effect of reporting delay. For every 

additional hour of delay between fire ignition and reporting to Alberta Wildfire, a small fire (class 

A, B) become significantly more expensive by 0.2% (p < 0.01). This impact is modest, but 

considering that nearly 9 in 10 wildfires belong to a small size class, the effect of reporting delay 

can contribute to considerably higher overall expenditures through a fire season. Thus, this finding 

encourages Alberta Wildfire’s continued investment into advanced detection methods that will 

reduce reporting delay. 

Finally, we highlight the effect of the decision to delay initial wildfire suppression, which 

we term “strategic delay”. We find evidence that strategic delay does not increase total costs per 

fire for fires of any size class. This finding leads us to believe that effective operational decision-

making in Alberta Wildfire helps to reduce wildfire costs, by prioritizing resource allocation to the 

wildfires that require it the most. However, we would be reluctant to interpret this estimate as 

certain proof of operational effectiveness, considering the limitations of an expenditure model, as 

discussed above. While strategic delay is associated with lower suppression costs in wildfires up 

to 200 ha (size classes A through D), expenditure analysis does not take into account how this 

decision impacts the achievement of certain operational objectives (e.g. to protect a certain value-

at-risk in the area), nor do we establish what a counterfactual scenario might have been if 

immediate action had been taken. 
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2.9. Conclusion 

Understanding the key impacts of environmental and policy variables on wildfire expenditures is 

critical for wildfire management agencies, who must adapt to a challenging ecological future, often 

equipped with similarly challenging budgets. Findings from this chapter can inform Alberta’s 

Wildfire Management Branch how expenditures incurred over a six-year period of wildfire 

suppression can be explained by both the factors that largely lie outside of Alberta Wildfire’s 

control, including weather and other fire environment variables, as well as by Alberta Wildfire’s 

operational decisions. 

The main empirical models and accompanying postestimation models show that a large 

proportion of variation in fire costs can be attributed to environmental factors. As climate change 

continues to shape a fire landscape that is increasingly severe and unpredictable (Flannigan et al., 

2000; Robinne et al., 2016; Tymstra et al., 2021; Wotton et al., 2017), Alberta Wildfire can expect 

that extreme weather conditions, particularly that of temperature, will continue to drive a large 

component of suppression expenditure. Nonetheless, operational decisions to reduce Report Delay 

and practice Strategic delay can deliver significant, albeit modest, cost reductions. Machine 

learning analysis also supports the causal relationship between reporting delay and costs, while 

accounting for the possibility that environmental factors affect both explanatory variable and 

dependent variable. 

As acknowledged by expenditure modelling pioneers Gebert et al. (2007), expenditure 

analysis is limited in its ability to fully evaluate wildfire management programs. We recognize 

that, while our models shed some light on the causes of variation in suppression expenditure 

variation, their results alone do not provide holistic insight into the efficacy of suppression 

procedures. Nonetheless, the findings from regression, postestimation and double/debiased 
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machine learning analyses provide some novel insights into the impact of environmental and 

policy variables on wildfire suppression costs in the Alberta context. 

Into the future, we hope that expenditure modelling can be applied to datasets in other 

Canadian jurisdictions in order to further the understanding of wildfire operations across Canada. 

Considering that provincial wildfire agencies often share resources during extreme regional fire 

conditions, expenditure models could be improved by including the effects of inter-provincial (and 

occasionally international) resource collaboration.  
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Chapter 3. Risk preference experiments with 

wildfire management 

 

 

 
Wildfire Incident Commanders (ICs) are familiar with making risky choices in their professional 

lives, and the choices they make can have profound impacts. In this chapter I measure Alberta 

Wildfire Incident Commanders’ risk preferences through a series of risk elicitation methods 

typically used in the economics and psychology literatures. Results indicate that ICs, although 

engaged in a risky profession, do not differ significantly from the Control group in risk aversion 

across all elicitation methods; however, we observe that ICs’ revealed and stated risk preferences 

can change between methods and across contexts. Further, we find that Incident Commanders’ 

levels of revealed risk aversion inversely correlates with their level of recent operational 

experience, a result that suggests a link between risk preferences in the lab and in the field. 
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3.1. Introduction 

From rappelling off helicopters to working over 12 non-stop hours in a day in thick smoke and 

heat, wildland firefighters face elevated occupational health risks (Adetona et al., 2016; 

Government of Alberta, 2018). Fighting forest fires is a physically and mentally challenging 

career, due to the inherent safety risks involved, as well as the gravity of the work in protecting 

lives, communities and infrastructure from wildfire in Alberta’s Forest Protection Area. An 

identity with the arduous nature of this work is embraced by Alberta Wildfire, as exemplified in 

their recruitment campaigns (Alberta Wildfire, 2015).  

Wildland firefighters’ risk preferences have been assessed in the risk literature through a 

stated preference survey on preferred suppression strategies for hypothetical wildfire scenarios 

(Hand et al., 2015). However, there remains a lack of empirical research on assessing wildland 

firefighters’ risk preferences through their behaviour in incentivized tasks, and through their self-

evaluation. While wildland firefighters may be perceived by the public as risk-seekers (Desmond, 

2009), in our research, we find some evidence that firefighters can be in fact comparatively risk-

averse in certain contexts, both in revealed risk elicitation methods and in self-evaluated 

questionnaires. This chapter addresses the following questions: 

• Do wildland firefighters exhibit more or less risk aversion, when compared to the 

general public?, and, 

• What factors make some wildland firefighters riskier than others? 

The study adds to the risk elicitation literature in evaluating the merits of four commonly 

used risk elicitation methods (Abdellaoui et al., 2008; Eckel and Grossman, 2008; Gneezy and 

Potters, 1997; Holt and Laury, 2002) in combination with a self-reported risk tool (Nicholson et 
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al., 2005). As well, this research investigates how operational experience plays a role in shaping 

the risk attitudes of  Incident Commanders, Alberta’s professional wildland firefighters. The study 

of wildland firefighters’ risk preferences can be extended in future research in investigating how 

individual risk preferences shape operational decisions, and consequently, affect expenditures 

incurred in wildfire suppression. 

 

3.2. Related literature 

The concept of risk is considered fundamental to economic theory (Arrow, 1965; Bernoulli, 1738; 

Markowitz, 1952), and various elicitation methods (EMs) have been developed to elicit risk 

preferences, both within the field of economics and beyond. One method of classifying risk 

aversion research methods is by separating them into: experimental and non-experimental 

measures. In general, experimental economists have sought to design EMs that reveal subjects’ 

“true” risk preferences (see review: Charness, Gneezy, and Imas 2013). Psychologists have 

produced questionnaires seeking subjects’ self-evaluated risk tolerance on Likert scales, both in 

the general context (SOEP, Wagner et al. 2007) and in domain-specific contexts, such as in 

Financial and Recreational domains (Blais and Weber, 2006; Nicholson et al., 2005; Weber et al., 

2002). In addition, researchers across both disciplines have used experimental and non-

experimental measures to test EM instrument validity, as well as to measure across-method 

consistency (Frey et al., 2017; Pedroni et al., 2017). 

A supplementary review of other forms of risk behaviour research, which have not been 

used in my research, is included in Appendix J. 
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Below, I first introduce experimental and non-experimental methods most commonly used 

in the risk aversion literature, with particular attention on the instruments that were operationalized 

in my project. Afterwards, I provide a summary of literature that has aimed to compare measures 

of risk preference within economics, between economics and psychology, and briefly introduce 

some research in the interdisciplinary field of cognitive science. 

3.2.1. Revealed risk preference in the economics laboratory 

The Becker-DeGroot-Marschak (BDM) method for willingness to pay elicitation is a pioneering 

revealed-preference mechanism which incorporates elements of risk aversion; since its 1964 

publication, this method has been employed in a wide variety of contexts (Glaeser et al., 2000; 

Harrison and List, 2004). However, lottery lists are the first format of elicitation methods designed 

specifically as a tool to measure risk aversion, starting with Binswanger’s field experiment in rural 

India (1980). Since then, a variety of lottery list elicitation methods (EMs) have been developed 

for revealed risk elicitation (Charness and Gneezy, 2012; Filippin and Crosetto, 2016; Harrison 

and List, 2004; Mata et al., 2018), though few have been as widely applied as the methods of Holt 

and Laury (2002) and Eckel and Grossman (2008). For a review of the most commonly used 

economic measures risk preferences, see Charness, Gneezy, and Imas (2013). 

The following are introductions to commonly used lottery-style EMs, and a brief overview 

of other methods applied in economics. Firstly, I present a primer on the terminology commonly 

used in risk elicitation literature and in the descriptions below: 

3.2.1.1. Lottery game terminology 

In a lottery elicitation method (EM), subjects are tasked to make a single lottery choice (among a 

set of lotteries), or multiple choices down a list of paired lotteries. In each lottery, there is an 
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inherent gamble between a high (𝑥𝐻) and low (𝑥𝐿) payoff with probabilities associated with each 

payoff: 𝑝𝐻 ; 𝑝𝐿. Under the Expected Utility Theory (EUT) framework, subjects have some form of 

utility for each payoff value, 𝑢(𝑥). The expected utility that an individual derives from a lottery, 

𝐸[𝑢], depends on both the lottery’s probabilities as well as the utility that the individual attains 

from payoffs. Expected utility is represented by: 

𝐸[𝑢] = 𝑝𝐻 ∙ 𝑢(𝑥𝐻) + 𝑝𝐿 ∙ 𝑢(𝑥𝐿) 

Generally, experimental economists have designed tasks such that lotteries in which expected 

utility is higher also tend to have larger difference between high and low payoff values; lotteries 

that have a smaller difference between high and low payoff values have smaller expected utility. 

Subjects who are averse to risk will opt for a lottery in which difference between high/low values 

are modest, while those who are less risk averse opt for lotteries in which they can receive either 

a very large payout, or a very small payout, depending on the probabilities associated with these 

payoffs. 

In a lottery experiment, the experimenter presents subjects with a choice of lotteries, from 

which subjects are tasked to choose one for play. This is often referred to as a “game”. Games are 

played over real dollar values. The final payoff of the game is determined through a randomized 

selection of outcomes (e.g. dice, bingo balls, or a computerized random number generator), hence 

referred as a “lottery”. If multiple choices were elicited during the lottery choice task, one of the 

choices is typically randomly selected for payment of experimental subjects. Randomization will 

determine payout outcome in the selected lottery, based on the probabilities associated with 

high/low payoffs. 
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3.2.1.2. Multiple Price List 

Holt and Laury (2002) formulate a lottery choice game with a list of 10 paired lotteries. Lotteries 

on each line of the list are represented as Option A and Option B.  Option A is a “safe” lottery in 

which the difference between its high/low payoffs is smaller than that of the “risky” Option B. 

Down the list, the high/low payoff values of Option A and Option B remain constant, while 

probabilities for the high (low) payoff to be selected will increase (decrease) such that an expected 

utility maximizer is induced to switch from Option A to Option B. Switching further down the line 

is indicative of higher risk aversion. 

3.2.1.3. Single Choice List 

In contrast to the Multiple Price List (MPL), in the Eckel and Grossman (2002, 2008) Single 

Choice List (SCL) asks subjects to choose one lottery among a set of five. In this elicitation 

method, the probability associated with high/low payoffs of each lottery remains constant at 50%. 

While the most risk averse subject will choose the first lottery in which high/low payoffs are the 

same, thus guaranteeing a payoff with certainty, risk neutral (as well as risk seeking) subjects will 

take a 50/50 gamble between receiving a very high payoff and a low payoff of $0; this option also 

has the high expected payoff. 

3.2.1.4. Certainty Equivalent Method 

Abdellaoui et al. (2011) offer a variation of the lottery method by which subjects choose between 

playing a lottery or receiving a sure payment. In the original iteration, the Certainty Equivalent 

Method (CEM) has nine choices, i.e. one per row of a list of nine lines. Option A is a 50/50 lottery 

between a high and low payoff; probabilities and payoffs remain the same throughout the list. 

Option B is a sure payment that increases marginally down the line, from the value of low payoff 

in the first line, to the highest payoff in the last. Note that, in this setup, choices in lines 1 and 9 
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are stochastically dominated such that a rational player is always better off choosing the lottery 

option in Line 1 and sure payment in Line 9. Like in the MPL method, the switching point indicates 

the degree of risk aversion. Risk averse subjects generally prefer sure payment options in earlier 

lines, whereas risk-neutral and risk-seeking individuals will select more lottery options, up to the 

stochastically dominant sure payment of Line 9.  

3.2.1.5. Investment Game  

In the Investment Game developed by Gneezy and Potters (1997), the subject is given $X and 

tasked to allocate this endowment between a risky project ($x) and a riskless pot ($X − x). If the 

project succeeds with probability p, the subject receives $(X − x + kx); if the project fails (1 −

p), she keeps the amount that had been set aside $(X − x). The specifications are set up such that 

(k > 1) and p ∙ k > 1. Thus, the most risk-averse subjects choose to invest little to none of their 

endowment, while those who are risk neutral (or risk seeking) will invest most to all of their 

investment. 

3.2.1.6. Connection to economic theory: identifying risk-seeking individuals  

The design of EMs will limit the range of implied risk parameters that may be elicited. For 

instance, of the four tasks selected in this project, the Single Choice List (SCL) and Investment 

Game (INV) measure varying degrees of risk aversion, but do not have available choices of 

gambles that would discern risk seeking subjects from risk neutral ones. In these two particular 

tasks, the most risk-neutral subjects (and also those who are risk-seeking) would be expected to 

select the gamble that has the highest variance and also the highest expected payoff. In contrast, 

the Multiple Price List (MPL) and Certainty Equivalent Method (CEM) extend into the risk 

seeking domain; when faced with a choice between a risky gamble and safe gamble, the risk-

seeking subject is more likely to select the risky gamble (e.g. low probability of high payoff, high 
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probability of low payoff), despite its probability-weighted expected payoff being smaller than 

that of the safe gamble. 

3.2.2. Risk self-evaluation in psychology and economics 

Outside of economics, researchers in psychology, neuroscience and cognitive science have 

developed measurements of risk aversion that suitable to their respective fields. For instance, 

psychologists favour self-evaluation for risk preference elicitation, often rated on a Likert scale. 

Self-evaluation scales differ in sensitivity, ranging  from 5 points (Blais and Weber, 2006; 

Nicholson et al., 2005; Weber et al., 2002) to 10 points (SOEP et al., 2007). Self-assessment is 

well-regarded in psychology (Frey et al., 2017; Pedroni et al., 2017), and its validity is often tested 

in economic literature in conjunction with experimental EMs (Crosetto and Filippin, 2016; Deck 

et al., 2013; Reynaud and Couture, 2012). In cognitive neuroscience, researchers will generally 

apply techniques like functional magnetic resonance imaging (fMRI) technology to measure the 

biophysical indicators of risk-seeking behaviour in the brain (Schonberg et al., 2011). The 

following is a review of the most prevalent non-experimental measures outside of economics, 

including self-evaluated risk-taking on a Likert scale (General risk-taking, Domain-Specific risk-

taking) and biophysical measures of risk-taking. 

3.2.2.1. Self-evaluation: General risk-taking 

At its most elemental level, a self-evaluated risk method consists of a single question in which the 

subject is tasked with evaluating their self-perceived risk on a Likert scale. This is a method 

employed by the German Social Economic Panel (SOEP) questionnaire, a longitudinal survey of 

over 15,000 private households (SOEP, Wagner et al. 2007). Dohmen et al. (2011) also replicated 

this method; their results lead them to support the elicitation of a general risk attitude, contending 
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that this approach mitigates subjective beliefs about the riskiness of a decision environment, which 

could bias stated risk preferences. 

3.2.2.2. Self-evaluation: Domain-Specific Risk-Taking  

Domain-specific stated risk preference methods ask subjects to rate their self-perceived risk 

preferences in different contexts. The Domain-Specific Risk-Taking (DOSPERT) Scale in Weber 

et al. (2002) asks subjects to state their outlook on 50 scenarios, made up of 10 scenarios in each 

of five domains: financial decisions, health/safety, recreational, ethical, and social decisions. These 

scenarios ranged from “Forging somebody’s signature.” (Ethical) to “Investing 5% of your annual 

income in a conservative stock.” (Financial) to “Engaging in unprotected sex.” (Health). Subjects 

rate their likelihood of engaging in these activities, as well as their perception of the risk inherent 

in these scenarios, and expected benefits of these activities. A regression analysis is seeking the 

relationship between expected benefits and perceived risk on the likelihood risky activity 

participation. Findings suggest gender and domain differences in stated risk taking are associated 

with perception of risky activities’ benefits and risk. Blais and Weber later revised this 

questionnaire, condensing it to 30 questions across the same five domains (2006). 

 Nicholson et al. (2005) propose a domain-specific risk assessment tool addressing 

everyday risk-taking in six domains: recreational, health, career, financial, safety, social. In 

contrast to WBB’s large selection of questions, Nicholson et al. method is concise: for each one 

of the six domains, subjects indicate, on a 5-point scale, their self-perceived risk tolerance for the 

domain, currently, as well as in their adult past. They discover that risk propensity has relationships 

with age and gender, career decisions. 
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3.2.3. Measuring risk preference consistency across economic elicitation methods 

Since the foundational publications of Holt and Laury (2002) Multiple Price List method (MPL) 

and the Eckel and Grossman (2008) Single Choice List method (SCL) experimental economists 

have been interested in in developing new risk elicitation methods (Abdellaoui et al., 2011; 

Crosetto and Filippin, 2013; Figner et al., 2009; Lejuez et al., 2002; Pedroni et al., 2017). MPL 

and SCL have also been adapted for field experiments. For instance, Tanaka et al. (2010) extends 

Holt and Laury’s MPL into a format suitable for Prospect Theory analysis, by designing multiple 

lists with varying probabilities and payoff values, some of which were in the domain of loss. As 

well, Reynaud and Couture (2012) adapts Eckel and Grossman’s SCL for Prospect Theory analysis 

by adding additional gambles extending the choice set into the risk-loving domain. 

Experimentalists have also been interested in evaluating the predictive reliability of EMs, 

individuals’ risk preference consistency across multiple EMs, and for the presence of a “base-rate 

effect” inherent in EMs that would bias revealed preference estimates  (Crosetto and Filippin, 

2016; Friedman et al., 2018; Mata et al., 2018; Frey et al., 2017). While each EM has its unique 

theoretical and practical advantages (and disadvantages), the “risk elicitation puzzle”, as termed 

by Pedroni et al.  (2017), remains unsolved; researchers vacillate in supporting one method over 

the other, unable to declare any one elicitation method to be unequivocally superior. 

Structural modelling: Expected Utility Theory & Prospect Theory 

Lottery list risk elicitation researchers usually employ structural modelling approaches to analyze 

risk preferences. Often, models are examined under the classical Expected Utility Theory 

framework (EUT) framework (Von Neumann and Morgenstern, 1947), with the assumption of a 

Constant Relative Risk Aversion (CRRA) utility function (Dave et al., 2010; Eckel and Grossman, 

2008; Holt and Laury, 2002; Holzmeister and Stefan, 2020). Other papers apply Prospect Theory 
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(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992), in which researchers explore the 

possibility that subjects weigh probabilities unevenly. Prospect Theory (PT) can uncover 

behaviour that would not be captured by standard EUT (Pedroni et al., 2017; Reynaud and Couture, 

2012; Tanaka et al., 2010). When applied in the field, PT has its advocates (Abdellaoui et al., 2013; 

Barberis, 2013; Pope and Schweitzer, 2011; Ruggeri et al., 2020), conditional supporters (Harrison 

et al., 2010; List, 2004) and its detractors (Kachelmeier and Shehata, 1992; Levy and Levy, 2021). 

In the lottery list EM literature, support for PT over EUT is also divided (Crosetto and Filippin, 

2016; Holzmeister, 2016; Pedroni et al., 2017; Reynaud and Couture, 2012; Tanaka et al., 2010). 

3.2.3.1. Expected Utility Theory 

Dave et al. (2010) employ a structural estimation approach to test consistency of risk preference 

measurement between two EMs of different complexity: the complex Holt-Laury multiple price 

list and the relatively simpler Eckel-Grossman single choice list. Subjects are recruited from 

conventional pools and non-conventional pools ( i.e. college students and non-college student 

adults respectively), and in addition to completing the two incentivized tasks, they provided 

demographic information and completed a numeracy test. 

After coding task decision data into a series of binary choices between choice sets17, Dave 

et al. apply the (Holt and Laury, 2002) Holt and Laury (2002) specification of a CRRA utility 

function, consisting of a risk parameter and a noise parameter to accommodate decision-making 

error. In the first set of models, MPL & SCL data are pooled to estimate parameters as functions 

of the set of demographic variables and a dummy variable for MPL. Estimates demonstrate that 

female and low math score subjects are more likely to make risk averse choices, and that, in 

                                                 
17 This method will be explained in further detail in Section 3.4.1: Coding Choice Data, below. 
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comparison to the SCL task, MPL elicits more risk aversion with more noise. When this 

specification is applied separately to each task, females are significantly more likely to make risk 

averse choices in both MPL and SCL with less noise; subjects with low numeracy exhibit 

significantly more noise in the MPL task, signalling their miscomprehension.  

Dave et al. observe that non-conventional subjects struggle with the MPL task, often 

requesting clarification and being more likely to make inconsistent choices (i.e. switching back 

and forth between the list of safe and risky choices ). Subjects who made inconsistent MPL choices 

are also more likely to be in the low-numeracy cohort; when this cohort is omitted, the estimate of 

low math score subjects on the noise parameter lost significance. These results lead Dave et al. to 

suggest MPL be used for subjects with higher math skills, as this EM elicits risk preference with 

more nuance; SCL should be considered for non-conventional subjects and for subjects with low 

numeracy. 

The between-task structural estimation method employed by Dave et al. (2010) is also used 

by Reynaud and Couture (2012) to compare MPL and SCL, though they find, contrarily, that SCL 

induces more risk aversion than MPL. Holzmeister and Stefan (2020) apply this structure to four 

tasks, task-by-task; their result on the MPL task effect corroborates the findings of Dave et al. 

(2010). 

3.2.3.2. Predictive accuracy of CRRA estimates 

Dave et al. (2010) further test the task effects of SCL and MPL, with a focus on the low numeracy 

cohort of subjects, by applying the predictive accuracy measure: the proportion of choices that can 

be predicted using CRRA parameters that had been previously estimated based on subjects’ 

demographic characteristics. While MPL predicts 0.84 of choices for all subjects, there is a 

significantly lower degree of predictive accuracy for low-numeracy subjects (0.76) when 
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compared to the non-low group (0.85); in contrast, the predictive accuracy of SCL (0.72) does not 

vary significantly between numeracy cohorts. These results reinforce the conclusion by Dave et 

al. that MPL is beneficial for in high numeracy subjects, but the simpler SCL is applicable to all 

subjects without needing to consider their numeracy.  

3.2.3.3. Across-subject rank order  

Pedroni et al. (2017) elicit risk behaviour through six incentivized EMs. After ordering subjects in 

each task based on counts of risky choices, the authors correlate rank orders between tasks to 

determine between-subject consistency. All 15 pairwise correlations between six tasks are positive, 

however, magnitudes and significances of these correlations vary, signalling there is 

minor/moderate consistency across EMs, across subjects. 

3.2.3.4. Permutation statistics  

To evaluate the distribution of risk preference consistency among subjects, Pedroni et al. (2017) 

first deem subjects as Risk Averse / Risk Seeking in each EM by comparing their decisions against 

a risk-neutral, expected utility-maximizing baseline. Subjects are categorized into six consistency 

classes on a histogram based on their revealed risk preferences across six EMs (e.g. 0 seeking / 6 

averse, to, 5 seeking / 1 averse 18). The authors apply permutation statistics to estimate base-rate 

distribution of consistency classes. Comparing the two histograms, Pedroni et al. find that there 

are significantly different distributions across four of the six consistency classes, leading them to 

conclude that consistency of risk-seeking / risk-averse behaviour is significantly influenced by the 

base-rate effect of EMs.  

                                                 
18 One of the seven tasks in Pedroni et al. (2017) did not extend into the risk-seeking domain. 
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3.2.3.5. Prospect Theory 

Pedroni et al. (2017) further examine three of the six methods by estimating their parameters using 

both EUT and PT frameworks. On average, 57% of subjects are best described by PT throughout 

the three tasks, however, a minority of subjects are best characterized throughout all three tasks by 

a single framework (17% by CPT). These findings suggest that subjects rarely anchor onto a single 

framework throughout multiple tasks. The authors surmise that EMs may not actually reveal a 

subject’s innate risk preference, but rather, the subject actively constructs her preferences when 

interacting with the EM. 

Reynaud and Couture (2012) also test for Prospect Theory behaviour in MPL by estimating 

a mixture model, following (Harrison and Rutström, 2009), to discover that their subject pool are 

evenly divided between being characterized by EUT and by PT. 

3.2.3.6. Simulation with virtual subjects 

Towards demonstrating the effect of EM mechanics on risk aversion, Crosetto and Filippin (2016) 

task participants with four methods: MPL, SCL, INV, and their own “Bomb” risk elicitation task 

(BRET) developed in (Crosetto and Filippin, 2013). In addition, to assess robustness, the authors 

ran a simulation exercise with 100,000 virtual subjects characterized by a CRRA function in which 

10% of subjects set to exhibit random behaviour. The revealed parameters of actual experimental 

subjects’ choices were plotted against those of virtual subjects on a cumulative density graph, in 

which distributions were found to be significantly different in certain sections. In particular, the 

authors note that real subjects are more risk averse in MPL and SCL and tend to avoid both risk 

averse and risk seeking extreme ends of SCL and BRET. 
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3.2.3.7. Comparing absolute scale of choices 

Crosetto and Filippin (2016) also evaluate the gender effect, which has been a focal characteristic 

in the pioneering risk elicitation literature (Eckel and Grossman, 2008, 2002; Gneezy and Potters, 

1997; Holt and Laury, 2002). While CRRA estimates on demographic characteristics confirm that 

females tend to be more risk averse in SCL and INV, the Wilcoxon t-test on male and female 

cohorts’ mean absolute choices fails to confirm the presence of gender differences in MPL and 

BRET. Taken together with findings from the simulation exercise, these results lead Crosetto and 

Filippin to speculate that the presence of a riskless choice in SCL and INV will induce violation 

of the independence axiom of the Expected Utility Theory. The riskless option induces certainty 

effects, acts as a reference point against the uncertain outcomes, and increases the salience of regret 

(Loomes and Sugden, 1982). 

3.2.3.8. Overlap of implied parameter intervals 

Bruner (2009) tests for risk consistency between two variations of an MPL-style task, in which the 

author applies a structural EUT model, corresponding choices made in the two tasks with the 

implied CRRA parameter range. Risk preference is considered to be consistent when there is 

overlap between the intervals of the two tasks’ implied parameters. 

Holzmeister and Stefan (2020) employ this technique to determine within-subject risk 

preference consistency between four EMs: MPL, SCL, CEM and Crosetto and Filippin (2013) 

BRET. The authors critique previous literature for typically assessing across-method variation by 

the positive correlations of choices on the absolute scale. They contest that correlation of these 

absolute values is insufficient to evaluate preference consistency because, options in EMs may 

have vastly different implied parameter intervals. Instead, Holzmeister and Stefan create an 

individual-level consistency index that is the count of pairs in which the implied CRRA parameter 
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intervals overlap (six pairs between four tasks). The authors acknowledge this measure serves only 

as a proxy of consistency, as overlapping intervals signal that risk aversion parameters are close, 

though not necessarily identical. 

3.2.3.9. Risk perception and noisy behaviour 

Holzmeister and Stefan (2020) also determine how perception of task difficulty influences choice 

behaviour. Immediately after completing each task, subjects are asked to rank their a) perceived 

riskiness of their decision and b) perceived complexity of the task, on a 7-point Likert scale. 

Results from maximum likelihood estimates of the CRRA model, including perception indices as 

variables, show that the parameterized risk parameter significantly relates to a), and also that the 

noise parameter varies with b). As evaluated perceptions relate to observed behaviour, Holzmeister 

and Stefan find that subjects are aware of riskiness and complexity of the task. 

3.2.4. Comparing elicitation methods between economics and psychology 

While risk behaviour is defined in economics literature by subjects’ response to (often 

incentivized) elicitation methods, psychology clinicians are more likely to characterize 

“naturalistic risk-taking” as the propensity to engage in activities harmful to oneself (Schonberg 

et al., 2011). The gap between the two disciplines’ definition of risk behaviour can be reconciled 

when subjects’ revealed risk preferences are analyzed in conjunction with their self-evaluated risk 

levels19.  

                                                 
19 Nevertheless, this “reconciliation” itself is a bit overgeneralized. Kellen et al. (2017) critique empirical research 

into risk attitudes and self-reflection, due largely to “a weak definition of risk” as defined primarily by choice between 

lotteries. 
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3.2.4.1. Risk parameters and self-evaluated risk 

In addition to evaluating MPL-SCL consistency with estimates of a CRRA model, Reynaud and 

Couture (2012) also employ the CRRA function to determine how self-evaluated risk preference 

correlates within revealed risk behaviour. Domain-specific risk behaviour is assessed using the 

revised DOSPERT (Blais and Weber, 2006), and these self-evaluation indices are correlated with 

revealed risk parameters. Correlations are significant with self-evaluated risk indices in Financial 

and Recreational domains, weakly significant with the Ethical domain and insignificant with 

Health and Social domains. Resultingly, Reynaud and Couture caution against interpreting 

subjects’ lottery task revealed risk outside the relevant domains. 

3.2.4.2. Self-assessed domain-specific and general risk 

Dohmen et al. (2011) construct a single general risk question and validate this tool using domain-

specific questions, self-evaluated risky behaviour (stock investment, sport activity, self-

employment, smoking), and an incentivized lottery task and hypothetical lottery task. The authors 

discover that while self-evaluated risk in the financial domain is the best determinant for predicting 

hypothetical investment task, the response to a single general risk question is the best all-around 

determinant of risk.  

3.2.4.3. Interval regression on self-evaluated general risk taking 

Sauter et al. (2015) were the first researchers to compare elicited and self-evaluated risk 

preferences between two occupational groups (foresters and farmers). The authors task a variation 

of MPL (Laury et al., 2012) and the  Reynaud and Couture (2012) specification of SCL, and task 

subjects to state self-evaluated risk using Dohmen et al. (2011). 

Sauter et al. apply interval regressions to analyze profession and demographic effects on 

revealed CRRA parameters of MPL and SCL, finding that foresters exhibit more risk aversion than 
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farmers in both tasks, while self-employed participants tend to be more risk-averse in the SCL. 

When the interval regression is applied on the self-evaluated risk preferences, all estimates were 

insignificant.  

3.2.4.4. Scaled risk preferences 

To further assess the elicited-self-evaluated risk preference relationship, Sauter et al. (2015) apply 

the Wilcoxon t-test to MPL and the self-evaluated risk index, both transformed to a 0 to 1 scale; 

results showing marginally significant and insignificant correlations for farmers and foresters, 

respectively. Contrary to the conclusion of Reynaud and Couture (2012) using self-evaluated 

domain-specific risk, Sauter et al. find that a self-evaluated risk index does not substitute for risk 

parameters elicited by MPL. Sauter et al. also speculate that their use of real monetary incentives 

may have induced an effect not captured by the hypothetical lotteries of Reynaud and Couture 

(2012). 

3.2.4.5. Risk parameters and cognitive ability 

Andersson et al. (2016) acknowledge research in which a negative correlation is determined 

between cognitive ability and risk aversion (Benjamin et al., 2013; Burks et al., 2009; Dohmen et 

al., 2010), and argue that this correlation could be spurious if choice inconsistency (e.g. multiple 

switching between risky/safe choices in a MPL ) is not considered as part of behavioural noise. To 

prove this hypothesis, the authors present subjects with two MPL’s with fixed probabilities and 

varying payoff values (Binswanger, 1980; Tanaka et al., 2010) as well as tests for cognitive ability 

and cognitive reflection (Frederick, 2005), while controlling for the Big Five personalities 

(Almlund et al., 2011). Correlation and OLS analyses demonstrate that subjects with higher levels 

of cognitive ability and reflection tend to make more risky choices in the first MPL task, but more 

safe choices in the second. However, in both MPL tasks, subjects who make consistent decisions 
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tend to have a higher score of cognitive ability. The contrasting results lead the authors to conclude 

that while cognitive ability does not relate to revealed risk preference, individuals with higher 

cognitive ability will make decisions with less noise. The results withstand a series of robustness 

checks, including exclusion of subjects who spend very little time on tasks, inconsistent 

decisionmakers, as well as focusing on individuals who have a unique interior switch point in both 

tasks.  

3.2.5. A review of empirical evidence of heterogeneity in risk aversion 

Table 3.1 summarizes the literature that provides empirical evidence of heterogeneity in risk 

aversion, as measured through experimental and non-experimental elicitation methods. The 

literature proves that subjects in cohorts with risky backgrounds (in terms of profession, recreation, 

or other lifestyle circumstances) tend to differ from the general public in their risk preferences. 

Professional traders (Haigh and List, 2005), amateur race car drivers (Riddel and Kolstoe, 2013) 

and volunteer firefighters (Krčál et al., 2019) all tend to exhibit less risk aversion in revealed risk 

or self-reported risk. Subjects that have recently faced trauma, such as hurricane evacuees (Eckel 

et al., 2009), also demonstrate less risk aversion. However, subjects with precarious livelihoods, 

like low-income high school students (Eckel et al., 2012) and sharecroppers (Dillon and Scandizzo, 

1978), are more likely to be more risk averse compared against wealthier individuals that form the 

control group. 
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Table 3.1 Empirical evidence of heterogeneity in risk aversion 
Citation Elicitation 

method(s) 

Control subjects Subjects of interest Risk 

aversion 

(Subject of 

itnerest 

relative to 

Control) * 

Incentivized task 

Kroll and Davidovitz 

(2003) 

SCL 

 

Children  

(urban)  

Children 

(commune) 
= 

Eckel et al. (2009) SCL Female  

(general 

population) 

Females  

(recent hurricane 

evacuees) 

− 

Eckel et al. (2012) SCL High school 

students 

Group 1†: HS students  

in smaller-sized classes 
+ 

Group 2: HS students  

with more low-income 

peers 

+ + 

Sauter et al. (2015) MPL & SCL Farmers Foresters + 

Haigh and List 

(2005) 

INV University 

Students 

Professional traders − 

Krčál et al. (2019) BRET University 

Students 

Group 1: Novice 

firefighters 
− 

Group 2: Experienced 

firefighters 
− − 

Non-incentivized task 

 

Dillon and Scandizzo 

(1978) 

CEM 

(realistic 

context) 

Small farm 

owners 

Share-croppers + 

Riddel and Kolstoe 

(2013) 

Health risk 

question 

University 

students 

Group 1: Amateur race 

car drivers 
− 

Group 2: Elite rock 

climbers 
− 

Group 3: SCUBA 

divers 
= 

Brown et al. (2011) Investment 

risk question 

Salary employed Self-employed − 

Balaz and Williams 

(2011) 

Willingness-

to-pay for 

lottery play 

Female university 

students  

(domestic) 

Female university 

students (international)  
− 

Ayaita and Stürmer 

(2020) 

Self-

assessment 

Civil servants Teachers + 

† Some papers compare two or more groups of subjects of interest to a cohort of control subjects 

* Subjects of interest demonstrate: 

=: 
+ (−): 

+ + (− −): 

the same level of risk aversion as the Control group 

more (less) risk aversion than the Control 

even more (less) risk aversion than the first group of Subjects of Interest 
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3.3. Experiment design 

Recruitment 

The experiment recruited two groups of participants. First, a total of 124 subjects were recruited 

through the University of Alberta’s Department of Resource Economics and Environmental 

Sociology’s Online Recruitment System for Economic Experiments (ORSEE). This group of 

participants, comprised mainly of undergraduate students, represent the conventional demographic 

of control subjects used in the risk elicitation literature, and therefore are referred to as the control 

group. Next, 62 Incident Commanders were recruited through an internal Alberta Wildfire email 

distribution. Incident Commanders are wildland firefighters who are permanent staff members of 

Alberta Wildfire, and have received specialized training in leading suppression operations20. 

Subjects in both groups were informed that their voluntary participation in this experiment would 

assist research into risk behaviour, and that they would receive $10 for participation, plus the 

chance to earn additional money. 

Selection of Elicitation Methods 

This experiment design follows that of Holzmeister and Stefan (2020) in which subjects’ choices 

across four prominent revealed risk elicitation methods are evaluated to determine within-subject 

consistency. Holzmeister and Stefan opt for the Bomb Risk Elicitation Task (BRET), Certainty 

Equivalent Method (CEM), Multiple Price List (MPL), Single Choice List (SCL). In our 

experiment we have replaced BRET with the Investment Game (INV), along with the addition of 

a self-evaluated domain-specific risk assessment (Nicholson et al., 2005) to analyze consistency 

between elicited and self-evaluated risk behaviour. As conducted in Holzmeister and Stefan 

                                                 
20 Alberta Wildfire employs seasonal firefighters every fire season (April 1 to October 31), as well as contractor and 

emergency firefighters, on an as-needed basis. 
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(2020), during the experiment our four EMs are referenced as colours, so that participants’ 

behaviours are not influenced by the name of the task21. Tasks are presented to our participants in 

a randomized order as to mitigate order effects. In order to reduce “portfolio effects” (Harrison et 

al., 2008), subjects are informed in advance that outcomes would be revealed at the end of the 

experiment, and that the final payoff will be the outcome of a single, randomly-selected task, which 

is not revealed until the experiment is over. Participants were informed that each task had an equal 

chance of being selected for payment. 

To reduce the potential for participants to express risk aversion differently across four tasks 

due to differences in expected outcomes, tasks are specified such that a risk neutral participant has 

roughly the same expected outcome value in each task. Table 3.2 compares expected outcomes 

between participants who exhibit different risk behaviours. To obtain the values in Table 3.2, I 

first simulate the choices made by hypothetical players with different levels of risk aversion: risk 

neutral, most risk averse and most risk seeking22. To compare the expected outcomes of simulated 

players to real-life players, I aggregate and average the choices made by subjects in the original 

literature, available through the data in the papers’ supplementary material (Abdellaoui et al., 

2011; Eckel and Grossman, 2002; Gillen et al., 2019; Holt and Laury, 2002). The expected 

outcome in each task is the product of high/low payoff values in the hypothetical player’s choice 

multiplied by the respective probabilities. As each task has an equal chance of being selected for 

payment, the final payoff is the average of the four tasks’ expected outcomes. 

                                                 
21 Refer to screenshots of the experiment in Appendix I: Instructions for the Risk Elicitation Economics Experiment 
22The risk neutral player will maximize the expected outcome in each task; the most risk averse player opts for a 

lottery in which the difference between high/low payoff values are minimized (maximized). Parameterization of 

incentivized elicitation methods is explained in further detail in Section 3.3.1: Revealed risk elicitation methods 
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Table 3.2 Expected payoffs of four preference incentivized risk elicitation methods, based on 

literature vs simulated behaviour 

   Per literature 
If Risk 

Neutral 

If Most Risk 

Averse 

If Most Risk 

Seeking 

Multiple Price List  $22.871  $24.28  $20.05  $21.63  

Single Choice List   $20.732  $24.00  $16.00  $24.00  

Certainty Equivalent Method  $22.233  $22.78  $21.11  $21.11  

Investment Game  $23.754  $25.00  $20.00  $25.00  

Final payoff † 
  

$22.40 $24.02  $19.29  $22.94  

1: Holt and Laury (2002); 2: Eckel and Grossman (2002); 3: Abdellaoui et al. (2011); 4: Gillen et al. (2019). 

† The hypothetical final payoff is the average of all four task expected payoffs. 

Online laboratory 

The experiment is coded by the research team using the oTree framework (Chen et al., 2016), and 

is hosted on the Heroku cloud application platform; of the four incentivized elicitation methods in 

our experiment, MPL, SCL and CEM are adapted from packages developed by Holzmeister (2017) 

and INV has been developed in-house. Observing University of Alberta and provincial public 

health guidelines, the experiment took place entirely online from March to April 2021 during the 

COVID-19 pandemic. Incident Commanders are invited to participate by responding to an 

invitation email distributed through an internal Alberta Wildfire mailing list; prospective Control 

participants are recruited from the Department of Resource Economics and Environmental 

Sociology’s Online REES Experiment Recruitment System (ORSEE). 

A participant who expressed interest receives a unique hyperlink to the experiment 

platform, and is instructed to complete the experiment within 48 hours. During their sessions, 

participants are not monitored by the research team, however they are instructed to undertake the 

experiment individually, without external distractions, and to avoid disclosing details of the 

experiment to other prospective participants. Seven participants were dropped: one Incident 

Commander participant and six Control participants began the experiment and did not proceed 
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past initial Informed Consent page within 48 hours. In total, 179 participants, consisting of 118 

Control and 61 ICs, completed the experiment. 

Enforcing transitivity in elicitation methods 

Transitivity of preferences is a fundamental principle of classical economics (Regenwetter et al., 

2011), assuming that an individual who prefers x to y and y to z must prefer x to z. In multiple 

lottery tasks MPL and CEM, transitivity may be violated when participants are given the option to 

switch back and forth between lists. Violation of transitivity may be attributed to participants’ poor 

understanding of the task (Dave et al., 2010), but as this is not a focus of this research, we avoid 

this potential issue by asking participants to choose a “switching point” from the safe option to 

risky option (MPL: Option A to Option B) or vice versa (CEM: lottery option to sure payment). 

Enforcing a single switching point is consistent with previous adaptations of elicitation methods 

(Holzmeister and Stefan, 2020; Jacobson and Petrie, 2009; Tanaka et al., 2010). 

Sections 3.3.1 to 3.3.3 summarize instructions given to participants in three parts of the 

experiment: Revealed risk elicitation methods, Self-assessed risk elicitation method, and the 

Demographic survey. Screenshots of the full experiment are available in Appendix I: Instructions 

for the Risk Elicitation Economics Experiment). 

In the next section, I also outline how the range of choices made in each task reveal 

participants’ direction of risk behaviour (from risk aversion, to risk neutrality, to risk seeking). 

3.3.1. Revealed risk elicitation methods 

3.3.1.1. Multiple Price List (Task “Orange”) 

This task is based on the original Holt and Laury (2002) specification, with payoff values 

multiplied by a factor of 10. Participants represented with a list of ten paired lotteries, named 
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Option A and Option B. Option A has high/low payoff values of $20.00 and $16.00; Option B, 

$38.50 and $1.00. Payoff values for each lottery stay the same throughout the ten lines, while the 

probabilities associated with the high (low) payoff value marginally increases (decreases) by 10% 

on each successive next line. The participant is tasked to consider which lottery she prefers on 

each line. However, as transitivity is enforced, selecting Option B on any line will force Option B 

to be selected in all preceding lines, so that the participant is in fact making a singular decision in 

selecting a desired switch point. One of the ten lines will be selected at random. A lottery will be 

played for the Option selected in order to determine the MPL task payoff. 

On each line, one lottery has a higher expected outcome than the other. From lines 1 to 4, 

Option A has a larger expected outcome than Option B; from Line 5 to Line 10, Option B has a 

larger expected outcome. The expected outcome (EO) of Option A and B lotteries in Line 5 are:  

        𝐸𝑂(𝐴) = 0.5 ∙ $20.00 + 0.5 ∙ $16.00 = $18.00  

<   𝐸𝑂(𝐵) = 0.5 ∙ $38.50 + 0.5 ∙ $1.00 = $19.75 

The participant’s switch point from Option A to Option B reveals her risk behaviour: Risk 

neutral players will stay with Option A from lines 1 to 4, switching at Line 5 when the expected 

outcome of Option B is larger; risk seeking players will tend to switch to Option B before Line 5 

as they want the chance to attain high $38.50 payoff, even when the expected outcome of Option 

B is comparatively lower than that of Option B; and risk averse players will tend to switch to 

Option B at some point after Line 523. 

                                                 
23 See Task “Orange” Decision in Appendix I: Instructions for the Risk Elicitation Economics Experiment. In Line 

10, each lottery has a 100% probability delivering the high payoff Players should select Option B, which gives her 

$38.50 with certainty, over Option A’s $20.00, however, we observe some players who stick with Option A throughout 

all lines, and discuss this form of “inconsistency” in Appendix E. Inconsistent players in MPL task 
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3.3.1.2. Single Choice List (Task “Violet”) 

SCL follows the original Eckel and Grossman (2002) specification, in which participants must 

select one preferred lottery from a list of five. Each lottery has two possible outcomes (high/low 

payoffs), and there is a 50/50 probability for high/low payoff24. In this task, the probabilities stay 

the same throughout all five lotteries, but the value of high/low payoffs change (Lottery No. 1: 

$16/$16; 2: $24/$12; 3: $32/$8; 4: $40/$4; 5: $48/$0). The selected lottery will be played to 

determine the SCL task payoff. 

As the gap between high/low payoffs widens from Lottery No. 1 to 5, lotteries become 

inherently riskier and the expected outcomes increase from $16 in Lottery No. 1 to $24 in Lottery 

No. 5:  

𝐸𝑂(1) = 0.5 ∙ $16 + 0.5 ∙ $16 = $16 

𝐸𝑂(5) = 0.5 ∙ $48 + 0.5 ∙ $0 = $24 

 

The most risk averse participant will choose Lottery No. 1 that guarantees $16, while less 

risk averse players will choose one of the other lotteries where high and low payoffs are slightly 

different. Risk neutral players will opt for Lottery No. 5, as its expected outcome is higher than 

those of the other lotteries25. 

3.3.1.3. Certainty Equivalent Method (Task “Blue”) 

CEM follows the original Abdellaoui et al. (2011) specification, in which participants are 

presented with nine lines of paired choices: playing a 50/50 Coin Toss lottery or receiving a Sure 

Payment. If she selects Coin Toss, there is a 50% chance of receiving $30, and an equal chance of 

                                                 
24 50/50 probabilities are characterized in SCL and CEM as a “virtual coin tosses” 
25 In SCL, risk seeking behaviour cannot be distinguished from risk neutral behaviour, as the riskiest decision, Lottery 

No. 5, also has the largest expected outcome. 
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receiving $10; if Sure Payment is selected, there is a 100% probability of receiving the value listed 

on the line. The value of the Sure Payment increases from Line 1 ($10.00) to Line 9 ($30.00) by 

consistent increments of $2.50.  

Transitivity is enforced in this task, so participants are asked to choose a switch point from 

Coin Toss to Sure Payment. The choices in lines 1 and 9 have be preselected, because Coin Toss 

and Sure Payment are, respectively, stochastically dominated choices26. One line will be randomly 

selected, and, depending on the choice made on this line, the CEM task payoff will be determined 

by a virtual “coin toss” or the Sure Payment. 

A risk neutral player is expected to switch from lottery to sure payment at Line 5 or 6, in 

which the Expected Outcome of the sure payment is respectively equal to or greater than the EO 

of lottery option. A risk averse player will opt for Sure Payment earlier, even when 

𝐸𝑂(𝐶𝑜𝑖𝑛 𝑇𝑜𝑠𝑠)  >  𝐸𝑂(𝑆𝑢𝑟𝑒 𝑃𝑎𝑦𝑚𝑒𝑛𝑡). A risk seeker will switch only in lines 7 to 9. 

3.3.1.4. Investment Game (Task “Green”)  

In this iteration of the Gneezy and Potters (1997) investment decision task, the participant is 

endowed with $20 and must choose the exact amount they wish to invest, in units of $0.01, into a 

risky project. We apply the Dreber et al. (2010) specification, in which the outcome of  “success” 

returns to the participant 2.5 times the invested portion, and “failure” means she loses the invested 

portion; the participant always keeps the amount not invested, with certainty. “Success” and 

“failure” outcomes have an equal chance of success and failure.  

                                                 
26 See Task “Blue” Decision in Appendix I: Instructions for the Risk Elicitation Economics Experiment 
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If the participant opts to invest nothing, she keeps $20 with certainty. Investing the entire 

endowment of $20 gives the participant a 50% chance of earning $50 (2.5 times $20), but also a 

50% of ending the task with $0. The expected outcome of investing the entire endowment is $25: 

𝐸𝑂(20) = 0.5 ∙ ((2.5 × $20) + $0) + 0.5 ∙ ($0 + $0) = $25 

 

Investing half of the endowment yields and equal chance between $35 and $10 with an 

Expected Outcome of $22.5: 

𝐸𝑂(10) = 0.5 ∙ ((2.5 × $10) + $10) + 0.5 ∙ ($0 + $10) = $22.5 

  Risk averse subjects are expected to invest a small portion of the endowment, whereas the 

risk-neutral expected utility maximizer opts to invest everything because the expected outcome of 

investing the entire endowment is greater than the expected outcomes of investing anything less27:  

𝐸𝑂(20) = 0.5 × $50 + 0.5 × $0 = $25 >  𝐸𝑂𝑖 ∀ 𝑖 ≠ 20 

3.3.2. Self-assessed risk elicitation method 

After having completed the four incentivized revealed risk tasks, participants are state their 

personal risk-taking across six risk domains (Recreational, Health, Career, Financial, Safety, 

Social). This survey follows Nicholson et al. (2005) in their original format and wording, which 

can be found in its entirety on Survey: Self-Evaluation in Appendix I: Instructions for the Risk 

Elicitation Economics Experiment 

                                                 
27 In INV, risk seeking behaviour cannot be distinguished from risk neutral behaviour because the riskiest decision to 

invest the entire $20 endowment also has the largest expected outcome. 
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3.3.3. Demographic survey 

Towards the end of the experiment session, all participants are asked to voluntarily disclose their 

gender, age and education level. Additionally, we ask subjects if they have family dependents, to 

control for the effect of family variable on risk aversion (Chaulk et al., 2003; Jianakoplos and 

Bernasek, 2006). In addition to general demographic questions, Incident Commander participants 

also see career-specific questions that asked: the year in which they started their Alberta Wildfire 

service, Incident Commander certification level, their current role title, and the number of years 

spent in their current role. All questions provided a nondisclosure option. The text of this 

demographic survey can be found on Survey in Appendix I: Instructions for the Risk Elicitation 

Economics Experiment. 

3.4. Structural Parameter Estimation 

3.4.1. Coding Choice Data 

To format data for structural estimation, we follow Dave et al. (2010) by converting choices in all 

revealed preference elicitation methods into a binary format. Paired lottery tasks like the Multiple 

Price List (MPL) and the Certainty Equivalent Method (CEM) lend themselves well to this format; 

for each line of the task, “0” represents selection of the “safe” choice, and “1”, the selection of the 

“risky” choice.  

Consider MPL: Option A is the safe choice as the difference between $20.00 and $16.00 is 

small; Option B is the risky choice because of the large difference between $38.50 and $1.00. In 

MPL, the selection of Option A is coded “0” and selection of Option B is “1”. The choice of a risk 

neutral participant who opts for Option A from lines 1 to 4, and Option B from lines 5 to 10, will 

be coded as “0, 0, 0, 0, 1, 1, 1, 1, 1”. 
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Likewise, in formatting CEM choice data, the selection of the safe Sure Payment is coded 

“0” and selecting the risky 50/50 Coin Toss is “1”. The choice of a very risk seeking participant, 

who selects Coin Toss from Line 2 to 8 is represented as “1, 1, 1, 1, 1, 1, 1, 0”28. 

Additional transformation is required for Single Choice List (SCL) because the participant 

makes only one explicit choice. As suggested by Dave et al. (2010), we transform SCL into a 

format analogous to the MPL binary choice lottery, in which the five lottery options are 

transformed into four pairwise lotteries. In the transformed SCL, Option B is the “riskier” lottery 

because compared to Option A, it has a larger difference between high/low payoffs. This 

transformed binary format is represented as such: 

Line Option A  Option B 
    

1 
50% probability of $40 

50% probability of $4 

 50% probability of $48 

50% probability of $0 
    

2 
50% probability of $32 

50% probability of $8 

 50% probability of $40 

50% probability of $4 
    

3 
50% probability of $24 

50% probability of $12 

 50% probability of $32 

50% probability of $8 
    

4 
50% probability of $16 

50% probability of $16 

 50% probability of $24 

50% probability of $12 

 

The participant’s choice for one lottery is presumed to dominate her preference for the 

other four lotteries. For instance, the choice of the $40/$4 lottery is coded “0, 1, 1, 1”; in Line 1, 

the Option A dominates the Option B, and in Line 2, Option B dominates Option A, so implicitly 

the participant would also prefer risky Option B over safe Option A through lines 3 and 4. The 

choice of $16/$16 by the most risk averse player is coded “0, 0, 0, 0”, and the selection of $48/$0 

by the least risk averse player is coded “1, 1, 1, 1”. 

                                                 
28 There are 9 lines in the CEM task, but choice is represented by 8 binary codes because the stochastically dominant 

choices in Line 1 and Line 9 have been preselected. See 3.3.1.3 Certainty Equivalent Method (Task “Blue”) for a 

detailed explanation of the stochastically dominant choices. 
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Choice data from the Investment Game (INV) requires further transformation because the 

possible choices are nearly continuous (i.e. choosing to allocate an amount into the risky project, 

ranging from $0.00, $0.01, $0.02 …  to $19.98, $19.99, $20.00). To format the choice data from 

INV such that is comparable to the data from the three other tasks (as mentioned above, MPL: 10 

lines; SCL: 4 lines; CEM: 9 lines), we first round investment decision to the nearest $2.00, the unit 

applied in Crosetto and Filippin (2016). This way, there are ten lines of binary choices: 

Line Option A  Option B 
    

1 
50% probability of $47 

50% probability of $2 

 50% probability of $50 

50% probability of $0 
    

2 
50% probability of $44 

50% probability of $4 

 50% probability of $47 

50% probability of $2 
    

3 

50% probability of $41 

50% probability of $6 

 

50% probability of $44 

50% probability of $4 

    

… …  … 
    

9 
50% probability of $23 

50% probability of $18 

 50% probability of $26 

50% probability of $16 
    

10 
50% probability of $20 

50% probability of $20 

 50% probability of $23 

50% probability of $18 

 

Similar to the transformed binary format in SCL, in INV the participant’s decision to invest 

a certain amount in the “risky project” is presumed to dominate all other possible levels of 

investment choice. For instance, if the participant allocates $16 into the risky project (keeping $4 

regardless of the outcome of the risky project), the lottery of Option A is preferred over B in lines 

1 and 2, and Option B dominates A from lines 3 to 10. This choice is coded as 

"0, 0, 1, 1, 1, 1, 1, 1, 1, 1". The choice of the most risk averse player to invest none of the $20 in the 

risky project is coded “0, 0, 0, 0, 0, 0, 0, 0, 0, 0”, the least risk averse player who invests $20 in the 

risky project is “1, 1, 1, 1, 1, 1, 1, 1, 1, 1”. 
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After this coding procedure, an individual participant’s four experiment choices are 

represented as 32 rows of binary code (MPL: 10 rows; SCL: 4 rows; CEM: 8 rows; INV: 10 rows). 

3.4.2. CRRA utility function 

We employ the Constant Relative Risk Aversion (CRRA) utility function, which as been widely 

used in the economic risk aversion literature (Crosetto and Filippin, 2016; Dave et al., 2010; Holt 

and Laury, 2002; Holzmeister and Stefan, 2020; Pedroni et al., 2017). 

𝑢(𝑥) =  {    

𝑥1−𝜑

(1 − 𝜑)
           if 𝜑 ≠ 1

ln(𝑥)                 if 𝜑 = 1

  

Subjects are assumed to have utility 𝑢(𝑥) for cash incentives, given their risk parameter 

(𝜑). In this specification, the utility form of a perfectly risk neutral individual (𝜑 = 0) simplifies 

to 𝑢(𝑥) = x; risk-seeking individuals are characterized by 𝜑 → −∞, and risk-averse by 𝜑 → +∞. 

The CRRA utility function forms the basis of the structural estimation approach via the conditional 

log-likelihood function, which can be imposed upon the observed choices of selecting one option 

over the other. 

3.4.3. Structural estimation 

Once the data has been appropriately formatted, we specify the CRRA function. Expected Utility 

Theory (EUT) assumes that the participant, having internalized the probabilities and payoff values 

of all choices in a set, will make a decision that gives the best level of expected utility (EU).  

𝐸𝑈(𝑝, 𝑥, 𝜑) = 𝑝𝐻 ∙ 𝑢(𝑥𝐻) + 𝑝𝐿 ∙ 𝑢(𝑥𝐿) 

EU is a function of probabilities (𝑝), high and low payoff values (𝑥𝐻, 𝑥𝐿) as well as the utility that 

the participant derives from payoffs, informed by her risk parameter (𝜑). According to EUT, most 
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participants would prefer the lottery of Option B over Option A so long as 𝐸𝑈𝐵 > 𝐸𝑈𝐴 (although 

risk-seekers enticed by the potential high payoff of Option B may opt for Option B over Option A 

even when 𝐸𝑈𝐵 < 𝐸𝑈𝐴). 

However, it is unreasonable to expect that empirical behavior will perfectly fit the 

economic model. In taking the model to the data, it is important to consider how decisionmakers’ 

deviation from expected theory, due to behaviour or calculation mistakes, will be reflected through 

a noise parameter. Following Crosetto and Filippin (2016), Hey and Orme (1994b), Holzmeister 

and Stefan (2020), we assume the Fechner error specification for the noise parameter, in which the 

error of a group of participants’ evaluation of Option A and B is assumed to take a normal 

distribution. A latent index is yielded:  

∇𝐸𝑈 = 𝐸𝑈𝐵 − 𝐸𝑈𝐴 + 𝜎𝜀     with 𝜀 ~ 𝑁(0, 1) 

which includes a stochastic error term (𝜎𝜀) that is interpreted as the “noise” in the participant’s 

decision-making process (Wilcox, 2008). Sigma (𝜎), also referred to as the noise parameter, is the 

standard deviation of this noise; as 𝜎 approaches 0, the participant’s observed choice becomes 

increasingly likely to be an expression of her underlying preference.  

This index, informed by a participant’s latent preferences (including risk, 𝜑), is linked to 

observed choices in the binary format using a cumulative standard normal distribution 𝛷(∇𝐸𝑈). 

Implicitly, the participant’s choice on each line can be described using a probit link function:  

𝑃(𝐶ℎ𝑜𝑖𝑐𝑒𝐵 > 𝐶ℎ𝑜𝑖𝑐𝑒𝐴) = 𝛷 (
𝐸𝑈𝐵 − 𝐸𝑈𝐴

𝜎
) 

The likelihood function is maximized with respect to risk (𝜑) and noise (𝜎) parameters. 

We employ a conditional log-likelihood function following the Holzmeister and Stefan (2020) 

specification: 
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ln 𝐿(𝜑, 𝜎|�⃗�) =  ∑([ln 𝛷(∇𝐸𝑈𝑖)]𝑦𝑖  + [ln 𝛷(−∇𝐸𝑈𝑖)]1−𝑦𝑖)

𝑛

𝑖=1

 

including risk parameter (𝜑), standard deviation of noise (𝜎), and the vector of 𝑛 choices made in 

each individual task (�⃗�), as coded in the binary format (Section 3.4.1. Coding Choice Data). In 

each Line 𝑖, 𝑦 is “0” for relatively safer Option A; “1” for a choice of Option B. Following 

Holzmeister and Stefan (2020), standard errors are clustered on the subject level. 

3.4.4. Applying Prospect Theory 

Our Expected Utility Theory (EUT) model assumes that participants will gauge probabilities 

objectively. This assumption is relaxed in Prospect Theory (PT) model, in which we estimate 

potential probability bias expressed by participants’ choice behaviour. While all four EMs may be 

analyzed with the EUT framework, only the Multiple Price List lends itself to PT analysis, as MPL 

has variation in probabilities between lines of paired lotteries. It is possible that participants bias 

probabilities during the decision-making process (e.g. overweighting the small probability of 10%, 

or underweighting a large 90% probability). The magnitude of this probability bias is estimated 

with the Tversky and Kahneman (1992) probability weighting specification for evaluation of 

gains:  

𝑤(𝑝) =
𝑝𝛾

(𝑝𝛾 +  (1 − 𝑝)𝛾)
1
𝛾 

 

Probability bias is indicated by a value of 𝛾 (gamma) that deviates from 1; when 𝛾 

approaches 1, the value of the weighted probability is close to the true probability, 𝑤(𝑝)  ≅ 𝑝. 

Tversky and Kahneman (1992) support this functional form for its simplicity (only one parameter: 

𝛾), its ability to encompass weighting functions in both concave and convex regions, and for its 

reliable approximation of aggregate and individual data within the range of 0.5 < 𝑝 < 0.95. 
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Incorporating the weighting function, the participant’s valuation for the expected utility of a lottery 

is expressed as: 

𝐸𝑈(𝑝, 𝛾, 𝑥, 𝜑) = 𝑤(𝑝𝐻) ∙ 𝑢(𝑥𝐻) + 𝑤(𝑝𝐿) ∙ 𝑢(𝑥𝐿) 

With the addition of 𝛾 parameter in this equation, the aforementioned conditional log-likelihood 

function is configured to estimate three parameters: risk (𝜑), noise (𝜎) and probability weighting 

(𝛾). also accounts for noise  ln 𝐿(𝜑, 𝑦, 𝜎|�⃗�). Prospect theory encapsulates the Expected Utility 

form, in which 𝛾 = 1, and the individual’s probability weighting is equal to probability, 𝑤(𝑝) =

𝑝. Figure 3.1 is a visualization of the relationship between probabilities and weighting probabilities 

when 𝛾 = 1, and at other hypothetical levels. 

 
Figure 3.1 Visualization of probability weights at different levels of 𝛾 (gamma) 

 



89 

3.4.5. Accounting for heterogeneity between participants 

Measures of revealed risk aversion in experimental games often correlate with characteristics such 

as gender (Eckel and Grossman, 2008; Filippin and Crosetto, 2016; Holt and Laury, 2002), age 

(Hanna and Lindamood, 2004), and education (Jung, 2015), as well as their vocation (see a 

summary of reviewed literature on heterogeneous risk preferences in Table 3.1 of Section 3.4.5. 

In order to account for observed heterogeneity between our 179 participants, risk and noise 

parameters are specified as linear functions of characteristic variables that are elicited from a 

voluntary survey at the end of the experiment (Incident commander, gender, university education, 

family, age). 

Heterogeneity among Incident Commander participants is further investigated by matching 

the participant with their service records from Alberta Wildfire operations data. We investigate 

how risk aversion is affected by the number of days working in an operational capacity, including 

the number of days in which overtime was incurred, and days on an extended period beyond the 

standard 14-day deployment term.  

Qualified Alberta Wildfire staff rotate through the weekly Duty Officer position, a role 

which carries heavy responsibility: The Forest Area Duty Officer is the first contact for all fires 

within a Forest Area. The Duty Officer is responsible for allocating the amount and type of initial 

suppression resources to be dispatched and advises their Wildfire Operations Officer on the 

import/export of resources to/from other jurisdictions. We measure the responsibility in fire 

operations by counting the number of days in which IC participants acted in capacity of Duty 

Officer. 
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3.5. Overview of empirical analysis 

Through this experiment, we hope to explore two sets of research topics: the effect of Incident 

Commanders and their experiences on elicited risk aversion, and topics related to experiment 

design and analysis. The first set of research topics represent the focus of this study: to determine 

how the cohort of interest, Incident Commanders, differ from Control subjects, and amongst 

themselves, in expressing risk preferences. Through addressing the second set of topics, we come 

to a better understanding as to how the choice of analytical method affects interpretation of the 

results, and also examine the connection between elicited and self-evaluated risk preferences. 

Analysis on Incident Commanders and Risk Aversion 

Existing literature has demonstrated that subjects who are engaged in more risky professions are 

significantly less risk averse in their performance in elicitation methods, whether it be professional 

traders (Haigh and List, 2005), urban firefighters (Krčál et al., 2019), or race car drivers and rock 

climbers (Riddel and Kolstoe, 2013)29. 

The cohort of interest consists of 61 Alberta Wildfire firefighters with a wide range of 

experience in wildland firefighting operations. As Incident Commanders, these individuals play 

active roles in active wildfire suppression, from the direct supervision of wildfire crew members 

to high-level coordination of wildfire suppression programs. Firefighting is an occupational sector 

that is inherently risky, due to the nature of the work and its associated high rate of occupational 

disease (Alberta, 2018). Wildland firefighting, in particular, is perceived by the general public to 

be an extremely risky occupation (Desmond, 2009), a belief that is reinforced by news reports on 

wildland firefighters’ strenuous work conditions (Dickson and Kulkarni, 2021), and high-profile 

                                                 
29 For a review of literature on empirical evidence of heterogeneity in risk aversion, see  

Table 3.1 in Section 3.2.5. 
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fatalities (CTV News, 2021; Tucker, 2017). Given that wildland firefighters are immersed in a 

risky profession, it is possible that risk aversion levels differ between Control subjects and Incident 

Commanders. 

Among the experimental participant cohort of Incident Commanders, individuals with 

more experience will have likely been exposed more to risk on the job. Risk elicitation literature 

demonstrates that individuals engaged in high-risk occupations, recreational activities, and those 

who have faced recent trauma have a tendency to be less risk averse in incentivized tasks (Eckel 

et al., 2009; Haigh and List, 2005; Krčál et al., 2019; Riddel and Kolstoe, 2013). Thus, we may 

find that Incident Commanders with more job experience are less risk averse. Job experience, in 

our definition, is measured as the number of days in which ICs were engaged in suppression 

operations, as well as the intensity at which ICs worked in the field (i.e. when and how often 

“Double Time” payment was earned).  

To further investigate how job experience impacts risk aversion in the laboratory, we are 

interested whether the impact of job experience diminishes with time. Risk elicitation experiments 

with natural disaster survivors demonstrates that the impact of trauma in influencing risk behaviour 

tends to diminish as time passes (Cameron and Shah, 2015; Eckel et al., 2009). Inasmuch, it is 

possible to observe that the effect of the effect of Incident Commanders’ past job experience, as 

defined above, on risk aversion diminishes with time. That is to say, the IC’s job experience as 

measured from five years ago will have a smaller impact on her risk preferences, as compared to 

the experience of last year. 
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Analysis on Experiment Design and Analysis 

Empirical research on risk elicitation methods have applied both Expected Utility Theory and 

Prospect Theory, and the research is inconclusive in determining which theory is superior in 

analyzing results elicited from these methods (see Section 3.2.3). Among our four tasks30, MPL 

can be analyzed with both EUT and PT, and, due to the lack of consensus in the reviewed literature, 

it is possible to observe that Expected Utility Theory and Prospect Theory models provide 

comparable goodness-of-fit on risk aversion models. 

Our elicitation methods vary in their format as well as in the range of risk parameters that 

they can elicit (MPL, CEM: risk-averse and -seeking behaviour; SCL, INV: only risk-averse 

behaviour). Due to these differences among elicitation methods, individual subjects often express 

different levels of risk, as measured by structural models (Holzmeister and Stefan, 2020; Pedroni 

et al., 2017). We may observe similar phenomena in our subject pool, by which Different 

elicitation methods will induce an individual to express different risk behaviours. 

While we are primarily focused on risk measurement through elicitation methods, we are 

also interested in applying self-reporting methods. Given previous literature has documented the 

relationship between elicited and self-evaluated levels of risk (Dohmen et al., 2011; Lönnqvist et 

al., 2015), we may observe a significant positive correlation exists between elicited and self-

evaluated measures of risk aversion. Regardless, a significant correlation between these two forms 

of risk measurement does not mean that experimentalists ought to forgo self-evaluated risk 

measures. Self-reporting can offer rich insights into an individual’s risk profile, both in the present 

                                                 
30 MPL: Multiple Price List; SCL: Single Choice List; CEM: Certainty Equivalent Method; INV: Investment Game 
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and the past, as well as differentiating how the individual perceives risk across various domains in 

life (Nicholson et al., 2005). 

3.6. Experimental results 

Table 3.3 reports the summary statistics for participants in Control and Incident Commander (IC) 

cohorts. The cohort of ICs are predominantly male (56/61). On average, our ICs are 42 years old; 

the youngest is 25 and the oldest, 60. With the exception of a single individual, all ICs have at least 

a polytechnic diploma or higher education level. 63% of ICs have family dependents. The Control 

group is made up largely of younger participants (mean age: 24) who have completed high school 

or a university undergrad program. 60% are female, and 87% majority of participants do not have 

family dependents. 

In addition to their $10 participation payment, participants won further earnings of $0 to 

$50 based on the choices they made during elicitation tasks, the task that was randomly selected 

for payment, and the outcome determined by a random number generator. On average, participants 

completed the experiment with a total payoff of $31.81. 
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Table 3.3 Summary statistics for experiment participants 

 Participant Cohort 

 Incident Commanders  Control 

 N Mean Std. 

Dev. 

 N Mean Std. 

Dev. 

Survey Responses 

Female 61 0.08 0.28  118 0.60 0.49 

Age 61 42.21 9.69  115 24.37 6.67 

Family 59 0.63 0.49  116 0.13 0.34 

University 60 0.32 0.47  115 0.57 0.50 

ABWF experience (years) 61 19.46 9.89  . . . 

IC Records 

No. Days Worked (2011-2020)        

Total 50 934.00 340.41  . . . 

    with Double Time 50 392.74 169.72  . . . 

    as Duty Officer 50 212.10 182.55  . . . 

    Extended period 50 69.88 67.03  . . . 

    Extended period w/ Double Time 50 41.54 35.68  . . . 

No. Days Worked (2020)        

Total 61 73.52 42.50  . . . 

    with Double Time 61 23.74 19.53  . . . 

    as Duty Officer 61 15.98 18.77  . . . 

    Extended period 61 4.95 9.73  . . . 

    Extended period w/ Double Time 61 2.02 4.11  . . . 
Double Time rate is paid on hours that extend beyond standard 7.25 hr on “Straight Time”, 2 hr on “Time and a half “ and 0.5 hr 

on “Straight Meal Time” during a day. 

Extended days: the number of days beyond standard 14-day deployment. 
 

3.6.1. Risk choice 

A series of Wilcoxon rank-sum tests are applied to test the null of equality of distributions in risk 

averse task choices, between genders controlled for cohort (Table 3.4) and between cohorts 

controlled for gender (Table 3.5). Tests on the mean choices made by a cohort demonstrate that 

among Control participants, females are more risk averse through all tasks, and significantly more 

risk averse in INV and SCL (p < 0.01). This finding is consistent with Crosetto and Filippin (2017) 

and Filippin and Crosetto (2016), who suggest that it is the presence of a safe option in a task that 

induces risk averse behaviour in females. Among participants in the IC cohort, female risk aversion 

is significant in MPL (p < 0.05). Among male participants, risk aversion is not significantly 
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different between Control and IC groups for any of the tasks. Among female participants, ICs are 

significantly more risk averse than Control only in MPL (p < 0.05). 

 

Table 3.4 Mean choice across four tasks, compared between genders, controlled by cohort 

Task 

 Control  Incident Commander 

 Male  Female 
Wilcoxon  

p-value 
 Male  Female 

Wilcoxon  

p-value 

  N 
Mean  

choice 
  N 

Mean  

choice 
   N 

Mean  

choice 
  N 

Mean  

choice 
 

MPL  47 6.62  71 6.87 0.6381  56 6.89  5 9.20 0.0483 

SCL  47 3.09  71 3.73 0.0058  56 3.23  5 3.80 0.4261 

CEM  47 5.02  71 5.11 0.6019  56 4.61  5 4.40 0.8069 

INV   47 8.31   71 10.85 0.0013   56 7.40   5 11.00 0.3741 
MPL: Multiple Price List. SCL: Single Choice List. CEM: Certainty Equivalent Method. SCL: Single Choice List. 

Revealed risk aversion increases with the value of the choice. 

Table 3.5 Mean choice across four tasks, compared between cohorts, controlled by gender 

Task 

 Male  Female 

 Control  IC 
Wilcoxon  

p-value 
 Control  IC 

Wilcoxon  

p-value 

  N 
Mean  

choice 
  N 

Mean  

choice 
   N 

Mean  

choice 
  N 

Mean  

choice 
 

MPL  47 6.62  56 6.89 0.7059  71 6.87  5 9.20 0.0273 

SCL  47 3.09  56 3.23 0.5179  71 3.73  5 3.80 0.9470 

CEM  47 5.02  56 4.61 0.1642  71 5.11  5 4.40 0.3795 

INV   47 8.31   56 7.40 0.4278   71 10.85   5 11.00 0.9487 
MPL: Multiple Price List. SCL: Single Choice List. CEM: Certainty Equivalent Method. SCL: Single Choice List. 

Revealed risk aversion increases with the value of the choice. 
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Figure 3.2 Participant choices in four elicitation methods  

(Choices are in order of increasing risk aversion) 

 

Figure 3.2 shows a distribution of participants’ choices throughout four tasks. Notice the 

choice behaviour prevalent throughout four tasks; participants tend to centre their choices in MPL, 

CEM and INV, while skewing towards a higher level of risk aversion in SCL. Supplementary 

figures, in which the choice distribution is divided by gender and cohort can be found in Appendix 

D: Supplementary figures on experiment choices. 

  



97 

3.6.2. Structural models: Expected Utility Theory 

We first analyze participants’ choices using an Expected Utility maximum likelihood approach, 

which includes risk and noise parameters, as specified in Section 3.4.3. We estimate the set of 

model parameters (risk, 𝜑; noise, 𝜎) for each elicitation task.  

In Table 3.6, risk and noise parameters (𝜑, 𝜎) are estimated without accounting for 

heterogeneity across participants. In Table 3.7, the parameters are estimated on heterogeneous 

characteristics that participants reported in the demographic survey: Incident Commander, Female, 

University, Family (dummy variables) and Age (discrete variable). These models will be referred 

to, respectively, as homogeneous (Table 3.6) and heterogenous (Table 3.7).  

Table 3.6 Estimates of risk and noise parameters (𝜑, 𝜎) across tasks (homogeneous) 
 MPL SCL CEM INV 

     

𝜑 0.519*** 0.481*** 0.468*** 0.210*** 

 (0.049) (0.034) (0.119) (0.011) 

     

𝜎 2.237*** 1.096*** 0.992*** 0.229*** 

 (0.293) (0.097) (0.363) (0.014) 

N 1790 716 1432 1790 

N_clust 179 179 179 179 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 3.6 reports that the average level of risk and noise are different across the four 

incentivized tasks. Participants express the highest level of both risk aversion and noise in MPL 

(�̂� =  0.519; �̂� = 2.237) and the lowest level of risk aversion and noise in INV (�̂�  =

 0.210; �̂� = 0.229).  
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Table 3.7 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of characteristics across 

tasks (heterogeneous on cohort, gender, education, family status and age) 
 MPL SCL CEM INV 

     

𝜑     

IC 0.080 0.050 0.350** 0.024 

 (0.190) (0.093) (0.151) (0.039) 

     

Female 0.122 0.224*** 0.267*** 0.068** 

 (0.101) (0.083) (0.098) (0.031) 

     

University 0.163 0.184* 0.011 -0.010 

 (0.111) (0.099) (0.153) (0.025) 

     

Family 0.026 -0.148** -0.308 0.001 

 (0.138) (0.067) (0.201) (0.028) 

     

Age 0.003 0.009 -0.008 -0.003** 

 (0.009) (0.007) (0.009) (0.001) 

     

Constant 0.278 0.109 0.617** 0.273*** 

 (0.202) (0.147) (0.261) (0.043) 

     

𝜎     

IC -1.086* 0.023 -0.989* 0.071 

 (0.577) (0.390) (0.578) (0.072) 

     

Female -0.764 0.344 -0.459** -0.004 

 (0.535) (0.318) (0.234) (0.034) 

     

University -0.930 0.240 -0.135 0.053 

 (0.644) (0.422) (0.255) (0.048) 

     

Family 0.604 -0.334 0.927 0.037 

 (0.570) (0.393) (0.785) (0.042) 

     

Age 0.025 0.031 0.044 -0.001 

 (0.033) (0.025) (0.032) (0.002) 

     

Constant 2.357*** 0.033 -0.037 0.168*** 

 (0.795) (0.507) (0.643) (0.043) 

N 1710 684 1368 1710 

N_clust 171 171 171 171 
MPL: Multiple Price List. SCL: Single Choice List. CEM: Certainty Equivalent Method. SCL: Single Choice List. 

Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Across the four tasks in the heterogeneous model (Table 3.7), Incident Commanders appear 

to be more risk averse than the control sample, and significantly so in CEM task (𝑝 < 0.05).  

The noise parameter indicates how the participants’ choice conforms to the predicted 

choices from EUT; a large noise parameter indicates that behaviour is farther removed from 

EUT31. We also observe marginal significance in ICs’ being less noisy in MPL and CEM.  

 
Figure 3.3 Estimates and confidence intervals (95%) of risk parameters in homogeneous and 

heterogeneous models by task 

  

Figure 3.3 compares the estimated risk parameters and confidence intervals of the 

homogeneous model (Table 3.6) and those of the heterogeneous model (Table 3.7). In this figure, 

                                                 
31 In their MPL & SCL experiment, Dave et al. (2010) discover females to exhibit significantly less noisy behaviour 

than male subjects in MPL, and no significant difference between genders in SCL. While females do tend to be less 

noisy in three tasks (MPL, CEM and INV), it is only in CEM that the gender effect on noise is significant, at the level 

of p < 0.05. Age and university degree attainment are not significant factors in shaping the noise parameter. 
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the plots of the heterogeneous model are the mean values of the �̂�𝑖 per task, across all 179 

individuals, based on the estimated risk parameter in Table 3.7. Confidence intervals are computed 

using the delta method. As observed in the figure, the confidence intervals on plots of the 

heterogeneous model are smaller than those on the homogeneous model, demonstrating that 

estimating risk and noise parameters on characteristic variables improves predictive precision in 

the structural estimation. 

 

3.6.2.1. Comparing heterogeneous risk parameter estimates 

 
Figure 3.4 Distribution of estimated risk parameters (�̂�) functioned on characteristics  

(Dashed lines represent the mean �̂� across all participants) 
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Figure 3.4 shows the distributions of individual �̂� in each task, based on the estimates in 

Table 3.7. The distributions of estimated risk parameters appear to be centred in MPL and SCL, 

and slightly skewed to the right (higher levels of risk aversion) in CEM and INV. 

 

3.6.2.2. Models with Incident Commander-specific traits 

Towards discovering how Incident Commanders’ job experience influence risk aversion, firstly 

we have linked IC participants with an Alberta Wildfire dataset that includes observations of daily, 

individual-level operational involvement. From this dataset, we are able to create variables that 

capture: 

a) the number of total days in which the IC worked on wildfire suppression, and within 

those days, 

b) the number of days in which Double Time was incurred (working over 9.75 hours), 

c) the number of consecutive days extended beyond the standard 14-day deployment, 

d) the number of consecutive days with Double Time extended beyond the standard 14-

day deployment, and 

e) the number of days the IC acted as Duty Officer, a role entailing higher responsibility. 

Operational experience variables are in units of 100 days, so that results can be reported with three 

significant digits. 

 Firstly, we focus on observations of IC work experience in 2020, the year prior to the 

experiment. In order to achieve convergence in a model with a small sample size of 61 participants, 

the risk and noise parameters of the Expected Utility model are specified on a single explanatory 
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variable at a time (Table 3.8 to Table 3.12). At the end of this sub-section, we will consider 

observations in previous years, to potentially discover a time-diminishing effect of work 

experience on risk aversion. 

Table 3.8 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Total days in operational 

deployment in 2020 (units of 100 days) 

 MPL SCL CEM INV 

𝜑     

Total Days (100) 0.006 -0.249*** -0.272*** -0.059* 

 (0.229) (0.049) (0.080) (0.032) 

Constant 0.587*** 0.656*** 0.226 0.222*** 

 (0.204) (0.080) (0.260) (0.037) 

𝜎     

Total Days (100) -0.489 -0.690** 1.354 -0.096** 

 (1.155) (0.334) (1.235) (0.039) 

Constant 2.445** 1.764*** 3.283 0.315*** 

 (1.045) (0.452) (2.700) (0.051) 

N 610 244 488 610 

N_clust 61 61 61 61 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 3.9 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Double Time in 2020 

(units of 100 days) 

 MPL SCL CEM INV 

𝜑     

Double Time (100 days) -0.177 -0.476*** -0.607** 0.019 

 (0.463) (0.124) (0.252) (0.085) 

Constant 0.634*** 0.584*** 0.239 0.169*** 

 (0.161) (0.087) (0.268) (0.028) 

𝜎     

Double Time (100 days) -0.137 -1.286 2.326 -0.170* 

 (2.380) (1.034) (2.727) (0.092) 

Constant 2.109*** 1.513*** 2.926 0.288*** 

 (0.730) (0.436) (2.457) (0.041) 

N 610 244 488 610 

N_clust 61 61 61 61 
“Double Time” is paid at twice the standard rate, and incurred after 7.25 hours of Standard time and 2 hours of Time-and-a-half 

Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.8 show that Incident Commanders who spent more days on wildfire suppression 

operations in the previous year are significantly less risk averse in SCL and CEM (p < 0.01 for 

both models), and are marginally significantly less risk averse in INV (p < 0.10). Similarly, 

Table 3.9 shows that ICs who had worked more days with Double Time in the previous year are 

also significantly less risk averse in both SCL (p < 0.01) and CEM (p < 0.05).  

Table 3.10 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Extended period in 2020 

(units of 100 days) 

 MPL SCL CEM INV 

𝜑     

Extended period (100 

days) 

-0.586 -0.434*** -1.680 -0.115 

 (0.591) (0.140) (1.552) (0.086) 

Constant 0.622*** 0.474*** 0.097 0.180*** 

 (0.110) (0.075) (0.270) (0.019) 

𝜎     

Extended period (100 

days) 

-0.090 -1.891 16.634 -0.277*** 

 (2.537) (1.781) (31.612) (0.103) 

Constant 2.064*** 1.315*** 3.766 0.258*** 

 (0.494) (0.357) (3.219) (0.028) 

ll -266.213 -147.930 -194.921 -323.376 

N 610 244 488 610 

N_clust 61 61 61 61 
The “extended period” are consecutive days beyond the standard 14-day deployment. 

Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.11 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Extended period with 

Double Time in 2020 (units of 100 days) 

 MPL SCL CEM INV 

𝜑     

Extended period with 

Double Time (100 

days) 

-1.999 -1.600 -4.268** -0.363 

 (1.663) (2.381) (1.774) (0.223) 

Constant 0.631*** 0.484*** 0.135 0.183*** 

 (0.106) (0.077) (0.262) (0.020) 

𝜎     

Extended period with 

Double Time (100 

days) 

9.123 -2.216 56.248 -0.629** 

 (16.250) (19.291) (67.807) (0.249) 

Constant 1.910*** 1.189** 3.227 0.258*** 

 (0.440) (0.537) (2.633) (0.030) 

ll -266.274 -146.590 -195.181 -323.719 

N 610 244 488 610 

N_clust 61 61 61 61 
The “extended period” are consecutive days beyond the standard 14-day deployment. 

“Double Time” is paid at twice the standard rate, and incurred after 7.25 hours of Standard time and 2 hours of Time-and-a-half 

Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 

 

 

Table 3.12 Estimates of risk and noise parameters (𝜑, 𝜎) as functions of Days as Duty Officer in 

2020 (units of 100 days) 

 MPL SCL CEM INV 

𝜑     

Duty Officer (100 days) 0.347 -0.263 -0.479** -0.119 

 (0.395) (1.686) (0.239) (0.081) 

Constant 0.536*** 0.506 0.181 0.195*** 

 (0.119) (0.521) (0.272) (0.024) 

𝜎     

Duty Officer (100 days) -2.003 -1.071 3.647 -0.006 

 (1.517) (6.481) (3.940) (0.133) 

Constant 2.413*** 1.433 2.923 0.242*** 

 (0.607) (2.008) (2.441) (0.036) 

N 610 244 488 610 

N_clust 61 61 61 61 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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The point estimates of the risk parameter in Table 3.10 are negative in all models which 

indicates that ICs who spent more days in extended deployment are generally less risk averse. 

However, the estimate of the parameter 𝜑 is only statistically significantly in SCL (p < 0.01). As 

well, additional extended deployment days in which the IC incurred Double Time are also 

associated with lower risk aversion across all tasks, significantly in CEM (p < 0.05), as shown in  

Table 3.11. In Table 3.12, we see that when Incident Commanders spent more days in 2020 taking 

up the responsibility of the Duty Officer, they also tend to be less risk averse across SCL, CEM, 

INV, significantly for CEM (p < 0.05). 

To explore the possibility that the effect of Incident Commanders’ past experiences on risk 

aversion diminishes with time, we explore how the measures of IC experiences across different 

time periods affect revealed risk aversion. Results for each measure of IC experience (Total days, 

Double Time, Extended period, Extended period with Double Time, and Duty Officer) are reported 

in Table 3.13 to Table 3.17.  
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Table 3.13 Estimates of risk parameters (φ) as functions of Total days in operational deployment from (year) to 2020 (units of 100 

days) 
 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 b/se b/se b/se b/se b/se b/se b/se b/se b/se b/se 

           

MPL -0.008 -0.014 -0.010 -0.012 -0.020 -0.035 -0.046 -0.033 -0.039 0.006 

 (0.024) (0.025) (0.030) (0.032) (0.033) (0.036) (0.046) (0.075) (0.101) (0.229) 

ll -217.576 -241.040 -258.345 -262.293 -267.624 -266.661 -266.392 -267.370 -267.147 -267.362 

R2 0.1892 0.1017 0.0372 0.0225 0.0027 0.0062 0.0072 0.0036 0.0044 0.0036 

N 500 550 590 600 610 610 610 610 610 610 

           

SCL -0.029*** -0.033*** -0.036*** -0.040*** -0.047*** -0.058*** -0.078*** -0.099*** -0.146*** -0.249*** 

 (0.007) (0.007) (0.008) (0.010) (0.008) (0.010) (0.013) (0.018) (0.025) (0.049) 

ll -122.156 -133.093 -141.267 -143.239 -145.862 -145.119 -144.419 -146.109 -146.168 -146.542 

R2 0.1848 0.1118 0.0572 0.0441 0.0266 0.0315 0.0362 0.0249 0.0245 0.0220 

N 200 220 236 240 244 244 244 244 244 244 

           

CEM -0.042*** -0.053*** -0.064*** -0.074*** -0.079*** -0.094*** -0.111** -0.133** -0.151*** -0.272*** 

 (0.012) (0.016) (0.020) (0.024) (0.025) (0.033) (0.044) (0.054) (0.039) (0.080) 

ll -163.065 -177.375 -188.157 -189.952 -191.842 -191.674 -191.547 -192.034 -191.549 -192.383 

R2 0.1752 0.1028 0.0483 0.0392 0.0297 0.0305 0.0312 0.0287 0.0312 0.0269 

N 400 440 472 480 488 488 488 488 488 488 

           

INV -0.004 -0.007 -0.007 -0.008 -0.008 -0.010 -0.015 -0.024* -0.035* -0.059* 

 (0.005) (0.005) (0.006) (0.006) (0.007) (0.008) (0.010) (0.013) (0.019) (0.032) 

ll -269.929 -293.090 -315.512 -318.476 -324.592 -323.387 -321.567 -320.073 -318.658 -319.446 

R2 0.1783 0.1078 0.0395 0.0305 0.0119 0.0155 0.0211 0.0256 0.0299 0.0275 

N 500 550 590 600 610 610 610 610 610 610 

N_clust 50 55 59 60 61 61 61 61 61 61 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.14 Estimates of risk parameters (φ) as functions of Double Time from (year) to 2020 (units of 100 days) 
 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 b/se b/se b/se b/se b/se b/se b/se b/se b/se b/se 

           

MPL -0.014 -0.021 -0.021 -0.030 -0.044 -0.064 -0.089 -0.120 -0.199 -0.177 

 (0.052) (0.050) (0.056) (0.061) (0.072) (0.089) (0.098) (0.142) (0.221) (0.463) 

ll -217.408 -240.489 -257.345 -261.177 -266.534 -265.803 -265.377 -265.512 -265.167 -267.375 

R2 0.1898 0.1038 0.0410 0.0267 0.0067 0.0094 0.0110 0.0105 0.0118 0.0036 

N 500 550 590 600 610 610 610 610 610 610 

           

SCL -0.028 -0.037 -0.043 -0.049 -0.069 -0.102*** -0.130*** -0.193*** -0.341*** -0.476*** 

 (0.040) (0.042) (0.046) (0.050) (0.048) (0.034) (0.041) (0.050) (0.069) (0.124) 

ll -124.040 -135.038 -143.495 -145.407 -148.510 -147.066 -146.435 -145.447 -144.969 -145.336 

R2 0.1722 0.0988 0.0424 0.0296 0.0089 0.0185 0.0228 0.0293 0.0325 0.0301 

N 200 220 236 240 244 244 244 244 244 244 

           

CEM -0.079** -0.099*** -0.114*** -0.117** -0.127*** -0.142** -0.175*** -0.217*** -0.302*** -0.607** 

 (0.033) (0.036) (0.043) (0.047) (0.049) (0.061) (0.066) (0.075) (0.106) (0.252) 

ll -162.306 -177.159 -186.946 -189.122 -191.591 -192.315 -191.327 -191.215 -190.992 -192.583 

R2 0.1791 0.1039 0.0544 0.0434 0.0309 0.0273 0.0323 0.0328 0.0340 0.0259 

N 400 440 472 480 488 488 488 488 488 488 

           

INV 0.010 0.005 0.006 0.003 0.003 -0.002 -0.007 -0.014 -0.027 0.019 

 (0.016) (0.014) (0.017) (0.015) (0.016) (0.018) (0.021) (0.029) (0.045) (0.085) 

ll -269.625 -296.047 -317.959 -321.471 -327.128 -326.392 -325.900 -325.644 -324.768 -326.365 

R2 0.1792 0.0987 0.0320 0.0214 0.0041 0.0064 0.0079 0.0086 0.0113 0.0065 

N 500 550 590 600 610 610 610 610 610 610 

N_clust 50 55 59 60 61 61 61 61 61 61 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.15 Estimates of risk and noise parameters (φ) as functions of Extended period from (Year) to 2020 (units of 100 days) 
 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 b/se b/se b/se b/se b/se b/se b/se b/se b/se 

          

MPL -0.022 0.039 -0.010 -0.101 -0.201 -0.192 -0.226 -0.278 -0.586 

 (0.188) (0.293) (0.372) (0.237) (0.171) (0.207) (0.376) (0.701) (0.591) 

ll -241.159 -257.977 -262.287 -267.768 -266.581 -266.688 -267.275 -267.724 -266.213 

R2 0.1013 0.0386 0.0225 0.0021 0.0065 0.0061 0.0040 0.0023 0.0079 

N 550 590 600 610 610 610 610 610 610 

          

SCL -0.090*** -0.097*** -0.113*** -0.099*** -0.172*** -0.185*** -0.332*** -0.325*** -0.434*** 

 (0.022) (0.021) (0.000) (0.022) (0.054) (0.000) (0.083) (0.105) (0.140) 

ll -132.248 -141.025 -142.710 -147.159 -147.303 -145.995 -146.538 -148.254 -147.930 

R2 0.1174 0.0589 0.0476 0.0179 0.0170 0.0257 0.0221 0.0106 0.0128 

N 220 236 240 244 244 244 244 244 244 

          

CEM -0.215*** -0.217** -0.259** -0.271*** -0.326*** -0.320*** -0.470*** -0.760*** -1.680 

 (0.081) (0.086) (0.105) (0.104) (0.120) (0.116) (0.164) (0.263) (1.552) 

ll -181.028 -192.042 -193.658 -195.439 -195.373 -195.815 -195.967 -195.022 -194.921 

R2 0.0844 0.0287 0.0205 0.0115 0.0118 0.0096 0.0088 0.0136 0.0141 

N 440 472 480 488 488 488 488 488 488 

          

INV -0.039 -0.035 -0.041 -0.041 -0.046*** -0.069* -0.107** -0.097 -0.115 

 (0.033) (0.024) (0.033) (0.036) (0.010) (0.039) (0.042) (0.068) (0.086) 

ll -286.398 -308.905 -310.684 -316.004 -315.725 -314.574 -316.087 -320.688 -323.376 

R2 0.1281 0.0596 0.0542 0.0380 0.0388 0.0423 0.0377 0.0237 0.0156 

N 550 590 600 610 610 610 610 610 610 

N_clust 55 59 60 61 61 61 61 61 61 
Note: 2011 is not included, as the ML model does not converge for Extended period from 2011 to 2020. 

Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.16 Estimates of risk and parameters (φ) as functions of Extended period with Double Time from (year) to 2020 (units of 100 

days) 
 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 b/se b/se b/se b/se b/se b/se b/se b/se b/se b/se 

           

MPL -0.256 -0.219 -0.176 -0.210 -0.304 -0.429 -0.469 -0.723 -1.268 -1.999 

 (0.198) (0.221) (0.279) (0.290) (0.283) (0.265) (0.321) (0.509) (0.818) (1.663) 

ll -215.359 -239.520 -257.474 -261.519 -266.448 -265.350 -264.942 -265.422 -265.053 -266.274 

R2 0.1974 0.1074 0.0405 0.0254 0.0070 0.0111 0.0126 0.0109 0.0122 0.0077 

N 500 550 590 600 610 610 610 610 610 610 

           

SCL -0.200 -0.216 -0.237 -0.249 -0.217 -0.284 -0.489*** -0.617 -0.567** -1.600 

 (0.159) (0.138) (0.155) (0.188) (0.231) (0.203) (0.150) (0.493) (0.250) (2.380) 

ll -123.337 -134.241 -142.888 -144.940 -149.024 -148.266 -146.217 -148.270 -148.589 -146.590 

R2 0.1769 0.1041 0.0464 0.0327 0.0055 0.0105 0.0242 0.0105 0.0084 0.0217 

N 200 220 236 240 244 244 244 244 244 244 

           

CEM -0.575*** -0.534*** -0.478*** -0.565*** -0.639*** -0.594*** -0.577*** -0.827*** -1.301** -4.268** 

 (0.161) (0.154) (0.161) (0.195) (0.205) (0.195) (0.197) (0.297) (0.512) (1.774) 

ll -162.583 -178.964 -190.439 -192.488 -194.267 -195.173 -195.739 -195.659 -195.017 -195.181 

R2 0.1777 0.0948 0.0368 0.0264 0.0174 0.0128 0.0100 0.0104 0.0136 0.0128 

N 400 440 472 480 488 488 488 488 488 488 

           

INV -0.067* -0.073* -0.078** -0.090** -0.104** -0.119** -0.173*** -0.257** -0.262 -0.363 

 (0.036) (0.037) (0.033) (0.039) (0.043) (0.050) (0.065) (0.117) (0.195) (0.223) 

ll -262.283 -287.065 -308.922 -311.355 -315.338 -312.835 -309.498 -314.039 -318.276 -323.719 

R2 0.2015 0.1261 0.0596 0.0521 0.0400 0.0476 0.0578 0.0440 0.0311 0.0145 

N 500 550 590 600 610 610 610 610 610 610 

N_clust 50 55 59 60 61 61 61 61 61 61 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 3.17 Estimates of risk and parameters (φ) as functions of Days as Duty Officer (2020) (units of 100 days) 
 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 b/se b/se b/se b/se b/se b/se b/se b/se b/se b/se 

           

MPL -0.045 -0.032 -0.027 -0.014 0.008 0.024 0.041 0.122 0.206 0.347 

 (0.048) (0.051) (0.055) (0.064) (0.073) (0.091) (0.114) (0.150) (0.155) (0.395) 

ll -216.116 -240.997 -258.272 -262.621 -268.254 -267.869 -267.563 -265.863 -263.933 -265.799 

R2 0.1946 0.1019 0.0375 0.0213 0.0003 0.0017 0.0029 0.0092 0.0164 0.0095 

N 500 550 590 600 610 610 610 610 610 610 

           

SCL -0.030 -0.043** -0.051** -0.047 -0.040 -0.031 -0.030 -0.026 -0.030 -0.263 

 (0.023) (0.021) (0.020) (0.029) (0.044) (0.068) (0.090) (0.127) (0.201) (1.686) 

ll -122.064 -133.123 -142.648 -145.395 -149.442 -149.694 -149.733 -149.812 -149.821 -149.674 

R2 0.1854 0.1116 0.0480 0.0297 0.0027 0.0010 0.0007 0.0002 0.0002 0.0011 

N 200 220 236 240 244 244 244 244 244 244 

           

CEM -0.041 -0.058 -0.058 -0.061 -0.072 -0.099 -0.130 -0.220 -0.217* -0.479** 

 (0.032) (0.038) (0.050) (0.066) (0.074) (0.096) (0.131) (0.187) (0.115) (0.239) 

ll -165.481 -181.076 -192.875 -194.984 -196.869 -196.721 -196.669 -196.405 -196.484 -196.453 

R2 0.1630 0.0841 0.0244 0.0138 0.0042 0.0050 0.0053 0.0066 0.0062 0.0063 

N 400 440 472 480 488 488 488 488 488 488 

           

INV -0.010 -0.012 -0.015 -0.016 -0.020 -0.021 -0.025 -0.027 -0.046 -0.119 

 (0.009) (0.010) (0.011) (0.012) (0.014) (0.018) (0.023) (0.031) (0.043) (0.081) 

ll -268.741 -293.662 -314.837 -318.611 -324.146 -325.463 -325.461 -326.761 -325.834 -323.895 

R2 0.1819 0.1060 0.0415 0.0301 0.0132 0.0092 0.0092 0.0052 0.0081 0.0140 

N 500 550 590 600 610 610 610 610 610 610 

N_clust 50 55 59 60 61 61 61 61 61 61 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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In Table 3.13 to Table 3.17, observations that make up IC experience variables are 

extended from 2020 to previous years. For instance, in each table, model “2011” includes 

observations from years 2011, 2012, 2013, …, up to and including 202032. In the “2020” model, 

the results are the same as those reported in Table 3.8 to Table 3.12.  

For most tasks in Table 3.13 to Table 3.17, we observe that the magnitude of the negative 

impact of work experience on risk aversion is reduced as observations are extended into the past. 

(The exception is for MPL, in which no IC experience variable has a significant effect.) Thus, 

recent operational experience, such as through additional operation days worked, extended periods 

of deployment, and more Duty Officer responsibilities, seems to be more impactful on reducing 

an IC’s risk aversion during the experiment. However, we also observe that the goodness-of-fit 

(McFadden’s pseudo-R2) improves with specifications that extend further into the past. These 

findings are discussed in further detail in Section 3.7. Discussion. 

 

3.6.3. Structural models: Prospect Theory 

As outlined in Section 3.4.4, our Multiple Price List is the only elicitation method that lends itself 

to Prospect Theory analysis, because the lotteries of this task have multiple probabilities. In 

addition to risk and noise parameters (𝜑, 𝜎) that are present in EUT model, the PT model also 

includes a parameter that captures probability weighting (𝛾).  

As observed in Table 3.18, below, in the structural model without heterogeneity, the risk 

parameter estimates of both EUT and PT are similar (�̂�𝐸𝑈𝑇 = 0.519; �̂�𝑃𝑇 = 0.521) and both 

significant at p < 0.01. However, the estimated probability weighting estimator in the PT model 

                                                 
32 The number of participant-level observations change from 2011 to 2015, as some ICs only joined Alberta Wildfire 

during these years. 
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(𝛾 = 2.239) absorbs much of the variation captured in the noise parameter in EUT ( �̂�𝐸𝑈𝑇 =

2.37; �̂�𝑃𝑇 = 1.014). 

 

Table 3.18 Estimates of risk, noise, and probability weighting parameters (𝜑, 𝜎, 𝛾), 

MPL experiments using data from all participants 
 EUT PT 

   

𝜑 0.519*** 0.521*** 

 (0.049) (0.053) 

   

𝜎 2.237*** 1.014*** 

 (0.293) (0.103) 

   

𝛾  2.239*** 

  (0.293) 

N 1790 1790 

N_clust 179 179 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 3.19 reports a heterogenous structural model in which risk, noise and probability 

weighting parameters (𝜑, 𝜎, 𝛾) are estimated on participant characteristics. Results of the PT 

estimates are compared to estimates from the EUT structural estimation model.  

Figure 3.5 visually compares the mean risk parameter estimates of the 

homogeneous/heterogeneous models estimated using EUT and PT. 
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Table 3.19 Estimates of risk, noise, and probability weighting parameters (𝜑, 𝜎, 𝛾) on 

characteristics, MPL (all participants) 

 EUT PT 

𝜑   

IC 0.080 -0.113 

 (0.190) (0.247) 

Female 0.122 0.220** 

 (0.101) (0.106) 

Age 0.003 0.023 

 (0.009) (0.016) 

Family 0.026 -0.097 

 (0.138) (0.198) 

University 0.163 0.221** 

 (0.111) (0.111) 

Constant 0.278 -0.215 

 (0.202) (0.305) 

𝜎   

IC -1.086* -0.344 

 (0.577) (0.227) 

Female -0.764 0.374* 

 (0.535) (0.207) 

Age 0.025 0.054** 

 (0.033) (0.027) 

Family 0.604 -0.388 

 (0.570) (0.289) 

University -0.930 0.266 

 (0.644) (0.232) 

Constant 2.357*** -0.535 

 (0.795) (0.487) 

𝛾   

IC  -0.650 

  (0.781) 

Female  -0.595* 

  (0.309) 

Age  -0.004 

  (0.046) 

Family  0.747 

  (0.580) 

University  -0.530 

  (0.415) 

Constant  2.309** 

  (0.969) 

Pseudo-R2 .0949 .1066 

N 1710 1710 

N_clust 171 171 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Figure 3.5 Estimates of risk parameters in EUT and PT models of MPL task,  

homogeneous and heterogeneous 

 

In Table 3.19, the EUT structural estimation model on characteristics is compared to the 

PT model. When the probability weighting parameter (𝛾) of the PT model captures some of the 

observed variation previously captured by solely by risk or sigma parameters (𝜑, 𝜎) in the EUT 

model we observe that: effects of Female and University on risk become significantly positive (p 

< 0.05), IC effect on noise is no longer significant, Female effect on noise becomes positive and 

marginally significant (p < 0.10), and Age effect on noise becomes significant (p < 0.05). 

For the estimators for probability weighting in the PT model, only Female is marginally 

significant in its negative effect (p < 0.10). 
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Regarding differences between Incident Commanders and Control participants, ICs are not 

significantly different in risk aversion in either model; ICs are marginally significant in exhibiting 

less behavioural noise in EUT, however, with the introduction of the 𝛾 parameter, the IC estimator 

on the noise parameter is no longer significant, nor is the IC estimator significant on the probability 

weighting parameter. 

Finally, to compare the goodness-of-fit of Expected Utility Theory and Prospect Theory in 

this model specification, we compare calculated McFadden’s pseudo R-squared 33 . PT (0.1066) 

appears to be slightly better than EUT (0.0949) in capturing variation in the data.  

Nevertheless, the difference in mean risk parameter estimates between homogeneous EUT 

and PT models are minute, while the mean risk estimated in heterogeneous PT model is slightly 

higher than that in the heterogeneous EUT model (Figure 3.5). 

 

3.6.3.1. Counterfactual analysis of probability weighting parameters  

Using estimated parameters from the PT model Table 3.19, we find that the median player has a 

probability weighting parameter equal to (𝛾 = 1.6). Against an expected utility maximizer (𝛾 =

1.0), the relationship between probability weighting against probability values for median player 

is displayed in Figure 3.6. 

                                                 
33 McFadden’s pseudo R-squared: 𝑅2 = 1 −

ln �̂�(𝑀ℎ𝑒𝑡𝑒𝑟𝑒𝑔𝑒𝑛𝑒𝑜𝑢𝑠)

ln �̂�(𝑀ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠)
 in which ln �̂� is the estimated log likelihood and 𝑀 is 

the model specification (McFadden, 1974). 
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Figure 3.6 Probability weighting (γ) and Probability (p) for the median player in MPL  

 

PT parameters from Table 3.19 can also be used to predict the characteristics of a 

counterfactual participant. Per the probability weighting estimators, such are the traits of a 

hypothetical individual who would have a probability weighting parameter (𝛾) close to the levels 

displayed in Figure 3.1 (Section 3.4.4): a 22-year-old female IC with university degree and no 

family dependents (𝛾 ~0.5); a 50-year-old female IC with university degree and family 

dependents (𝛾~1.0); a 60-year-old male Control with no university degree and no family 

dependents (𝛾~2.0); and, a 30-year-old male Control with a university degree and family 

dependents (𝛾~3.0). 
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3.6.4. Between-task consistency 

While individuals’ risk preferences are not likely to change over the course of the experiment, the 

estimates generated from their choices can be different from one task to another. Risk preference 

is determined to be “consistent” when there is overlap between the interval ranges of two tasks’ 

implied parameters. The implied Constant Relative Risk Aversion (CRRA) parameters for all 

choices in the four elicitation methods are available in Table G.1. of Appendix G: CRRA risk 

parameters for experiment choices. 

 
Figure 3.7  Count of participants within ranges of implied CRRA risk parameters. 

MPL: Multiple Price List. SCL: Single Choice List.  

CEM: Certainty Equivalent Method. INV: Investment Game. 

 

As visually represented in Figure 3.7, 31 participants made a choice34 in MPL that had an 

implied CRRA risk parameter that spans from 0.1 ≤  𝜑 <  0.4. Of those 31 individuals, those 

who selected one of the two options35 in SCL that ranged from 0.1 ≤  𝜑  <  0.4 will be 

considered to be consistent between MPL-SCL.  

                                                 
34 MPL: 31 participants chose to switch in Line 6 from Option A (60% probability of $20.00; 40% probability of 

$16.00) to Option B (60% probability of $38.50; 40% probability of $1.00). For a visual representation of this task, 

See Task “Orange” Decision in Appendix I: Instructions for the Risk Elicitation Economics Experiment. 
35 SCL: 28 participants chose the $48/0 lottery; 12 participants chose the $40/$4 lottery. 
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Table 3.20 reports pairwise task consistency to be strong between SCL-CEM (62%) MPL-

SCL (58% of participants), MPL-CEM (51%). 

Table 3.20 Proportion of participants with implied risk parameter consistency between tasks 

  MPL SCL CEM INV 

MPL 1.0000       

SCL 0.5810 1.0000     

CEM 0.5140 0.6201 1.0000   

INV 0.3073 0.2067 0.4860 1.0000 
MPL: Multiple Price List; SCL: Single Choice List; CEM: Certainty Equivalent Method INV: Investment Game 

Following Holzmeister and Stefan (2020), we establish an index of between-task 

consistency. Each participant has an index ranging from 0/6 to 6/6 that indicates the number of 

task pairs in which the implied CRRA risk parameter intervals overlap. A distribution of 

participants across the between-task consistency index is displayed in Figure 3.8, below. 

 

Figure 3.8 Distribution of participants across an index of consistency between pairs of tasks 

(Count of participants per index is labelled above the graphs) 
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Figure 3.8 shows that on the bulk of participants had 1/6 to 4/6 task pairs in which their 

levels revealed risk were consistent between tasks. Among 179 participants, there are 12 whose 

implied CRRA ranges did not overlap between any task-wise pair (0/6), and seven whose implied 

CRRA ranges overlapped across all four elicitation methods (6/6). 

 

3.6.5. Self-evaluated risk 

3.6.5.1. Comparing between cohorts, and past/present risks 

After having completed all risk elicitation methods (randomized order of MPL, SCL, CEM, INV), 

participants were asked to evaluate their own level of risk-taking. The format of the survey follows 

Nicholson et al. (2005), in which individuals are asked to rate, from a scale of 1 to 5, how risk-

taking applies to themselves throughout six domains, both now and in their adult past. (For full 

text of this survey, see Appendix I: Instructions for the Risk Elicitation Economics Experiment.)  

The self-evaluations of Control and Incident Commander participants are visually 

represented in Figure 3.9, and statistical tests on differences between risks across timeframes and 

cohorts are reported in Table 3.21 and Table 3.22. 
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Figure 3.9 Responses to self-evaluated domain-specific risks  

(1: low risk aversion; 5: high risk aversion)  

 

 

Table 3.21 Comparing self-evaluated risk aversion between cohorts, timeframe controlled 

Risk 

Domain 

Now   Past 

Control   IC Wilcoxon 

p-value 

  Control   IC Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 118 4.38   61 4.62 0.1393  118 1.74   61 1.84 0.2061 

Financial 118 4.16   61 3.95 0.0213  118 1.79   61 2.34 0.0003 

Health 118 4.25   61 3.56 0.0000  118 2.05   61 3.28 0.0000 

Recreational 118 3.81   61 3.36 0.0051  118 2.47   61 3.52 0.0000 

Safety 118 3.91   61 3.52 0.0134  118 2.47   61 3.36 0.0000 

Social 118 3.65   61 3.36 0.0357   118 2.18   61 2.48 0.0740 
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Table 3.22 Comparing self-evaluated risk aversion between timeframes, controlled by cohort 

Risk 

Domain 

Control   Incident Commanders 

Now   Past Wilcoxon 

p-value 

  Now   Past Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 118 4.38   118 1.74 0.0000  61 4.62   61 1.84 0.0000 

Financial 118 4.16   118 1.79 0.0000  61 3.95   61 2.34 0.0000 

Health 118 4.25   118 2.05 0.0000  61 3.56   61 3.28 0.1502 

Recreational 118 3.81   118 2.47 0.0000  61 3.36   61 3.52 0.3636 

Safety 118 3.91   118 2.47 0.0000  61 3.52   61 3.36 0.3344 

Social 118 3.65   118 2.18 0.0000   61 3.36   61 2.48 0.0001 

 

In general, participants report they are more risk averse today than in their adult past. The 

exception to this trend is ICs’ risk taking in Health, Recreational and Safety domains, in which the 

differences between mean present-day and past risks are not significant. Although the average IC 

is older than the average Control (42 and 24-years-old), ICs tend to express a smaller difference in 

between current and past risk-taking in most domains, with the exception of Career. As such, ICs 

are simultaneously significantly less risk averse than Control in 5 of 6 domains in the present-day 

timeframe, and also significantly more risk averse in 4 of 6 domains in the past.  

Considering that gender may affect self-evaluated risk preferences, we also compare 

between cohorts within gender, as well between genders within cohorts in Appendix H: Self-

reported risk by cohort, gender, and timeframe. Tables in the appendix provide evidence that 

variation in self-evaluated risk is explained better by cohort rather than by gender. 

3.6.5.2. Correlation between experiment choices and self-evaluated risk 

To examine the correlation between participants’ experiment-elicited risk and self-evaluated risk, 

both sets of data must be transformed so that they can be examined together. Firstly, we use 

principal component analysis (PCA) to extract the first principal component (PC1) from the set of 

four variables representing the choices in the four experimental tasks.  
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Participants’ self-evaluated risk preferences are characterized by 12 variables. These 

variables are responses to a five-point Likert scale questionnaire on risk-taking across six domains 

and two timeframes (present, past)36. To capture the six variables of present-timeframe self-

valuated risk as a single variable, PCA is repeated to extract the PC1. PCA is applied once again 

to capture past-timeframe self-evaluated risk as a single variable. 

In Figure 3.10, below, each point represents an individual participant’s PC1 of 

experimental choices and present-timeframe self-evaluated risk. Participants who make more risk 

averse choices in the incentivized tasks also tend to assess themselves as more risk averse. This 

positive relationship is highly significant (p < 0.01) as reported in the OLS regression in Table 

3.23. 

                                                 
36 The self-valuation data is transformed to follow ascending risk aversion order. That is, in a Likert scale response to 

“Please could you tell us if any of the following have ever applied to you …”, 1 becomes very often (least risk averse), 

and 5, never (most risk averse). 

 

For a screenshot of this questionnaire, see Survey: Self-Evaluation in Appendix I: Instructions for the Risk Elicitation 

Economics Experiment.  
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Figure 3.10 Correlation between First Principal Components of Risk elicitation experiment 

choices and Domain-specific self-evaluated risk (present timeframe).  

(All choices are scaled in order of increasing risk aversion) 

 

The relationship between risk aversion in Experiment choices and Self-evaluation is more 

pronounced among ICs (0.493) than Control (0.242). Regardless, in both cohorts and across all 

participants, the correlation is highly significant (p < 0.01), as reported in Table 3.23 below.  
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Table 3.23 OLS regression on PC1 of Experiment choices on PC1 of Self-evaluated risk 

(present) 
 Control Incident Commander All participants 

Self-evaluated risk (PC1) 0.242*** 0.493*** 0.310*** 

 (0.078) (0.173) (0.072) 

    

Constant 0.052 0.026 -0.000 

 (0.115) (0.209) (0.099) 

Observations 118 61 179 
Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

In contrast, as seen below in Table 3.24, participants’ self-evaluated risk-taking in the past 

timeframe appears to correlate negatively with elicited risk from experiment choices. This negative 

relationship is significant for all pooled participants and for the Control group.  

Table 3.24 OLS regression on PC1 of Experiment choices on PC1 of Self-evaluated risk (past) 
 Control Incident Commander All participants 

Self-evaluated past risk (PC1) -0.259*** -0.199 -0.242*** 

 (0.079) (0.152) (0.065) 

    

Constant -0.006 -0.042 -0.000 

 (0.118) (0.243) (0.100) 

Observations 118 61 179 
Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Principal Component Analysis captures domain-specific risk self-evaluations as one 

variable. However, we are also interested in seeing which individual risk domain(s) tend to 

correlate best with experimental-elicited risk. To investigate this, we regress PC1 of experiment 

choices on the Likert scale units of individual risk domains. Table 3.25 reports six regressions of 

Experiment choice PC1 present-timeframe self-evaluated risk by domain, across all participants. 

Table 3.25 OLS regression of Experiment choice PC1 on Self-evaluated risk by domain 

 Career Financial Health Recreation Safety Social 

Self-eval. risk -0.020 0.485*** 0.144 0.218** 0.330*** 0.144 

 (0.109) (0.104) (0.098) (0.086) (0.096) (0.088) 

       

Constant 0.090 -1.983*** -0.578 -0.798** -1.244*** -0.511 

 (0.497) (0.436) (0.406) (0.331) (0.375) (0.331) 

Observations 179 179 179 179 179 179 
Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Among all the self-evaluated risk domains, Financial is most strongly and highly 

significantly associated with number of safe choices in experiments (0.485, p < 0.01); Safety is 

also highly significant (p < 0.01), and Recreation is significant (p < 0.05). However, when 

participants are separated by gender and cohort, it is evident that the relationship between certain 

domain-specific self-evaluated risks and experiment choice varies among subgroups (Table 3.26). 

While all split samples have a positive correlation between self-evaluated Financial risks and 

experiment choices, this relationship is not significant for Males in the Control group. As well, the 

relationship between self-evaluated Safety risks and experiment choices only maintains 

significance for Male participants in Control group (p < 0.05) and Incident Commander group (p 

< 0.01), and Recreation is only marginally significant among Female Control participants (p < 

0.10). 
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Table 3.26 OLS regression on PC1 of experiment choices on self-evaluated risks, by domain  

(separated by subgroups of participants) 

 Career Financial Health Recreation Safety Social 

 

Panel A: Control, Male 

Self-eval. risk -0.000 0.217 0.134 0.071 0.450** 0.227 

 (0.181) (0.177) (0.190) (0.180) (0.215) (0.152) 

       

Constant -0.231 -1.063 -0.786 -0.490 -2.060** -1.052* 

 (0.808) (0.709) (0.815) (0.690) (0.896) (0.586) 
       

N 47 47 47 47 47 47 

 

Panel B: Control, Female 

Self-eval. risk -0.138 0.505*** 0.090 0.209* 0.129 0.120 

 (0.142) (0.148) (0.156) (0.108) (0.120) (0.118) 

       

Constant 0.957 -1.866*** -0.045 -0.472 -0.144 -0.096 

 (0.644) (0.661) (0.686) (0.441) (0.475) (0.456) 
       

N 71 71 71 71 71 71 

 

Panel C: Incident Commander, Male 

Self-eval. risk 0.145 0.575** 0.095 0.141 0.605*** -0.086 

 (0.258) (0.254) (0.196) (0.190) (0.185) (0.195) 

       

Constant -0.972 -2.567** -0.645 -0.768 -2.425*** -0.020 

 (1.202) (1.017) (0.725) (0.655) (0.675) (0.682) 
       

N 56 56 56 56 56 56 

 

Panel D: Incident Commander, Female 

Self-eval. risk 0.000 † 2.004** -0.195 1.127 -0.516 1.477 

 (.) (0.611) (0.713) (1.037) (1.274) (0.878) 

       

Constant 0.735 -7.681* 1.435 -4.225 2.695 -4.581 

 (0.848) (2.608) (2.743) (4.636) (4.935) (3.239) 
       

N 5 5 5 5 5 5 
† No variation among subgroup in this domain-specific risk. 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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3.7. Discussion 

This experiment was motivated by a research question on whether, and how, Alberta Wildfire 

Incident Commanders differ from a Control group in their level of risk aversion. As well, we were 

interested in comparing the application of two prevalent behavioural analysis theories, and 

considering how our choice of elicitation methods influences expressions of risk behaviour. 

Discussion on Analysis on Incident Commanders and Risk Aversion 

Risk literature has proven that subjects who engage in risk professions (Krčál et al., 2019), 

recreation (Riddel and Kolstoe, 2013), or have recently experienced trauma (Eckel et al., 2009) 

tend to be less risk averse. In this project, we were interested in finding empirical evidence for 

whether Incident Commanders (ICs) have risk preferences that are different than the control 

population. We find that, after controlling for heterogeneity in gender, age, education and family 

status, ICs are not particularly different from Control participants. 

While evidence of risk aversion is not clear between cohorts, we discover that participants 

within the IC cohort are differentiated by the level of experience in operational deployment. ICs 

who with more operations experience in the past year tend to be less risk averse across nearly every 

elicitation method (Table 3.8 – Table 3.12). This finding demonstrates that there is a clear inverse 

correlation between an Incident Commander’s engagement in wildland firefighting in the year 

previous to the experiment, and risk aversion elicited from incentivized tasks. When we extend 

observations of ICs’ operations experience from 2020 to 2011 (Table 3.13 – Table 3.17), we find 

that additional experience in past years are not as impactful on risk behaviour as experience in 

recent years. Recent experience is more impactful than past experience on risk aversion revealed 

in the laboratory. This finding on the time-decaying effect of heightened-stress experience 

conforms with previous literature (Eckel et al., 2009). 
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Discussion on Analysis on Experiment Design and Analysis 

All four tasks were analyzed using the most commonly used framework in experimental 

literature: the Expected Utility Model (Crosetto and Filippin, 2016; Dave et al., 2010; Eckel and 

Grossman, 2008; Holt and Laury, 2002). Prospect Theory, utilized in Pedroni et al. (2017) and 

Tanaka et al. (2010), was applied to the Multiple Price List (MPL), to account for probability 

weighting. We discover the PT model captures variation in MPL choices slightly better (pseudo-

R2 = 0.1066) than EUT (pseudo-R2 = 0.0949). 

When testing for between-task risk consistency, we observe a large proportion of our 

participants (93%) can be considered consistent between at least one pair of tasks (Table 3.20). 

Individuals exhibit consistency predominantly between tasks in which the implied CRRA 

parameters of available choices are comparable; among our tasks, these are CEM and MPL. 

The reason why subjects seem to behave differently between elicitation methods during an 

experiment is a subject of much contention amongst experimental economists (Crosetto and 

Filippin, 2016; Dave et al., 2010; Holzmeister and Stefan, 2020; Pedroni et al., 2017). Assertions 

made in some works are observed as well in the results of our experiment. For instance, Dave et 

al. (2010) praise MPL for its predictive accuracy, but also caution against using the method due to 

its complexity. Indeed, we do find that Control participants are marginally significant in exhibiting 

mildly noisy behaviour both in MPL and in the other lottery task, CEM (Table 3.7). Filippin and 

Crosetto (2016) argue that gender differences are more likely to be observed when a task, a) 

includes a riskless option in the set, b) has fixed 50/50 probabilities. This phenomenon is observed, 

too, in our experiment, as females display significantly higher risk aversion in the three tasks with 

equal outcome probabilities (SCL, INV, CEM), of which two have a riskless option (SCL, INV). 
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In addition to task design, the order in which a participant is presented a task can also influence 

her behaviour (Harrison et al., 2008, 2005), a limitation that is further discussed below. 

In comparing experiment revealed and self-evaluated risk through Principal Component 

Analysis, we find a strong correlation between experiment risk and self-evaluated risk. Participants 

who make risky choices in the four elicitation tasks also tend to assess themselves as more risk-

taking, particularly in domains of Financial and Safety risks. This finding leads us to believe that 

there is a clear relationship between risk as elicited through incentivized tasks, and risk that is 

reported by an individual, after careful self-reflection. We also consider the possibility that since 

the self-evaluation task followed the four incentivized risk elicitation tasks, reflection on personal 

risk tolerance during the lottery tasks may be influencing participants’ self-evaluation. 

Limitations 

While many of our findings are statistically significant and robust, we wish to address some of the 

limitations in our experiment.  

Firstly, we recognize that Control and Incident Commander groups are comprised of 

particularly diverse individuals, in terms of gender, age, education, and family status (Table 3.3). 

Heterogeneity between participants was controlled during structural estimation using 

characteristic variables, but nonetheless, we recognize that unobserved variation may persist 

between considerably different groups of individuals. 

Randomizing the presentation order of incentivized tasks helps avoid order effects across 

tasks (Carlsson et al., 2012; Holzmeister and Stefan, 2020). However, it remains possible that 

participants’ behaviour in the second, third or fourth task will be different than, and perhaps 

influenced by the choice made in the first task (Harrison et al., 2008). An alternative analysis 
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approach towards addressing order choice would be to analyze tasks separately by nth-order of 

presentation. However, in this study, implementation of such an approach is challenging due to 

our modest sample size, particularly of Incident Commanders (𝑛 = 61).  

Income effect is another concern, particularly for Incident Commanders’ participation in 

the experiment. Through their responses to the invitation email, ICs demonstrated enthusiasm for 

contributing towards wildfire research. For ICs well into their professional lives, the modest 

compensation offered by the experiment may not influence their behaviour in incentivized tasks 

in the way it may for our selected Control group. The risk behaviour of control subjects, mainly 

university undergraduate students, may are more influenced by the incentive of earning $10 - $60 

within half an hour. 

In addition, as our experiment period (January – April 2021) took place during the COVID-

19 pandemic, public health restrictions obligated us to carry out this experiment online, rather than 

in the experimental laboratory in the Department of REES. In order to accommodate as many 

participants as feasible, individuals were instructed to complete the experiment at their own pace 

within 48 hours. Participants were instructed at the start of the experiment to undertake the 

experiment in a confidential and serious manner (Information Page and Consent Form, Appendix 

I: Instructions for the Risk Elicitation Economics Experiment). However, in the absence of 

experimenter monitoring, we were unable to assess participant attentiveness.  
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3.8. Conclusion  

Results from risk elicitation methods show that, after controlling for key factors like age and 

gender, a cohort of 61 Alberta Wildfire Incident Commanders do not exhibit risk aversion that is 

particularly different from that of the general public. However, when asked about their personal 

level of risk-taking, Incident Commanders would rank themselves to be comparatively less risk 

averse than those of control participants. 

Within the IC cohort, there is a noticeable correlation between the level of risk an IC is 

willing to take in an experiment, and the amount of experience she has on the field, in terms of 

days worked as well as her frequency of taking the Duty Officer role. It is challenging to ascertain 

the direction of this relationship, i.e. whether ICs more comfortable with taking risk are more likely 

to work more and in positions of greater responsibility, or whether the experience gained by ICs 

make them exhibit less risk aversion. However, given the relationship between experience 

variables and revealed risk, we suggest that additional research can be performed to better 

understand this connection.  

Considering that Alberta Wildfire ICs make decisions collaboratively and within an 

operational framework, we suggest that future research with ICs should capture the effect of group 

dynamics on decision-making. Additional research into individual and collective decision-making, 

including the role of risk preferences in influencing decisions, can address the current gap in 

literature which seeks to understand how wildfire suppression expenditures vary between incident 

management teams (Canton-Thompson et al., 2008; Hand et al., 2017). As well, insights into 

Incident Commanders’ risk preferences could also be improved through qualitative studies (e.g. 

structured interviews), in which participants have the opportunity to express certain attitudes that 

may not be expressed solely through quantitative data. 
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Chapter 4. Conclusion  

 
While suppression expenditures are largely driven by environmental variables, actions taken by 

Alberta Wildfire can make marginal, although significant impacts on reducing the cost of wildfire 

suppression. These include actions that Alberta Wildfire are already taking, such as fuel 

management in vulnerable areas, improving the rapidity of wildfire detection through 

technological renewal, and the decision to prioritize allocate resources to the necessary fires. Our 

empirical research demonstrates the effects of such impacts, such an 0.2% increase in costs when 

a wildfire report is delayed by an hour, as well as significant reductions up to 141% in certain large 

fires when resource allocation is strategically delayed. 

Nevertheless, environmental factors, including environmental factors like high 

temperature, wind and fuel types are principally responsible for driving wildfire costs, by 79% or 

more. As climate change continues to exacerbate the fire weather conditions (Flannigan et al., 

2000; Robinne et al., 2016; Tymstra et al., 2021; Wotton et al., 2017), Alberta Wildfire can expect 

to see environmental variables continue to drive the bulk of suppression expenditures. Focusing 

on making changes where improvements can be made, such as in improving wildfire detection, 

will allow the wildfire management agency to make meaningful, albeit modest reductions in 

expenditures. 

Experiments in risk preference elicitation allow us to shed light on how wildland 

firefighters express risk aversion in four incentivized economic games. We had initially expected 

our sample of 61 Alberta Wildfire Incident Commanders (ICs) to be less risk-averse, or even risk-

seeking, due to the nature of their particularly profession. Instead, we find that ICs do not differ 
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too much from control subjects, and are actually significantly more risk averse in one of the four 

tasks. Consistent with the reviewed literature (Crosetto and Filippin, 2016; Eckel and Grossman, 

2008; Pedroni et al., 2017), a subject’s gender is the most influential characteristic on risky choices. 

Among the IC cohort, we observe a significant correlation between reduced risk aversion, as 

elicited through our incentivized tasks, and job experience. ICs with additional job experience, 

measured as the number of days in the operational field or days taking the Duty Officer role 

responsible for resource allocation, will generally make less risk averse choices in incentivized 

experiments. In addition, ICs’ job experience in the recent past has more influence on this 

experience-risk relationship than experience of more distant past. 

Incident commanders’ risk perceptions is one piece of wildfire expenditure puzzle. An 

understanding of how ICs perceive risks can help wildfire managers better comprehend how and 

why certain resource allocation choices are made. Risk elicitation through standardized economic 

games, while familiar to the standard university experiment pool (i.e. students/recent graduates), 

may be unfamiliar to working professionals like our IC cohort. As such, future research with ICs 

may be developed with more realistic settings, such as the elicitation of suppression strategy 

preferences when presented with hypothetical wildfire risks, as carried out by US Forest Service 

researchers (Calkin et al., 2013; Hand et al., 2015). Additionally, insights into Incident 

Commanders’ risk preferences could also be ameliorated by adding interviews qualitative studies, 

allowing participants to express certain attitudes otherwise not captured through empirical 

quantitative methods. Further understanding into ICs’ behaviours and decision-making can help 

Alberta Wildfire, and other wildfire management agencies, better prepare their staff for their 

operational roles, in an everchanging wildland fire landscape. 
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Appendix A: Maps of the FPA and FAs  

 

Figure A.1 Forest Protection Area (FPA) in Alberta 

Alberta Wildfire is responsible for the suppression of all fires  

within the FPA.  

 

Image source: https://wildfire.alberta.ca/resources/maps-

data/documents/ForestProtectionAreaMap-May03-2017.pdf 
 

 

Figure A.2 Forest Areas (FAs) in Alberta 

FAs are administrative regions of Alberta Wildfire, and are 

centrally coordinated from headquarters in Edmonton.  

 

Image source: https://wildfire.alberta.ca/resources/maps-

data/documents/ForestAreas-Oct09-2018.pdf

https://wildfire.alberta.ca/resources/maps-data/documents/ForestProtectionAreaMap-May03-2017.pdf
https://wildfire.alberta.ca/resources/maps-data/documents/ForestProtectionAreaMap-May03-2017.pdf
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Appendix B: Auxiliary figures 

In this appendix, Figure B.1 examines the relationship between Reporting delay (hours between 

fire ignition and reporting) and Report-Extinguished delay (hours between reporting and 

extinguishment). Longer response times generally lead to longer fire durations. The magnitude 

and significance of this relationship is reported in Table C.2 of Appendix C: Auxiliary regressions. 

 
Figure B.1 Report-extinguished phase duration and Reporting delay by size class 

(excluding observations with ≥ 30-day Reporting delay) 
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Appendix C: Auxiliary regressions 

Regression models in this appendix examine auxiliary specifications that have been mentioned in 

the main text of Chapter 2. 

Table C.1 reports the effect of Reporting delay on Log Cost, displayed in Figure 2.4. The 

relationship between Reporting delay and Log Cost is significant size classes A and B. 

Table C.1 OLS regression on the effect of Reporting delay on Log Cost by size class 
 A B C D E 

Start-Report delay 

(hours) 

0.003*** 0.003*** 0.004 -0.004 0.001 

 (0.001) (0.001) (0.003) (0.003) (0.004) 

N 3,849 1,878 372 116 137 

R-squared 0.006 0.006 0.007 0.019 0.001 
Excluding observations with ≥ 30-day Reporting delay 

Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 

 

Table C.2 reports the effect of Reporting delay on Report-extinguished phase duration, 

displayed in Figure B.1. The relationship between Reporting delay on Report-extinguished phase 

duration is significant for fires in size classes A, B and C. 

Table C.2 OLS regression on the effect of Reporting delay on Report-extinguished phase 

duration by size class 
 A B C D E 

Start-Report delay 

(hours) 

0.273*** 0.370*** 0.688** -0.242 3.385 

 (0.056) (0.129) (0.267) (0.799) (4.021) 

N 4,529 1,917 376 120 137 

R-squared 0.005 0.004 0.017 0.001 0.005 
Excluding observations with ≥ 30-day Reporting delay.  

Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 

 

Table C.3 reports the expenditure model, including observations of wildfires that start on 

military land. The inclusion of these 30 observations do not change results substantially.  
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Table C.3 OLS regression models, separated by wildfire size class (includes Military land)  
 A B C D E 

Fire environment      

Temperature (°C) 0.030** 0.034** 0.058** 0.074 0.380*** 

 (0.010) (0.012) (0.023) (0.120) (0.063) 

Wind speed (km/h) 0.001 0.017* 0.004 0.055** 0.000 

 (0.006) (0.008) (0.009) (0.018) (0.026) 

Rain (mm) -0.024* -0.005 -0.053** 0.009 -0.138*** 

 (0.012) (0.014) (0.017) (0.094) (0.025) 

Relative Humidity (%) -0.007 -0.006 0.034*** 0.045 0.063 

 (0.008) (0.005) (0.008) (0.038) (0.061) 

Fuel: Timberslash 1.275*** 1.184*** 1.225*** 0.623** -0.669 

 (0.156) (0.071) (0.347) (0.247) (1.354) 

Crown fire -0.171 0.486*** 0.101 0.229 0.248 

 (0.277) (0.133) (0.168) (0.123) (0.376) 

South Aspect (true south) 0.023 0.169* 0.088 -0.079 1.110* 

 (0.130) (0.077) (0.246) (0.364) (0.534) 

High elevation 0.084 0.207 0.539 0.000 0.000 

 (0.212) (0.158) (0.362) (.) (.) 

Elevation difference (m) 0.000 0.148*** 0.015 -0.005 0.007 

 (.) (0.026) (0.008) (0.003) (0.004) 

Lake/River within 3km -0.136 -0.059 0.114 0.197 0.184 

 (0.092) (0.077) (0.232) (0.406) (1.087) 

Operation      

Resource availability -0.000 -0.002 -0.004 -0.002 -0.024** 

 (0.002) (0.002) (0.005) (0.007) (0.009) 

Delay (hours) 0.002*** 0.002*** 0.001 -0.011 0.006 

 (0.000) (0.000) (0.002) (0.007) (0.005) 

Strategic delay -0.215* -0.444*** -1.473** -1.358*** -0.914 

 (0.099) (0.104) (0.570) (0.157) (0.722) 

Provincial land 0.277 0.397* 0.755* 0.055 0.000 

 (0.200) (0.196) (0.360) (0.163) (.) 

Indigenous land 0.315* -0.001 0.097 -0.590 0.000 

 (0.172) (0.172) (0.447) (0.491) (.) 

Military land 0.414* 0.925*** 1.987*** 1.226 0.000 

 (0.220) (0.276) (0.570) (0.721) (.) 

      

Values-at-risk (within 3 km)      

Community -0.449*** -0.577*** 0.327 1.776*** 1.671 

 (0.086) (0.172) (0.489) (0.137) (1.071) 

Park 0.173 0.110 1.165* 0.000 0.874 

 (0.193) (0.241) (0.630) (.) (1.567) 

Power generation 0.393 -0.193 1.190*** 3.155*** 0.000 

 (0.287) (0.419) (0.326) (0.426) (.) 

Road -0.573*** -0.319*** -0.399** -0.116 0.227 

 (0.076) (0.089) (0.145) (0.225) (0.875) 

N 2,973 1,658 326 87 81 

R-squared 0.431 0.522 0.537 0.616 0.564 
All models include corporate region, year, and month of the year fixed effects. Standard errors clustered at the corporate region 

are in parenthesis. * p<0.10, ** p<0.05, *** p<0.01 
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Table C.4 and Table C.5 compare estimate results between Ordinary Least Squares (OLS) 

regression modelling and double/debiased machine learning (DML). For models on both Log cost 

and Reporting delay dependent variables, Estimated coefficients between methods are similar, 

although DML estimates are highly significant throughout size classes A, B, C. Due to small 

sample sizes (N<90), we do not estimate DML models for fires D and E. 

Table C.4 OLS and DML: Estimates of Reporting delay on Log cost 

A A B C 

    

OLS    

�̂� 0.00245*** 0.00276*** 0.00241 

 (0.00054) (0.00090) (0.00230) 

N 2,965 1,645 324 

    

DML    

�̂� 0.00256*** 0.00243*** 0.00284*** 

 (5.2423e-06) (9.4944e-06) (3.1415e-05) 

N 2,965 1,645 324 
Size classes: A: 0 to 0.1 ha; B: >0.1 ha to 4 ha; C: > 4 ha to 40 ha 

DML estimates not available for size class D and E due to small sample sizes. 

Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 

 

Table C.5 OLS and DML: Estimates of Reporting delay on Fire Duration 

 A B C 

    

OLS    

�̂� 0.11271*** 0.11549 0.53221* 

 (0.04042) (0.10045) (0.30404) 

N 3,247 1,668 327 

    

DML    

�̂� 0.11390*** 0.11707*** 0.71173*** 

 (2.8150e-04) (7.3472e-04) (8.3587e-03) 

N 3,247 1,668 327 
Size classes: A: 0 to 0.1 ha; B: >0.1 ha to 4 ha; C: > 4 ha to 40 ha 

DML estimates not available for size class D and E due to small sample sizes. 

Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01 
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Appendix D: Supplementary figures on experiment choices 

Figures in this appendix show how the distribution of choices throughout the four incentivized 

tasks vary by cohort and gender (Figure D.1) and by gender and cohort (Figure D.2). The cohort 

and gender effect have been explored in further detail through structure modelling in Sections 3.6.2 

and 3.6.3. 

 

 
Figure D.1 Graphical representation of Table 3.4 

Mean choice across four tasks, compared by cohort and gender. 
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Figure D.2 Graphical representation of Table 3.5 

Mean choice across four tasks, compared by gender and cohort. 
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Appendix E. Inconsistent players in MPL task 

This appendix examines behaviour of players that are whose choices in the Multiple Price List task 

(MPL) are inconsistent with expected utility theory. Two forms of inconsistency may arise in the 

completion of a Multiple Price List task: multiple switches and the choice of a stochastically 

dominated option. As our specification of the MPL instructs the participant to select a switching 

point rather than individual choices between paired lotteries, we avoid the first form of 

inconsistency. However, some participants in our experiment are observed to violate the second 

form of consistency, through selection of the dominated option of the last line. 

Line Option A  Option B 
    

10 
100% probability of $20.00 

0% probability of $16.00 

 100% probability of $38.50 

0% probability of $1.00 

 

In Line 10 (the last line), both Options guarantee the high payoff with certainty. The stochastically 

dominant choice is Option B, which has a larger value high payoff ($38.50) than that of Option A 

($16.00). Nonetheless, some participants opt for Option A throughout the task. The issue of choice 

inconsistency has generally been addressed through one of two methods: counting the number of 

risky choices/safe choices, or, recognizing that inconsistent participants violate a rational player’s 

decision framework, omitting these inconsistent participants from analysis (for a review, see: 

Filippin and Crosetto, 2016). Table E.1 below is summary on the prevalence of inconsistency 

among our participants.  

Table E.1 Prevalence of MPL inconsistent decision (all participants) 

MPL 

decision 

  Count by cohort   Proportion by cohort 

  All Control IC   All Control IC 

Consistent   167 115 52   0.93 0.97 0.85 

Inconsistent   12 3 9   0.07 0.03 0.15 

 



157 

We cannot ignore the possibility that a participant’s selection of Option A in Line 10 could indicate: 

a) the participant struggles with understanding the MPL task, or worse, that b) she is unfocused in 

this task, and perhaps in other parts of the experiment. While we include all participants in analyses 

in the main text, in Table E.2 we explore which characteristics (Incident Commander, gender, 

university education, family, age) will make more likely to behave inconsistently, using a linear 

probability model. 

Table E.2 Propensity of participants playing inconsistently in MPL (all participants) 
 Inconsistent 

IC 0.048 

 (0.066) 

  

Female 0.053 

 (0.044) 

  

University -0.031 

 (0.040) 

  

Family 0.052 

 (0.052) 

  

Age 0.004 

 (0.003) 

  

Constant -0.093 

 (0.072) 

N 171 
Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Inconsistent players make up a larger proportion of the IC cohort (Table E.1), however, after 

controlling for the same characteristics in all previous analyses, we do not find evidence that 

participants of either cohort, gender, or with other observable characteristics are more likely to 

play inconsistently in MPL. 
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Appendix F: Investment Game: sensitivity of bins 

 

This appendix examines the sensitivity of our results to the selection of bin sizes for choices in the 

Investment Game (INV) along a continuous scale. In INV, participants were given an endowment 

of $20, and tasked with choosing how much to invest in a lottery with high and low payoffs, and 

how much to keep as safe payments. Participants were able to choose to keep as safe payment any 

amount between $0.00 to $20.00, in units of cents. In our analysis of this task, we have rounded to 

choices to the nearest $2.00, so that the implied risk parameters of the task can be comparable to 

those of the other three elicitation methods. This makes for 11 bins, including a separate bin for 

choices to keep the entire endowment ($20.00) as safe payment. The decision to rounding the 

investment choice to the $2.00 level follows Crosetto and Filippin (2016). In order to test the 

sensitivity of estimates to rounding, below we will compare estimates of the heterogeneous 

Expected Utility Theory model with 11 bins (rounding to the nearest $2.00), against 21 bins 

($1.00), 41 bins ($0.50), and 201 bins ($0.10). 

Results are reported in Table F.1, and the values of estimates across bin sizes is compared 

visually in Figure F.1. 
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Table F.1 Estimates of risk and noise parameters (𝜑, 𝜎) as a function of characteristics in 

INV, by bin size (all participants) 
 11 21 41 201 

𝜑     

IC 0.033 0.031 0.029 0.029 

 (0.043) (0.042) (0.042) (0.042) 

     

Age -0.003* -0.003** -0.003** -0.003** 

 (0.002) (0.002) (0.002) (0.002) 

     

Female 0.085** 0.076** 0.075** 0.073** 

 (0.038) (0.034) (0.033) (0.033) 

     

Family 0.000 -0.001 -0.000 -0.000 

 (0.030) (0.030) (0.030) (0.030) 

     

University -0.009 -0.008 -0.009 -0.009 

 (0.027) (0.026) (0.026) (0.026) 

     

Constant 0.290*** 0.282*** 0.279*** 0.276*** 

 (0.051) (0.046) (0.046) (0.045) 

𝜎     

IC 0.066 0.035 0.017 0.004 

 (0.120) (0.052) (0.027) (0.006) 

     

Age -0.001 -0.000 -0.000 -0.000 

 (0.003) (0.001) (0.001) (0.000) 

     

Female 0.015 0.001 0.001 0.000 

 (0.043) (0.020) (0.010) (0.002) 

     

Family 0.036 0.019 0.010 0.002 

 (0.059) (0.027) (0.014) (0.003) 

     

University 0.056 0.027 0.014 0.003 

 (0.071) (0.032) (0.017) (0.003) 

     

Constant 0.173*** 0.087*** 0.044*** 0.009*** 

 (0.061) (0.027) (0.014) (0.003) 

N 1710 3420 6840 34200 

N_clust 171 171 171 171 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 

 

 



160 

 

Figure F.1 Comparing estimates on risk parameter (𝜑) on characteristics in INV across 

bin sizes (all participants) 

 

As observed in Table F.1, the only significant change is that at 21 or more bins (rounding 

to $1.00 or lower), the negative effect of age on risk aversion increases in significance level (p < 

0.10 to p < 0.05). Overall, Table F.1 and Figure F.1 demonstrate that, regardless whether INV 

choice data is rounded to $2.00 or to $0.10, the effects of characteristics on the estimated risk 

parameter (𝜑) remains relatively consistent. 
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Appendix G: CRRA risk parameters for experiment choices 

 

In this appendix, Table G.1 supplements the discussion in Section 3.6.4 on implied Constant 

Relative Risk Aversion (CRRA) risk parameters and between-task consistency.  

Each choice a participant makes implies a parameter of risk preference, which ranges from 

risk aversion (𝜑 > 0) to risk neutral (𝜑 = 0) to risk seeking (𝜑 < 0). Assuming that all 

participants’ utility for experiment incentives are characterized by the CRRA utility function (as 

we have in Section 3.4.2), the choice reveals an “implied risk parameter” that lies between the 

lower and upper bounds.  

Due to method design, some elicitation methods, like MPL and CEM, can distinguish risk 

behaviour of risk seeking from risk aversion. Other methods, like SCL and INV, are limited to the 

risk aversion domain, because the implied risk parameter range of the least risk averse choice in 

the task (i.e. SCL: choosing $48/$0 lottery; INV: investing nearly all of the $20 into “risky 

project”) extends from a lower bound of negative infinite (risk seeking domain), through 0 (risk 

neutral) to a positive upper bound (risk averse).  
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Table G.1 Elicitation method choices and their implied range of risk parameters 

No. 

safe 

choices  

made in 

task: 

  

Implied range of risk parameter 

(φ)  

No. 

safe 

choices  

made 

in task: 

  

Implied range of risk parameter 

(φ) 

  
lower       upper 

   
lower       upper 

MPL  
     

   
     

1  -∞ ≤ φ < -1.7128    
     

2  -1.7128 ≤ φ < -0.9468  SCL  
     

3  -0.9468 ≤ φ < -0.4866  1  -∞ ≤ φ < 0.1975 

4  -0.4866 ≤ φ < -0.1426  2  0.1975 ≤ φ < 0.3818 

5  -0.1426 ≤ φ < 0.1464  3  0.3818 ≤ φ < 0.6696 

6  0.1464 ≤ φ < 0.4115  4  0.6696 ≤ φ < 2.0000 

7  0.4115 ≤ φ < 0.6762  5   2.0000 ≤ φ < ∞ 

8  0.6762 ≤ φ < 0.9706         
9  0.9706 ≤ φ < 1.3684  INV**  

     

10/11 *   1.3684 ≤ φ < ∞  0 - 2  -∞ ≤ φ < 0.0956 

  
     

 2 - 4  0.0956 ≤ φ < 0.1479 

CEM  
     

 4 - 6  0.1479 ≤ φ < 0.1888 

1  -∞ ≤ φ < -6.9643  6 - 8  0.1888 ≤ φ < 0.2338 

2  -6.9643 ≤ φ < -2.7094  8 - 10  0.2338 ≤ φ < 0.2891 

3  -2.7094 ≤ φ < -1.0685  10 - 12  0.2891 ≤ φ < 0.3636 

4  -1.0685 ≤ φ < 0.0000  12 - 14  0.3636 ≤ φ < 0.4750 

5  0.0000 ≤ φ < 0.9317  14 - 16  0.4750 ≤ φ < 0.6685 

6  0.9317 ≤ φ < 2.0000  16 - 18  0.6685 ≤ φ < 1.1098 

7  2.0000 ≤ φ < 3.9307  18 - 20  1.1098 ≤ φ < 3.3208 

8   3.9307 ≤ φ < ∞  20   3.3208 ≤ φ < ∞ 
MPL: Multiple Price List. SCL: Single Choice List. CEM: Certainty Equivalent Method. INV: Investment Game. 

*   MPL choice 11: never switch from "safe" Option A to "risky" Option B 

** INV choices are binned in $2. Each bin represents choices to "keep" the endowment away from the risky project, low <= 

choice < high 

The implied range of risk parameters are estimated with the CRRA function: 𝑢(𝑥) =  {    
𝑥1−𝜑

(1−𝜑)
           𝑖𝑓 𝜑 ≠ 1

ln(𝑥)                  𝑖𝑓 𝜑 = 1
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Appendix H: Self-reported risk by cohort, gender, and timeframe 

 

This appendix includes auxiliary comparisons of self-evaluated domain-specific risk measures 

(Section 3.6.5) by cohort and gender (Table H.1 and Table H.2), by gender and cohort (Table H.3 

and Table H.4) and cohort and timeframe (Table H.5 and Table H.6). 

Table H.1 Self-evaluated risk aversion between genders, controlled by cohort (present) 

Risk Domain 

(present) 

Control   Incident Commander 

Male   Female Wilcoxon 

p-value 

  Male   Female Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 47 4.32   71 4.42 0.9408  56 4.59   5 5.00 0.1713 

Financial 47 3.83   71 4.38 0.0046  56 3.93   5 4.20 0.4690 

Health 47 4.15   71 4.32 0.5623  56 3.55   5 3.60 0.6510 

Recreational 47 3.66   71 3.90 0.1479  56 3.27   5 4.40 0.0289 

Safety 47 4.06   71 3.80 0.2662   56 3.50   5 3.80 0.6442 

Social 47 3.62   71 3.68 0.9000   56 3.34   5 3.60 0.6090 

 

Table H.2 Self-evaluated risk aversion between genders, controlled by cohort (past) 

Risk Domain 

(past) 

Control   Incident Commander 

Male   Female Wilcoxon 

p-value 

  Male   Female Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 47 1.77   71 1.72 0.6667  56 1.88   5 1.40 0.3784 

Financial 47 1.96   71 1.68 0.1699  56 2.38   5 2.00 0.4212 

Health 47 2.19   71 1.96 0.2031  56 3.25   5 3.60 0.5407 

Recreational 47 2.34   71 2.56 0.6024  56 3.64   5 2.20 0.0132 

Safety 47 2.38   71 2.54 0.5967   56 3.38   5 3.20 0.6930 

Social 47 2.11   71 2.23 0.2740   56 2.50   5 2.20 0.5783 

 

Referencing Table H.1 and Table H.2, we observe that among the Control group, Females 

only seem to be significantly different from Males in stating higher Financial risk aversion in the 

present day (p < 0.01); among Incident Commanders, Females are significantly more risk averse 

in present Recreation, though less risk averse in past Recreation (p < 0.05).  
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Table H.3 Self-evaluated risk aversion between cohorts, controlled by gender and cohort 

(present) 

Risk Domain 

(present) 

Male   Female 

Control   IC Wilcoxon 

p-value 

  Control   IC Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 47 4.32   56 4.59 0.3406  71 4.42   5 5.00 0.1045 

Financial 47 3.83   56 3.93 0.8615  71 4.38   5 4.20 0.5034 

Health 47 4.15   56 3.55 0.0019  71 4.32   5 3.60 0.1694 

Recreational 47 3.66   56 3.27 0.0556  71 3.90   5 4.40 0.3865 

Safety 47 4.06   56 3.50 0.0039  71 3.80   5 3.80 0.8443 

Social 47 3.62   56 3.34 0.0857   71 3.68   5 3.60 0.6952 

 

Table H.4 Self-evaluated risk aversion between cohorts, controlled by gender (past) 

Risk Domain 

(past) 

Male   Female 

Control   IC Wilcoxon 

p-value 

  Control   IC Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 47 1.77   56 1.88 0.1838  71 1.72   5 1.40 0.6885 

Financial 47 1.96   56 2.38 0.0302  71 1.68   5 2.00 0.4527 

Health 47 2.19   56 3.25 0.0000   71 1.96   5 3.60 0.0105 

Recreational 47 2.34   56 3.64 0.0000   71 2.56   5 2.20 0.7214 

Safety 47 2.38   56 3.38 0.0000   71 2.54   5 3.20 0.2535 

Social 47 2.11   56 2.50 0.0432   71 2.23   5 2.20 0.9129 

 

Referencing Table H.3 and Table H.4, we see that among male participants, ICs are 

significantly less risk averse than Control in present-day Health and Safety (p < 0.01), and 

marginally less risk averse in Recreational and Social (p < 0.10); in their adult past, male ICs were 

more risk averse than male Control in Health, Recreational, Safety (p < 0.01) as well as in 

Financial and Social (p < 0.05). These observations are close to the observed differences in Table 

3.21, in which male and female were pooled in Control/IC groups were pooled. Differences 

between Control and IC are less pronounced among females; female ICs are only significantly 

different from Control in higher risk aversion in the past Health domain (p < 0.05). 
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Table H.5 Self-evaluated risk aversion between timeframe, controlled by cohort (females) 

Risk Domain 

Control   Incident Commander 

Now   Past Wilcoxon 

p-value 

  Now   Past Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 71 4.42   71 1.72 0.0000  5 5.00   5 1.40 0.0046 

Financial 71 4.38   71 1.68 0.0000  5 4.20   5 2.00 0.0250 

Health 71 4.32   71 1.96 0.0000  5 3.60   5 3.60 0.8266 

Recreational 71 3.90   71 2.56 0.0000  5 4.40   5 2.20 0.0135 

Safety 71 3.80   71 2.54 0.0000  5 3.80   5 3.20 0.3886 

Social 71 3.68   71 2.23 0.0000   5 3.60   5 2.20 0.1037 

 

 

Table H.6 Self-evaluated risk aversion between timeframe, controlled by cohort (males) 

Risk Domain 

Control   Incident Commander 

Now   Past Wilcoxon 

p-value 

  Now   Past Wilcoxon 

p-value N Mean   N Mean   N Mean   N Mean 

Career 47 4.32   47 1.77 0.0000  56 4.59   56 1.88 0.0000 

Financial 47 3.83   47 1.96 0.0000  56 3.93   56 2.38 0.0000 

Health 47 4.15   47 2.19 0.0000  56 3.55   56 3.25 0.1418 

Recreational 47 3.66   47 2.34 0.0000  56 3.27   56 3.64 0.0598 

Safety 47 4.06   47 2.38 0.0000  56 3.50   56 3.38 0.4530 

Social 47 3.62   47 2.11 0.0000   56 3.34   56 2.50 0.0003 

 

When comparing present-day and past risks among genders of the same cohort, or cohorts 

of the same gender, we observe the significant differences between sub-groups are very similar to 

those between gender-pooled Control/IC groups in Table 3.22. However, it is interesting to note, 

when comparing past Recreational risks to current levels, female ICs today are significantly more 

risk averse (p < 0.05), while their male counterparts exhibit marginally significant decreased risk 

aversion (p < 0.10).  
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Appendix I: Instructions for the Risk Elicitation Economics Experiment 

This appendix includes screenshots from the risk elicitation experiment undertaken from March to 

April 2021. I coded all components independently in the oTree framework (Chen et al., 2016); 

tasks MPL, SCL and CEM were adapted from code found in the online Supplementary Material 

folders of Holzmeister (2017). 
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Appendix J: Supplementary literature review 

This appendix includes literature with methods, both within the economics discipline and 

beyond, that were not used in the project. This supplementary literature review provides a more 

complete perspective on current research in risk behaviour research, both within economics and 

in other disciplines. 

J.1. Additional experimental measures in the economics laboratory  

Lottery lists and their variations are popular forms of economic revealed preference elicitation 

methods. Distilled from economic theory and readily adaptable for econometric analysis, this 

format is intuitive to economists, however, it may be daunting for subjects who are uncomfortable 

with hypothetical concepts of probability. Cognizant of these challenges, some economists have 

adapted EMs to be more palatable for their targeted participants by framing tasks in familiar 

themes and adding visual cues to assist understanding. Such examples are: 

“Circles” in multiple price list (Hey and Orme, 1994b): Subjects in  face 100 pairwise 

lotteries, in which payoff probabilities of each gamble is represented in a pie chart. Likelihood 

ratio tests are applied to results to determine which framework out of a wide-ranging series best 

represents each subject’s decision-making: Expected Utility, Disappointment Aversion, 

Prospective Reference, Quadratic Utility, Regret, Rank Dependence, Weighted Utility, Yaari’s 

probability/utility dual model. While no framework is conclusively superior, Hey and Orme find 

that Expected Utility Theory tops other frameworks as being “no worse off than other models” for 

39% participants; they encourage more research into uncovering the noise parameter of the utility 

function. 
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Balloon analogue risk task (BART) (Lejuez et al., 2002): subjects are presented with a 

series computer simulated balloons and tasked with ”pumping” balloons for the opportunity to 

earn money; each additional pump marginally increases participant gains, but also monotonically 

increases the probability of the balloon popping, in which case earnings will be null, and the 

participant is presented with a new balloon. However, if the participant halts inflation the balloon 

prior to the “pop”, earnings from that round will be transferred to a permanent account. The authors 

found that revealed risk preferences correlated with self-evaluated addiction, health and safety 

behaviours. 

Bomb risk elicitation task (BRET) (Crosetto and Filippin, 2013): this task parallels the 

balloon task, by incentivizing participants to select open computer simulated boxes, in which a 

randomly  contains a “bomb” that will wipe out all earnings. A key difference with the balloon 

task lies in the fact that participants are aware there are 100 numbered boxes, and thus, they can 

more readily infer changing risk probabilities with each additional box opening. 

In order to assist subjects in understanding lottery probabilities, many experimental 

economists have used physical props during experiments. Often, experimentalists use sets of dice 

to explain probability and to randomize outcomes of lotteries (Anderson and Mellor, 2008; 

Charness et al., 2018; Goeree et al., 2002). Tanaka et al. (2010), who adapted the Holt-Laury 

Multiple Price List into multiple series totalling 35 lines, employ a bingo cage with 35 numbered 

balls to determine randomized outcomes. 

J.2. Eliciting risk attitudes outside of the economics laboratory 

Experimental economists seek to apply findings from the laboratory to real-life behaviour; yet 

occasionally, there are natural experiments from which economists are able to analyze the 
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behaviour of subjects without experimental intervention. Risk preference can be observed in the 

real world, and can explain esoteric phenomena like professional golfers’ choice of putting, as 

analyzed in a Prospect Theory framework (Pope and Schweitzer, 2011), or stock trading 

frequencies due to the distorting effect of investors’ risk-seeking behaviour on expected utility 

calculation (Barber and Odean, 2001; Odean, 1999, 1998).  

However, the form of natural experiment that most readily lends itself to contemporary 

lottery list elicitation methods is televised game shows. Participants on shows like Deal or No 

Deal are offered series of risky choices, often increasing in risk, inducing risk-seeking behaviour 

(and gaudy television excitement). Deal or No Deal, along with its international variations, are 

real-world formats of the Certainty Equivalent method; as participants face increasingly risky 

lotteries between high/low payoffs, they are countered by the host who offers a marginally rising 

value of sure payment. As a natural experiment, the game show provides economists with rich data 

on risk preferences in the context of large monetary stakes (Bombardini and Trebbi, 2012; Post et 

al., 2008). This format of EM has also been adapted for an experimental laboratory in which Guiso 

et al. to measured a change in bank savings account holders’ risk aversion after the 2008 financial 

crisis (2018). 

J.3. Risk behaviour research in other disciplines 

Further, researchers in neuroscience and cognitive science focus on biophysical indicators of risk 

behaviour in the brain, through using technology such as functional magnetic resonance imaging 

(fMRI); this method is sometimes operationalized in conjunction with those developed by 

economists and psychologists, towards developing an interdisciplinary understanding of human 

risk behaviour (Peterson, 2007; Schonberg et al., 2011). 
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 Neuroscience researchers often employ functional fMRI to measure biophysical indicators 

in the brain that signal a propensity for risk aversion (Christopoulos et al., 2009), to determine 

which cortexes of the brain represent domain-specific risk preferences (Levy and Glimcher, 2011), 

and to investigate changes in neurotransmitters (e.g. dopamine, serotonin) and hormones (e.g. 

oxytocin, testosterone) can affect risk behaviour (for a review, see: Crockett and Fehr 2014). 

Neuroscience and psychophysics literature validates some revealed preference elicitation methods 

proposed by economists (Schonberg et al., 2011; Trepel et al., 2005), and the findings encourage 

further interdisciplinary collaboration between behavioural economists and cognitive scientists 

(Frydman and Camerer, 2016). 

J.4. Comparing elicitation methods between economics and cognitive 

science 

Cognitive science researchers study the mind through an interdisciplinary lens, incorporating 

elements from neuroscience, psychology and anthropology, among other physical and social 

sciences (Thagard, 2005). For instance, cognitive neuroscience researchers often use functional 

magnetic resonance imaging (fMRI) technology to discover the links between risk-seeking 

behaviour with activity in certain cortexes of the brain, and validate these findings using 

experimental methods originating in economics.  Schonberg et al. (2011) review a series of such 

literature in an attempt towards bridging the inherent gap between economic and cognitive science 

perspectives on risk aversion. The authors summarize correlation analyses in which certain 

cortexes are found to be more active in subjects exhibiting economic risk-seeking behaviour in 

incentivized EMs, but, brain activity is not determinant of naturalistic risk-taking.  However, when 

subjects encounter complex EMs such as BART and the Iowa Gambling Task, economic risk-
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seeking does indeed align with naturalistic risk-taking indices but not necessarily with brain 

activity. 

Peterson (2007) reviews neuroscience literature on the influence of moods and emotions 

on financial investment decision-making, which includes research showing the effect of increased 

serotonin uptake on risk aversion (Arnold et al., 2004; Flory et al., 2004), as well as two studies in 

which researchers predict subjects’ choices in incentivized economic EMs based on anticipatory 

brain activity, as measured by fMRI (Kuhnen and Knutson, 2005; Paulus et al., 2003). 

Samanez-Larkin et al. (2010) motivate their study by asking how decisions by aging 

financial investors impacts the global economy. Towards addressing this question from a 

neuroeconomic perspective, the authors task subjects with a dynamic incentivized investment 

game37, while using fMRI to evaluate brain activity during the task. During the task, they observe 

older subjects being more likely to make “suboptimal mistakes” (selecting a risky option when the 

sure payment was optimal), as well as “confusion mistakes” (selecting one risky option when 

another risky option was optimal). Regression results on age and measured fMRI activity show a 

positive relationship between age and neural decline. These findings lead the researchers to support 

existing neuroscience literature that surmise older subjects are, contrary to popular stereotype, less 

risk averse than younger counterparts (Mather 2006), and are more likely to make decision-making 

errors when facing risk. (Denburg et al., 2007; Mohr and Nagel, 2010; Peters et al., 2016). 

  

                                                 
37 The game resembles Certainty Equivalent Method: on each decision line there is a choice between playing a lottery 

(“Stocks”) or taking a sure payment (“Bond”). 
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Appendix K: Structural estimation of risk by IC level 

This appendix includes a structural estimation of Incident Commanders’ (ICs) risk 

preferences, in which ICs are analyzed as subsamples split by certification levels (IC1 being 

highest and IC4 being lowest38). As seen in Table K.1 and Figure K.1, below, there is no clear 

relationship between IC certification seniority and risk aversion across four tasks.  

                                                 
38 There is one IC5 in our sample; a single observation provides insufficient variation for a Maximum Likelihood 

estimation. 
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Table K. 1 Estimates of risk and noise parameters (𝜑, 𝜎) by IC levels 

 MPL SCL CEM INV 

     

Panel A: IC1     

𝜑 0.476 0.585*** 1.000*** 0.147*** 

 (0.308) (0.181) (0.000) (0.040) 

𝜎 2.551 1.498* 0.264*** 0.191*** 

 (1.697) (0.872) (0.051) (0.026) 
     

N 60 24 48 60 

N_clust 6 6 6 6 

     

Panel B: IC2     

𝜑 0.257 0.259*** 0.216 0.126*** 

 (0.240) (0.064) (0.497) (0.028) 

𝜎 4.777 0.842*** 1.952 0.221*** 

 (3.140) (0.256) (2.663) (0.032) 
     

N 110 44 88 110 

N_clust 11 11 11 11 

     

Panel C: IC3     

𝜑 0.738*** 0.545*** -0.146 0.190*** 

 (0.133) (0.092) (0.402) (0.028) 

𝜎 1.412*** 1.332*** 7.622 0.264*** 

 (0.387) (0.314) (9.473) (0.047) 
     

N 320 128 256 320 

N_clust 32 32 32 32 

     

Panel D: IC4     

𝜑 0.531** 0.417*** 0.357 0.218*** 

 (0.248) (0.104) (0.530) (0.049) 

𝜎 2.343* 0.718*** 1.376 0.173*** 

 (1.318) (0.252) (2.425) (0.055) 
     

N 90 36 72 90 

N_clust 9 9 9 9 
Robust standard errors clustered at the subject level in reported parentheses. 

* p<0.10, ** p<0.05, *** p<0.01 
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Figure K. 1 Risk aversion estimators by Incident Commander certification levels 


