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ABSTRACT ' v

PLA folding 1s a technique tsed to minimize the computer chip area
requirements of Programmable Logic Arrays. This thesis focuses on the fun-
damental properties of the theoretical problem based on this techmque
Current knowledge of the PLA folding problem 1s limited to empirical evi-
dence gained from studies using heunstic methods  There 15 hittle under-
standing of the basic nature of the problem This thesis provides some fun-
damental theoretical results :1l)mlit t'ho PLA folding problem along with some

empirical measurements for randomly generated PLAs

First.-a universal PLA model 1s provided, onewhich has both a topologi-
wal component for describing structural properties of PLAs and'a set-
theoretic- component for analytically representing the folding problem. A
folding taxonorﬁy is developed from the model, and used to classify the' pro-

A .
perties of PLAs. folding methods and folding algorithms.

A new branch and bound algorithm 1s described for finding (){ptimal fold-
ing sets. A néw performance measure is also introduced for comparing the
relative effectiveness of the various optimal feolding algorithms  The deriva-
tion of the measure is from empirical data obtained by folding randomly gen-
erated PLAs.

Using'a‘rand;)m selection heuristic as a basis, a probability density func-
tion is derived for expected number of folds of random PLAs. This is the
major contribution of the thesis. The analytical derivation of this result
illustratvs~the interactions that occur between the basic PLA prpperties in

the process of folding. This PDF is also used in the derivation of a new



folding heunstic it s the first such heuristic to have an analytical basis and
is shown empirically to perform better than the others available. By applying
the heuristic iteratively it is possible to achieve results arbitrarily close to

those of optimal folding.

Finally. a new performance measure is introduced f(\>r comparing heuris-
tic folding algorithms. This has become necessary because exis\t)ag folding
algorithms have no theoretical or analytical basis. The lunited vmpirical evi-
dence provided by researchers in the field is insufficient and the effectiveness
of many gnethods remains in doubt. Empirical results presented here will

demonstrate®that this doubt is, in many cases, fully justified.

The theoretical results of this thesis produce a clear understanding of the
nature of the PLA folding problem. The exact relationship between foldabil-
ity and the fundamental characteristics of a PLA are explfxined. Empirical

data are provided to demonstrate the effectiveness of the analyvtical deriva-

tions in modeling the folding problem for randomly generated PLAs.

@
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Chapter 1
Introduction
\\

In the past few years there have been significant advances made in the
technology for fabricating silicon devices. Continuous improvements in the
size, speed and power consumption of transistors now allow designers to place
upwards of 100,000 components on a single silicon chip. This has not been
without difficulty however, and the challenge remaining is to make use of this
technology in the form of useful products. Clearly, the bottleneck to ‘this goal
1s in the design phase. How does one coordinate the design of a device
composed of 100,000 transistors within a time frame smaller than the period
of <)bsolescen-(‘e of the product itself? In addition, new standards of reliability
and robustness are expected by the consumers of modern electronic devices.
It is-(‘l]ear that the organizationad procedures used-in the past are no longer

effective for producing modern complex devices.

One appl:f)ach used to overcome this problem has been the development
of architectural structures that are not nelessarily the most efficient in terms
of chip area but are efficient in terms of design effort. The Programmable
Logic Array (?};A) is such a structure and has gained much popularity since

the maturing of VLSI technology.

The major advantages of PLAs is that they can dramatically reduce the
design effort required to implement combinational and sequential logic. They
are particularly useful in the design of control logic for microprocessors. By

. 4

using PLAs, one can completely automate much of the des@®n process and

thus reduce significantly the design time for logic devices. This also results

v



in an ncrease in rehabihity

However industrial PLAs tend to be sparse and thus wasteful of chap

e

area  Silicon area s a valuable resource and so to make the design tume  chip
area tradeofl more favorable for PLAs, a technique known as folding 1s used
to reduce the required chip area Folding involves arranging the varnous

!
inputs and outputs of the PLA so that they can share rows and columns
L

within the PLAY The problem of finding the best arrangement that vields the

most area reduction s known as the PLA Folding Problem
A‘A

This thests 1s a theoretical study of the PLA folding problem Ttas not a
study of the properties of PLAs used inandustrial applhications however some
of the results provided here may be of practical use  The current PLA

. : Y
Folding literature is lacking in theoretical work. Many of the ideas and
algorithms presented are based only on an "intuitive™ argument. The author

could not find any work dome on the nature of the problem itself in terms of

-~

determinming how the c}mract_onstm of a PLA affect 1ts foldability  After
providing a brief tutorial on the problem and a complete review and critique
of the current PLA folding-diterature, this thesis presents several such

fundamental theoretical contrjbutions to the available literature

PLA folding comes in many (fiﬂpr(‘ut forms that are often dvp‘ondont on

’

I} * - '
constraints determined by the technology in which the PLA is to be

implemented  Sometimes there are artificial constraints also imposed that

may not pertain to any practical considerations. To allow comparisons

among the works of various authors in the field,"a standard form of PLA

rebreseitation is needed. A PLA model, suitable for such a purpose. is

desgﬁ.bed. It is a set-theoretic model anc{’c,ab represent all types of PLA

Y
-~
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folding m an easily understandable manner

Using this model it s possible to divide the current PLA folding
techniques mto several categortes A PLA folding taxonomy that s based on
these categortes s developed  Included in the taxonomy 1s a classification
schema for the different tvpes of algonthms available for folding PLAs - Some
representative contributions tn the current PLA folding literature are then

classified according to this taxonomy

\\ As part of this work, an exanmunation s done on the problem of finding

J

the optimal arrangement of rows and <"<.»lu|nns of a PLA that results i the
absyolute highest savings in chip area The problem has been shown to be
np-complete and so no easy solution 1s possible A new branch and bound
atgorithm s introduced and deseribed This algonithm™is suitable as a
practical tool for folding small to medium sized PLAs. In-addition 1t s used
to illustrate some of the folding characteristies of PLAs A nymber of
theoretical results are presented and are used to derive two comparison
measures  The first measure represents the difficulty in finding an optimal
folding set for various PLA classes while the second measure represents the

.
effective performance of various folding algorithms

" The most significint contribution of this research 1s a theoretical
derivation of the expected folding of random PLAs. This derivation 1s based
on a random selection heuristic and is in the form of a probability density
function (PDF) m terms of fundamental char:;ctoristics of the PLA; r - the
number of rows. ¢ - the number of columns, d - the density, and h(x) - a
function representing the distribution of the density among the columns.

Empirical data are also provided to illustrate the effectiveness of these



formulae in modeling the PLA folding problem The l'l)l‘il.‘* further
developed mmto a heuristic algorithm for PLA folding. 1 1s the tirst folding
heuristic to have an analytical basis for expected results Empirteal data are
provided to show that the heuristic works better than other available

algorithms  Some interesting theoretical properties are observed

To ard mm evaluating the new heuristic. a heunstic comparison measure 1
developed and shown to be effective 1n comparing the performances of the
Jutferent folding heunstics Several of the popular ‘hf‘llrlﬁll(‘\' are shown to
perform poorly o folding PLAx

Finally . as a conclusion to this work, this thesis s shown to have
provided some fundamental contributions to the PLA folding problem The
results provided inrprove considerably our understanding of the nature of the
problem  They provide . good framework upon which future work can be

done and some interesting 1deas for future research are included



Chapter 2

Tutorial and Critical Review of the Li ature

Before presenting the major contributions of this research 1t s necessary
to give an overview of the hterature on PLAs and PLA folding  Furst the
entire subject area of PLAs s reviewed including various mimunization and
optimization techmques  Next a bref tutortal on the speatic area of PEA
folding 1s provided  Finally a cntical analysis of the current hterature on
PLA folding 1s presented and used as a basis for the contnbutions desenibed

in futurée chapters

The use of Programmable Logie Arrays toamplement boolean functions
has been a technique well knownin the hterature for many years Much of
the early work was done by IBM in the early 1970s

75 HCOT4 Jon7s Loa7s. Wer79]  Even at this early stage it was clear

PLPLAs were a useful tool for logie device design. The benefits of PLAs as
deseribed at that time [FIM75] are the same reasons that PLAs aren use
today  Although no algorithms were available at the time, the techniques of
p;\rtnl‘t ioning logie designs l[l(()‘:\ number of separate PLAs and of decoding

mputs to reduce the complexity and area of the PLA were well understood

However. no mention of PLA folding occurs in these early papers

in the following few years, IBM continued to develop its work
[GLLR0.Sch®0] A lot of interest had been generated by MINI [H(‘()'H-] and
other researchers began to get involved with logic minimization for PLAs
[ArB78 Kam79 Rot78]. Logic minimizatnén techniques advanced quickly

because it was not a new area peculiar to PLAs. Much of the fundamental\

*5



work on sum-of-products reduction had already been examined 1 previous

research to reduce chip counts on printed cireuit boards

It was around 1980 that PLA research began to expand signihcantly
This can be attributed primarily to the maturing of VLSI technology  PLAs
were now seen as a feasible implementation for logic devices  The tdeas of
stheon compilation and automated design were becoming famihar [AyrX3] and
Pl.As were well suited to these apphications The Mead and Conway text
(MeCRO] introduced alarge number of university faculty and graduate
students to VILSTand to PLAs  Many new researchers entered the field and
specific sub-areas were formed. It was now common to see results of PLA

®

research being presented at major conferences on VLSI and Design
Automation These contributions came from both industry and academa
Today PLA research can be subcelassified into several distinet areas  bFor
example, logic minimization is still an active area of PLA research. One of
the popular reduction tools used by many 1s PRESTO  Douglas Brown
describes an extended version of PRESTO [Bro&1]. Another well know
minimization program is PRONTO [MaP&3] There s little evidence provided
to support the authors’ claim that 1 works better than PRESTO. Both
PRESTQ and PRONTO are heuristic algorithms \‘vhi(:h perform near-optimal

logic reduction. .

The INTEL Corporation has produced a logic minimizer known as
LOGMIN [TeW82|. Like PRESTO it is designed to generate logic equations
from a finite state machine description. However, LOGMIN is not heuristic.

It finds all solutions and thus is slower than the heuristic algorithms.



In addition to these implemented algorithms, there are also some
theoretical contnibutions  In the work by Sasao [Sas®1], the decomposition
of multivalued boolean functions s examined and the optimal assignment of

input variables and output phase 1s analyzed [Sas®4]

Throughout the work on logic minimization there are numerous
S 4 -
«llscu.\sm@ on the tdea of automatically generating the logic equations of a
SPLA from some higher level deseniption In a number of papers
[BroXT, MAPS$ MSVR3] the equations are generated from a finite state
machine deseription and i others [GrNR3 WiS83] a hardware deseniption

language 1x used  There are several good deseriptions of the current state of

-

design synthesis [Hia®4 Sang5)

Another distinet area of PLA research s that of partitioming logie
equations into separate PLAs to reduce the total area used. There are some
recent results in this area [Hen®3, Kan&1 MiS83a, Pul&4} The area of PLA
testing and fault tolerance has also been the subject of recent interest
[Patg0, SGME&3, TFBR&2|, and there are also some complete PLA systems that
exist which combine all of the different research areas. RCA has produced
APSS [Stax2, StaR3] to generate PLA lavout masks froma boolean expression

and Stanford has produced APLAS [KaC81,Kan&1]. There are a variety of

other working systems [MAPR&4, TeWR&2]

One of the novel ideas seen in the literature is that of Storage Logic
‘Arrays. In an SLA, flip flops are located internal to ghe PLA and are used to
implement finite state machines. A number of good references to SLLAs are

A\

available [Goa&1, LTM82,Pat80, PaW79,Smi82].

-1



PLA folding is a technique that is relatively new in the literature. Oune of
the first references to it is in the work by Wood [Woo79], where 1t 1s
presented in a form slightly different from what 1s used today. The following
is a brief tutorial on the PLA folding problem. A more detailed description 1s
given in Chapter 3 of this thesis.

PL.As are an architectural structure used to implement’AND-OR logic on
a computer chip. As the focus of this thesis s the theoretical properties of
the PLA Folding Problem, PLAs will be represented only in terms of the
locations of active intersections. Active intersections correspond to locations
of transistors and there are a number of good books available descnibing the
technological realization of PLAs. Figure 2.1 shows a typical PLA with the
AND-plane.and the OR-plane indi(‘d"t(vd. The AND-plane calculates the
minterms based upon the inputs and the OR-plane calculates the output
functions based upon the minterms. The inputs in Figure 2.1 are labeled 1 to
5 and the outputs are 6 and 7. There are 5 minterms labeled m1 to m5. This

PLA implements the two boolean functions

6 = (3and 5)or (‘:2 and 3 and 1) or (4)

-1

(I and 4) or (1 and 2)

The area of the PLLA can be represented as rX ¢ where r 15 the number
of rows and ¢ 1s the number of columns. In this example the area is
OXT = 35. it can be seen that many of the intersecti;)ns contatn no Xs
because they are inactive. The density of the PLA, d, is the percentage of
intersections that are active. Often, most of the intersections are itiactive,

representaing a significant waste of chip area. The purpose of PLA folding is
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Figure 2 1 - Example PLA

to reduce this wasted space. The technique 1s based upon the observation
that some of the inputs and outputs use completely disjoint sets of minterms
and thus can be combined in a single column. Figure 2.2 illustrates this
procedure in a form known as simple column folding. The area of the PLA
has been reduced to 41X 5 = 20 which represents a 42C savings over the
prvvmusl.y shown unfolded version.

" One can arbitrarily decide to fold the rows instead of the columns
Figure 2.3 illl;strat('s simple row folding of the same PLA. The area of this
PLAis 3X7 = 21.

The problem of deciding which inputs, outputs or minterms are to share

rows or columns is known as the PLA folding problem. The objective is to

find the arrangement which yields the greatest reduction in area. The
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Figure 2.2 - Simple Column Folding
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Figure 2.3 - Simple Row Folding
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problem becomes more difficult if one allows both row and column folding

within the same PLA as showd in Figure 2.4 If three or more inputs are

allowed to share a single column then it is known as multiple folding.
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The first mathematical formulation of the PLA folding problem was
given by Hachtel et al.in 1980 [HSN80]. In the paper the'augh()rs presen‘(_,_‘.for
simple column folding, a graph-theoretic interpretation of the problem which
has been almost exclusively used in the literature. Two columns are said to be

/

adjacent or intersect if they have active intersections in any common rows.
When two columns are folded they form a folding pasr ;nd the complete
folding of a PLA is represented by a set of folding pairs known as a folding
set. The interpretation is based on the construction of a column intersection
graph up*on_whiph is superimposed a directed graph representing the s-et of
column folding pairs. This model allows the authors to iht:roduce a heuristic
algorithm for finding a near optimal folding set. The :;lgorithm i\nvolvcs a
directed search with no backtracking. The heuristic that is used selects two
columns, one with minimum adjacency to other columns and one with

-

i
maximum adja\ency. 'ghis heuristic is somewhat arbitrary and only a few



/

a

PLA examples are given as evidence to its effecttwgness. The intuitive
argument that the authors provide to justify the heuristic is weak. However
this is the first PLA folding heuristic presented in the literature. The authors
also provide an zlrgﬁment indicating that the problem is likely to be np-hard:

In 1982 a number of authors follow up on this early work with some new
results. Luby et al [LVV82] prove that the problem is np-complete  As well,
the authors present the problem as a variation ofuhe bandwidth problem and
suggest that t?w-hnh;mw used for solving the bandwidth probtem could be
applied to the PLA folding problem. This idea appears impractical and has
never been attempted.

In [HNS#&2a], Hachtel et il formahlized a classification of the various PLA

folding techniques. The terms "simple column folding™, "simple row folding”
4

and "multiple row column folding” were introduced. A new algorithm for
performing row folding after column folding is also presented in the paper.
The best description of all of the (‘()ntributio.ns by Hachtel et al can be found
in [HNS82b]. Despite its title, "An Algorithm for Optimal PLA Folding”, the

paper describes a heuristic algorithm for near-optimal folding. It 1s the same
algorithm as in the earlier papers, but is described 1n sufficient detail to allow

others to implement it.

This original work by Luby, Hachtel and others laid the groundwork for
many of the current researchers to enter the field. However, one probnlem
\:;/ith the heuristic algorithm that they introduced is that it is somewhat
arbitrary. It does not haveeithef an analytical or empirical basis for its
performance. The intuitive argument that is given is not convincing and no

measure for its effectiveness is provided. In the various papers, often just a



few PLA examples are provided

Recently De Michelt and Sangiovanni-Vincentelli have expanded on their
work considerably A working software system called PLEASURE has been
implemented and 1s based on therr prevm\(}ly described heuristics There are
a number of good descriptions of the I’LEASURE system
[MiSR3b Misg3e, Misg3] It handles both simple and multiple folding as well
as outside constraints placed upon the rows and columns  Despite the

enhancements, no new arguments are given as to the elfectiveness of the

heurnstie

At the same time that PLEASURE was developed, work was being done
by others on a specific tyvpe of folding called bipartste folding. In bipartite
folding, all of the column fold‘.ﬁ must occur between the same rows for all
column pairs. Figure 2.5 shows an example of bipartite column folding with
all folds occurrnihg between minterms m3 a‘nd m4. This is the same PLLA as 1n
the previous figures. Note that with the added constraint of bipartite
folding, less folding 1s possible. The best analysis of this 1s by Egan and Liu
(Egl.82 MiSr3]. Kuo et al have produced some interesting results in
(Hux3, KCHR5]. The problem with bipartite folding 1s that it is an artificial

constraint. There is not any technological reason why all the folds should

occur at the same row level.

Very little work has been done on the problem of finding optimal
solutions to the PLA folding problem since it was shown to be np-complete.
There are a number of branch and bound algorithrﬁs available for this

problem [Gra82, LeL84| an/,d a new one is presented as part of this thesis.

There is no method for comparing the relative performance of these different
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Figure 25 - Bipartite Folding

optimal folding algorithms. This thesis will introduce a ~omparison measure
for such a purpose.

There are a few other varied contributions in the field of PLA folding.
Suwa [Suk®1, Suwg&2] presents a complete PLA system and Pailloton [Paix1]
presents an algorithm for multiple folding. Pailloton’s paper helps to
illustrate some of the problems in the PLA literature. Many of the
assumptions and constraints in the paper are arbitrary or else depend upon
the technology being used. This makes any comparisons to other work

difficult.

The following is a summary of some of the difficulties and deﬁcien(:ies'in
the current PLA Folding literature.
a) The graph theorctic interpretation of the PLA folding problem is used

almost exclusively. There are no alternatives avaifable. .



b) All of the pr('sont heuristic algorithms lack an analytical or empirical basis.
There 1s no way td compare the effectiveness of the various heuristics.

) |
¢) There are a number of branch and bound algortthms for optimal PLA
folding but there is no method for comparing their relative effectiveness in

»
finding a solution.
d) Many algorithms and techmiques are dependent upon arbitrary
architectural constraints There 1s no model for representing these
constramnts,
¢} There 1s no analvtical basis for expected results of PLA folding using either
heuristic or optimal folding algorithms
f) We do not know of any empirical results available o the expected
foldability of PLAs.
N . 3

g) There is little understanding of the nature of the problem. [t s not.clear
as to how the fundamental charactenistics of a PLA affe® 1ts dithiculty 1n

.

falding or even what those fundamental charactensties are

The solutions to many of these problems are provided by the work
presented in this thesis. Some of theMresults have been previously published

elsewhere [MaT®R5a, Ma'TR5b. Ma'T®6].

’



Ly Chapter 3

M PLA Model
There are x{\'oral different approaches used in the folding of PLAs cach
: S
of which has ('on\str:\lnts imposed by the technology 1t employs  In addition,
cach specific techmgue max have several different algonithms to 6btain a
folding set for that tvpe of folding  This large varrety makesat duthicult for
) . )

one to desertbe a given PLA architectiire or folding algonithm There s a
peed for a general PLA model to represent the different tvpes of PLAS and .
folding techniques .

A good model should have a number of qualities It must represent the
fundamental nature of the object 1t 1s desenibing without deluging the user
with unnecessary detatls It must be flexible enough to deseribe the many
vanantsof the object vet be simple to understand. It mus%v consistent

I
~ _ w
with thé current understanding of the problem if it 1s to gain dcceptance in

the hiterature

For PLAs'and PLA folding. the model must perform two basic functions
[t must first accommodate a vanety of implementation details and
constraints. Secondly, 1t must concisely represent the subset of details

required to describe PLA folding techniques.; This representation needs to be

A A f . .
mathematically rigorous as the mode] may be used in obtaining theoretical

results. To satisfy the two functions, the model is divided into two parts.
The ﬁrst."plgrt is a topological model for representing the necessary structural
informa ton about PLAs. This allows one to describe the different

N H

ar:chit-_-gctural arrangements used in-PLAs. The second part is a set-theoretic

4 ~

16 | /
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model for representing the PLA folding problem It 1s a mathematical

. ) '
detinition of the problem to be used in deseribing theoretical results

¢
3.1. Topological Modec.

First a few definttions are needed,

A signalis a physieal representation of inforfaation The nformation to be
represented depends upon the logie bemng used and the form of the
representation depends upon the technology of implementation  In the case

[ 4

of MOS PLAS the values 1 and 0 are represented by high and low voltage

signals

.

- A technologys a set of phyvsical fabrication lavers and associated design
rules

- A wire sa line segment on a given technology laver  Associated with each
wire 15 asignal  All parts of a wire have the same signal value at any one
time. Often the terms "signal”™ and "wire™ are used interchangeably but the

term “wire” would really be desenibing the signal assocrated with 1t

-Two technology lavers are said to be independent if a wire on one laver can
overlap a wire on the ‘nthvr with no primary interaction between the signals
assoctated with fach wire  Primary interaction between two signals 1s smd to

occur if the value of one signal consistently affects the value of the other

- The number of dimensions of a given technology iv the cardinality of the
largest set of independent layers. For example, a specific NMOS technology
has a metal layer, 2 diffusion tayer. and a polysilicon layer. Transistors are

formed when polysilicon crosses diffusion so these two layers are not

considered independent. The largest set of independent layers has two

-~



h 4 .
elements, contatmng either (metal and $iffusion) or (metal and polysilicon)

Thus this technology 1s smid to have two dimensions

- A contacts a connection between two wires that may be on different layers
The wires must overlap at the pomnt of contact. Wires that are connected in

this fashion represent the same signal value

'l:hvﬁv definitions represent the basic building blocks for deseribing
PLASs  No allowance s maden this model for the charging times of wires
Dynamie operations are represented as continuous diserete time steps of
static events  This s not an electrical model and second order parasitic

effects are not considered  The model s a topological one
Now some functional elements can be deseribed

- A suttch s a special connection between a number of wires The switceh
allows one-way dependencies to exist between the signals on the wires The
nature of this dependency 1s determined by the defimtionof the switeh and
the technology being used  If a wire W affects t‘hv signals on one or more of
the other w1re}ﬂln the connection. then W, s called an activating wire 1{ a
wire Wys :1ﬂv‘(‘tvd by the signals on one or more of the other wires then Wy
1s called a dependent wire  Power and ground wires necessary for swntrh~
operation are considered passive wires It can be seen that a switch can be as

stmple or as complex as desired

- A Nor-line is an output wire W a ground wire G, a set of associated
switches §, . and an output signal value n Each switch S,, is composed of

the passive ground wire G, the dependent wire Wy and an activating wire

A, A switch s said to be activated if its corresponding activating wire has a



signal value of fogrcal one The signal value of Wiy depends upon the switches
i the following way  If any of the switches are activated then Wi will have a
signal value 0 If none of the switches are activated then Wi wall have a
signal value n The exact value of n will depend upon the technology but 1s
usually a value of logical one The ground wire (7 1s a passive wire necessary
for proper operation of the Nor-line It s sard to be "adjacent™ to the output

wire and 1s often not shown o tllustrations Figure 3 Lidllustrates a Nor-hine

Switches
- ’ ]

- // ! =

I

] ~

~

f( /K }\ \\/\ (J‘\ o
\

W,

VAR NVARNRN VAR VAREAN VA

\

Output Wire

'

Activating Wires

Figure 3 1 A Nor-line

- A dimension is a set of wires none of which intersect each other They are
usually all physically parallel. A dimension is said to be an independent
dimension if the signals associated with the wires are all independent of each
other Note that a dimension 1s an arbitrary designation. Two non-

intersecting wires are not necessarily in the same dimension. For



. ‘r‘ .
technologies which allow multiple layers of metahzation, the user can speaify
wires on different layers to be in separate independent dimensions A set of

LS

Nor-lines is said to be in the same dunension if their output wires are i the

same dimension

\
- A sumple plane 1s'>§m ordered set of Nor-hines N all i a single dimension and
aset of wires S, n another dumenston each of which s an activating wire on
one or more switches associated with a Nor line  An example of this s shown
f Figure 3 2 where for the sake of illustration the ground wires of the Nor-

lines are not drawn and switches are represented by X's

N

N
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N
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or
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Activating Wires or Inputs

Figure 3.2 A Simple Plane -

5

h

The set of wires in the set S are called the inputs to the plane and the output

R



wires of the Nor-lines are called the outputs of the plane Two simple planes
are sard to be connected if the outputs of one plane are connected to the

imput of another

These are the definitions needed to form a PLA. A PLA 1s composed of a
set of one or more connected simple planes as illustrated in Figure 3 3
Usually there are two planes  In the Figure, the symbol "o” represent
contacts between wires,

Plane #1 Plane #2
/

/" NS AN

Nor-lines (#1)

Nor-lines (#2)

AN S AN
( N N N N
o \\
: Inputs
© \\ (#2)
|
N Q : \\ j

.K_,///

Inputs (#1) Outputs

Figure 33 A PLA - Two Interconnected Planes

Cy

Most PLAs in use today can be described using the definitions above.
For a few, however, additional definitions must be developed from the basic
definitions. For example, in the description of a static CMOS PLA, a

complementary simple plane would be needed. This plane would be similar



to the regular simple plane defimed above except that Nand-lines would be
used tnstead of Nor-lines A Nand line produces a zero output signal when
all of its input switches are activated.

This model can be used to represent PLAs when discussing folding
techniques. The basis of PLA folding is that wires within a simple plane can
be replaced by one or more separate wire segments. Wire segments must be
collinear, as if part of a single wire, but may have different signal values 3 4

illustrates wire segments

Wire Segments
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Figure 3.4 Wire Segments

The exact conditions under which wire segments are allowed is dictated by

the type of folding being done. The different types of folding are described in
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the next Chapter /

The above definmtions complete the portion of the model used for
deseribing topological information of a PLA. Although it has not been fully
expanded here, the basic elements presented above can be used for

P)

constructing representations of most types of PLAs

3.2. Set-Theoretic Model

For representing the nature of the PLA folding problemat s necessary to
deseribe it a more rigorous form than wires and planes The following s a
new set-theoretic model for this purpose It will be shown to have certain

advantages over the graph-theoretic interpretation popular in the hterature.

The derivation of the model presented s based on the folding of simple
planes. For ease of understanding, and consistency with current literature,
the input wires are arbitrarily called columas and the Nor-hnes called rows.
Folding will be restricted to input wires or columans where each wire can be
replaced by only two wire segments, an upper one and a lower one  An
example of this type of folding 1s shown in Figure'3 5 and s known 1n the
hterature as simple column folding. An active intersection is a position where
an mput wire activates a switch which s connected to one of the Nor-lines

These are indicated by X's in Figure 3.5

The n rows of the PLA are represented as a set f£. Thus
R={Tl, o ,fn}
Fach column of the PLA is represented by the set of rows in which it has

active intersections. The m columns of the PLA are expressed as a set C of

+

l
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Figure 3.5 Column Folding of a Simple Plane

f

m subsets of K

Thus -

C={cy,.  .c, ) where ¢,CK \f\

-

For example, Figure 3 6 illustrates a single plane PLA It can be represented

as

R={1.2.3}

Cm {a,b,c,d,e,f,g}

- {{3},{2.3},{1)«{1,2},{3},{2,3},{1,2}}

»

Define P to be an ordered partition of R so that
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Figure 36 A Example Single Plane PLA

p={a, A

where for all 1)’
ACR

A% - !
A,nqA,=<b (+#7)

UA=1I

1=
L}

In other words, P 1s an ordered set of A;’s which are non-empty, non-

intersecting subsets of ¢

For example if R ={1.23.4567} an ordered partition P might be
P= (13.7142.1,61.41.5})

Let us define the position index rp, of a row, rg, with respect to an

ordered partition P as follows:



/
/ 3

o
rpp(ro)= s such that rpeA,
The position index of a given row rg with respect to a given ordered partition
P 1s.the position of the subset that contams the row 1in the ordered partition
For example, if
p- [{3,7},{2,“5},{1,5}]
then rpp(2)=2 because 2 1s contained 1n the subset {246} which s the 2nd
subset in 7 Sitmalarly rpp(5)=3 and rpp(7)=1"
Rememberning that ¢ QK | let us define the maximum position index

mazrp. of a ¢ (asubset of K), with respect to an ordered partion £ as

f()“()WS'

mazrpp(cy)=max{rpp(r,) | rec,

te . mazrpp(cg)is the largest position index of all the rows in ¢y For

example if ¢cy=2.5 and P 1s defined as above, then
mazrpp(co)=max{rpp(2).rpp(5)

=maxq{2.3¢=3
Similarly, the minignum position index 1s defined as the smallest position
index of all the rows 1n ¢

minrpp(co)=minjrpp(r,) | r.ec,

where ¢gC R. Intuitively, the ordered partion P represents a partial ordering
of the rows in R. Rows within a subset of the partition are unordered with

respect to cach other but are ordered with respect to rows in other subsets of

the partition.



For a given column ¢y, (recall that each column 1s represented by the set
of the rows that it mtersects), the maximum (and minimum) position index
mazrpp (minrpp) represents the relative position of the highest (or lowest)

row in ¢ with respect to the partial orderings implied by P

Let us now define a folding pasr f={(c,.cy) as an ordered pair of two

elements of
t e where

c e(’
(‘bf('v
Ca¢Cb

A folding pair (¢,.¢p) 18 sard to be conflict free with respect to an

ordered partition P f

2’

mazrpp(c,) < minrpp(cy) (3.1)

That s, two columns are conflict freef they are foldable with respect to

constraints implied by the ordered partition £

A folding set F'={f, - - f.}is asetof n completely distinct folding
pairs where none of the folding pairs i the folding set share common

clements of ¢

A folding set Fis said to be conflict freef

There exists an ordered partition P such that all members of [ are

conflict free with respect to to said P.

A folding set is conflict free if an ordering of the -ows can be found that
allows all the folding pairs in the folding set to be conflict free. Thus the

PLA folding proviem can be defined as follows.



Given the sets f£ and (. find the conflict free folding set F of maximum
cardinality
Note that this will. of course, also include finding the ordered partition P
which corresponds to the folding set £ The partition is just a representation
of the partial ordering of the rows that does not conflict with any row orders
impased by folding pairs in the folding set. This as illustrated in the folded
PLA 10 Figure 3.7 where for the sake of illustration. the folding pairs have

been ordered by the wire cut positions
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Figure 3.7 Ordered Partition of a PLA

The exact arrangement of the partition is dictated by the positions of the

~



’

wire cuts n each of the folding pairs.

There are a number of advantages that the above set theoretic defimtion
of the PLA folding problem has when compared to the graph theoretic
iterpretation currently used in the literature [HSNRO] - First 1t as
reasonably easy to understand. Basically, two columns are foldable 1 the
lowest row'in the upper column is above the highest row 1n the lower column
(vee Equation 3 1) Secondly, this model captures the essence of the problem
without presenting any <‘ivt:nls of the algorithm implementation. While
transitive closure of the row orders may be necessary in the umplementation
of certamn algonthms dealhing with PLAs, 1t 1s not necessary in a mathematical

Al

model whose purpose s to aid understanding of the problem  Finally, as an

»

alternative model to the one which has been almost exclusively used 1n the

lterature, it should generate new ideas and methods for folding PLAs



Chapter 4

PLA Folding Taxonomy

The recent hterature on PLA folding contains a vartety of different
techniques and algortthms Companison s difficult because authorsnclude
constraints which are particular to their type of folding  This Chapter
presents a PLA folding taxonomy for classifving the different folding
mbthods  The taxonomy s divided into three separate parts First a
<‘i:l;51ﬁ(‘ntmn scheme for the architectural structure of PLAS 15 presented
This scheme 1s based on many of the elements desenibed 1n the topological
model of the previous Chapter Second. a terminology i1s presented for
classifving the various folding techniques This classification 1s based on
fundamental characteristies common to all techniques  Finallv, a
categorization of the different PLA folding algorithms 1s provided 'l{fhvc:? .
algorithms are distingumished by their fundamental properties rather ‘t h:msl‘)_v
the type of folding which they perform. 'I‘h(;re are common elements among
algorithms even though they may perform different types of PLA folding

There s already a taxonomy avatlable in the literature [HNS&2a] but 1t
15 limrt&l to a simple terminology for describing folding techniques which are
currently available. The ‘tax;momy presented here 1s more (‘<>;11[>Ivtv and
better represents the nature of PLA folding. It should prove to bg an

effective classification scheme for new types of folding and yield to a better

undvrstandirig of the PLA folding problem

- g
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4.1. Architectural Classification Scheme '
This first section deseribes a method for elassifving PLAs by ’

.

architectural considerations This method distinguishes PLAs v examining
different fundamental features as well as,the implementation technology
Many of the features are those which are deseribed by the topological model
in the previous Chapter Thev are as follows . )

\ s
I Number of [ayers

This s a function of the technology used tommplement a PLA AN an
example standard NMOS technology has three I;xyvrys, p()l_\“illl;‘ﬂn, ditTusion
and one layer of metal Many of the modern VLSI technologies now welude
two lavers of polvsilicon and two or more lavers of metal Fach laver s not

necessartly independent of all other lavers

2 Numberof Dimensiona o
A-

‘r

The number of dimensions of a technology 1s defined 1n the PLA model of
the previous Chapter as the size of the largest set of independent lavers  Tha
same NMOS technology mentioned above wquld be considered two
dimensional The number of dimensions s an nnportant classification
criterta. Most PLAs today are rectangular in shape. They are composed of
two sets of wires. one set running horizontally. and one vertically This 15 a
result of most VLSI technologies aving two dimensions, that is at most two
independent layers. Now that modern technologies contain additional layers
of polysilicon and metahzation, PLAs are no longer restricted to the

rectangular layout. There can now be PLAs composed of three or four sets of

wires, each set being aligned in a different direction. Although the exact”
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Favout of such a PLA s beyond the scope of this work, it s clear that the
number of dimenstons 1s an important measurement <'(>nc‘<‘rnmg the
hmitations of the technology

The above two clagsifications pertam directly to the technology used to
implement the PLA - They are suflictent to express the fundamental
hinttations of a specitic technology Hn‘wmw'r, they do not deseribe such
detarls as exactly how specdic lavers mteract with other lavers and which

‘

lavers transout signals fister than others I such detals are needed then a
full description of the technology must be provided
3 Number of Levels

The number of levels of a PLA s definged as the number of planes i the
longest path through a set of interconnected simple planes It represents the
number of levels of logie that can beamplemented by the PLA Most PLAS
today are two level and implement simple sum-of-products And-Or logie
equations However some PLAs include decoding logie on the mputs to the
PLA and this eflectively gives the PLA three levels

§ Timing Constderations

PLAs may be either dynamic or static Statie PLAs require no timing
signals to produce a valid logical output  However, they are usually designed
as part of some other synchronous circuit. Dynamic PLAs, on the other
hand, require constant timing pulses to charge wires and produce correct

results. Typitally static PLLAs take up more chip area but require less
s

L 4
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complex external cireuttry - Both types are widely used today

5 Types of Symple Planes

PLAs can be classified by the types of simple planes they are composed
of Recall that stmple planes are sets of wires as defined in the previous
Chapter PLAs that (‘(;llt.’flll only one type of simple plane are termed simple
PLAs Tlhusv that contain two different types of planes are termed
complementary PPl As  Static CMOS PLAS are complementary requiring hoth

astnple plane and a complementary plane to function Most other PLAs are

stnple PLAS

Note that there s no distinction between the AND-plane and the OR-
plane  These are classiications created by authors for specific PLAs This s
not tosay that they arencorrect terms. They are just not part of this

3
taxonomy as they become meamngless terms for more complex PLAs

$

This concludes the classtfication of the architectural structures and

technology of PLAs

4.2. Classification of Folding Techniques

There s even more vartety in the types and forms of folding techniques
than in structures of PLAs  Although there are variations specific to each
PLA type there are nonetheless a number of classification eriteria which are

L)

fundamental to all types.
6 Segmentation Number

PLA foling is the replacement of individual wires within a PLA by one

or more wire segments. Often there 1s a limit to the number of wire segments

&
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allowed to replace a single wire. This hout s known as the segmentation

number If the segmentation number ts two, the folding 1s termed "sumple
folding”. If the segmentation number s three or more, then the folding s
’tvrmvd “multiple folding”™ These definitions are consistent with the

terminology currently used in the hterature
7 Number of Folded [Mimensions

Folding technmiques can be distinguished by the number of separate
dimensions in which folding occurs. If folding s restricted to only one
dimension, the PLA 15 said to be "slngly‘ folded™ "Doubly folded™ describes
PLAs where folding occurs in wires contained n two dimensions, and so on

As most PLAs contain at most two dimensions, there are hardly any

examples of PLAs with three or more folded dimensions.

8 Open and (losed ['nded Folding

Wires within a PLA can be classified according to various constramnts.
loach wire must have at least one end connected to another wire or external
connection. This follows from the 1dea that there must be at least one wav,
topologically. to get a signal to or from the wire, otherwise the wire would
serve no purpose. If this connection 1s the only ore necessary for the proper
functioning of the wire then the wire is said to be "open ended”. This
definition is derived from the fact that at least one end of the wire is open or
free to be used by the PLA folding technique. It is not required for the wire
to function. If, in addition to the input/output connection to the wire,

another connection such as a Nor-line driver is needed for proper functioning

of the wire, the wire is said to be "closed ended”. Both ends of the wire are



usced an ats normal operation and are uaavailable for other uses

Input wires i a simple plane are open ended  The only external
connection to the wire 1s the mput signal This leaves one end of the wire
free for use m folding  Nor-hines, on the other hand, are closed ended wires

One end of the Nor-hine 1s used for the output signal that it generates and the
) :
other end 18 connected to some sort of driving device  The exact nature of

the driving device depends upon the technology being used

Note that connections to switches mnternal to a sample PLA plane are not
considered signmificant in determinng whether a wire 1s open or closed ended
-

This distinction 15 a topological one and depends only on connections made at

the end of the wire

Using the above defimtions. PLA folding can be classitied by whether
folding occurs on open or closed ended wires. It s clear that open ended
folding 1+ much simpler than closed ended folding. Figure 4 illustrates open
ended folding on a simple plane. The inputs to the plane run vertically and
are folded. The Nor-lines run horizontally and are not folded. The drivers to
the Nor-lines are represented by the vlw‘trigal resistor symbol Figurv 12
tlustrates <:|()>(’(l ended folding  Note that without an extra dimenston such
as a second layer or metal, it 1s impossible to retrieve the mltp\;C signals from -

the Nor-lines. This type of folding has not been used much to date because

of this constraint.
9. Internal and External Folding

ILach simple plane has a set of wires which are the inputs to that plane.

If those inputs are connected directly to signals external to the PLA, they are
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Figure 4.2 Folding Closed Ended Wires

termed "primary inputs” to the PLA. If the input signals are generated from
some point within the PLA, such as from another simple plane inside the

PLA, then they are termed "local ‘i_nputs".
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“Internal folding™ s the folding of wires that are not primary mputs
This ineludes the folding of all Nor-hines and of all wires that are connected
directly to Nor-hines within the PLA "External folding™ 1s the folding of the

primary inputs to the PLA Generally internal folding 1s more ditlicult than

external folding. Figure 4 3allustrates a two plane PLA with external folding
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Figure 43 External Folding of a Two Plane PLA

In comparison, Figure 4 allustrates a three plane PLA with internal folding
The outputs of plane #1 and plane #3 are folded together as the local inputs
to plane #2.. This particular example 1s known in the literatule as the AND-
OR-AND arrangement as it can be viewed as an OR plane b’(:twe(*n two AND
planes. However, this is an arbitrary categorization as the vertical Nor-lines
in Figure 4.4 could be intermixed withi the vertical inputs. Remember that a

simple plane consists of a set of Nor-lines. There is no stipulation that the



lines must all be adjacent in a regular shape.
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Figure 4.1 Internal Folding of a Three Plane PLA

[0 Separate and A\‘Iired F()(dxnkg

It can be seen that a g\;iv(‘n,l’l,x\‘ with multiple planes, can contain an
assortment of different folding techniques If, for each simple plane. only one
dimenston is allowed to be folded then the PLA is said to contain only
"separate folding™. If, however, there 1s at least one simple plane where
folding 1s allowed in two or more dimensions (1.e. row and column folding
#MMRhin a single plane) then the Pl;A 1s said to have "mixed folding™.
Algorithms for dealing with separate folding are simpler than those for |

dealing with mixed folding.

11 & 12 Input and Output Access



As a PLA 15 not a complete device matself, 1t must have mnputs and
outputs accessing the outside world. If all of the primary inputs to the PLA
are 1 a single dimension, the PLA 1s said to have "one sided input access™ |If
they are contamed in only two different dimensions, the PLA 15 said to have
“two sided input access” and so on For three or more sided access the term

¢
"multi sided input access™ s sutlicient. If some of the inputs are not
topographically accessible on the periphery of the PLA | the inputs are said to

be “mnternally accessible™ This occurs, for example, in multiple folding The

same detinmitions apply to accessing the outputs of the PLA
Y

136 14 Internal and Erternal Constrasnts

There are a number of additional constraimts which can oceur within a
PLA  Suppose, for example, the simple planes were required to be arranged
i the AND-OR-AND fashion seen o Figure 4.4, This and other such

architectural constramnts are termed "internal constraints™

There can also be constramnts imposed on the primary mputs to the PLA
These are termed "external constraints™ and usually consist of orderings
imposed upon the inputs. If the ordering imposed s complete, the inputs are
sard to be "Tully ordered”™ If the ordering 1s incomplete, the nputs are sad
to be "pastially ordered”™ If the ordering is in the form of limits on the

-
relative position of certain enputs, the inputs are said to be "bounding
ordered”. Finally if a set of orderings is not mandatory but instead s
by
preferred, then the ordering 1s said to be a "weighted cost ordering”™ This
would occur where the position of two inputs could be interchanged by, for

example, changing from a metal to a polysilicon layer. The designer would

assign an area cost to changing layers and would need to determine if the
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benefits gained by the new arrangement in the PLA were worth using it.
The above criteria are sutherent l'o‘r describing all of the folding
techniques in use today as well as foreseeable future ones. As new multiple
metal and polysilicon layer technologies emerge 1n Vl:§l, there will be a
tendency to the use of more complex PLAs The mam advantage of the
above definitions 1s thetr adaptability to these new multiple level, multiple

plane PLAs

4.3. Categorizing Folding Algorithms
A
Each folding algorithm is designed to implement a particular hind of

PLA folding. However, aside from this, there are a number of elements

common to all algonthms, which allows us to categonize them

{5 Optimality

The object of PLA folding 1s to reduce the area of the PLA based on
some area measurement criteria. Algorithims can be classihed by whether
they tind the theoretically optimal area reduction or not. Those that tind an
optimal solution are termed "optimal algorithms™ and those that do ot are
termed "non-optimal” algorithms. The non-optimal algorithms are usually
heuristic. The optimal algorithms usually use some sort of branch and bound

method. A later Chapter in this thesis will describe methods for comparing

the performance of different optimal and non-optimal algorithms.
16 Search Tree Backtracking

In any heuristic directed search for near optimal folding sets, the

algorithm will select folding pairs to be included in the final folding set. If

"yhese selections are final, and no backtracking occurs, the algorithm is said to

|
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be a "direct search™ If the algorithm can adapt to poor chotces and change

selections it as said to be an "adaptive search”
17 Deterministic and Random Types

If the heuristic used to select column pairs during the folding process s
based totally on specific properties of the PLA |1t s ~s:nd to be
“determmistie™ I the heurnstie selection process has a random element to 1t
and does not necessanly produce the \v:mw results each tune 1t s said to be a
“random type” algorithm The extreme of this concept s the random
selection heurnistie prvsmxted{l;ner in this thesis which v based totally on

random column pair selection. This ts shown to be more effective than the

determimistic algorithms 1 use today v N

4.4. Summary and Application

Table 4 1 shows a concise summary of the taxonomy Table 42 shows an
analvsis of some of the representative PLA folding systems and results in the
literature, using this taxonomy  The selections are specified by their
reference number as found in the References section of this thests  Note that
in the table na=not appheable and ns=not specified It can be seen that
most current folding s fairly simple as compared to what can be represented

in the taxonomy.



PLA Classification

1. Number of layers
2. Number of dimensions in the techmology

3. Number of levels

-~

Timing considerations (static/dynamic)

5 Type of planes (simple/complementary)

PLA Folding Technique Classification

6. Segmentation number (stnple/multiple)

Number of folded dimensions

x

Open/Closed ended folding

)

). Internal/External folding .
\“3\

10. Separate/Mixed folding o

11. Input access (one/two/multi sided, internal)

12. Output access (one/two/multi sided, internal)

13. Internal constraints

1+ External constraints (fully /partial/bounded /weighted

cost orderings) F3
("ategorization of Folding Algorithms
15. Optimality

16. Backtracking (direct/adaptive)

1

-}

~Deterministic/Random Type

Qa

Table 4.1 Summary of Taxonomy




Literature Reference

Haxonomy (Paigl] | [EgL&4] | [Gra&2] | [MiS83b]
Category

1. # Layers 3/4 ns ns 3/ 4
2. # Dimensions 2/3 3 2 2/3
3. # Levels 1 2 ns 2

1. Timing ns ns ns ns

5 Plane Type simple | simple simple slmple
6. Segmentation # multi 2 2 multi

7. # Folded Dims 1 1 1 /2 2

8. Open/closed open open open open

9 Intern/Extern. int/ext ext. ext. int /ext
10. Separate/Mixed sep. sep. sep/mixed mixed
11. Input Access 1int 1 1 R

12. Output Access 1 1 1 1

13 Intern Constr. none bipart. none yes
1A Extern Constr, none none none order
5. Optimality non-opt | non-opt opt non-opt
6. Dir/Adapt. direct adapt adapt direct
l”\ Rand/Determ. ‘determ determ determ determ

~

N

Takble 4.2 Application of Taxonomy to Current Literature

~~—
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Optimal PLA Folding

4

This Chapter presents some results on the optimal PEA foldinyg problem
Recall that the optumal folding of a PLA s the folding arrangement which
vields the theoretically greatest chip area savings within the constramts of
the type of folding being used The problem of tinding this folding
arrangement 1s known as the optunal PLA folding problem and has been

<hown to be np-complete [HSNR0] This Chapter confines atself to the study

.

)

of simple column folding as was defined earhier and illustrated Figure

First an analvsis is performed of the number of distinet folding sets possible

for a given PLA o)
\

A Baste Optimal Search Algorsthm s presented and used in the
unplemoﬁtation of a new Branch and Bouﬁd algorithm for optimal PLA
folding. This new algorithm is used to generate some enmtpirical data as to
how the foldability of random PLAs 1s affected by some of its fundamental
properties  As well. two new bounding measures are mtroduced The first
one represents the inherent difficulty of finding an optimal folding ~set for
given class of PLAs and the second one represents the relative effectiveness of

a given algorithm in solving this problem. Both measures are shown to be

useful in comparing different bounding techniques.

AN

11
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. . R s .
Recall from Chapter 3 that the PLA folding problem ean be defined as
fﬂll\b\\\
Given the sets £ and 7 (representing the rows and columus

respectively) find the conthict free folding set Foof maximum cardinahity

\v oo tiest step towards producing a solution to this problem one m’:ny first
count the number of ;mxxll»l(’ distinet folding ~ets conflict free and otherwise
that oceur  Farst aodetinmition s required

Two folding sets F'yand [7 are sard to be non-distinctf

1) one s a complete inversion of all of the folding pairs of the other or

)

2) one s rearrangement of the folding patrs of the other or

A

3) one 1s a transformation of the other through a combination of 1 and 2

If none of the above s true then the two folding sets F'yand Foare sad to be

distinct

For example, i a PLA with X columns af

Fr=4(1.6).(2.1).(3.8).(7.5)

and

Fo= (6. 1).(4.2).(%.3)(5.7)

v v . 1 . .
then F'yand F'5 are mon-distinct because one is a complete mmversion of the

other.

Another example; suppose

AN

Fi=1(1.6).(2.4).(3.8).(7.5) 1,
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.= {(2.1).(7.’))_( l .(i)_(:i_x)}

then /7] and 7o are agoan non distinct because one s simply arearrangement
of the folding paies of the other  As a final example, note that the following

are all distinet folding sets,

¢

{( 1.6).(2:4) (3 x).(?,-x)}.
{(l:).(.t X) (7 3) (.',_m].
{( ;,:),(x,s),(:,ti),(;;,1)}

and the following are all non-distinet folding sets

{(l,‘.’)‘(.‘&,(i).(?_x‘)_(.ﬁ.-l)}, ‘

0 {(:.1).(ts,:;)_(x:),(.;,5)],

{(2,1)4(8.7)_(-1_3).((5.3)}

Note that the total number of possible distinet folding sets depends only

/

on (7 the pumber of columns of the PLA It s dssumed for this analvsis that

(" 1s even  Simuar results occur if C s odd
A function G-(n)as defined as follows

G¢(n) = the number of distinct folding sets that contain exactly n

folding pairs for PLAs of €' columns.
First, )

Cx(C-1
G(,(l)-



(C, . Cp)t and §(C7; 7))
are not considered distinet Now, )
)
CX{OC=1)xX(C=2)x{(C=3)

2x 2!

oy e
Go(2)=
The division by 2'is necessary because the folding patrs an the folding set can

be arranged in 20 ditferent wavs For example, foldigs sets such as

(Ca Cp) (O O ) pand §(CLC ) (C, Cy)

are not constdered distinet In general

2xn— 1

[T (C-1)

=)
IXn!

(’('(n)=
or by the recurrence relation

(C=2Xn+2)X[(C=-2Xn+t1)
n

Gofn)=Gofn = 1)x
T(C) 1s number of distinet folding sets of all sizes for PLAs of (7
columns It can be detined as follows
©
TC)=3 Go(s)
1=0

T{C) represents the total number of distinet folding sets for PLAs of (7

columns  Table 5 1 shows the value of T(C) for various values of ¢

-



¢ 2 () ¢
2 1 1 2
1 16 12 24
R 256 2068 40320
12 | 4100403 | 1 80¢+06 | 4 79e¢+0R
20 | 105406 | 365¢+12 | 2 43et IR
30 | 1OTe 409 | 2 23e421 | 265e432
10 | L10e+12 | 6 67¢ 430 | S 15e 447

Table 51 Counting distinet folding sets

It can be seen that T(C7) grows very quickly with respect to (7 and appears
to be of an order greater than exponential but less than factorial

The fact that T(C) appears to grow at least exponentially concurs with

the prior result that the problemas "np-hard”

then a solution could be found o polynominal tunme by simply examining all

of the T(C) distinct folding sets

5.2. New Branch and Bound Algorithm

The basis of any algorithm to find the optimal folding set of a PLA 1s to
search all of the distinet folding sets to find the largest set which 1s conflict

free. One wants to ensure that non-distinct folding sets are examined only

-

If T(C)grew polvnominally

/

once. In fact, not all distinct folding sets need be examined. As an example,

if the folding set
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1s found not to be conthict free and thus umimplementable, then all folding
sets containing these two folding pairs would also be umimyplementable  For

example, /
\\
\

(1.3).(%.6).(2.9)
would not be contlict free and would not need to be exammed ”(l( contains
both the folding parrs of the previous folding set ) This condition can be

deseribed by the following theorem The term conflict free s as defined in

the set-theoretic model of chapter 3
Theorem 5.1

If G and Foare folding sets for a l’[,:\/“}n‘rv

}

“

G 1~ not contlict free and /,‘ 3
G C.F
then
I 1s not conthiet free
Proof
The proof 1s by contradiction. Suppose F wera conflict free Given ‘tho
definition of conthict free as found 1n Chapter 3, this would mean

There exists an ordered partition P such that all members of I are
conflict free wth respect to said P.

Since G C F, all members of G are also conflict free with respect to the same

P as well so G is conflict free. This contradicts the original statement that G



Thus F must be not conflict free @ E.D

N

N

The search tree that will be used 1s defined i a manner sumlar to thatan
[Lel®4]. where a lexicographical order is imposed upon all of the folding sets
and they are examined 1n order The lexicographical order used hereas as
follows The columns of the PLA are arbitracily numbered from 1 ton All of
the possible folding pairs are ordered first by the minunum column number n
the parr and then by the maximum column number i the par. For example
(2.5) < (4.3) and (4.6) < (7.4) For column pairs that are equal by this rule,
the patr where the mimimmum column occurs first s ordered first e (1.2) <
(2.1) For each folding set F' the folding pairs in the set are arranged m order

from highest to lowest and the folding sets are ordered lexicographically with

respect to the order of the contamned folding pairs. e g

v

' (9.7).(5.6).(1.2)}<4(9.8).(1.3).(2.1)

and

Note that this ordering 1s completely arbitrary.

This ordering of the folding sets is used to construct a Basic Optimal
Search Algorithm for finding the optimal folding set of a PLA. The following
functions are used in the algorithm and are briefly described. All the
functions have been completely implemented. Some of the functions are
recursive and are invoked at different points in the search tree. Each

function has access to a global set of constraints imposed by the current set



moves up and down the search tree

Findfolds(a b)1s the main recursive procedure which takes as an argument
the last column pair examined  Fach call to this routine at any level
represents the exammation of a distinet folding set. At the main level it s

called to search all folding sets which it does by recursively calling itself

Foldable(s.y)1s a logie procedure which determines whether the column par

(1 3) s conthiet free with respect to the global set of constraints imposed by

-

prior columnp pairs
Fold(iy)is a procedure which adds any constraints imposed by foldang the
column pair (1)) to the global set of constraints

Unfold(ig)1s a procedure which removes the constramts which resulted from
-

folding column pair (1) from the global set of constraints
ncols ts the number of columns of the PLA

The framework of the algorithm s as follows

Findfolds(a.b) { /

for1= 1+min(a.b} to nknls do |
for j= 141 to neols do¥{
if (Foldable(1))) then do { .
Fold(i.))
Findfolds(i )
Unfold(,))

}
if (Foldable(3.1)) then do {
Fold(j.1)
Findfolds().)
~Unfold().1)
I

Findfolds is originally called from the main level with the first column pair

Findfolds(1.2) 1t recursively calls itself to search all of the folding sets in

»



examined only once and that any folding sets eliminated by reason of
Theorem 5 1 o not examined i

Remember that folding pairs are ordered first by the minimum column
the pair and then by the maximum column m the pni’r This 1s why the outer
For loop begins at one plus the mmimum of the previous column pair
selected  For example if the last column par Selected was (5.9) then the
outer For loop would need only begin at column 6 Aayv column pairs
lextcographically less than ‘(5,9) have already been examrined and any column
pairs lexicographically between (5.9) and (6.*) will contam the column 5
which has just been folded and is thus unavailable

The tnner For loop begins at one plus the current value bemng used i the
outer For loop  The reason for thisas as follows  Suppose the outer For loop
is currently at column 6 and the inner For loop is at column 9. The two If
statements will try the two column pairs (6.9) and (9.6) respectively  Now_ at
a later time the outer loov 15 at column 9 There is no need for the mnner loop
to examine column 6, for instance, because the column pair (9.6) has already >
been examined when the outer loop was at column 6 So the inner For loop

\
need only examine columns greater than the column i the outer lu()p.

A bounding procedure is used for further hmiting the number of folding
sets that must be examined without sacrificing optimal folding. A global
variable best-so-far is created which represents the size of the largest folding
set found so far. A function Limit() is created which can be called at any

level. This function is based on some theoretically based method and returns



location 1 the search tree and the global set set of folding constraints. The

basic optiunal search algornithm can now be defined as follows

Findfolds(ab) {

best-so-far=max{current folding set size best-so-far)

if ( best-so-far > = Linut() ) then {
return

}

for 1= 1+mn(ab) toncols do {
fory- 1+l toncols do{
if (Foldable())) then do {
Fold(i))
Fandfolds(i)

Unfold(y.y)
) -
£ (Foldable(ya)) then do S/

l'\ul(”J,l)
Findfolds()a) /
Urrfold () i

by y

One can see that §he Lomat() function has the potential of pruning large

portions of the search tree

The above algorithm s called the Basic Optimal Folding Algorithin 1t
can be used toumplement various branch and bound methods for optimal
PLA folding  The only change between methods s the exact technique used
in the Limit() function to produce an upper bound on the size of the folding

set. There are 2 number of good techniques in the hterature [GraX2, Lel.®4].

The new bounding method . or Limist() function presented hereis as
follows. A global list 1s maintained of which columns have already been
folded for the current folding set and which ones remain to be folded. At
each stage in the search tree two columns from the set of K unfolded columns

are selected and marked as unavailable. These two columns aresarbitrarily



current folding set using only the remammng A — 2 columns. I this attempt

results 1o A new folds being obtained, then the upper hmit on the number of
new folds obtamable at that stage in the search space 1s A+ 2 In other
words . if the two selected columns are returned to available status, the best
that could result 1s to find two additional folds. This 1s the Limat() function
These two additional folds would be possible new folding pairs containing

each of the previously unavailable columns

Lamat{} {

AMark two of the remainimg columns as unavatlable;
Call Findfolds(a.b),

h= # of folds found by Findfolds(),

Restore the two unavatlable columns;

return(h +2);

}
As an example, suppose the available columns are
(78910 11,1213 14.15.20,22 .23 25 27 28)
Columns 7 and % then are marked as unavailable and the remaining columns
are folded to attempt to ncrease the size of the current folding set Su;)pose
3 new folds result  If column 7 and column X are now marked available, the
best one could expect 1s 5 new folds. This wolild be at least the 3 previous
folds, plus possibly one new folding pair contamning column 7. plus possibly
one new folding pair contaimng column 8 It is clear that 6 or more new folds
would not be possible for at least 4 of them would have to contain neither
column 7 nor column 8 and thus those 4 would have been found when column
7 and column R where marked unavailable. If the upper bound of 5 new folds

from this point in the search tree is not enough to beat a previous folding set

then the algorithm does not have to perform any additional searching of this

r



Ofxrourse determming the upper bound 1s not cost free The basis of the

method s that the cost of searching the number of nodes used 10 bounding s
more than made up for by nodes pruned from the tree. This s as expected
as the bounding subset of the search tree generally s smaller than the subset
which needs to be searched without bounding  Later in this Chapter a
bounding measure will be desenibed for quantitatively measuring how well
this bounding methods works and comparing it with other bounding

techniques

5.3. Empirical Data

The above Branch and Bound algonthm for optimal PLA folding has
been fully implemented in the C language on a Vax 11/780° This algorithm
was used in a study to experimentally observe the effects of fundamental
properties on the foldabihity of random PLAs. These PLAs all had densities
which were evenly distributed across the columns and were generated using
the algorithm described in the appendix. First the effects of the density of
the PLA were examined  Figure 5 illustrates the results Fach single data

potnt mllht*‘ graph fepresents the size of the optimal folding set for PLAs of

S,
F

size 1=20 and ¢= 18 and varying density as averaged over 300 optimally

{
folded PLAs  The graph appears to indicate that complete folding of the PLA
oceurs up to some critical density, after which the optimal folding set size
drops sharply. Complete folding 1s defined to be when all of the colummns of

the PLA fold. For further increases in density, the foldability continues to

drop, but slowly tapers off until a density of 509, where no folding occurs.



térmed the ('0‘71[)1(’[? Folding Density Lymst or CFDIL This C'FDIL will be
different for PLAs of different sizes. Optiumal folding up to the CEFDL usually

requires comparatively little computer tune to perform

The second part of the study deals with the effect of the number of
columns on the foldability of a PLA. This 1s quite umportant as it as the
number of columns which most dramatically effects the computer time
required to pvrfurnf()pt,lm:ll PLA Folding Figure 5 2 shows a plot of the size
of the Optimal Folding Set versus the number of columns in a PLA. The
number of rows and density for all of the PLAs were kept constant at 16 and
250 respectively. Again, each single data point on the graph was derived by
averaging the results over 300 optimally folded PLAs. The graph indicates
that the foldability of a PLA appears to increase hinearly with respect to the
number of columns. This observation 1s useful in predicting the fulda‘bilit,y of

P1.As with ¢ greater than = 30, where optimal folding can become

prohibitively expensive, even using branch and bound technmiques.
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5.4. Bounding Measures

The basie difference between the vanious branch and bound algorithms
used for optimal PLA folding s the method used to determine the upper
hmit of the size of the maximum folding set achievable from a specitied
pu:l(;nn in the search space  Comparison of these different algorithms s
ditticult Results are gaven for specific PLAs and ats impractical to publish

the loeation of all active mtersections for all of the PLAS with which a folding

alcorithm was tested

To overconie this problem. two measures are mntroduced Farst the ¢ lass

Bounding Measureas detined as follows

(g al .y(~

(T
~ M(‘(."F= ) N
{a I'I‘L(/‘)i'j(

This measure 1s based on the use of the Baste Optimal Folding Algorithmn

descrnibed earhier The measureas derived from a large random sample of

<

PLAS from a given class. A class of PLAs are all those of the same size and
density and 1s represented by the 3-tuple < # of rows # of columns,
density > Recall that the density of a PLA1s the percentage of intersections

15 Reu e

within the PLA that are active For example. the class <20,16.25%¢ >

represents all PLAs of size r=20 and ¢=16 having a density of 259 T 4y s

the number of folding sets examined using the Basic Optimal Folding
Algorithm without any bounding. T(C)1s the total number of d’istinct folding
sets possib'ec as described earlier. The number of folding sets raised to the
power 2/C gives an indication of the average width of the search tree if it

were balanced. Recall. that in a balanced, uniform, full tree, the number of

leaf nodes 1s

.
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(width of the tree at cach level)ierth of thetrer
The total number of distinet folding sets in the search treeas T(C7) as was
derived earlier The depth of the search tree s (/2 because there are at most
(/2 column pairs 1 a folding set Thus

T(C)=(average width of the trec at cach level)' '~

Solving we get
average width of the tree at each level= ['1'((')]"'/‘.
Note that this s not exactly true as T((7) 1s the total number of nodesn the
search tree as opposed to just the leal nodes but for the purpose of providing
a relative measurement at works fine This is because T((7) 15 dmsninated by
.

the leal node count

The same equation applies to the Basie Optimal Search Algorithm except
that the number ().f folding sets examined n the search tree s Ty Tapo s
usually considerably less than T(C7), as many folding sets are ehminated
using the result of Theorem 5 1. The ratio of the average tree widths varies
depending on how many folding sets are ehminated by the Basic Optimal
Folding Algorithm and this ratio represents the relative difliculty 1in finding
the optimal folding set for a given class of PLAs M., varies from 0 to |
with values near 0 lndi(‘ntinvg ease 10 obtaiming the optimal folding and values
near one indicating ditficulty  In fact, any PLA class with a- M, greater
than 0.3 usually requires considerable searching to find an optimal folding. A
value of exactly one indicates that the Basic Optimal Folding Algorithm
examined all T(C) distinct folding sets. The value one exists only as a

theoretical limit and would never occur in practice.

Table 5.2 shows M 1455 for PLAs of a fixed size and varying densities. The
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values in the Table were empinieally derived by optimally folding hundreds of
PLA~ One observation to note s that M 1s highest and thus optimal
foldings are most difticult to find when the average optumnal folding set size s
Shghtly less than a complete folding where all columns are folded  This s due
i part to the fact that the search for an optimatl folding ends when a

complete folding s found

The second measure. ealled the Boundimg Comparison Measure s used
for comparing ditferent PLA optumal folding algorithms and s defined as

fu“u\\'\

# of folding sets ezarmined without bounding

Meomp= # of folding sets examined using bounding technique

for a large random sample of PLAs i a @aven class This measure also
assumes the use of the Baste Optunal Folding Algorthm and thus compares
cesults that are dependent upon quahties of the bounding techmque,
chiminating the effects of properties of specific PLAs The number of folding

cets examined while using the bounding technmiquencludes any sets examined

during the bounding process itself

As an example, Table 50 shows M0, for the branch and bound
algorithm presented here for PLAs of a fixed size and varving densities Each
row inthe table was derived lerived by optimally folding 200 random PLAs
generated by the method described in the appendix. The results can be used
by other authors to compare the performence of this branch and bound
algoriths to others. It may be found that(th‘is algorithin performs well for

some PLA classes and poorly for others. M, ., will help to show the

strengths and weaknesses of each optimal folding algorithm. The most
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effective technique may be a combimation of all current methods

Note that in the table, the computationally eastest PLAs to fold. as
represented by M ... are the ones that are erther very dense, or very sparse
Dense PLAs are computationally easy to fold because very httle folding
occurs and thus the algornithm does not have to examine as many folding sets

Sparse PLAs are computationally easy to fold because the algorithm very

: C
quickly finds a perfect folding of = folds and then quits It appears that the

-~

toughest PLAs to optimally fold are the ones whose optunal folding size s

shghtly less than a perfect folding  In terms of actual computation time,

PLAs of size r=c¢=20 can take up to an hour of cpu time to optimally fold on

a Vax ll/ﬁg()

PLA avg opt
density | Mges | Meomp | folding
size
10 11 1 04 70
15 316 3.65 bR
20 204 218 1.9
25 160 1.34 32
30 113 1.0 18

Table 5.2 Bounding Measures for PLAs of size r=20. ¢ =14




Chapter 8

A Theoretical Analysis of PLA Folding

Current understanding of the PLA folding problem is limited to simple
empinical evidence gained from studies using heuristic and branch and bound
methods  Very little theoretical work has been done other than that found
[LVVR2 Ral®4]. No statistical analysis of PLAs or their properties iy
available Al of the results presented m the hterature are based on small
numbers of individual PLAs, thus no theoretical or statistical baslls‘f()r

comparisons of methods or results exast This chapter presents a theoretical

approach to the problem through an analytical and statistical analysis

Ax a first step. what s needed 15 a metbod to estimate the foldabihty of a
given PLA prior to attempting to actually fold 1t This estimate must be
based on simple fundamental properties of the PLA. These properties should

be easily measurable and the estimate should be theoretically significant.

Using a random selection heuristic as a basis, this chapter presents such
an estimate in the form of a probability density function (PDF) of the
expected number of folds for random PLAs. This PDF s analytically derived
and is shown to satisfy the above criteria. It is derived in terms of the
fundamental properties of a PLA, r - the number of rows, ¢ - the number of
columns and d - the density. The derivation is then extended to account for a
secondary effect, h(x) - the distribution of the PLLA density among the
columns. This PDF can be used to help guide heuristic folding algorithms,
specifically in helping to determine when to terminate the search for more

folds. As well, it gives insight into how the fundamental properties of a PLA

63
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affect its foldability. In the derivation of the probabihty density function a
number of results are produced which provide useful mnsight into the nature
of the PLA folding problem. These results form a solid framework for future
work. Empincal data obtained from folding thousands of randomly
generated PLAs are included to illustrate that the derived probability density

function reasonably models the PLA folding problem.

»

6.1. Basic Deflnitions

A PLA can be represented by a personality matrir. A persogihty matrix
is a matrix of ones and zeros representing the intersections within the PLA
A one in a given position in the matrix indicates an active intersection at the
corresponding position i the PLA. Similarly, a zero indicates an nactive
intersection. -

It will be assumed for this study that only simple column folding will be
considered and that all columns may fold with each other. Suppose there is a
given PLA as represented by a personality matrix. For the purpose of the

analysis, let us introduce the following definitions.
et

r = the number of rows 1n the personality matrix.

the number of columns in the personality matrix.

o
i

and -

d = the density of the PLA

# of active intersections
. rxec

Let d; be defined as the column density of the i'th column. ie.



# of active intersections in column s
r

d.=-

]

A PLA s smid to have an "evenly distoibuted density ™ af

4'_‘."}
d,=d,

and

for all 1) where
1s1.7S¢
For PLAs that do not have an evenly distributed density, let h(x) be the

distribution function of the column densities.

h{z) = the probability that a given column will have exactly x active
intersections.

[t will be assumed for now that all PLAs have an evenly distributed
density and th(;. overall density d will represent d; for all 1. This restriction 1s
removed tn the last section of this chapter.

Figure 6.1 illustrates a PLA personality matrix and some of these definitions.

<

6.2. Deriving I’,

[t is intuitively clear that if two columns are to be folded together, they
must not'have active intersections in any common r;)v s. This follows from
the set-theoretic definition of the problem where the inequ’ality .'m Equation
3.1 is strictly less than. In terms of the model used by [HNS'82b] and others,

columns must be non-adjacent in order to fold. As an example, in Figure 6.1
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Figure 8.1 Evenly Dense PLA
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1 1
2 1
row
3 0
t 0
1
A

columns 1 and 3 are not foldable because because they both have active

intersections 1n row 1.

-

-

The function P, is defined as follows:

/

\

If two columns are chosen at random, P, is the probability that they are

eligible for folding in that they do not share any common rows

Thebrem 6.1

P_.is given by the following formula:

c

r;g): r]

TR e

[d;r)

where d and r are the density and number of rows respectively as previously

defined and the brackets indicate the combinatorial function which counts

-the number of combinations of n distinct objects.

L}

.
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Proof

Assumne one column ¢ 1s chosen at random. A second column ¢ 1s
chosen at random ¢ contains d X r active intersections. Remember that
the PLA has an evenly distributed density  These d X r active intersections
can be placed v any of the r row positions. If the placement of the active
intersections s viewed instead as a selection of d X r rows that are active,

then 1t as clear that the total number of possable arrangements of ¢ s
6! r
dXxr

There are r— d X r rows which are not active in ¢ If a restriction 15 imposed
that active intersections 1 €o MUst OCCUr 1 TOWS that are mmactive in ¢y, then

the total number of possible arrangements of ¢, now becomes

r;itr]

This restriction is simply that which allows column pairs to fold. Thus
3
total # of arrangements eligible for folding

r :
‘ total # of possible arrangements
[r* dX r] ,
dXr dxr=lr—dxr—1 .
== —_— (6.1)
( r ) =0 r—u
dXxr
r : QED.

The following lemma confimns the observable result that if the PLA has

vore than 5070 active intersections, then colu s cannot fol :
more than 50% ein , column /d,\) *

Lemma 6.2 » Q

If d >.5 then no folding occurs. -

Proof 4 .
) A4
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By equation 6.1 in Theorem 6 1.1f d > 5 then the numerator becomes

zero Thus the probability that two columns will fold 1s zero

QED
A plot of Povs d s shown m Figure 6 2 for 7=20 A Plot of PPovs ras
shown in Figure 6 3 for d =2 These two graphs allustrate the relationship

between the basie foldability of the columns of a PLA, the density, and

number of rtows  Note that 2 as independent of the number of columns tn

the PLA
Theorem 6.3 .

For relatively large r and relatively small d. P ¢an be approximated by

P.appror = (1—d)4™"
Proof
Assume two columns ¢ and ¢, are chosen at random. There are dX r
active intersections in ¢,. For each of those active intersections the
probability that the corresponding intersection in cois tnactive is (1 — d)

The probability that all of the dX r corresponding intersections in ¢, are

/

inactive 1s

(l_d)er
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Figure 6.3 P_ vs r for density =209

If ris relatively large and d is relatively small, then it can be assumed that

the probability that ¢, and co intersect on a given row is independent of



whether or not they intersect on other rows and thus
P.approz=(1~—d)3*"
QED
Figure 6 4 shows a comparnson of P approz and P vs d for r=20. Note >

that 1 the Figure P s P approz.

lLemma 6.4
P. <P appfoz
Proof .
=
- r—dXr N R ‘
dXr dxXr—1 . _ X — ]
p = _ r—dXr—:u L\/
[d; ] =0 r—1 L
r
- \
dxr—1 d X1 dxr—1

(Y- d)-

Thus P.<P_.approz ‘
R ¢

QOED
[)

. 1s a fundamental measure of the foldabihty of a PLA Howeverat

neglects certain constraints which will now be examined.
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6.3. Expected Number of Folds

Constramed only by the condition that columns having active
ntersections on common rows are unfoldable. Poas the probability that two
randomly selected columus will fold. Based on this result, one would hke to
know the expected number of foldsn the optimal folding of a PLA of a given
aze and density, for a largd sample of PLAs This 1s a difficult problem and
has not vet been solved analvtieally Later in this chapter empinieal data

pertaining to this problem are prese ‘nted

red

An analytical solution to a less ditficult version of this problem s

presented here First the random selection heuristic s wtroduced for PLA

ks

folding

Random Selection Heuristic >
F=¢. /* F s the folding set */
S = the set of all columun pairs, N
. : )
while (S# ¢ ) do : \\; \ \

randomly select a pair py f\rum S,

\

S=S_- } \
{p, N

If (the column pair pyas foldabte meluding considerations of constraints
Al
imposed by previous folds F)vthvn
= [,U Py -
endif;
endwhile:

When the*aloorlthm terminates, F will contaih a folding set for the PLA.

[}

The random sclccwwmg stze of‘a PLA is defined to be the average

As ‘?!J ’h‘w ' h , ‘ !

-4

\



cardinahty of Foachieved using this algonthm for a large number of PLAS of
the same s1ize and density. Basically this algorithm s similar to the heuristie
algorithm used ain [HNSR2b] but the selection process s random

The basie problem can now be stated

Problem
Determne the probabihty density function of the expected number of
2
folds achieved using the random selection heunistic over a large sample of
PLAs of fixed s1ize and density
In order to calculate the probability of achieving folding sets of a given

s1ze, one must first examine the factors that restrict folding. There are three
distinet causes of f%»l(lilng restrictions

Restric-tion #1.

Columns can only fold with other columns with which they do not share
COMMOnNn rows,

Restriction #2.

Columns can fold onty one@ If the folding set F contains the pair (¢4.¢4).
theﬁ column ¢, and column ¢y are now considered inehigible for folding with
any ()th{-\r column

Restriction #3.

Column pairs can fold only if they do not violate any of the partial orders
that have been imposed on the rows by previous folds. For example, consider

the PLA in Figure 6.1. Note that



column ¢ and ¢o ean fold and
column ¢y and ¢4 can fold
K. 4
but both cannot fold together because of the ordering of the rows
These three restrictions will be the basis of the denvation of the

probability density function  Restriction #1 has already been addressed by
the previously derived P,
For restrietion #2. the function S(n) s mtroduced and detined as follows

S(n) s the number of foldfMy pairs avalable for selection after n previous
folds have occurred based only on restriction #2. That s it s the
number of folding pairs which contain none of the 2Xn columns used n

the n folding pairs in F

Theorem 6.5

S(n)= [c—‘lxﬁ]x[(—‘.’xn—l] ’

where n = the number of previous folds and ¢ = the number of columns

Proof
Initially. since no previous folds have been made, all column pairs are
avmlable. Thus.
- S{0)=cX(c—1)
After the first fold is made two columns are now no longer available, leaving

¢-2 columns. This would result in

S(1) = (c-2)x(c-3) "

-

available column pairs.

P

In general, after n folds, there will be ¢ = 2X n columns lgft unfolded and

thus

3



[c—‘.’xn]x [c—‘lxn~l]

avatlable column patrs

Therefore

S(n)= [\(—‘lxn]x [(—L’Xn—l]

QED
S(n) represents the size of the pool of column parrs from which random

selection can be made  Note that some of the column pairsn thas pool may

prove to be unfoldable because of restriction #1 or #3

'y L4

[}

[.et restriction #3 beagnored for the moment It wall l)&h.\llln!‘d that
: . T ST .
there is no interaction between different folding pairs i F. This of course, 1s

rd

an improper assumption. but it will be removed later 1n thas chapter
>

Lemma 6.6 ﬁ
The probability that for a given PLA the random selection heuristic will

not be able to find any folds is given by . -
Y, ‘

(1- [)(‘)rx(r—l)
= (l'— [)()S(())
Proof d - '

Given that P.1s the probability that two randomly selected columns will

LS

.

fold, 1= P, is the probability that two randomly selected columns will not

R
folgg There are ¢ X{c — 1) possible folding pairs. Assuming that they are

L g

independent, the probability that none will fold is

(l‘Pc)cx(c—”

= (I—PC)SIO)

L.



QLED.
Let us now introduce a new function which will be referred to as B(n);
B(n) is defined as the probability that the random selection heuristic wall find

at least n folds
Lemma 6.7

B(1) . the probability that ht least one fold will be found,

/
1s given by : ]
.\
\

B = 1-(1- P50

Proof

\

Remamber that restriction #3 1s relaxed
B(1) = 1-"the probabilitygthat no folds will be found

but Lemma 6 6 states the probability that no folds will be found s

(l" 1)“)5(()) r
B(1) = 1-(1- P50
| QE D

Theorem 6.8.

B(n) - B(n—1)x [1—(1—1&)5""‘”]
PI;OOf
B(n) = the probability that the random selection heuristic will ftnd at least
(n-1) folds times th'e probability thgt, given that it has found n-1 folds, it will

find at least one more. The pfob@bility that it will find at least n-1 folds is

- L- - - e e an - I,

Br(_n-l). N ) ' : .



P 1

| . Proof

After n-1 folds have been found, there are S(n-1) pairs eligible for folding
based on restriction #2 (see Theorem 6.5). The probability that any given

one of those pairs will not fold because of restriction #11s (1= F).

The probability that none will be able to fold s (1~ P =1 Thus, the

N

probability that at least one of them will fold is 1 minus the probabihty that

none will fold

= [1—(1~1’,)~*’(”‘”]

SO

B(n) = B(n—1)x [1_(1_,,()5“—”]

QLED
Lemma 6.9
n—1
Bin)= I |1-(1=-P )”"’]
1=0
Proof : !
This is easily deriyable from the resuD‘)f Theorem 6 8

QOED.

- Now that B{n) is derived, let us now define the function ('(n).

<

('(n) = the probability that the random selection heuristic will find

ezactly n folds.
i

Lemma 6.10 .

C(n) = B(n)—-B(n+1)

i- o - - , A —

The probabi\h;y that ezactly n folds occur is the probability that at least n

’

-~ . \



folds occur minus the probability that more than n folds occur.

L]

o QLED
Theorem 6.11

Cln) = (1- POSIXT] [1~ 1- P, *U]

1 =0

Proof

u—l .
=10 [r-(=-r)°t ’] [] 1-(1—11.)”(')]
1=4) )
n—1 .
[ I-(1-P.)° ’]] 1—[1_—(1—1’(.)-”("‘]]
=1 . .

. n—1 .
A GEN 1 [ETEN SRR

QED.
Theorem 6 11 is the basic form of the probability density function-for the

v
random selection heuristic. However, recall that up to this point restriction

#3 has been relaxed. This will now be included. . ‘

6.4 Row orders - Restriction #3

“1Recall that restriction #3 1s the restriction that currently folded column

pairs place on future folds during the heuristic folding process. This

-

restriction’is in the form of partial orders imposed upon therows. This is

illustrated by the folded PLA in Figure 6.5. The current folds in the figure

-. impose Lhé indicated orders' upbfx the rows. Columns e and f would be
foldable except for the fact that either orientation (column e folv(‘led above

»
1



column { or column f folded above ¢) would violate at least one of these row

orders.

S

The partial orders of the rows are divided into two classes, primary and
sccondhry. Primary orders are those which exist directly because of previous
! .
| . <

individual folding pairs. In Figure 6 5 the first two row orders are primary

Ofnes.

b a e f ..
3 1 O 1 0 row 3 > row 2
2 1 1 0 1 row 2 > row |
-—= . . -
I O1 120 row 3 > row 1
¢ d e f
col )

Figure 8.5 Row Orders Imphied by Previous Folds

- "

0 T

KLY
However, because &f transitivity, the last order "row 3 > row 17 1s also

created. This 1s a sécondary order as it results from a combination of the two

prumary orders.

In this study, only primary are (‘()n;sidered_ This introduces a shight
inaccuracy into the calculations, however analysis becomes very .ﬁ('ult if
composite orders are included. Our experience with empirical data indicates
that secondary orders do not have a significant cOgtributiou to the final

formula. The problem of répresénp_ing;he-sécondary_orders analytieally ts

1]
o»

non-trivial.



Suppose a PLA has r rows and a density d. The average number of
active intersections per column is d X r. Each fold will impose
:
(dX r)X(dXr)partial orders onto the rows Note that some of these partial
orders anay. be identical to those produced by other folds. As an example,

{

constder th('\}\’l,r\ in Figure 6 1. Each fold produces { H5X4)X( H5X4) = 4

.

< R P74 R ! .
partial row orders  Folding colufMns 1 and 2 produces the 4 partial orders

L]

row 1 >umw 3
row | > row {
- row 2 > row 3,
row 2 > row 1
There are. for a given stize of PLA, a total of r X (r = 1) possible partial orders.

The set Rps detined as follows

If F is a set of column folding pairs, then associated with the set Fasa
set Kp.of primary partial orders imposed by the column folding pairs in
. ’

F Rp s asubset of the r X (r—1) possible partial orders.

@(n)1s defined as follows .

Q}(n) is the average size of Bp, for F of size n. -
In other words, @(n) is the average number of partial orders imposed on the

rows after folding n column pairs. It is expressed as a percentage of the total

: / .

rX (r— 1) possible partial orders. Remember that only primary partial.
N '

orders are considered. Note also that the limit on Q(n) is 0.5. This is

~

because it is not possible to have both partial row orders i>jand j>11R RF\‘

Lemma 8.12
. oo . n
d*X r <

Q(n) = 1-H1-—F+1 S

r—1




Proof

.

. - 3 9
Q(0) 1s, of course, zero. On average cach fQld produces d~-X r- partial orders

SO

-

) )
d~xXr- Y r

AN = S T

2% I *) .
I'he second fold will also produce d=X r= partial orders but a fraction of these

will be repeats that already exist in Rp from the first fold. This fraction s

: @
proportional to the number of existing partial orders o Ky However, Q(1)
represents this fraction of partial orders that already exist »

This means that {l - Q(l)} represents the fraction of partial orders that do

not already exist and will be new.

PN By 0 .

I'hus on average, [l - Q1 )],X d"X r~ new orders will be created : C
’ .

T d°x r”

[his represents [l - Q(l)] X —————— new orders when expressed 1o terms

rX(r—1)

. of the fraction of the total r X (r— 1) partial orders.
2

Thus.

Q(2) = Q1)+ [1—(3(1)]xd'-’x(-r_—l)

IS

In general,

r

Q(n)= Q(n—1)+ [}—Q(n—l))xd?x(_;—_T)

"Solving this recurrence produces

d:x r

Qn)=1-|1—-—— -

r—1-

QE.D.



a
So Q(n) represents the average number of existing partial row orders
after n folds havedaken place It 1s in fact only approximate as it neglects

4

secondary row orders  Remember, 1t 1s expressed in terms of a percentage of

Lo . R . .
’? t ey mtalwr* 1) possible partial orders. .

The fun®tion V(n)is defined as follows : 9

V(n)is the probability that a randomly chosen column folding pair will
be unhﬁstrumed by partial orderings in Ky given there are n previous

fhl(l.\ i P

.
~

Theorem 6.13

t

Vi) - s Qe o)

rxX(r—1)—1

t=0
Proof °~ ,

v

The total number of possible partial rtow ordersis rX(r —1). Assume
e . . . B
that o folds have been made The n+ 15t fold produces d°X r= partial orders.

The total number of possible sets of d*x r= partial orders is
%
) - rX(r—1)
d=x r*
There are already existing Q(n )X rX (r=1) partial orders 1n K from the n
! . ]

pievious folds. For each partial order in Bp, thereis a corresponding partial

order tvhiéh 15 ﬁ§all<)WO(i ip future folds. For example, tf
. Row 6 > Row 2

is a partial order in R, then the partial order
‘Row 2 > Row 6\:

1S disallowedJ:n future fqlds. Any future folds t'ha.t produce ihis pgrtial order



would be constrained by partial orders and would not be allowed to fold

’
<

Thus, after n folds have occured. there are Q{n )X rX(r— 1) partial orders

that are not allowed to occur. This means there are

: r><<r—l)*Q(n)Xr><(r—-l)

’ ) .y .
partial orders which are allowed to occur. If the d=X r= newspartial orders
resulting from the n+1'st fold are to not cause any conflict, then they must

be restricted to this set of allowable partial orders. The number of possible

.
arrangements of these new partial orders which adhbere to this restriction as
, .
. A rX(r—1)— (R) n)XrX r—1)
d-Xr-
The probability that a randomly selected column pair will'be unconstramed

. ) D
by previous partial orders s (the number of ways of arranging the d=Xr-

new partial orders so that they do not cause conflict) divided by (the total

'

. 24 2 .
number of ways of arranging the d~X r= partial orders).

Thus : .

d-Xr- ’
Vin)=
rxX(r—1)| ¥
. d.’x r‘.Z . , .
- T X (= 1) = Q)X X (r= 1)
i=o rx(r=1)—1
- QED.

This now allows the updating of Theorem 6.8. Remember that B(n) is the

probability that the random selection heuristic will find n or more folds.



Lemma 6.14 . * “

' L 4 -
With the partial orders that are imposed on the rows (1.e. Restriction #3)

now beng considered:
i

-~ S(n =)

- B(n) = Blrn=1)x [1= [1-P.x Vin-1)) .
v ]

Rl

Proof . ¢

The argument matches that of Theorem 6 X with some additions

B(n) = the probability that the random selection heunistic wall tind at least
<

(n-1) folds times the probability that, given thatat has fourd n-1 folds, it will

N . - . . . : *> ~‘:ar
find at least one more  The proba®§hity that it will find at least n-1 folds 1s v
B(n-1). After n-1 folds have been found, there are.S(n-1) pairs eligible for
folding based on restriction #2 )
a) the probability that a given column pair 1s unconstrained because of
active intersectlons on cominon rows 1s [’(« -

- - s

b) The probability that it is unconstrained because of partial row orders.

1mposed by the n-1 previous folds is V(n-1)

- . e g

The probability that it is unconstrained by both a) and b)s P.xV(in- l‘).
The probability that it 1s constrained by either a)or b)is 1= P.x V(n— 1),

- The probability that all S(n-1) available column pairs will be constrained 1s )

t

_ [IA—PC;(V(n'-l)]S(n_”

.

, \ -
The probability that at least one of them will fold 1s 1 minus the probabilj/y

that none will fold, which 1s a _ ' ’ ' \’

N ‘ B n—1 h h o
‘1—[1—PCXV(n—1Y?( ) .

b



N N6

.‘th SOy

Biny = Hino1)x ll* [1-rxvin- H]\M‘l)] ‘

WOED

Theorem 6.15

Including consideration of Restriction #3

no— 1 & .\
Din) n [l*/’ *"(1)] “)]

L 4

Proof

4

-

Ihis 1~ easthy derivable from the results of Lemma 6 104

’ QOF D

Theorenr6.16

Including considerationof Restriction #3

x—()

Proof
[emmma b 10 states

(‘(n) = Bin)— B(nt+1)
Lemma 6 11 gives us an updated denivation of B(n) which can be substituted
mto the above equation The equation s then reduced in a manner identical
to that donen Theorem 6 11, with the new result

'S(l)

n—=1

Cin) = [I-[’XVn)) [] 1—[|-P,x V(;)]

QED



This now allows us to state the major result

Theorem 6.17
Let PDE(nr c.d) be the probability density function of the expected
number of folds using the random selection heuaistic PDF{nr.c d) s the

probabihity that exactly n folds will be found. given

r - l)llnlln‘r uf FTOWS
¢ number of columns -
d = densaty

PDF(inrcd)= [l*’[’, x V(n)]\.(”'x nl:ll[l_ (l— Pox V(x)]\-(l)]

1= 0
where
r—dXr
dXr )
1),‘_ .
- r :
[dx r)
Vin) = “"‘I!l‘_'rxir—l):x(jf%n}:()r_i(r— 1)1
1=0
S(in)= [(— > % n)x [r—'lxn—l)
dx )"
Q(n) = 1—[1— r_l']
Proof

The proof foHows Trom the definition of C'(n) and 1ts formula in Theorem

“

616 PDF(n.r.c.d)is C{n)

QED.



A plot of PDF for random PLAS of 30 rows, 12 columns and density of
209 1s ~hown an Fagure 6 6 The plotallustrates that the function behaves as

one would expect a probability density function to behave

06

Probabality
Uf B
ey nrrvn‘w 2

0(

n - # of folds

Figure 6 6 ’F(n,r,(‘,d)‘vs n as derived

for PLLAs of size r=30, c=12 and d=20¢
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Finally. to summarize the assumptions upon which the results so far are
based

1) folding 1s done using the random selection heuristic

2)  only sumple column folding s allowed

-3)  all PLAs are random and have evenly distributed densities
4)  only primary row orders are considered

The emprirical dataan the next section will illustrate that given these
assump ions, the formulae reasonably model the PLA folding problenn The
assumption of evenly distributed densities can be overcome by some
modifications to the denivations as presented 1 the last section of this

chapter ;

686.5. Experimental Data

In this section expernimental data from randomly generated PLAS are
used todlustrate some of the analytical results that have been achieved For
the purpose of comparison. the randomly generated PLAs were restricted to
those with properties matching the assumptions upon which the derivations
of formulae in the last section were l):wé\;i; Specifically. only PLAs with
evenly distributed column densities were used. The program used to
generate the random PLAs is provided in the Appendix of this thesis. Actual
PLAs used in industrial applications may have properties that affect

foldability and are not modelled by the formulae.

The function P, 1s examined first. Recall that P_is the probability that
two columns are foldable in that they do not have active intersections in any

common rows. The derived formula for P_ is given in Theorem 6.1. One

‘
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thousand randomly generated PLAs were examined to measure P and to

compare the results with the formula

Figure 6 7 shows a plot of P2,

“measured” vs PPo"denved” for PLAs of size 20 by 16 and for varying

densities

1 (
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P denived

P measured

. | 1
10 20 30 10
Density (7¢)

~

Figu&ﬁ.? P_ derived and P, measured vs d

for PLAs of size r=20
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As one would dxpect, the two functions almost exactly overlap

The function S(n)1s an exact combinatorial function and requires no
vertfication.

Q(n) 1s defined as the average size of Kp for a folding set I of size n
Recall that Rp s the set of row orders tmposed on future folds by the n
previous folds as the random selection heurnistic progresses Lemma 6 12 gives
the formula for Q(n) and 1t s represented as a percentage of all possible row
orders. The formula only considers restrictions imposed by primary row
orders. Figure 6 8 plots the denved v:al\wa&)f Q(n) for r=20, ¢=16 and
d=20 over a range of n Supvrnn‘pm(*d in the same figure 1s a plot of Q(n)
values as measured from a large sample of PLAs with the same parameters
Note that the measured Q(n) s s alwavs larger than the denived value  /

-

because 1t considers secondary row orders as well as primary ones Thas

t

difference does not have a significant effect on the final result

The final probabihity density function 1s given 1n Theorem 6. 17 Figure
6 9 shows a plot of this function for r=30 ¢ =12 and density =209
Superimposed on this graph 1s the probabihity density function as measured

from 600 randomly generated PLAs of the same size and density, and with a

constant column density distribution.

\
The graphs presented in this section illustrate that the analytical

formulae do reasonably match the behavior of the randomly generated PLAs,
under the given assumptions. Similar matchings occur for PLA parameters

other than the specific examples selected for these graphs.

There may be certain characteristics exhibited by industrial PLAs that
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Figure 6. 8 Q(n) derived and Q(n) measured

for PLAs of size r=20, ¢c=16 and d = 20%¢

-

differ from those exhibited in the evenly distributed, random PLAs used in

this studyw example, practical PLAs often have one or two columns

which contain almost all active intersections, corresponding to a reset line.

This can cause a substantial increase in the density of the PLA but does not

.
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/Figure 6 9 PDF derived and PDF measured

for PLAs of size r=30, ¢=12 and d=20%

4 .

result in a corresponding substantial reduction in foldability as only one or

two columns are affected. In addition, logic minimization techniques may

al{ect the foldability of the resulting PLA in some subtle way. For instance,
L)

most logic minimization programs will eliminate identical rows and columns.
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o 04
The effects of such actions are not obvious and depend upon the
minimization techmques used. Industrial PLAs can have up to 100 separate

rows or columns. Further research is needed to determine the umque

characteristics of industnal PLAs and their effect on foldabihity

Finally. one would expedt the empirical results to differ, if wstead of
AT
using the Random Selection Heuristic, optimal folding was performed  Figure
6 10 1llustrates such a comparison for PLAs of size r=¢ =16 and
density = 259 The empirically measured PDE s shown for both the Random
Selection Heuristic and optimal folding [t can be seen that the shape of the v
two PDFs are sunilar, but the optimal folding achieves more folds This s as

one would expect. In the next chapter, the Random Selection Heuristie will

be extended to achieve a PDE arbitrarlv close to the PDEF of optimal folding
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- 8.6. Re\moving the Evenly Distributed Denaity Assumption

Theorem 6 17 was derived under the assumption that all of the columns
in the PLA have the same density [t is possible to generalize the result to
cover PLAs that do not have this property . Recall that for a set of BLAs

h(x) i~ the distnibution function of the column densities

h(r) — the probability that a gaven column will have

exactly x active intersections
This function h(x) affects the <1;‘r‘lv:\l|<>rx of the final probabihty density
function 1n a number of wavs  Basically the column density can no longer be
represented as a constant d. for all columns, but rather must be represented

as a random variable which has a distribution represented by h(x) First we

revise the derivation of £2,

6.6.1. Revising [,
Theorem 6.18

With evenly distributed column density no longer bemng assumed,

r r “—lr—b—z
P=3 % |ha)x<h(b)x | [l ——

‘a=1b=1 1=0 r—i

Proof _ .

\\
The proof follows thay of Theorem 6.1 with the modification that the columns
¢y and ¢ no longer haVe the same density. They can have a varniety of

densities with a distribution represented by h(x).

Let @ and b represent the number of active intersections in columns ¢} and



&

c,respectively  Let dy and do represent the density of columns ¢ and ¢
respectively. Thus
b

a ¢
dy=— and d,=—
. r -y

Now following the arguments in Theorem 6 1. we can derive a new function
!

[)pp(r.(dl»d‘_’)‘ ay the probability that two columns with density d and d, will

not share common rows

r_dlxr
d,Xr dyXr=lpr—d,Xr—1
) = —-—-——— ——-___—
[xly(('(dl'd'_,) _
- r 1
r t=0
d.)x r

Substituting for d; and d., we get

a1 r—b—
[):'pn‘(dl'd'_’): H L=

1=0 r—t
The probability that column ¢; will have @ active intersections and column

co will have b active intersections 1s h(a)X h(b)
P.can be derived by averaging the the value of P (d) d») over the entire
distribution of possible values of @ and b Thus,

/

Po=3 3 {ha)xas)x [T

a=1b=1

r—b—1

1=0 r—i

- QED
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8.6.2. Revising Row Orders

P, is not the only function that is affected by a distribution of column
densities  In Theorem 6.4 1t was shown that, on average, (d X r)X(dXr)
partial row orders are ecreated by every folding pair. Let us define POy as

the average number of partial row orders created by a folding pawr (¢ c.) for

columns with a density distribution represented by h(x)

Theorem> 6.19

a=lr—b—3

r—1

POM= 2 3 [rla)xh(b)x —“’—P———.— X ax b
a=1b=1 c

Proof

tecall that @ and b are the number of active intersections and d; and d. are
the densittes of the two columns ¢ and ¢ For each possible combination of
a and b, the probabihty that that particular combimation will oecur af
randomly selected, is h(a)X h{b) Howayer, thereis another factor which
affects the probability of ¢ and ¢, having a and b active lrntvrsw-ti(;rls

respectively. “Columns with-low densities (and thus a low number of active

a

~

intersections) are more likely to fold and are thus more likely to be in the
folding set. In order to a(‘(‘(>un>t for this, we must calculate PF(d, d.). the
probability that a randdﬁ; column pair, with given column densities d| and
d., will be.placed' in the folding set by the Random Selection Heuristic.
Recall that’ the Random Selection Heuristic selects a column pair to be
included in the folding sét by continually picking random column pairs until

one i1s found which is foldable.

4
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If a random column pair has column densities dp and d, the probabihity that

the pair will fold and be placed i the folding set on the fitst selection s, 7

Popecldy d2)

ﬂpf('
The probability that the tirst selection will not fold and that 1t will be on the

|
cecond selection that the pair will fold and be placed in the folding sets

‘(\!h( probd(nl:ty that the first selection will not fold)X
(the probability that the random column pair will fold)
! = (1= P )X P, (d).d2)

Fatending this the probabihity that it will be on the vth selection that the

random column parr will fold and be placed in the folding setas

. =Py Ix P dydo)
Thus PE(d; d.). the probability that a random column parcs with gaven

column densities dy and do. will be placed i the folding <etas

~

(the probabihty that it will be placed on the first selection)

L4
+

N

the probabihity that 1t will be placed on the second selection)
] \ I

+

ete
Thiw. a -,

[)P(dld.’)= [)spe'r(dlvd‘.‘))f l+(l"l)r)+(l—1)r)"‘+ ]

}

1
-f)."p((‘(dl‘dgw( 1)

o P,
. el yp—pbh~1 .

=0 T S\J ‘
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Soofor arandom column pair (e c0) with a and b active mtersections
respectively (1 e column denstties of d and do ). the probability that the
particular combination of @ and & will occur and that the column paar wall be

placed iy the folding <et s

h{a)X h(b)X PI(d, d.)

alye—h—y

«

r 0

=h(a)>Xh(b)X -

r—1t

P

The number of partial row orders that a seperhe folding par wall ereate s

a>x b The formula POy simply averages this out over all combinations of @

-~

and 6 Thus,

. “lr—b-1

[’()hm=z > |hla)xhib)x ~—”JI~,—-— X aXxb
a- 18 =1 -

QLD

W e can now replace the term (dX r )X (d X r) with the tecm POy
the derivations of the functions O(n) and V(n)in Theorems 6 12 and 613

respectively This allows us to make the following extension to Theorem 617
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Theorem 6.20

pdfin red h(x)) s the probabahty density function for expected number

of folds using the random selection heurstic on random PLAS §

n—1

n)

S(n) (1)
PDF(n rc.dh(r)) = [1 Pox l'(n)) x - [1 1*,xu;)] (

1

where
r l]lllnfu‘r uf FOWS
¢ number of columns
d = den<aty
his) = the distribution function of the column densitres

=3 3 |h(a)xhibrx [ﬁlr_ig]]

a=1b=1 1~ 0 rot

PO,

Vint = I

1 =0

rX(r=1)-Q(n)XrX{r-1)-1

rX(r—1)-1

S(in )= [r—;’x n]x [(—an—l]

Po "
Qin) =1~ [l————hiﬂ—\]
rX{r— l;J

1)()h(1,"2b2 h(a))‘(h(b)x —’—1—7)—— X aXb
a=1b=1 e

Proof )

This s just a restatement of Theorem 6 17 with the modifications necessary

to account for a column density distribution h(x) as specified in Theorems
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61X and 619 N -
QED

In order to test the suttability of the above formulae for representing the
cffects of column density distoibution on foldabihity . the following test was
undertahen  Two sets of 200 random PLAs of size r=50 ¢ =14 and
density =0 14 were generated  In the first set. S the PLAS had evenly
distnibated column denstties. with each column having exactly 7 (0 11X 50)
active mtersections  These PLAS were generated by the random PLA
generator found i the appendic In the second set . S5 hall of the columnsan
cach PLA were givea aoasity of 006 (3 active tntersections), and hall of the
columns a density <7022 (11 active ntersections)  This particular column
density distoibution s an arbitrary one chosen to dlustrate the effects of non

evenhy distmibuted column densities A moditied version of the random PLA

tnerator found i the appendix was used to generate the PLAs 0 5

Al of the PLAS were folded usine the basiec random selection heurnistie
and the # of folds achieved was averaged for each of the two sets The

tesults were as follows

1) The basic random selection heuristic found an average of 3 3 folds per

PLA for the PLAs i 5,
2) The formula in Theorem 3 17 predicted an average of 3 5 folds per
PLA for the evenly dense PLAs of §)

[t 15 not surprising that the formula predicts shightly more folds than

that which actually occursin practice. This 1s because the formula shghtly
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underestimates the value of Q(n) by only considering primary row orders (see
figure 6 X)
3) For the PLAs i 8o, with a column density distribution as deseribed
above, the formula of Theorem 6 20 predicts an average of 555 {olds per
PLA representing a 560 increase i folds due to the effect of the
distribution of the column density - Recall that the average density of
the PLAS i S and Soare wdentieal
1) For the PLAS 0 S the basic random selection heurnistic actualh
found an average of 5 04 folds per PLA representing an actual inerease

Lg

of 5290 folds due to the effect of the column density distribution

The above dataindicates that the formula i theorem 6 20 reasonably

models the effects of column density distoibution on the foldabihity of random

PLAs



Chapter 7

The Extended Random Selection Heuristic

It mav be desirable to obtaimn optimal folding sets when folding PLAs,
o -

but thi®an become prolibitively expensave for even moderately sized

industrial PLAs Thus, for pragmatic reasons, one 1s forced to use heuristie

methods to find a near-optimal solution to the problem This chapter

presents a new heunstie for PLA folding  1tis shown to perform sigmificantly

better than the other heunsties avarlable i the hterature This heunstic s
-

based on the random selection heunistic and s called the Ertended Random

Selection Heuristic

One might think that the random selection heuristic may be suitable
only for theoretical study and that it would never be used to actually fold
PL.As  This s not true Empineal data presented in thas chapter indicates
that. i some cases, heuristies described 1o the hiterature do not perfori
much better than the sumple random selection heuristic of the previous

N
chapter. In addition. this new heunstic as the fiest PLA folding heurnistic to’
have an analytical basis Usiag this basis, one can predict the expected
results of the algornithm for PLAs of a given size and density - Empirical

L
results are inclﬁdod to demonstrate the effectiveness of the analytical
derivation. The heurnistic also can be adjusted to a?ie?e results arbitrarily
close to those of optimal folding. This allows one to adapt the algorithm to

the amount of computing resources available and the nearness to optimality

desired.

104
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7.1. Analytical Derivation
Recall the basie random selection heurnistic of the previous chapter
Random Seléction Heuristic
F=¢. /*Fisthefolding set */
S = the set of all column pairs, \
‘Whll(‘ (S¢ ¢) do
randomly select a pair py from S,
S=5-{p,}
If (the column parr pyoas foldable including considerations of constrants
iunposed by previous folds in F) then
F=Fpr,

endaf,

!

endwhile.
The o\'tond("d form of the random selection heuristic 1s as follows

Extended Random Selection Heuristic

G=¢
for K times do
apply basic random selection to produce folding set I
if (cardinality of F) > (cardinality of G)'then GG = F
end for
K is called the Repetition factor of the heuristic.
Note that the time complexity of the algorithm is linear with respect to
K and the basic random selection heuristic involves no backtracking of the

search tree. Even for large PLAs, this represents a minimal amount of
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computer tiune
Theorem 7.1

The probability density function, pdfp(n). for expected number of folds
using the Extended Random Selection Heuristic s given by
h n—1

pdfpin) = | Spdr)] - 'S pdfis)

1 =1() 1=

A

where

-

{

K is the repetition factor of the heupistic as desenbed above and

pdf(un)is the probabihty den<ity Tunction of the basie random selection

heuristic, pdf(n.r.e.d). /as derived tn Theorem 6 17 of the last chapter  (Note
I / i

that the parameterd r.e and d are omtted for the sake of clanty They will

bhe assumed to be present when the term “pdf(n)” 15 used )
Proof

The following proof employs the theory of order statisties which can be found

i most aintermediate statisties texts [GWH7T9)

The cumulative density function of pdf(n) s denoted Cdf{n) and s defined as X

Cdf(n) = 3 pdf (1)

1=

For a sample of K trials of the random selection heuristic, the cumulative
density function of the largest resulting folding found is denoted as G(n) and
1s given by

Gn) = [Ca(n)]*
Let us denote g(n) as the probability density function of the largest folding

found. If G(n)is the cumulative density function, then it can be seen that



14

g(n) will be the denivative of Gn) However, Gin) is not a continuous

function but rather a discrete function only defined for integer values of n

Thus

g(n) = G(n)— G(n—1)

= :(Td[(n)]"— [(Hi[(n* 1)]"

[ n A n—1 h
- Zpd/(z)] —[Epd/m

=0 =0

This 1s the pdf for expected number of folds of the order statistic heurnistie

with K repetitions  Thus, -

n’ A n—1 A
pdfi(n) = g(n) = { > pdf(s)}] —| X pdf{s)
1 =0 1 =)
QOED

Note that thereis a shght error in Theorem 7 1. The formula for
’

pdf () does not remain vahd for arbitranly large values of K. There s an
mmphicit assumption that tht K trials of random selection are independrent
This 1s not exactly true. The K trnals are all performed on the same PLA Al
of the trials are affected by any charactenstic peculiar to that PLA - "Fhe
fundamental charactenstic, 1e # of rows, # of columns and (i(:[lSI(_V, are all
accounted for by the formula, but there may be other more specific
characteristics. As an example, the PLA may be one of the few on the fringe

of the probability density function and be much more difficult to fold than its

fundamental characteristics would indicate.

Figure 7.1 shows a plot of pdfg(n) for K=2 and K=10. It was derived

from the formula of Theorem 7.1 with r=16, c=16 and d=25%. It can be

~

\
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seen that by mereasing the repetition factor K, the shape of the probability

function remains relatively unchanged It is however shifted, because higher

K values result in more folds bemng found.

07

Probability
of 06

ceurrence

05

01

01

# of folds

Figure 7.1 pdfg(n)for K=2and K=10

for PLAs of size r=c=16 and density =259

N

b

The amount that the probability density function shifts is’best measured

. ~
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by determining the average folding size expected for different K values The
average folding stze 1s given by the follow formula
J
I } Cr2 ,
average folding size = 3, {pd/,‘;(z)x z]

1=0
Figure 7.2 show a plot of average folding size vs K for PLAs of size 1 = 16,
¢=16 and density =250, Each point on the graph represents the average
LN

folding size as derived from pdfp(n) with the specitied repetition factor  The

graph appears to be asymtotically approachimg some huat as Koas anereased

7.2. Empirical Data

The Extended Random Selection Heuristic has been mmplemented and
.
some empirtcal data have been produced  Figure 7 3 shows a plot of the
probability density function of the Extended Random Selection Heurstie for
K =10. as derived both from the formula and as measured by applving the
heuristic 40 500 randomly generated PLAS :'I‘he PLAs were all of size 1= 16,
c=16, density =250 and were generated using the algorithm n the
appendix
~ N

Figure 7 4 shows a plot of average folding set size vs the repetition factor
K. for the Extended Random Selection Heuristic, both as derived from the
formula and as measured from a set of 500 randomly generated PLLAs The
PLAs were all of size r=16, ¢=16 and density =257 Note that the plot for
the measured values increases asymtotically in a manner 1dentical to that of
the derived value. However, there is a difference in the two plots in that the
measured values are slightly lower than the corresponding derived values

This can be explained by recalling the assumptions under which the pdf

function was derived in Chapter 6. The derived function ignores secondary
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Figure 7.2 Average Folding Size vs K as denived from pdfg(n)

for PLAs of size r=c¢=16 and d=250

Nl

‘“

row order constraints which are not ignored when measuring real PLAs. ™~
Thus it is not surprising to find that the derived function estimates slightly
more folding than that which occurs in real PLAs. As K increases tn value,

this difference is accentuated because the derived—value is assuming

independent random trials as was mentioned above. The real PLAs are
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Figure 7.3 pdfp(n) for K=10 as derived and measured

for PLAs of size r=c¢=16 and d =259

7
inherently, shghtly more difficult to fold than the ones which the derived
formula assumes to exist. The K different trials are all applied to this same
set of real PLAs, whereas the derived formulas assumes that the K trnials are

-

performed on different, independent PLAs.
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These plots ill;‘s‘trate that the analytical derivation of the Extended
Random Selection Heuristic appears to be reasonably effective in representing

actual folding of random PLAs.

This new heuristic is the first PLA folding heuristic to have an analytical

basis. In addition, the next chapter will show that, in a practical sense, it
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~
ofttperforms other PLA folding heuristies found in the hterature

[WPAEN .
kgl



Chapter 8

Heuristic Comfparison Measures

The current technigque used 1 the hiterature for demonstrating the
. , {
effectiveness of various heuristic PLA folding algorithms s to hat the chap
area savings achieved for a small number of specific PLAS
[CGrax2 HNsS<2a HNSs2b KCHSS el SRV Re Apsx3b] o This method s
weutlicrent  Many PLAS may be datticult to fold despite the effectiveness of
‘.

the folding hearistic As well wmany PLAS may produce Large chip area
Sy l.ng\ despite the use of a poor heuristie

"o overcome this problem, this chapter presents two new measures for
compiring the relative performance of heunstic PEA foldmg algonthms
These measures are statistically based and are detined for speaitic classes of
PPLAS

Fer a given heunistie algonithm, the Optimal Folding Ratio s detined as

the average ratio of

s (folding set size using the heuristic)
. {folding set size using optimal folding)

over a large random sample of PLAs of a given size and density - This

indieates. on average how close to optimal folding the heuristic achieves
The Heurstic Improvement Katros defined as the average ratio of

(folding set size using given heuristic)
(folding set size with Basic Random Selection Heuristic (K=1))

over a large random sample of PLAs of given size and density

(The Basic Randorm Selection Heuristic s as defined in Chapter 6) This
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measure mdicates on average how much better the given heunstic performes
when compared to basic random selection  If for example a new hearistie

has a Heuristic Improvement Ratio of Lof Tess, then it would be considered a
very poor heuristic One would expect a good heuristic to show a reasonable

amount of improvement over basie random selection

Table X 1 show the results of a study done to compare the four column
adjacency based heurnisties popular i the hterature [HNSX2b] and the
I'ntended Random Selection Heurnistie presented earhier Al of these resualts
were determined by using the various heuristies to fold 500 PLAS of si/7e
r=16, ¢=16 and density =250 The PLAS were generated nusing the
algorithm n the appendiv It can been seen from the table that the Extended
random Selection Heuristie p(‘rfnrln\ better than anvy of the others None of
the other heurnisties perform even adequately Note the results for the widely
nsed Min-Max heurnistic It has a heunistic improvement ratio of 1065 Thas
means that it only finds. on average 6 570 more folds than even basie random
selection  THis contrasts to the Extended Random Selection Heuristic which
Hnds 259 more folds than basie random selection  In fact, the Extended
Random Selection Heunistic with K= 10 averages 9570 of optumal folding
results This table elearly demonstrates that the Random Selection Heurnistie
is a good heurnistic for practical PLA folding  The exact entries in the table

would be different 1f PLAs of a different s1ze and density were chosen.

however the basic conclusions would be the same
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Rand Rz\nﬂ
Moo Ao | Min-Max | Max-Min | Max-Max | Select Seleet
b=l gl b =10
Optunal ‘
Folding 701 K19 67 73R8 R01 | w57
Ratio o ]
Heurnistie
Improv RTh 1 065 995 955 1 00 125
L Ratio JL_,_ D R




Chapter 9

Conclusions

The results (Ef this research have been a number of fundamental
contributions to the field of PLA folding First, a set-theoretic model for the
PLA folding problem was deseribed  This new model has several advantages

‘
i tts own right. and provides at least one alternative to the graph-theoretie
model which 1s used almost exclusively i the hiterature The thesis also
provides a topological model for desenibing PLAs from a topological pomt of
view No other such model has been presented in the hiterature As PLAS

become more complex and diverse, this type of model will be required because

it 1s Hentble enough to deseribe multi-laver and multi-dimensional PLAs

As an ard to understanding and comparing the many different PLA tyvpes
and associative folding algorithms, a PLA taxonomy has been presented that
1s more complete than previous ones This taxonomy . elassifies PELAs by both
topological considerations and types of folding allowed. Tt also classities thf
folding algorithms by their various properties. 'The complexity of this

taxonomy tlustrates the diversity of the PLA folding hield

A new branch and bound algorithm for optimal PLA folding has been
developed It has been shown to provide considerable savings in computer
time in searching for optimal folding sets. To allow othbr researchers to
compare the performance of branch and bound algorithms, two optimal
folding measures have been described> The use of these measures eliminate

. 4 N . R
the need to implement other researchers’ algorithms for comparison purposes.

The results of these measures are provided, as derived from the branch and

117
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bound algorithm of this thesis

The major contribution of this thesis is the theoretical analysis of the
PLA folding pn;blmn found 1in Chapier 6. The analysis examines the
fundamental parameters and properties of PLAs how they restrict folding,
and their interaction  The major result of this work 1s a probability density
function for expected number of folds of random PLAs. defined in terms of
the fundamental properties, r - number of rows, ¢ - number of columns. d -
density and h(x) the distoibution of the density among the columns The
formula for the pdfis complex and represents the exact nature of the PLA
folding problem. Empinical data have been provided todlustrate that the

formulae reasonably model the actual folding of random PLAs

The pdf formula was then used to develop a new heunstic for PLA
folding 1t s called the Extended Random Selection Heuristie and s the tirst
heuristic to have an analytical basis for expected results  Empirical data are

provided tollustrate its performance

In demonstrating the effectiveness of this new heurr tic, two new

comparison measures were mtroduced  The use of these measures should
@ |iminate the improper techniques now used to compare various heurnistic

algonithms. The results of these measures demonstrate that the Extended
Random Selection Heuristic performs better than other hvuristicmvthods
previously discussed in the literature.

Together. the above contributions provide a much clearer understanding
of the PLA folding problem than was previously available. However, there is

work that remains to be done. For optimal PLA folding, branch and bound
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algorithms should be developed which encompass all of the current bounding
techniques  For heuristie folding, there still s not a good PLA folding
heuristie available which 1s based on an understanding of the nature of PLA
folding The Extended Random Selection Heuristae presented here 1s a good
one. but it is based on a random selection method  One would expect that it
could be improved upon. The effect of secondary partial orders should be
accounted for either analytically af possible. or else through some empirical
study  This would make the formulae more accurate The properties of
PLAs in industrial applications need to be studied to find out how they differ

from those of random PLAs

Finally, all of the work presented in this thesis needs to be expanded to

encompass other types of PLA folding rather than hmited to simple column

f:)ld Ing
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Appendix Al .
Random PLA Generator

The following s an outhne of *the program used to generate random
’LAs with even column denaty  This means that each column of the PLA

will have the same number of active ntersections  The ftnction unmiform(n) s
* oo
a random number generator which produces a random number from 1 to

with a uniform distnibution })l:\[ll\‘(>l\][nr<)\\'\l IS an array used to store the
generated PLA with o Lindicating an active intersection’ and a0 andieating

u(ho‘r\\la("

plagen{nrows ncols dens) {
/ﬁ
nrows 1s the number of rows of the PLA
neols s the number of columns of the PLA

dens s the density of the PLA ¥

*/
int uniformg),
it plajncols|{nrows].

for{1=11< =ncolsa++){/* loop through all columns */

/* cale # of active intersections i aty
left to place in this column */
activeleft =dens*nrows,

for(j= 1)< =nrows)++ { /% loop through all rows */
if(uniform{nrows-1+1) < = activeleft)
{ plaptjh] = 1. ,

activeleft--

else pla[i|(3] = 0:
} /* end for nrows */
} /* end for columns */
} /* end or plagen */
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