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Abstract

In this thesis, existing 3D display techniques are reviewed in depth and a new
display technique is proposed and implemented. The new technique displays 31)
voxel-based binary objects encoded as octrees. It traverses an octree recursively in
front-to-back (FTB) order determined by a given viewing direction and produces
a depth image by scan-converting the visible portion of the faces of black octants
encountered during the traversal. The algorithm is very eflicient because many
obscured nodes are never visited and many obscured faces of partially visible black
octants do not join the scan-conversion phase. The key to the algorithm is a new
concept termed blocking quadtrees, which enables the node visibility test to be
performed very efficiently and thus minimizes the overhead cost.

Complexity analysis and experimental results show that the new algorithn is
much faster than the traditional back-te-front (BTF) approach (55-T9% time re-
duction achieved for a 3D 256 x 256 x 256 medical image) and requires a reasonable
amount of extra memory space for storing the blocking quadtrees (64 KB for a

256 x 736 x 256 image).
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Chapter 1

Introduction

Slow rendering speed is a major problem of existing software techuiques for dis-
playing 3D voxel-based objects on a 2D screen. Typically, minutes or tens of
minutes are required to render a 3D scene consisting of 256 x 256 X 256G voxels
via a software method [28, 16]. As pointed out by Goldwasser et al. [17], this is
not satisfactory for most applications. The problem becomes even more serious
for applications involving interactive manipulation of objects via graphics iuput
devices such as mice, trackballs or joysticks because such applications (for exam-
ple, surgical planning [4, 7, 36]) require user feedback to be as fast as possible,
preferably in real time.

In order to achieve a fast rendering speed, one approach is to design special
computer architecture for displaying 3D voxel-based objects [27, 18, 20}, But this
is more expensive and less flexible than software methods. In this thesis hardware
methods are not discussed.

The objective of this thesis is to review existing software technigues for dis-

playing 3D voxel-based objects and investigate possibilities of improving their ren-



dering speed. Specifically, a new method is proposed for displaying 3D voxel-based
objects via ociree representations. Both theoretical and experimental results show
that the new method is much faster than a conventional octree display algorithm
and requires a reasonable amount of extra memory space.

The organization of this thesis is as follows. Chapter 2 reviews the major
techniques for displaying non-octree encoded objects. Chapter 3 reviews the major
techniques for displaying octree encoded objects. Chapter 4 presents the proposed
method for displaying octree encoded objects and its associated theoretical and

experimental results. Chapter 5 concludes the thesis.

o



Chapter 2

Display of Non-Octree Encoded

Objects

In general, the following steps are necessary to display 3D voxel-based objects on
a 2D screen: (1) Object identification, (2) Object representation, {3) Extraction
of surfaces, and (4) Display of surfaces.

Automatic object identification is a complex 3D pattern recognition task be-
cause real data, for example, medical images. often have complex characteris-
tics. The simplest and most commonly used method for object identification is
by thresholding (or windowing) of the input 3D voxel values [17]. This method
classifies voxels with values falling in some predetermined range(s) as objects and
others as background. In certain situations. however, objects of interest cannot
be separated only by their voxel values [33]. To solve this problem interactive
segmentation methods based on positions can be used. which in general are time

consuming since the segmentation is usually done in a slice-by-slice fashion [33).



After the objects of interest have been identified, a data structure is nesded
to represent them. In this thesis, the following 3D representations are used: 3D
array of wozels, octrees, and line < rgments.

Once the object represer‘ation 12 chosen, steps 3 and 4 can be realized by
cither surface rendering or volume rendering. In surface rendering, the surfaces of
objects of interest in a 3D scene are first extracted, as in step 3, and then displayed
via standard polygon rendering techniques for computer graphics [11]. as in step
4. In volume rendering, steps 3 and 4 are combined and no surface is explicitly
extracted. A 3D scene is projected onto a 2D screen as a whole. Care is taken to
ensure that voxels obscured from the viewpoint are not projected onto the screen.
Therefore, the visible part of object surfaces is automatically displayed.

Volume rendering is more suitable for interactive display of interior surfaces
of objects than surface rendering. This is because all voxels in a 3D scene can
be accessed at display time and the objects can be edited or modified, and then
re-displayed without the additional time penalty to form new surfaces. Suiface
rendering, on the other hand, may require less memory space and have a faster
rendering speed in non-interactive applications because the number of surface el-
ements is in general much smaller than that of all voxels in a 3D scene.

In this chapter, the major rendering techniques based on 3D arrays of voxels
and line segments are reviewed. Since octrees ars of special interest in this thesis,
the major rendering techniques based on octree representations will be reviewed

in the next chapter.



2.1 Surface Rendering for Objects Represented
as 3D Arrays of Voxels

The most important step in surface rendering is step 3 or surface extraction. Three
major approaches have been published in the literature to extract surface infor-
mation from objects represented as 3D arrays of voxels. The first approach [37]
extracts boundaries of objects on a stice-by-slice basis by 2D edge following tech-
niques and then displays the object surfaces as a wire-frame picture consisting of a
stack of boundaries. The second approach [21, 13, 14, 9, 35, 5, 23] extracts object
surfaces as triangular patches. And the third approach [22, 1, 34] operates on a
3D scene directly and detects object surfaces that consist of voxel faces. These
methods will be discussed briefly in this section.

After surfaces are formed, they can be displayed as shaded images by cither
conventional techniques [11] or special methods that take advantage of a special
surface format [6]. A detailed survey of this topic is given in (32] and will not be

repeated in this thesis.

2.1.1 Slice-by-Slice Boundary Extraction

This approach [37] is based on the observation that the intersections of the surfaces
of an object with the kth slice of a 3D scene are the borders of the object on the
kth slice and hence the object surface can be represented as a stack of borders.

A thresholding process is executed on the input gray-scale data to produce
a binary scene, assigning the value 1 to the object and 0 to the background.

Then a stack of borders of the object is determined by applying a horder-following



algorithm to each slice of the binary scene. The stack of borders may be rotated in
3D space to bring the object to any desired orientation. To display the object on a
9D screen, a projection of the rotated stack onto the screen needs to be computed.
This may be done with or without hidden-line elimination. The procedure yields
a wire-frame display.

Representing surfaces as a set of borders cannot reflect all the shape subtleties.
For instance, the surface details between a pair of boundary lines are totally un-
obiainable. Since a faithful rendition of surface details is very important in many
applications [17], this approach seems only appropriate to obtain a quick preview

of objects.

2.1.2 Triangle Tiling

The idea of these methods is to tile between a pair of «djacent borders on two
adjacent slices with triangles to approximate the surfaces between the borders.
By carrying out the tiling process in a slice-by-slice fashion, the whole surface of
the object of interest can be represented by the triangles. As in the approach
described in Section 2.1.1, a stack of borders needs to be produced from a binary
scene in a slice-by-slice manner. A resampling step is usually performed on the
borders to get fewer points and a smoother curve, and the resulting borders are
referred to as contours.

A triangle is formed by using a pair of points on one contour and the third
point on the other contour (Figure 1). The triangulation of adjacent contours is
based on the assumption that matching of contours from slice to slice can keep

track of the objects. Formally, the triangulation problem can be stated as: Given
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Figure 1: Triangle tiling.

a sequence of points P(i),1 =1, ..., m, representing the contour on the upper slice
and another sequence Q(j), j = 1, ..., n, representing the contour on the lower slice
(see Figure 1), produce a set of triangle patches forming an acceptable surface.

Various criteria have been proposed to characterize “acceptable surface”. Ba-
sically, they can be classified as “optimization criteria” and “heuristic criteria”.
Methods based on optimization criteria [21, 13, 14] select an “optimal” triangle
patch arrangement {rom jany possible alternatives in a systematic way. Fssen-
tially, the problem is transformed into a graph-theoretic one: Pstablishing a di-
rected graph corresponding to all possible patch arrangements, associating a weight
to each edge of the graph, and finding a path in the graph that meets some “op-
timal” criterion. Complications usually arise in these methods when the upper
and lower contours yielduconcave and convex segments which do not match prop-
erly. On the other hand, methods based on “heuristic criteria” (9, 35] use user
interaction to guide the tiling of contours that do not match properly.

A recent triangle tiling technique [5] employs the concept of Delaunay trian-
gulations. The 3D Delaunay triangulation of points lying on the contours of two

slices is first computed by using only 2D operations. By pruning a series of such



7777

Figure 2: Marching cube.

Delaunay triangulations, the algorithm obtaips a volunte whose boundary is a
polyhedron with triangle faces. Such a volume is an approximation of the original
objects. This technique can handle the cases where the number of contours varies

from one slice to the other.

2.1.3 Marching Cubes

This method [23] can also be considered as a triangle tiling method in the sense
that it forms surfaces between two adjacent slices by using triangle approximations.
However, it differs from the previous triangle tiling methods in that no contours
on the slices need to be formed before the tiling process. It operates on the slice
data directly, and uses a logical cube created from eight voxels of two adjacent
slices as the basic data structure (Figure 2). processing the data cube after cube
(marching cubes).

The surface to be formed in this method corresponds to a user specified voxel



density value. A cube’s vertex is assigned "1 if the density value at that vertex
exceeds (or equals) the surface value, and “0” otherwise. I-vertices are considered
to be “inside” or “on” the surface, while O-vertices are “outside™ the surface. It is
observed that the surface intersects the edges of a cube if some vertices of the cube
are outside the surface and others are inside or on the surface. By forming triangles
using those intersection points, the surface within the cube can be approximated.

Creating triangles within a cube is easy. Since there are only 28 = 256 differ-
ent ways a surface can intersect a cube (eight vertices in a cube, cach may have
two states: 0 or 1), a look-up table can be pre-computed, which, indexed by the
state of eight vertices (one byte, one bit for each vertex), contains the edges in-
tersected for each possible vertex pattern. Furthermore it is observed that only
14 vertex patterns are distinct in terms of topology of the triangulated surface
due to complementary and rotational symmetries of the cube, which simplifies the
design of the look-up table. A surface-edge intersection point is found via linear
interpolation of the densities of two vertices of an intersecting edge.

The major advantage of this method over the previous tiling techniques is
that inter-slice connectivity coherence is considered. This enables more surface
details between slices to be displayed. The disadvantage of the method is that
it requires a large amount of memory space to store all triangle faces produced.
These faces then need to be scan-converted into a 2D image buffer with hidden
surface removal, which could consume a large amount of computation time because

of the large number of triangle faces.



2.1.4 Surface Detection via Gradient Operators

Unlike the triangulation techniques discussed previously that treat voxels as points,
foe approaches discussed in this and the next two subsections treat voxels as 3D
parallelepipeds with faces and edges of their own. By processing a 3D scene as a
whole, object surfaces consisting of voxel faces can be detected.

The method [22] discussed in this subsection works on a 3D gray-scale scene.
The basic idea of the method is to use a 3D surface detector which detects the 3D
houndary of an object based on the changes of local gradient values and incorporate
a backtracking control scheme to correct errors.

A 3D boundary is defined as an ordered set of boundary elements satisfying a
certain property P. Three edges of a voxel along x, y and z directions define the
boundary elements. P is defined based on three requirements: i) high contrast;
ii) connectivity; and iii) agreement with a priori knowledge. A boundary element
has four neighboring boundary elements, that is, an x-eéze f a voxel v has the
same edges of the four voxels that are face-adjacent to vin y and z directions as
its neighbors. Similar definitions for y- and z-edges apply.

The algorithm works as follows. Initially three boundary elements (along x, y
and z directions) are chosen interactively by the user as the seed elements, and
put into a queue. The algorithm then proceeds by conneciing the appropriate
neighbors of the current element (the first element removed from the queue) in a
breadth first fashion (progressing in all three directions simultaneously) to form
the desired surface. Gradient operators are defined to evaluate the neighboring
clements. Based on the values of the gradient operator, the most promising element

of the neighbors is chosen according to an a priori criterion and put into the queue
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to be processed later. If no such neighbor exists, backtracking is applied until the
process can continue. The algorithm either stops when the queue becomes empty
or fails if there are no alternatives.

This algorithm is general in the sense that the other surface detection methods
discussed in the next two subsections only work on binary scenes. However, since
the algorithm needs to compute a large number of gradient values and perform

backtracking, its execution speed can be very slow.

2.1.5 Surface Detection via Graph-Theoretic Model

The approach proposed by Artzy et al. (1] translates the problem of surface de-
tection into a problem of traversal of a directed graph. The key to their approach
is to characterize objects and surfaces in a unique way.
The algorithm operates on a binary scene V bound by X,Y,Z in the thiree
directions, respectively. The scene is defined as a 3D array of voxels:
V={v|lv=(z,y,2),1 <z <Xl <y<¥1<:<7}
The interior region of the scene V, denoted by V=, is defined as
Ve={vjveViz#lLy#Lz#La# X,y £ Y.z # 2}
Let Q be the set of all those voxels of V* which have density value 1. 13 is then
called an object of @ if B is an edge-conne-icd comporient of Q. If Wis a face
connected component of @ = V — @, z:d B and W are adjacent (i.e., there is
some voxel bin B and another w in ¥ such that b and w are face-adjacent), then
the boundary P(B,W) betweci i «nd Wis defined as a set of faces:
P(B,W) = {(byw)|b€ B,w W,bis face-adjacent to wh.

Note that a face is an ordered pair of voxels.



The surface detection problem can now be formulated as a graph-theoretic one.
First, the boundary P(Q, Q) between Q and Q is defined as:

PQ,Q) = {(byw)jbe Q. w € Q, b is face-adjacent to w}.
Then a directed graph called the boundary digraph G(Q) of Q is established as

G(Q) = (P(Q,Q),E)
where

E = {(fs-f2) | Ju f2 € P(Q. Q) fa is adjacent to fi}
The nodes of G(Q) correspond to faces separating voxels in Q from voxels not in
(), while the edges of G(Q) are determined by a relatively complex “adjacent to”
relation between two faces. Essentially, each face f in P(Q,Q) has two faces f
and f in P(Q, @) that are adjacent to f, and f itself is adjacent to two other faces
in P(Q,Q). That is, each node of G(Q) has indegree 2 (two incoming edges) and
outdegree 2 (two outgoing edges). This result of G(Q), combined with the result
that the subgraph of G(Q) consisting of the nodes P(B,W) and the associated
edges is a sirongly connected component of G(Q), implies that, for each node of
the subgraph P(B, W), there is a binary spanning tree of the subgraph rooted at
the node. Therefore, the boundary P(B,W) can be detected by traversing the
G(Q) to find the binary spanning tree of the subgraph P(B, W) starting with a
face (b,w) such that b € B and w € W. This seed face (b, w) can be specified
‘n an interactive fashion, for example, by displaying a slice of the binary scene
and indicating a point on the desired boundary in the slice using a graphic input

device.



2.1.6 Surface Detection in Multidimesions

This approach [34] works on any multidimensional binary scene (including a 3D
scene, of course) and detects the hypersurfaces of a multidimensional object. This
ability is especially useful when displaying an object changing in time since a
dynamic object is essentially four-dimensional. By stacking 3D arrays of voxels
along the fourth dimension of time the boundary detection can be performed on
the resulting four-dimensional object. Then the boundary detected is intersected
by hyperplanes corresponding to time instances at which the display of the moving
object is desired. This obviates the need for identifying the object of interest i
each time frame, which could be difficult due to changes in shape and size of the
object.

The characterizations of object adjacency. connectivity, and boundary in mul-
tidimensions are the basis of the approach. A d-dimensional space is partitioned
by d sets of mutually orthogonal hyperplanes and the resulting volume elements
are called hypervoxels. A hypervoxel h in a d-dimensional space is represented
as a d-tuple of integers (hy,...,hq). Two hypervoxels h and A" are defined as n-
adjacent (0 < n < d) iff they differ in exactly n coordinates and the difference in
each of these n coordinates is either 1 or -1. that is.

0<|hi—hi<1,i=1,...,d
and

4 lhi— ] =n
Also, h and k' are defined as O(n)-adjacent iff they are k-adjacent for some k < 1.

That is, h annd b’ are different in at most n coordinates. For example, in the three

dimensional case (d=3), two voxels are 3-adjacent iff they are vertex adjacent:

13



O(3)-adjacent iff they are vertex-, edge-, or face-adjacent.

Connectivity characterization is based on the O(n)-adjacent relation. ‘n O(n)-
path from A to A’ is a sequence of hypervoxels h=hO,...,h™ = h' such that A7~}
is O(n)-adjacent to kP, for 1 < p < m. Suppose that the subset S consists of all
1-hypervoxels in a d-dimensional space, all O(n)-components of S then induce a
partition on S. {An O(n)-component of S is a subset of S which is O(n)-connected.,
that is. there exists an O(n)-path between any pair of hypervoxels of the subset in
S.)

The boundary of S is defined as the set of hypervoxel faces:

B(s)={(h.h)| k€ S,k €S, his O(1)-adjacent to h}.

To facilitate the boundary detection of the objects in S, the concept of (n, k)-
boundaries is essential. The O(k)-border of S is the subset Bi{S5) of S defined
as

Bi(S) = {h| h € S, his O(k)-adjacent to % for some h € S).

Then an (n, k)-boundary of S is defined as B(C):

B(C)={(h,h)|heC,kE S, h is O(1)-adjacent to h},
where C is an O(n)-component of the O(k)-border Bi(S) of S. Intuitively, every
hypervoxel of C is O(k)-adjacent to some hypervoxel in S, but only those hyper-
voxels in C which are O(1)-adjacent to some hypervoxels in S are used to form the
(n, k)-boundary determined by C. For any choice of n and k,1 < n,k < d, the set
of all (n, k)-boundaries of S constitutes a partition of B(S). By taking some care
(see [34] for details), an (n, k)-boundary uniquely describes a particulat boundary
of interest. The (n, k)-boundary can also be completely specified by a “seed” hy-

pervoxel in the appropriate G(k)-border. In fact, the algorithm in [1] detects the

14
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(2,1)-boundaries of a three-dimensional binary object.

The boundary detection algorithm detects an (n, k)-boundary of the set 5. n
and k are chosen by the user. For any point h in Bi(S) the algorithm proceeds by
determining the contribution of £ to the (n, k)-boundary and by entering in a quene
a subset of the hypervoxels that are O(n)-adjacent to h. This subset comprises
those points that qualify as members of Bi(S), that have not been entered in the
queue previously, and whose contribution to the (n, k)-boundary has not already

been determined. The algorithm stops when the queue becomes empty.

2.2 Volume Rendering for Objects Represented
as 3D Arrays of Voxels

Two different approaches fall in this category. The object spacc approach loups
over voxels of a 3D array and projects them onto the display screen in an order
that ensures correct hidden surface relationships. The image space approach, on
the other hand, is based on the principle of ray-tracing and loops over pixels on

the display screen.

2.2.1 Slice-by-Slice Back-to-Front Approach

This method [12] is an object space approach. It traverses the slices, rows, and
colurnns of a 3D array of voxels in order of decreasing distance to the observer.
It is based on the following observation: Assuming the origin is farthest from the
observer, it is simply necessary to traverse voxels in order of illCl‘(:asil.lg X,y and 7

to achieve a correct hidden surface removal. If the origin is not the farthest corner
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Figure 3: Slice-by-slice BTF read out sequence.

from the observer, then some of x, y, z should be increasing and some should be
decreasing. However, the choice of which index changes fastest can be arbitrary.
For example, for the orientation shown in Figure 3, one possible readout sequence
s

000,100,200,300, 010,110,210,310, ... , 033,133,233,333
The coordinate transformation of a voxel is performed by multiplying the transfor-
mation matrix determined by a given viewing direction. The algorithm produces
a depth shaded image and can handle gray-scale data.

One advantage of the approach is that data that are stored slice-by-slice can be
read one slice (or portion of a slice) at a time from disk storage into main memory
for processing. Once a slice is read in, the voxels in it are projected in the appro-
priated incr.easing or decreasing sequence of x and y values (assuming that slices
are stacked in the z-direction). This ability makes it possible to implement the

algorithm in a mini- or micro-computer that does not have a large main memory.



The main disadvantage of the method is its slow display speed. One important
reason for this is that a lot of fruitless computations have o be done for those
voxels that will be obscured later in the process.

One problem of the approach is that it treats a voxel as a point in space
which projects onto a single pixel, rather than as a solid cube with visible faces
to be painted. This could result in artifact holes at certain orientations because
a solid voxel can in fact project onto several pixels at these orientations. Several
approaches have been used to solve the problem [28, 12]. The simplest one is Lo
restrict the scale-factor to be less than 1. If larger scale-factors are required, a
projected image can be magnified in image space. An alternative is that for cach
voxel a region of the screen encompassing seveial pixels (for example, a rectangle
corresponding to tiie bounding box of a projected voxel) can be painted. The
third option is to consider each voxel as a cube with three visible faces, which can
be painted with a standard polygon-filling algorithm [11]. The use of large pixels
(magnified displays) in the first approach or large voxels in the second approach
could result in a loss of real spatial information and the occurrence of aliasing
errors. While the third approach gives the best itnage quality, it may require lots

of computation time because of the large number of voxels to be processed.

2.2.2 Volume Rendering Based on Ray-Tracing

The principle of ray tiacing is well-known, Briefly, from the eye of the observer a

light ray is traced through the center of each image pixel until it encounters the
surface of an object of interest, thus accomplishing visibility determination and

perspective or parallel projection. The coordinate transformation is inherent in



the orientation of the object with respect to the display screen. In the approach
proposed in [30], the light rays are assumed to be parallel to each other and
perpendicular to the screen; and further, first level ray-tracing is assumed: each
light ray terminates when it encounters a voxel belonging to an object of interest.
The algorithm establishes a line perpendicular to the screen through the center of
cach pixel. It then steps along this ray, testing the density values at multiple sample
points to see if an object of interest has be:n encountered. If so, the stepping
terminates, and a shading computation is invoked to assign an appropriate value
o image pixel.

The most important step of the algorithm is the criterion used to terminate
the loop along a ray (e.g., when the ray is judged to have intersected the surface of
an object of interest). This requires testing the voxel density at precise intervals
along the ray, which in turn means that densities must be estimated (interpolated)
between the collected points (voxels). First erder (trilinear) interpolation, that is
the weighted average of the 8 sample points (voxels) surrounding the point of
interest is found to be most cost-effective.

The major advantage of the method is that more surface details can be retained

and no aliasing “holes” can result. The major drawback is its slow execution speed.

2.3 Volume Rendering via Line Segments

To avoid useless computation for those voxels obscured later in the process, it is
possible to take front-to-back (FTB) approaches for the slice-by-slice back-to-front

scheme discussed in Section 2.2.1. However. a naive implementation of FTB has
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no advantage over the BTF approach since finding the pixel onto which a given
voxel projects, and determining whether that pixel has already been lit, may be as
expensive as simply painting over the previous value of the pixel. Some coherence
within the data must be exploited to obtain a faster FTB approach.

The approach proposed in [29] is a slice-by-slice front-to-back method aimed to
achieve a faster rendering speed than its counterpart. A dynamic data structure
— the dynamic screen — is used to represent the unlit screen pixels. When each
slice is accessed, only unlit pixels are processed and newly lit pixels are efficiently
removed from the data structure and never considered again.

The object space is represented by a 3D array of binary voxels obtained by
thresholding the corresponding 3D array of gray-scale voxels. Although in principle
the approach can also deal with gray-scale data, it has an advantage in exploiting
the data coherence of binary objects. Voxels are organized in a slice-by-slice and
row-by-row (within a slice) fashion. Within each row runs of black voxels are
represented as line segments in sorted order to facilitate the FTB traversal and
the “merging” operation with the scanlines of the image.

The key observation to the approach is the special choice of object space and
image space coordinate systems as well as object rotations. The object space
coordinate system is chosen as: X1,Yi, Z; that are the three axes through the

object center, fixed in image space with respect to the screen, and parallel to the

axes of the image space X’,Y’, Z’, respectively (Figure 4). In this way rows of

voxels making up an object will be parallel to scanlines of the image screen after
rotation about X; and/or Y axes and projection (onto the XY’ plane). Since a

rotation v about an axis perpendicular to the screen does not uncover any new
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Figure 4: Selection of object and image space axes.

information of the objects on the screen, rotations a and B together basically
provide any desired viewing direction. Therefore, by restricting rotations to and
3, line segments of an object can be simply “merged” with the line segments of
the image to which they are parallel.

'The dynamic screen data structure is a linked list representing the image on
a scanline-by-scanline basis. The algorithm traverses the input data in a slice-by-
slice, row-by-row, and line segment-by-line segment fashion, all in FTB order, and
merges line segments of objects with scanlines of the screen via the dynamic screen
data structure. Note that the dynamic screen data structure is used to check the
line segments of the image that should be painted, and the associted depth images
are stored in a separate two-dimensional array.

The run-time requirement of the algorithm is reported [29] to be much shorter
(55slice-by-slice back-to-front metiiod. As for the back-to-front approach, this ap-
proach also .t,rea.ts voxels as points in space, and therefore, the techniques discussed

‘n Section 2.2.1 to avoid producing artifact holes can also be used here.



2.4 Gradient Shading

In general the output of an object space volume rendering method is a depth
image (refer to methods discussed in Sections 2.2.1, 2.3 and later in Chapter 3 and
4). This makes it very difficult (if not impossible) to apply conventional polygon
shading methods such as Gouraud or Phong shading methods [11] to generate
final images with depth illusions. To overcome this difficulty, the gradient shading
methods have been developed.

Gradient shading methods only use a depth image, tuat stores. for each pixel
(x, y) of the display screen, the distance z(x, y) between the pixel and the visible
point on the object surface that projects onto the pixel. The basic idca of gradient
shading methods is that, from a depth image, the normal at any point of the object
surface z = z(x, y) can be obtained from the gradient vector: . = (—« 23— l)
by using difference estimations. The normal can then be used to calculate the
shading value or intensity of a point on a surface via the basic shading formula
I =1I,+ I+ I, [11]. A detailed review of major gradient shading methods is given

in [32] and will not be repeated in this thesis.



Chapter 3

Display of Octree Encoded

Objects

The octree representation of 3D objects is based on the principle of recursive sub-
division. It has been studied for use in many applications. As surveyed in [3],
many operations on objects benefit from the treelike structure of octrees and can
be simply implemented as tree traversal procedures. Operations such as detect-
ing intersection among objects, locating a point or a block in space, handling
hidden-surface removal, connected component labeling, and neighbor finding can
be greatly simplified by taking advantage of the hierarchical data structure, spatial
addressability, and pre-sorted nature of octrees.

A number of algorithms for displaying 3D voxel-based objects via octree rep-
resentations have appeared in the literature. Most of them work on binary objects
(10, 25, 26, 38, 2, 3, 16, &, 19], although some effort was also reported to display

gray-scale images encoded by octrees [24]. Since octrees in general are not suitable

(8]
(3]



to encode gray-scale images [16], only octrees of binary scenes are considered
this thesis. In this chapter, the octree representation is first reviewed, followed
by the discussion of the existing techniques for displaying binary scenes via octree

representations.

3.1 Octree Representation

An octree space is modeled as a cubic region consisting of 2" x 27 x 2" unit cubes
or voxels, where n and 2" are the resolution and length of the octree space, vespec-
tively. Each voxel has a value 0 (white) or 1 (black), depending upon whether it
is outside or inside the object that resides in the octree space. The octree repre-
sentation of the object is obtained by recursively subdividing the cubic space into
octants. A 2¢x24x24 for 1 < d < n, octant is divided into ecight =1 5 pd =1 it
smaller octants if the voxels contained in the octant are not entirely 1's or 0's. "The
same process continues recursively until the octant (suboctant) contains voxels of
a single value. Each octant generated in the process is assigned a label, from 0
to 7. Figure 5 shows the octant labeling used in this thesis, where the 0 octant is
hidden from view.

The result of the recursive subdivision process is represented by a tree of degree
8 whose nodes are either leaves or have eight children. Thus, the tree is called an
octree. Each node of the tree is given the same label as that assigned to its
corresponding octant. The root node of the resulting tree represents the entire
octree space. Leaf nodes represent octants containing voxels of the same value

and are marked B (black) or W (white) accordingiy. Non-leaf nodes are called
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Figure 5: Octant, ' beling (octant 0 is hidden from view).

- termediate nodes and are marked G (gray). Figure 6 shows a simple ohject and
its corresponding octree representation.

A number of variations of the basic octree definition have been propesad [8].
Among them, linear octrees [15] have received most attention because they gen-
crally take less memory space than regular octrees. A linear octree stores all B
nodes of its corresponding octree in a one-dimensional array. Each node in the
array has two fields: k (key) and r (resolution). k consists of n octal digits, which,
from left to right, correspond to the labels along the path from the root to the
node in the octree (0's are padded to the right if the path is shorter than n), and
ris the resolution of the octant represented by the node. The nodes in the array
are stored in ascending order sorted by their keys. For example, the linear octree

representation of the object shown in Figure 6 is: (0,0) (1,0) (4,0).
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Figure 6: A simple object and its octree representation.
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3.2 Boundary Detection via Linear Octrees

Unlike surface rendering approaches discussed in Chapter 2, which represent 2D
boundaries by surface patches (triangles or voxel faces), the boundary detection
algorithms [2, 3] discussed in this section detect 3D boundaries of a linear octree
that consist of voxels or small octants. Such boundaries are also represented as
linear octrees and thus can be displayed via the conventional linear octree display

algorithm discussed later in Section 3.3.2.

3.2.1 The First Algorithm

Unlike previous surface detection algorithms discussed in Section 2.1, this approach
[2] does not need a “seed” boundary element to start with. The algorithm works
on binary objects represented as a linear octree. The basic idea of the approach is
to eliminate the “internal boundaries” of the nodes of the linear octree repeatedly
and obtain all boundary voxels simultaneously in the last step.

The approach is based on the following concepts. The object in a 3D scene
is defined as the set of all black voxels and the background is defined as the set
of all white voxels. The external border of the object, which is the output of the
surface detection algorithm, is defined as a set of black voxels that are either on the
boundary of the 3D scene or face-adjacent to at least ona voxel of the background.
Furthermore, the size of a node is p (0 < p < n) if the node corresponds to a
9P % 9P x 2P.cube, and the border of the node is the outmost layer of voxels of
the cube. It is useful to consider the border of a node as consisting of six sub-

borders associated with six principal directions (i.e., +X,-X, +Y,-Y, +Z,-72). A



sub-border of a node is an internal border if it is not an external border. Finally,
the d-neighbor (d is +X, -X, +Y, -Y, +Z, or -Z) of a node A of a linear octree is
defined as its neighboring node Y (Y may not be a node of the linear octree) such
that Y lies to the d-direction of A and is of the same size as A. Node A is said to
be blocked in direction d if node Y is black, otherwise A is said to be unblocked.

The basic process of the algorithm is to eliminate the internal borders starting
from nodes with higher resolutions. Whenever all six borders of a node are deleted,
the node itself is deleted too. This process can be applied recursively, all the
interior sides and nodes disappear, and what remains is the external border.

The algorithm initially marks each black node of an input lincar octree as
unblocked in all six directions. Then starting from the nodes with the highest
resolution it checks each node in this group to see il it is blocked in all six-directions
and marks it. If the node is blocked in all six directions, it is deleted from the input
list since it is an interior node and contributes nothing to the border. If the node is
not blocked in all six directions, it is split into eight smaller nodes corresponding to
the eight smaller octants, and the smaller nodes, except for those that are blocked
in ail six directions (a smaller node is blocked in three predetermined directions;
for other three directions it is blocked if the parent node is), substitute for the
parent node in the input list. The algorithm works on the input list from the
highest resolution to 0 in this way, and, finally, the input list cor - only the

desired borde:r voxels.



3.2.2 The Improved Algorithm

‘'his approach [3] improves the first algorithm discussed in Section 3.2.1 in terms
of execution time and storage space. The key features of this approach are the
node expansion scheme and the employment of a recursive process.

In the first algorithm a node with resolution r (1 < r) would be expanded into
eight smaller nodes with resolution r — 1 if the node was found to be unblocked
' al least one direction, and the smaller nodes that are unblocked in at least ote
direction are then added to the node list joining the subsequent process for the
nodes with resolution r — I. However, in general, the node resolutions of an input
linear octree are: g(r),g(r —1),...,9(0) (g(z) > g(z — 1),i = 1,...,r), with g(r)
being the largest resolution and g(0) being the smallest one. This implies that two
adjacent resolution numbers may not necessarily have a difference of 1. Bearing
this in mind a new expansion scheme was proposed: When a node with resolution
g(i) necds to be expanded, the node can be directly mapped to its border nodes
with resolution g(i — 1). For example, if g(i) —g(z — 1) =1, the border nodes are
just the eight child octants resulting from the subdivision of the node. In general,
g(i) — .()('i —1) = m, so the node is subdivided m times recursively, with the border
nodes being the border octants thus obtained. 'This direct mapping can be done
~fficiently by using look-up tables. Note that in the first algorithm a node with
resolution g(i) is also expanded ultimately into its g(z — 1) border nodes, but most
of the expansion and searching process from resolution g(i) — 1 to g(i — 1) + 1 are
fruitless.

In the first algorithm a linked list data structure for nodes hus to be used

to facilitate the node deletion and insertion, and this is costly. In the improved



algorithm the nodes of an input linear octree are stored in r 4 1 one-dimet-ional
arrays: L(r),L(r = 1),..., L(0), with L(7) containing the nodes of resolution y(:)
(i =0,....r) in sorted order. The algorithm starts processing each node in L(r),
then L(r — 1), ..., until L(0). For each node in L(r) the algorithm invokes the
main procedure with parameter r to check whether the node is blocked in all six
directions (searching its black neighbors in L(r) and marking it). If the node is
blocked, the process for the node is finished. Otherwise the node is mapped to its
g(r —1) border nodes. The alac -ithm then goes to process each of these unblocked
border nodes by invoking the main procedure with parameter r — | recursively
until a border node with resolution ¢(0) is found and output as the border node of
the object. Note that no new nodes resulting from the expansion are needed in the
searching since their effects have been incorporated in the expansion process. Also
the output is one by one in a denth first fashion. That is, all 4(0)-border-nodes
(if any) from the first g(r)-node ot the input linear octree arc “yrst produced one
by one, then the ones from the second g(r)-node, ..., and finally the ones from the
last g(0)-node. The border thus obtained is a set of g(0)-nodes and may not be
voxels. Note that the border nodes obtained by this approach are not in a sorted

order as in the first algorithm.

3.3 Rendering of Octrees

Methods discussed in this section can be considered as volume rendering ap-
proaches because they can access any part of a 3D scene represented by an octree

(or linear octree). Essentially, all these methods are hased on the following ob-
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servation: Since the octree representation maintains all elements of an object in
a spatially pre-sorted order, one only needs to follow a specific order to visit the
octree (or linear octree) nodes and project B octants onto the screen with the
correct hidden surface results.

There are two types of visiting orders: back-to-front (BTF) [10, 25, 16] and
front-to-back (FTB) [26, 19, 8, 38]. In the BTF traversal order. octanis farther
away from the viewer are projected before those that are closer. Here, an octant
visited later overwrites the painted region of any octant visited earlier. For exam-
ple, in Figure 5, a valid BTF order is 02416537 since octant 0 (hidden) can not
obscure the remaining seven octants and octants 2 can not obscure the remaining
six octants, and so on. Note that more than one visiting order may exist. For
instance, the visiting orders 02146357, 04126357, and 04123567 are all eligible in
this example. In the FTB visiting order, octree nodes closer to the viewer are pro-
jected before those which are farther away. Once a region of the screen is painted.

any other nodes projected onto it are ignored.

3.3.1 BTF Display of Octrees

This approach [25] traverses an octree to be rendered in a BTF order determined
by an arbitrary viewing direction. If a B octant is encountered during the traversal,
it is projected onto the display sczeen. if a G octant is encountered, it is further
traversed according to the same BTF order. W octants need not be processed.
The algorithm is very simple-, but the projection of all B octants could be time-
consuming. This is because i obtain a high quality image, visible faces of all B

octants need to be scan-converted to generate the depth image of visible surfaces,
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which can then be used for gradient shading [32]. In general the scan-conversion
(11] process takes most of the execution time of the algorithm (sec Sections 1.4
and 4.5 for time complexity analysis and some experimental results of the BTF
algorithm).

To improve its efficiency, Doctor et al. [10] simplified the scan-conversion
process by restricting viewing directions along the six principal directions (42X,
X, +Y, -Y. +Z, -Z) of the octree space. The application scope of that algorithm,

however, is limited because of the limitation on viewing directions.

3.3.2 BTF Display of Linear Octrees

Linear octrees can also be displayed hy simulating the BTFE traversal of octrees
[16]). To do so, simply invoke the procedure BTF.LO(LO, 1), where LO is an input
linear octree, stored as a one dimensional array. and procedure BTF_LO is defined

as follows.

BTF_LO(SUBLO, L)
/* SUBLD is a sub-set of LO. L is the level of recursion. */
{
If (SUBLO contains a single node, NODE) {
Project the visible faces of NODE onto the screen.
} else {
1. Scan SUBLO and register addresses of 1st nodes of
each non-empty octant at level L (at most 8 such
octants) by looking at the Lth digits (from left)

of the keys of the nodes in SUBLO.



2. According the BTF order determined by the viewing
direction, process each of the non-empty octants
by putting its nodes into SUBLO’ and invoke

BTF_LO(SUBLO’, L+1).

Note that in this algorithm a G octant containing a single B sub-octant is not
traversed any further and the B sub-octant is projected onto the screen immedi-

ately.

3.3.3 FTB Display of Octrees with Arbitrary Viewing Di-
rections

A FTB approach could be faster than a BTF one because many obscured octants
are not visited nor projected. The overhead, however, to determine the visibility of
octants during octree traversal could well exceed the speed gain if the visibility test
isn't efficient. Several FTB methods for octree representations exist [26, 19, 8, 38].
Among them, the algorithm proposed by Meagher [26] is the only one that allows
arbitrary viewing directions. The basic idea of that algorithm is discussed in this
subsection.

In Meagher’s algorithm, a quadtree [31] is used to represent the display screen.
Initially, the quadtree contains only one root node, colored W. The input octree
‘s then traversed in a FTB order determined by a given viewing direction. To

determine the visibility of a G or B octant visited during the octree traversal,
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Figure 7: Octant projection and its overlay.

a concept called overlay was introduced. As shown in Figure 7, in general, the
projection of an octant consists of three quadrilaterals. These polygons can be
enclosed by a bounding box, that is the smaliest rectangle with cdges oriented
parallel to the coordinate system of the quadtree. The overlay of the projection
is defined as the four possibly intersecting quadrants at ti. : Jowest level (of the
quadtree) such that the largest dimension of the bounding box is the same size or
smaller than the edge size of a quadrant.

Since the overlay of the projection of an octant encloses or covers the projection
completely, the visibility test of the octant can be performed in the following
manner: If all four intersecting quadrants of the overlay are colored 13, the octant
is hidden and discarded with all its descendants (if any). If not. additional work
is required. If the octant is G, its eight children are processed in like manner.
Otherwise (the octant is B). the children of the overlay quadrants are examined.

Intersection tests between the projection and a child quadrant st be performed
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to see whether the projection (1) covers, (2) partially intersects, or (3) does not
intersect the quadrant. If (1) holds, the child quadrant is colored B; If (3) holds,
the child quadrant is colored W; If (2) holds, the child quadrant is colored G, and
its eight children are examined in a similar manner.

[ntersection tests between the projection of an octant and a quadrant are per-
formed as a two step process. First, the quadrant is compared to the bounding box
of the projection. 1f it does not intersect the bounding box, it will not intersect the
projection itself. Otherwise, the second step is needed. Observe that the six outer
edges of the projection form a convex polygon. Each line (on which an outer edge
is a segment) divides the plane of the screen into two half planes. The half plane
containing the projection is the positive side of the line. The other half-planc is
the negative side. If the quadrant is entirely on the negative side of any of the six
lines, from the definition of a convex polygon there can be no intersection. If the
uadrant. is intersecting with some of the six lines, it also intersects the projec-
tion. The quadrant is enclosed by the projection if and only if it is entirely on the
positive sides of all six lines.

No time complexity analysis, comparison results with other octree display algo-
rithms, and experimnental statistics of computation time of the algorithm are given
in [26]. As can be seen from the discussion above, the computation for intersection
tests is expensive and needs to be performed extensively. Therefore, it can not be
justified that the algorithm is faster than the simple BTF algorithm discussed in

Section 3.3.1.
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Figure 8: +X-face view.

3.3.4 FTB Display of Octrees with Restricted Viewing
Directions

Approaches discussed in this subsection [19, 8, 38] display an octree (or lincar
octree) in a FTB fashion, but avoid the expensive polygon intersection tests in
determining the octant visibility. The basic idea of these approaches is to restrict
the viewing directions in exchange for the efficiency of octant visibility tests.

In [19] the viewing directions are restricted to be along coordinate axes of the
octree space. This makes the projection of octants coincide with quadrants of the
quadtree. For example, the mapping between octants and quadrants of the +X-
face view of Figure 5 is shown in Figure 8. Obviously, the visibility of an octant
can be determined by simply locating its corresponding quadrant in the quadtree.
No geometrical intersection is involved: only simple quadtree traversal is needed.

The approach used in [§] is a little complicated. There, only an edge-view is
allowed, that is, the viewing direction is parallel to the plane of two axes of the
octree space and bisects the angle formed Ly these two axes. For example, Figure 9

shows the edge-XZ view of the octants of Figure 5. As shown in the figure, the
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Figure 9: Edge-XZ view.

Figure 10: Subdivision of an edge view.

edge view of a cube is a rectangular region of aspect ratio V2. By subdividing an
edge view recursively as shown in Figure 10 and representing it as a quadtree, the
octant visibility test can also be performed without polygon intersections.
Finally, the octant visibility can also be determined without polygon intersec-
tion test for a corner view [38]. A corner view is a view where the viewing direction
is along the line joining a corner and the center of an octant. A corner view can
be referred to by the corner that defines it. As an example, the corner-7 view of
a cube is shown in Figure 11. The corner view of a cube is a regular hexagon.

Observe that the projections of the eight octants partition the hexagon into 24
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Figure 12: Grouping of triangles.

0267
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triangles and that each octant projects to six such triangles. The approach is to

group the 24 triangles into six larger triangles (see Figure 12) and represent each

by a triangular quadtree.



Chapter 4

Fast Display of Octree Encoded

Objects

In this chapter a new approach is proposed for displaying octree encoded objects.
It is a front-to-back approach aimed at achieving a fast rendering speed with no
restriction on the viewing directions. The key to the approach is a new concept
called blocking quadirees, which enables the octant visibility test to be performed
very efficiently. Section 4.1 describes how to determine the viewing transformation
matrix and FTB visiting order. Section 4.2 introduces the blocking quadtrees.
Section 4.3 presents the display algorithm. Section 4.4 analyzes the time and
space complexity of the algorithm. Section 4.5 gives the experimental results of

implementing the algorithm.
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4.1 3D Coordinate Transformation and FTB Vis-
iting Order

3D Coordinate Transformation.

Suppose that the octree space is described by a 3D right-handed XY7 coordi-
nate system (Figure 5) and that the direction from the origin to the viewer is given
by the vector (x1, yl, z1) called view plane normal (VPN). To project a point of
the octree space onto the view plane (which is perpendicular to the VPN) or the
screen, the following transformations are needed [16]: First, the X- and Z-axes are
rotated about the Y-axis so that the positive Z-axis coincides with the projection
(x1, 0, z1) of the VPN on the X-Z plane, thus making the Y-axis, the Z-axis, and
the VPN coplanar. Then the Y- and Z-axes are rotated around the X-axis so that
the positive Z-axis coincides with the VPN (which is now in the Y-7Z plane).

So far the rotations of the axes are around the origin. But the origin is con-
ventionally located in one corner of the octree space (Figure 5), and it is desirable
to rotate the object around the center of the octree space (which is at (271, 27!,
27=1)) 5o that it stays in the octree space. Therefore, the necessary transforma-
tions are as follows: the axes are first translated so that the origin is in the center,
then the rotations are performed, and finally the axes are translated back. The
resulting X-, Y- and Z-axes are then called X’-, Y'- and 7’-axes vespectively, which
form the so called image space. The viewing matrix, V-MATRIX, that perforims
the above transformations is defined as:

V-MATRIX = T]Ry R_.\'T.l =



( sina  —(cosa)(sinfB) (cosa)(cosf3) 0\
0 (cosf3) sinf3 0

—cosa —(sina)(sinfB) (sina)(cosf) 0

2n—1f 2n—lg 2n—lh 1 )
Where

[ =1—sina + cosa,

g =1—rcosf + (cosa + stna)(sin3),

h =1 — sinf} — (cosa + sina)(cosf),

sina = z1/D1,cosa = x1/D1,(0 £ a < 2r),

D1 = (21 + 21312,

sinfl=yl/D,cosf =D1/D,(-7[2< 3 < T/2).
D = (12 + y12 + z1?)!/2,

Note that the projection described above is parallel orthographic [11).

Determination of FTB orders.

A FTB order can be easily determined by determining the octant nearest to
the viewer, which in turn can be determined by simply looking at the coordinates
of the VPN. Figure 13 gives the mapping from VPN’s to the corresponding nearest
octants. The nearest octant should be visited first, followed by the three octants,
in any order, whose labels differ from that of the nearest octant by 1 binary digit,
and then the three octants, in any order. whose labels differ from that of the
nearest octant by 2 binary digits, and finally the octant whose labels differ from
that of the nearest octant by 3 binary digits. For example, if a given VPN is (1,
1. 1), then a valid FTB order is ¥ (1113). 6 (110), 5 (1012), 3 (01 15), 4 {100;), 1

(0015), 2 (010;), 0 (000;). Note that a VPN cannot be given as (0, 0, 0).
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Figure 13: Mapping between VPNs and nearest octants.
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Figure 14: Six faces of an octant.

4.2 Blocking Quadtrees

4.2.1 Blocked Faces

An octant has six faces as shown in Figure 14, where the outward face normals
of faces Fyz, F_z, Fyy, F—y, F4: and F_, are along the +X-, -X-, +Y-, -Y-, +Z-
and -Z-axes, respectively. For an arbitrary viewing direction, at most three of
the six faces of an octant are visible (Figure 15). These faces of an octant visible
from a given viewing direction are cailed potentially visible faces of the octant,
and the rest potentially invisible faces of the octant. Obviously, a potentially
invisible face of an octant in an octree is always invisible from the vicwing direction,
while a potentially visible face may be completely visible (if no other B octants
obscure the face), partially visible (if other B octants obscure the face partially),
or completely invisible (if other B octants obscure the face completely) from the
viewing direction.

For the convenience of discussion, it is assumed hereafter that a given viewing
direction makes three faces of an octant potentially visible. This assumption is

general since, as will be scen later, the derived algorithm can be easily extended



(a) (b) (c)

Figure 15: An octant may have (a) 3, (b) 2, or (c) 1 potentially visible faces.

Ny

N.y

Figure 16: Six neighboring octants of an octant.

to handle arbitrary viewing directions.

An octant has at most six neighboring octants of the same size that share a lace
with it (Figure 16). Note the correspondence between labels of an octant’s six faces
and ité neighboring octants (Figure 14 and Figure 16). These neighboring octants
sharing the potentially visible faces of an octant are called fronl neighboring oclants
of the octant, and the rest back neighboring octants of the octant. For example.
in Figure 16 , the front necighboring octants are Ny, Niy and Viooand the Liack

neighboring octants are N_;, N_y and N_..



A blocked face of an octant is a potentially visible face of t'.e octant whose
corresponding neighboring octant is a blocking octant. A blocking octant is defined
as (1) a B octant, or (2) a blocked W or G octant. A blocked octant is an octant
with three blocked faces. On the other hand, those potentially visible faces of an
octant that are not blocked faces are called un-blocked faces of the octant. For
example, in Figure 6, octant ¢ has two blocked faces, Fyr and F4:, and face Fyy
of octant ¢ and face F.. of octant a are un-blocked faces. It should be noted that
a face without a neighboring octant is an un-blocked face.

Several simple observations can be made from the above definitions. First, a
blocked face of an octant is invisible from the given viewing direction. Second, a
blocked octant is invisible from the given viewing direction. Third, the front and
back neighboring octants of an octant are visited before and after the octant itself.
respectively, if the corresponding octree is traversed in the FTB order determined
by the viewing direction (refer to Section 4.1). These observations ensure the
correctness of the fundamental schema of the proposed algorithm described in the

next subsection.

4.2.2 FTB Traversal with Blocking Quadtrees

The fundamental schema of t!:e proposed algorithm for displaying an octree is as
follows: For a given viewing direction, an octree to be rendered is traversed in the
FTB order determined by the viewing direction. During the traversal an octant
visited is processed as follows: If it is a blocked octant, set the faces shared by the
octant and its back neighboring octants as blocked faces and discard the octant

with all its descendants (if it is a G octant). Otherwise (the octant is not a blocked
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octant): If it is a B octant, paint the visible part of all un-blocked faces of the
octant and set the faces shared by the octant and its back neighboring octants
as blocked faces. If it is a W octant, set the faces shared by the octant and its
back neighboring octants as un-blocked faces. If it is a G octant, traverse its eight
sub-octants according to the FTB order and process them similarly.

The above schema is efficient because of three reasons. First, many blocked
octants are simply discarded with their descendants (if any). Sccond, only un-
blocked faces of B octants join the painting phase. Third, the overhead to keep
track of the necessary information about blocked and un-blocked faces during the
octree traversal can he minimized by a technique called blocking quadtrees.

The blocking quadtrees consist of three quadtrees with the same resolution as
that of the octree to be rendered. They are called quadtree-X, quadtree-Y and
quadtree-Z, representing faces orthogonal to X-, Y-, and Z-axes, respectively. The
following modified schema makes use of the technique of the blocking quadtrees.

Initially, each of the three quadtrees has only one node, a W root node; rep-
resenting the corresponding un-blocked face of the root octant. During octree
traversal, the potentially visible faces of an octant encountered are mapped onto
their corresponding nodes of the quadtrees. That is, the face perpendicular to the
X-axis is mapped onto the corresponding node of quadtree-X, and so on. If all

three quadtree nodes are B, the octant is blocked and is discarded with all its de-

scendants (if any). Otherwise: If the octant is a B octant. paint the visible part of

its potentially visible faces whose corresponding quadtree nodes are not 1B and then
change these quadtree nodes to B. If it is a \W ~rtant, change all corresponding

quadtree nodes to W. Lastly, if it is a G octant. perform the following three steps



Y

Figure 17: Octant labeling ol octree space and Quadrant labeling of blocking
quadtree spaces.

in sequence: (1) For each corresponding B (or W) quadtree node, change it to G
and generate four B (or W) son nodes for it, (2) process eight sub-octants of the
octant recursively according to the FTB order, and (3) change each corresponding
quadtree node to B if the quadtree node has four B son nodes.

Figure 18 shows the status of the blocking quadtrees (in quadrant format) at
four consecutive stages of the octree traversal of the object shown in Figure 6.
Note that the correspondence between octant labeling and quadrant labeling is
determined by Figure 17. Figure 19 shows the last stage of the blocking quadtrees
by assuniing that octant ¢ is a W octant. Notice that two B quadrants are changed
to W quadrants because the W octant ¢ updates the quadtrees. Figure 20 shows

how the blocking quadtrees are refined before a G octant is traversed {(assuming

octant ¢ is a G octant).
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Figure 18: Status of blocking quadtrees for displaying the object i Figure 6.
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Figure 19: Status (last stage) of blocking quadtrees for displaying the object in
Figure 6 (assuming octant ¢ is W).
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Figure 20: Status (last stage) of blocking quadtrees for displaying the object in
Figure 6 (assuming octant ¢ is G).



4.2.3 Blocking Bitmaps

Three formats could be used to represent a quadtree of the blocking quadtrees.
They are: a regular quadtree with pointers, a linear quadtree, and a proposed
wormat called blocking bitmap. As discussed later, the proposed format is hest
suited for fast display with a reasonable memory requirement.

A blocking bitmap is a one dimensional array of all nodes of its corresponding
complete quadtree. A complete quadtree is a specialized quadtree which represents
the recursive subdivision of the quadtree space down to the pixel level. In other
words, a complete quadtree represents all bitmaps with different resolutions of the
quadtree space. For example, Figure 21 shows the complete quadtree of a 2% x 2*
quadtree space, where the root node represents the quadrant corresponding to the
quadtree space, and its four child nodes represent the four quadrants obtained by
subdividing the quadtree space, and so on. The nodes of a complete quadtree are
stored in a top-to-bottom and left-to-right fashion in its corresponding blocking,
bitmap, and each node of the blocking bitmap takes 2 bits of memory space to
store one of the three possible colors (W, B, G) of the corresponding complite
quadtree node. For example, the correspondence between a complete quadtree
and its blocking bitmap is shown in Figure 22.

The major advantage of representing the blocking quadtrees as blocking bitmaps
is that mapping a potentially visible face of an octant to its corresponding blocking
quadtree node becomes basically a simple array indexing operation. This ensures
that the most extensive part of the overhead computation incurred by the I’y
approach is performed in an extremely efficient manner. The mapping mechanism

will be described in detail in Section 4.3 where the display algorithin is presented.

14



Figure 21: A 4 by 4 quadtree space and its complete quadtree.
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¢ 22: A complete quadtree and its blocking bitmap.
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The other advantas: of using blocking bitmaps is that updating the blocking
qaadtrees can be performed very efficiently because no memory allocation is needed
and only different values are written into already existing nodes.

As for the memory space requirement, since each node takes only two bits and
no pointers are stored, the overhead is acceptable (refer to Section 4.4 for the space
complexity analysis).

Alternatively, regular quadtrees with pointc - - >r linear quadtrees could be used
to represent blocking quadtrees. However, the following disadvantages make these
approaches inappropriate.

For regular quadtrees with pointers, space must be allocated and deallocated
dynamically when the blocking quadtrees are updated, which adds on extra compu-
tatioral burden. M ~ seriously, if the quadtrees become sufficiently complex. the
memory space needed to store them will be greater than that of blocking bitinaps
because of the space taken by the pointers. The memory space for the worst case
of a regular quadtree with pointers is far greater than that of the proposed forma
and has yet to be guaranteed since in general it can’t be determined in advance hiow
complex the quadtrees will become during the course of the program execution,

For linear quadtrees, the space requirement might be smaller than the propesed
format since they only store the B nodes of the corresponding regular quadtrees,
However, there is no guarantee since each node in a linear quadtree is represented
by its linear code, which takes 3n bits (where n is the resolution of the octree space).
and the linked list structure must be used to maintain the lincar quadtree (since
is to be updated dynamically), which needs extra space for storing pointers. More

seriously, the computation for checking against and updating blocking quadtrees



is in general much more expensive than that of the proposed format. This is
because: (1) a binary search must be performed to find a desired quadrant in a
lit-.-r quadtree for mapping of an octant face, whose speed depends on the number
of nodes in the linras 12 itree ana .4 slower than that of a simple constant-time
array indexing operation as Or ‘he proposed format in mext situations, and (2)
updating a linear quadtree involves allocar g and deallocating memory space ancl

linked list pointer re-arrangeinent, which consumes more computation time than

simply writing integer values to array elements.

4.3 Algorithm

The proposed FTB octree display algorithm traverses an octree in a FTB order
determined by a given viewing direction and produces a depth image of visible
surfaces of the object represented by the octree. The depth image is stored in a
two-dimensional =-buffer array that can be used to generate a shaded image with
any of the existing gradient shading methods [32] in a post-processing step. In
the following, the algorithm is first presented, then some of the details are further
explained. To avoid confusion, octree nodes will be called octants and blocking

quadtrees nodes will be called nodes.

4.3.1 The Algorithm
Algorithm: FTB Display of an Octree.
1. If the root octant of the octree is W, then terminate.

2. Initialize the z-buffer to “un-painted”.

(W1}

(8]



If the root octant of the octree is B, then scan-convert its visible faces to the

z-buffer and terminate.
Initialize the root nodes of the blocking quadtrees to \V.

Invoke Procedure “Process a G Octant” to process the root octant, and then

terminate.

Procedure: Process a G Octant.

o

[

. Locate nodes of the blocking quadtrees that correspond to the potentiaily

visible faces of the octant.
If at least one node is not B, do steps 3-5.

Refine the blocking quadtrees.

. Invoke Procedure “Process a G Octant” or “Process a W or B Octant”™ 1o

process each of the eight suboctants of the octant according to the FTB

order.

Compact the blocking quadtrees.

Procedure: Process a W or B octant.

1.

E\D

Locate nodes of the blocking quadtrees that correspond to the poter ially

visible faces of the octant.
If at least one node is not B, do steps 3-4.

If the octant is a B octant, then invoke Procedure “Scan-Couvert a Face”

for each un-blocked face of the octant.



4. Update the blocking quadtrees.

Procedure: Scan-Convert a Face.

1. Find the plane equation of the face in image space.

)

For each scanline that intersects the face, do steps 3-4.
3. Find intersections of the scaaline with the left and right edges of the face.

4. Fill in all “un-painted” pixels of the z-buffer between the pair of intersec-
tions with the corresponding z values of the face obtained through the plane

equation of the face.

4.3.2 Further Explanations

Indexing of Blocking Bitmaps

A more detailed explanation is needed for procedures “Process a G Octant”
and “Process a W or B Octant” to understand the operations on the blocking
quadtrecs. Remember that the blocking quadtrees are represented as blocking
bitmaps.

Two parameters, depth and card_num, are needed to invoke procedure “Process
a G Octant”. depth is the depth of the octant of the octree, where the root
octant of the octree has depth 0, and its child octants have depth 1, and so on.
card-num is a one-dimensional array of three elements. card_numl[i] (iis X, Y
or 7) stores the cardinal number of the potentially visible i-face of the octant.
An i-face of an octant is perpendicular to the j-axis of the octree space and the

cardinal number of a face is defined as the cardinal number of its corresponding
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Figare 23: Cardinal numbers of a complete quadtree.

node in a blocking quadtree as shown in Figure 23. Note the difference between
Figure 23 and Figure 22. The numbers in Figure 22 are called index numbers of
the nodes. It should be noted that the cardinal numbers of three visible faces of

the root octant are 0.

Three local variables, ind_num, ind_.num_son and card.num_son are nceded in
procedure “Process a G Octant”. They are explained as {ollows.

ind_num is a one-dimensional array of three elements. ind_num(i} (iis X, Y
or Z) stores the index number of the potentially visible i-face of the octant and is
determined by

ind_num|i] = ind_tabldepth] + card_numli] (4.1)

waere ind-tas is a pre-computed table with rud tabldepth] giving the index number
of the left-most node at depth depth in a complete quadtree. For example, nodes
0. 1 and 3 in Figure 22 are the left-most nodes at depth 0, 1 and 2, respectively.

Figure 24 defines ind_tab for n = 8. Once indnwmfi] is found, the actual location

;;\
pbs



depth 012 3 4 5 6 7 8
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Figure 24: Definition of ind_tab (n = 8).
of the node in quadtree-i is determined by
(ind_num|i] div 4, ind_num|[i] mod 4) (4.2)

where ind_numl[i] div 4 determines the array index of the byte that contains the
node and ind_numl[i] mod 4 determines the location of the node inside the byte.
Formula (4.2) completes step 1 of the procedure.

ind_nuwm_son is a two-dimensional array of 12 elements. ind_num_son(d][j] (4
is X, Y or Z, and jis 0, 1, 2 or 3) stores the index number of the jth child node of

the potentially visible i-face of the octant. ind_num_son [{]{7] is determined by
ind_num_son[i][j] = ind_tabldepth + 1] + 4 x card-numli] +j (4.3)

ind_num _son|i}[j] is needed in step 3 of the procedure. If node ind_numt] is W
(or B), then all its 4 child nodes are set to W (or B) and the node is set to G.
Otherwise (ind.numf[i] is G), nothing needs to be done.

cardnum_son is a one-dimensional array of three elements. card num _son(i]
(iis X, Y or Z) stores the cardinal number of the potentially visible i-face of a child
octant of the octant. card_num_son is used as a parameter (card.num) to invoke
procedure “Process a G Octant” or “Process a W or B Octant” for processing a

sub-octant of the octant in step 4 of the procedure. The cardinal number of the
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0 1 2 0
1 1 3 1
2 3 2 2
3 3 3 3
4 0 0 0
5 0 1 1
6 2 0 2
7 2 1 3

Figure 25: Definition of quad_tab.

potentially visible i-face of the sub-octant, oct (oct is 0, 1, 2, 3, 4, 5, 6 or T), of the

octant is determined by
card_num_son[i] = 4 x card-numli] + quad_tabloct][d] (4.4)

where quad.tab is defined in rigure 25.

Step 5 of procedure “Process a G Octant” needs ind.num and ind-num_son.
If the four child nodes of node ind.numfi] are all B, then the node is set to B.
This compaction is necessary because otherwise blocked faces of ac.ants to be
processed later may be mistakenly considered as un-blocked faces. Although this
has no effect on the correctness of the final image (refer to step 5 in procedure
“Scan-Convert a Face”, where a check is made before painting a pixel to ensure that
only “un-painted” pixels are painted), it may cause some redundant computation.

Similar to the procedure “Process a G Octant”, procedure “Process a W or

B Octant” also needs two paramecters, depth and card-num. It needs one local



variable ind.num. Step 4 of the procedure sets node ind.numli] (iis X, Y or Z)
1o the color of the octant to update the quadtree-i.

Finally, it should be noted that formulas (4.1)-(4.4) involve only array indexing
and integer addition, shift and modular operations. Therefore, the operation on

the blocking quadtrees can be performed very efficiently.

Scan-Conversion of a Face.

The following techniques are used to make procedure “Scan-Convert a Face”
as efficient as possible. First, since all octant faces perpendicular to a coordinate
axis of the octree space have the same face normal vector in the image space,
only three face pormals {(in the image space) are calculated at the beginning of the
algorithm for faces perpendicular to the X-, Y- and Z-axes, respectively. Therefore.
the normal vector of a face to be scan-converted need not to be recomputed and
the plane equation of Lhe face can be easily found by using the normal vector and
the image space coordinates of a vertex of the face. Second, instead of using the
standard edge-table technique [11]. the simple method shown in the algorithm is
used to scan-convert an octant face because 1t is a convex polygon in the image
space. This is faster because keeping track of left and right edges is more efficient
than updating the edge-table. Third, ‘ntersections of scanlines and face edges
are calculated incrementally involving only additions by employing edge coherence
(11]. And lastly, 2 values of the face are also calculated incrementally involving

only additions by employing scanline coherence [11].

Arbitrary Viewing Directions.

So far the algorithm has been described based on the assumption that a given



viewing direction makes three faces of an ocrant potentially visible. To handle an
arbitrary viewing direction, two global variables, a.is snd ¢ v1s nums, are needed.
azis is a one-dimensional array of three elements. axisnns i= an integer. Phey
are initialized at the beginning of the algorithm according to the given viewing

direction as shown in Figure 26, where viewing direction is delined as follows:
e XY7Z: three faces of an octant are potentially visible.

e XY: an X-face and a Y-face of an octant are potentially visible.

X7Z: an X-face and a Z-face of an octant are potentially visible.
e YZ: a Y-face and a Z-face of an octant are potentially visible.
e X: an X-face of an octant is potentially visible.

o Y:a Y-face of an octant is potentially visible.

o 7: a Z-face of an octant is poter:tially visible.

Obviously, only the corresponding azisnums blocking bitmaps need to be oper-
ated. The correct formulas can be obtained by substituting awisfiz] for all /'s in

formulas (4.1)-(4.4), where 0 <01 < axisnums — 1.

4.4 Complexity Analysis

Space complexity.
The space taken by the blocking quadtrees is:

(14+4+42+.. +4") x3x2/8=



60

viewing “vi"

direction . ixis[0] axis[1] axis[2]{ @Xis_nums
X Y Z 3

Y
Z -
Z

N-<><;5§§§

NI<[IX|<{X[IX
il Bl Bl A VI I

Figure 26: Determination of axis and axis_nums.
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where n is the resolution of the octree space.

Time complexity.
For an octree to be rendered and a given viewing direction, assume that
Ny : number of W octants of the octree.
Npg: number of B octants of the cctree.
Ng: number of G octants of the octree.
N,_1v: number of blocked W octants of the octree.
Npp—w: number of non-blocked W octants of the octree.
N,_g: number of blocked B octants of the octree.
N,,—g: number of non-blocked B octants of the octree.
Ny—g: number of blocked G octants of the octree.

N,p_c: number of non-blocked G octants of the octree.



N,s_w: number of W octants of the octree that are visited and found blocked.

N,p—pg: munber of B octants of the octree that are visited and found blocked.

Myp—g: number of G octants of the octree that are visited and found blocked.
Then the time spent to render the octree is proporticnal to (note that formulas
(4.1)-(4.4) involve only constant-time calculations):

Npptw + Noo—w + Nab—G + Nup—G + Nup—p + Nut—p + T(nb— )
where Nos_w + Nes_y is the time spent to process W octants, Nup—c; + Net-¢; Is
the time spent to process G octants, Npy_p + Np-p 18 the time spent to process
B octants before rendering them, and T'(nh — B) is the time spent to vender all
non-blocked B octants.

The non-blocked B octants are rendered by scan-converting their un-blocked
faces into the z-buffer. Assume that

Npb— face: number of un-blocked faces of all non-blocked B octants,

Nycantine: number of accumulated intersectin g scan lines.

Npirer: number of accumulated pixels to be checked and painted in the 7-hulfer.

(Explanation of Nycntine and Npirer. Suppose that there are totally two faces
to be rendered, and that {ace a has 5 interserting scan lines and face hhas 7. then
Vycantine in this case is 12. Note that face a and b may have some common scan
lines. Similarly, if 30 pixels are to be checked and painted for face o and 40 {o
face b, then Npizer 1s 70).
Then 7'(nb — B) is proportional to:

Nub—face + Nycantine + Npicet
where Np—joce i the time spent for obtaining plane equations of faces, Vo .

is the time spent for calculating intersections, and Ny is the time spent for



calculating depth values.

Therefore, the worst case time complexity of the algorithm is:

O(Twe + Ts)
where Twe (or Npp—iy + Nus—w + Nno-c + Nos—c) is the time to process W and G
octants, and Tg (or Nuo—B + Nub-B + Vnb—face + Nscantine + Npizet) is the time to

process 13 octants.

Time complexity of a BTF algorithm.

For comparison purposes. the time complexity of the traditional BTF algorithm
[25] is:

O(Ne + Vi + Myace + Macantine + Mpizetj
where M 4. is the number of all potentially visible faces of all B octants, Mcantine
is the number of accumulated intersecting scan lines, and M, e is the number of
accumulated pixels to be painted in the z-buffer. Similarly, it can also be written
as:

(TS + Th)

where T, (or N¢;) is the time to process all G octants, and T (or N+ Myoce +

Myeantine + Mpiret) 1s the time to process all B octants.

4.5 Experimental Results

The proposed algorithm has been implemented using C on a Sun-3/60 and a Sun-
SparC. For comparison purposes, the traditional BTF algorithm {25] was also
implemented. Two example objects have been used to test the two algorithms.

The first object is artificially created (typed in) and represented as an octree



with a resolution of n = 7. The octree consists of 32 W octants, 32 B octants
and 9 G octants. The second object is part of a human skull obtained from 24
(256 x 256) CT slices after preprocessing (linear interpolation and thresholding).
[t is represented as an octree with a resolution of n = 8 that consists of 348,996
W octants, 285.95¢ B octants and 90,707 G octants. Figure 27(a) shows the
statistics of running the two programs using the artificial object on a Sun-3/60 and
Figure 29(a) shows the corresponding depth shaded image produced. Figure 27(h)
shows the statistics of running the two programs using the human skull on a Sun
SparC and Figure 29(c)-(f) show the corresponding depth shaded images produced.
Note that the statistics ave obtained by the UNIX utility program gprof.

From Figure 27 it is clear that the major reason for the significant speed-up of
the new FTB algorithm over the conventional BTF one is the drastic reduction ol
the time to process B octants. This is achieved because many blocked B octants
and B octant faces are simply discarded in the I"TB algorithm. In other words,
many floating point operations needed to process B octants (3D coordinate trans:
formation and polygon scan-conversion) are eliminated. This is effective sinee only
simple integer operations are involved to process W and G octants in the IT13 al
gorithm. Therefore. the overall result is that the overhead of the 1T algorithm
is much smaller than its speed gain.

To verify the speed-up from the time complexity, Figure 2% is produced for the
object of human skull. For the face view, the result in Figure 28 is very consistent,
with that in Figure 27(b). For other cases, since more than one guadtrees have to
be processed. the constant factors are greater than 1. which explains the differences

between Figure 27(h) and Figure 28.
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Figure 27: Results for (a) H, and (b) Human skull.



0o

- 2184681 91058 18LVYE o o418

1'6L ¥6988E 8£028 95v9¢ v olad

. 2966289 6095€L2 p8IS6LE | 0 v 1)fd1g

AR A cy890€!L G2l91S L0vLve ot 1)lald

. 7666648 9p2E12S czzzsez  Iu ez laie

6'0L 8266SS¢ 8LOVLILL G960VS (e i-)lgrd

- G.966.8 6v0E1LCS £012SEe (te 1)j318

S0L ££42652 8158811 8LLLYS e Vlgl4
passaooid
(e | siuewo pue ‘sace}

4ig Jon0 @14 jo |iweloo g ‘seufueds palejnwnooe pajejnwnooe | NdA
uononpes "oN | ‘sjexid jo ‘ON [eI0L siaxid jo "ON _moc__cmom j0 "ON
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o napter 5

Conclusion

Existing software techniques for displaying 3D voxel-based objects are reviewed in
this thesis. To improve rendering speed, a new algorithm is proposed, analyzed
and implemented for displaying 3D voxel-based binary objects encoded via oc-
trees. The performance of the algorithm is compared with a conventional vetree
display algorithm [25] from both theoretical and experimental Slewpoints, The
new algorithm achieves a 55-79% time reduction over the conventional algorithm
in rendering a 256 x 256 x 256 medical image (hmuman skull) acquived by a ('r
(Computed Tomography) scanner. The timing result is also verified by the theo-
retical analysis.

The proposed octree display algorithim requires extra memory space Lo store
the blocking quadtrees in order to perform the octant visibility test. The space
overhead is acceptable for two reasons. First, in gencral. the storage required by
an octree is far greater than the corresponding blocking quadtrees. For example,
the octree for the human skull requires about 24 MB, while the blocking quadirees

require only 61 KB or less than 0.3% of the octree storage. Of conrse. when



implemented on a Sun-SparC, only a portion of the octree can reside in the main
memory for processing. Swapping between memory and disk has to be performed.
Second, for a Sun-SparC up to 8MB of main memory can be used for the user’s
program, of which only 64KB or 0.8% stc s the blocking quadtrees.

Future research could proceed in the fc owing directions. First, the algorithm
for displaying linear octrees hased on th  incept of blocking quadtrees can be
designed and implemented. It would be in. -esting to compare the timing results
of that algorithm with the conventional linear octree display algorithm {16] and the
results presented in this thesis. Second, interactive display techniques for octree
encoded objects have not been studied in the past. It would be very interesting
to investigate the impact of the concept of blocking quadtrees on the design of an
efficient interactive display system via octree representations. Third. comparison
of the proposed algorithm with other volume rendering methods would he a very
interesting task from both theoretical and experimental viewpoints. Finally, it is
possible to investigate the design of a special architecture based on the concept of

blocking quadtrees to achieve an even faster rendering speed.
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