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Abstract

Steady and time dependent flow in a curved duct of square cross-section (the
Dean problem) is investigated both experimentally and numerically. The first part
is a continuation of the work done on steady developing flow by Bara et al. (J. Fluid
Mech. 244, 339-376 (1992)). A 6-cell secondary flow state with two pairs of Dean
vortices was observed above a Dean number of 350. In the second part, a new time

dependent flow state, consisting of oscillating Dean vortices, is investigated.

In this study, steady flows for Dean numbers up to Dn = 600 are investigated
(Dn = Re/\/R. where Re is the Reynolds number, Tga/v. The curvature ratio, R,
is 15.1).The experimental methods used are visualization of secondary flow patterns
using laser fluorescent dye and laser Doppler anemometry to measure streamwise
or spanwise velocities. The development of two pairs of Dean vortices is observed
at Dean numbers above 350. This 6-cell flow state breaks down spatially into a 2-
cell flow. Numerical simulations, based on the parabolized Navier-Stokes equations,
are in very good agreement with the experiments. Based on the similarity with
boundary layer flow over a concave wall (the Gértler problem), it i3 suggested that
the transition to 6-cell flow is the result of a decreasing spanwise wavelength of
the Dean vortices with increasing flowrate. This is the first time that detailed

experiments and simulations of the development of a 6-cell flow state are reported.

Another area that is investigated is a new traveling wave phenomenon that was



observed at Dean numbers between 170 and 260. This traveling wave state, which
consists of two oscillating Dean vortices, was induced by a carefully positioned
pin (diameter of 0.1-0.2 mm) at 5° from the inlet of the curved section along the
symmetry line of the cross-section. The traveling wave was found to lock in to an
imposed periodic disturbance at a selected frequency. The flow structure of the
locked state was investigated in detail. Direct numerical simulations in FLOW3D
are in very good agreement with the experiments and confirm the existence of a

fully developed, streamwise periodic traveling wave state.

The inflow region between the two Dean vortices, which transports low-speed
fluid away from the outer wall, creates strongly inflectional spanwise profiles of the
streamwise velocity. Similarities with twisting vortices in a curved channel and
sinuous oscillations of Gortler vortices suggest that the traveling waves observed

here result from a secondary shear instability of these spanwise inflectional profiles.
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Chapter 1

Introduction

Flow in curved pipes and ducts was initially studied for its engineering
applications. Early work focussed on friction factor correlations (Adler, 1934) and
heat transfer (Mori & Nakayama, 1965). The centrifugally induced secondary flow
causes an increase of the friction factor and the Nusselt number, compared to a
straight pipe. More recent applications include the flow of blood in the aorta
(Hamakiotes & Berger, 1990), membrane filtration (Belfort et al., 1993; Chung
et al., 1993) and the design of compact heat exchangers (Peerhossaini, 1993).

Along with the growing interest in dynamical systems and chaos theory of the
past decade, an increasing number of studies on flow in curved geometries has
focused on instabilities and the transition to turbulence. In closed fluid systems,
the transition to turbulence often leads to chaotic behaviour (Eckmann, 1981).
Examples of closed systems that exhibit chaotic behaviour are Rayleigh-Bénard
convection in a horizontal fluid layer, heated from below (Gollub & Benson, 1980;
Maurer & Libchaber, 1980); and Taylor-Couette flow between concentric rotating
cylinders (Mullin, 1991; Pfister et al., 1992). Due to a lack of feedback, dynamical

systems and chaos theory does not apply to most open systems (Morkovin, 1988).
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However, concepts of convective and global instability have proven to be very useful

for explaining phenomena in open systems.

Roads to turbulence in open flow systems can be interpreted as sequences of
often competing instabilities. This study focuses on the primary and secondary
transitions of the flow of water in a curved duct of square cross section. In a curved
square duct, the primary solution consists of two counter rotating Ekman vortices,
which are the result of an imbalance between the centrifugal force and the pressure.
This imbalance is created by the top and the bottom walls. The primary instability,
which is of centrifugal nature, causes the development of two smaller vortices near
the outer wall, called Dean vortices. These additional Dean vortices lead to a 4-cell

flow state.

The 2-cell and the 4-cell flow states were studied experimentally and numerically
by Bara (1991; 1992) up to a Dean number of 150. The purpose of the present
study, which is a continuation of Bara’s work, is to investigate developing and fully
developed flow phenomena at Dean numbers higher than 150. Two new flow states
were discovered experimentally, and later confirmed numerically. First, a 6-cell flow
state, consisting of two Ekman vortices and two pairs of Dean vortices was observed
during the steady flow development at Dean numbers between 350 and 550. Second,
a traveling wave state, which is characterized by an oscillating motion of the two
Dean vortices, was induced above a Dean number of 170 by inserting a horizontal
pin along the symmetry line at the inlet of the curved duct. These two phenomena

are the main focus of this thesis.

An overview of the literature on flow in open systems with curved geometries
is presented in chapter 2. Work done on time dependent flows in curved channels
and along a concave wall (Gértler flow) have been given special attention, because

of the similarities with the observed traveling waves.
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The experimentul setup and error analysis are discussed in chapter 3. The
apparatus, which was designed by Bara (1991), had a 270° long curved section with
a square cross section of 1.27 cm (0.5") and e curvature ratio, R, = R/dj, = 15.1.
Laser Doppler anemometry was used to measure streamwise and spanwise velocities

and fluorescent dye was used for flow visualization.

In order to be able to compare the experiments with numerical simulations,
velocity profiles at the inlet of the curved section were measured up to a Dean
number of 600. Velocity fluctuations, which can have a large effect on the traveling

wave state, were also measured. These results are presented in chapter 4.

In chapter 5, the steady flow development at Dean numbers of 272, 326, 375 and
453 is compared to numerical simulations, based on a parabolized version of the
Navier-Stokes equations. Above a Dean number of 350, two pairs of Dean vortices
develop near 6 = 80°, leading to a 6-cell flow state. The 6-cell flow breaks down
symmetrically into a 2-cell state. An explanation for this transition is presented,

based on the similarity with the Gortler problem.

At Dean numbers between 170 and 260, a traveling wave state was induced by
inserting a pin at the inlet. In chapter 6, detailed experiments at Dn = 220 are
compared to direct numerical simulations with the CFD package FLOW3D. The
traveling wave state is very sensitive to upstream disturbances, which suggests that
this state is convectively unstable. Individual modes were studied by periodically
compressing one of the hoses of the flow system. This creates a periodic disturbance
that the wave locks in to. The effects of the pin and the forcing were investigated in
detail. Measured amplitude and phase distributions and the numerical simulations
are used to analyse the structure of the traveling wave state. Symmetry arguments
play an important role in this analysis. Based on the similarities with curved channel

flow and Gortler flow, an instability mechanism is proposed for the transition to
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wavy curved duct flow. The traveling wave state also shows similarities with sinuous
oscillations in a two-dimensional wake.
The conclusions of this study are summarized in chapter 7. Also, some areas of

future study are identified.



Chapter 2

Literature Review

Flow in curved ducts has been studied extensively since the early work by
Williams et al. (1902), Eustice (1910; 1911; 1925) and Dean (1927; 1928b). Most
studies were focused on engineering applications like friction factor correlations
(Adler, 1934; It5, 1959; Van Dyke, 1978; Manlapaz & Churchill, 1980; Ramshankar
& Sreenivasan, 1988; Liu et al., 1994) and heat transfer (Mori & Nakayama, 1965;
Manlapaz & Churchill, 1981). In the last decade the emphasis has shifted towards
more fundamental studies of flow development (Hille et al., 1985; Yao & Berger,
1988; Bara et al., 1992), transitions and bifurcation phenomena (Winters, 1987;
Kao, 1992). Most recent work in this area deals with oscillatory and unsteady flows
(Belaidi et al., 1992; Ligrani et al., 1992; Le Cunff & Bottaro, 1993). Excellent
review articles on steady developing and fully developed flows in curved ducts are
available by Berger et al. (1983), Nandakumar and Masliyah (1986), It6 (1987) and
Bara et al. (1991; 1992).

The two main topics of this study are the development of two pairs of Dean
vortices, leading to a 6-cell flow state, and the transition to a traveling wave state.

Flow in a curved duct of square cross section shows similarities with a number of

5
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other centrifugally unstable flow systems, in particular the flow in curved channels
and flow along a concave wall (Gortler flow). These similarities have beei: ver; useful
in explaining the phenomena observed in a curved square duct. This review therefore
focuses on steady and time dependent developing flow in curved rectangular ducts

and channels and the flow development along a concave wall.

A curved pipe has a circular cross section, while a curved duct has a square or
rectangular cross section. Curved rectangular ducts with large aspect ratios (height

divided by width) will be called curved channels.

2.1 Fully Developed Flow and Bifurcation

Phenomena in Curved Pipes and Ducts

2.1.1 Bifurcation Phenomena in Pipes and Square Ducts

After the experiments by Eustice (1910; 1911; 1925), Dean (1927; 1928b) was
the first to show theoretically the existence of one pair of counter-rotating vortices
for fully developed viscous flow of a Newtonian fluid in a curved pipe. The terms
fully developed, axially invariant and two-.dimensional will be used interchangeably.
Dean used a perturbation technique, with Poiseuille pipe flow as the leading
term. He assumed a radius of curvature of the pipe that is much larger than
the hydraulic diameter of the cross section. With this assumption, known as the
loose coiling approximation, Dean showed that the flow is characterized by a single
non-dimensional parameter, now known as the Dean number. The Dean number
is defined as Dn = Reﬁdh/R), where dj, is the hydraulic diameter of the pipe,
R is the radius of curvature and Re is defined as vjd,/v where v is the average

streamwise velocity. R/d}, is called the curvature ratio, R..
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It wasn't until the 1950’s that a perturbation analysis was done for flow
in a curved duct with a square cross section. Itd (1951) and Cuming (1952)

independently showed the existence of a 2-cell solution using perturbation analyses.

Series solutions obtained by perturbation analyses are only valid for relatively
low flow rates. For higher Dean numbers a full numerical simulation of the Navier-
Stokes equations is required. Collins and Dennis (1975) calculated a 2-cell flow in
a curved pipe by solving the Navier-Stokes equations. Their results are in good
agreement with the experiments by Adler (1934). Boundary layer analyses, valid

for large Dean number, are discussed in detail by Berger et al. (1983).

Using a finite difference formulation, Cheng and Akiyama (1970) and Cheng et
al. (1975) reproduced the 2-cell solution in a square duct. They also reported for the
first time the existence of a new, 4-vortex solution. As the flowrate was increased
a second counter rotating pair of vortices, smaller than the initial pair and located
near the centre of the outer wall, was formed. Cheng et al. (1976) believed that the
second pair of vortices is formed as the result of a centrifugal instability, similar to
the vortices that are formed in flow between parallel curved plates (Dean, 1928a).
Masliyah (1980) studied the flow in a curved duct of semicircular cross section with
a flat outer wall. He showed numerically and experimentally the existence of a
range of flow rates where both 2-cell and 4-cell flows are possible, a so called dual
solution region. Both Nandakumar and Masliyah (1982) and Dennis and Ng (1982)
discovered numerically the 4-cell flow states in a curved pipe, as well as a dual

solution region.

It is well established by now that the initial pair of vortices is induced by the
pressure gradients along the top and bottom walls a.n.d that the additional pair is
indeed formed by a centrifugal instability. These processes will be discussed in detail
in chapter 5. The large vortices imiuced by tixe lateral walls will be called Ekman
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vortices and the vortices that are formed as a result of the centrifugal instability

will be called either Dean, Gértler, or Taylor vortices, depending on the geometry.

Considering the non-linear nature of the Navier-Stokes equations, the existence
of multiple solutions does not come as a surprise. The solution structure of fully
developed or axially invariant flow is commonly represented in a bifurcation diagram,
showing a characteristic quantity of the flow, e.g. friction factor, as a function of a
control parameter, e.g. flow rate. A bifurcation, or state diagram can consist of a
number of lines (branches) connecting different possible solutions. These branches
can split (bifurcate) and show folds (multiple solutions) in limit points. The concepts
and mathematical tools in this field of study have undergone significant development
since the original work by Benjamin (1978). The terminology introduced by
Benjamin (1978) will be followed here.

A number of studies focusing on the solution structure of curved duct flow showed
that both in curved pipes and in curved square ducts dual solution regions exist

(Yang & Keller, 1986; Winters, 1987; Daskopoulos & Lenhoff, 1989).

For curved pipe flow the bifurcation diagram consists of a primary branch of 2-cell
flows, starting at flow rate zero and continuing up to very high flow rates. A branch
of 4-cell flow solutions starts at a finite flow rate and appears to be connected to the
primary branch through a pair of folds, although the upper limit point is sensitive
to grid refinement and has not been determined accurately (Yang & Keller, 1986;
Daskopoulos & Lenhoff, 1989). The critical Dean number above which the 4-cell
solution exists increases with decreasing curvature ratio (Yanase et al., 1994). Yang
and Keller (1986) discovered a number of other branches with 6-cell and 8-cell flows,
which are probably unstable. Yanase et al. (1988) calculated the linear stability of
the 2-cell and 4-cgll solutions. They found the 2-cell flow to be stable and the 4-cell

flow to be unstable to asymmetric disturbances.
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Dennis and Riley (1991) studied the 2-cell flow for the limit Dn — oo. Their
results suggest the existence of an asymptotic solution consisting of an inviscid core

and viscous boundary layers along the pipe wall.

Shantini and Nandakumar (1986) and Winters (1987) investigated the solution
structure for the flow in a curved square duct. For a loosely coiled duct, the primary
solution branch consists of 2-cell flows up to a limit point at Dn = 131 where the
branch folds. After a second fold at Dn = 113 the primary branch consists of 4-cell
flows. There is a dual solution region between Dn = 113 and Dn = 131. A separate,
secondary, branch of 2-cell an 4-cell flows exists above a Dean number of 191. There
is only a slight variation in the location of the limit points for curvature ratios above
10, but at smaller curvature ratios the limit points move to increasingly higher Dean
numbers. Winters calculated the stability of the solutions and found that the 2-cell
solutions on both branches are stable, while the 4-cell flow on the primary branch
is unstable with respect to asymmetric perturba.tioné. The solutions connecting the

two limit points of the primary branch are unstable.

Daskopoulos and Lenhoff (1989) extended their study of fully developed flows in
a loosely coiled curved square duct up to a Dean number of about 350. Starting with
the ’'perfect’ problem of flow in an infinite curved channel, they added ’stickiness’
at the cell boundaries to turn each pair of cells into a curved duct of rectangular
cross section. Daskopoulos and Lenhoff imposed symmetry around the centre plane.
They calculated four limit points on the secondary 2-cell branch, and found three
different states with six vortices. The strength of the two additional vorticés in each
half of the domain is very different. One of these 6-cell states was predicted to be

stable to symmetric disturbances.

Bara (1991; 1992) confirmed the solutions on the brima.ry branch experimentally,

including the dual solution region. In order to observe the 4-cell flows in
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the dual solution region he inserted a pin in radial direction along the line of
symmetry at the inlet of the curved section. The fact that the 4-cell flows can
be observed experimentally, although they are unstable with respect to asymmetric
perturbations, indicates that the growth rates of such asymmetric modes are small

and that asymmetric disturbances in his apparatus were small.

Kao (1992) investigated the bifurcation structure of flow in curved ducts with
’super-circular’ cross s'ections, in order to explain the transition of bifurcation
structure with changing cross section. A super-circle is defined by (z/a)"+(y/a)" =
1 and by varying the exponent n, cross sections range between a circle (n = 2) and
a square (n = 00). The finite difference method used by Kao is not able to locate
limit points accurately and because he defines the Dean number in terms of pressure
gradient rather than mean velocity the results can not be compared directly. As the
cross section changes from square to circular, the two limit points of the primary
branch move to higher Dean number. The first limit point, above which no stable
2-cell solutions exist, moves to very high flow rates. For n < 2.5 this limit point is
out of the range of flow rates investigated by Kao. The cross section with n = 2.5
is very close to circular with a ratio of large radius over small radius of 1.07. Kao
(1992) also found that by inserting a splitter plate in the flow near the outer wall

the 4-cell solution is stabilized with respect to asymmetric perturbations.

2.1.2 Fully Developed Flow in Rectangular Curved Ducts

Flow in curved ducts with aspect ratios (height divided by width) larger
than one can be useful in interpreting flow in curved square ducts. Most
numerical work was done for infinite aspect ratio curved channels (no end walls).
This assumption simplifies the numerical approach by allowing spanwise periodic

boundary conditions. Experimental work can not get around end wall effects, but
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wall influence can be minimized by using a channel with a large aspect ratio and
observing the flow away from the end walls. Some studies specifically look at the

interaction between the Ekman vortices on the end walls and the internal vortices.

The Dean number for this geometry is defined as Rey/2d/(R; + R,), where d is
the duct width and R; and R, are the radius of the inner and outer walls respectively.

Re is defined as vjd/v where v is the average streamwise velocity. At low flow rates
the flow between curved plates is one-dimensional and strictly streamwise, similar
to plane channel flow. The streamwise velocity profile is close to parabolic with the

maximum shifted towards the inner wall. This flow is referred to as curved channel

Poiseuille flow (CCPF).

At a critical Dean number curved channel Poiseuille flow becomes centrifugally
unstable, which leads to the formation of streamwise oriented counter rotating Dean
vortices. Dean (1928a) was the first to determine the onset of such two-dimensional
vortices and calculated the critical Dean number. Dean’s work was extended by
Reid (1958), Hammerlin (1958), Sparrow (1964) and Walowit et al. (1964). Dean
vortices were observed experimentally by Brewster et al. (1959) in a channel with

aspect ratio 35 and curvature ratio 12.5.

More recently Finlay (1989) used a weakly nonlinear perturbation analysis to
determine the nonlinear evolution of two-dimensional vortices in a curved channel
with infinite aspect ratio. The vortex flow was expanded as a perturbation of one-
dimensional curved channel Poiseuille flow. The results compared well with a full

non-linear simulation obtained by a spectral method.

Thangam and Hur (1990) used a finite volume method to calculate the fully
developed flow in rectangular ducts with aspect ratios, 7, of 1, 2, 4 and 8. They
report 2-cell and 4-cell solutions for aspect ratios of 1, 2, and 4 and an 8-cell flow

for a duct with an aspect ratio of 8, but did not investigate the range of possible
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solutions in these geometries and their stability characteristics. Their main focus
is a friction factor correlation defined in terms of a modified Dean number, Dn /4,

which is valid for 10 < Dn <1000 and 1 <y < 8.

Finlay and Nandakumar (1990) investigated the onset of Dean vortices in curved
rectangular channels with aspect ratios ranging from 20 to 30. Using a two-
dimensional finite difference method, they found that vortex pairs first appear in
the centre of the channel. As the flow rate is increased, more vortices are formed
towards the end walls. The large Ekman vortices near the top and bottom walls
seem to have a dampening effect on the interior cells resulting in a decreasing vortex
amplitude away from the centre of the channel. Amplitudes become more uniform

as the flowrate is increased.

Finlay and Nandakumar attempted to model the vortex amplitude and spacing in
the channel, using a Ginzburg-Landau rhodel that was developed for Taylor-Couette
flow. The model correctly describes the vortex amplitude as a function of the flow
rate in the centre of the duct. However, the model fails to describe the decreasing
vortex amplitude near the end walls, mainly due to the effects of the Ekman vortices.
Finlay and Nandakumar point out that in Taylor-Couette flow the fluid is driven
equally over the entire span by the inner cylinder and that the end vortices drive
the interior Taylor vortices. In curved channel flow the streamwise pressure gradient
does not drive the fluid near the end walls as effectively, resulting in much larger
boundary layers. There is only a weak interaction between the Ekman vortices and
the Dean vortices. The Ginzburg-Landau model did not take these wall effects into

account.
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2.2 Steady Developing Flow in Curved Ducts

and Channels

2.2.1 Developing Flow in Pipes and Rectangular Ducts

Most of the work on developing flow has been focused on curved pipes. As was
mentioned in section 2.1, the dual solution region in a curved pipe extends up to
very high flow rates, so that 4-cell flows will not spontaneously develop in a curved
pipe. Three different approaches have been taken in numerical investigations of
developing flow in a curved pipe. Singh (1974) obtained a solution as a perturbation
of developing flow in a straight tube, which is only valid very close to the inlet
of a loosely coiled pipe. Boundary layer methods assume the flow to consist of
an inviscid core surrounded by secondary flow boundary layers. As the flow rate
increases the secondary boundary layers become thinner near the outer bend and
thicker near the inner bend. The boundary layer near the inner bend e§entually
separates and interacts with the inviscid core. Boundary layer methods were used
by Barua (1963), Yao and Berger (1975; 1988), Smith (1976), Stewartson et al.
(1980; 1982) and Yeung (1980). Friction factor predictions based on boundary layer

models agree reasonably well with experimental data.

Full immerical simulations were performed by Patankar et al. (1974), Humphrey
et al. (1978; 1985), Soh and Berger (1984) and Snyder and Lovely (1990).
Experimental work on curved pipes is presented by Adler (1934), Austin and Seader
(1974), Agrawal et al. (1978), Talbot and Wong (1982), Olson and Snyder (1985)
and Kluwick (1984; 1986). These studies were mainly concerned with the boundary
layer development and collision near the inner bend. A detailed review of the

literature on developing flow in curved pipes up to 1990 is given by Berger et al.
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(1983) and Bara (1991).

Recently, Chung et al. (1993) used magnetic resonance imaging (MRI) to
measure secondary flow in a curved pipe of 180°. MRI is a relatively new method to
measure velocity fields non-intrusively (see the review by Caprihan and Fukushima
(1990)). The measurements by Chung et al. compare well with the experimental
results by Olson and Snyder (1985) and a numerical simulation based on Patankar's

method (Patankar, 1980).

Ghia and Sokhey (1977) were the first to numerically investigate developing flow
in a rectangular curved duct using an ADI finite-difference method. Aspect ratios
of 0.5, 1.0 and 2.0 and curvature ratios of 3, 14 and 100 were used. In a square duct

they observed a transition from 2-cell to 4-cell flow at Dn = 143.

Humphrey et al. (1977) investigated both experimentally and numerically the
developing flow in a 90° bend with high curvature (curvature ratio of 2.3) at
Dn = 526. The fully developed inlet flow was strongly influenced by elliptic effects
of the downstream curved duct flow. As a result a 2-cell secondary flow was already
present at the inlet plane. Secondary velocities at the inlet were up to 15% of the
mean streamwise velocity, and about half the strength of secondary flow velocities

at 0 = 90°. Both experimentally and numerically only a 2-vortex flow was observed.

Taylor et al. (1982) extended the work by Humphrey et al.  (1977)
experimentally. They studied both laminar and turbulent flow at Dean numbers
of respectively 520 and 26,000. At Dn = 520 the highest secondary flow velocities
were observed at = 60° with values of the order of 0.6 vj. They also observed only

a 2-vortex flow.
Yee et al. (1980) also investigated the developing flow in a 90° bend with a
curvature ratio of 2.3, using both a fully elliptic and a parabolic formulation. This

study included heat transfer. They conclude that in this strongly curved channel a
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fully elliptic formulation is necessary in order to describe the flow accurately.

The 4-cell flow pattern in a square duct was observed experimentally by
Sugiyama et al. (1983). They studied the flow development in curved rectangular
ducts with aspect ratios ranging from 0.5 to 2.5 and curvature ratios between 5 and
8. Photographs of smoke fic'w visualization in air were taken at the exit of the 180°
ducts. In the square duct they observed a 2-cell state at Dn = 93, a developing
4-cell state at Dn = 139 and a fully developed 4-cell state at Dn = 183. At higher
flow rates the smoke visualization pictures are very hard to interpret, but it looks
like 2-cell :;tates have developed for Dean numbers of 383 and 527. At aspect ratios
of 2.0 and 2.5 Sugiyama et al. (1983) observe the development of two pairs of Dean
vortices along the outer wall of the duct, leading to 6-cell flow states.

Hille et al. (1985) studied the flow in a 180° bend with a curvature ratio of 6.45
using laser-Doppler anemometry. They observed a 4-cell flow for Dean numbers
between 150 and 300. The second pair of vortices was asymmetric and smaller
than the ones observed by Sugiyama et al. (1983). The additional vortices formed
between § = 108° and 6 = 171° with the flow still developing at the end of the
180° bend. Hille et al. observed a smooth transition between 2-cell and 4-cell flows

without a dual solution region.

Soh (1988) simulated the flow development in the geometry used by Hille et al.
(1985) using a fully elliptic formulation of the steady Navier-Stokes equations. They
found that for 116.5 < Dn < 130.2 the flow developed into one of two solutions,
depending on the inlet condition. For a free vortex inlet the flow developed into a
4-cell state with a strong second vortex pair, much like the 4-cell state calculated by
Winters (1987). With a fully developed one-dimensional inlet flow a 4-cell state with
a much weaker second vortex pair developed. Both 4-cell flows appeared to be fully
developed. The weak 4-cell state has not been observed by any other researchers,
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and may have been an artifact of the coarse grid used by Soh (1988).

Sankar et al. (1988) solved a parabolized version of the steady three-dimensional
Navier-Stokes equations to investigate the flow development in a curved square
duct using Patankar’s method (Patankar, 1980). For a curvature ratio of 100 and
Dean numbers up to 128 the flow developed into the familiar 2-cell solution. For
128 < Dn < 200 initially a 4-cell state was formed, but periodic spatial oscillations
between 2-cell and 4-cell states developed farther downstream. During these spatial
oscillations a pair of Dean vortices is periodically formed and destroyed. Sankar et

al. related the development of the oscillations to asymmetries in the flow.

Sugiyama et al. (1988) performed another, more rigorous, study of developing
flow in a 270° curvéd rectangular duct with an aspect ratio of 2.0 and a curvature
ratio of 8. In this study they used smoke visualization in air and a one component
laser-Doppler anemometer to measure all three velocity components. Both the flow
visualization and the velocity measurements show the development of two pairs of
Dean vortices. The onset of these vortex pairs takes place around 6 = 135°. Profiles
of the s -eamwise velocity in the spanwise centre plane show two regions of low
streamwise velocity, corresponding to the two inflow regions of the vortex pairs.
These inflow regions transport fluid with low streamwise velocity from the outer
wall towards the centre of the channel. As the two additional vortex pairs grow
in strength they also move apart towards the top and bottom corners along the
outer wall. At # = 270° the two Dean vortex pairs have folded up into the two
large Ekman vortices, resulting in a 2-cell flow. There seems to be some discrepancy
between the results from flow visualization and the LDA at § = 225° and 8 = 270°,
but this could be due to the inherent difficulties with the interpretation of smoke

visualization.

In a related study, Miyake et al. (1988) and Kajishima et al. (1989) solved the
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elliptic Navier-Stokes equations using a finite difference method. Their simulation of
developing flow in a curved duct with an aspect ratio of 2 shows the development of
two pairs of Dean vortices and is in qualitative agreement with the experiments by
Sugiyama et al. (1988). Miyake et al. also simulated smoke or dye flow visualization

patterns for this geometry, but the calculated patterns do not show the four Dean

vortices.

Finlay et al. (1993) recently investigated the interpretation of flow visualization
numerically. They compared numerically simulated smoke or dye patterns with
calculated spatially developing secondary flow patterns in curved channel flow,
Gortler flow and twisted square duct flow. Finlay et al. found that smoke or dye
visualization can represent the secondary flow patterns correctly if the streamwise
variation of the secondary flow is small. However, secondary flow that changes

quickly with streamwise position can be misrepresented by smoke or dye.

The most complete study of developing flow in a curved square duct for Dean
numbers up to 150 was performed by Bara (1991; 1992). He investigated both
experimentally and numerically the flow in a 270° curved square duct with a
curvature ratio of 15.1. Both laser-Doppler anemometry and dye flow visualization
in water were used in the experimental investigation. At Dn = 125 the flow reaches a
fully developed 2-cell state while at Dn = 150 a fully developed 4-cell state develops.
At intermediate flow rate (Dn = 137) the flow develops towards a 4-cell state, but
is still developing at the end of the 270° duct. An important characteristic of 4-cell
flow is the inflow region in the centre of the outer wall where the streamwise velocity
is relatively low. Bara shows both numerically and experimentally that the length to
reach a fully developed 4-cell state (development length) decreases with increasing

flow rate.

Bara (1991; 1992) observed for the first time the dual solution region predicted
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by Winters (1987). By inserting a pin along the symmetry line at § = 5° a 4-cell
flow state was induced for Dean numbers between 114 and 131. Without the pin
2-cell flows were observed in this region. At higher flow rates the pin reduces the
development length of the 4-cell flow. Although the 4-cell flow is unstable with
respect to asymmetric perturbations, they can be observed if asymmetries in the
apparatus are small. By disturbing the flow asymmetrically the 4-cell state was

found to break down.

The experimental results were in good agreement with the numerical predictions
calculated using the developing flow code by Sankar et al. (1988) and the fully
developed flow code by Shantini and Nandakumar (1986). The results were also
consistent with the predictions by anters (1987). The experimental apparatus used
by Bara (1991; 1992) did not extend far enough to confirm the spatial oscillations
predicted by Sankar et al. (1988). Considering that no unconditionally stable
solutions exist in a range above Dn = 131 and that the code by Sankar did
not include time dependence, Bara speculates that time-dependent solutions may

develop for higher flow rates, possibly even in the same apparatus.

Arnal et al. (1992) studied the developing flow in a 180° curved square duct with
a curvature ratio of 3.36. They measure the development of the streamwise velocity
at the symmetry line for a Dean number of 764. The measured profiles compare well
with finite difference elliptic calculations. The model shows the development of two
pairs of Dean vortices near the outer wall at § = 135°. The arrows in their figures
4 and 5, showing the secondary velocities at § = 45° and @ = 135°, are pointing in
the opposite direction of the flow. Arnal et al. (1992) also observed low frequency

oscillations, which will be discussed in section 2.3.1.
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2.2.2 Developing Flow in Curved Channels

In the past decade a growing amount of work has been done on curved channel
flow. Kelleher et al. (1980) studied experimentally the flow of air in a 180° curved
channel with an aspect ratio of 40 and a curvature ratio of 47.5. They used both
flow visualization with aerosol and a hot wire anemometer to measure streamwise
velocities at # = 135°. At Dean numbers between 78.8 and 112.8 the flow develops a
spanwise periodic series of counter-rotating vortices that cover the full width of the
channel. These Dean vortices are the result of a centrifugal instability, very similar

to the mechanism that creates the Dean vortex pair in a square duct.

Kelleher et al. (1980) measured streamwise velocity profiles at § = 135° and
different spanwise positions in the outer half of the channel. Close to the outer
wall these profiles show periodic minima. Kelleher et al. interpreted these minima
as corresponding to the cores of the Dean vortices. However, this interpretation is
not consistent with the findings of Sugiyama et al. (1988) and Bara et al. (1992)
who both find minima in the streamwise velocity to correspond to the inflow regions

between two vortices.

Kelleher et al. mention that for higher flow rates (Dn = 250) time-dependent
flows were observed consisting of streamwise periodic traveling waves superimposed
on the Dean vortices. They do not explore this area further. Traveling wave

phenomena will be discussed in more detail in section 2.3.

Developing flow of air in a curved channel was investigated both numerica.liy
and experimentally by Bottaro et al. (1991). The experimental setup consisted of a
270° curved channel with an aspect ratio of 29 and a straight inlet section to ensure
fully developed inlet flow. They measured the streamwise velocity in cross sections
using a hot wire anemometer and defined a perturbation velocity as the streamwise

velocity of curved channel Poiseuille flow subtracted from the streamwise velocity
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of vortex flow. Contour plots of the perturbation velocity clearly show the shape
of the Dean vortices and compare well with results from a three-dimensional time-
dependent simulation, although in the simulation the vortices develop 40° farther
downstream. The computational domain had an aspect ratio of 9 in order to allow for
a natural development of the spanwise wave number. The cross-sectional averaged
streamwise perturbation velocity increases initially linearly and after reaching a
maximum settles at a steady value; the vortices seem to reach a fully developed
state. Vortex merging and splitting events were observed farther downstream, both

experimentally and numerically.

Matsson and Alfredson (1992) present more experimental results on developing
steady and unsteady curved channel flow, using the same apparatus used by Bottaro
et al. (1991). They studied the flow development at Dean numbers of 73, 88 and 116
and show that the development length of the Dean vortices reduces with increasing
flow rate. Spanwise profiles of the streamwise velocity show minima at the inflow
regions between vortex pairs, which is consistent with results from Sugiyama et al.
(1988) and Bara et al. (1992). Their unsteady results will be discussed in section 2.3.

A full three-dimensjonal time dependent elliptic simulation of developing vortices
in a curved channel was performed by Bottaro (1993). The channel had a curvature
ratio of 38 and an aspect ratio of 9, allowing for vortex splitting and merging events.
He stresses the importance of inlet-outlet boundary conditions when simulating
convectively unstable flows such as curved channel flow. In convectively unstable
systems the flow phenomena are determined by disturbances that are convected
through the system. By imposing periodic boundary conditions disturbances are
continuously fed back to the inlet of the domain, that way destroying the convective
nature of the flow. When specifying inlet-outlet boundary conditions, care should

be taken in specifying the outlet flow condition in order to minimize numerical
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reflections back into the computational domain.

Bottaro (1993) found that if a stationary disturbance is imposed at the inlet of
the channel, steady Dean vortices develop, which may merge or split steadily farther
downstream. Bottaro used steady Dean vortices in their early linear stage as inlet
flow. When fluctuating disturbances are present at the inlet, the Dean vortices are
not locked into place and unsteady interactions between neighbouring vortex pairs
may take place. Bottaro observed fluctuating inlet conditions as a result of pressure
waves that are transmitted from the computational domain to the inlet boundary.
This situation is called self-excitation. Unsteady inlet fluctuations could also be
imposed externally. Above a critical Dean number traveling waves could develop in

the flow, but these were not observed by Bottaro because of a low amplification of

initial disturbances.

Guo and Finlay (1991) studied the stability of two-dimensional Dean vortices
in a curved channel with respect to spanwise perturbations using a temporal
formulation. This spanwise secondary instability or Eckhaus instability leads to
splitting and merging of vortex pairs. Guo and Finlay used linear stability theory
to calculate the Eckhaus stability boundary, within which Dean vortices are stable
to spanwise perturbations. If the spanwise wave number is larger than the stable
region two vortex pairs will merge. A vortex pair will split in two vortex pairs if
the wave number is smaller than the stable region. For Re > 1.5Re, all spanwise
wavenumbers are unstable to spanwise perturbations. Their results were confirmed
by nonlinear flow simulations. It is clear that the spanwise secondary instabilities

are of fundamental importance in the wave number selection process.

In a later study Guo and Finlay (1994) used spatial stability theory and three-
dimensional simulations to study the spanwise secondary instability of Dean and

Gortler vortices. Results from a spatial formulation are easier to compare with
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spatially developing experimental observations. They used a Legendre spectral-
element method to solve the same version of the parabolized Navier-Stokes equations
that was used by Bara et al. (1992). Spanwise periodicity was imposed over a few

vortices, allowing vortex splitting and merging to occur naturally.

Linear stability results show that in the linear growth phase wavenumber
selection is determined by growth rates of the primary instability. Several
wavenumbers can grow independently. Once the dominant wavenumber reaches the
nonlinear phase it becomes unstable to spanwise secondary instabilities. Farther
downstream the energy from other wavenumbers is transferred to these spanwise
secondary instabilities. Eventually those wavenumbers with the lowest growth rate
of spanwise secondary instability will be observed. The three-dimensional nonlinear
simulations show that spanwise secondary instabilities lead to vortex splitting and

merging.

2.3 Time Dependent Flow in Curved

Geometries

This thesis presents the fizst experimental and numerical evidence of a secondary
transition in curved square duct flow leading to traveling waves. This time-
dependent flow is characterized by periodically oscillating Dean vortices. Although
some experimental work has been reported on oscillatory flow in curved pipes and
square ducts, sustained oscillations of the Dean vortices have not been reported
before. However, oscillating vortices have been observed both experimentally and
numérica.lly in curved channel flow, as well as in boundary layer flow along a
concave wall (Gortler problem). The oscillations in a curved square duct show

strong similarities with these other geometries.
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2.3.1 Time Dependent Flow in Pipes. and Rectangular
Ducts

Taylor (1929) already observed non-turbulent oscillations of 2-cell flow in a helical
pipe using dye visualization. The oscillations were observed at flowrates between
steady laminar and turbulent flow. Sinusoidal oscillations near the inner wall of a

helical pipe were also observed by Sreenivasan and Strykowski (1983).

Oscillations in a helical pipe were studied in more detail by Webster and
Humphrey (1993). They observed low frequency oscillations near the inner wall of
a helically coiled pipe with curvature ratio 9.1. Webster and Humphrey measured
streamwise and spanwise velocities along the horizontal symmetry plane using a
laser-Doppler anemometer. Oscillations with a frequency around 1 Hz were observed
for Dean numbers between 1680 and 2100. At some positions along the symmetry
plane a frequency doubling takes place which Webster and Humphrey could not
explain. It is suggested here that the frequency doublings could be the result of
an inaccurate positioning of the measuring volume. The oscillations presented in
chapter 6 of this thesis show a frequency doubling very close to the symmetry line of
the duct. It will be explained in section 6.5.2 that this frequency doubling is a direct
result of the shift-and-reflect symmetry of the flow. Similar symmetry properties
could explain the frequency doublings observed by Webster and Humphrey (1993).
Webster and Humphrey suggest that the oscillaticns are the result of an instability
of the secondary flow jet coming off the centre of the inner wall. This Jjet is formed

when the boundary layers along the top and bottom walls collide in the centre of
the inner wall.

A number of authors have recently reported on flow oscillations in curved square
and rectangular ducts. Tsuda and Ohba (1984) and Ohba et al. (1986) studied the
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developing flow in a 180° curved square duct with curvature ratio 9.5. Measuring the
streamwise velocity with a laser-Doppler anemometer, they observed instantaneous
velocity doublings and halvings at Dean numbers of 217 and 435. These irregular
oscillations with a frequency of about 3 Hz occurred at the spanwise centre line,
about halfway between the centre and the lateral walls. Tsuda and Ohba could not
explain the observed phenomena and the physical impossibility of such instantaneous

velocity doublings are a reason to question their experimental method.

Belaidi et al. (1992) studied the flow in a tightly coiled 90° bend with aspect
ratios of 0.5 and 0.25 and a curvature ratio of one. They measure streamwise
velocities along the line of symmetry at different streamwise positions and observe
flow oscillations near the inner wall of the duct at a frequency of around 25 Hz. The

oscillations seem to be associated with an instability of the secondary flow jet.

Arnal et al. (1992) report low frequency oscillations of developing flow in a
180° curved square duct with a curvature ratio of 3.36 at a Dean number of 764.
As was reported in section 2.2.1, two pairs of Dean vortices develop at this flow
rate. Irregular oscillations with a frequency around 0.1 Hz developed at 8 = 135°.
Measurements were taken at the symmetry line near the outer wall. Arnal et al.
attempted to simulate these oscillations using a time dependent elliptic calculation
procedure. An antisymmetric perturbation of 2.5% of the fully developed steady
flow was imposed at the inlet. This perturbation was convected downstream, but
resulted in much lower fluctuation amplitudes than experimentally observed. This
discrepancy is possibly due to the .relatively coarse grid of 30x30 points that was
used. Arnal et al. interpret the observed oscillations as random perturbations that
are amplified by the flow.
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2.3.2 Time Dependent Flow in Curved Channels

Flow oscillations in a curved channel were first observed experimentally by
Kelleher et al. (1980), although their study was focused on steady, low Reynolds
number flow. Their channel had an aspect ratio of 40 and a curvature ratio of 47.5.
They report that " observations of the flow patterns at much higher Reynolds number
(of the order of 1700) indicated that the flow took on a streamwise periodicity in the
form of longitudinal waves superimposed on the secondary flow which would travel
down the vortices in direction of flow”. These traveling waves have been studied
extensively since 1988 and some of the results have been helpful in explaining the

traveling wave phenomena in a curved square duct.

Ligrani and Niver (1988) investigated flow oscillations in the geometry used by
Kellcher et al. (1980) scaled by 200%. Due to the larger scale, these experiments
may have been more sensitive to disturbances. Using smoke visualization, Ligrani
and Niver observed mainly radial oscillatioﬁs of the Dean vortices at Dean numbers
between 73 and 100. During radial oscillations the heights of vortex pairs vary
while the radial positions of the two vortices are in phase. Since Dean vortices are
initiated by unsteady disturbances, the initial streamwise positions of the vortices
vary with time. Therefore, vortex pairs will be at different and changing stages of
their development at certain streamwise positions, creating an impression of radial

oscillations.

Twisting vortices were observed for 100 < Dn < 200 and streamwise positions
of at least 95° from the inlet of the curved section. Twisting vortex pairs oscillate
again mainly in the radial direction but this time the radial positions of the two
vortices are out of phase. Ligrani and Niver (1988) identified a number of other

oscillating modes as well as unsteady splitting and merging of Dean vortices.

The first numerical study of traveling waves in curved channel flow was conducted



CHAPTER 2. LITERATURE REVIEW 26

by Finlay et al. (1987; 1988). They used a three-dimensional time dependent
pseudospectral method with both streamwise and spanwise periodicity. Two types
of traveling waves were discovered: long wavelength undulating waves and short
wavelength twisting waves. Both modes are sinuous and have shift-and-reflect
symmetry: the flow field is invariant over a reflection in the centre plane, combined

with a spatial shift over half a streamwise wavelength.

Undulating waves show similarities with wavy Taylor vortices. At a curvature
ratio of 39.5 and a spanwise wavenumber (& = wd/\) of 2.5 the onset of undulating
vortices takes place at Re = 1.2Re, where Re. is the Reynolds number where
curved channel Poiseuille flow becomes unstable to Dean vortex flow. Onset of
twisting vortices is at Re = 1.96 Re. and their growth rate is higher than that of the
undulating mode for Re > 2.11Re,. Although these periodic flow oscillations are
not axially invariant or two-dimensional, they are in a sense 'fully developed’. This

periodic flow will be called the fully developed wave state.

Other differences between undulating and twisting vortices are their development
lengths and spanwise amplitude of the oscillations. Undulating waves take more than
one circumference to reach a fully developed state, making it difficult to observe
them experimentally. Twisting waves develop in less than half this distance. In
the undulating wave mode the spanwise locations of the vortex centres oscillate
considerably, while in the twisting wave mode the spanwise amplitude is small. The
spanwise oscillation of the undulating waves is also called sideslipping and it is one
of the most characteristic features of undulating waves. In the twisting wave mode
the directions of the inflow jets oscillate while the spanwise positions of the jets at
the outer wall move little. By comparing the features of the wavy flow states, Finlay

et al. suggest that Kelleher et al. (1980) observed twisting vortices.

Finlay et al. (1988) propose that twisting vortices are the result of a shear
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instability that is caused by inflectional spanwise profiles of the streamwise velocity.
These inflectional profiles are created by the inflow jets along the outer wall, which
move fluid with low streamwise velocity away from the wall. Finlay et al. use an
Orr-Sommerfeld analysis to calculate linear growth rates of the shear instability.
The fastest growing modes have short wavelengths in the same range as twisting

vortices, suggesting that the shear instability causes twisting vortices.

Bland and Finlay (1991) extended the numerical investigation of unsteady curved
channel flow and discovered a three-frequency flow at Re = 8.84Re, for a curvature
ratio of 7.5 and a spanwise wave number of 2.5. In this flow the traveling wave
is modﬁlated by two nonpropagating oscillations at incommensurate frequencies.
These two frequencies became phase locked at Re = 10.10Re,, leading to a two-
frequency modulated wave similar to that observed in Taylor-Couette flow. Since
these computations are based on spanwise periodicity, experimental verification of

these flows will be difficult.

Matsson and Alfredsson (1990) studied the flow iu a curved rotating channel.
The flow phenomena in a rotating straight channel are very similar to those observed
in a curved channel. In a rotating channel the transitions are induced by an
imbalance between Coriolis forces and pressure, rather than centrifugal forces and
pressure (see for example Finlay, 1989). Without channel rotation Matsson and
Alfredsson observed experimentally that the development length for both steady
and wavy Dean vortices decreases with increasing flowrate. Both a linear stability
analysis and experiments showed that depending on the direction of rotation the
Coriolis effects either counteract or enhance centrifugal effects. When centrifugal
a_nd‘ Coriolis effects a.lmbst cancel the flow transitions to steady and wavy Dean

vortices can be substantially delayed.

Matsson and Alfredsson (1992) used a hot wire anemometer to study twisting
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vortices in a curved channel with an aspect ratio of 29 and a curvature ratio of
38.5. The streamwise wavelength of the observed twisting vortices is close to
the spa.m&ise wavelength and the wave speed is about 80% of the bulk velocity.
The nondimendional frequencies of the streamwise velocity fluctuations at Dean
numbers of 160 and 235 collapse close to fd/v} = 1. The first harmonic was clearly
present. Matsson and Alfredsson show that the amplitude of the streamwise velocity
fluctuations is highest near the inflow regions between two Dean vortices. Drawing
an analogy with Gortler flow (Yu & Liu, 1991), they suggest that it is the spanwise

inflectional profile of the streamwise velocity that drives the secondary instability.

Experimental evidence for undulating Dean vortices was first reported by Ligrani
et al. (1992), using the same apparatus as Ligrani and Niver (1988) (aspect ratio 40,
curvature ratio 47.5). Ligrani et al. measured the three mean velocity components
using a five-hole pressure probe and used these data to calculate vorticity profiles.
In addition smoke flow visualization was used. Experimental results for both
undulating and twisting vortices were compared to the simulations by Finlay (1988)

and showed generally good agreement.

Ligrani at al. (1992) observed undulating vortices for 1.1Re, < Re <
3.4Re.. Onset of undulations is in good agreement with linear stability analysis.
The two principal characteristics of simulated undulating waves, long spanwise
wavelength and spanwise oscillation (sideslipping) were clearly observed. However,
the frequency of the oscillations was lower than that predicted from the linear
stability analysis. This discrepancy is possibly due to the fact that the linear
stability analysis is only valid for fully developed vortices, while in the experiment
the vortices are still developing when they become unstable to undulating waves.
Frequency spectra of the streamwise velocity show a broadband peak around 1-2

Hz. The experimentally observed undulating waves are sometimes interrupted by
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vortex splitting and merging or other convected disturbances.

Twisting vortices were observed by Ligrani et al. for 3.5Re. < Re < 5.0Re, —
5.4Re, although linear stability analysis predicts the onset of twisting vortices to
take place at Re = 2.11 Re. (Finlay et al., 1988). This difference may again be due to
the assumption of fully developed flow that was made in the simulations. Frequency
spectra are again broadband with maxima in the 70-100 Hz range. Contour plots
of time averaged streamwise velocity, streamwise vorticity, radial vorticity and

spanwise vorticity are in good agreement with the simulations.

Ligrani et al. (1992) propose the following scenario for the transition to turbulent
flow in a curved channel: after the transitions to Dean vortex flow and twisting Dean
vortices the regions with high velocity fluctuations (initially the inflow regions near

the outer wall) merge together to form a fully turbulent flow.

Undulating Dean vortices in a curved channel were also observed experimentally
by Matsson and Alfredsson {1993a) using a hot wire anemometer. The 270° duct
had an aspect ratio of 29 and a curvature ratio of 38.5 (see Matsson and Alfredsson,
1992). At 4.5 times the critical Dean number for transition to steady Dean vortices
the frequency spectrum of the streamwise velocity shows two broad peaks, one
around 8 Hz that is associated with long undulating waves and one around 135 Hz

associated with twisting waves.

Contour plots of the filtered streamwise velocity fluctuations for both modes
show that velocity fluctuations of twisting waves are located near the minimum of
the perturbation velocity (in the inflow region between two vortices, about a third
channel width from the outer wall). However, because twisting waves are shift-and-
reflect symmetric, a minimum in the velocity fluctuations is expected at the centre
line. Two separate maxima have indeed been observed at positions further upstream

(Alfredsson, private communication). The shift-and-reflect symmetry has also been
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confirmed by velocity traces (Matsson & Alfredsson, 1993b). Streamwise velocity
fluctuations of the undulating waves are highest near the two regions with spanwise
infection of the streamwise velocity (to the sides of the inflow region, about a fifth

channel width from the outer wall).

The time-averaged streamwise perturbation velocity is a measure of the
amplitude of the steady component of the developing Dean vortices. It reaches
a steady value after an initial linear growth phase, very similar to that observed for
steady Dean vortices (Bottaro et al., 1991). Matsson and Alfredsson (1993a) found
that the streamwise development of the amplitude of the oscillatory component
associated with twisting Dean vortices shows a very similar trend, with the maximum
at the same streamwise position as the steady component. This demonstrates that
the wavy mode develops parallel to the development of steady Dean vortices and

that it is not fully developed Dean vortices from which the wavy mode develops.

Le Cunff and Bottaro (1993) investigated the nature of the transitions to twisting
and undulating waves in curved channel flow. They performed linear stability
analyses of one-dimensional streamwise velocity profiles and extrapolated the results
to three-dimensional flow situations. Le Cunff and Bottaro study the stability of
streamwise and spanwise profiles obtained from a full numerical simulation of steady
developing Dean vortices (Bottaro, 1993). Both these profiles have inflection points,
although the inflection of the spanwise profiles is much more pronounced. Their
results show that twisting waves are the result of a shear instability of spanwise
profiles of the streamwise velocity. The predicted frequencies, wavelengths and
wave velocities compare well with previous results (Finlay et al., 1988; Ligrani et al.,
1992). For twisting waves it is always the sinuous mode that is more unstable than
the varicose mode. These results are qualitatively similar to the stability analyses of
a single wake profile by Sato and Kuriki (1961) and Mattingly and Criminale (1972).
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They conclude that undulating waves are probably related to normal distributions

of the streamwise velocity and that this instability is of centrifugal nature.

2.3.3 Developing Flow along a Concave Wall (Gértler
flow)

Boundary layer flow over a concave wall was named after H. Gortler, who
first studied this problem in the 1940s (Gortler, 1940; Goértler, 1941). The main
difference between Gortler flow and Dean flow is that Gértler flow is a boundary layer
phenomenon and therefore never reaches a fully developed state; the boundary layer
keeps growing and eventually breaks down into turbulence. The dynamic parameter
for this problem is the Gortler number, G = vgmém/u‘/m, where v, is the
freestream velocity and &, is the momentum thickness of a Blasius boundary layer

at a distance RO from the leading edge. G increases with downstream position.

Gortler flow experiments are often performed in geometries that are very similar
to those used for curved channel flow. Swearingen and Blackwelder (1987) for
example used a channel with aspuct ratio 8 and curvature ratio 21. The sidewall
boundary layers are removed through a suction slot just Before the leading edge of
the curved section. The effect of the inner wall can be limited by ensuring that the
boundary layer thickness is much smaller than the channel width, for example by

using air at high flow velocities.

The phenomena observed in Gortler flow are very similar to what was discussed
for curved channel flow, except that now the flow keeps developing until turbulent
breakdown of the boundary layer. At very low Gértler number (close to the leading
edge) a one-dimensional developing boundary layer flow is found, very similar to a

developing Blasius boundary layer. At a critical G a transition to steady streamwise
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counter-rotating Gortler vortices takes place as the result of a centrifugal instability.
The dimensionless spanwise wavelength Ag is defined as Ag = v{,m,\c/u‘/z/—ﬂ‘,
where Ag is the dimensional spanwise wavelength. Park and Huerre (1988) showed
that this primary instability in the Gértler problem is convective, which means that

Gortler vortices are likely to be very sensitive to upstream perturbations.

Farther downstream (higher G) time dependence appears in the form of traveling
waves superimposed on the Gortler vortices. The amplitude of the traveling waves
keeps growing until the boundary layer breaks down into turbulence. The literature
on Gortler flow was recently reviewed by Floryan (1991). Only a short review of

some of the more recent work will be given here.

Bippes and Gortler (1972) triggered the onset of Gértler vortices with a series
of lengthwise heating elements in the wall, which induced secondary circulation.
Spanwise oscillations of Gortler vortex pairs developed with the two vortices
oscillating in phase (sinuous mode). Turbulent breakdown was observed farther
downstream. Bippes (1972) imposed random disturbances at the inlet and found the
dimensionless wavelengths of the naturally occurring Gortler vortices to be around
Ag =210. This is in very good agreement with the linear stability result by Floryan

and Saric (1984). In Bippes’ experiments curved plates are towed in a water tank.

Ito (1980; 1985) observed a different mode of oscillations: a varicose mode with
two Gortler vortices oscillating out of phase. Because no external perturbation was
impoeed, the flow development is the result of amplified random disturbances in the
flow. This caused the Gortler vortex pairs to develop time dependence at varying
streamwise positions. Gortler vortex pairs seem to be connected periodically by
horseshoe shaped vortices. Ito also measured spanwise and normal profiles of the
streamwise velocity with a hot wire anemometer; both are inflectional. Spanwise

profiles of the streamwise velocity show minima near the inflow region between two
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counter-rotating vortices, very similar to observation by Sugiyama et al. (1988)
and Bara et al. (1992) in a curved duct. The inflow regions move fluid with low

streamwise velocity away from the outer wall.

Aihara and Koyama (1981) also observed the varicosé mode of the traveling
waves and horseshoe shaped vortices connecting two Gortler vortices periodically.
They suggest that the inflectional normal profiles are subject to a Kelvin-Helmholtz
instability, which generates periodic spanwise vortices. These vortices are bent into

a horseshoe shape due to the rotating action of the original Gortler vortices.

Blackwelder (1983) compared the transitions in Gértler flow with phenomena
observed in transitional and turbulent flat plate boundary layers. In these boundary
layers streamwise vortices followed by oscillations have been observed that are very

similar to Gortler vortices.

Swearingen and Blackwelder (1987) investigated the structure of Gértler
vortices in more detail using multi-probe hot wire anemometers and a smoke-wire
visualization technique. Their channel had an aspect ratio of 8 and a curvature
ratio of 21. The boundary layers were removed by suction just before entering the
curved section. Because naturally occurring disturbances were used to generate
Gortler vortices, oscillations develop at different streamwise positions. Both sinuous
and varicose modes were observed, although the sinuous oscillation mode was most

often found.

The naturally occurring spanwise wavenumber Ag is near 670. Although this
is higher than the result by Bippes (1972), who found Ag = 210, it is within the
region where an amplified disturbance is predicted by Floryan and Saric (1982) and
Hall (1983) based on linear theory. Guo and Finlay (1994) suggest that the larger
wavelengths observed by Swearingen and Blackwelder (1987) may be the result of
flow restrictions imposed by the inner wall and possibly a small misalignment of the
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experiment. Bippes used a curved plate towed in a - ter tank rather than a curved

channel,

Swearingen and Blackwelder measured streamwise velocity profiles in the
spanwise and normal direction. In the normal direction the streamwise velocity
becomes strongly inflectional with S-shaped velocity profiles. Spanwise velocity
profiles are also inflectional and show minima near the inflow regions. Swearingen
and Blackwelder note a similarity between the spanwise velocity profiles and a
typical unstable plane-wake profile (see for example Sato and Kuriki, 1961). It
was shown by Mattingly and Criminale (1972) that these profiles are unstable to
transverse oscillations and that the sinuous mode is always more unstable than the
varicose mode. The similarity suggests that a similar free-shear-layer-type instability

mechanism might cause the sinuous oscillations of Gortler vortices.

Contour plots of streamwise velocity fluctuations show maxima on either side
of the inflow regions. The locations of these maxima correspond very well
to the regions with high spanwise shear, where spanwise velocity profiles are
inflectional. These results show that the developing oscillations are indeed the
result of inflectional spanwise profiles of the streamwise velocity. Similar results
were obtained numerically by Le Cunff and Bottaro (1993) for the onset of twisting
vortices in curved channel flow (section 2.3.2). It follows that Gértler vortices do not
directly break down to turbulence. Instead, they set up a flow field that is unstable

to secondary instabilities (oscillations) that ultimately lead to turbulence.

Swearingen and Blackwelder (1987) also introduced a periodic acoustic
disturbance into the developing flow. The flow oscillations were found to lock in
to the forcing frequency between 70 Hz and 200 Hz. At lower forcing frequencies
the oscillations locked in to the first harmonic of the forcing. Streamwise velocity

fluctuations were measured using a rake of 12 hot wire sensors. Results show a 180°
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phase difference between velocity fluctuations on either side of a low-speed inflow
region, which corresponds to the sinuous mode of oscillation. In the centre of a
low-speed inflow region a frequency doubling was observed. This behaviour is very

similar to that of a two-dimensional wake (Sato & Kuriki, 1961).

Peerhossaini and Wesfreid (1988) used a laser light sheet to visualize cross
sections of developing flow in a curved duct with aspect ratio 2 and curvature ratio
1.5. Typically two to four pairs of Gortler vortices were observed. Peerhossaini and
Wesfreid observe two different oscillating modes. Because of the small aspect ratio

of the duct, the end walls could have significant effect on the flow. The study was
continued by Petitjeans (1992; 1993)

Yu and Liu (1991) calculated the growth rates of sinuous and varicose oscillations
of Gortler vortices using a three-dimensional analysis. They show that the
sinuous mode grows faster than the varicose mode, which is in agreement with
the observations by Swearingen and Blackwelder (1987). A contour plot of the
calculated streamwise velocity fluctuations of the sinuous mode corresponds well
with tae measured fluctuations by Swearingen and Blackwelder. The calculated
streamwise vclocity fluctuations of the varicose mode correlate well with the shear in
the normal direction, measured by Swearingen and Blackwelder. This might suggest
that the varicose mode is a result of inflectional profiles in the normal direction, in

agreement with the mechanism that was proposed by Aihara and Koyama (1981)

The spatial development of non-linear Gértler vortices was simulated by Lee and
Liu (1992) They solved the three-dimensional parabolized Navier-Stokes equations
with periodic boundary conditions in the spanwise direction using Patankar’s
method (1980). Their results are in good agreement with experiments by Swearingen

and Blackwelder (1987).

Liu and Domaradski (1993) extended simulations of Gértler vortices to the
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turbulent regime. They solved the three-dimensional Navier-Stokes equations with
periodic boundary conditions in both spanwise and streamwise directions using a
pseudospectral numerical method. Gértler vortices deeloped from imposed random
noise. The time-evolving solutions were converted into spatially developing ones by
means of a convection velocity. Although this method has been used successfully, the
selection of a suitable convection velocity is often rather arbitrary, as was pointed out
by Floryan (1991). The simulations agree well with the experiments by Swearingen
and Blackwelder (1987).

Liu and Domaradski performed stability analyses of various one-dimensional
streamwise velocity profiles in the spanwise and normal direction. They show that
the sinuous mode is the result of inflectional spanwise velocity profiles and that
the inflectional normal velocity profiles are responsible for the varicose mode of
oscillations. Liu and Domaradski confirm numerically the observation by Swearingen
and Blackwelder (1987) that the highest streamwise velocity fluctuations correspond
to the regions with high spanwise shear. An analysis of the kinetic energy balance

shows that turbulence production is also mainly associated with the spanwise shear.

2.4 Summary

Winters (1987) calculated the two-dimensional solution structure for flow in a
curved square duct. For a loosely coiled duct, the main branch consists of 2-cell flows
up to a first fold at Dn = 131. After a second fold at Dn = 113, the main branch
consists of 4-cell flows, which are unstable to asymmetric perturbations. There is
a dual solution region between Dn = 113 and Dn = 131. No stable solutions exist
between Dean numbers of 131 and 191. Recently Bara (1991; 1992) confirmed the

solutions on the main branch experimentally, including the dual solution region.
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Sankar et al. (1988) predicted the development of spatial oscillations between 2-cell
and 4-cell flows for a curvature ratio of 100 and 128 < Dn < 200.

The development of a 6-cell flow state in a curved rectangular duct with
aspect ratio 2, was reported experimentally by Sugiyama et al. (1983; 1988) and
numerically by Miyake et al. (1988) and Kajishima et al. (1989). The 6-cell flow
consists of two large Ekman vortices and two pairs of Dean vortices near the outer
wall. This 6-cell flow state is unstable and breaks down spatially into a 2-cell state.
Arnal et al. (1992) showed numerically the development of two pairs of Dean vortices

in a curved square duct at Dn = 764.

The development of counter-rotating Dean vortices in a curved channel has been
observed both experimentally (Kelleher et al., 1980; Bottaro et al., 1991; Matsson
& Alfredsson, 1992) and numerically (Bottaro, 1991; 1993). Guo and Finlay (1991;
1994) showed that Dean vortices can be unstable to spanwise secondary instabilities
that lead to vortex splitting and merging. Vortex splitting and merging has also been
observed experimentally (Bottaro et al., 1991) and is believed to play an important

role in the wavelength selection process.

Several authors have reported oscillations in curved pipes and square ducts
(Sreenivasan & Strykowski, 1983; Tsuda & Ohba, 1984; Ohba et al., 1986; Belaidi
et al., 1992; Arnal et al., 1992; Webster & Humphrey, 1993). These oscillations all
seem to be related to an instability of the secondary inflow jet in the centre of the
inner wall. Tere is little consistency between the observations, and no numerical

evidence is available.

Flow oscillations in a curved channel were first observed by Kelleher et al. (1980)
and later by Ligrani and Niver (1988). Similar oscillations were observed along a
curved plate by Bippes (1972). Two distinctly different traveling wave modes have

been observed experimentally and numerically in both curved channel flow and
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Gortler flow. Because curved channel flow reaches a fully developed state it is easier

to study numerically than Gortler flow.

Finlay (1988) predicted numerically the existence of short wavelength twisting
waves and long wavelength undulating waves in a curved channel. Both modes are
sinuous. Undulating waves show similarities with wavy Taylor vortices. Twisting
waves have the highest growth rates and are most often observed experimentally
(e.g. Ligrani & Niver, 1988; Matsson & Alfredsson, 1992). More recently undulating
waves have been observed experimentally by Ligrani et al. (1992) and Matsson and

Alfredsson (1993a).

Several authors have shown that twisting vortices are the result of a shear
instability of inflectional spanwise profiles of the streamwise velocity (Finlay et al.,
1988; Matsson & Alfredsson, 1992; Le Cunff & Bottaro, 1993). These profiles have
minima near the inflow regions between two Dean vortices, where low velocity fluid
is transported away from the outer wall. The strongly inflectional spanwise profiles
are similar to profiles of two-dimensional wakes (Sato & Kuriki, 1961), which also
have been shown to undergo a shear instability (Mattingly & Criminale, 1972). It
has been suggested that undulating waves are related to normal distributions of the
streamwise velocity and that this instability is of centrifugal nature (Finlat et al.,

1988; Le Cunff & Bottaro, 1993).

The two oscillating modes observed in Gortler flow are a sinuous mode (e.g.
Bippes & Gortler, 1972) and a varicose mode (e.g. Ito, 1980; 1985). Both kinds
of waves have streamwise wavelengths that are close to their spanwise wavelength.
The sinuous and varicose modes were observed simultaneously by Swearingen and
Blackwelder (1987). The sinuous mode has been related to spanwise inflectional
profiles of the streamwise velocity (Swearingen & Blackwelder, 1987; Yu & Liu,
1991; Liu & Domaradzki, 1993). The instability mechanism is very similar to that
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proposed for twisting Dean vortices in a curved channel.

The varicose mode is characterized by horseshoe shaped vortices that periodically
connect two Gortler vortices. It has been suggested that these horseshoe vortices
are generated by a Kelvin-Helmhotz instability of inflectional normal profiles of
the streamwise velocity (Aihara & Koyama, 1981). Other authors have also shown

that the varicose mode is related to the normal profiles (Yu & Liu, 1991; Liu &
Domaradzki, 1993).

In this chapter, the literature on flow in curved ducts and channels, and flow
along a concave wall was reviewed. It is clear that there are still many unresolved
issues related to curved square duct flow that are worth investigating. First there
is that of fully developed flows at Dean numbers above 131. Since the 4-cell flow
is unstable to asymmetric perturbations the question is what will happen farther
downstream. Sankar et al. (1988) have predicted the development of steady spatial
oscillations, but the observed traveling waves in curved channel flow and Gértler
flow would suggest the existence of time dependent solutions. Another area that
has not been studied systematically, is that of developing flow in curved square duct

at Dean numbers above 150. This is the starting point of the present study.
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Experimental System

The experimental apparatus used in this study was designed by Bara (1991; 1992)
for the experimental investigation of developing and fully developed flow in a curved
duct of square cross section. Only minor modifications were made to this apparatus.
The main experimental methods used in this study are fluid velocity measurements
and flow visualization. Streamwise or spanwise velocities were measured with a
one-dimensional laser-Doppler anemometer (LDA). Two methods of fluorescent dye
flow visualization were used: the secondary flow was studied by illuminating a cross
section of the duct with a laser light sheet; sideview pictures of streamwise flow
patterns were taken by illuminating a 20° section of the duct. Both the LDA
and the flow visualization methods were modified significantly after Bara’s study.
The description of the equipment and the experimental procedures focuses on these
modifications. Detailed specifications of the experimental apparatus can be found

in Bara (1991).

40
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3.1 Experimental Apparatus

A schematic of the experimental setup is shown in figure 3.1. The apparatus
has a curved section with a square cross section of 1.27 cm and a curvaiure ratio,
R. = R/a, of 15.1 (figure 3.2). The curved duct is 270° long and is aligned in
a horizontal plane. The curved section was machined out of a 3.3 cm 'hick disk
of plexiglass. A 1.27 cm square groove was cut into the curved wall of the disk
and covered by a 1.5 mm thick sheet of plexiglass. A stilling chamber and a 1 m
straight inlet section were designed to provide a fully developed flow field at the
inlet of the curved section for flow rates up to Dn = 225. A detailed schematic of
the stilling chamber is shown in figure 3.3. The stilling chamber, inlet section and
curved section were made out of plexiglass, in order to make velocity measurements
and flow visualization possible. The apparatus can be rotated in a horizontal plane
around the centre of curvature. This allows velocity measurements at different
streamwise positions in the duct. The LDA traversing system provides vertical and

radial movement of the measuring volume.

A constant pressure drop over the apparatus is maintained by two constant head
tanks, approximately 3.5 m above each other, and an overflow reservoir. From the
lower overflow tank the water is either returned to the reservoir or to the drain,
depending on whether the system is running in an open or a closed loop. Water is
pumped from the reservoir to the upper overflow tank. The flow rate is controlled by
two Brooks 600 mm model 6-1110-24 rotameters, each with a maximum flow rate of
0.7 1/min. The mass flow rate was determined by collecting the outlet of the iower
overflow tank over a timed interval. A hand held digital stopwatch with a resolution
of 0.01 s was used for the timing and a Mettler PC 8000 electronic balance with a

resolution of 0.1 g was used to weigh the sample.
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Figure 3.2: Detailed schematic of the curved duct section.
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Figure 3.3: Detailed schematic of the stilling chamber with dye injection system.
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In order to limit the buoyancy driven secondary flows and viscosity variations,
the temperature of the water needs to be controlled. A combination of a cooling coil
and a heating element connected to a setpoint control mechanism keeps the water
temperature in the reservoir at 23.1°C £0.1°C. Bara (1991) showed that temperature
differences in the fluid should be kept below 0.25°C in order to maintain a level of
buoyancy driven secondary flows below 1% of the mean flow velocity when the
Reynolds number, Re > 400 (Dn > 100). The room temperature, measured near
the stilling chamber, is typically 23.1°C £0.5°C. At a temperature difference of
0.5°C between the working fluid and the surroundings, the temperature increase
of the water as it flows through the system from the reservoir to the outlet of
the lower overflow tank is less than 0.1°C. This shows that heat transfer between
the surroundings and the ﬂuid is negligible and th~t temperature differences are
well below 0.25°C. The water temperature is verifieq in the stilling chamber by a

Fisherbrand 15-000 A glass thermometer with a resolution of 0.1°C.

At 5° from the inlet of the curved section, a pin with a diameter of 0.2-0.5 mm
can be inserted in radial direction through a hole in the outer wall at z = 0. Five
different pins were used: 33, 29, 27, 26 2nd 25 gauge with diameters of 0.2, 0.33,
0.41, 0.46 and 0.5 mm respectively. The pins were bent slightly where they enter the
flow. This results in a conical movement of the end of the pin that is in the flow when
the other end is rotated and allows the introduction of symmetric and asymmetric
perturbations. A Masterflex model 7020-70 peristaltic pump without its casing can
‘be used to compress the 2 cm inside diameter tygon hose that is connected to the
stilling chamber periodically. This creates a periodic flow disturbance. The distance
over which the hose is compressed can be adjusted by moving the hose up and down.
This is illustrated in figure 3.4. The forcing frequency is set on a scale from 0-15 !z
or 0-150 Hz.
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Figure 3.4: Detailed schematic of the forcing system.

3.2 Velocity Measurements

Fluid velocities were measured with a one-component laser-Doppler anemometer
that can measure either horizontal (streamwise) or vertical (spanwise) velocities.
The system uses a 3 W Argon-ion laser and is operated in backscatter mode. Dantec
55X modular optics are used in combination with a Dantec 55N10 frequency shifter
and a Dantec 55N20 Doppler frequency tracker. Dantec 57H10/57H11 traversing
mechanisms allow vertical and horizontal (parallel to the optical axis) movement
of the measuring volume. The traversing system is controlled through a Dantec
57G15 traversing interface by a personal computer, using Dantec’s atTRACKtion
software. The traversing mechanisms have a backlash of less than 0.1 mm and
a repeatability of 0.017 mm: The atTRACKtion software, in combination with a
MetraByte DASH-16 analog to digital converter (ADC), is used to collect data. Only
raw data files were collected; data analysis software was developed using Borland’s

Turbo Pascal, because this provides much greater flexibility than the atTRACKtion
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software and allows for easy correction of curvature effects.

The MetraByte A/D converter has a resolution of 12 bits (count ranging from
0-4095). The ADC was calibrated by determining the output count as a function of
the'frequency of a sine wave, generated by a wave generator. This was done for two
different tracker range settings. The calibration data are shown in figure 3.5. The

calibration curve was approximated by the function

f/Range = 1.900 * 1074 (ADC Count)1°030 (3.1)

where f is the measured frequency. Calibration equation 3.1 was used by the data

analysis program.
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Figure 3.5: Tracker calibration curve: .A.}." count vs. measured frequency.
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The blue line (488 nm in air) of a Coherent Innova 90-3 laser was used to take
velocity measurements; the laser power was typically 600 mW. With a 80 mm focal
length front lens the measuring volume has a diameter of 0.017 mm and a length
of 0.12 mm. Silicon carbide particles with a mean diameter of 1.5 x 10~® m and a
density of 3.2 x 10% kg/m? were used to generate Doppler signals. Since the velocity
that is measured is the velocity of the particles, the accuracy of the measurement
depends on how closely the particles follow the flow. The settling velocity of the
particles, based on Stoke’s law and assuming that the particles behave like spheres,

is 3 x 107 m/s and was neglected compared to fluid velocities.

The laser light that is scattered by the particles is Doppler shifted by an amount
that is proportional to the particle’s velocity in the plane of the crossing beams
and perpendicular to the optical axis. The frequency tracker measures the Doppler
frequency of this scattered light. The particle velocity can be calculated from the

measured Doppler shift, using the relation

, A

% = 2sin(g/2) ¢ (3-2)

where: v}, = velocity of particle
A = wavelength of iaser light
¢ = crossing angle between beams
Ja = measured Doppler frequency

The calibration factor, ¢; = \/(2sin(¢/2)), depends on the wavelength of the
laser light and the beam crossing angle. As the crossing point is traversed through
water the laser light wavelength is constant, but because of the curved geometry, the
beam crossing angle depends on the traversed distance. This effect of the curvature
will be discussed in detail in section 3.4. Bara (1991) showed that the calibration

factor can be determined accurately by using the fully developed inlet profile at low
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flow rates as a velocity standard. This method was followed throughout this study.

When positioning the measuring volume, first the apparatus was rotated to the
required streamwise position, §. The radial direction of the apparatus was aligned
with the optical axis so that traversing the measuring volvne along the optical axis
corresponds to traversing in the radial direction of the apparatus. The outer wall
pear z = 0 was located by finding the radial position where wall reflections are at
a maximum. Next, the centre of the bottom wall (z = 0) was located, after which
the outer wall at z = 0 was located again. The measuring volume was positioned

with the outer and bottom walls as references.

3.3 Flow Visualization

Two types of flow visualization were used: secondary flow patterns were studied
by visualizing cross sections of the duct and sideviews showed the streamwise
development of the flow. Both methods make use of fluorescent dye; a 1 x 10~3 M

solution of Rhodamine 6G was used for all experiments.

A schematic of the setup used for flow visualization of cross sections of the duct
is shown in figure 3.6. After the laser beam is reflected by the prism bridge, the
beam either enters the LDA optics, or enters an input coupler for a 250 ym multi-
mode fiber optic cable. This fiber optic cable is connected to a portable laser light
sheet, created by a combination of two spherical lenses and a 10 mm focal length
cylindrical lens. At the beam waist, the laser sheet is 1 mm wide and 2.5 cm long.

The laser power of the sheet was typically around 500 mW.

Pictures of cross sections were taken through a plexiglass viewing block that

corrects for some of the curvature effects. The viewing block can be positioned
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Figure 3.6: Schematic of the setup used for cross section pictures.

anywhere along the duct. The gap between the viewing block and the duct was
filled with a thin water film.

For the sideview pictures, a 10-20° section of the duct was illuminated from
above by shining a light beam from a slide projector on a mirror that reflects the

light down. This setup is shown in figure 3.7.

The dye can either be injected continuously, creating a thin streak, or as a slug.
In both cases the dye is injected just before the inlet contraction in the stilling
chamber through a 1 mm piece of tubing, the end of which was bent in the flow

direction. The piece of tubing can be moved up and down through a seal in the top
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Figure 3.7: Schematic of the setup used for sideview pictures.

wall of the stilling chamber and also rotated to adjust the dye injection point.

When the dye is injected continuously, a reservoir with dye is connected through a
1 mm inside diameter tygon tube to the injection tubing in the stilling chamber. This
is shown in digure 3.3. The dye flow is driven by the slightly less than atmospheric
pressure in the stilling qhamber. The flowrate can be adjusted by moving the dye
reservoir up and down. The injection point was very carefully positioned such that
the streak of dye was vertically centered. In those cases were a pin was inserted
this meant that the streak of dye was split in half by the pin, creating an initiall;
symmetric dye pattern.

The second method of dye injection uses a syringe pump that is switched on for
a short period of time, causing 1-2 ml of dye to enter the flow. The slight increase in

flow rate causes a small disturbance of the flow, which dies out quickly. As the slug of
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dye moves through the observed area of the flow, the pattern changes continuously.
The cwarest structures were usually observed near the end of the dye slug.

Dye patterns are filmed with a Sony CCD-V801 video camera recorder and stored
on 8 mm video tape. Frames can be selected from this movie by playing the tape
back through the NeXTtv application on a NeXTdimension computer. A variety

of image processing tools on the NeXT system was used to scale and enhance the

pictures.

3.4 Curvature Effects

The curvature of the outer wall of the duct affects the distance traversed in
water by the crossing point as well as the calibration factor in water. By passing
a laser beam through a surface between materials with different refractive indices,
the angle between the laser beam and the normal will change according to Snell’s

law of refraction:

M sind; = nusind, (3.3)

where 7 is the refractive index and 6 is the angle with the normal to the surface.
Therefore, the angle between the two laser heams of the LDA is different in water
than it is in air. If the surfaces that the laser beams pass through were flat, than

the crossing angle in water, ¢, would be constant:

npsin(%) = nasin(2) (3.4

where a and f stand for air and fluid. In that case the ratio of the distance traversed

in air and the distance traversed in water is & constant, given by 1, /ns-
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The LDA calibration factor in a certain medium, ¢y = A/(2sin(¢/2)), is a
function of the crossing angle and the wave length in that medium. The wave

length is given by:

A=mA (3.5)

where ) is the wave length in vacuum and A, is the wave length in a medium with
refractive index 7. Therefore, when the laser beams pass through a flat surface, the
effects on the crossing angle and the wave length cancel each other out, leaving the

calibration factor unchanged.

By tréversing through a curved wall, this is no longer the case. When a laser
beam passes through.'a curved wall, the beam is refracted twice, once at the outer
surface, and once at the inner surface of the wall (see figure 3.8). The angle of
refraction at the outer surface (6,,) is different than the angle of incidence at the
inner surface (6,2). Therefore, if the laser beams are traversed through a curved
surface, the crossing angle, 8., and the traversing ratio depend on the angle of
incidence at the outer surface, 6,; 0, in turn depends on the traversed distance in
air, l,.

The distance traversed in air, l,, can be divided into two components: the
distance traversed to rhove the crossing point from the outer surface of the plexiglass
to the inner surface of the plexiglass, l,;, and the distance traversed in air while the

crossing point is in the fluid, Al,. The distance traversed in the fluid, I, is given by

Iy = —T + Ry(1 — cosaz) (3.6)

Bara (1991) derived an expression for I; as a function of l,, that includes a

number of iterative steps. The results of these calculations are shown in figure 3.9.
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Figure 3.8: Schematic of laser beam passing through a curved surface.
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This relationship was approximated by the function ! 7 = 1.337 Al, %8 which has

an average deviation of 0.2%.

The relationship between the LDA calibration factors in air and in water is given

by

¢y _ Mo sin(d/2)
Eﬁ._: T nysin(0./2) (3.7

Bara (1991) also derived an expression for this calibration correction factor. The
results are shown in figure 3.10. The approxirﬁate solution, cs¢/csq = 0.9975 —
1.691 % 103 1,9%7 g accurate to within 0.0004% on average. The approximate
solution for both the traversing ratio and the calibration correction factor were

used by the data analysis program.

3.5 Experimental Errors

An experimentally measured quantity usually deviates from it’s true value by an
amount called the experimental, or measurement error. Because the true value of
a quantity is generally unknown, the magnitude of the measurement error can only
be estimated. In order to get an idea of the magnitude of experimental errors and
the importance of different sources of uncertainty, an error analysis was performed

for the Dean number, the calibration factor, and for the streamwise velocity.

A distinction must be made between errors that are the same each time a quantity
is measured (systematic errors) and errors with randomly distributed magnitudes
(random errors). Random errors can be reduced by averaging the measured quantity
over a number of measurements, while systematic errors can not be reduced, other

than by eliminating the source of the error.
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3.5.1 Dean Number

In this study, the Dean number, Dn, is defined as

Re - v’gd;, m 2\/—
VR. v/R. p/R(a+b)

where: Re = Reynolds number
R, = curvature ratio, R/a
vy = mean streamwise velocity, 7 /(pab)
d, = hydraulic diameter, 2ab/(a + b)
m = mass flow rate
p, v = density and kinematic viscosity
a, b = duct dimensions

Dn = f(m,p,v,R,a,b) (3.8)

The error in Dn depends on the individual errors in m, p, v, R, a and b. The
principle of propagation of variances can be used to derive an expression for the
variance of Dn as a function of the variances of the different variables that Dn

depends on:

af af af of o5\’ af\’
2 —3 —
"""‘(am) +(6p) +(a) +(6R %%+ \3a) %\
(3.9)
where 0%, is the variance of the Dean number. I: i: assumed that the variables are

symmetrically distributed random variables and statistically iudependent (Schenck,

1979). Substitution of equation 3.8 into equation 3.9 gives:

opn _ |04 02 o2 1o% 102
e = \'m2 R R R (3.10)

apn/Dn is the relative error of the Dean number. The variances of the different
variables, required to evaluate equation 3.10, are not known. Therefore, an estimate

of the variances, s2, must be used.
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Because in this study higher flow rates were used than in the work by Bara
(1991), the error in the measured flow rate is slightly higher than the one used by
Bara. With a t; pical error of 0.1 s in a time interval of on average 40 s for a flow rate
of Dn = 220, the relative error of mn is 0.25%. This error is directly proportional to
the flow rate. The rel#tive errors of p, v, R, and a were estimated by Bara at 0.002%.
0.25%, 0.013% and 0.2% respectively, and are based on a temperature variation of
0.1°C and a machining tolerance of +0.0025 cm. This results in a relative error of

0.4% for the experimentally det~rmined Dean number.

3.5.2 LDA Calibration Factor

The particle velocity is calculated from equation 3.2, where A/(2sin(¢/2)) is the
calibration factor, ¢;. An error in the calibration factor introdnces a systematic
error in the calculated velocity. The calibration factor can be cdztermined either
by measuring the crossing angle, ¢, directly, or by using a velocity standard. Barz
(1991) used three different calibration methods: direct measurement of 9, a spinning
wheel as velocity standard, and the inlet velocity profile as velccity standard. He
demonstrated that at flow rates up to Dn = 200 the inlet velocity profile is fullv
developed, and that this inlet velocity profile provides an accurate velocity standard

for calibration purposes.

Bara (1991) derived the following equation for the relative error of the calibration

factor, determined from the inlet profile velocity standard:

o o? o? o2 o2
£ = |Zm b’ 2a bt /] -
o J = + o + 2a2 + 72 (3.11)

and estimated the error in the calibration facior at 0.3%. The error in the duct

dimensions, a and b, adds up to more than 85% of the total error in the calibration
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factor. Unfortunately, it is not easy to obtain a tolerance smaller than +0.0025 cm
when machining plexiglass. This estimate does not include the output bias of the

tracker processor, which will be discussed in the next section.

3.5.3 Velocity Measurement

The particle velocity is calculated from equation 3.2 (vj = ¢; * fa). Therefore,
the error in the velocity depends on the errors in the calibration factor and the

measured Doppler frequency:

Oy o? ol
% _ (% L %k 3.12
vp L (8.12)

An error in the calibration factor introduces a systematic error in the velocity.
There are two independent sources of uncertainty in the measurement of the Doppler
frequency: the random error associated with fluctuations in the measured Doppler
signal and the systematic error introduced by the bias in the output of the tracker
processor. Positioning errors, which are due to incorrectly locating the duct walls,
also contribute to the error in the measured velocity. The measurement of the
spanwise velocity component is very sensitive to the alignment of the LA optics.

Each of these errors was investigated.

It was demonstrated in the previous section that the uncertzinty in the

calibration factor introduces a systematic error in the velocity of 0.3%.

The Doppler frequency, determined by the tracker processor, varies randomly
as a result of random fluctuations in the flow and measurement noisc. Part of the
measurement roise is the result of the random phase diiferences between consecutive
particles in the measuring volume (Drain, 1980). This is called phase noise. Another

source of_measurement noise js introduced if the laser beams do not intersect in the
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beam waists, in which case the interference planes are not parallel (Hanson, 1973).
It will be shown in the next chapter that the relative error of the Doppler frequency,

also called the signal fluctuation, is around 1%.

Several factors have to be taken into account when deciding on the number
of velocity values per sample. When mcasuring steady flow phenomena, the
random signal fluctuations can be reduced by averaging over a number of velocity
measurements. When a randomly varying quantity is averaged over a large number
of sample values, n, the relative error of the means is lower by a factor of \/n
compared to the original relative error (Harnett, 1982). Therefore, averaging the
Doppler frequency over 512 values reduces the relative error of the Doppler frequency
from a typical 1% to 0.04%, well below other sourres of uncertainties. This is only

true if the average velocity does not change between different samples.

Some of the steady and time dependent flow phenomena that will be discussed
later were very sensitive to unwanted and uncontrollable disturbances. This made
it necessary to keep the total measr-ing time of a velocity profile or amplitude
distribution to a minimum. Steady velocity profiles were therefore measured at 42
to 63 positions with 512 values per position, sampled at 106 Hz. With a time delay
of 1 second between cousecutive positions, the measurement time for a profile is
between 4.3 and 6.4 minutes. If much more time is used for the measurement, the

chance that the flow is disturbed during the measurement becomes significant.

The time dependent flow phenomena were characterized by determining the
frequency content of velocity samples. The resolution of a frequency spectrum is
equal to the inverse of the total measuring time of a sample. The obsexved periodic
phenomena were typically in the 1-10 Hz range and required a frequency resolution
of at most 0.5 Hz, and preferably smaller. By sampling 512 times at a frequency

of 100 Hz, the frequency resolution of the spectra is 0.2 sec. By measuring velocity
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traces at 61 positions, the total m2asuring time was limited to 6.2 minutes.

The output of the tracker processor is sensitive to wall reflections and to the
tracker range and gain settings. When measuring near the wall, reflections from
the wall at the shift frequency start to dominate the Doppler signal. Bara (1991)
showed that in this region the tracker processor measures low. This indicates that
the tracker processor locks on to a frequency between the Doppler frequency of the
particles and the lower shift frequency of the wall reflections. The wall reflections

are significant only within 1 mm from the wall.

The measured Doppler frequency shows a slight dependence on the tracker range
and gain settings. These systematic errors can not easily be reduced. However, with
proper seeding the error introduced is less than 0.5%. This is the main contribution
to the error in the measured Doppler frequency. Combining the errors due to the
signal fluctuation (0.04%) a:.<i the tracker settings (0.5%), gives a total error in the
Doppler frequency of 0.5%.

Substitution of relative errors in the calibration factor and Doppler frequency of
0.3% and 0.5% respectively, gives an estimated error iz the streamwiz: velocity of

0.6%.

Some of the measured velocities are non-dimensionalized by dividing the velocity

by the average streamwise velocity in a cross section of the duct:

Vo =

m

M

where: vy = non-dimensional streamwise velocity
vj = dimensional streamwise velocity
v = average streamwise velocity
¢y = calibration factor
fa = measured Doppler frequency
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p = density
a, b = duct dimensions
m = mass flow rate
In that case, also the errors in 71, p, a and b must be taken into account when

evaluating the error in the streamwise velocity. Using the me:%cd of propagation of

variances, the uncertainty in a calculated value of v, is:

2 2 2 2
Oy, ac! 0' Oq (2N
Zo + L +2-3 + =5 3.14
L \' fd P2 Ti? (314)

As shown previously, the relative errors in ¢y, fs, p, a and m are 0.3%, 0.5%,
0.002%, 0.2% and 0.1% respectively. Substitution of these values into equation 3.14

gives an estimated error of the non-dimensionalized velocity of 0.7%.

An error in the location of the outer or bottom wall introduces a systematic
error in the positioning of the crossing point. When locating the outer wall, the
crossing volume is moved to the position with maximum wall reflections. There is
an uncertainty of about 0.2 mm in locating the outer wall. To eliminate any effects
of the backlash of the traversing mechanism, the outer wall was always located while
moving inwards. Because of the more defined reflections at the bottom wall, this

wall can be located to within 0.1 mm.

Systematic errors in the positioning have the largest effect on the measured
velocity in rsgions with high velocicy gradients, which is generally near the walls.
The error in the inlet velocity caused by a positioning error of 0.2 mm in the radial
position is 0% in the centre, 3% at z = 0.25 and about 10% at z = 0.4. Although
the relativc error near the wall becomes significant, the absolute error remains
reasoLably mall because of the lower veiocities in this region. Wher: measuring a
profile in radial direction, a systematic error in the radial positioning can sometimes

be detected by comparing the measured profile with a numerical simulation. The
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positioning error could then be corrected for by shifting the profile in radial direction.

The same is true for a vertical positioning error when measuring a spanwise profile.

The laser Doppler anemometer measures the velocity component in the plane
of the crossing laser beams and perpendicular to the optical axis. Because the
streamwise velocity is generally more than an order of magnitude larger than the
spanwise velocity, the alignment of the LDA optics is critical when measuring
spanwise velocities. A small error in the alignment of the optics can result in a
large contribution of the streamwise velocity to the measured signal. The accuracy
of the alignment is difficult to estimate, but is at least 1°. An alignment error of 1°

can cause an error in the spanwise velocity of 5%.

3.5.4 Summary of Experimental Errors

The error in the experimentally determined Dean number is estimated at 0.4%.
Wher the calibration factor is determined with the inlet v:locity profile as a velocity
standard, the estimated error in the calibration factor is 0.3%. The error in the
streamwise velocity, not including positioning errors, is estimated to be around 0.6%.
Wﬁen the streamwise velocity is non-dimensionalized, the error increases to 0.7%.
Velocity errors of more than 0.7% are the result of tke wall location uncertainty,
which results in incorrect positioning of the measuring volume. These velocity errors
depend on the velocity gradients; the error is generally less than 1% near the centre
of the duct and can be as high 10% near the walls. Errors in the spanwise velocity

that are the result of the misalignment of the LDA optics are estimated at at least
5%.
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Inlet Flow

Flow phenomena in open systems such as a curved duct can be very sensitive
to upstream flow disturbances. Velocity fluctuations at the inlet of the curved
section should therefore be kept to a minimum. Also, numerical simulations are
most accurate when the experimental inlet velocity profile is used as inlet condition
for the simulations. For these reasons, tlie stilling chamber and 1 m inlet section
were designed to provide a steady and fully developed, one-dimensional, velocity

field at the inlet of the curved section.

Based on the measurements by Goldstein and Kreid (1967), the flow would reach
a fully developed inlet profile for flowrates up to a Dean number of 225 (Re = 875).
Bara (1991) showed that for Dn up to 200 the inlet flow is indeed fully developed.
In this study however, flow rates as high as Dn = 600 (Re = 2335) were used. This
made it necessary to have a close look at the inlet flow conditions at these higher
flow rates. First, the turbulence intensity of the inlet flow is investigated. Second,
measured radial and spanwise inlet profiles are compared to the analytical soi ‘ion
for fully developed laminar flow in a rectangular duct. Last, slow fluctuations of the

velocity, which are a measure of the steadiness of the flow, are examined.

63
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4.1 Turbulence Intensity

Flow disturbances, whether these are induced or inherent to the experimental
system, play an important role in this study. It is therefore essential to quantify
the inherent fluctuations of the flow entering the curved section. Measured signal
fluctuations are a combination of velocity fluctuations and measurement noise. The
magnitudes of both these contributions to the total fluctuations were determined.
Frequency spectra were calculated in order to determine whether there are any
dominant frequencies present in either the velocity fluctuations or measurement

noise.

The root mean square of the streamwise velocity provides a measure of the

magnitude of the velocity fluctuations. This is defined by:

Vi = \]%5":(«4.. )2 (@.1)

i=1

where: \/v? = root mean square velocity
n = number of velocity values
v, = the ith velocity value of a sample
vp = mean sample velocity

The turbulence intensity vg,; is defined as \/7,/04’,, or the root siiep.s -\jrare
of the streamwise velocity fluctuations, divided by the mean flow veiucivy. The
signal fluctuation vy, is the root mean square of the measured signal £uc-nations
divided by the measured mean velocity. Fluctuations of the measured signal are a
combination of velocity fluctuations and measurement noise, vy mn. For ide::endent

measurement noise one can show that

vg,c[ = vg,ti + vg,mn (42)
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It is not possible to separate these two effects completely.

Streamwise velocity signal fluctuations were measured for a number of flow rates
by sampling 1024 velocity values at 100 Hz in the centre of the duct. The measured
signal fluctuations vary between 2 and 17% .a.nd are very sensitive to the tracker
range and shift settings (see table 4.1). Changing the range or the frequency shift
settings does not affect the turbulence intensity, which is an inherent property of
the flow, but may affect the measurement noise. Therefore, any variation in the

measured signal fluctuation can be attributed to the measurement noise.

Re Dn Signal | Range | Shift
fluct. (%) | (kHz) | (kHz) =
383 984 7.50 3-33 -20
16.55 | 10-100| <+10
772 198.5 2.78 3-33 -40
6.60 10-100 | +10
1159 298.2 4.01 10-100 | -10
10.44 | 33-333| +35
1548 398.2 3.05 10-100 | -50
8.11 33-333 | +35
1951 501.9 3.40 10-100 | -100
5.71 33-333 | +35
2346 603.3 2.99 10-100 | -150
5.70 33-333 | +35

Table 4.1: Mea;ired unfiltered signal fluctuations for different flow rates and
range and shift settingsat =0, 2 =0.
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Because the measured signal fluctuation is a combination of the turbulence
intensity and the measurement noise, the tnurbulence intensity at each flowrate is
lower than the lowest measured signal fluctuation. At a Reynolds number of 383,
corresponding to a Dean number of 98.4, the flow is expected to be truly laminar.
This is supported by the excellent agreement between the measured inlet profiles
and the theoretical profile for laminar flow, to be discussed in the next section.
For laminar flow the velocity fluctuations would be zero, indicating that all the
measured signal fluctuations are the result of measurement noise. It is shown in
table 4.1 that the minimum signal fluctuation does not increase with increasing
flow rate, suggesting that also at the higher flow rates all, or most of the signal

fluctuations are caused by measurement noise.

Frequency spectra for flow rates of Re = 395 and Re = 1951 are shown in
figures 4.1 and 4.2. The highest sampling frequency that can be obtained with the
atTRACKtion software is 9500 Hz. This frequency is close to the sampling limit of
the tracker, as well as the rate of particles crossing the measuring volume. In order
to reduce the signal fluctuation, a first order low pass filter was used (BW1 setting
on Dantec 55N20 frequency tracker). The effect of this filter is shown in figures 4.3
and 4.4. Measured fluctuations of the filtered velocity signal at different flow rates

and range and shift settings are given in table 4.2.

When a velocity profile is measured, the range and frequency shift settings must
be chosen such that the Doppler frequencies corresponding to all the velocities in
the profile are within the set frequency range. The appropriate frequency range
for a certain profile is determined by the maximum velocity difference within that
profile. When very low velocities near the walls are measured, the Doroler frequency
is close to the frequency shift itself. In that case a positive frec - ~.. > shift within

the processor’s frequency range must be used. However, when : “..:'e velocity is



CHAPTER 4. INLET FLOW 67

[

le-1

L 1!7'.'...' r T rYy
. .
: .

Energy (mm?%/s)

le-2

Top:  Range 10-100 kHz
Bottom: Range 3-33 kHz : : _
le-3 — ' — '
0.1 1 500

Frequency (Hz)

Figure 4.1: Inlet velocity spectra for Re=395 (Dn=101.6). Spectra were
averaged over 7 blocks of 4096 values each, sampled at 1000 Hz.
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Figure 4.2: Inlet velocity specira for Re=1951 (Dn=501.9). Spectra were
averaged over 7 blocks of 4096 values each, sampled at 9500 Hz.
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Figure 4.3: Filtered and unfiltered inlet velocity spectra for Re=395
(Dn=101.6). Range 10-100 kHz.
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Figure 4.4: Filtered and unfiltered inlet velocity spectrum for Re=1951
(Dn=>501.9). Range 33-333 kHz.
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" Minimum in duct centre Centre region of profiles

Re Dn Signal | Range | Shift Signal | Range | Shift

fluct. (%) | (kHz) | (kHz) {| fluct. (%) | (kHz) | (kHz)
397 102.1 ‘0.52 3-;5 -20 0.8 ) 10-100 | +10
774 199.1 0.39 3-33 | -40 0.6 e 410
1162 298.9 0.51 10-100 | -10 1.2 AR L4 | +35
1558 400.8 0.37 10-100 | -50 0.9 J 3 +35
1945 500.2 0.39 10-100 | -100 0.9 33-333 | +35
2329 599.1 0.42 10-100 | -150 0.9 33-333 | +35

Table 4.2: Minimum measured fluctuations of the filtered velocity signal in
the centre of the duct and average filtered signal fluctuations in the

centre region of measured profiles.

measured, only the Do-  ° 'r frequency corresponding to this velocity has to be within

the frequency rangs ‘~wer range settings and negative frequency shifts can

be used.

The measured signal fluctuation tends to . .ower when a low frequency range
is used. It is not clear why this is, although it is not caused by the resolution of the
A/D converter that converts the analog voltuge signal from the tracker processor
into a 12 bit digital signal (range 0-4095). At a range setting of 10-100 kHz, the
velocity resolution is 0.04 min/s and at a range setting of 33-333 kHz the velocity
resolution is 0.14 mm/s. " both cases the velocity resolution is well below 0.1% of

the streamwise velocity in most of the flow field.

The minimum filtered signal fluctuations when measuring only th2 velocity in
the centre of the duct are around 0.4-0.5%. For these '~~~ ~urements low range

settings and negative frequency shifts were used. The average signal fluctuations in
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the centre region of the radial and spanwise velocity profiles that will be discussed in
the next section are around 1%, or twice as high as the minimum signal fluctuation in
the duct centre. These profiles required higher range settings and positive frequency

shifts.

Because the flow in the curved section is very sensitive to small inlet
perturbations, it is important to know whethLer there are any dominant frequencies
present in the velocity fluctuations. The difference between the two spectra in
each of the figures 4.1 and 4.2 is due to measurement noise. This contribution
to the measurement noise is clearly broad band and does not have any dominant

frequencies.

Turbulence intensity spectra can be obtained by subtracting the measurement
noise from the total signal fluctuations. The spectra of those runs that produc d
the lowest signal fluctuations set an upper limit to the turbulence intensity spectra.
It seems likely that the contribution of the ineasurement noise to these spectra is
also broad band, although it is not known how much of the total fluctuations is due
to measurement noise. With this assumption the turbulence intensity spectra will

also be broad band and without dominant frequencies.

4.2 Inlet Profiles

In order to compare experimental results with flow development simulations, it is
important to know the flow conditions at the inlet of the curved section. The stilling
chamber and inlet section of the apparatus were designed to provide a fully deve'y~d
velocity profile at the inlet of the curved section for Dn up to 225 (Re =- 875} The
analytical solution for the streamwise velocity distribution of fully developed laminar

flow in a rectangular straight duct is given by Shah and London (1978):
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2 00 ! !
(e, ) = _4d’c > $(_1)(,,_1)/2 [1 _ cosh(nmz /a)] cos (n:l;x ) (4.3)

pmd 15, cosh(nnb/2a)

- a’c, 192 a, & 1 nrb

vy = —ﬁ-l; 1- ?(z) “=1‘23'5‘m ﬁtanh (—2-;1—) (4.4)
—a/2< 2’ <af2 - b/2< 2 <b/2

where: vj(z', 2') = streamwise velocity
v} = average streamwise velocity in the duct
a, b = duct width and height respectively
p = absolute viscosity
c; = pressure gradient in streamwise direction

Shah and London also give a simple approximation to this series solution. The

non-dimensional streamwise velocity according to this approximation is given by:

= EDE-E -] e

For a square cross section, where a = b, the values of the exponents are m = n = 2.2.

The maximum difference befween the analytical solution and the approximation
is in the centre of the duct, where the streamwise velocity calculated with the
approximate solution is 1% higher than the analytical solution. The simple
approximation is used as inlet condition for the numerical simulation of developing

flows that uses the code by Sankar et al. (1988).

Due to elliptic effects of the downstream curved duct flow, the velocity profile
at the inlet of the curved section could deviate from fully developed straight duct
flow. Humphrey et al. (1977) observed strong elliptic effects in a tightly curved

square duct with curvature ratio 2.3. He showed numerically the presence of a 2-cell
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secondary flow at the inlet plane. Inlet secondary flows were about half the strength
of the secondary flows at § = 90°. Bara (1991) did not expect significant elliptic
effects in the large curvature duct used in this study (R, = 15.1).

This assumption was verified by simulations of the inlet section with the
simulation package FLOW3D, which solves the fully elliptic Navier-Stokes equations
using a control volume approach. The SIMPLEC algorithm (Patankar, 1980) was
used for the velocity-pressure coupling and hybrid differencing was used to model the
convective terms of the transport equations. A 10 cm long straight inlet section was
followed by a 6.7 cin curved section. Fully developed straight duct flow was specified
at the inlet of the straight section. A mass flow boundary condition was selected for
the outlet of the curved section. A 21x21 volume grid was used in the cross section
and a total of 167 cells were used in the streamwise direction. Simulations were

performed for Dean numbers ranging from 100 to 600 (Re = 390 — 2335).

Results of the simulations showed small secondary velocities in the inlet plane
at all studied flow rates. In all cases, the secondary velocities are around 1% of
the mean streamwise velocity and point towards the inner wall. No circulation
flow has been formed yet. The streamwise velocity distribution is very similar to
fully developed straight duct flow, but with the maximum velocity shifted slightly
towards the inner wall. This type of secondary flow is similar to simulation results
by Humphrey et al. (1977) at 0.3 and 0.9 hydraulic diameters before the inlet
plane. Overall the elliptic effects at the inlet are minimal. Only the direction of the
velocity vectors is changed by about 1°, while the streamwise velocity distribution is
hardly affected. Two hydraulic diameters upstream of the inlet, the secondary flow
Yelocities are less than 0.05% of the mean streamwise velocity and at 5 hydraulic

diameters no secondary flows can be observed.
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Radial and spanwise profiles of the streamwise velocity were measured 5
hydraulic diameters upstream of the curved section. For radial profiles, velocity
samples of 512 values were taken at 48 positions along the radial centre line, z = 0,
with a traverse step size of 0.2 mm. Spanwise profiles were measured by sampling
512 values at 42 positions along the spanwise centre line, x = 0, and a step size
of 0.3 mm. The streamwise velocity at each position was calculated by averaging
the 512 velocity values. Signal fluctuations were calculated by taking the root mean

square of the measured fluctuations, divided by the mean velocity.

Streamwise velocity and signal fluctuation profiles for flow rates up to Re = 2329
are shown in figures 4.5-4.16. The measured velocity profiles are compared to the
analytical solution. Although much more computationally involved than the simple
approximation, an accurate analytical solution can be calculated fairly quickly.
Calculation of the radial or spanwise velocity profile through the centre of the duct,
using 50 positions and 20 terms of the series expansion in equation 4.3 takes only
0.11 s on a personal computer with 80486 processor running at 33 MHz. The solution

with 20 terms is within 0.01% of the exact solution.

Velocity profiles clearly start to deviate from the analytical solution at flow
rates higher than Re = 1162 (Dn = 300)." This deviation is most significant in
the centre of the duct, where the profiles show a distinct flat velocity region at
increasing flow rates. The theory of boundary layer development predicts that,
starting from a flat velocity profile at the inlet of the duct, the boundary layers
start to grow at the walls. The growing boundary layers will at some distance from
the inlet meet, at which point the flow is fully developed. Goldstein and Kreid (1967)
determined experimentally the development length in a square duct. They found
that L/d), = 0.09Re, where L is the development length. Based on tkis correlation,

the flow in the 1 m long inlet section reaches fully developed fiow up to Re = 875
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Figure 4.5: Comparison of measured inlet veiocity profiles to the analytical

solution for Re=397 (Dn=102.1).
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Figure 4.6: Inlet signal fluctuation profiles for Re=397 (Dn=102.1).
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Figure 4.7: Comparison of measured inlet velocity profiles to the analytical
solution for Re=774 (Dn=199.1).
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Figure 4.9: Comparison of measured inlet velocity profiles to the analytical

solution for Re=1162 (Dn=298.9).
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Figure 4.10: Inlet signal fluctuation profiles for Re=1162 (Dn=298.9).
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Figure 4.11: Comparison of measured inlet velocity profiles to the analytical
solution for Re=1558 (Dn=400.8).
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Figure 4.13: Comparison of measured inlet velocity profiles to the analytical
solution for Re=1945 (Dn=500.2).
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Figure 4.14: Inlet signal fluctuation profiles for Re=1945 (Dn=500.2).
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Figure 4.15: Comparison of measured inlet velocity profiles to the analytical
solution for Re=2329 (Dn=599.1).
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(Dn = 225). The flat regions of the velocity profiles at Re = 1945 (Dn = 500.2)
and Re = 2329 (Dn = 599.1) indicate that the boundary layers have not merged

yet. The streamwise velocity profiles are summarized in figure 4.17.

The deviation of the experimental profiles from the analytical solution is
quantified by the difference between the maximum velocities of both profiles. These
results are summarized in table 4.3. A velocity profile can be considered fully
developed if the velocity is within 99% of the fully developed profile. The results
show that for flow rates up to Re = 774 (Dn = 200) the centre velocity is within 99%
of the fully developed value. At higher flow rates the flow is no longer fully developed.
These results are in good agreement with the development length correlation by

Goldstein and Kreid (1967).

The average signal fluctuation in the centre region of the profiles, summarized
in table 4.2, was around 1%. The signal fluctuation increases significantly near the
walls. This is caused mainly by the decreasing streamwise velocity and not so much

by an increase in the signal fluctuations.

The velocity profiles at Re = 1945 and 2329 (figures 4.13 and 4.15) show
that at these high flow rates the flow is not steady. The three radial profiles at
Re = 1945 were taken shortly after each other, but show significant differences.

This observation led to an investigation of the flow steadiness.
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Re Dn Profile | Maximum vy | Deviation (%)
e Average

397 102.1 Radial 2.098 -070 0.10—
Spanwise 2.090 0.29

774 199.1 | Radial 2.085 0.53 0.41
Spanwise 2.090 0.29 ]

1162 298.9| Radial 2.06:;—; 1-}50 1.60
Spanwise 2.064 1.60

1558 400.8 Radial 2.025 3.51 3.96

Spanwise-1 2.002 4.70
Spanwise-2 2.022 3.66

1945 500.2 | Radial-1 1.933 8.43 8.61
Radial-2 1.866 12.33
Radial-3 1.973 6.23
Spanwise 1.951 743

2329 599.1 | Radial-1 1.861 12.63 | 12.24
Radial-2 1.869 12.15

Spanwise-1 1.872 11.97
Spanwise-2 1.868 12.21

Table 4.3: Summary of radial and spanwise inlet profiles of the streamwise
velocity with maximum streamwise velocity and deviation from a
fully developed profile. ~
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4.2 Flow Steadiness

It is clear from figure 4.13 that at higher flow rates the flow is not .nly not fully
developed, but also not steady. The velocity fluctuations associated with this flow
unsteadiness occur at a much larger time scale than the random fluctuations and
measurement noise discussed in section 4.1. In order to quantify the flow steadiness,
the flurtuation of the mean flow over a longer period of time was investigated.
60 samples of 512 streamwise velocity values, taken at 100 Hz, were collected at 1
minute intervals. These samples were taken at z = 0.24 and z = 0, where figure 4.13
shows a significant variation of the streamwise velocity. The mean velocities of these
60 samples are shown in figure 4.18 for different flow rates. The fluctuation of the
means of these 60 samples, defined as the root mean square of the mean velocity
divided by the average of the mean velocities, is a measure of the slow fluctuations

in the flow.

As mentioned in section 3.5, the signal fluctuation of a quantity with constant
mean is reduced by a factor of /n when averaged over a large number of sample
values, n. The measured fluctuations of the mean are listed in table 4.4. At
Re = 1545, 1940 and 2330, two sets of data were collected on two different days. At
none of the flow rates was the signal fluctuation reduced by a factor of V512 = 22.6,

indicating that there is a slow fluctuation of the mean velocity at all flow rates.

However, the flow was still considered steady if 95% of the measured mean
velocities are within 3 1% of the mean flow, or when the fluctuation of the mean
is less than 0.5%. Although the fluctuation of the mean at a certain flow rate can
vary significantly, depending on when the data were collected, the flow is generally
only steady for flow rates up to Re = 770 (Dn = 200).

At Re = 1940 (Dn = 500) and Re = 2330 (Dn —= 600) the slow velocity
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Figure 4.18: Flow steadiness measurements. Shown are mean velocities of 60
samples at 1 minute intervals with 512 velocity values each.
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Re Dn | Average signal Fluctuation Ratio
fluctuation (%) | of the mean (%)

397 102.1 0.95 0.12 7.71
769 197.7 O.ﬁ 012 4.85 |
1169 300.6 1.;8 0.5_(-5-_ EE_
1545 3974 1.05 0.43 2.47
1545 397.5 0.94 1.02 0.92
1940 498.9 0.95 1.70 0.56
1945 500.2 0.81 4.01 0.20
2337 601.0 0.71 1.01 0.70
2329 599.1 0.75 3.33 0.23

Table 4.4: Average signal fluctuation of 60 velocity samples, with 512 velocity
values each, and the fluctuation of the means of these 60 samples.

fluctuations related to the flow unsteadiness are much larger than the fast
fluctuations and measurement noise. This is reflected by an increase of the signal
fluctuation. At these high flow rates the flow field can change significantly during

the 6 minutes it takes to measure a velocity profile.

4.4 Summary

The flow at the inlet of the curved section was investigated for flow rates up
to Dn = 600 (Re = 2335). Measured fluctuations of the filtered velocity signal
are typically between 0.5% and 2% of the mean streamwise velocity, and are a

combination of velocity fluctuations and measurement noise. Most of the signal
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fluctuation is caused by measurement noise; the turbulence intensity is very low at

all flow rates, and does not contain any dominant frequencies.

Inlet profiles along the radial and spanwise centre lines were measured for Dean
numbers up to 600 (Re = 2335), and compared to the analytical solution. Above
Dn = 200 (Re = 774), the difference between the measured velocity and the
analytical solution in the centre of the duct is more than 1%. At these high flow

rates the inlet profiles are not fully developed, as is indicated by a flat centre region.

Slow velocity fluctuations were a sign of unsteadiness of the flow. The
unsteadiness was quantified by measuring the streamwise velocity at z = 0.24 and
z = 0 every minute, for one hour. The fluctuations of the mean velocities showed
that above Dn = 200 (Re = 774) the flow is generally unsteady, but results vary
from day to day. |



Chapter 5

Steady Developing Flows

The development of steady flows up to a Dean number of 600 was investigated
both experimentally and numerically. The experimental flow development was
studied using visualization of secondary flow patterns and LDA measurements of
profiles of the streamwise and spanwise velacity. The experiments are compared to
results of a numerical simulation of the three-dimensional parabolized Navier-Stokes
equations. A 6-cell flow state with two pairs of Dean vortices was observed both in
the experiment and in the numerical simulation. The numerical code was also used
to prediét flow behaviour up to 6 = 2000°, and to study flow stability. This is the
first time that detailed experiments and simulations of a 6-cell flow state in a curved

duct of square cross section are reported.

First the governing equations and numerical code will be discussed. Then the
different transitions that take place, in particular the transition to a 6-cell flow state
will be introduced, followed by a detailed investigation of the flow development at
Dn = 272, 326, 375 and 453. The transition to 6-cell flow will be explained by
using the analogy with the Gortler problem. Stability considerations conclude this

chapter.

87
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5.1 Governing Equations

The curved square duct geometry used in this study is most conveniently
described by a cylindrical coordinate system, shown in figure 5.1. r, 8 and z are the
radial, streamwise and spanwise coordinates respectively. The streamwise direction
is sometimes called the axial direction. This terminology is inconsistent with a
cylindrical coordinate system, but avoids confusion with existing literature. Early
work in this field on curved circular pipes used a toroidal coordinate system in
which case the streamwise velocity is along the axis of the pipe. In the cylindrical
coordinate system the main flow is actually in the tangential direction and the
spanwise velocity is actually in the axial direction. The duct walls are located at
2! = +a/2 and 2’ = *af2, where £’ = ' — R. The flow perpendicular to the
streamwise direction, in a plane containing the radial and spanwise components, is

called the secondary flow.

The computer code used to track the flow development solves a parabolized
version of the three-dimensional, stationary Navier-Stokes equations and does not
adopt the loose coiling approximation. This code was developed by Sankar et al.
(1988) and was modified to include the possibility to impose symmetry along z = 0.
The streamwise momentum diffusion terms in the full three-dimensional steady
state Navier-Stokes equations were neglected, allowing for a simple marching-step
method, rather than a global, elliptic solution method. Although not part of the
parabolization, the gradient of v, in the 8 direction was also neglected. The terms

that were neglected are:

1 8%, 1 &%, 2 v, d 1 @
Rer? 962° Rer? 962’ Rerz ' ¢ TRer? 002

Because these terms are proportional to 1/Rer?, the effect of neglecting them
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Figure 5.1: Cylindrical coordinate system.
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will be smaller when the flow rate and the radius of curvature increase.

The non-dimensional parabolized Navier-Stokes equations for steady

incompressible Newtonian flow are:

continuity
149 1 6v9 av, _
raru)toag 5 =0 (51)

momentum in r direction

Ov, vpOv, v  Ov, p 1[0 _ _2_809 821),.
o TT o0 r TV 6+Re[3(a( >) =8 T oz 02

momentum in 8 direction

8 vy Jvg v,.vg Ove _ 19p 112 (18 i)
“or -+ roe Ty % = Tra6 T Re [ar (rar(""’) oz 63

momentum in 2 direction

dv, vy 0v, Ov: 9p, 1[10 ( dv.\ 6 &,
ortroe T ‘az"b?‘*ﬁ[}'a('ar)"’azi' (5.4)

Global continuity requires that

£=0.5 [r=R.+0.5
/ vedrdz = 1.0 (5.5)

2==0.5 —&—0

The variables have been non-dimensionalized as follows

! !
r=-—=Rc+1; z:f- z=.z.. Rc=£
a a a
_ Y% % Yy _r paty
v,.-ya vg—% v,-?o p—ﬁo—f Re = m

where the prime denotes dimensional quantities. Note that all velocity components

were non-dimensionalized by dividing by the mean streamwise velocity.

The code by Sankar et al. (1988) discretizes the equations by integrating them

over a control volume and solves the equations using the SIMPLE algorithm as
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outlined by Patankar (1980). Equally spaced grids were used, ranging in size from
51x51 to 151x151 points. Axial step sizes ranged from 1/4° for a coarse grid to
1/256° for the finest grid. The calculations were performed in double precision on

IBM RS/6000 375 and 560 machines.

5.2 Transition to 6-Cell Flow

Bara (1991; 1992) investigated experimentally the flow development up to
0 = 240° at Dean numbers of 125, 137 and 150. His results are in quantitative
agreement with Winters’ numerical study cf fully developed flows in a curved duct
of square cross section (Winters, 1987). Winters’ results are represented in the state
diagram of figure 5.2. In this diagram, x,, which is a measure for the symmetric

component of the solution, is shown as a function of the control parameter, Dn.

For a loosely coiled duct, the state diagram consists of a stable 2-cell branch, S;,
starting at the origin and connected to a 4-cell branch, S3, which is unstable with
respect to asymmetric disturbances. The connecting branch S, is unstable. There
is a stable 2-cell solution and a conditionally stable 4-cell solution in the region
between limit points L; and L, for 113 < Dn < 131. The 2-cell and 4-cell branches,
up to a Dean number of 150, were confirmed experimentally by Bara (1991; 1992).
The state diagram also shows an isolated branch of 2-cell flows and unstable 4-cell
flaws, connected by limit point L3 at Dn = 191. Winters reported that the isolated
2-cell flow is stable, but found later only parts of this branch to be stable (Winters,
private communication). The dashed line represents a pair of unstable asymmetric
soluticn branches. No unconditionally stable fully developed flows exist for Dean
numbers between 131 and 191. The results of the flow development study presented
here as well as the unsteady flow phenomena of the next chapter will be interpreted
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Figure 5.2: State diagram of fully developed solutions for a loosely coiled curved
duct of square cross section. The sign of each branch is (—1)", where
n is the number of negative eigenvalues of the Jacobian matrix.
After Winters (1987).
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in the context of this state diagram.

The location of the limit points varies very little for curvature ratios above 10,
but at smaller curvature ratios the limit points move to increasingly higher Dean
numbers. For a curvature ratio of 15.1, Bara (1991; 1992) located limit points L,

and L, at Dean numbers of 114 and 131.

A convenient method of representing the streamwise flow development is to plot
one of t;he velocity components at some point in the cross section as a function of
the streamwise position, 8, in a flow development diagram. All flow development
diagrams presented here show the radial velocity at z = 0.4 and z = 0.0, vertically
centered and close to the outer wall. The additional Dean vortices cause this
velocity component to change direction during the transition from 2-cell to 4-cell

flow, allowing for an easy identification of these flow states.

A series of flow development diagrams, showing the development to 8 = 2000° for
Dean numbers up to 600 are presented in figure 5.3. All flow development diagrams
were calculated on a 71x71 grid and an axial step size of 1/16°. Between Dean
numbers of 300 and 400 the solution is very sensitive to grid refinement and the
development diagrams for these flow rates may not be very accurate. However,
the trends discussed in this section are represented accurately by figure 5.3. More
detailed results of the flow development up to 240° will be given in the following
sections.

At a Dean number of 100 the flow develops into an axially invariant 2-cell state,
the primary solution for this geometry. The streamwise length needed to reach a
fully developed state is called the development length. An arrow plot of the 2-
cell state is shown in figure 5.4a. The 2-cell flow state is induced by the pressure
gradients along the top and the bottom (lateral) walls. This can most easily be

understood as follows. In pressure driven flow between two curved walle, and no top
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Radial velocity g, (-)

Streamwise position 6 (°)

Figure 5.3: Calculated flow development diagrams of the radial velocity at

z = 0.4, z = 0.0, showing the development to 8 = 2000° at various
Dean numbers.
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and bottom walls, a radially inward pressure gradient develops to counter balance
the centrifugal force acting on the fluid. In a duct with top and bottom walls,
the centrifugal force near these walls is smaller than toward the centre of the duct
because of the lower streamwise velocity in the boundary layers. Therefore, along
the lateral walls the pressure gradient is larger than the centrifugal force, forcing the
fluid to flow inwards near the lateral walls. For reasons of continuity the secondary
flow in the central region of the duct must be towards the outer wall. This shows
that the 2-cell flow state will be present starting from zero flow rate and is not the
result of a flow instability. Thus, the 2-cell flow is the primary solution, which is

connected to the origin of the state diagram.

The described phenomenon is called Ekman pumping and the end vortices are
called Ekman vortices, Ekm;an vortices have also been observed in large aspect ratio
ducts. Finlay and Nandakumar (1990) calculated two-dimensional flows in curved
channels with aspect ratios between 20 and 30. At low flow rates their study showed
the development of two elongated vortices near the top and bottom walls with nearly
curved channel Poiseuille flow in the centre of the duct. In a square duct the space
for each of the Ekman vortices is limited to half of the cross section, leading to the

2-cell flow state of figure 5.4a.

At a Dean number of 137 the flow initially develops into a 2-cell flow state.
Around @ = 100° a pair of Dean vortices starts to develop near the centre of the
outer wall until a fully developed 4-cell flow is reached at # = 300°. An arrow plot
is shown in figure 5.4b. The inflow region between the two Dean vortices creates a
negative radial velocity at the monitoring point (figure 5.3). This 4-cell flow remains
axially invariant for about 700 degrees before it breaks down into a 2-cell state that
again develops into a 4-cell flow pattern. The breakdown of the 4-cell flow is an

asymmetric process, during which the Dean vortex pair moves up or down along the
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outer wall and folds up into one of the Ekman vortices.

The numerical simulation predicts these spatial oscillations to continue up to a
streamwise position of at least 3000°. The Dean vortices alternately fold up in the
top and bottom Ekman vortex, although this is not reflected in the fiow development
diagram due to the choice of the monitoring velocity. Sankar et al. {1988) show by
varying grid resolution and axial stcp size that these spatial osciliations are not a
numerical artifact of the computer code. Although these results show that the 4-cell
flow is unstable, the nature of this instability is uncertain because the numerical
code does not include time dependence. The real flow may develop temporal or
spatio-temporal oscillations rather than just spatial oscillations. These results are
in agreement with Winters’ calculations that for 131 < Dn <. 191 no stable fully

developed flows exist.

At Dn = 200 the flow development is very similar to that at Dn = 137. The
main difference is that the period of the spatial oscillations is much shorter at this
higher flow rate. Although a Dean number of 200 is above the limit point L3, at
Dn = 191, the flow does not develop into a stable 2-cell flow. The development of
a stable 2-cell flow has only been observed above a Dean number of 230. It could
be that at Dean numbers between 191 and 230 the development length of a stable
2-cell is more than 2000°. However, it is more likely that this part of the isolated

2-cell branch, S5, corresponds to unstable solutions.

At Dn = 300 the flow development is initially similar to the development for
Dn = 200, but once the 4-cell flow breaks down at.about § = 500°, a new 2-cell
state forms that remains axially invariant over a long streamwise distance. Is seems
likely that in this case the flow has been attracted to a stable 2-cell solution on the

isolated branch in the state diagram.

Dean vortices, as observed in the 4-cell flow state, are the result of a centrifugal
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instability, which is the primary instability of this system. This kind of instability is
mort easily explained by looking at three other centrifugally unstable flow systems:

Taylor-Couette flow, Gortler flow and curved channel Dean flow.

Most extensively studied is the flow between concentric rotating cylinders,
or Taylor-Couette flow. Rayleigh (1916) derived a criterion for the centrifugal

instability of inviscid flow, now called the Rayleigh discriminant:

¢ = r‘3d(—::_—023 (5.6)

The flow is centrifugally unstable if the Rayleigh discriminant is negative. In
most early studies of Taylor-Couette flow, the outer cylinder was kept stationary
while the inner cylinder was rotating. In this case Rayleigh’s discriminant is negative
everywhere in the system, and therefore the flow is centrifugally unstable. This
instability causes the formation of toroidal vortices with opposite sense of rotation,
called Taylor vortices (figure 5.5). Rayleigh’s criterion predicts the flow to be
centrifugally unstable at any flow rate. However, in a viscous fluid small disturbances
are dissipated by viscosity. This dissipation prevents the onset of Taylor vortices at
low flow rates. Only at higher flow ratcs, where disturbances overcome the viscous

forces, does a transition to Taylor vortices take place.

A second centrifugally unstable system is flow over a concave wall, or Gortler
problem (see figure 5.5). In this case the flow in the boundary layer is centrifugally
unstable. This causes a transition to streamwise, counter rotating Gortler vortices

in the boundary layer.

The third centrifugally unstable system considered here is the pressure driven
flow between two curved walls. Pressure driven flow through curved ducts and
channels is commonly called the Dean problem (figure 5.5). The primary flow



CHAPTER 5. STEADY DEVELOPING FLOWS

Taylor-Couette flow Gbrtler problem Dean problem

99

Figure 5.5: Three commonly studied centrifugally unstable flows.
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state for pressure driven flow between two curved walls is similar to plane channel
flow. The streamwise velocity profile is nearly parabolic with the maximum shifted
towards the inner wall, and is referred to as curved channel Poiseuille flow (CCPF).
Applying Rayleigh’s discriminant to this velocity profile shows that the flow is
centrifugally unstable in the outer region of the duct, which results in a transition

to streamwise, counter rotating Dean vortices near the outer wall.

The three centrifugally unstable flow systems discussed above have one-
dimensional primary flow states to which Rayleigh’s criterion is easily applied. In
all three cases spanwise periodic counter rotating vortices are created as the result
of a centrifugal instability. In a curved duct of square cross section the primary flow
state is two-dimensional 2-cell flow, which is also centrifugally unstable. At Dean
numbers above 131 (limit point L) this instability induces a single pair of Dean

vortices near the centre of the outer wall.

The flow development diagrams for Dean numbers of 4C0 and 500 in figure 5.3
show the development of a 6-cell flow state, which is the main subject of interest in
this chapter. The 6-cell flow is characterized by two large Ekman vortices and two
pairs of small Dean vortices near the outer wall. These Dean vortices are again the
result of the centrifugal instability of the flow. The arrow plot for Dn = 453 and
6 = 90° in figure 5.4c shows a 6-cell flow pattern. In the flow development diagrams
of figure 5.3, the 6-cell state can be recognized by a high radial velocity that is the
result of the outflow region between the two vortex pairs. The simulations predict
the development of 6-cell flow in the first 100° of the curved duct. The 6-cell pattern
does not reach a fully developed state, but immediately breaks down into a 2-cell
state, from which then a 4-cell state develops.

The 6-cell flow state with two pairs of Dean vortices was not predicted by
the bifurcation studies of two-dimensional fully developed flows by Winters (1987)
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and Daskopoulos and Lenhoff (1989). The additional cells of the 6-cell flow states
calculated by Daskopoulos and Lenhoff do not seem to form pairs of counter rotating
vortices. However, two-dimensional flows with more than one Dean vortex pair
have been observed in curved rectangular ducts with aspect ratios between 8 and 30
(Finlay & Nandakumar, 1990; Thangam & Hur, 1990). It seems therefore likely that
the 6-cell flow state with two pairs of Dean vortices is a two-dimensional solution of
curved square duct flow. An extensive bifurcation study for higher flow rates would
have to be conducted to determine whether this 6-cell flow corresponds to a fully
developed state or not. It will be shown in section 5.7 that if this two-dimensional

6-cell flow exists, it is unstable to arbitrary perturbations.

The development of two pairs of Dean vortices at high flow rates can be explained
by looking at studies of the Gértler problem. The spanwise wavelength of streamwise
Gortler vortices formed in the boundary layer over a concave wall is measured by

the dimensionless parameter

- vg.oo’\G Ag
Ae=—=—"—\F (5.7)

where: vp,, = freestream velocity
Ag = dimensional wavelength in the spanwise direction

It has been shown both experimentally and numerically that wavelengths with
Ag = 210 generally have the largest primary growth rates (e.g. Bippes, 1972;
Floryan and Saric, 1984 and Guo and Finlay, 1994). This means that the preferred
dimensional wavelength is proportional to (v{,m)“? so that the size of the Gortler
vortices decreases with increasing flow rate. Because of the centrifugal nature of
both Dean vortices and Gortler vortices, Dean vortices can also be expected to

decrease in size with increasing flow rate.
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In a curved square duct the number of Dean vortices is restricted by the top and
bottom walls. With increasing flow rate a point will be reached where two pairs of
Dean vortices of the preferred wavelength can develop along the outer wall. This is
when the transition to 6-cell flow takes place. The presence of the inner wall and
especially the lateral walls of a square duct complicates the comparison between
the Dean problem and the Gortler problem. It is believed however that since the
mechanism that causes Dean and Gortler vortices is the same, comparison with the

Gortler problem provides a qualitative explanation for the observed phenomenon.

At the highest flow rate, Dn = 600, another new phenomenon is predicted by
the numerical code. The flow does not develop a 6-cell pattern. Instead, a 4-cell
flow is formed from the initial 2-cell, but no fully developed 4-cell state develops.
The size and radial position of the Dean vortices keeps changing. Especially just
before the 4-cell flow’ breaks down (around 6 = 400°), the Dean vortices oscillate
strongly in radial direction. This behaviour is also predicted by a simulation with a

101x101 grid, but has not been investigated any further.

In summary: the initial Ekman vortices are induced by the top and bottom
walls, while the smaller Dean vortices near the outer wall are the result of the
primary centrifugal instability and develop only above a critical flow rate. The
size of the Dean vortices decreases with increasing flow rate, leading to a transition
from a single pair of Dean vortices to two pairs of Dean vortices around Dn = 350.

Another new transition is predicted between Dn = 500 and Dn = 600.

The evolution towards a 6-cell flow has also been observed experimentally.
Secondary flow patterns at 8 = 90° and various flow rates are showp. in £igure 5.6.
At a flow rate of Dn = 100 the flow develops towards an axially invariant 2-cell
state. At Dn = 200 the flow develops initially into a fully developed 4-cell state,
but at = 90° this fully developed state aas nct been reached yet. At Dn = 300
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Inner wall

Dn=448.1 Dn =550.9

Figure 5.6: Cross section flow visualization showing secondary flow at § = 90°
for increasing flow rate.
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the single pair of Dean vortices that develops initially is very small and has moved
down. The photograph in figure 5.6 for Dn = 302.0 shows a streak of dye at the
stagnation point of this vortex pair at about z = —0.3 and close to the outer wall.
The 6-cell secondary flow is first observed at Dn = 350, but the two pairs of Dean
vortices are very small and break down before they can be distinguished clearly. At
Dean numbers of 450 and 550 the two pairs of Dean vortices are very distinct around

6 = 90°, before the flow breaks down into a 2-cell state, farther downstream.

Detailed experimental observations of two pairs of Dean vortices in a curved
duct of square cross section have not been reported previously. Arnal et al. (1992)
studied developing flow in a curved square duct with a curvature ratio of 3.36 at a
Dean number of 764. Their numerical simulations show two pairs of Dean vortices at
6 = 135°, although the arrows in their figure 5 are pointing in the opposite direction.
It is not clear whether they observed this 6-cell flow experimentally.

6-cell flows have also been observed in a curved rectangular duct with an aspect
ratio of 2. Sugiyama et al. (1983; 1988) reported detailed LDA measurements and
flow visualization of the development and breakdown of 6-cell flow at a Dean number
of 220 in a rectangular duct with curvature ratio 8. Numerical simulations for this
geometry were performed by Miyake et al. (1988) and Kajishima et al. (1989) and
are in qualitative agreement with the experiments. A study by Thangam and Hur
(1990) reported fully developed 2-cell and 4-cell flows in a curved rectangular duct

with aspect ratio 2.
In the following sections the observed transition will be investigated in more
detail. Experimental and numerical results will be compared for Dean numbers of

272, 326, 375 and 453.
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5.3 Flow Development at Dn = 272

According to the numerical simulations, a Dean number of 272 is in the region
where a 4-cell state develops that breaks down into a stable 2-cell flow, and well
below the transition to a 6-cell low at Dn = 350. Flow visualization of the
experimentally observed secondary flow development is shown in figure 5.7. The
flow is not time dependent. The photographs were taken at different moments in
time, each of them by injecting a slug of laser fluorescent dye into the flow. This
method was described in section 3.3. In each of the photographs, the outer wall is

on the right hand side.

, The flow development up to § = 120° is very similar to the development for
Dn = 150, observed by Bara (1992). At Dn = 150 the flow develops into a fully
developed 4-cell state at § = 240°. At a Dean number of 272 however, the flow does
not remain symmetric; the 4-cell state starts to fold up even before a fully developed
state has been reached. This is illustrated by the photographs at 6§ = 160° — 240°.

It is important to realize that the cross section visualization photographs do not
show the secondary flow pattern. The dye pattern that is seen in the photographs
is not the result of the secondary flow at the observed position only. The pattern is
the result of a combination of the dye injection method and the flow field, starting
at the dye injection point up to the observed streamwise position. The secondary
flow upstream from the observed position can have a significant effect on this dye
pattern. A numerical study by Finlay et al. (1993) showed that especially when
the flow field changes quickly in the streamwise direction, the dye pattern does not

represent the secondary flow accurately.

Simulated development diagrams are shown in figure 5.8. Three different grid

sizes were used, with very similar results. The main difference is that the 101x101
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Outer wall

0 =200° 0 =240°

Figure 5.7: Cross section flow visualization showing secondary flow development
at Dn = 272,
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Figure 5.8: Calculated flow development diagrams of the radial velocity at
z = 0.4, z = 0.0, showing the flow development to § = 1000° at
Dn = 272; R, = 15.1. Labels indicate number of cells; S: symmetric
pattern. Grid size and axial step size as indicated.
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grid simulation predicts a development length of the 4-cell flow that is about 18°
longer than with the 51x51 grid simulation. The 4-cell state breaks down into a
2-cell state around 8 = 600°. The streamwise position where this breakdown takes
place is sensitive to grid refinement, but the process itself is nearly identical for all
three grids. The 2-cell state is predicted to be stable up to at least # = 3000°. At
a Dean number of 272, above limit point L3 in the state diagram, Winters (1987)
calculated a 2-cell branch, Ss, which is partially stable (figure 5.2). It seems likely
that the observed 2-cell staie corresponds to this 2-cell branch. Because of the

limited length of the apparatus, the stability of the 2-cell flow could not be verified

experimentally.

The main difference between the simulation and the experiment is that it takes
much longer in the simulation for the 4-cell flow to break down into a 2-cell state.
This difference can be explained by looking at the asymmetric disturbances that

cause the 4-cell flow to break down.

The source of the asymmetric perturbations in the experimental setup and the
numerical simulation is very different. In the experiment, it is asymmetries in the
apparatus that cause small initial asymmetric disturbances that grow and cause the
4-cell flow to break down. In the numerical simulation however, the asymmetries
originate from round-off errors. Although the growth rate of asymmetries is
determined by the physics and therefore is the same in both cases, the initial
asymmetric disturbances are not of the same magnitude. The observed difference
in the streamwise position where the 4-cell breaks down indicates that the initial
asymmetric round-off errors are much smaller than initial asymmetric disturbances
in the experiment. However, once the 4-cell breaks down in the numerical simulation,

this process is very similar to the experimentally observed foldup process.

With this in mind, the calculated arrow plots in figure 5.9 are in excellent
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Figure 5.9: Calculated arrow plots showing secondary flow development at
Dn =272; R. = 15.1.
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agreement with the experiment. The arrow lengths in these and all other arrow
plots in this chapter are proportional to the square root of the secondary velocity.
This makes secondary flow patterns with low velocities more distinguishable. For
example, the onset of the Dean vortices at 8 = 80° would not be visible if the arrow
length was proportional to the secondary velocity. The arrow plots at 8 = 40°, 80°
and 120° were calculated with a 101x101 grid. Not all arrows are shown. The other
three arrow plots show the secondary flow at § = 640°, 680° and 720° on a 51x51
grid. These last three arrow plots are in good agreement with the experiment at

6 = 160°, 200° and 240°.

The photograph at § = 240° in figure 5.7 is a good example of the upstream
effect on the dye pattern. The asymmetric breakup of the 4-cell flow causes the
flow field upstream from @ = 240° to be asymmetric, which in turn results in an
asymmetric dye pattern. Thus, the secondary flow at 240° could in fact be a nearly
symmetric 2-cell state, as predicted by the model at # = 720°. There is also some
discrepancy between the flow visualization at 8 = 200° and the model at § = 680°.
The visualization gives the impression that the Dean vortices have rotated clockwise
over close to 90°. However, this dye pattern could be the result of the large upper
Dean vortex that has moved down, as shown in the model at § = 680°. Only detailed
velocity measurements could reveal the true nature of the secondary flow. In this
study velocity profiles were only measured at a Dean number of 453. These results

will be presented in section 5.6.
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5.4 Flow Development at Dn = 326

A Dean number of 326 is slightly below the onset of 6-cell flow, which was
observed experimentally around Dn = 350. The secondary flow development is
shown in figure 5.10. The flow becomes asymmetric very early in the development.
The photograph at 8 = 40° shows a blob of dye near the outer wall, just below the
centre line. This seems to be the stagnation point of a pair of small Dean vortices
that has moved down into the bottom corner of the duct at 6 = 80°. At § = 120°
this pair of vortices has folded up into the lower Ekman cell. The asymmetries in the
photographs at § = 40°,80° and 120° are difficult to interpret from flow visualization
alone. A new pair of Dean vortices starts to develop at # = 180°. This pair develops
asymmetrically and starts to fold up before a fully developed state has been reached.

At 0 = 240° this new pair is in the process of folding up.

The development of asymmetric flow phenomena is determined by the relative
growth rates of symmetric and asymmetric modes, and by the magznitude of
asymmetric flow disturbances. The early development of asymmetries could be
due to larger asymmetric disturbances at this higher flow rate. However, since
at a Dean number of 453 the flow develops again symmetrically (section 5.6), the
asymmetries that develop at Dn = 326 must be the result of relatively Ligh growth
rates of asymmetric modes. The asymmetric modes and their linear growth rate
are only a function of the Dean number and can, in principle, be determined from
the equations of motion. The experimental realization of these modes depends on
the amplitude at which these modes are excited. Hence, a different experimental
apparatus, with different asymmetric disturbances, will probably produce different

results.

A mechanism for the high growth rates of asymmetries is proposed, based on
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Outer wall

Figure 5.10: Cross section flow visualization showing secondary flow development
at Dn = 326.
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the analogy with the Gortler problem. It was mentioned in section 5.2 that the size
of the fastest growing Gértler mode, Ag, is proportional to (vzm)‘i (equation 5.7).
A difficulty with the analogy between the Gortler problem and the Dean problem
is that in the Dean problem the freestream velocity is not well defined. If however
the freestream velocity is estimated by the mean streamwise velocity in the duct,

v}, the fastest growing mode is given by:
Ag = 0.4536 Dn~2%/3 (5.8)

At a Dean number of 326 the fastest growing wavelength is 0.96 cm. Although there
is no exact analogy with the Gortler problem, this result suggests that the spanwise
wavelength of the fastest growing mode is significantly smaller than the height of
the duct, while two spanwise wavelengths is larger than the duct height. The flow
can develop symmetrically in two different ways: either with a single pair of Dean
vortices (4-cell), or with two pairs of Dean vortices (6-cell). Both these states have
low growth rates because the wavelengths of the corresponding Dean vortices are
significantly different thaa the preferred mode. There are many possible asymmetric
flo- tates, and because of the relatively low growth rates of symmetric modes, some

of these asymmetric modes will dominate the flow development.

Simulated development diagrains are shown in figure 5.11. The solution is
very sensitive to grid refinement. In the numerical simulations, the development
of asymmetries depends on the physics of the flow, the presence of asymmetric
disturbances, and the grid size that is used in the calculations. Often, the challenge
in computational fluid dynamics is to discriminate between spurious phenomena

caused by discretization and real phenomena caused by complex physics of the flow.

It will be shown in section 5.6 that a 101x101 grid is able to predict the flow

development accurately at a Dean number of 453. The same grid resolution can be
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Figure 5.11: Calculated flow development diagrams of the radial velocity at
z = 04, 2 = 0.0, showing the flow development to § = 250° at
Dn = 326; R, = 15.1. Labels indicate number of cells; S: symmetric
pattern; A: asymmetric pattern. Grid size and axial step size as
indicated.



CHAPTER 5. STEADY DEVELOPING FLOWS 115

argued to be adequate at lower flow rates. Thus, the grid sensitivity observed here

for Dn = 326 is not an artifact of a coarse grid.

We know from the experiment that at a Dean number of 326 the physical response
is characterized by several closely spaced, competing unstable modes. Different grids
excite each of these modes in a different manner. It is therefore believed that the
observed grid sensitivity is the result of the complex physics in this region of the

Dean number and the inherent properties of each discretization.

At a 51x51 grid the flow develops symmetrically towards a 4-cell state, without
signs of a 6-cell flow state. Asymmetries only become prominent around 8 = 500°,
where the 4-cell flow breaks down into a 2-cell state. The 71x71 simulation predicts
the onset of two pairs of Dean vortices near § = 100°. These vortex pairs are very
small and don’t develop further. This stage of the flow development is characterized
by a high radial velocity in the monitoring point, resulting in a peak in the flow
development diagram between 6 = 100° and 6 = 150°. At @ = 200° a single pair of
Dean vortices develops symmetrically and a fully developed 4-cell state is reached
around 6 = 270°. The flow is symmetric up to § = 500°, where the 4-cell breaks

down into a 2-cell state.

The simulation with a 101x101 grid develops asymmetries much earlier than the
other simulations. Arrow plots calculated with this grid are shown in figure 5.12.
The onset of two Dean vortex pairs at § = 80° is similar to that predicted by
the 71x71 simulation. These Dean vortices have disappeared at § = 120°. At
6 = 180° the flow has developed strong asymmetries in the form of a developing
Dean vortex pair along the upper part of the outer wall. This vortex pair moves up
while it develops and eventually folds up into the upper Ekman vortex. Many more
simulations were done at this flow rate than are shown in figure 5.11. The 101x101

simulation shows the best agreement with the experiments. In the simulation the
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Figure 5.12: Calculated arrow plots showing secondary flow development at
Dn = 326; R. = 15.1.



CHAPTER 5. STEADY DEVELOPING FLOWS 117

Dean vortex pair at § = 180° develops slightly later and is more asymmetric than

was observed in the experiment.

The finest grid that was used had 151x151 points in the cross section. A very
small axial step size of 1/256° was necessary in order to obtain a converged solution.
The flow development diagram in figure 5.11 shows signs of some high frequency
numerical scale oscillations. The flow develops symmetrically, and in a very similar
way to the 71x71 simulation. Again the onset of two Dean vortex pairs develops
around 6 = 70° and has disappeared at § = 100°. Then a single pair of vortices

develops, producing a symmetric 4-cell flow state.

5.5 Flow Development at Dn = 375

The flow development changes gradually when the Dean number is increased
from 326 to 375. At the higher flow rate the growth rate of the 6-cell state has
increased, changing the balance of the competition between the symmetric 4-cell
and 6-cell states. The growth rates of the symmetrfc modes are still low compared

to growth rates of asymmetric modes, causing asymmetries to develop early.

Flow visualization of the secondary flow development at a Dean number of 375
is shown in figure 5.13. This is the lowest flow rate at which a distinct 6-cell flow
pattern can be observed experimentally. At § = 80°, the first sign of two stagnation
points near the outer wall is evident. At § = 100° the two pairs of Dean vortices
are very distinct and have already started to fold up. As the 6-cell flow breaks
down, one pair of cells moves down and folds up into the lower Ekman vortex, while
the other pair folds up into the upper Ekman vortex. This break down process of
the 6-cell looks symmetric. Asymmetries become dominant near § = 180° with the

development of an asymmetric pair of Dean vortices. This pair breaks up before a
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Figure 5.13:  Cross section flow visualization showing secondary flow deveicpment
at Dn = 375.



CHAPTER 5. STEADY DEVELOPING FLOWS 119

fully developed state has been reached.

Calculated flow development diagrams are shown in figure 5.14. Similar to the
simulations at a Dean number of 326, the solution is very grid semsitive. The
calculated flow development at a 51x51 grid shows the development of a distinct
6-cell flow that breaks down into a 2-cell flow from which a 4-cell state develops.
This is very different from the flow development at Dn = 326 with a 51x51 grid,
where no sign of a 6-cell flow was observed. At this coarse grid a very sudden
transition takes place at a Dean number between 356 and 357. At finer grids, the
solutions for Dean numbers of 326 and 375 are more similar, which is in agreement

with the gradual transition that is observed in the experiment.

At a 71x71 grid the solution is very similar to that at Dn = 326 with the initial
development of two Dean vortex pairs and later a symmetric 4-cell state. The
grid sensitivity for a 101x101 grid is particularly interesting. With an axial step
size of 1/32° the flow develops into a symmetric 4-cell flow, while the simulation
with a step size of 1/64° develops an asymmetric vortex pair near § = 180°. The
151x151 simulation initially develops two Dean vortex pairs that have broken down

at 0 = 150°. A 2-cell secondary flow pattern remains until § = 240°.

The simulation with a 101x101 grid and an axial step size of 1/64° is again the
only simulation shown here that develops early asymmetries. This simulation is
closest to the experimentally observed development. Arrow plots of the secondary
flow development are shown in figure 5.15. At 6 = 80°, the arrow plot shows the
onset of two Dean vortex pairs, corresponding to the two stagnation points in the
flow visualization. These vortex pairs have grown and started to break down at
6 = 100°. At 6 = 180° the onset of a new, asymmetric, vortex pair is visible,
which was also observed in the experiment. This pair has started to break down at

6 = 220°. The simulation is in very good agreement with the flow visualization.
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! B T 1
H151x151, 1256°

Radial velocity  (-)
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Figure 5.14: Calculated flow development diagrams of the radial velocity at
z = 0.4, z = 0.0, showing the flow development to 8 = 250° at
Dn = 375; R, = 15.1. Labelsindicate number of cells; S: symmetric

pattern; A: asymmetric pattern. Grid size and axial step size as
indicated.
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Figure 5.15: Calculated arrow plots showing secondary flow development at
Dn = 375; R, = 15.1.
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5.6 Flow Development at Dn = 453

A Dean number of 453 is well above the transition to a 6-cell flow state. At this
Dean number the growth rate of the 6-cell flow is significantly higher than the 4-cell

flow state. As a result, the flow development in both experiments and simulations

is dominated by symmetric modes.

Flow visualization photographs in figure 5.16 show the flow development. A
distinct 6-cell secondary flow pattern has developed at 8§ = 100°. The 6-cell flow
breaks down symmetrically into a 2-cell state with one pair of Dean vortices folding
up in each of the Ekman vortices. The 2-cell state that forms after the 6-cell breaks
up remains almost invariant until § = 240°, although this is not obvious from the
photographs of figure 5.16b. The 2-cell state between § = 140° and 6 = 240° was

confirmed by LDA measurements, which will be discussed later.

The simulated flow development diagrams of figure 5.17 do not show a very high
grid sensitivity. It is believed that this is due to the relatively low growth rates of
asymmetric modes. The simulation predicts the development of a 6-cell secondary
flow around 6 = 100°, that breaks down into a 2-cell state. From the 2-cell state a
symmetric 4-cell pattern develops around 8 = 300° which subsequently breaks down

at 6 = 500°.

Arrow plots calculated with a 101x101 grid are shown in figure 5.18 and agree
very well with the experiment up to # = 120°. After that the flow visualization
becomes hard to interpret.

The flow development and 6-cell flow were also analysed by comparing measured
velocity profiles with the simulation. First the 6-cell flow at Dn = 453 and 6 = 90°
was investigated. Next, streamwise velocity profiles were measured to show the flow

development.
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Inner wall
Quter wall

0=120°

Figure 5.16a: Cross section flow visualization showing secondary flow development
at Dn = 453.
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Outer wall

0 =220°

Figure 5.16b: See previous page for caption.
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Figure 5.17: Calculated flow development diagrams of the radial velocity at
z = 04, z = 0.0, showing the flow development to 8§ = 1000° at
Dn = 453; R, = 15.1. Labels indicate number of cells; S: symmetric
pattern; A: asymmetric pattern. Grid size and axial step size as
indicated.



CHAPTER 5. STEADY DEVELOPING FLOWS

Inner wall

- .‘
” 727y
) 4 o/ o PPN 2274
H I’\---.'\'Ildﬂ-—olllll
: ‘\k\~s“-\= ',’laao”'.'
\ . 1

BRI LSRR R Y
CVANNNSSNNAY L e e !
NI DY ] A IR
P LV N R NNNNY ’ LR , e
N Gt AU R
I R L e e R A
RN E X E X Sy = > ® W ® e s e e Y
.-4-;-;3:4-.—..‘“,.-..,,.-
A A I Lol D g - PR
-ll!’l”’l«\\\::..:::"'
R R L LAAED \\‘.‘_“‘,.n
R AN L L L NN S S
;"/I’oll'-’} t“‘,,”‘.:
] A RNVNISTSANLT
U RS b SN
NS Y

\\\\:

f et s nmmmnr?!
[ XA "-ll;—‘:‘l"

DN statatatatatadeda A\t

\
E\‘“‘o‘o--- -y
NINTTIIIIIIINNM
NWITTIzIIIIN A
A S e
-ov‘"

, ;-.---.-.--:1”/.4..\
-,

VP rssenannmar? f
lta---.--~.-l!f l:‘\
LA ww=s AN
”“—\ss~----\s
{’-"—\\s‘-‘--\o’
"-\\suon‘\\‘ -

\ [ L4
= vsesmuL\) VN
h.-—."-"l‘.\\

” 4

6=100°

s T
(14 PRI NI

4
N
\
N

-
/
4
4
L
I 4

::::\i{ S

* 3 ¢ & e

creemey,,

S e eany

——eraeww st

NN\ S S
I‘
CLEA A AL N G

S R P
C A A R LN U

N
Outer wall

>

t .

t rf’
’
L)

\ b
-
o

NS T e N,

\

-

N~

Lae
pAN==-"

A
e
l.
)
\
\

et A
PR S

- . - - IM.....‘
S oS S S R N % N NP P ‘j}

e S S S N
-y

P PR

iz
{7
=~
_—

e

0=40°

, -\\h‘
e \\‘ 17
PPN ’l

oo wwmnmrrrss! !
\,-.-o.o-..-oaao&l \l
\‘w—“-o"‘o ld \ Y
\‘..---...,--11‘.-4l|\\..
WM TP et P P o w # LA S N
P e e L R
R s L P VNI Y |
- ”

VN

-
P L s,

¢
-

1,,,,.4:
Y

NNNNN 4SSy S

4
)

-
B 0 e e e A = o o A S =B e,

’0——-------‘-—-‘.-“‘ 4
PP i e e ol o gy vy > @ & 044
Il--n‘--oo—“‘-'.\‘,’ PR
"""-*-""--\\\~\\‘," .
"“-—"—-‘\\‘\ I’- ]
e e Ry

! LT T Sy ‘} t

T —

Gy
7\

NSy
AN\ By

N
"‘l\l [

CRNN
Yy LN NN
et e an o v - 4
i’i" NPERE ----oo-."\.\\\
'\
()
)
(3 %
N

D D e a < P gy o
{:--—-—----01,/\ ~w
\\‘-----9“\", /0;‘
Nysse==—~~s\y Ly,

N Y el LY \ ~ 7
N /!

Nwwesseasgy )
Nesesssscsnny

P ot e o A

ALY Mt e 7 4

[l
————-te Y
LA

126

Figure 5.18a: Calculated arrow plots showing secondary flow development at

Dn =453; R, = 15.1.
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An important difference between the experiment and the simulation is the inlet
flow condition. In the simulation a fully developed inlet flow profile is assumed, but
it was shown in sections 4.2 and 4.3 that at flow rates higher than Dn = 300 the flow
is no longer fully developed and slightly unsteady. Unsteadiness was also observed
in the curved section at Dn = 453. Profiles that were measured shortly after each

other show differences that can not be explained by experimental errors and must

be due to unsteady flow.

A surface plot of the streamwise velocity for Dn = 453 and 8 = 90°, combined
with an arrow plot of the secondary flow is shown in figure 5.19. The two inflow
regions with low streamwise velocity near the outer wall are characteristic for the
6-cell flow pattern. The inflow jets of each of the two Dean vortex pairs transfer
fluid with low streamwise momentum away from the wall. This leads to two regions

with low streamwise velocity, represented by the dents in the surface plot.

The streamwise velocity profile measured in spanwise direction through the
Dean vortices at z = 0.38 is shown in figure 5.20 together with the simulation
result. The two minima in the profile correspond to the inflow regions near the
outer wall. Although there is no perfect agreement between the experiment and the
simulation, the experimental result clearly shows the presence of two Dean vortex
pairs. Streamwise velocity profiles measured at £ = 0.0 and z = 0.0 are shown in
figures 5.21 and 5.22 and show very good agreement with the simulation results.
Spanwise and radial profiles were measured at respectively 63 and 48 position, each

with a traverse step size of 0.2 mm.

Careful observation of the arrow plot in figure 5.19 shows that the spanwise
velocity along the outer wall changes direction a number of times. The experimental
spanwise velocity profile at z = 0.47 and the simulation result are shown in

figure 5.23. An experimental difficulty with measuring spanwise velocities is the
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Figure 5.19: Calculated surface plot of the streamwise velocity and arrow plot
showing the secondary flow at Dn = 453 and 8 = 90°; R, = 15.1.
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Figure 5.20: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, 8§ = 90° and = = 0.38; R, = 15.1.
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Figure 5.21: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, 6 = 90° and = = 0.0; R, = 15.1.
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Figure 5.22: Measured radial profile of the streamwise velocity compared to the
simulation at Dn = 453, § = 90° and z = 0.0; R, = 15.1.
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Figure 5.23: Measured spanwise profile of the spanwise velocity compared to the
simulation at Dn = 453, 6 = 90° and z = 0.47; R, = 15.1.
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alignment of the LDA optics. In the measured region, the streamwise velocity is
more than an order of magnitude larger than the spanwise velocity. Therefore, if the
alignment of the optics is off by only 1°, the contribution of the streamwise velocity
to the measured signal is about 5% of the magnitude of the spanwise velocity. The
error in the alignment of the LDA optics was estimated at at least 1°. Although the
margin of error is quite high, the experimental spanwise velocity profile shows the

same direction changes as the simulation.

In the simulation the most significant changes in the streamwise velocity of the
developing flow take place along the outer wall. Therefore, the experimental flow
development was compared to the simulation by comparing spanwise profiles of the
streamwise velocity at = 0.38. These profiles, taken each 20°, are shown in figures
5.24 to 5.35. The overall agreement between the experiment and the simulation is

good and shows that the model captures the physics of the flow very well.

Tae velocity profiles at 6 = 60° (figure 5.26) show the development of a wide
inflow region around z = 0.0. In the arrow plot for # = 60° in figure 5.18 two counter
rotating vortices have been formed along the outer wall. At lower flow rates, e.g.
Dn = 272, this one pair of vortices reaches full development in a 4-cell secondary
flow pattern. At Dn = 453 however, the two vortices 11ove out towards the top and
the bottom walls, while two more vortices form in the centre. As the two initial
Dean vortices move out, the single inflow region splits up into two inflow regions as
shown at § = 80° (figure 5.27). These two inflow regions keep moving out as the
6-cell flow breaks up symmetrically.

The flow reaches a very distinct 6-cell flow state at # = 100°. The experimental
profile is slightly asymmetric, but is in good agreement with the simulation
(figure 5.28). In the experiment the 6-cell flow has broken up into a 2-cell flow
state at § = 120°. The 2-cell flow is characterized by a nearly flat velocity profile.
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Figure 5.24: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, @ = 20° and z = 0.38; R, = 15.1.
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Figure 5.25: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, 8 = 40° and z = 0.38; R, = 15.1.
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Figure 5.26: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, 6 = 60° and = = 0.38; R, = 15.1.
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Figure 5.27: Measured spanwise profile of the streamwise velocity compafed to
the simulation at Dn = 453, § = 80° and z = 0.38; R, = 15.1.
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Figure 5.28: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, § = 100° and z = 0.38; R, = 15.1.
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Figure 5.29: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, § = 120° and z = 0.38; R, = 15.1.
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Figure 5.30: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, 6 = 140° and z = 0.38; R, = 15.1.
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Figure 5.31: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, 8 = 160° and z = 0.38; R. = 15.1.
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Tigure 5.32: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, § = 180° and z = 0.38; R, = 15.1.
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Figure 5.33: Measured spanwise profile of the streamwise velocity compared to

the simulation at Dn = 453, § = 200° and z = 0.38; R, = 15.1.
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Figure 5.34: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, § = 220° and z = 0.38; R, = 15.1.
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Figure 5.35: Measured spanwise profile of the streamwise velocity compared to
the simulation at Dn = 453, § = 240° and z = 0.38; R, = 15.1.
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The simulated velocity profile shows signs of Dean vortices in the form of velocity
minima near the top and bottom walls. This is the only significant discrepancy

between the experiment and the model.

Downstream from 6 = 140° the secondary flow is basically a 2-cell state that
changes very little with the streamwise position. The velocity profiles at = = 0.38
in figures 5.30 to 5.35 show a gradual change from being convex at § = 140° to flat
at = 220° and concave at § = 240°. All these profiles are in excellent agreement
with the simulation results. The secondary flow at § = 140° — 240° could not be
determined from the flow visualization, but the measured velocity profiles confirm
the development of a 2-cell secondary flow pattern. At # = 240° a new inflow
region develops along the centre of the outer wall from which a new 4-cell state
is predicted to develop (see the flow development diagram in figure 5.17). The
simulation predicts that this 4-cell state will break down asymmetrically into a 2-
cell state near § = 500°. This is the first time in the flow development that the

symmetry has been broken significantly.

Once the symmetric 4-cell flow has broken down at § = 500°, the simulation
predicts an unstructured kind of flow behaviour that can best be characterized
as a seemingly random sequence of Dean vortex forming and breakup processes. A
number of arrow plots that demonstrate this flow behaviour are shown in figure 5.36.
Simulations at a 71x71 grid show that this random behaviour continues up to at
least @ = 2000°. These random spatial oscillations indicate that at a Dean number
of 453 all fully developed solutions are unstable. In reality these oscillations could

very well have a temporal or spatio-temporal character.

The development and breakup of the 6-cell flow observed here is very similar
to that observed by Sugiyama et al. (1988) in a curved rectangular duct with an

aspect ratio of 2 and a curvature ratio of 8. They measured the secondary flow in
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Figure 5.36: Calculated arrow plots showing randomly forming disappearing
Dean vortices at Dn = 453; R, = 15.1.
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the full cross section and used dye visualization. At a Dean number of 220 the first
sign of two pairs of Dean vortices is observed at § = 135°. The 6-cell pattern is most

pronounced at 8 = 180° and has broken down symmetrically at § = 270°.

5.7 Flow Stability

In this section the stability of 4-cell and 6-cell flows will be examined. Winters
(1987) showed numerically that the fully developed 4-cell flows on the S; branch are
unstable with respect to asymmetric perturbations. Two methods can be used to test
the stability of 2-dimensional solutions, using the 3-dimensional flow development
code: imposing symmetry around the horizontal centre line (2 = 0) and perturbing

the flow asymmetrically.

By imposing symmetry around z = 0, asymmetries are unable to develop.
Therefore, a flow state that is only unstable with respect to asymmetric
perturhations, is stable when symmetry is imposed. This is demonstrated in
figure 5.37b for a Dean number of 300. As shown before, without symmetry the
flow at Dn = 300 develops into a 4-ceil state that breaks down asymmetrically into
a 2-cell state (figure 5.37a). Imposing symmetry makes this asymmetric fold up

process impossible, and thus stabilizes the 4-cell flow.

By perturbing the flow asymmetrically at the inlet of the curved section, the
initial asymmetries in the flow are increased and dominate the flow behaviour in
t*= first stage of its development. The flow is perturbed by setting the streamwise
velocity along 2z = 0.06 (3 grid points above the centre line for a 51x51 grid) to
zero. Because of these strong asymmetries a symmetric 4-cell state never deveiops
(see figure 5.37c). Instead, the fow develops towards a stable 2-cell state that most
likely corresponds to branch S5 in the state dizgram.
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Radial velocity ¢, (-)

Streamwise position 0 (°)

Figure 5.37: Calculated flow development diagrams of the radial velocity at
z = 04, z = 0.0, showing the flow development to § = 2000°
at Dn = 300; R, = 15.1. a: no disturbances, full domain; b:
no disturbances, reflectional symmetry imposed at z = 0; ¢: flow
disturbed at 8 = 5°, 2z = 0.06, full domain.
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A similar stability analysis was performed for a Dean number of 500. The
results are shown in figure 5.38. Without symmetry the flow follows the familiar
development of a 6-cell flow that breaks down into a 2-cell flow state from which a
symmetric 4-cell develops that breaks down asymmetrically. Only when the 4-cell

breaks down do asymmetries start to dominate the flow.

When symmetry is imposed the flow development is very similar up to the
symmetric 4-cell state (see figure 5.38b). This 4-cell state is again stabilized by
the symmetry. The 6-cell flow that develops around # = 90° remains unstable. This
was expected because the break up of the 6-cell flow into a 2-cell state seems to be a
symmetric process that is not hindered by imposing sy nraetry. This result indicates
that if the 6-cell state corresponds to a fully developed solution, this 6-cell flow is

unconditionally unstable.

By perturbing the flow asymmetrically, none of the symmetric flow states
develop. The flow develops generaliy directly towards a state of randomly forming
and disappearing Dean vortices, sometimes preceded by periodic spatial oscillations

(figure 5.38c).

In summary, the numerical simulations support Winters' result that the
symmetric 4-cell is unstable with respect to asymmetric perturbations only, and
show that the 6-cell flow is unconditionally unstable and therefore does not reach a

fully developed state.
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Figure 5.38: Calculated flow development diagrams of the radial velocity at
z = 04, z = 0.0, showing the flow development to § = 2000°
at Dn = 500; R, = 15.1. a: no disturbances, full domain; b:
no disturbances, reflectional symmetry imposed at z = 0; c: flow
disturbed at 8 = 5°, z = 0.06, full domain.
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5.8 Summary

Detailed experiments and numerical simulations of steady developing flow up to
a Dean number of 600 (Re = 2335) were reported. Flow visualization and LDA
measurements were used in the experiments. The simulations are based on the

parabolized steady Navier-Stokes equations.

At Dean numbers between 131 and 300 a single pair of Dean vortices develops
near the centre of the outer wall as the result of the primary centrifugal instability.
This 4-cell flow state is unstable with respect to asymmetric disturbances and breaks
down into either a stable 2-cell flow state or spatial oscillations between 2-cell and
4-cell states. These results are consistent with Winters’ study of fully developed
flows in this geometry (1987). Because the model did not include time dependence,

the rcal flow could develop temporal or spatio-temporal oscillations.

Above a Dean number of 400 a 6-cell pattern is observed early in the flow
development. A first small pair of Dean vortices splits and two new vortices are
formed in between, resulting in two pairs of Dean vortices. These two vortex pairs
are also the result of the primary centrifugal instability. The 6-cell flow breaks
down symmetrically into a 2-cell state. This process is very similar to that observed
experimentally by Sugiyama et al. (1988) in a curved duct with aspect ratio 2.
Based on the similarity with the Gértler problem, it is suggested that the transition
to 6-cell flow is the result of a decreasing spanwise wavelength of the Dean vortices

with increasing flowrate.

At Dean numbers between 300 and 400 the flow changes gradually from a 4-cell
development to a 6-cell development. Because in this region both the symmetric
4-cell and 6-cell states have relatively low growth rates, the flow development is

dominated by asymmetric modes. The numerical simulation is very grid sensitive,
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probably due to differences in random asymmetric disturbances, created by round-

off errors, and grid characteristics.

The experimental flow development at Dean numbers of 272, 326, 375 and 453
was investigated in detail. The simulations are in good agreement with the flow
visualization. At Dn = 453 also spanwise and radial profiles of the streamwise and
spanwise velocity were measured. These velocity profiles are in very good agreement
with the simulation. The parabolized Navier-Stokes equations capture the physics

of the flow very well.

Numerical stability analyses of 4-cell and 6-cell flows were performed by
imposing symmetry around the centre plane at z = 0 and by perturbing the
inlet asymmetrically. It was shown that the 4-cell flow is unstable with respect
to asymmetric disturbances, in agreement with Winters’ calculations, and that the

6-cell flow is unconditionally unstable.



Chapter 6

Time Dependent Flow

Phenomena

In the previous chapter, experiments and simulations of developing steady flow
were presented. Without perturbing the flow, steady flow development was observed
up to a Dean zumber of about 500. The flow develops very differently when a pin
is inserted along the horizontal centre line, 2 = 0, at 5° from the inlet of the curved
section. At Dean numbers above 170 the pin induces flow oscillations in the form of
traveling waves, which are the focus of this chapter. This traveling wave state in a
curved square duct has not been reported before. The frequency of the oscillations
increases with increasing flow rate and above Dn = 260 the flow becomes very
unstable and difficult to analyse. Botl flow visualization and LDA measurements
of streamwise and spanwise velocity fluctuations were used in the investigation of
the traveling wave state. In order to characterize the structure of the traveling wave

state, forcing was used to excite a single frequency mode.

First, experimental results will be presented and the effects of the pin and the
forcing will be discussed. Then, the structure of the fully developed traveling wave

147
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state at & Dean number of 220 will be described in detail. Experimental results are

compared to three-dimensional time dependent and elliptic numerical simulations

using the CFD package FLOW3D.

The traveling waves observed here in a curved duct of square cross section are
similar to twisting vortices in a curved channel (e.g. Finlay et al., 1988; Ligrani
et al.,, 1992; Le Cunff and Bottaro, 1993) and the sinuous mode of wavy Gortler
vortices (e.g. Swearingen and Blackwelder, 1987; Liu and Domaradzki, 1993). The
traveling waves also show similarities with oscillations in a two-dimensional wake.

An instability mechanism is proposed, based on these similarities.

6.1 Traveling Wave Experiments

The traveling wave state was induced by inserting a pin at § = 5°. The pin was
inserted through the outer wall along the horizontal centre line, z = 0. Pin sizes of
33, 29, 27, 26 and 25 gauge were used with diameters of 0.2, 0.33, 0.41, 0.46 and 0.5
mm, respectively. The correct alignment of the pin is essential. By bending the pin
slightly, the alignment can be adjusted by rotating the pin. When the pin is aligned
correctly, the flow develops symmetrically; beyond the onset of the traveling wave
the secondary flow is characterized by two oscillating Dean vortices. If the pin is

aligned incorrectly, the oscillating 4-cell state either breaks down into a 2-cell flow,

or does not form at all.

Side view visualization of a typical traveling wave, at Dn = 220, is shown in
figure 6.1. Continuous dye injection was used. The photographs were taken at
different moments in time and an attempt was made to match successive images.
In this case the time dependence starts around 6 = 140°. The oscillations of the

flow are quite irregular. If the dye pattern is observed carefully, wave packets that
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Figure 6.1a: Sideview flow visualization of a developing traveling wave without
forcing at Dn = 220 and with a 29 gauge pin. Dye was injected
continuously.



CHAPTER 6. TIME DEPENDENT FLOW PHENOMENA 150

Streamwise position 6 (°)

Figure 6.1b: See previous page for caption.
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travel through the flow can be distinguished. One such a wave packet is shown in
figure 6.1b between § = 170° and 4 = 175°. In a moving reference frame, the dye

pattern changes very slowly while it is convected downstream.

The time series of cross section visualizations in figure 6.2 shows that the
two Dean vortices are oscillating while the large Ekman vortices remain relatively
quiescent. A characteristic feature of the wavy flow is the oscillating inflow region
between two Dean vortices, clearly visible in figure 6.2. The stagnation point near
the centre of the outer wall does not move. The Dean vortices oscillate both in radial
and in spanwise direction. The vortex centres seem to perform an almost circular
sisotiop with the upper Dean vortex rotating counter clockwise and the lower Dean

vortex rotating in clockwise direction.

As was pointed out in section 5.3, the dye pattern in the photographs does not
necessarily represent the secondary flow field. Because the dye moves at a different
speed than the wave, the dye pattern will change with streamwise position, even if
the flow field is fully developed or streamwise periodic. It is therefore possible that
the flow i” B¢ ..e 6.1 has reached a streamwise periodic state, even though the dye

pattern s r~ periodic.

The traveling wave state seems to consist of a series of wave bursts, or packets
that grow and blend together as they travel downstream. The existence of these wave
packets suggests that the flow is convectively unstable. In a convectively unstable
system, a small disturbance of the flow only affects the flow field in the downstream
direction, whereas in an absolutely unstable system a small disturbance eventually
affects the whole flow field. These concepts are illustrated in figure 6.3. Good reviews
of convective and absolute instability in fluid systems are given by Monkewitz (1990)
and Huerre and Monkewitz (1990). A convectively unstable system is sometimes

called 'noise driven’, because small random disturbances, amplified as they are
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Outer wall

Figure 6.2: Cross section flow visualization showing oscillations at Dn = 220
and 6 = 200° with a 29 gauge pin and forcing of 0.82 V2 at 6.7 Hz.
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a: absolutely unstable flow

1‘ o<0 c>0

c<0

b: convectively unstable flow

Figure 6.3: Time-space plots illustrating the evolution of a small disturbance
at z = 0, t = 0 for absolutely and convectively unstable flow. o is
the amplitude growth rate.
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convected downstream, determine the state of these systems. Naturally occurring
disturbances are irregular and compbsed of many spectral components. The modes
that are excited by these disturbances are selectively amplified in the flow direction
at growth rates that are determined by the physics of the flow. In the curved duct
small disturbances seem to be created by the pin that is inserted near the inlet. ‘“he

role of the pin will be discussed in more detail in section 6.2.

The qualitative features discussed so far are quantified next using detailed
velocity measurements. Freqi-2ncy analysis of the streamwise velocity fluctuations
is used to determine which modes sre present. Velocity fluctuations were usually
measured at 61 positions along a spanwise line at z = 0.27 from z = —0.24 to
z = 0.24 (+ 3 mm from the centre line). Strong -elority fluctuations are found
in this region. The frequency spectrum for a Dean number of 220 and = 180°,
averaged over the 61 positions, is shown iu figure 6.4. At each position a sample of
1024 streamwise velocity values was taken at a rate of 100 Hz. The spectrum has a
broad maximum around 7 Hz, indicating that at the specified conditions the 7 Hz
mode has the fastest growth rate. Other modes in the 4-9 Hz range are present at
very similar energy levels and have a significant effect on the flow. Only 35% of the
total energy is found in 1.56 Hz wide bands around 7 Hz and its harmonics. 'Che
broad band character of the frequency spectrum confirms the convective instability

of the flow.

The area under a frequency spectrum is equal to the variance, or mean square of
the fluctuating velocity component (5;.), and is a measure of the power of the velocity
fluctuations. Therefore, the units of the energy that is shown in the frequency
epectrum are determined by the units of the uantity that was measured, in this
case velocity expressed in mm/s. One of the iools that will be used to identify the

flow structure is the amplitude distribution, which is a plot of the velocity variance
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Figure 6.4: Averaged frequency spectrum of streamwise velocity without forcing
at Dn = 220, § = 180°, z = 0.27 and with a 25 gauge pin.
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Figure 6.5:  Amplitude distribution of streamwise velocity without forcing at
Dn = 220, 6 = 180°, z = 0.27 and with a 25 gauge pin.
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as a function of the spanwise position. The variance will often be called amplitude,
and is related to the square of the actual amplitude of the velocity fluctuations. The
amr litude distributicu of the unforced system at Dn = 200 and 8 = 180° is given

in figure 6.5. The area under the amplitude distribution will be used as a measure

of the total wave power.

One of the objectives of this study is to characterize the structure of the wavy
flow. It is therefore necesszry to study a single mode, rather than a combination
of modes in a wide range of frequencies. Because the flow is very sensitive to
upstream disturbances, a selected mode can be given advantage over other modes by
introducing a periodic disturbance that is much larger than the disturbances created
by random noise. This periodic disturbance was created by slightly compressing the
tygon hose that leads the water to the stilling chamber (figures 3.1 and 3.4). The
velocity fluctuations that are caused by the forcing are very small compared to
the velocity fluctuations that are the result of the traveling wave. Depending on
the forcing frequency and the forcing intensity, the excited mode can become the
dominating mode, even if this is r.:' che mode with the fastest growth rate. Both in
the unforced and the forced system the development of traveling waves is the result
of small disturbances i.: the flow. There is no e:sential difference between the two,

except for the nature of the disturbances. The effect of the forcing will be discussed

in section 6.3.

The peristaltic pump that was used for compressing the hose has an output
signal in volts that is a measure of the torque delivered by the pump. This signal
was sampled simultaneously with the velocity signal. The variance of the forcing
signal is a measure of the forcing power. Although there is no direct correlation
between this measure of the forcing power and the energy put into the system, this

forcing power does provide a relative measure of the magnitude of the forcing and
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will be used as such.

The average frequency spectrum with forcing at 6.82 Hz and otherwise identical
conditions as figure 6.4 is shown in figure 6.6. The eneréy of the mode corresponding
to the forcing frequency is much higher than the energy of any other mode. The
harmonics are the result of the structure of the flow, as will be explained in
section 6.5.2. The energy of other modes is much lower than in the unforced system.
This suppression is the result of non-linear interactions between different modes. In
figure 6.6, 95% of the total energy is concentrated in 1.56 Hz wide bands around
the forcing frequency and its harmonics. The total wave power does not change
significantly as a result of the forcing. The forcing merely causes a shift of energy
from a wide range of modes to a single mode. A forcing frequency of 6.82 Hz is close
to the fastest growing mode. It will be shown in section 6.3.4 that anywhere in the

3-10 Hz range the wave <22 lock in to the forcing frequency.

Amplitude distributions of the forced system are shown in figure 6.7. The
amplitude of a frequency component was calculated by integrating the frequency
spectrum over a 1.56 Hz wide band, centred around that frequency. ""he area under
the amplitude distribution of a frequency component is a measure of the power of
that component. The shape of the amplitude distributions will be discussed in detail

in section 6.5.

Side view flow visualization of the forced system is shown in figure 6.8. Since
the forcing favours a single mode, the dye pattern is muck more regular than in
the unforced system. No wave packets can be distizguished. Although the dye
pattern changes continuously in the streamwise direction, over a small streamwise
distance the pattern is shift-and-reflect symmetric. This means that the pattern
is invariant over a reflection in the centre plane, combined with a spatial shift over

half a streamwise wavelength. The shift-and-reflect symmetry is particularly evident
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Figure 6.6: Averaged frequency spectrum of streamwise velocity with forcing of
0.60 V2 at 6.82 Hz. L.. = 220, § = 180°, = 0.27, 25 gauge pin.
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Figure 6.7: Amplitude distributions of streamwise velocity with forcing of 0.60
VZ at 6.82 Hz. Dn = 220, 6 = 180°, z = 0.27, 25 gauge pin.
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Figure 6.8a: Sideview flow visualization of a developing traveling wave with
forcing of 1.08 V2 at 6.6 Hz. Dn = 220, 29 gauge pin. Dye was
injected continuously.
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Figure 6.8b: See previous page for caption.
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between @ = 160° and 6 = 175°.

The streamwise development of the oscillations is shown in figure 6.9. The
flow appears to be steady and retains the reflective symmetry over the first 100°.
Oscillations start to develop around 8 = 120°. The amplitude of these oscillations
grows quickly between 6 = 120° and @ = 160° after which the amplitude seems to

have saturated.

The spatial development of the flow oscillations was quantified by measuring
streamwise velocity fluctuation profiles at + = 0.27 and —~0.24 < 2z < 0.24 for a
series of streamwise positions. The power of different wave components is equal
to the area under the corresponding amplitude distribution and has the same
units as the amplitude (mm?/s%). The total wave power and the power of the
fundamental and first and second harmonic components are plotted in figure 6.10.
No direct comparison between figures 6.9 and 6.10 can be made, because different
pin diameters were used. From § = 80° to # = 110°, the wave power increases
at a linear rate. Non-linearities start to dominate the wave development aronnd
0 = 120°, at which point the wave power begins to saturat::. Atter § = 17G° the
wave power does not change much with streamwise positios. . this region the
time averaged flow field seems to be axially invariant, and this state s .« called
the fully developed wave’ state. The development length of the i ivel's;, wave is

defined as the length needed to reach a fully developed traveling wave siate.

Although the flow visualization is a good indication of the :raveiing wave
character of the oscillating flow, a more rigorous method to show the existence of a
traveling wave would be to take velocity measurements at two different stzcamwise
positions simultaneously. In the case of a traveling wave the two signals will be out
of phase by an amount corresponding to the time it takes the wave to travel between

the two locstions. The amplitude will not depend on the streamwise position. In
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Figure 6.9a: Cross section flow visualization of the traveling wave development
at Dn = 220 with a 29 gauge pin and forcing of 0.82 V2 at 6.7 Hz.
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Figure 6.9b: See previous page for caption
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Figure 6.1¢: Tpatial development of the streamwise velocity amplitude. Dn =
220, ¢ = 0.27, 25 gauge pin, average forcing of 0.975 V2 at
on average 6.71 Hz. 61 samples (~0.24 < z < 0.24) of 512
measurements sampled at 100 Hz.
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the case of a standing wave the two signals will be in phase and the amplitude will
be streamwise periodic. With the experimental setup used, it was not possible to

sample the velocity at two positions simultaneously.

6.2 Role of the Pin in Inducing Time

Dependence

The cross section flow visualization in figure 6.9 shows that the traveling wave
develops from a steady 4-cell flow. Hence, in order to find a traveling wave state,
first a steady 4-cell flow has to develop; then disturbances have to be created that
destabilize the 4-cell flow. The pin plays an important role in both these processes.
Bara (1992) showed that the pin reduces the streamwise length needed to reach a
fully developed steady 4-cell state. It will be shown in this section that the pin also
creates the disturbances that destabilize the steady 4-cell flow, leading to traveling
waves. The development length of the traveling waves and the effect of the wake

behind the pin are also discussed.

6.2.1 Destabilizing 4-Cell Flow

The traveling waves are the result of the destabilization of steady 4-cell flow. The
fact that the oscillations only occur when a pin is inserted suggests that destabilizing
disturbances are created by the pin. Forcing of the ﬂov;v will be used to show that
this is indeed the case.

The flow was forced by periodically compressing the hose to the stilling chamber.
Compressing the hose causes a pressure pulse and possibly a flow rate change. that

affects the system globally. Because of the convective nature of the instabilit-, the
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wave can only lock in to the forcing if a localized disturbance is created as a result
of this global bressure and flow rate fluctuation. Because disturbances travel at the
speed of the traveling wave, the downstream effe:t of the forcing is only felt after
a delay corresponding to the time it takes disturbances tc ' 4 vn the system.
By monitoring the downstream effect of a sudden change: » ub ! using frequency,

the streamwise position where the disturbances are created cus e determined.

For this experiment the streamwise velocity at § = 180° (z = 0.27, z = 0.055)
was sampled during 82 seconds. After about 46 seconds the forcing frequency was
changed from 6.8 Hz to 7.6 Hz. 4096 velocity measurements were collected at &
rate of 50 Hz. The frequency of both the forcing signal and the measured velocity
oscillations are shown in figure 6.11, with a detail in figure 6.12. There is a 6.97 s
delay between the frequency change of the forcing signal and the frequency change
of the measured v« ‘y. This is the time it takes the disturbances that induce the

flow oscillations : rom the point were they were created to a position at
0 = 180°. The po. “ere the disturb:. .ces are created can be found if the wave
speed is known.

Each traveling wave mode has a characteristic speed that is constant throughout
the system, or at least the fully developed wave region. If this was not the case, a
fully developed wave state would not exist. Because the wave travels in the azimuthal
direction, the wave speed must be expressed in degrees per time unit, rather than a

distance per time uni'

An estimate of the wave speed was obtained by measuring the wave length, using
flow visualization. The wave speed is found by multiplying the wavelength with the
wave frequency, which is selected through the forcip.  :cause the dye pattern
keeps changing with streamwise position the wavelengtn of the oscillations can not

be determined very accurately. A more accurate method for measuring wave speeds
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Figure 6.11: Response of streamwise vrlacity fluctuations to a step change in
forcing frequency. Dn = 220, § = 180°, £ = 0.27, z = 0.055, 25
gauge pin, forcing of 0.73 V2, 4096 data points sampled at 50 Hz.
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Figure 6.12: Detail of figure 6.11.
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would be to measure the streamwise velocity at two different positions in the fully
developed region of the traveling wave. The wave speed can then be found from the

phase difference between the two signals and the distance between the two probes.

For the conditions of figure 6.12, the wave speed was estimated at 25.5°/s with
an experimental error of about 5%. With the pin inserted at 5° from the inlet, the
distance between the pin and the location at which the velocity is measured is 175°.
At a wave speed of 25.5°/s, the wave travels 178° + 9° in 6.97 s, indicating that the
disturbances were created somewhere between the inlet of the curved section and
11° from the inlet. In this section of the duct, the pin is the only source of localized
disturbances. It seems likely that also in the unforced system the destabilizing

disturbances are created by the pin.

6.2.2 Development Length of Traveling Waves

The development length of the traveling waves depends on the development of
the steady 4-cell flow from which they develop, and on the presence of destabilizing
disturbances. Matsson and Alfredsson (1993a) found that in a curved channel,
twisting vortices develop simultaneously with the Dean vortices. This suggests that
in a curved square duct the 4-cell flow does not have to be fully developed before

the onset of traveling waves can take place.

Bara(1992) discovered that at Dean numbers between 131. and 150 the
development length of steady 4-cell flow is reduced significantly by the pin. This
is thought to be the result of the streamwise velocity profile induced by the pin.
The pin reduces the streamwise velccity along the centre line, 2 = 0, thereby
creating a streamwise velocity profile that promotes the development of a 4-cell

state. Figure 6.13 shows the development length reduction at Dn = 220 using two
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Figure 6.13: Development length of steady 4-cell flow without pin and with 25
and 29 gauge pins. Dn = 220, z = 0.27, z = 0.0.
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different pin diameters. Although the different pins have different effects on the flow

development, the development length for both pins is the same.

It was shown in section 6.2.1 that the pin also creates the disturbances that
destabilize the 4-cell flow. Because of the combined effects of the pin, the traveling

wave can be cbserved within the limited length of the apparatus.

Without inserting the pin no oscillations were observed within the first 270°
for 170 < Dn < 260 and one can only speculate about whether spontaneous
oscillations would occur further downstream or not. There are two requirements
for the development of traveling waves: a steady 4-cell state and disturbances that
destabilize the 4-cell low. Without the pin a 4-cell state will develop, although
somewhat further downstream (figure 6.13). It seems likely that without the pin,
random disturbances in the flow will grow and eventually destabilize the 4-cell flow,
although this may take much longer. This suggests that in a longer apparatus
traveling waves would form spontaneously. Some experimental evidence exists for
these spontaneous oscillations: without inserting the pin, oscillations develop near
the end of the duct for Dn around 600. Highly unstable flow and very fast oscillations

make what seems like naturally occurring traveling waves very difficult to study.

6.2.3 Wake behind the Pin

It is well known that in wakes behind bluff bodies, self-sustained oscillations can
be produced as a result of the local absolute instability of the flow (Chomaz et al.,
1988; Monkewitz, 1990; Oertel, 1990). The oscillations in the wake behind a circular
cylinder are the result of a periodic vortex shedding at a distinct frequency. This
phenomenon is called a von Kdrmén vortex street. Oscillations were observed in the

wakes behind all pins used in this study. In order to make sure that the traveling



CHAPTER 6. TIME DEPENDENT FLOW PHENOMENA 171

wave is a solution of curved duct flow, and not the result of wake oscillations, the

onset and frequency of wake oscillation is compared with the traveling waves.

The wakes were observed using side view flow visualization with continuous dye
injection. The wake behind a 25 gauge pin at Dn = 220 is shown in figure 6.14. No
streamwise velocity fluctuations were detected in the wake with the laser Doppler
anemometer. A stroboscope was used to determine the shedding frequency. A
periodic pattern is visible for about 40° only, after which the dye is completely
dispersed in the water. Because there is no continuous energy supply to the wake
oscillations, the oscillations will decay by viscous dissipation. Schlichting (1979)
reports that the vortex shedding behind a cylinder starts at Repi, = 50 to 65, where
Reyp;y is the Reynolds number for the flow past a cylinder, defined as

Reyin = 20200 (6.1)
. v
where: vg = fluid velocity near the pin

Dpin = pin diameter

In the curved duct the fluid velocity at the pin is not well defined, because the
velocity varies with the position in the duct. The streamwise velocity profile at 5°
from the inlet of the curved section, where the pin is inserted, is approximately fully
developed straight duct flow so that the velocity at the pin varies from zero at the
wall to 2.096 * Ty in the centre. Assuming that the onset and shedding frequency
of a wake is determined by the maximum velocity at the pin, 2.096 * 75 is used to
calculate Repin.

The flow rate at the onset of vortex shedding was determined for each of the
five pin diameters. The results are plotted in figure 6.15 and are in good agi-eement

with experimental results for flow past a cylinder. Vortex shedding is not essential
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Figure 6.14: Flow visualization of oscillations in the wake behind a 25 gauge pin
at Dn = 220. Wake frequency is 26.2 Hz.
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Figure 6.15: Dean number at which the wake oscillations can first be observed
for various of pin diameters.
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for the existence of traveling waves, since for all pin diameters waves were observed
below the onset of wake oscillations. This is especially evident for the 33 -auge pin.
Onset of vortex shedding behind a 33 gauge pin takes place at Dn = ), whiie

traveling waves were induced by this pin at Dean numbe : betwee 18 ..ad 250.

Schlichting (1979) presents a correlation betwe:n the dimensionless ~-ake
frequency or Strouhal number, St = nDy:,/vs, and Repn, where n is the dim  sioral
wake frequency. This correlation is repro«iuced in figure 6.16 in different d  nsions.

The dimensional wake frequency depends both on the pin diameter and the flow ra-

In order to verify whether there is a relationship between the shedding freque -y
and the wave frequency, the dominant wave frequency was measured for a variety
of pin diameters and flow rates. The maximum of the unforced frequency spectrum
(see for example figure 6.4) was taken as the dominant frequency. Samples of 32768
velocity data were collected at a rate of 100 Hz and spectra werc averaged over
31 blocks of 2048 points with 50% overlap. The results in figure 6.17 show that
the wave frequency does not depend on the pin diameter. This confirms that the

traveling wave is characteristic for curved duct flow and that the wave frequency is

an inherent property of the wavy flow.

The predicted wake frequency and the measured wave frequency are plotted
together in figure 6.18. Not only does the wake frequency depend on the pin
diameter, but the wake frequency is also close to an order of magnitude higher than
the wave frequency. The measured wake frequency for Dn = 220 and a 25 gauge
pin of 26.2 Hz is close to the predicted frequency, considering the assumptions that
were made in the calculations. The wake frequency of 26.2 Hz does not show up in

the spectrum at these conditions (figure 6.4).

In summary, a comparison of the traveling wave with vortex shedding in the

wake behind the pin shows that these two phenomena are not related.
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Figure 6.16: Predicted frequency of the wake behind pins with various diameters
(from Schlichting, 1968).
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Figure 6.17: Dominant frequency of waves induced by pins with various diameters.
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Figure 6.18: Predicted wake frequency and measured wave frequency.
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6.3 Effect of Forcing on the Flow

Different methods can be used to introduce external perturbations into a flow
system. Passive techniques use steady disturbances, such as trip wires, roughness
elements and other objects (Schatz et al., 1991; Pouliquen et al., 1992). Active
techniques are used to introduce disturbances at a selected frequency, and can have
either a local or a global effect on the flow. Local forcing methods, such as moving
flaps (Marasli et al., 1989; Schatz & Swinney, 1992), fluid bleed (Williams et al.,
1992) or active heating elements (Gharib & Williams-Stuber, 1989) disturb the flow
locally. Global techniques affects the entire flow field. Examples of global forcing
methods are acoustic forcing (Sato & Kuriki, 1961) or flow rate fluctuations (Ho &

Huang, 1982).

Foréing is generally used to select the nature and the intensity of the dominant
disturbances in the flow, and to improve reproducibility. By forcing the flow, random
disturbances which may vary from day to day do not play an important role in the
often very sensitive transition processes. Active forcing can also be used as a phase

reference, needed for phase-averaging velocity data.

The intensity of the imposed perturbations must be high enough to dominate
the random disturbances in the system. On the other hand, large disturbances could
alter the flow significantly. The forcing level must be a compromise between these

two factors.

In this study the flow was forced by periodically compressing the hose that
leads the water to the stilling chamber. Because of the incompressibility of water,
this forcing method introduces a global pressure change and possibly a velocity
fluctuation. It was shown in section 6.2.1 that as a result of the forcing a periodic

disturbance i3 created locally by the pin. This disturbance destabilizes steady 4-ce]l
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flow, leading to traveling waves.

The traveling wave state was characterized by measuring the velocity fluctuations
that are the result of the traveling wave. Any additional velocity fluctuations caused
by the forcing, could therefore affect the experimenial results. In this section the
magnitude of the velocity fluctuations induced by the forcing will be compared to
the velocity fluctuations caused by the traveling wave. The effects that the forcing

power and the forcing frequency have on the developing traveling waves will also be

investigated.

6.3.1 Instability and Mode Interaction

The local linear stability of a flow field can be determined by evaluating the
response to a localized disturbance. The flow is locally stable if the disturbance
decays in any moving reference frame, otherwise the flow is locally unstable. If the
disturbance grows, but is at the same time convected through the system in such a
way that at any fixed location the response decays, the flow is locally convectively
unstable. If the response grows at each location, the flow is absolutely unstable
(figure 6.3). More details are given by Monkewitz (1990) and Huerre and Monl.:witz
(1990). ‘Chomaz (1992) recently extended the concepts of convective and absolute

instability to non-linear systems.

A flow field can have a region of absolute instability while at the same time other
regions are convectively unstable or even stable. A good example is the wake behind
bluff bodies (see for example Oertel, 1990). The region directly behind a bluff body
is usually absolutely unstable, and the size of this region depends on the shape of
the body and the flow rate. Experimentally, it is often very difficult to determine
the local flow stability.
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Chomaz et al. (1988) established the connection between local and global
stability properties, using a Ginzburg-Landau model. A globally unstable system is
characterized by a self-sustained, or global mode, which is intrinsic to the system.
This global mode does not depend on the initial disturbances in the system. A
region of absolute instability is essential for the development of a global mode. For
example, vortex shedding in the wake behind a circular cylinder only takes place
if the absolutely unstable region directly behind the cylinder is sufficiently large
(Chomaz et al., 1988; Maekawa et al., 1992). The frequency spectrum of a global

mode has sharp peaks at the fundamental frequency and possibly its harmonics.

Systems that are locally unstable, but globally stable, selectively amplify
extrinsic noise, without developing a global mode. These systems are called
noise driven and their state is strongly determined by random disturbances in the
flow. Spectra are characterized by a broad band of frequencies, without a single
dominating frequency. Deissler (1985; 1987; 1989) has studied the behaviour of

noise driven systems extensively, using a Ginzburg-Landau model.

The observation of individual wave packets that are convected in the streamwise
direction was used as an indication of the convective instability of curved duct flow
at a Dean number of 220 (section 6.1).. The convective nature of the flow was
confirmed by the forcing frequency step response (figure 6.11). The broad band
frequency spectrum of the unforced system (figure 6.6) is characteristic for a locally
unstable, but globally stable system. However, the system does not necessarily have
to be convectively unstable everywhere, in order to show this behaviour. Small

regions of absolute instability could exist in a globally stable system.

Because the behaviour of globally stable systems is not much affected by small
absolutely unstable regions, evidence for local absolute instability is difficult to
obtain experimentally. The only experimental evidence of local absolute instability
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is available for the region directly behind the pin. At those conditions where vortex
shedding behind the pin takes place, the region behind the pin is absolutely unstable.
It was shown in section 6.2.3 that this vortex shedding does not play a significant

role in the develcpment of traveling waves.

By forcing the flow, the traveling wave modes at the forcing frequency and
its higher harmonics are excited. In the linear growth region all modes grow
independently at their own linear growth rate, which is determined by the physics
of the flow. In the non-linear region, interactions between modes can take place
through the non-linear terms in the equation of motion. The nature of these
interactions depends on the relative amplitudes of the modes. The presence of
a single dominant mode tends to suppress the growth of low amplitude modes.
This phenomenon has often beer observed experimentally {e.g. Williams-Stuber &
Gharib, 1990) and als~ numerically by Maekawa e? al. (1992) in a plane wake. The
reduction of noise in a forced system was also observed in this study. The averaged
frequency spectra for the unforced and forced system .at a Dean number of 220
and 6 = 180° were shown in figures 6.4 and 6.6. In the forced system, the forcing
frequency and its higher harmonics dominate the flow field. At the same time, the
amplitude of other modes in the 0-15 Hz range is reduced by more than an order of
magnitude as a result of the forcing. The forcing causes a shift of energy, while the

total wave power remains unchanged.

Sato (1970) and Williams-Stuber and Gharib (1990) forced the convectively
unstable wake of an airfoil at two different frequencies. When the amplitude of
one of the frequencies is much higher- than the other frequency, the weaker one
is suppressed in the non-linear growth phase. If both modes are equally strong,
new modes at frequencies that are combinations of the two forcing frequencies (e.g.

fi = fa, i + fa, 2f: — f5) are produced. This type of interaction was also observed



CHAPTER 6. TIME DEPENDENT FLOW PHENOMENA 180

numerically by Karniadakis and Triantafyllou (1989) in the forced wake behind a
circular cylinder. Flow past a cylinder exhibits a global mode and the interaction

took place between the global mode and the forced mode.

6.3.2 Background Effect of Forcing

The effect that the forcing has on the flow rate was deiermined by measuring
streamwise velocity fluctuations without inserting the pin. No traveling waves
develop for Dean numbers between 170 and 260 when no pin is inserted. Therefore,
all velocity fluctuations that are measured, apart from noise, are the result of the

forcing.

If the forcing causes a fluctuation of the streamwise velocity, this fluctuation is
expected to behave like a standing wave, because of the incompressibility of the
fluid. The phase of standing wave oscillations is the same everywhere in the flow.
Because there is a direct relation between the compressions of the hose and the
velocity fluctuations, the phase difference between these two signals is not expected
to depend on the'forcing frequency or the flow rate. The standing wave character of
the induced fluctuations was confirmed experimentally; figure 6.19 shows that the
phase of the streamwise velocity fluctuations does not depend on the streamwise or

spanwise position, forcing frequency, or flow rate.

In section 6.1, where the spatial development of the velocity amplitude was
present-ed, the area underneath amplitude distfi’b‘utions was used as a measure of
the wave power. The power of the velocity fluctuations induced by the forcing was
measured in the same way. This makes it possible to compare the power of the

traveling waves with the power of the fluctuations induced by the forcing.

Since most mezsurements of the traveling wave were taken at § = 180° and
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Figure 6.19: Phase difference between the background ﬂuctua.tions induced by
the forcing, and the forcing signal. z = 0.27, no pin, forcing power
around 1 V2, samples of 512 measurements at a rate of 100 Hz.
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Dn = 220, the background effect of the forcing was investigated most extensively
for these parameter values. The fluctuation power was measured for three levels of
forcing and for forcing frequencies between 1 and 12 Hz. For each set of parameters,
the streamwise velocity was sampled at 61 positions along a spanwise line at z = 0.27
with 2 ranging from —0.24 to 0.24 (+ 3 mm from the centre line). Per position 512
velocity measurements were taken at a rate of 100 Hz. The frequency spectra of
these velocity samples all show a single sharp peak at the forcing frequency. Two
examples of averaged frequency spectra for forcing at 7 and 3.5 Hz are given in

figures 6.20 and 6.21.

The fluctuation power was calculated in the familiar way, by integrating the
spectrum in a 1.56 Hz wide band around the forcing frequency. The power of
the streamwise velocity fluctuations at these four forcing conditions is shown in
figure 6.22. The background noise of the unforced system was also measured, and

the fluctuation power of the noise is shown in figure 6.22.

The background fluctuation power can be compared with the power of the
traveling wave fluctuations in figure 6.10. The power of the fundamental component
of the fully developed traveling wave, forced at 6.7 Hz, is around 7-8 (mm/s)2. It
will be shown in section 6.3.4 that the fully developed wave power strongly depends
on the forcing frequency. At forcing levels of 2.6, 0.81 and 0.042 V2, the background
fluctuation power is 0.1, 0.04 and 0.016 (mm/s)? respectively, or 1.3, 0.53 and 0.21%
of the wave power. Although it is very difficult to estimate the experimental error in
the wave power, an additional error of around 1% that is introduced by the forcing
was considered well within the acceptable range. It is only in the developing region
of the traveling wave that the contribution of the forcing to the measured velocity

fluctuations can become significant.

The background fluctuation power has a maximum around 3.5 Hz. This is most
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Figure 6.20: Frequency spectrum of velocity fluctuations induced by forcing at
7 Hz and a forcing power of 2.6 V2. Dn = 220, 6 = 180°, z = 0.27.
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Figure 6.21: Frequency spectium of velocity fluctuations induced by forcing at
3.5 Hz and a forcing power of 2.6 V2. Dn = 220, 6 = 180°, z = 0.27.
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Figure 6.22: Background fluctuation power for different levels of forcing. Dn =
220, 8 = 180°, z = 0.27, no pin, 61 samples (-0.24 < z < 0.24) of
512 measurements sampled at 100 Hz.
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likely the result of a resonance effect in the tygon hose that was compressed by the
forcing pump. After the hose is compressed, it takes a short time before the hose
returns to its original shape. At a forcing frequency of 3.5 Hz, the hose has just
enough time to recover before the next roll of the forcing pump compresses the hose
again.

The background effect of the forcing did not shovr any dependence on the flow
rate and only a slight dependence on the streamwise position. The resonance effect
at 3.5 Hz is also present at 8 = 20°, which demonstrates that this maximum in the
streamwise velocity fluctuations is not the result of resonance in the secondary flow

since at that position the secondary flow has only just started to developed.

6.3.3 Forcing Power

Frequency spectra of the fully developed wave for three levels of forcing are shown
in figure 6.23. As the forcing power is increased, the peaks in the spectra become
narrower, but the total wave power remains the same. This process is illustrated in
figure 6.24, which shows the total power, the power of the fundamental and the power
of the first harmonic as a function of the forcing frequency for a wave at Dn = 220
and a 25 gauge pin at = 180°. The power of the fundamental component increases
with increasing forcing power and reaches a constant value above a forcing level of
around 1 V2. The power of the first harmonic also reaches a constant value. The
peaks in the spectra keep getting sharper with increasing forcing power, but this is
not reflected in the amplitudes, since those are measured in a 1.56 Hz wide. band.
The wave is considered to be fully locked in to the forcing signal at forcing levels
above 1 V2,

Since the traveling wave state is the result of a selective amplification of flow

disturbances, the development length of the travcling waves is expected to depend on
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Flgure 6.23: Measured averaged frequency spectra for increasing forcing power at
Dn = 220, § = 180° and = = 0.27. 25 gauge pin, forcing frequency
around 6.5 Hz, 61 samples (-0.24 < 2 < 0.24) of 1024 measurements
sampled at 100 Hz.
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Figure 6.24: Wave power with increasing forcing power for 25 gauge pin at
Dn = 220, 0 = 180° and z = 0.27. Forcing frequency of 6.9 Hz.
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Figure 6.25: Total wave power with increasing forcing power in linear growth
region. Dn = 220, z = 0.27, forcing frequency of 6.9 Hz.
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the intensity of the forcing disturbances. These forcing disturbances in turn depend
both on the pin diameter and the forcing power. Because the development length
is hard to determine experimentally, the wave power in the linear growth phase is
used as an indicator for the development length. Measurements were taken for three
combinations of pin diameter and streamwise position. For each combination, the
total wave power was measured at various forcing levels. The results are shown in

figure 6.25.

At a fixed position, the wave power increases with increasing forcing power.
Since in the linear growth region the wave power increases rapidly with streamwise
position, this result indicates that at high forcing power the wave is further developed
than at low forcing power. The experiments also show that at § = 120° the traveling
wave induced by a 29 gauge pin is less developed than the wave induced by a 25 gauge
(thicker) pin, which creates larger disturbances. Both the forcing power and the pin
diameter dependence of the development length demonstrate that the development
length of the traveling waves is reduced when the intensity of the forcing disturbances

is increased.

The forcing power dependence of the development length explains the higher
total wave power at forcing levels below 0.3 V2 in figure 6.24. At low forcing levels,
the traveling wave may not have reached a fully developed state at § = 180°. It was
shown in figure 6.10 that the wave power goes through a maximum before it reaches
a steady value in the fully developed wave region. The high wave power that was

found at low forcing levels likely corresponds to this region in the flow development.

The forcing level must be high enough to cause the wave to lock in to the forcing
frequency but low enough to not disturb the flow too much. The wave is fully locked
in to the forcing signal at forcing levels above 1 V2 (figure 6.24). It was shown in
section 6.3.2 that a forcing power of 2.6 V2 causes a background fluctuation which is
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1.3% of the wave power. This was considered to be an acceptable level. Hence, any

forcing power between 1 V2 and 2.6 V2 causes the wake to lock in, without creating

a significant background fluctuation.

6.3.4 Forcing Frequency

The traveling wave at a Dean number of 220 locks in to the forcing frequency if
that frequency is between 4 and 9 Hz. This frequency range corresponds to the broad
peak in the unforced frequency spectrum. Traveling wave modes in this region have
a relatively large growth rate compared to other modes. In this section experimental
results will be presented that show what happens when the forcing frequency is lower

or higher than the natural frequency range of 4-9 Hz.

By forcing the flow at a certain frequency, not only the traveling wave mode
at the forcing frequency is excited, but also modes at the harmonics of the forcing
frequency. The relative growth rates of the excited frequencies determine which
mode will become the dominant mode. In the non-linear region interactions between

the dominant mode and other modes can take place.

The effect of the forcing frequency was determined for the traveling wave at
a Dean number of 220, induced by a 25 gauge pin. Measurements were taken at
0 = 180°. The total wave power and the power at the fundamental and first harmonic
frequencies were measured for forcing frequencies between 1 and 10 Hz. The forcing
power was between 0.7 and 1.2 V2. Considering the amount of data that had to be
taken, the sample size was reduced to 256 measurements, taken at a rate of 100 Hz.
This limits the frequency resolution t'o 0.4 Hz. The wave power as a function of the
forcing frequency is shown in figure 6.26. The symbols indicate which component
of the forcing frequency the flow is locked in to.
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. The results show that for a forcing frequency between 4 and 10 Hz the traveling
wave locks in to the forcing frequency. At forcing frequencies between 2.5 and 4 Hz
the traveling wave locks in to the first harmonic of the forcing. There is an overlap
region between 3 and 4.5 Hz, where the wave locks in to either the forcing frequency,
or the first harmonic. At forcing frequencies between 1 and 2.5 Hz, a new mode was
observed with different characteristics than the dominant modes at higher forcing

frequencies.

The frequency ranges where the wave locks in to the fundamental and first
harmonic of the forcing are shown in figure 6.27. The line in figure 6.27 represents a
wave frequency of 7 Hz and shows that the wave locks in to a frequency component
close to 7 Hz. The 7 Hz mode corresponds to the maximum in the unforced frequency

spectrum (figure 6.4) and is the mode with the highest growth rate.

The wave power at the fundamental forcing frequency as a function of the
forcing frequency is shown in figure 6.28. There is no maximum of the fundamental
wave power around 7 Hz. At forcing frequencies below 6.5 Hz the noise level of
the amplitude distributions increases significantly and between 3 and 5 Hz the
results are not very reproducible. Which frequency component the wave locks in to
can be determined from the amplitude distributions of the different components.
Sometimes the wave locks in to the forcing frequency, other times to the first
harmonic of the forcing frequency; combinations of these two modes have also been
observed. Two runs at 3-3.5 Hz locked in to the forcing frequency at very hig..
power. These two data points seem to continue the trend at forcing frequencies
above 5.5 Hz. In the region where the forcing frequency and the first harmonic
mode have equal growth rates, a competition between these two modes takes place.
However, at a forcing frequency of 3 or 3.5 Hz, the first ha:;monic mode has a higher

growth rate than the fundamental, and it is not clear what caused the wave to lock
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Figure 6.26: Total wave power as a function of the forcing frequency. Dn = 220,
0 = 180°, z = 0.27. Samples of 256 measurements at 100 Hz.
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in to these low frequencies.

The wave power at the first harmonic of the forcing frequency as a function of
the forcing power is shown in figure 6.29. The power has a maximum in the region
where the wave locks in to the first harmonic of the forcing. At forcing frequencies
between 2 and 4.5 Hz the growth rate of the first harmonic frequency (between 4
and 9 Hz) is higher than that of the fundamental.

The averaged frequency spectrum and amplitude distributions with forcing at
3.32 Hz are shown in figures 6.30 and 6.31. The traveling wave is locked in to the
first harmonic of the forcing frequency, so that the fundamental wave frequency is
6.64 Hz. Comparison of the frequency spectra and amplitude distributions of this

wave and the wave forced at 6.82 Hz shows that both modes are nearly identical.

The amplitude distributions for a wave forced at 6.82 Hz were shown in figure 6.7
and show great similarity with figure 6.31. For the wave forced at 3.32 Hz the first
and third harmonics of the forcing correspond to the fundamental and first harmonic
of the wave. Frequency spectra for both waves (figures 6.6 and 6.30) are also very
similar. The frequency spectrum in figure 6.30 shows three peaks at 6.64, 13.4 and
20.0 Hz with decreasing power which are characteristic for a traveling wave with
a fundamental frequency of 6.64 Hz. The peaks at the fundamental and second
and fourth harmonics (3.32, 10.0 and 16.7 Hz) are an order of magnitude lower
than neighbouring peaks. The total wave power with forcing at 3.32 and 6.82 Hz is
respectively 8.27 and 8.35 (mm/s)?.

At forcing frequencies below 2.5 Hz a new mode was observed. The averaged
frequency spectrum and amplitude distributions with forcing at 2.39 Hz are shown
in figures 6.32 and 6.33. The second harmonic of the forcing frequency, 7.17 Hz, is
close to the fastest growing mode, but the spectrum does not show a peak at this
frequency. The series of peaks at harmonics of the fundamental wave frequency,
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Figure 6.30: Averaged frequency spectrum of streamwise velocity with forcing of
0.62 V2 at 3.32 Hz. Dn = 220, 6 = 180°, z = 0.27, 25 gauge pin.
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Figure 6.31: Amplitude distributions of streamwise velocity with forcing of 0.62
V2 at 3.32 Hz. Dn = 220, 6 = 180°, z = 0.27, 25 gauge pin.
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Figure 6.32: Averaged frequency spectrum of streamwise velocity with forcing of
0.62 V2 at 2.39 Hz. Dn = 220, = 180°, z = 0.27, 25 gauge pin.
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Figure 6.33: Amplitude distributions of streamwise velocity with forcing of 0.62
V2 at 2.39 Hz. Dn = 220, § = 180°, z = 0.27, 25 gauge pin.
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which is characteristic for a traveling wave, is missing and none of the amplitude
distributions has a maximum in the centre that identifies the first harmonic of
the wave frequency (e.g. figure 6.7). The flow state excited by forcing at 2.39
Hz is fundamentally different from the traveling wave modes observed at forcing

frequencies above 2.2 Hz.

The averaged frequency spectrum and amplitude distributions with forcing at
1.73 Hz are shown in figures 6.34 and 6.35. The spectrum has a peak at 7.03 Hz,
corresponding to the third harmonic of the forcing frequency. However, just as in
the previously discussed case with forcing at 2.39 Hz, the spectrum and amplitude
distributions do not have the characteristics of the traveling wave modes that were

observed at forcing frequencies between 4 and 10 Hz.

Since the forcing does not excite modes at subharmonics of the forcing frequency,
forcing at frequencies above 10 Hz is not expected to have much effect on the flow.
The averaged frequency specirum and amplitude distribution with forcing at 13.66
Hz are shown in figures 6.36 and 6.37. The spectrum has no peak at the first
subharmonic of 6.83 Hz and is very similar to the unforced frequency spectrum of

figure 6.4.

In summary, forcing of the flow excites traveling wave modes at the forcing
frequency and its harmonics. The dominant wave modes at forcing frequencies
between 2.5 and 10 Hz have the same characteristics. In this range the wave locks
in to the forcing frequency or its first harmonic, depending on which mode has the
fastest growth rate. At forcing frequencies between 1 and 2.5 Hz a new mode with

different characteristics was observed.
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Figure 6.34: Averaged frequency spectrum of streamwise velocity with forcing of

0.59 V2 at 1.73 Hz. Dn = 220, 6 = 180°, = = 0.27, 25 gauge pin.
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Figure 6.35: Amplitude distributions of streamwise velocity with forcing of 0.59

V2 at 1.73 Hz. Dn = 220, 6 = 180°, z = 0.27, 25 gauge pin.
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Figure 6.36: Averaged frequency spectrum of streamwise velocity with forcing of
0.41 V2 at 13.66 Hz. Dn = 220, § = 180°, = = 0.27, 25 gauge pin.
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Figure 6.37: Amplitude distribution of streamwise velocity with forcing of 0.41
V2 at 13.66 Hz. Dn = 220, § = 180°, z = 0.27, 25 gauge pin.
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6.4 Direct Numerical Simulations

Three-dimensional and time dependent simulations of the fully developed
traveling wave state at a Dean number of 220 were performed using the commercial
CFD package FLOW3D. First the simulation strategy will be discussed, followed by
the geometry and the solution method. In the next section the simulation results

will be compared to the experiments.

In an early attempt to model the traveling wave flow, the geometry of the
experimental apparatus, including the straight inlet section, was modeled using
inlet and outlet boundary conditions. Oscillating modes were induced by forcing
the flow periodically at the inlet of the curved section, but no significant oscillations
of the Dean vortices were observed. In a second attempt a curved section with fully
developed 4-cell flow at the inlet was modeled. This time, oscillating Dean vortices
were observed, but the osciilations slowly died out in the streamwise direction.
Further grid refinement could have produced growing oscillating modes, but this

was not possible within the available 256 Mega bytes of computer memory.

Because of the very fine grid resolution that is necessary to resolve the traveling
wave state, the streamwise extent of the computational domain had to be reduced
significantly. This was obtained by imposing periodic boundary conditions in the

streamwise direction. The flow was driven by a mean pressure gradient.

The steady 4-cell flow from which the traveling waves develop is unstable with
respect to asymmetric perturbations. In a simulation with periodic boundary
conditions, a continuous feedback exists between the outlet and the inlet of the
computational domain. Because of this feedback, asymmetries that are caused by
round-off errors are amplified and eventually cause the breakdown of steady 4-cell

flow. The development of asymmetries can be prevented by imposing symmetry
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around the centre plane at z = 0. This does indeed stabilize stable 4-cell flow, but
also makes the development of traveling waves impossible, since the traveiiuy ~ave
state is not symmetric around z = 0. It is clear that the traveling wave state can
only be modeled in a streamwise periodic simulation if steady 4-cell flow is stabilized

without eliminating the development of traveling wave modes.

It will be demonstrated in the next section that the fully developed traveling wave
state has shift-and-reflect symmetry. This means that the flow field is invariant over
a streamwise translation of half a wavelength, combined with a reflection in the
centre plane, z = 0. The symmetry properties of the flow will be discussed in detail
in section 6.5.2. Because of the shift-and-reflect symmetry of the traveling waves,
this symmetry property can be imposed in the simulations, without affecting the
development of oscillating modes. The shift-and-reflect symmetry condition also
stabilizes steady 4-cell flow, because the asymmetric breakdown process of the 4-cell

flow is not shift-and-reflect symmetric.

The most efficient implementation of shift-and reflect symmetry would be to
model half a streamwise wavelength and impose a reflect condition between the
outlet and the inlet. This is currently not possible in FLOW3D, which only
allows periodic boundary conditions. Therefore, one full wavelength was modelled
and the shift-and-reflect symmetry was implemented through user-defined Fortran
routines. At each iteration the velocity field of the cross section in the middle of the

computational domain was made equal to the reflected velocity field at the inlet.

The dimensions of the geometry are given in table 6.1. The spanwise and
radial dimensions correspond to the dimensions of the experimental apparatus.
A streamwise wavelength of 3.8° was used, which is close to the experimentally
observed wavelength with forcing at 6.6 Hz (see figure 6.8). Three different grids were
used: a coarse 32x22x100 grid (grid 1), an intermediate 46x32x128 grid (grid 2) and
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a fine 58x40x160 grid (grid 3). The cells are uniformly distributed in the streamwise
direction. In the spanwise and radial directions geometric compression was used.
This increased the grid resolution near the centre of the outer wall, where the flow
oscillations are most prominent. Both in the spanwise and in the radial direction,
the ratio between the largest and the smallest grid dimensicn is equal to 4. A cross

section of grid 3 is shown in figure 6.38.

Direction | Min. (m) | Max. (m) | grid 1 | grid 2 | grid 3

spanwise | -0.00635 | 0.00635 32 46 58
radial 0.18561 0.19831 22 32 40
streamwise 0.0 0.012731 | 100 128 160

Table 6.1: Geometry and grid dimensions.

FLOW3D solves the fully elliptic, three-dimensional, time dependent Navier-
Stokes equation, using a control volume approach. Hybrid differencing was used
to model the convective terms of the transport equations. Block Stone’s method
was used to solve the linearized difference equations for the velocity components
in the inner iteration. The SIMPLEC algorithm (Patankar, 1980; Van Doormal &
Raithby, 1984) was used for the pressure coupling of the outer iteration with under-
relaxation factors for the velocity components of 0.8. The time stepping procedure
used Crank-Nicolson differencing. Each time step was considered to be converged
when the residual mass flow over the entire domain was less than 10~6. User-defined
Fortran was used extensively to monitor and analyse the flow. Simulations were

carried out on IBM RS/6000 model 560 computers with 256 and 512 Mb.

The simulations with grids 1 and 2 were started from a steady 4-cell solution.
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The streamwise velocity field of the steady 4-cell flow was perturbed by at most
10% of the local streamwise velocity. This perturbation preserved the shift-and-
reflect symmetry. A transient simulation followed the temporal development of the
perturbed state. Time steps of 0.01, 0.005 and 0.0025 seconds were used. After about
5 seconds of real time, the total wave power reached a constant value, indicating a

state of fully developed traveling waves.

The simulations with grid 3 were started from the fully developed wave state
from grid 2, that was interpolated to fit the finer grid 3. A fully developed traveling
wave state was reached after 8 seconds of real time. This simulation took 235 Mb of
RAM and the CPU time for one time step of 0.0025 s was about 52 minutes. The

total simulation time for g ‘1 3 was nearly 4 months.

The frequency of the traveling wave simulation with grid 3 is 6.45 Hz, which is
very close to the 6.6 Hz of the experiment that the wave length for the simulation
was based on (figure 6.8).

In the next section the simulation results will be compared to the experiments.
The simulations will also be used to analyse the flow structure and the instability

mechanism that causes the traveling waves.
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Figure 6.38: Cross section of grid 3 (58x40x160).
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6.5 Flow Structure

One of the main objectives of this study of traveling waves in a curved square
duct is to characterize the structure of the wavy flow. Experimentally, this was done
by measuring amplitude and phase distributions. Numericai simulations provide
further insight into the flow structure, in particular the vorticity field. The traveling
waves show great similarity with twisting vortices in a curved channel, sinuous
Gortler vortices and a two-dimensional wake. Symmetry considerations play an
important role in the analysis of the flow structure. The experimental and numerical
investigatidn focused on the fully developed traveling wave state at a Dean number

of 220. All simulation results in this section were calculated with grid 3.

6.5.1 Amplitude and Phase Distributions

A velocity signal can be represented in the frequency domain as a sum of cosine
functions, each with their own amplitude and phase. Since velocity signals in
the forced system contain only a few frequency components, amplitude and phase
information is a very efficient method to describe the fluctuating velocity field. The
streamwise velocity fluctuations are strongest near the inflow region, and fluctuation
characteristics change much more quickly in the spanwise direction than in the radial
direction. Therefore, velocity fluctuations were only measured along a spanwise line
at z = 0.27. Amplitude and phase distributions show how the amplitude and phase

of a certain frequency component vary with the spanwise position along this line.

The amplitude of the total velocity fluctuations is equal to the area under the
frequency spectrum, or the variance of the time series. The area in a 1.56 Hz wide

band of the frequency spectrum was used as the amplitude of individual components.

The phase of the velocity fluctuations is only meaningful if it is defined relative
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to a phase reference. The forcing pump signal, which is a measure of the torque
delivered by the pump, was used as a phase reference. The advantage of this method
is that the pump phase is constant throughout the flow field (see figure 6.19). Thus,
any observed phase changes can be attributed to the velocity signal. However,
measured phase distributions were fairly noisy. Internal phase referencing was also
used, by calculating the phase difference between different frequency components
of the same velocity signal. These phase differences are only meaningful between
the fundamental frequency and its harmonics. Internal phase referencing produced

much more reproducible results.

Velocity fluctuations were measured at a Dean number of 220 and 6 = 180°. At
this position and Dean number the traveling wave has reached a fully developed state
(figure 6.10). Typical amplitude and phase distributions of the streamwise velocity
are shown in figure 6.39. The streamwise velocity was sampled at 61 positions along
& spanwise line at * = (.27, approximately through the centres of the Dean
vortices. The forcing pump signal was sampled simultaneously. Measured amplitude
distributions are usually slightly asymmetric, probably as the result of small
disturbances in the flow. No systematic asymmetries were observed. The amplitude
of the fundamental frequency reaches zero in the centre of the duct, with maxima on
both sides of the horizontal centre line. The first harmonic has a maximum in the
centre and goes to zero around z = +0.05 with secondary maxima around z = £0.1.
With 89% of the total power at the fundamental frequency, the amplitude of the
total power' follows the ampiitude of the fundamental frequency closely.

The shift of power between thé fundamental frequency and the first harmonic
near the centre of the duct is illustrated in figures 6.39c-h. At z = 0.008, close
to the centre line and at the minimum of the fundamental amplitude, the first
harmonic dominates the signal (figure 6.39c-d). At z = 0.024 the fundamental
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and the first harmonic are equally strong (figure 6.39e-f) and at z = 0.071, where
the fundamental frequency is at its maximum, the signal is dominated by the
fundamental (figure 6.39g-h). The time series on the other side of the centre line
show the same trends. More detailed time series and frequency spectra at z = 0.008,
0.024, 0.039, 0.071 and 0.134 are shown in figures 6.40-6.49. A number of velocity
profiles, simulated with FLOW3D, are shown in figure 6.50. The simulated profiles

are in qualitative agreement with the experiments.

The phase jump at the centre line in. figure 6.39a is associated with the
fundamental frequency. This phase difference of 180° between the fundamental
on both sides of the centre line is shown clearly in figure 6.50. Both this phase jump
and the fact that the fundamental amplitude is zero in the centre will be explained

in section 6.5.2, where the symmetry of the flow is discussed.

If a time series contains two or more frequency components, the shape of that
time series depends on the phase differences between the components. Especially
in the region where the fundamental and the first harmonic are equally powerful
(figures 6.39e-f), the velocity signal depends strongly on the phase difference between
these two components. It is shown in figure 6.39a that the phase difference between
the fundamental and the first harmonic on either side of the centre line is 0 or =,

both corresponding to the velocity signal shcwn in figure 6.39.

Amplitude distributions of the streamwise velocity and distributions of the phase
difference with the forcing signal are shown in figures 6.51-6.56 for the fundamental
and first and second harmonics respectively. All phase differences are expressed as a
fraction of the fundamental wavelength. Because of the arbitrary distance between
the pin, where the forcing disturbances are created, and the position where the

velocity is sampled, this phase difference is a relative quantity.

The phase differences with the forcing signal show a significant random
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Figure 6.40: Part of streamwise velocity signal at z = 0.008 from data shown in
figure 6.39.
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Figure 6.41: Frequency spectrum of time series shown in figure 6.40. Spectra
were averaged over 7 blocks with 50% overlap.
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Figure 6.42: Part of streamwise velocity signal at z = 0.024 from data shown in
figure 6.39.
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Figure 6.43: Frequency spectrum of time series shown in figure 6.42. Spectra
were averaged over 7 blocks with 50% overlap.
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Figure 6.44: Part of streamwise velocity signal at z = 0.039 from data shown in
figure 6.39.
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Figure 6.45: Frequency spectrum of time series shown in figure 6.44. Spectra
were averaged over 7 blocks with 50% overlap.
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Figure 6.46: Part of streamwise velocity signal at 2 = 0.071 from data shown in
figure 6.39.
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Figure 6.47: Frequency spectrum of time series shown in figure 6.46. Spectra
were averaged over 7 blocks with 50% overlap.
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Figure 6.48: Part of streamwise velocity signal at 2 = 0.134 from data shown in
figure 6.39.
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Figure 6.49: Frequency spectrum of time series shown in figure 6.48. Spectra
were averaged over 7 blocks with 50% overlap.
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Figure 6.50: Streamwise profiles of the streamwise velocity at z = 0.27, from the
FLOW3D simulation with grid 3.
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Figure 6.51: Streamwise velocity amplitude distribution of the fundamental
component. Parameters as in figure 6.39.
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Figure 6.52: Streamwise velocity phase distribution of the fundamental
component. Parameters as in figure 6.39.
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Figure 6.53: Streamwise velocity amplitude distribution of the first harmonic.
Parameters as in figure 6.39.

1.0 :
XY NS N S S S WM S S .
06 1200 N o082 g 2

s_—

g 0.4 b i 900 TN Ly bbb g st e
S A VA e

E 02 k- A RS - LA R ; 0.9 A S -

1Y) S U WO St k< 0 S Mo SR SIS SO
02 o Experiment ...“.._. .......... ........ -
oq = Simutmtion | ¢ ¢ ¢ ¢

025 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.5 020 025

z(-)

Figure 6.54: Streamwise velocity phase distribution of the first harmonic.
Parameters as in figure 6.39.
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Figure 6.55: Streamwise velocity amplitude distribution of the second harmonic.
Parameters as in figure 6.39.
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Figure 6.56: Streamwise velocity phase distribution of the second harmonic.
Parameters as in figure 6.39.
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fluctuation which makes it difficult to detect phase jumps. The uncertainty in
the phase is probably caused by the relatively large distance between the pin and
the position where the phase is measured, in this case at § = 180°. The forcing
pump determines the phase of the disturbance that is created near the inlet of the
duct. It takes the disturbance abéut 50 wavelengths, or 7 seconds, to travel to the
position where the velocity is measured. Hence, the velocity and forcing signals at
any point in time are not directly related. Because of the delay, small fluctuations
in the forcing frequency or flow rate cause large uncertainties in the phase difference

between the forcing signal and the velocity measured at § = 180°.

There is a m phase jump of the fundamental component in the centre of the
duct. The first harmonic has two phase jumps of -.1;1r each at about z = 30.05.
Finally, the second harmonic has three phase jumps of 37 each: at the centre and
at z = £0.1. Some of these phase jumps, indicated in figures 6.52, 6.54 and 6.56,
are not very distinct, but will become more clear when phase differences between
different frequency components of the streamwise velocity are considered. All phase

jumps occur where the amplitude is zero o. nearly zero.

The solid lines in figures 6.51-6.56 are the results of the FLOW3D simulation
with grid 3. The predicted phase distributions agree well with the experiments,
especially with the uncertainty of the measured phase in mind. The amplitude
distributions show the right trends, but are slightly lower than the experimental
distributions. The experimental wave power and the wave power predicted by the
two simulations are given in table 6.2. In the simulation, the wave power increases
significantly with grid refinement and it is likely that the power will increase even
more with further grid refinement. This has not been done due to the large amount
of computer memory and CPU time needed for such a simulation. The power of the

second harmonic is most sensitive to grid refinement and shows the largest difference
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with the experimental results. A mechanism that explains this high grid sensitivity

of the second harmonic will be presented in section 6.5.3.

The phase differences between different frequency components of the velocity
are much better reproducible than phase differences with the forcing signal. Shown
in figures 6.57-6.59 are the phase differences between the first three frequency
components. These internal phase differences are absolute quantities. The phase
jumps are much more distinct than before. Additional information is needed to
determine which of the two velocity signals causes a phase jump. Since sudden
phase jumps can only occur when the amplitude is zero, most phase jumps are
easily identified. Only the second harmonic shows two gradual phase jumps. The
simulated phase distributions are in good agreement with the experiments, especially
in the lower half of the flow field. The asymmetries in the measured profiles cause
some discrepancy between the measured and the calculated profiles in the upper
half of the flow. The amplitude and phase distributions of the streamwise velocity

are summarized in figure 6.60.

Amplitude distributions of the spanwise velocity are shown in figures 6.61-
6.63. Just as for the streamwise velocity, amplitude plots are symmetric within
experimental accuracy. The experimental and predicted wave power are compared
in table 6.2. The simulation results are again very grid sensitive. At the finest grid,
the predicted power of the first and second harmonics is higher than the experimental
power. This is possibly due to an over filtering of the high frequency components by
the frequency tracker. The phase difference between the fundamental and the first
harmonic is shown in figure 6.64. The predicted phase distribution agrees well with
the experiment. There are no phase jumps in the fundamental. The first harmonic
has a %w phase jump in the centre, where the amplitude is zero. Because of the low

amplitude, there is a large uncertainty in the phase of the second harmonic.
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Experiment | grid 3 grid 2 grid 1
Streamwise velocity
Total power 8.21 7.35 5.95 3.58
Fundamental 7.23 6.76 5.60 3.48
1st Harmonic 0.696 0.551 0.329 0.0971
2nd Harmonic 0.0387 0.0299 0.0127 0.00212
Spanwise velocity
Total power 4.70 4.56 3.29 1.73
Fundamental 4.48 441 3.22 1.71
1st Harmonic 0.117 0.136 0.0705 0.0170
2nd Harmonic 0.00643 0.00931 0.00326 0.000536

Table 6.2: Experimental and simulated wave power (mm?/s2).
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Figure 6.57: Phase difference between the fundamental and the first harmonic of
the streamwise velocity. Parameters as in figure 6.39.
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Figure 6.58: Phase difference between the fundamental and the second harmonic
of the streamwise velocity. Parameters as in figure 6.39.
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Figure 6.59: Phase difference between the first harmonic and the second
harmonic of the streamwise velocity. Parameters as in figure 6.39.



CHAPTER 6. TIME DEPENDZNT FLOW PHENOMENA . 221

o 60 1 L) 1
:Q Fundamental | ' ' '
E . H
‘% 30 R AP S S STNUNIIIR S ...........E ............................. -
I'ta; o 1 1 Il ;
lo ' L} | ] | | |

Vo, (mm2/s?)

Phase/x (rad)  Phase/n (rad) Phase/t (rad) o2, (mm?/s2)

1.5
1.0
0.5
0.0
-0.5
133
1.00
0.67
033
0.00
1.00 N A Y S A D DV
VT R S| N A S . W SO S
033 DOTOToor) ! RS DU S St na
-ggg P P i | 1stHarm, - 20d Harm.

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

z2()

Figure 6.60: Summary of amplitude and phase distributions of the streamwise
velocity. Solid vertical lines indicate phase jumps. Parameters as
in figure 6.39.
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Figure 6.61: Spanwise velocity amplitude distribution of the fundamental
component. Parameters as in figure 6.39.
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Figure 6.62: Spanwise velocity amplitude distribution of the first harmonic.
Parameters as in figure 6.39.
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Figure 6.63: Spanwise velocity amplitude distribution of the second harmonic.
Parameters as ia figure 6.39.
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Figure 6.64: Distribution of phase difference between the fundamental and first
harmonic of the spanwise velocity. Parameters as in figure 6.39.
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6.5.2 Symmetry

Symmetry theory can be extremely useful in the analysis of flow phenomena.
For example, knowing the symmetry of the apparatus, it is possible to determine
a priori which types of solutions are possible, and how different solutions relate to

each other.

The symmetry of the Dean problem will be compared to that of Taylor-Couette
flow, which has been studied in great detail (e.g. Golubitsky & Stewart, 1986). The
main difference between the two systems is that Dean flow is an open system, while
Taylor-Couette flow is a closed system. Although this is a fundamental difference
with far-reaching consequences, it will be shown that with certain restrictions most

of the symmetry properties of Taylor-Couette flow also apply to the Dean problem.

The symmetries of a system are those transformations that leave that system
apparently unchanged. The symmetries of the apparatus are considered first,
since flow states can not have more symmetries thau the apparatus. It is
important to know the symmetries of the apparatus, because performing any of
these symmetry transformations to a solution of the flow must lead to another valid
solution, although not necessarily the same one. An excellent and very entertaining
introduction to many of the symmetry concepts used here is given by Stewart and
Golubitsky (1993).

Because the Dean problem is an open system with developing flow, the system
has no rotational symmetry. However, an idealized system consisting of an infinitely
long curved duct without entrance and exit regions, does have rotational symmetry,
just like Taylor-Couette flow. An apparatus like this is obviously physically
impossible because it closes into itself. Another symmetry of the real and idealized
apparatus is reflect symmetry around the centre plane, z = 0. Finally, because the

apparatus does not change with time, it possesses all possible time symmetries.
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It was shown in section 5.2 that at low flow rates the flow develops into a
fully developed 2-cell state. This flow state has the same symmetries as the entire
apparatus: no symmetry has been broken. The transition to a fully developed 4-cell

state does not break symmetry either; the fully developed 4-cell state also has the

same symmetries as the apparatus.

When traveling waves develop from steady 4-cell flow, the time symmetry is
broken by a Hopf bifurcation, leading to time periodic solutions. At the same time
the rotational symmetry is broken. A Hopf bifurcation can lead either to standing
wave or to traveling wave solutions. A traveling wave is characterized by mixed
spatio-temporal symmetry; the flow field is invariant over a rotation, combined with
a translation in time by a corresponding amount, which is determined by the wave

speed.

It was shown in section 6.1 that at a Dean number of 220 the flow is developing
over most of the length of the apparatus and seems to reach a fully developed
state around § = 180°. Although the flow is periodic in time, it is not spatially
periodic over the full length of the apparatus. Only the fully developed traveling
wave state has mixed spatio-temporal symmetry. Because this spatio-temporal
symmetry makes space and time interchangeable, the spatial structure of the flow
in this region can be determined by investigating the time periodic flow field at
an arbitrary position. The wave speed forms the connection between the spatial
structure and the temporal structure of the flow. The temporal flow structure was

represented by the amplitude and phase distributions in the previous section.

Since the apparatus has reflect symmetry in the centre plane (z = 0), reflection
of the traveling wave in the centre plane must produce either the same solution
or a different, but also valid, solution. There are two different periodic traveling

wave solutions that meet this requirement: the sinuous mode and the varicose
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mode. The varicose mode is symmetric in the centre plane. The sinuous mode
is invariant under a reflection in the centre plane combined with a shift over half
a fundamental wavelength. Because space and time are interchangeable, a spatial
shift is equivalent to a temporal shift over a corresponding amount. This kind of
symmetry is called shift-and-reflect symmetry (figure 6.65). It is clear from the flow
visualization in section 6.1 that the flow field is not symmetric in the centre plane.
The observed traveling wave state must therefore have shift-and-reflect symmetry.
The measured and simulated amplitude and phase distributions confirm the shift-

and-reflect symmetry of the flow.

Wavy vortex flow in the Taylor-Couette system also has shift-and-reflect
symmetry. Because of the circular symmetry of the Taylor-Couette system, only
discrete wavelengths that fit an integer number of times in the geometry are possible.

In the Dean problem there is no such limitation of the possible wavelengths.

The amplitude distributions presented in the previous section are all symmetric
around the centre line, z = 0. Because both the sinuous and the varicose modes of
oscillations have symmetric amplitude distributions, phase information is needed to

distinguish the two modes.

The streamwise velocity phase distributions of the fundamental, first harmonic
and second harmonic have phase jumps at the centre of 7, 0, and %w respectively.
Because the first harmonic is periodic over half a period of the fundamental, a zero
phase jump of the first harmonic is equivalent to a  phase jump. Similarly, a phase
jump of %w in the second harmonic, which is periodic over 1/3 of the fundamental
period, is equivalent to a 7 phase jump. Therefore, all phase distributions have
a m phase jump in the centre, corresponding to a shift over half a fundamental
wavelength. Apart from this phase jump, all phase distributions are symmetric
around the centre line. The 7 phase jumps show that the flow is shift-and-reflect
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symmetric.

Amplitude and phase distributions of the developing traveling wave state have
the exact same characteristics as fully developed traveling waves. Because the flow
is not spatially periodic, the developing traveling wave flow is only shift-and-reflect

symmetric with respect to a shift in time and not in space.

The fact that the amplitudes of the fundamental and the second harmonic
at the centre line are zero, also follows directly from the shift-and-reflect
symmetry: because the streamwise velocity at the centre line is unaffected by
the reflection, the streamwise velocity profile in the centre is periodic over half a
fundamental wavelength, and consequently has no fundamental and second harmonic

components.

The shift-and-reflect symmetry is also confirmed by the amplitude and phase
distributions of the spanwise velocity. Again the amplitude distributions are
symmetric around the centre line. Because the spanwise velocity changes direction
as a result of the reflection in the centre line, additional phase jumps of =, %11'
and %w are introduced to the fundamental, first harmonic and second harmonic
respectively. If the measured phase jumps of 0, %n and 0 are corrected for the effect

of the reflection, all phase distributions have again a phase jump of 7 in the centre.

It was shown that in the fully developed region, the traveling wave phenomenon
presented in this chapter, has shift-and-reflect symmetry, corresponding to the
sinuous mode of oscillations. Symmetry theory was combined with information
from flow visualization, and amplitude and phase distributions of the streamwise

and spanwise velocity fluctuations.
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6.5.3 Simulation Results

In section 6.5.1, simulated amplitude and phase distributions were compared
with experimental distributions. The amplitude and phase distributions calculated
with grid 3 are in good agreement with the experiments; the simulations capture
the traveling wave phenomenon very well. Although the predicted amplitude
distributions were quite grid sensitive, further grid refinement would probably only
change the details of the simulated flow state. In this section more results of the

simulation with grid 3 will be presented.

" Cross section arrow plots over half a wavelength of the oscillations are given in
figure 6.66. Because of the traveling wave character of the flow, these plots can
either be interpreted as the temporal evolution at a fixed position, or the spatial
variation at a fixed moment in time. The oscillation of the inflow region between the
Dean vortices, which was observed in the flow visualization (figure 6.2), is clearly
visible in these arrow plots. At the same time the Dezn vortices oscillate in radial

direction, as well as spanwise direction.

Contour plots of the streamwise vorticity are shown in figure 6.67. There are
only four vortical structures in the flow: two Ekman vortices and two Dean vortices.
The other streamwise vorticity is associated with siear layers along the walls. The
strength of the Dean vortices doubles during the oscillations. The Dean vortices
move away from the wall when they are weak and towards the wall when they
are strong. Close examination of the streamwise vorticity shows that the vortices
perform an approximately circular motion during the oscillations, very similar to
that observed in the flow visualization (figure 6.2). The upper Dean vortex rotates
counter clockwise, while the lower Dean vortices rotates clockwise, opposite to their
sense of rotation. This circular motion gives the Dean vortices an approximately

helical shape. Although a direct comparison with the experiment is not possible,
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Figure 6.67
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simulated streamwise vorticity and arrow plots show good qualitative agreement

with the cross section flow visualization of figure 6.2.

Contour plots of all velocity and vorticity components in the cross section at one
position are shown in figure 6.68. The streamwise velocity is more than an order of
magnitude higher than the secondary velocities. There are regions with high radial
vorticity on each side of the inflow region. This radial vorticity is associated with
the spanwise inflectional profiles of the streamwise velocity. The radial vorticity
near the top and the bottom walls is the result of the spanwise gradients of the
streamwise velocity in those regions. In a similar way, the high spanwise vorticity
near the outer wall is associated with the radial gradients of the streamwise velocity.
By examining the velocity fields, no other vortical structures were observed than the

two Ekman vortices and the two Dean vortices.

Difference velocities were defined as the velocity of the steady 4-cell flow,
subtracted from the velocity field of the traveling wave state. The difference vorticity
was defined in a similar way. Difference vorticity. fields can give an idea of how
vorticity is redistributed as a result of the traveling wave state. Contour plots of the
velocities and difference velocities in a streamwise-spanwise plane at z = 0.27 are
shown in figure 6.69. Vorticity and difference vorticity plots in that same (6,z)-plane
are given in figure 6.70. The maximum difference vorticity in the streamwise, radial
and spanwise directions are 8.4, 33 and 6.1 s~! respectively. The radial vorticity

field is modified most strongly by the traveling wave instability.

A contour plot of the amplitude of the total streamwise velocity fluctuations is
given in figure 6.71. There are two regions with high streamwise velocity oscillations,
one on each side of the inflow region. Contours of the spanwise and radial gradients
of the streamwise velocity are also shown in figure 6.71. The streamwise velocity

gradients are very similar to the radial and spanwise vorticity (figures 6.68d and
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Figure 6.68: Velocity and vorticity contour plots in a (r,z)-plane. Dn = 220,
A = 3.8°. Contour increments as indicated. '
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Figure 6.69: Velocity and difference velocity contour plots in a (6,z)-plane.
Dn = 220, X = 3.8°, z = 0.27. Contour increments as indicated.
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Figure 6.70: Vorticity and difference vorticity contour plots in a (6,z)-plane.
Dn = 220, A = 3.8°, z = 0.27. Contour increments as indicated.
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Figure 6.71: Amplitude of streamwise velocity fluctuations (a) and gradients of
the streamwise velocity of steady 4-cell flow (b,c} in a (r,z)-plane.
Dn =220, A = 3.8°.
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6.68f) because gradients in the radial and spanwise velocities are relatively small.
The regions with high streamwise velocity fluctuations correspond to high spanwise

gradients of the streamwise velocity.

This correlation between high spanwise gradients of the streamwise velocity
and high streamwise velocity fluctuations is easily explained by examining how the
spanwise velocity profile varies with time. The spanwise profile of the streamwise
velocity at z = 0.27 during steady 4-cell flow, simulated in FLOW3D, is shown in
figure 6.72. The low velocity in the centre is due to the inflow region. Also shown
are the spanwise profiles during the traveling wave state. The centre region with low
streamwise velocity oscillates in spanwise direction, while the shape of this centre

region remains almost unchanged.

A very simple model that explains the juaiitative lc.iures of the measured
amplitude and phase distributions is based on the assumptios that the spanwise
profile of tke streamwise velocity does not change shape dusring the cscillations; the
V-shaped centre region only oscillates in spanwise direction. Tlie amplitude of the
velocity fluctuations, induced by this oscillating profile, can be determined from the
shape of the spanwise velocity profile. Fluctuations at the fundamental frequency
are, as a first approximation, proportional to the spanwise derivative of this profile
and to the distance over which this pl"oﬁle oscillates in spanwise direction (Az).
It can also be shown that the oscill'ations at the first harmonic frequency are, in
first approximation, proportional to the econd derivative of the spanwise velocity
profile, and to (Az)2. The oscillations at the second harmc;nic are proportional to

the third derivative of the velocity profile, and to (Az)3.

The first three derivatives of the spanwise velocity profile of the streamwise
velocity are shown in figure 6.73. The shapes of the derivatives agree remarkably well

with the amplitude distributions from section 6.5.1. The phase of the oscillations is
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Figure 6.72: Simulated spanwise proiiles of streamwise velocity in steady (a) and
wavy (b) 4-cell flow. Dn =220, A =3 %8°, z = 0.27.
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Figure 6.73: Derivatives of the spanwise profile of the streamwise velocity for
steady 4-cell flow. Dn = 220, A = 3.8°, z = 0.27.

related to the sign of the different derivatives. This simple model predicts phase
jumps each time the amplitude is zero: in the centre for the fundamental, at
2z = $0.05 for the first harmonic, and in the centre and at z = +0.08 for the
second harmonic. This is in qualitative agreement with the phase distributions in

figures 6.52, 6.54 and 6.56.

This model also provides a possible explanation for the grid sensitivity of the
wave power, summarized in table 6.2. The power of the second harmonic was most
grid sensitive. The solutions with all three grids predict the spanwise oscillation of
velocity profiles, which the simple model was based on. Although the simulations
show qualitative agreement with the experiments, the spanwise distance Az over

which the velocity profiles oscillate increases with grid refinement. The simple model
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predicts that the power of the fundamental, and first and second harmonic is in first
approximation proportional to Az, (Az)? and (Az)3 respectively. Since the power
of the second harmonic depends most strongly on Az, this component is most grid

sensitive.

Streamwise velocity fluctuations could also be the result of radial oscillations of
the velocity profile. Radial profiles of the streamwise velocity during tac traveling
wave state are given in figure 6.74. The profile for steady 4-cell flow is also shown.
The radial profile changes very little as a result of the traveling waves. Consequently,
streamwise velocity fluctuations induced by radial oscillations are small compared

to those induced by spanwise oscillations.

Spanwise profiles of the spanwise velocity are shown in figure 6.75. Profile shapes
fluctuate strongly during the traveling wave state and velocity gradients are much
higher than for steady 4-cell low. There is no direct connection between the shape of
the steady profile and the shapes of the profiles during the wavy flow. Therefore, the
simple model that was used to explain the amplitude distributions of the streamwise

velocity, can not be used here.

The time averaged spanwise profiles of the streamwise and spanwise velocity are
shown in figure 6.76 and 6.77. The measured streamwise and spanwise velocity
profiles agree very well with the simulation. The asymmetry of the measured
spanwise velocity profile could be due to a slight misalignment of the LDA optics.
Because streamwise velocities are much higher than spanwise velocities, alignment

is critical, when measuring spanwise velocities.
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Figure 6.74: Simulated radial profiles of streamwise velocity in steady (a) and
wavy (b) 4-cell flow. Dn = 220, A = 3.8°, z = 0.0.
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Figure 6.75: Simulated spanwise profiles of spanwise velocity in steady {a) and
wavy (b) 4-cell flow. Dn = 220, A = 3.8°, £ = 0.27.
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Figure 6.76: Average streamwise velocity of wavy 4-cell flow. Dn = 220,
A=3.8°z=0.27.
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Figure 6.77: Average spanwise velocity of wavy 4-cell flow. Dn = 220, A = 3.8°,
z =027
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6.5.4 Similarities with Other Systems

Curved geometries

The traveling waves in a curved square duct show great similarity with twisting
waves in curved channel flow and the sinuous mode of wavy Gortler vortices.
Twisting vortices in a curved channel were first observed experimentally by Kelleher
et al. (1980) and later simulated by Finlay et al. (1987; 1988). Twisting vortices
have streamwise wavelengths that are close to the spanwise wavelength. The
undulating waves which were also observed in curved channel flow have much longer
streamwise wavelengths. Finlay et al. found that the streamwise wavelength of
twisting vortices in a curved channel with curvature ratio 39.6 is typically in the
2°-4° range and decreases with increasing flow rate. This compares well with the

wavelength of 3.8° that was observed in this study for Dn = 220.

The arrow plots of secondary flow patterns of twisting waves in Finlay’s figure
16 (Finlay et al., 1988) are very similar to the ones in figure 6.66. In both cases
the Dean vortices oscillate in radial and spanwise direction and fluctuate strongly
in strength. The inflow region oscillates in spanwise direction, but the stagnation
point near the outer wall does not move. Also Finlay’s plots of the radial and
spanwise velocity in the (r,z)-plane (Finlay et al., 1987) are very similar to those in

figures 6.68c and 6.68e.

Matsson and Alfredsson (1992; 1993a; 19Y3b) measured velocity fluctuations
of twisting vortices in a curved channel with curvature ratio 29 and found the
streamwise fluctuations to be strongest near the inflow regions. Contour plots of the
streamwise velocity fluctuations associated with the twisting motion have a single
maximum between two Dean vortices. However, because of the shift-and-refiect

symmetry, a minimum in the velocity fluctuations is expected at the centre line.
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Two separate maxima have indeed been observed at positions further upstream

(Alfredsson, private communication).

Two modes of wavy Gortler vortices have been observed: the varicose mode,
which is symmetric in a (r,0)-plane between two Gortler vortices; and the sinuous
mode, which has shift-and-reflect symmetry. Streamwise wavelengths of both
modes are close to the spanwise wavelength. Swearingen and Blackwelder (1987)
investigated experimentally the sinuous mode and found two regions with high
streamwise oscillations, corresponding to high spanwise gradients of the streamwise
velocity. The simulation results in figure 6.71 show a very similar correlation
for wavy duct flow. Yu and Liu (1991) and Liu and Domaradzki (1993) found

comparable results for simulated sinucus Gortler vortices.

Swearingen and Blackwelder (1987) measured velocity fluctuations at different
spanwise locations, which show a phase jump of 180° in the fundamental across
the inflow region and a strong first harmonic in the centre of the inflow region.
These measurements show the same trends as the simulated profiles in figure 6.50,
and confirm the shift-and-reflect symmetry. Swearingen and Blackwelder (1987)
also measured spanwise profiles of the streamwise velocity and observed a spanwise
oscillation of the low-speed inflow region, very much like the simulated profiles in

figure 6.72.

Liu and Domaradzki simulated the transition to turbulence in Gortler flow. Their
contour plots of all three velocity components in a (6,2)-plane of the sinuous mode
of wavy Gortler vortices (before the transition to turbulence) are very similar to the

contour plots in figures 6.69a, 6.69¢c and 6.69e.

All the experimental and numerical work on wavy flows in the Dean and Gortler
problem suggest that the wavy Dean vortices in a curved square duct, and twisting

waves in a curved channel, and the sinuous mode of wavy Gértler vortices are all
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different manifestations of the same phenomenon.

Andereck et al. (1983) reported twisted vortices in a Taylor-Couette system
with co-rotating cylinders. Twisted Taylor vortices have a streamwise wavelength
that is close to the spanwise wavelength. This is much shorter than the streamwise
wavelength of the commonly observed wavy Taylor vortices. The pattern consists of
a periodic rope-like structure, with flat inflow and outflow boundaries. Golubitsky
and Stewart (1986) report that twisted Taylor vortices have reflect symmetry, and
not shift-and-reflect symmetry, although that is not clear from the flow visualization
(Andereck et al., 1983). Twisted Taylor vortices therefore do not correspond to wavy

curved duct flow.

Two-dimensional wakes

Little work has been done to.reveal the structure of wavy vortex flows. For
example, amplitude and phase distributions have never been measured before.
However, those distributions are commonly used to describe oscillating flow
phenomena in two-dimensional wakes. It turns out that the a.xhplitude and phase
distributions of wavy curved duct flow are very similar to those of sinuous oscillations

in a wake.

Oscillations in wakes behind objects have been studied extensively, both
experimentally and numerically. Two types of oscillations can develop in a wake:
a varicose mode and a sinuous mode. The sinuous mode is more unstable and is
observed most often. A wake can either develop a global mode, characterized by a
single frequency, or be noise driven, leading to a broad band spectrum ¢ '1zquencies.
The existence of a globa.i mode depends on the size of the absolutely unstable region

in the wake, but in both cases the structure of the flow is identical.

The first detailed experimental investigation of oscillations in the wake behind
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a flat plate was performed by Sato and Kuriki (1961), followed by many other
experimental and numerical studies. Some studies focus on the structure of the
oscillating flow, and the instability mechanism (Sato & Kuriki, 1961; Mattingly &
Criminale, 1972), other studies focus more on mode interaction and the effect of

forcing (Williams-Stuber & Gharib, 1990; Williams et al., 1992).

Amplitude and phase distributions of both streamwise and spanwise velocity
fluctuations have been used by many researchers to characterize the flow (Sato &
Kuriki, 1961; Sato, 1970; Mattingly & Criminale, 1972; Wygnanski et al., 1986;
Gharib & Williams-Stuber, 1989; Marasli et al.,, 1989; Mansy & Williams, 1991;
Marasli et al., 1991; Corke et al., 1992; Mackawa et al., 1992; Marasli et al., 1992;
Williams et al., 1992). The amplitude and phase distributions of the sinuous mode

are generally very similar to the distributions presented in section 6.5.1.

This similarity can be explained by looking at the shape of spanwise profiles of the
streamwise velocity. In steady and wavy 4-cell curved duct flow, these profiles have
a minimum near the centre, caused by the inflosv of low-speed fluid from the outer
wall. It was shown in section 6.5.3 that the qualitative features of the amplitude and
phase distributions is described by a simple model, based on the spanwise oscillation
of these V-shaped profiles. Spanwise profiles in a two-dimensfonal wake also have a
V-shaped minimum, caused by the joining boundary layers behind the object. The
sinuous mode of oscillations is characterized by a spanwise oscillation of the low-
speed region, producing amplitude and phase distributions with the same qualitative

features as those of wavy curved duct flow.

Von Kérmén (1911; 1912) suggested that sinuous oscillations of a wake are
the result of crosswise, staggered, and counter rotating vortices, now called a
von Karmdn vortex street. This vortex street is the result of a redistribution of

the crosswise vorticity that is associated with the shear layers of the V-shaped
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streamwise velocity profile. The crosswise vorticity layers first become wavy, and
subsequently break up into separate crosswise vortices (Abernathy & Kionauer,
1962; Aref & Siggia, 1981). It was shown in figure 6.70 that the traveling wave state
affects the radial vorticity distribution most strongly. The wavy radial vorticity
field is similar to the crosswise vorticity in the early stage of sinuous oscillations in
a wake (Abernathy & Kronauer, 1962). This wavy radial vorticity distribution is

only present in the outer half of the curved duct, between £ = 0.2 and z = 0.5.

Wygnanski et al. also simulated oscillations in a two-dimensional wake. The
difference vorticity of the developing sinuous mode, before the formation of separate
crosswise vortices (figure 30a of Wygnanski et al., 1986) is almost identical to the
radial <ifference vorticity field in figure 6.70d.

In summary, a comparison was made between wavy curved duct flow and the
early stage of developing sinuous oscillations in a two-dimensional wake; the velocity
and vorticity fields at x = 0.27 in the curved duct are very similar to velocity and

vorticity fields in a two-dimensional wake.

G.6 Ins’ablity Mechanism

No formal stability analysis of 4-cell flow in a curved square duct was performed
in this study. However, stability analyses have been performed in other curved
geometries, and also for two-dimensional wakes. These results will be used to

propose an instability mechanism for the traveling waves in a curved square duct.

The instability mechanism for twisting waves in a curved channel was first studied
by Finlay et al. (1988). They used an Orr-Sommerfeld analysis to calculate the

stability of spanwise profiles of the streamwise velocity. Their results suggest that
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twisting waves are the result of a shear instability. The inflection points of the

spanwise profiles play an important role in this shear instability.

A similar analysis was used by Le Cunff and Bottaro (1993) to study the stability
of both spanwise and radial velocity profiles. They also found the twisting waves
to be the result of a shear instability of spanwise inflectional profiles. The sinuous

mode is always more unstable than the varicose mode.

Swearingen and Blackwelder (1987) found a strong correlation between the
regions of high velocity fluctuations and high spanwise shear for the sinuous mode
of oscillating Gortler vortices. This would suggest that the sinuous mode is the
result of unstable profiles in the spanwise direction. The FLOWS3D simulation
resuits in figure 6.7la-b show a similar correlation for wavy curved duct flow.
The simple model, which was used in section 6.5.3 to explain the qualitative
features of amplitude and phase distributions, forms a direct connection between
high streamwise velocity fluctuations and high spanwise shear. Similar correlations
betweea streamwise velocity fluctuations and spanwise inflectional profiles were

found by Liu and Domaradzki (1993) and Matsson and Alfredsson (1993a).

The similarity between the velocity and vorticity fields of the traveling wave
state and developing sinuous oscillations in a two-dimensional wake was discussed
in section 6.5.4. The V-shaped streamwise velocity profile of a two-dimensional
wake is also unstable to a shear instability. It is this shear instability that causes

the redistribution of the crosswise vorticity that leads to a von Kdrmén vortex street.

The inflectional spanwise velocity profiles in 4-cell curved duct flow are very
similar to those in curved channel flow, Gértler flow, and a two-dimensional wake.
This similarity suggests that also in a curved square duct, the vortex oscillations
are the result of a shear instability of spanwise inflectional profiles of the streamwise

velocity. The proposed instability mechanism indicates that the 4-cell flow does
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not directly lead to traveling waves. Instead, the 4-cell flow creates a streamwise
velocity profile that is unstable to a secondary shear instability. It is this secondary

instability that causes the transition to traveling waves.

6.7 Summary

Detailed experiments and numerical simulations of a traveling wave state in a
curved duct of square cross section were reported. This new flow state has not
been observed before. Flow visualization and LDA measurements were used in the
experimental investigation. The commercial CFD package FLOW3D was used to

simulate the fully developed traveling wave state.

The experiments suggest that the traveling waves are the result of a convective
instability that destabilizes steady 4-cell flow. The waves were induced by inserting
a pin along the horizontal centre line, z = 0, at § = 5°. The pin reduces the
development length of the steady 4-cell state from which the traveling waves develop,
and also creates the disturbances that destabilize steady 4-cell flow. Although the
pin plays an important role in the development of the traveling waves, the traveling
wave state is characteristic for curved duct flow. The wake behind the pin does not

affect the traveling wave state.

The Dean vortices oscillate both in span.vise and in radial direction, while the
large Ekman vortices remain almost steady. These oscillations develop from steady
4-cell flow, and the exact streamwise position where the oscillations start depends
on the flow rate and the pin diameter. At a Dean number of 220 and a 25 gauge

pin, a fully developed traveling wave state was reached at 6 = 170°.

The convective nature of the flow was demonstrated by the sideview flow

visualization, which showed individual wave packets that are convected downstream



CHAPTER 6. TIME DEPENDENT FLOW PHENOMENA 251

(figure 6.1). The state of a convectively unstable, or noise driven, system is
determined by the selective amplification of flow disturbances. Because the random
flow disturbances contain many different frequencies, the frequency spectrum of the

velocity fluctuations has a broad maximum.

The flow was forced at a selected frequency by periodically compressing the hose
that leads the water to the stilling chamber. A periodic disturbance is created
by the pin as a result of the forcing. This disturbance is much larger than the
random flow disturbances, causing ¢!.e wave to lock in to the forcing frequency. The
streamwise velocity fluctuations induced by the forcing are small compared to the
velocity fluctuation that are the result of the traveling wave. At a Dean number of
220, the wave locks in to forcing frequencies between 4 and 9 Hz. Frequency spectra
have sharp peaks at the forcing frequency and its harmorics. Between 2.5 and -t nz,

the flow locks in to the first harmonic of the forcing frequency.

Experimentally, the flow structure was determined by measuring amplitude and
phase distributions at £ = 0.27 and —0.24 < z < 0.24. Flow visuaiization and
amplitude and phase distributions showed that the fully developed traveling wave
state is shift-and-reflect symmetric; the flow field is invariant over a reflection in the
centre plane, combined with a shift over haif a fundamental wavelength. In the fully

developed state, a shift in space correspouds to a shift in time.

The transient simulations in FLOW3D imposed periodic boundary conditions
in the streamwise direction over one wavelength. Shift-and-reflect symmetry was
imposed to stabilize the 4-cell flow that is unstable to asymmetric perturbations.
Simulated arrow plots and streamwise vorticity plots in cross sections show
qualitative agreement with the fiow visualization. The simulations were also used

to calculate velocity and vorticity contours in (r,z) and (6,z)-planes.

The spanwise profiles of the streamwise velocity between z = 0.2 and z = 0.5
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are strongly inflectional. This is a result of the inflow region, which takes low-speed
fluid away from the outer wall. During the traveling wave state, the V-shaped centre
region oscillates'in spanwise directio.n, while its shape remains almost unchanged.
The streamwise velocity fluctuations that are induced by this spanwise oscillation are
much larger than those induced by radial oscillations. A simple model that is based
or the assumption that spa;nwise profiles does not change shape while oscillating
in spanwise direction, explains all qualitative features of the amplitude and phase

distributions.

The structure of the traveling waves in a curved square duct is very similar to that
of twisting vortices in a curved channel and sinuous oscillations of Gértler vortices.
Finlay et al. (1988) performed a stability analysis of spanwise velocity profiles and
suggested that twisting vortices are the result of a shear instability of spanwise
inflectional velocity profiles. This was confirmed by Le Cunff and Bottaro (1993).
The similarity between twisting vortices and wavy curved duct flow suggests that

the traveling waves in a curved duct are also caused by a spanwise shear instability.

The velocity fluctuations at £ = 0.27 are very similar to fluctuations in a sinuous
two-dimensional wake. This is because the oscillations in a wake ar also dominated
by the spanwise oscillation of a V-shaped streamwise velocity orofile. This produces
amplitude and phase distributions with the same characteristics as those which
were measured in the curved duct. The oscillations in a two-dimensiona! wake are
the result of a spanwise shear instability, which supports the suggested instability

mechanism for wavy curved duct flow.



Chapter 7

Conclusions and

Recommendations

Two new flow states in a curved duct of square cross section with a curvature
ratio of 15.1 were investigated both experimentally and numerically: a 6-cell flow
state, that was observed in steady dev:.uping flow at Dean numbers between 350
and 550; and a traveling wave state, that was induced by a pin at Dean numbers
between 170 and 260. For L.th these flow states, the experiments are in very good
agreement with the numerical simulations. This shows that 6-cell flow and traveling
waves are characteristic for curved duct flow, and not artifacts of the experimental

apparatus, or the numerical method.

The 6-cell flow state, consisting of two large Ekman vortices and two pairs of
small Dean vortices, develops from the initial 2-cell flow at around 80° from the
inlet of the curved section. The two Dean vortex pairs are the result of the same
centrifugal instability that induces a single pair of Dean vortices at Dean numbers
between 130 and 300. The 4-cell and 6-cell flow states are therefore different

manifestations of the primary instability of this system. Based on the similarity

253
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with the Gortler problem, it is suggested that the transition to 6-cell flow is the
result of a decreasing spanwise wavelength of the Dean vortices with increasing flow

rate.

The 6-cell flow state was not predicted by bifurcation studies of two-dimensional
fully developed flows (Winters, 1987; Daskopoulos & Lenhoff, 1989). However, it
seems likely that the 6-cell state corresponds to a fully developed solution of curved
square duct flow. This 6-cell flow is unstable to arbitrary perturbations and therefore
does not reach a fully developed state; the 6-cell flow breaks down spatially into a

2-cell flow state.

The traveling wave state, that was induced by inserting a pin along the symmetry
line of the duct at & = 5° is the result of a secondary instability of steady 4-
cell flow. It was suggested th .. this secondary instability is a shear instability of
spanwise inflectional profiles oi the streamwise velocities. These inflectional profiles
are created by the inflow region between the two Dean vortices, that transports fluid

with low streamwise velocity away from the outer wall.

The existence of a fully developed traveling wave state is confirmed by the
three-dimensional, time dependent simulations in FLOW3D with periodic boundary
conditions in the streamwise direction. This traveling wave state i3 consistent
with Winters’ observation that no stable two-dimensional solutions exist above
a Dean number of 131. In order to predict the onset of these traveling waves,
a stability analysis of two-dimensional solutions to three-dimensional and time-

dependent disturbances would have to be performed.

Numerical simulations based on the parabolized three-dimensional, time
independent Navier-Stokes equations predict the development of spatial oscillations
at Dean numbers between 131 and 230. During these oscillations, a 2-cell state

develops into a 4-cell state, that subsequently breaks down asymmetrically into



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 255

another 2-cell state. FLOW3D simulations of two-dimensional, time dependent flows
predict temporal oscillations that show a very similar pattern. These oscillations
are very different from the oscillating Dean vortices that characterize the traveling

wave state observed in the present set of experiments.

Although the spatial escillations are a solution of the Navier-Stokes equations,
they may nof be physically realizable. An apparatus with a longer streamwise length
is needed to verify the existence of spatially oscillating steady flows. Because of
spatial constraints, this would either have to bz a helical duct or a spiral shaped duct.
In a helical duct, the reflect symmetry is broken, which could have a significant effect
on the growth of asymmetric modes. Simulations by Liu and Masliyah (1993) of
flow in helical pipes show that a small pitch does not change the deveiopment of the
2-cell flow significantly. However, they studied only the effect on the unconditionally
stable 2-cell state, and not the 4-cell st:“e. A spiral shaped duct does not break
the reflect symmetry, but in this case the curvature ratio changes gradually. No
simulations of a spiral duct have been performed, and the effect of the changing

curvature ratio is not. known.

In the existing apparatue, the traveling wave state could only be observed when
a pin was inserted near the inlet of the curved section. An apparatus with longer
streamwise length could alse be used to é«termine whether the traveling wave state

develops spontaneously (not induced by the pin) further downstrear:

The ciperimental setup would be improved by a second LDA probe, allowing
for simultaneous velocity measurements at two positions in the flow. By measuring
the veloc'ty at . ifferent streamwise nositions in the fully developed region of the
duct, but otherwise identical positions in the cross section, the wave spced can be
determined from the phase difference between the two signals. In the present study,

the wave speed was estimated from the flow visualization, but this does not give very
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accurate results. Simulianeous velocity measurements can also be used to measure
the growth rate of the oscillations in the region of developing flow. Because the flow
is very sensitive to external disturbances, the repositioning of the apparatus, that is
presently needed to measure the spatial growth ra:-s, can strongly affect the spatial

development.

A final area of future study is based on experimental observations and numerical
simulations of a varicose mode of oscillations in curved channel flow, Gortler flow,
and » two-dimensional wake. In all these systems, the varicose mode is difficuls
tu observe experimentally, because of its lower growth rate than the sinuous mode.
However, since the two modes have different symmetry properties (the varicose mode
has reflect symmetry, while the sinuous mode has shift-and-reflect symmetry), the
possible existence of varicose oscillations in curved duct flow can be investigated

numerically, by imposing reflect symmetry in the simulations.
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