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The culture of ecology is shifting towards collaborative, integrative approaches that use 

‘big data’ to solve big problems. Passive acoustic monitoring (PAM) has the potential to play a 

role in this new paradigm because it uses in-situ autonomous recording units (ARUs) to collect a 

permanent archive of audio recordings. PAM research groups across the world are collecting vast 

amounts of acoustic data that could be integrated to understand ecological phenomena at a global 

scale; however, there are several hurdles that must be overcome. First, accurate algorithms that 

automatically scan acoustic recordings (hereafter, “recognizers”) are required to efficiently 

determine the species detected within the recorded soundscapes. Second, an understanding of the 

context of these recognizer-processed datasets is essential for data integration and can improve 

how recognizer data is used in ecology. Unlike survey data collected by human observers, 

recognizer data is typically treated as a binomial dataset with minimal context beyond date and 

time of observations. In this thesis, I demonstrate the importance of spatial and behavioural 

context of recognizer data using the common nighthawk (Chordeiles minor) as a model species. 

The common nighthawk is a crepuscular and highly mobile bird species that consumes aerial 

insects and is declining in most parts of its breeding range across North America. First, I 

demonstrate a fundamental principle that is crucial to using and integrating recognizer data. I 

show that the classification probability of species detections reported by a recognizer is related to 

detection distance, and that the classification threshold applied thus defines the survey area. 

Understanding this spatial context is necessary for estimating density from recognizer data and 

for integrating multiple datasets. Next, I show that the behavioural context of recognizer data can 

provide important insight into ecological analyses. I use VHF telemetry to show that the wing-

boom display of the common nighthawk is a territorial signal, which I then use to study 
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behaviour-specific habitat use of this species in the boreal forest. I use the wing-boom to separate 

territorial from home range behaviour and show that the scale that most strongly predicts habitat 

use corresponds to the movement range of that behaviour. I then use the wing-boom to separate 

territorial from extraterritorial behaviour to confirm that the common nighthawk is a ‘disturbance 

specialist’ species in the boreal forest, but only for nesting territories. Finally, I combine these 

spatial and behavioural contexts to demonstrate a novel method for density estimation that can be 

applied to single ARUs at broad spatial scales. The goal of this approach is to improve regional, 

national, or range-wide population estimates, especially for regions that are poorly covered by 

human surveys or for species that have large home ranges. Together, this density modelling 

approach and the spatial principles my thesis presents will facilitate future integration of PAM 

datasets collected with varying methodologies as well as with other data types. The behavioural 

context component of my thesis encourages PAM users to ensure they put their recognizer data 

into appropriate ecological context, particularly for wide-ranging species. Collectively, the 

ecological inferences in my thesis provide a major advance in understanding common nighthawk 

ecology in the boreal forest and the tools developed will help future research and conservation of 

this enigmatic species.  



 iv 

This thesis is an original work by Elly Knight. The common nighthawk tracking work in 

this thesis received approval from the University of Alberta Care Use Committee under 

AUP00001523, “The Migratory Connectivity Project”, 11 May 2015 (and subsequent renewals). 

Most of the research for this thesis was conducted as part of various collaborations. All 

chapters consist of my own original work, supported by co-authors as listed below. Unless 

otherwise indicated, I conducted all conceptualization, data processing and analysis, and writing, 

with feedback on writing by co-authors. Acoustic recordings were collected by a wide variety of 

sources, including some of the co-authors mentioned below. The contributions of my supervisors 

Dr. Erin Bayne, Dr. Mark Brigham, and other co-authors are reflected with the use of plural 

pronouns in Chapters 2-7. 

Chapters 2 and 3 of this thesis have been published in peer-reviewed journals. 
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Scott. 

Knight EC, Bayne EM (2018) Classification threshold and training data affect the quality and 

utility of focal species data processed with automated audio recognition software. 

Bioacoustics 28:539-554. 

Chapter 4,5, and 6 are under review at peer-reviewed journals. 



 v 
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I dedicate my thesis to the hundreds of community scientists who volunteered their time to help 

build what has now become the Canadian Nightjar Survey. Your contributions not only provide 

the foundation for future nightjar conservation, but set me on my current path, for which I am 
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“There's something magical about nighthawks, the sounds they make, the heights they achieve in 

the sky, their aberrant timing compared to every other spring migrant. We seem to be losing 

them, and within my own, brief lifetime. This not something we should countenance; we need to 

do everything we can to maintain them, if only as a shadow of their former presence.” 

~Doug Wilson, Community Scientist 
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There is no denying the current ecological crisis. Global biodiversity is declining, with 

approximately 1 million species facing extinction (Cardinale et al. 2012; IPBES 2019). There are 

three billion fewer birds in North America than 40 years ago (Rosenberg et al. 2019). Increasing 

land use pressure and declining knowledge threaten the sustainable land management by 

indigenous peoples (Garnett et al. 2018; Schuster et al. 2019). Evidence of massive insect 

declines suggests we are amid an insect apocalypse (Didham et al. 2019; Wagner 2020; Seibold 

et al. 2019). 85% of global wetland area has been lost (IPBES 2019). The list goes on. To add to 

this, climate change exacerbates all these issues, often with complex and unpredictable effects 

(IPCC 2014). As ecologists and conservationists, we have our work cut out for us. Our 

increasingly global world presents us with challenges at a global scale, and so we need solutions 

that operate at the same spatial scale. 

The response to this challenge has been a culture shift; we cannot answer complex 

ecological questions across political boundaries without working together (Palmer 1993; 

Hampton et al. 2013). Due to funding structures and lack of incentive for data sharing, ecological 

research has historically been dominated by individual scientists conducting local and short-term 

research (Hampton et al. 2013; Heidorn 2008). But times are changing with the advent of 

ecological “big data” (Farley et al. 2018; Hampton et al. 2013), the push for open data and 

reproducibility (Powers & Hampton 2019; Tenopir et al. 2015; Reichman et al. 2011), and the 

technology to store ecological data from a variety of sources (Farley et al. 2018). For example, 

Movebank is a free, online database of animal tracking data with over 5 billion datapoints from 
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3,000 collaborators (Kranstauber et al. 2011). The recent development of e-collaboration tools 

(Linnes 2020; Kock 2007) and research on the dynamics of effective collaboration (Guerrero et 

al. 2015; Reeves et al. 2017) has increased the ease and effectiveness of working together across 

oceans and time zones towards a common goal. In the last year and a half, the global pandemic 

has provided further impetus for the growth of remote collaboration and calibrated its 

effectiveness. The pause in human activity due to the pandemic was accompanied by rapid 

initiation of several global research groups to study the effects of this “anthropause” on wildlife 

(Rutz et al. 2020). We see quantitative evidence of the shift towards collaboration in the 

increasing number of authors on peer-reviewed publications (Harrison 2006; Adams et al. 2019). 

A paradigm shift towards large-scale collaboration would not be possible without the 

concurrent development of new statistical tools to integrate multiple data types from varying 

sources (Farley et al. 2018). Different data types (e.g., structured vs unstructured) have strengths 

and weaknesses that when integrated, can complement each other and lead to improved statistical 

outcomes (Isaac et al. 2019). Bayesian hierarchical models are particularly well-suited for data 

integration because they are flexible and can characterize uncertainty in data and estimates 

(Farley et al. 2018). For example, recent integration of 10 sources of population estimates, 7 

sources of population trajectories, and weather radar data showed that 3 billion birds, or 29% of 

North America’s avifauna have been lost over the past 40 years (Rosenberg et al. 2019). 

Integrated modelling approaches are available for population trend monitoring (Zipkin et al. 

2009; Bowler et al. 2019), species distribution modelling (Miller et al. 2018; Jr. et al. 2019; 

Simmonds et al. 2020), integrated population modelling (Rushing 2019; Schaub & Abadi 2011), 

and make use of varying datatypes like citizen science, remote sensing, long-term monitoring 

stations, and of course in-situ sensor networks like autonomous recording units (ARUs). 
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Passive acoustic monitoring (PAM) is a relatively new form of ecological data collection 

that holds great promise for contributing to ecology at all scales. PAM uses autonomous 

recording units (ARUs) to collect longitudinal datasets of acoustic recordings following a pre-set 

schedule. PAM is useful for surveying taxa that rely on acoustic communication, of which there 

are many (e.g., birds, amphibians, insects, fish, mammals), as well as monitoring for disturbance 

and anthropogenic effects via the overall soundscape (Shonfield & Bayne 2017; Gibb et al. 2018; 

Sugai et al. 2018). PAM is resource-efficient because it surveys the entire acoustic community, 

can collect multi-visit data, and does not require highly skilled observers. PAM can also produce 

more objective datasets because human observers are subjective and can influence species 

observations via their presence and disturbance. 

PAM has the potential to contribute substantially to large-scale integrative analyses 

because acoustic recordings provide a permanent archive of soundscapes that can be reanalyzed 

at any point to address new objectives. Acoustic archives have already reached big data 

proportions in many parts of the world (Gibb et al. 2018; Sugai et al. 2018); together, these 

datasets hold enormous potential for answering scalable questions. For example, PAM data 

collected by 19 organizations was compiled to track range-shifts of the endangered North 

Atlantic right whale in the Atlantic Ocean (Davis et al. 2017). Thanks to their pre-programmable 

nature, ARUs can also be used to fill gaps in datasets of other types, particularly for remote areas 

or rare species. For example, the Boreal Optimal Sampling Strategy integrates PAM and human 

point counts from many sources to survey the large and historically under-monitored ecoregion 

that is Canada’s boreal forest (Van Wilgenburg et al. 2020; Roy et al. 2019; Barker et al. 2015). 



 4 

Finally, the high temporal resolution of PAM data makes it an ideal source of information on 

species detectability that is required to integrate data types. 

There are disadvantages to PAM, but one that has received substantial attention in recent 

years is the necessity to turn sound files into ecological data (hereafter, “process”). Typically, 

sound files are listened to by a human observer and converted into species detection data; 

however, the time and expertise required for this process is prohibitive and hinders the 

application of PAM to large-scale ecological questions (Gibb et al. 2018; Priyadarshani et al. 

2018; Sugai et al. 2018). 

Automated processing approaches have been developed to reduce the time required to 

process ARU recordings. There are two broad categories of automated processing algorithms 

(Gibb et al. 2018). The first category is “recognizers”, which are trained with clips of a focal 

species (or a species group) and produce a species detection record (Priyadarshani et al. 2018; 

Xie et al. 2016). The second category is acoustic indices, which convert the entire soundscape 

into a single metric (Lawrence et al. 2019). I focus on the first type of algorithm, recognizers, for 

the remainder of this thesis. 

A multitude of recognizer approaches have been developed to improve the efficiency of 

processing audio recordings. Researchers have built recognizers for a wide variety of taxa (Sugai 

et al. 2018). Some of the earlier algorithms tested include support vector machines (Acevedo et 

al. 2009; Armitage & Ober 2010), hidden Markov models (Chu & Blumstein 2011), and band-

limited energy detection (Charif et al. 2010). More recently, deep learning approaches like 

convolutional neural networks have been found to outperform other algorithms (Knight et al. 
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2019b; Stowell et al. 2018). Despite the automation of recognizers, they still require human 

oversight because they produce false positive detections that require removal from the dataset 

prior to analysis (hereafter, “validate”) (Priyadarshani et al. 2018). Previously, the time required 

to validate rendered automated recognition no more efficient than human processing (Borker et 

al. 2014; Joshi et al. 2017), but as the precision (i.e., proportion of false positives) of recognizers 

continues to improve, so does their efficiency. There are also post-processing approaches to 

weed out false positives (Knight et al. 2020; Balantic & Donovan 2019) and statistical 

approaches to incorporate false positives (Chambert et al. 2017; Doser et al. 2021; Barré et al. 

2019), both of which decrease the validation workload.  

One of the other disadvantages of PAM, and especially automated recognition, that has 

received less attention is the lack of context. In other words, what does a detection mean? With 

traditional human point counts, observers can collect information on distance, direction, 

movement, behaviour, and abundance (Ralph et al. 1993). In contrast, recognizer-processed data 

are typically binomial in nature with presence or absence of the focal species in each recording. 

Covariates for time and date are available from the timestamp of the recording, and 

environmental covariates can be sourced from remotely sensed datasets or on-the-ground 

surveys, but there is no information available about events during the time of recording, other 

than the acoustic environment. 

In this thesis, I explore the value of spatial and behavioural context for ecological 

application of recognizer data. First, without information on the location of the vocalizing 

individual, recognizer data cannot be used for density estimation because the survey area is 
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unknown (Pérez‐Granados & Traba 2021). The survey area of human point counts is typically 

determined via distance estimation at the time of survey (Sòlymos et al. 2013; Matsuoka et al. 

2012), and distance can also be estimated on acoustic recordings by human listeners (Darras et 

al. 2018); however, the survey area of recognizers is unknown.  

More importantly, an unknown survey area limits integration with other data sources 

because differences in survey effort between sources cannot be accounted for without paired 

datasets collected at the same time (Van Wilgenburg et al. 2017). Some integration approaches 

overlook this step by assuming equal survey areas (Doser et al. 2021); however, the risk of this 

approach is that if survey areas are unequal, estimates will be biased according to the distribution 

of data types in the analysis. Understanding the spatial context of recognizer-processed datasets 

is therefore critical for tackling large-scale ecological questions via integration of PAM and other 

data types. 

Second, the behavioural context of recognizer data is also lacking because observers are 

not present in the field to observe and interpret visual cues alongside aural ones. Ignoring the 

behavioural context and thus functional significance of detections can lead to erroneous 

conclusions about habitat because function-specific habitats can have opposing attributes that 

nullify, change the strength of, or distort the signal of habitat use (Roever et al. 2013; Manly et 

al. 2002). For example, some habitats like drinking locations may be used less often than others, 

and so the attributes of those habitats may be masked without separate consideration (Boyce & 

McDonald 1999). Further, it can be important for conservation to understand use of a particular 

function-specific habitat if that habitat contributes disproportionately to fitness or survival 

(Beyer et al. 2010; Law & Dickman 1998). 
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Birds are one of the taxa for which PAM holds much potential because birds rely on 

sound for communication (Catchpole & Slater 2008). Automated recognition is being 

increasingly used to build detection datasets for bird species (Priyadarshani et al. 2018). 

Understanding the benefits of spatial and behavioural context for analysis of recognizer data 

should improve ecological inferences and conservation outcomes for birds. Currently, recognizer 

data from PAM is used for a variety of applications including occupancy estimation (Chambert 

et al. 2017), studying phenology (Ulloa et al. 2016), density estimation (Sebastián-González et 

al. 2018; Doser et al. 2021), and surveying for rare species (Swiston & Mennill 2009), to name a 

few. 

In my thesis, I use the common nighthawk as a model and focal species for automated 

recognition. The common nighthawk is a nightjar (Family Caprimulgidae) that breeds across 

North America and overwinters in South America (Ng et al. 2018; Knight et al. 2021a). On the 

breeding grounds, nighthawks occupy a wide range of vegetation types with open to semi-open 

structures, for example pine forests, sand dunes, grasslands, and flat, gravel rooftops (Brigham et 

al. 2011). The common nighthawk’s use of open habitats is likely for nesting because this 

species lays its eggs directly on the ground, as do other nightjar species (Figure 1.1 B-D). 

Common nighthawk selection for open-structured habitats may also facilitate foraging because 

common nighthawks forage for aerial insects on the wing (Figure 1.1 A). As a nightjar, the 

common nighthawk is a crepuscular bird, with mottled brown plumage that camouflages it 

during diurnal roosting and nesting (Figure 1.1 B, D). Nighthawks (genus Chordeiles) are 

typically more crepuscular than other more nocturnal nightjar species, however, likely because 

they forage during constant flight as opposed to sallying from a perch and therefore rely heavily 
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on vision for foraging (Brigham & Barclay 1995). This foraging strategy also renders 

nighthawks more mobile than other nightjar species; the sparse available tracking data for the 

common nighthawks suggests home ranges of upwards of 40 km2 (unpublished data).  

 

Figure 1.1. A. Male common nighthawk on the wing. B. Recently hatched semi-precocial 

common nighthawk nestling and soon-to-hatch egg. C & D. Female common nighthawk 

incubating a nest. 

Perhaps due to their aerial insectivorous diet, the common nighthawk is a species of 

conservation concern. As a group, the species that eat flying insects, the “aerial insectivores” 

(swallows, swifts, flycatchers, nightjars), are declining faster than any other group of birds in 

Canada (Nebel et al. 2010; Smith et al. 2015; Michel et al. 2015). The common nighthawk is no 

exception; available monitoring data for this species suggests population declines of 68% 

between 1970 and 2015 (COSEWIC 2018). Due to these declines, the common nighthawk is 
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listed as Threatened in Canada, although it has been recommended for downlisting to Special 

Concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), largely 

due to large numbers of nighthawks found in the boreal forest (COSEWIC 2018). Regionally, the 

common nighthawk is also listed as Special Concern or Threatened in several eastern provinces 

and considered imperiled or critically imperiled in several eastern states (Environment Canada 

2016a). Two subspecies were also recently added to the US Fish and Wildlife’s list of Birds of 

Conservation Concern (US Fish and Wildlife Service 2021). Declines across the aerial 

insectivore guild suggest threats are linked to aerial insects as a food source. Evidence of insect 

declines have been reported across the globe (Didham et al. 2019; Wagner 2020; Seibold et al. 

2019) and could be linked to nighthawk population declines via a variety of mechanisms 

including agricultural pesticides, loss of insect-producing habitats, light pollution, and 

phenological mismatch due to climate change (Spiller & Dettmers 2019). Additional potential 

causes of decline include loss of nesting habitat (esp. gravel rooftops), vehicle collisions, fire 

suppression, increased storm frequency, direct effects of pesticides, temperature extremes, and 

drought (Environment Canada 2016a). These threats could occur anywhere in the western 

hemisphere because the common nighthawk’s full annual cycle stretches from the breeding 

grounds in Canada’s Yukon Territory to wintering grounds in northern Argentina (Knight et al. 

2021a). 

The long list of potential threats to the common nighthawk is an indicator of how little we 

know about this species. The combination of its crepuscular nature, extreme mobility, and 

excellent camouflage makes this a difficult species to study (Figure 1.1), and most research has 

been short-term and/or anecdotal. The common nighthawk’s nocturnal nature makes it unlikely 

to be detected by most existing bird survey programs. Furthermore, it has one of the largest 
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breeding ranges in the western hemisphere (Bird Conservation International 2017), and so there 

are large sampling gaps that impede assessment and management (Environment Canada 2016a). 

The gaps in common nighthawk understanding are likely greatest in Canada’s boreal forest, 

which is thought to provide breeding grounds for a substantial proportion of the population 

(Haché et al. 2014) but where the species is poorly studied. 

The common nighthawk is therefore an ideal focal species for PAM because ARUs can 

be deployed in remote locations and left to record at night when the species is most active. 

Furthermore, existing ARU datasets from across the range present an opportunity to build 

common nighthawk detection datasets to fill knowledge gaps for this species. In fact, two of the 

three other existing common nighthawk studies in the boreal forest have used PAM to build 

species detection datasets (Farrell et al. 2017, 2019; Sidler 2017). 

The common nighthawk (Chordeiles minor) is also an ideal model species for recognizer 

methods development and testing first principles because its vocal characteristics negate many of 

the challenges of applying automated recognition to birds (Priyadarshani et al. 2018). First, it is 

crepuscular, and therefore calls when there are few other species in the soundscape that might 

mask its acoustic signal. Second, it has a short call, which results in little overlap of calls 

between individuals. Third, it’s short call is simple and easy for a computer to distinguish from 

other signals. Fourth, it is a non-passerine species with a limited repertoire and minimal variation 

between individuals or populations. Fifth, it calls from far above the canopy, which renders the 

vegetation effects on sound attenuation relatively negligible. Sixth, it calls frequently, making it 

relatively likely it will be detected if it is vocally active.  

Finally, the common nighthawk is an ideal species to emphasize the importance of 

context for recognizer data because it does present some challenges. The foraging strategy and 
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extreme mobility of the common nighthawk means individuals are always in motion. They can 

move in and out of the survey area both during and between recordings. Understanding the 

spatial and behavioural context of detections is therefore critical to interpreting and applying 

PAM techniques to research on and management of the common nighthawk. 

The goal of my thesis is to understand and demonstrate the importance of spatial and 

behavioural context of recognizer-processed species detection data for ecological applications. 

This goal is split into three objectives. 

The first objective of my thesis is to understand the spatial context of passive acoustic 

monitoring and bridge the gap between computer algorithms and ecological application. All 

recognizers report a classification probability (hereafter “score”) for each sound evaluated, and it 

is these score values to which a user-defined threshold is applied to classify each sound as a 

detection of the target species or not. The meaning of score and score thresholds has yet to be 

interpreted in an ecological context, however, because there is a disciplinary divide between the 

computing scientists that design automated recognition software and the ecologists that apply 

those algorithms. Chapters 2 and 3 show how score values and thresholds are central to 

understanding the spatial context of recognizer data.  

In Chapter 2, I demonstrate the effectiveness of automated recognition for the common 

nighthawk and set the stage for the importance of spatial context. I compare five different 

computer algorithms for automated recognition of common nighthawks and provide general 

recommendations for using recognizers to build species detection datasets. I use the recognizer 
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data in a variety of common statistical applications to show that recognizer performance depends 

on intended use. I apply each evaluation across a range of score thresholds and show that 

performance varies depending on the threshold used, suggesting that recognizers may report 

fewer detections than human observers because they can’t “hear” as far. 

In Chapter 3, I further investigate the potential for score threshold as a proxy for survey 

area. I trained recognizers with common nighthawk clips recorded at varying distances. I show 

that thanks to the principle of spherical spreading (i.e., sound amplitude decreases predictably 

with distance), score has a reliable relationship with distance when recognizers are trained with 

calls recorded at short range. Yip et al. (2020) and Knight et al. (2020) are reference papers for 

this chapter. 

The second objective of my thesis is to use behavioural context to extend the ecological 

applications of passive acoustic monitoring. The common nighthawk makes two distinct sounds 

that likely have different behavioural contexts. The wing-boom is a mechanically produced 

acoustic signal that occurs when the primary feathers are flexed downwards at the bottom of a 

steep aerial dive (Miller 1925). The resultant sound is a ‘vroom’, between 0 and 1 kHz (Figure 

1.2) and is thought to be a territorial signal, potentially associated with the nest (Rust 1947). The 

call, on the other hand, is a short (~0.3 second) ‘peent’ produced at between approximately 2-5 

kHz (Figure 1.2). This call is a more general-purpose signal, although it is most frequently 

produced near the nest location as well (Armstrong 1965; Caccamise 1974; Wedgwood 1973), in 

part because the wing-boom is always accompanied by the call (unpublished data). The 

accompaniment of the wing-boom by a call means that a recognizer for the call can be used to 
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detect wing-booms by simply noting them during validation; therefore, the spatial context of the 

call recognizer also applies to those noted wing-boom detections. 

 

Figure 1.2. Spectrogram of the common nighthawk ‘peent’ call and wing-boom recorded at 

McLelland Lake, Alberta, Canada on July 13, 2017. 

In Chapter 4, I use wing-boom locations of VHF-tagged individual male common 

nighthawks to study the meaning of the wing-boom signal. I apply kernel density estimation to 

show that wing-boom areas were exclusively used as a territorial signal. I then use a resource 

selection function to show that male common nighthawks select areas near the nest to perform 

wing-boom displays.  

In Chapters 5 and 6, I demonstrate application of automated recognition and behavioural 

context of the wing-boom display at a large spatial scale using an archived dataset of ARU 
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recordings from multiple projects. In Chapter 5, I use the common nighthawk’s two types of 

acoustic signal, wing-boom and call, to model two types of habitat use, territorial and home 

range, respectively. I use machine learning and a variety of environmental predictors to 

determine the scales at which the two types of habitat use are best predicted (hereafter, “scale of 

effect”). Understanding the behavioural context of the common nighthawk’s acoustic signals 

facilitates comparison of scales of effect at different movement ranges and examine a new theory 

for the mechanism that drives scale of effect.  

In Chapter 6, I again use the common nighthawk’s two types of acoustic signal, wing-

boom and call, but this time to model territorial versus extraterritorial (i.e., locations with calls 

and no wing-booms) habitat use. I use occupancy modelling to test two competing hypotheses 

for why common nighthawks use recently disturbed areas in the boreal forest: nesting resources 

or foraging resources. Understanding the behavioural context of the common nighthawk’s 

acoustic signals allows me to compare the competing hypotheses using three lines of evidence: 

time since disturbance, disturbance type, and vegetation effects. Unanimous support from all 

three lines for the nesting resource hypothesis shows that even the emulation of natural 

disturbance is context dependent. Knight et al. (2018) is an importance reference for this chapter. 

The third objective of my thesis is to bring together the spatial and behavioural context of 

common nighthawk recognizer detections to provide a new analytical tool for recognizer-

processed datasets. 

In Chapter 7, I present a novel approach to density estimation using passive acoustic 

monitoring. The goal of this new approach is to provide a tool for density estimation at broad 
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geographic scales because effective wildlife management requires accurate population estimates 

for species assessment and recovery. The approach uses information from three ARU datasets: a 

species detection dataset, an abundance subset dataset, and a separate known detection distance 

dataset. The approach incorporates the spatial context of the data by using the effective survey 

area of the recognizer to convert abundance estimates to density. The approach incorporates 

behavioural context by focusing on the wing-boom to estimate the population of breeding pairs 

and to increase the probability of presence during surveys, which reduces the bias and variance 

of density estimates. I apply the approach to four study areas in Canada’s boreal forest to show 

that post-wildfire areas support high densities of territorial common nighthawks. 
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Automated signal recognition software is increasingly used to extract species detection 

data from acoustic recordings collected using autonomous recording units (ARUs), but there is 

little practical guidance available for ecologists on the application of this technology. 

Performance evaluation is an important part of employing automated acoustic recognition 

technology because the resulting data quality can vary with a variety of factors. We reviewed the 

bioacoustic literature to summarize performance evaluation and found little consistency in 

evaluation, metrics employed, or terminology used. We also found that few studies examined 

how score threshold, i.e., cut-off for the level of confidence in target species classification, 

affected performance, but those that did showed a strong impact of score threshold on 

performance. We used the lessons learned from our literature review and best practices from the 

field of machine learning to evaluate the performance of five readily available automated signal 

recognition programs. We used the common nighthawk (Chordeiles minor) as our model species 

because it has simple, consistent, and frequent vocalizations. We found that automated signal 

recognition was effective for determining common nighthawk presence-absence and call rate, 

particularly at low score thresholds, but that occupancy estimates from the data processed with 

recognizers were consistently lower than from data generated by human listening and became 

unstable at high score thresholds. Of the five programs evaluated, our convolutional neural 

network (CNN) recognizer performed best, with recognizers built in Song Scope and MonitoR 

also performing well. The RavenPro and Kaleidoscope recognizers were moderately effective 
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but produced more false positives than the other recognizers. Finally, we synthesized six general 

recommendations for ecologists who employ automated signal recognition software, including 

what to use as a test benchmark, how to incorporate score threshold, what metrics to use, and 

how to evaluate efficiency. Future studies should consider our recommendations to build a body 

of literature on the effectiveness of this technology for avian research and monitoring. 

Autonomous acoustic sampling is a popular method of data collection for ecological 

research and monitoring because many species use sound as a primary method of communication 

(Catchpole & Slater 2008; Shonfield & Bayne 2017). In avian research, autonomous recording 

units (ARUs) are used to collect acoustic recordings, which can then be used for monitoring 

population trends (Furnas & Callas 2015), behavioral studies (Ehnes & Foote 2014), modeling 

habitat associations (Campos-Cerqueira & Aide 2016), and detecting rare or inconspicuous 

species (Holmes et al. 2014; Sidie-Slettedahl et al. 2015). ARUs provide a variety of benefits 

over traditional human point counts, including the ability to collect data over repeat visits (Drake 

et al. 2016) and the flexibility to collect data at any time of day or year (Goyette et al. 2011). 

Additionally, recordings provide a permanent record that can reduce observer bias (Haselmayer 

& Quinn 2000; Campbell & Francis 2012), be used to verify identification of rare species 

(Swiston & Mennill 2009; Holmes et al. 2014), and analyzed later for other objectives (Luther & 

Derryberry 2012). ARU technology has also been widely used to study marine mammals, bats, 

insects, and frogs. 

One of the challenges of using ARUs for ecological research and monitoring is the time 

required to extract target species detections from recordings (Shonfield & Bayne 2017). In 
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response, automated signal recognition programs have been developed (Oliveira et al. 2015; Katz 

et al. 2016; Nicholson 2016). Automated acoustic species recognition is the process of training a 

computer to detect, recognize, and evaluate the acoustic signature of a target species’ 

vocalization. The computer runs the resultant detection algorithm (hereafter “recognizer”) on 

recordings and evaluates the fit of the acoustic signal in the recording using a moving window. 

Some programs employ a single step process that runs the algorithm against every window 

(hereafter “moving window recognizer”) while others use a two-step process that first conducts 

signal detection with a moving window, and then runs the algorithm only on detected signals 

(hereafter “signal detection recognizer”). For each window or signal evaluated, the recognizer 

assigns a score value, which can be interpreted as a measure of confidence that a target 

vocalization match has been found. The recognizer then registers a “hit” for each signal with a 

score above a user-defined threshold. Choosing a high score threshold will minimize false 

positives, i.e., false identifications, but also results in false negatives, i.e., missed detections. If 

the score threshold is set low by the user, this will minimize false negatives, but create many 

false positives. Choosing a score threshold is generally a subjective process based on the 

priorities of the user (Katz et al. 2016). The results of automated signal recognition are often 

manually validated by the user to separate true positives from false positives. Many approaches 

to automated acoustic species recognition or classification have been employed including 

random forest (Aide et al. 2013; Campos-Cerqueira & Aide 2016), Hidden Markov models  

(HMMs) (Skowronski & Harris 2006; Potamitis et al. 2014; Oliveira et al. 2015) and/or Gaussian 

mixture models (GMM) (Ganchev et al. 2015; Heinicke et al. 2015), binary point matching (Katz 

et al. 2016), spectrogram cross- correlation (Katz et al. 2016), artificial neural networks 

(Jennings et al. 2008; Tachibana et al. 2014; Nicholson 2016), decision trees (Digby et al. 2013), 



 19 

and band-pass filters (Charif et al. 2010). There are annual and one-time machine learning 

competitions that drive the development of new birdsong recognizer methods (Stowell et al. 

2016, Goëau et al. 2017) with current state-of-the-art approaches using deep machine learning 

models such as convolutional neural networks to recognize multiple species from soundscape 

recordings (Koops et al. 2014, Joly et al. 2016, Salamon and Bello 2017). Some of these 

approaches are commercially or freely available, while others have been custom- built for 

specific research projects. 

The number of tools available for automated signal recognition are rapidly increasing, yet 

there remains a need for a set of general recommendations for recognizer development and 

performance evaluation in ecology (Blumstein et al. 2011). Many authors have compared 

individual automated signal recognition programs to human processing to substantiate their use 

in ecological monitoring and research; however, authors have used a variety of metrics for 

evaluation, making it difficult to compare across studies. In other acoustic signal processing 

disciplines such as music analysis, speech classification, and machine learning, there are 

established best practices that ecologists can draw on to develop standardized evaluation 

methods (Salzberg 1997; Sokolova & Lapalme 2009; Raffel et al. 2014; Mesaros et al. 2016). 

Recognizer evaluation is particularly important because the quality of the species detection data 

produced can depend on a variety of factors including score threshold (Brauer et al. 2016), signal 

complexity of target species, quality of training data, spectrogram conversion, e.g., FFT size 

(Crump & Houlahan 2017), and recognition approach (Stowell et al. 2016). Ultimately, the 

appropriateness of automated acoustic species recognition will depend on the objective of the 

research or monitoring. 
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In response to this need for guidance, our goal was to provide general recommendations 

for recognizer performance comparison and evaluation. First, we review the literature for 

bioacoustic recognizer evaluation studies to confirm the need for such recommendations and 

identify the most commonly used metrics. Next, we conduct a recognizer evaluation based on the 

different approaches used in the literature to compare five common nighthawk (Chordeiles 

minor) recognizers: MonitoR (Katz et al. 2016), convolutional neural networks (CNN) (Abadi et 

al. 2015), Song Scope (Wildlife Acoustics 2011), Kaleidoscope (Wildlife Acoustics 2016), and 

RavenPro (Charif et al. 2010). Finally, we use our literature review, results from our evaluation, 

and best practices from other disciplines to synthesize general evaluation recommendations for 

ecologists who want to use automated acoustic recognition for data processing. 

We searched for ecological journal articles, technical reports, and conference proceedings 

that have evaluated the performance of automated signal recognition software to scan audio 

recordings for species detections. We searched the literature using Web of Science and 

combinations of the keywords “acoustic,” “classif*,” “recogn*,” “autom*,” and “song.” We 

found and reviewed 68 papers that used computers to automatically scan audio recordings and 

identify detections of target species, including birds, frogs, and mammals (Supplementary 

Materials Appendix 1). We performed an initial review of these papers to determine recognizer 

type (single or multiple species), and evaluation data type (clip or recording; Supplementary 

Materials Appendix 1, Table 1). We excluded multispecies recognizers from further review 

because multiclass evaluation generally employs a different set of metrics than single species 
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evaluation (Sokolova & Lapalme 2009). We also excluded papers that did not use a test dataset 

of unedited field recordings (Potamitis et al. 2014) to evaluate their recognizer. The final subset 

included 12 single- species recognizer papers with a real-world evaluation (Supplementary 

Materials Appendix 1, Table 1). 

Benchmark: Eleven papers used human data processing as the benchmark for recognizer 

evaluation, and one was unclear about the benchmark used. Of the 11 that specified the 

benchmark, 8 used detections that had been annotated during human listening, 2 used events that 

had been annotated during visual spectrogram scanning, and 1 used events that had been 

annotated during listening and visual spectrogram scanning, i.e., two benchmarks. One paper 

also included a decibel level threshold as part of their benchmark (Katz et al. 2016). 

Score threshold: Score threshold is a user-selected parameter that is the minimum score 

of any given hit reported by the recognizer. Of the 12 papers reviewed, 7 described the score 

threshold selected. Of those seven, four papers reported selecting a single score threshold after 

tests such as Youden’s J statistic (Youden 1950; Swiston & Mennill 2009; Ganchev et al. 2015; 

Ulloa et al. 2016; Crump & Houlahan 2017), two reported choosing low thresholds that allowed 

for analysis of metrics across score values (Digby et al. 2013; Katz et al. 2016), and one reported 

a comparison of three score thresholds (Brauer et al. 2016). Two of those seven papers also 

reported receiver operating characteristic (ROC) metrics (Katz et al. 2016; Ulloa et al. 2016), 

which incorporate scores from 0 to 1 implicitly. Of the other five papers that did not report score 

threshold, four mentioned score but did not report threshold used (Waddle et al. 2009; Bardeli et 

al. 2010; Potamitis et al. 2014; Jahn et al. 2017) and one did not mention score at all (Duan et al. 

2013). 
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All papers that examined the performance of the recognizer across score values reported 

that the performance improved with increasing score. Digby et al, (2013) found that recall (true 

negative rate) varied from nearly 100% at high scores to 0% at low scores. Similarly, Katz et al. 

(2016) showed that recall and specificity (the proportion of true negatives) ranged from 0 to 1 

depending on the chosen score threshold. Brauer et al. (2016) compared three different score 

thresholds, “low” (minimized false negatives), “medium” (balanced false negatives and 

positives), and “high” (minimized false positives), and found that the total error of the recognizer 

ranged from 30% for the low threshold to 18% for the high threshold. 

Metrics: In total, 11 different metrics were used across the 12 papers reviewed (Table 

2.1). The most frequently used metrics were recall and precision. Among the metrics used, we 

found a lack of standardization and clarity in the 12 papers reviewed. There was variation in the 

terminology used for the metrics, with synonyms for 4 of the 12 metrics, and up to 4 synonyms 

per metric. In particular, the term “accuracy” was used to describe precision and accuracy; 

however, the formula for accuracy used in the papers we reviewed differs from the formula 

defined in the classifier evaluation literature (Sokolova & Lapalme 2009; Sokolova et al. 2006). 

Furthermore, “accuracy” was undefined in one of the papers reviewed (Duan et al. 2013), so we 

assigned it the same mathematical formula as the other two papers that did define accuracy. Two 

of the papers reviewed (Bardeli et al. 2010; Brauer et al. 2016) did not cite or define the metrics 

used, including “total error,” which is not a widely used classifier metric, so we back- calculated 

the mathematical formula or assigned the metric to the common name used in the paper. The 

remaining nine papers either provided the mathematical formula for the metrics used, explained 

the metric in plain language, or provided a citation for the metric formula. 
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Table 2.1. Recognizer performance metrics used in single-species recognizer studies that 

assessed recognizer performance on real-field recordings. TP = true positive; FP = false positive; 

TN = true negative; FN = false negative; β = weighting factor used to balance the weighted 

average of precision and recall. 

Metric Equation Synonyms Papers 

used 

Accuracy 𝑇𝑃 − 𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 

 3 

F-score (𝛽2 + 1)𝑇𝑃

(𝛽2 + 1)𝑇𝑃 + 𝛽2𝐹𝑁 + 𝐹𝑃
 

 1 

False negative 

rate 

𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

“missed” 3 

False positive 

rate 

𝐹𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 4 

Negative 

predictive 

value 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 1 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

“positive predictive value”; 

“accuracy” 

7 

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

“correct”; “sensitivity”; 

“scanning comprehensiveness” 

9 

ROC curve   3 

Total error 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 1 

True negative 

rate 

𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

“specificity” 2 

True positive 

rate 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 3 

We used a standardized training dataset to allow for a comparison of four commercially 

or freely available recognizer programs. We also included one custom recognizer program to 

compare the other programs to the current state-of-the-art. To make this comparison useful to 

ecologists with minimal bioacoustic experience, we used an “out-of-the-box” approach by 

relying on the advice given by the program developer for recognizer construction and allowed 
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ourselves 8–12 hours of learning time for each program. The exception was the custom CNN 

recognizer, which required us to write a Python script to carry out model training and evaluation. 

Species: We used the common nighthawk as a model species to test single- species 

automated acoustic recognition software because this species has simple and consistent calls that 

have minimal acoustic masking from other species because nighthawks vocalize primarily at 

dusk and before dawn (Figure 2.1). Further, the common nighthawk vocalizes frequently, 

making it an ideal candidate with which to evaluate recognizer error rates in detectability and 

calling rate. The development of a high quality common nighthawk recognizer is also a 

conservation priority because this species is listed as Threatened under Canada’s Species at Risk 

Act, and there are limited data for the species because of its crepuscular nature (Environment 

Canada 2016a). 

 

Figure 2.1. Spectrogram of common nighthawk vocalizations constructed with a 2048 FFT 

window size and Blackman-Harris window type. 

Training Dataset: We built common nighthawk recognizers for five automated signal 

recognition programs using vocalizations from a standardized training dataset. The standardized 

training dataset consisted of 400 minutes of audio data processed by human listeners: 200 

minutes of audio data with common nighthawk detections and 200 minutes of audio data with no 

common nighthawks. The data were collected from 11 locations in south central British 
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Columbia, Canada during the breeding season from 12 June to 14 July 2014 and 2015 at dawn or 

dusk. The absence data were collected from the same locations, but during times of year and day 

when common nighthawks are not active. Although common nighthawks produce relatively 

simple and consistent calls, there is variation between individuals (Armstrong 1965), so we 

hand-selected recordings to incorporate variation in call frequency, duration, and strength. All 

recordings were made using SM2+ or SM3 recorders (Wildlife Acoustics Inc.) with a bit depth 

of 16 bits, and a 16 kHz (2014) or 48 kHz (2015) sampling rate. 

Song Scope Recognizer: Song Scope is a signal detection recognizer that uses Hidden 

Markov models (HMMs) to maximize the probability of the arrangement of individual syllables, 

based on the spectral feature vectors of those syllables. We built the Song Scope recognizer 

iteratively, following advice available in the software manual (Wildlife Acoustics 2011). First, 

we extracted 100 “high-quality” calls evenly distributed across 11 locations (9–10 calls from 

each location). We defined “high-quality” calls as calls that were produced near the microphone, 

i.e., had little attenuation, and were not masked by any other acoustic signals, e.g., other birds or 

weather. We included approximately 0.1 seconds of silence preceding and following the 

vocalization. We then converted the clips to Song Scope annotations and loaded them into the 

Song Scope software as a single class. Common nighthawk calls have frequencies below 8 kHz, 

so we set the sample rate at 20 kHz to exceed the Nyquist frequency (double the highest 

frequency of interest in the signal) with some headroom. We set the frequency minimum, range, 

max syllable, max syllable gap, max song, and dynamic range at values that maximized the 

detection of the 100 training annotations in the logarithmic scale with signal detection view 

(Supplementary Materials Appendix 2, Table A2.1). All other settings were left at default values. 

We reviewed each of the 100 training annotations to determine how much of each annotation 
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was detected by Song Scope and removed any annotations where the full call was not completely 

detected. We replaced annotations with new annotations from the same location and reviewed 

those for detection completeness without adjusting the settings. We repeated this process until all 

100 calls were completely detected in the logarithmic scale with signal detection view, and then 

generated the recognizer with the Song Scope software. The resultant recognizer had a cross 

training value of 77.32 +/- 5.87% (mean +/-SD) and a total training value of 77.22 ± 4.87% 

(Wildlife Acoustics 2011). 

Kaleidoscope Recognizer: Similar to Song Scope, Kaleidoscope is a signal detection 

recognizer that builds a classification algorithm by running individual call syllables through 

HMMs that maximize the probability of detecting the entire call structure. Kaleidoscope differs 

from Song Scope in that it uses K-means clustering of Fisher scores from a 12-state HMM to 

cluster all the signals detected into different classes, as opposed to only identifying the signals 

that match the algorithm above a user-set score threshold. We built the Kaleidoscope recognizer 

using the cluster analysis function following the tutorial video available from the software 

manufacturer for “Converting Song Scope Recognizers to Kaleidoscope Cluster-based 

Classifiers” (Wildlife Acoustics 2016). We exported the annotation information from the 100 

Song Scope annotations into a text file as presence training data. Because Kaleidoscope performs 

cluster analysis, it requires at least two classes to build a recognizer, so we created an absence 

training class by scanning our 200-minute absence dataset with Song Scope and exporting the 

highest scored 100 detections into the same text file. As per the training video, we then used the 

Kaleidoscope software to rescan the training dataset with the training clips to create a 

Kaleidoscope recognizer. We set maximum cluster distance to the maximum allowable value to 

simulate a minimum score threshold (Supplementary Materials Appendix 2, Table A2.2). We 
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adjusted the clustering parameters to create a two-cluster recognizer with a presence class and an 

absence class (Supplementary Materials Appendix 2, Table A2.2). We then processed the test 

dataset with the Kaleidoscope recognizer using similar signal detection parameters to the Song 

Scope recognizer (Supplementary Materials Appendix 2, Table A2.2). We validated only those 

detections that were classified as presence by the Kaleidoscope recognizer and used only hits 

from channel 1 to prevent duplicate hits. 

MonitoR Recognizer: We used the binary-point matching function in MonitoR instead 

of the cross-correlation approach because our initial tests suggested it was more effective for 

common nighthawk calls. The binary-point matching function in MonitoR is a template-based 

approach, where the program converts each cell of the spectrogram of a clip to a 1 or 0 using an 

amplitude cut-off. As a moving window recognizer, MonitoR then processes audio data by 

comparing this single-call template to each moving window of the data and scores how many 

cells the window has in common with the template. Multiple calls can be used to train MonitoR 

recognizers, but the program creates a template for each training call and scans the data once 

with each template, as opposed to other programs that aggregate the training calls and scan the 

data only once. We built the MonitoR recognizer following the training vignette (Hafner & Katz 

2015). We used the MakeBinTemplate function to inspect each of the 100 training clips from the 

Song Scope training dataset, and adjusted the time limit, frequency limits, and amplitude cut-off 

manually for each template to ensure each call was completely detected (Supplementary 

Materials Appendix 2, Table A2.3). 

CNN Recognizer: Convolutional neural networks (CNNs) are a class of machine 

learning models that have been successfully applied in a range of domains including speech 

recognition and visual object recognition (LeCun et al. 2015). CNNs are a type of artificial 
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neural network (ANN) that use moving window convolutional layers to extract features from 

their inputs, which makes CNNs particularly suited to acoustic detection as they can be applied 

directly to variable length raw audio, spectrogram inputs, or other representations of sound. 

ANNs have previously been used for automated acoustic signal recognition, but require that call 

parameters are first extracted from each acoustic signal before being passed to the ANNs for 

classification (Jennings et al. 2008), whereas CNNs can scan and classify the spectrograms 

directly. In general, the filters in convolutional layers are used to detect acoustic features while 

sliding over the spectrogram, or other visual input. To train a CNN as a moving window 

recognizer, we used a simple architecture that had multiple convolutional layers, but output a 

single convolutional feature map (detection function) in the final layer (Supplementary Materials 

Appendix 2, Table A2.4). During model training we presented short clips to the network, 

typically with a single common nighthawk call either present or absent. We used the maximum 

value of the detection function to classify presence/absence, which forced the model to learn a 

discriminative detection function. We used the TensorFlow framework and the Python API to 

define and train our CNN model (Abadi et al. 2015). As input to our model, we used log-power 

mel-scaled spectrograms calculated using librosa (McFee et al. 2017). We used rectified linear 

units (ReLUs) as the activation function in all layers of the network except the last, which used a 

sigmoid function. We trained the network for 100 epochs with a cross-entropy cost function, 

using minibatch stochastic gradient descent with batch size 64 and Adam optimization (Kingma 

& Ba 2014) with learning rate of 0.001. During model evaluation on continuous recordings, the 

full time- series output of the detection function was used as the recognizer score. A simple 

threshold-based peak-picking method was then used to extract a list of discrete detections. The 

CNN model required fixed length inputs during training, so we created a dataset by manually 
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extracting 100 clips of 2-s duration from across the presence dataset and the same number from 

the absence dataset. 

RavenPro Recognizer: RavenPro uses band-pass filters, a band-limited energy detector, 

and an amplitude detector, to perform signal detection and identify calls of the appropriate 

duration within the frequency range of the target species. We followed the RavenPro 1.4 manual 

to configure our RavenPro recognizer (Charif et al. 2010). We extracted 100 high-quality calls 

(defined as above) and measured target signal parameters, i.e., frequency, duration, and 

separation, for each common nighthawk vocalization. We used the default setting for most noise 

estimation parameters, with adjustments made to those that increased the true positive rate 

(Supplementary Materials Appendix 2, Table A2.5). 

Test Dataset: To test the generalizability of our recognizers, we used a test dataset from 

a different geographic region than the training dataset. Our test dataset comprised 117 recordings 

of 5-min duration (2.28 GB) from 45 study sites in northwestern Ontario, Canada. The 

recordings were made on 13 June and 25 June 2012 at 21:00 and 22:00 when common 

nighthawks are acoustically active, and there were between 1 and 4 recordings for each of the 45 

study sites. The individual recordings within the test dataset were selected randomly from a 

larger pool of samples, though the resulting dataset represented a gradient of low to high 

common nighthawk call density. All recordings were collected as 16-bit 16 kHz WAV files 

using SM2+ Songmeters (Wildlife Acoustics Inc.). 

Automated Processing The test dataset was processed with each recognizer. We chose 

low score thresholds for each of the recognizers so that we could evaluate performance across a 

gradient of score thresholds (Supplementary Materials Appendix 2). We set the score threshold 

at 0 for the signal detection recognizers (Song Scope, Kaleidoscope, RavenPro) to allow for full 
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analysis of the score threshold gradient. We then ran the moving window recognizers (MonitoR 

and CNN) with a similarly low threshold and selected the highest scored 6750 hits, which was 

the maximum number of hits detected by any of the signal detection recognizers (Song Scope). 

Without this hit threshold, both moving window recognizers would have produced as many hits 

as moving windows, i.e., hundreds of thousands (Figure 2.2) because they have no signal 

detection process. We ran each recognizer with the same MacBook Pro (late 2013) with a 2.3 

GHz Intel Core i7 and 16 GB 1600 MHz DDR3 of RAM. We timed the processing duration of 

the test dataset while no other software was running. 

 

Figure 2.2. Distribution of true positive and false positive recognizer hits relative to score for 

common nighthawk recognizers in five different programs. The top row programs are signal 

detection recognizers and the bottom row programs are moving window recognizers. Recognizer 

scores are the raw scores reported by the programs and are unstandardized. Kaleidoscope score is 

the inverse of the distance metric. 

Benchmark Development: We compared our recognizers to human listening and used 

the maximum number of true detections by any method as our benchmark because the 

recognizers detected the presence of common nighthawks in several recordings that human 

listeners had missed. Using a human listening benchmark would have decreased the presence-
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absence recall of those recognizers because the comparison would have been to a benchmark that 

included false negatives. To develop the human listening dataset, two human observers viewed 

and simultaneously listened to each 5-min recording in its entirety using sound visualization 

software and time-stamped each common nighthawk vocalization using a Microsoft Access data 

entry form. 

Statistical Analysis: We referred to existing best practices in the machine learning 

literature and other acoustic signal detection disciplines to develop our evaluation approach 

(Davis & Goadrich 2006; Sokolova & Lapalme 2009; Raffel et al. 2014). We evaluated the 

overall performance of each of the five common nighthawk recognizers relative to the 

benchmark. We also evaluated the applied performance of each of the recognizers including 

presence-absence recall, occupancy modeling, and call rate correlation. All analyses were 

conducted in R version 3.3.1 (R Core Team 2016) with the base package, the PRROC package 

(Grau et al. 2015), and the ROCR package (Sing et al. 2005). 

Prior to analysis, we standardized the score of each hit for each recognizer on a scale 

from 0 (lowest score) to 1 (highest score) to enable comparison between recognizers. We 

standardized the score of each hit by dividing it by the maximum score for that recognizer minus 

the minimum score for that recognizer. Kaleidoscope does not directly report a score, but instead 

uses a clustering approach to report distance between detections, so we used the inverse of the 

distance to cluster center as a surrogate for score. We included score threshold in our evaluation 

by applying a score threshold in 0.01 increments to the dataset for each recognizer before 

calculating each metric. 

To evaluate overall performance of the recognizers, we calculated precision, recall, F-

score, and area under the curve (AUC) because these metrics are suitable for one-class classifiers 



 32 

(recognizers trained only with examples of the target species, e.g., Song Scope, MonitoR, 

RavenPro) and binary classifiers (recognizers trained with examples of both the target species 

and nontarget species, e.g., CNN, Kaleidoscope; Sokolova et al. 2006). Precision is the 

proportion of recognizer hits that are true detections of the target species (Table 2.1). Recall is 

the proportion of target species vocalizations detected as hits by a recognizer (Table 2.1). F-score 

incorporates precision and recall, and allows the user to weight the relative importance of 

precision versus recall by setting the β value (Table 2.1). For AUC, we plotted precision-recall as 

well as ROC curves for each of the recognizers because some authors suggest precision-recall is 

more appropriate for recognizer performance evaluation (Davis & Goadrich 2006). We did not 

apply a score threshold for this evaluation because AUC incorporates score implicitly. We did 

not include human listening in AUC calculation because human listening detections do not have 

score values. 

We then evaluated the applied performance of the recognizers and human listening in a 

presence-absence study because presence-absence data are used for a variety of applications in 

ecological research and monitoring. To simulate a presence- absence study and to balance 

sampling effort across study sites, we subsampled our test recording dataset to the first recording 

for each of the 45 study sites. We then determined whether the recognizer or listener accurately 

determined the presence or absence of a common nighthawk for each score threshold increment 

of 0.01, and then modeled this presence-absence recall with a binomial logistic regression for 

each processing approach. For each approach, we constructed null, first-order, second-order, and 

third-order polynomial models with score threshold as the covariate. We compared the four 

models for each approach using Akaike Information Criteria (AIC; Burnham and Anderson 

2002) and selected the model with the lowest AIC score. 



 33 

We also evaluated the performance of the recognizers and human listening for occupancy 

modeling. Occupancy modeling is a widely used application of presence/absence data that uses 

repeated visits to account for imperfect detection of the target species (MacKenzie et al. 2002). 

ARU data are particularly well- suited for occupancy modeling because they collect multiple 

time- series recordings that can be used as repeat-visit data (Shonfield & Bayne 2017). We 

modeled common nighthawk detection and occupancy for each of the recognizers and human 

listening using a single season occupancy model framework (MacKenzie et al. 2002) with each 

5-min recording used as a separate “sampling occasion.” Prior to modeling, we removed seven 

study sites from the dataset for which there was only one recording because occupancy models 

require at least two recordings, i.e., visits, to estimate the detectability parameter. The resultant 

dataset comprised 38 sites. We then ran a null occupancy model with the validated recognizer 

data for each 0.01 score threshold for each recognizer to examine how detectability and 

occupancy changed with score threshold. 

We also evaluated the performance of each recognizer and human listening for measuring 

call rate. Call rate ARU data have been used for behavioral studies (Ehnes & Foote 2014), and 

can be used as a proxy for abundance of some species if baseline patterns in call rates or song 

frequency are well known, which can in turn be used for monitoring population trends (Jeliazkov 

et al. 2016). We calculated the Spearman correlation coefficient between the benchmark and the 

call rate for each score threshold increment using the individual recording as the sampling unit. 

Finally, we compared the efficiency of each of the five automated acoustic recognition 

programs and human listening as the time required to learn the software, build the recognizer, 

scan the test audio dataset, and validate the recognizer results as true or false positives. We 

limited learning time to 8–12 hours to develop a functional aptitude for each of the programs 
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using our “out-of- the-box” approach. We quantified the time spent to build each recognizer, 

including a standardized four hours of training dataset compilation time because we used a single 

compiled training dataset for all five recognizers. We quantified the time required to scan by 

timing the computer processing of our test dataset. We quantified the time to validate by timing 

the validation of each of the recognizer hits and taking the mean validation time per hit. To 

compare the efficiency of the five recognition programs to human listening, we calculated 

processing time in hours per hour of audio data for a 10 hour audio dataset and a 1000 hour 

audio dataset. We calculated processing time as the time required to learn and build the 

recognizer plus time to validate the recognizer results. We did not include scanning time in our 

efficiency calculation because this part of the process does not require human supervision. For 

time to validate, we calculated the time it would take to validate the recognizer when run with a 

score threshold for the peak of the precision-recall curve, i.e., the maximum value of precision + 

recall. Finally, we calculated the audio dataset size at which the efficiency of recognizer 

processing becomes faster than human listening, assuming 1 hour of listening per 1 hour of audio 

data and 1 hour of initial learning. 

A total of 5556 common nighthawk calls were detected across the 117 five-minute 

recordings (mean = 152 per recording, SD = 196), which was used as the benchmark for 

recognizer evaluation. Common nighthawks were detected in 85 of the 117 recordings, and at 38 

of 45 sites from northwestern Ontario, Canada. 
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Figure 2.3. Precision, recall, and F-score of common nighthawk call detection for automated 

acoustic recognition programs at varying score thresholds. Precision, recall, and F-score of 

human listening is provided for comparison. Precision is the proportion of recognizer hits that 

are true detections of the target species. Recall is the proportion of target species vocalizations 

detected by the recognizer. F-score combines precision and recall into a single evaluation metric. 

Precision, Recall, and F-score: As expected, recall and F-score decreased and precision 

increased with increasing score threshold for all recognizers (Figure 2.3). Score threshold had a 

minimal impact on precision and recall of the RavenPro recognizer, with impacts seen only at 

score thresholds above 0.7. Precision for the CNN, MonitoR, and Song Scope recognizers neared 

1.0 at high score thresholds, with few false positives reported by the two moving window 

recognizers (CNN and MonitoR) except at low thresholds. The Kaleidoscope and RavenPro 

recognizers both had a precision of approximately 0.7 across most score thresholds. The CNN 

had the highest recall across all score thresholds, with the MonitoR recognizer also reaching a 

high recall of 0.75 at low score thresholds. The Song Scope recognizer recall decreased steadily 

from 0.42 at the lowest threshold, while the Kaleidoscope recognizer recall of 0.34 dropped off 

rapidly above a score threshold of 0.3. The RavenPro recognizer had relatively low recall of 

approximately 0.2 across all score thresholds. The F-scores of the five recognizers were similar 

to the recall values, with the exception of a lower F-score for the Song Scope recognizer below a 

score of 0.2. Human listening precision was 1.0 because we assumed that every human listener 
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detection was a true positive; however, human listening recall was 0.97 because human listeners 

missed 146 of the 5556 common nighthawk calls detected in the test dataset. 

Area Under the Curve: The CNN recognizer had the highest precision-recall curve 

AUC (0.94), followed by MonitoR (0.88), Song Scope (0.87), RavenPro (0.82), and 

Kaleidoscope (0.77; Figure 2.4). The ranking of the top two recognizers from the ROC curve 

AUC was different than the precision-recall curve AUC; the SongScope recognizer had an AUC 

of 0.90, while the CNN had an AUC of 0.88. The ranking of the other recognizers was the same 

between the two AUC measures; however, the ROC AUC of the Kaleidoscope recognizer (0.53) 

was much lower than the precision-recall AUC (0.77). 

 

Figure 2.4. Precision-recall curve (left) and receiver operating characteristic (ROC; right) curve 

of common nighthawk call detection for automated acoustic recognition programs. AUC is area 

under the curve for each program. 

Presence-absence: At low score thresholds, the CNN, Song Scope, and MonitoR 

recognizers determined common nighthawk presence-absence with similar recall as a human 

listener (95.4%; Figure 2.5). At high score thresholds, only the CNN and RavenPro recognizers 
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detected common nighthawk presence-absence with greater than 50% recall. As with precision 

and recall, score threshold had little impact on the presence-absence recall of the RavenPro 

recognizer. The CNN recognizer had the highest presence-absence recall of the five programs 

across the score threshold gradient. The CNN (AIC weight = 0.95), Kaleidoscope (AIC weight = 

0.92), and Song Scope (AIC weight = 0.97) recognizers were modeled as third-order 

polynomials, and the MonitoR recognizer (AIC weight = 0.69) was modeled as a second-order 

polynomial (Supplementary Materials Appendix 3, Table A3.1). The null model with the lowest 

AIC score for the RavenPro recognizer was the null model (AIC weight = 0.43), suggesting that 

score threshold had no effect on presence-absence recall. 

 

Figure 2.5. Recall of five automated acoustic recognition programs for detecting common 

nighthawk presence per recording at varying score thresholds. Recall of human listening is 

provided for comparison. Shaded areas indicate 95% confidence intervals. 



 38 

 

Figure 2.6. Common nighthawk occupancy and detection in null occupancy models for 

automated acoustic recognition programs at varying score thresholds. Occupancy and detection 

of human listening is provided for comparison. Shaded areas indicate 95% confidence intervals. 

Occupancy: Naive occupancy of the 110 visits, i.e., recordings, included in occupancy 

modeling was 0.89 (34 of 38 sites). The occupancy estimate from human listening was 0.87 (SE 

= 0.06; Figure 2.6). In general, the occupancy estimates from recognizer data were lower than 

the estimate from human listening, although the occupancy estimate from the CNN recognizer 
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(0.80) was not significantly so. The occupancy estimates from the Kaleidoscope, MonitoR, and 

Song Scope recognizers decreased with increasing score threshold as detection also decreased, 

and at high score thresholds, the estimates became unstable, varying between 0 and 1. The 

occupancy estimates from the CNN and the RavenPro recognizers were more stable across score 

thresholds, although the RavenPro estimate was much lower (0.60). 

 

Figure 2.7. Spearman correlation of common nighthawk call rate between automated acoustic 

recognition programs across varying score thresholds. Correlation of call rate from human 

listening is provided for comparison. 

Call Rate: At low score thresholds, the CNN and MonitoR call rate was similar to human 

listening (0.96 and 0.91 correlation, respectively); however, call rate correlation of the MonitoR 

recognizer decreased rapidly and linearly to near 0 with increasing score threshold, while the 

CNN recognizer call rate correlation decreased slowly before dropping steeply at a score 

threshold of 0.9 (Figure 2.7). The Song Scope recognizer call rate correlation was between 0.7 

and 0.8 at moderate score thresholds. Call rate correlation for the RavenPro recognizer varied 

minimally across score thresholds (max = 0.56, min = 0.48). The Kaleidoscope call rate 
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correlation was 0.7 and decreased steadily but irregularly after a score threshold of 

approximately 0.3. 

Efficiency: All five of the automated signal recognition programs became faster than 

human listening for datasets larger than 36 hours of audio (Table 2.2). The CNN recognizer had 

the largest initial time investment, and thus had the highest processing time per hour of audio 

data for a small dataset (10 hours audio). For a large audio dataset (1000 hours audio) the 

differences between the recognizers were due primarily to differences in the number of hits at 

maximum precision-recall between recognizers. The Song Scope recognizer was the most 

efficient, while the Kaleidoscope recognizer was the slowest. Although not included in the 

processing time calculations, scanning time should also be included in efficiency considerations. 

The CNN and Kaleidoscope recognizers were the fastest to scan our test dataset, while the 

MonitoR recognizer was two orders of magnitude slower because this program scanned the 

audio dataset separately through each of the 100 templates. 

Table 2.2. Time in hours (h) spent to learn each of the automated acoustic recognition programs, 

build a recognizer, scan audio recordings with the recognizer, and validate the recognizer output. 

Total times and dataset size were calculated using the number of hits produced by each 

recognizer when the score threshold is set to maximize accuracy. 

Recognizer Learn 

time 

Build 

time 

Scan 

time per 

h audio 

Validate 

time per 

h audio 

Total time 

per h 

audio (10 

h dataset) 

Total 

time per 

h audio 

(1000 h 

dataset) 

Dataset size 

(h) where 

recognizer is 

faster than 

human 

listening 

Human 

listening 

1 0 0 1 1.1 1.00 NA 

CNN 24 8 0.003 0.11 3.31 0.14 36 

Kaleidoscope 8 4 0.001 0.16 1.76 0.17 19 

MonitoR 8 8 0.32 0.52 2.20 0.22 25 

RavenPro 8 2 0.03 0.13 1.50 0.12 16 

Song Scope 12 8 0.03 0.11 2.48 0.11 26 



 41 

Based on our analysis, we suggest that ecologists who use automated acoustic recognition 

for processing acoustic recordings follow six general recommendations. These suggestions are 

drawn largely from best practices in machine learning and other acoustic signal processing 

disciplines (Salzberg 1997; Sokolova et al. 2006; Sokolova & Lapalme 2009; Raffel et al. 2014), 

as well as our literature review of evaluation methods in ecology and lessons learned during our 

common nighthawk recognizer evaluation. We also suggest that ecologists familiarize 

themselves with general machine learning practices because there is great potential for 

interdisciplinary research, but a known lack of communication between the two disciplines 

(Thessen 2016). 

Recognizer evaluation should employ a test dataset that differs from the training dataset 

to avoid “overly optimistic” results (Salzberg 1997). Within the test dataset, it is important to 

establish a benchmark of known target species detections to evaluate recognizer performance. 

We recommend human listening as a comparison benchmark; however, we remind readers that 

human listening is also subject to error (Bart & Schoultz 1984; McClintock et al. 2010; Brauer et 

al. 2016). If any false negatives in human detections are discovered during the process of 

reviewing recognizer detections, we recommend instead using the maximum number of target 

species detections detected by any method, i.e., human processing or a recognizer, as the 

benchmark. In our performance evaluation, there were 146 common nighthawk calls (2.63% of 

total) detected by a recognizer that were missed by human listeners. Brauer et al. (2016) also 

reported a 2% error rate in human identification of anuran calls, while Rydell et al. (2017) found 
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error rates ranging from 9–22% for bat species identified by human listeners. If the target species 

vocalizations are susceptible to false positive identification by human observers, we recommend 

using a dependent double observer method when developing the benchmark to reduce the 

probability of misidentification (Forcey et al. 2006). Acoustic signals at farther distances 

(Skowronski & Fenton 2009), lower sound pressure (Jahn et al. 2017), or with low signal-to- 

noise ratios, i.e., high levels of background noise, will be difficult to detect for both humans and 

recognizers, and therefore should not be excluded when preparing a benchmark (Skowronski & 

Harris 2006). Human listening can also be subject to observer bias (Sauer et al. 1994). Jennings 

et al. (2008) found that human observers with less than a single year of experience performed 

worse at classification than recognizers. Human annotation error can also be reduced by using 

the consensus from multiple observers as the benchmark dataset (Drake et al. 2016). 

We strongly recommend that the influence of score be included in recognizer evaluation 

because our review showed it has a fundamental impact on recognizer performance, no matter 

what metric was used. Following Katz et al. (2016), we further recommend the use of score 

threshold instead of the reported raw scores of each detection in recognizer evaluation so that 

ecologists can use their evaluation results to select an optimal score threshold for data 

processing. We found in both our own recognizer evaluation and in our review of the literature 

that performance varied widely with score threshold. Furthermore, not all papers that used 

recognizers reported how they selected their score threshold despite the importance of this 

decision. Factors such as project objective, recording quality, call complexity, and signal clarity 

influence the choice of score threshold and the subsequent performance metrics. In our 

evaluation, the exception was the RavenPro recognizer, whose performance was largely 
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unaffected by score threshold, perhaps because RavenPro is a band limited energy detector that 

identifies signals based only on a frequency range specification. It is possible that score threshold 

may be particularly important for programs with more complex classification approaches. 

Inclusion of a gradient of score thresholds in evaluation will facilitate selection of an appropriate 

score threshold for further analysis, which can be chosen based on the objectives of the project 

(Katz et al. 2016). We also found that some papers did not report score threshold, and we argue 

that it is crucial that score thresholds are explicitly reported within papers that use automated 

signal recognition. 

We suggest ecologists use metrics that are considered best practice in other signal 

processing disciplines (Sokolova & Lapalme 2009). Specifically, we suggest that four metrics 

always be reported for single species recognizer evaluation: (1) precision, (2) recall, (3) F-score, 

and (4) area under the curve (AUC). These metrics are regularly reported during classifier 

evaluation in other disciplines and will also allow ecologists to compare evaluation results with 

state-of-the-art studies in machine learning and elsewhere. Ecologists can also calculate these 

statistics across multiple datasets or partitioned datasets so that variance in metrics can be 

evaluated (Salzberg 1997) and statistical tests to compare recognizer performance can be applied 

(Dietterich 1998; Demšar 2006). 

Precision and Recall: Precision is the proportion of recognizer hits that are true 

detections of the target species and is calculated as  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
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where tp is the number of true positives (detections of target species) and fp is the number of 

false positives (recognizer hits that were mislabelled as the target species).  

Recall is the proportion of target species vocalizations detected as hits by a recognizer 

and is calculated as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

where fn is the number of false negatives (detections of the target species in the benchmark 

dataset that the recognizer missed). Precision and recall were the most commonly used metrics in 

our literature review and in the classification literature (Raghavan et al. 1989; Provost et al. 

1998; Davis & Goadrich 2006). Precision and recall are appropriate for signal recognition 

evaluation because unlike some metrics, they do not require quantification of true negatives (i.e., 

other species), which are not reported in single-class recognizers such as Song Scope and 

MonitoR. In contrast, accuracy focuses on true and false negatives and assumes that false 

negative and positive errors are equally likely and consequential, which is often a poor 

assumption in signal recognition (Provost et al. 1998). Precision and recall are also particularly 

appropriate when the target species is rare, as a recognizer can have a high accuracy by simply 

predicting the target species is always absent, and the accuracy of a recognizer can be inflated by 

adding more negative examples to the dataset. Using precision and recall allows for direct 

comparison of recognizer performance with other published studies. Across the studies we 

reviewed, the mean recall was 0.60 and the mean precision was 0.71 (Swiston & Mennill 2009; 

Bardeli et al. 2010; Digby et al. 2013; Potamitis et al. 2014; Ganchev et al. 2015; Jahn et al. 

2017) With the exception of the Kaleidoscope recogizner and the Song Scope recognizer at low 

score thresholds, the precision of our common nighthawk recognizers was above 0.71. The recall 
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of our MonitoR and CNN recognizers reached 0.60 at low score thresholds, but the other 

recognizers did not. 

F-Score: F-score combines precision and recall into a single metric and is calculated as 

𝐹𝑠𝑐𝑜𝑟𝑒 =
𝐵2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝐵2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

where B is a user-defined metric that allows for prioritization of precision over recall, or vice-

versa. Precision and recall are evenly balanced when B = 1, precision is favoured when B > 1, 

and recall is favoured when B < 1 (Sokolova et al. 2006). We recommend that if ecologists 

choose to use a value for other than 1, that they also report F-score with B = 1 to allow for 

comparison across studies. Situations where ecologists might consider using B < 1 including 

detection of rare species or situations with legal implications. 

Area Under the Curve (AUC): Following other acoustic signal processing disciplines, 

we recommend reporting the AUC of a precision-recall curve as a univariate method for 

comparing recognizers. Receiver operating characteristic (ROC) curve AUC is more commonly 

used in the classifier evaluation literature; however, precision-recall curves are more appropriate 

for cases with class imbalance such as recognizer evaluation (Davis & Goadrich 2006). In other 

words, a large quantity of false positives, as is the case for many recognizers at low score 

thresholds, is more accurately reflected in the AUC of a precision-recall curve than an ROC 

curve, and our comparison of the two approaches supports this. We therefore recommend a 

precision-recall AUC; however, ecologists may also want to calculate an ROC AUC for 

comparison with other published studies. 
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Although overall recognizer evaluation is important, the influence of the metrics chosen 

can depend on the intended application for the data (Stowell et al. 2016). We therefore also 

recommend evaluation be done for the intended application of the resultant species detection 

data. Recognizer evaluation for occupancy modelling purposes is particularly important, as our 

results suggest this approach becomes unreliable for recognizer data with low recall because 

species detection probability is too low for reliable occupancy estimates at low recall 

(MacKenzie et al. 2002). We also found that the shape of the curve across the score threshold 

gradient for all three response variables we examined (presence-absence recall, occupancy 

estimate, and call rate correlation) was similar to the shape of the recall curve. Future work 

should investigate whether the relationship between the shape of the score-recall curve is an 

adequate proxy for all response variables, or whether it varies depending on the detectability, call 

rate, and occupancy of the target species. 

Geographic variation in acoustic signal is demonstrated in many bird species 

(Slabbekoorn & Smith 2002) and other animals which produce sound (Pröhl et al. 2006; 

Campbell et al. 2010; Sun et al. 2013), which is important to consider during recognizer 

evaluation (Russo & Voigt 2016; Gillespie et al. 2013). For simplicity, we evaluated the regional 

generalizability of our common nighthawk recognizer with a test dataset from a different region 

than the training data; however, in best practice, ecologists should test recognizers across 

multiple geographic regions. Evaluating with multiple test datasets will help ecologists determine 

whether a single recognizer is effective or whether regionally-specific recognizers are required 
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for their target species. For example, marine mammal classifiers have been shown to be 14.4% 

less accurate when tested with data from a different region than the training data (Erbs et al. 

2017). For ecologists that plan to use recognizers for a single region, training and test data should 

be sourced from the region of interest. 

For many ecologists, the purpose of employing an automated signal recognition approach 

is to increase the efficiency of audio data processing; therefore, we recommend collecting data 

on time spent to build and run a recognizer and validate the output. The time per hour of audio 

data can then be compared to other data processing approaches, including human listening. For 

our recognizers, we found that human listening became less efficient with datasets larger than 36 

hours of audio; however, we note that using a visual scanning approach (i.e., viewing the 

spectrogram) instead of listening may have improved the efficiency of our human processing 

approach. If the automated recognizer used performs poorly, however, the manual post-

processing time required may outweigh the advantages of automation due to the time required to 

validate the results (Stowell et al. 2016). Digby et al. (2013) found that automated recognition (2 

minutes per hour of recording) could be at least as or more efficient than manual scanning (2 – 5 

minutes per hour of recording) but noted that the efficiency of a recognizer will depend on the 

species’ vocalization characteristics, call rate, and the quality of recognizer. Indeed, human 

listening may be more efficient than single-species recognizers if multiple species data are 

needed from audio recordings; however, there are also many multi-species recognizer 

approaches currently under development (Stowell et al. 2016, Goëau et al. 2017). Ultimately, 

relative efficiency will depend on a variety of factors including score threshold, with more time 
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required to validate recognizer output if a low score threshold is chosen to prioritize recall over 

precision. 

Autonomous recording units are important tools for ecological monitoring and research 

because they are portable, collect data over extended periods, can be used in remote locations, 

are not restricted to a particular season, and the data they collect can be archived as a permanent 

record (Shonfield & Bayne 2017). The use of automated signal recognition for processing ARU 

data is growing because it can reduce the time required to process the large amounts of data; 

however, the best practices are needed (Blumstein et al. 2011). In particular, recognizer 

performance evaluation is a critical step for projects that employ automated signal recognition. 

All recognizers misclassify detections to some extent, which can have implications for study 

results and may lead to poor management decisions if the results are not validated (Russo & 

Voigt 2016; Rydell et al. 2017). In our review of the bioacoustics literature, we found little 

similarity in recognizer performance evaluation between studies. Some studies reported minimal 

performance evaluation results, which renders the ecological results of these studies difficult to 

interpret. In papers that did report performance evaluation, we found an inconsistency in the 

evaluation terminology used and a lack of reference to the classification literature (Salzberg 

1997; Davis & Goadrich 2006; Sokolova & Lapalme 2009). Given the increasing use of 

recognizers by ecologists, these deficiencies suggest a need for guidance on performance 

evaluation. We used best practices from other acoustic signal processing disciplines and our own 

evaluation of automated signal recognition software to provide recommendations for comparing 

and recognizers. 
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Using the common nighthawk as a model species, we found that a convolutional neural 

network (CNN) recognizer outperformed the other recognizers across all evaluations, but that 

Song Scope and MonitoR recognizers had similar precision and recall rates at some score 

thresholds. Currently, the construction of CNN recognizers requires programming expertise, but 

an increasing number of authors have reported success with this method for automated signal 

recognition (Koops et al. 2014, Salamon et al. 2016, Salamon and Bello 2017). Using our “out-

of-the-box” approach, we found MonitoR and Song Scope had similar learning curves, assuming 

the operator is already familiar with the R programming language. At the time of writing, 

however, Song Scope was no longer under development or supported by the manufacturer. As 

the simplest automated signal recognition program, RavenPro was the easiest to learn, but the 

simplicity of its band-width delimitation classification approach limited its performance. Duan et 

al. (2013) also compared Raven Pro and Song Scope, and similarly reported a more intuitive user 

interface. Duan et al. (2013) also found that RavenPro had higher recall but lower precision than 

Song Scope. The Kaleidoscope recognizer also had low precision and recall relative to the other 

recognizers, with precision varying erratically across score threshold, likely because we used 

distance to cluster centre as a surrogate for score. Rydell et al. (2017) similarly found that 

Kaleidoscope performed worse than other recognizers for bat call classification. We caution that 

our performance and efficiency evaluation of these five programs was based on a single model 

species with a simple, diagnostic call and little ambient masking noise and that ecologists should 

compare these programs for other species before choosing which program to use for audio data 

processing. 

Overall, automated signal recognition was effective for determining common nighthawk 

presence-absence and call rate, particularly at lower score thresholds, but the occupancy 
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estimates from the data processed with recognizers were consistently lower than derived from 

human listening, with the exception of the CNN recognizer. Other authors have successfully 

derived occupancy estimates from recognizer data that are comparable to naïve occupancy 

(Kalan et al. 2015; Campos-Cerqueira & Aide 2016). Although ARUs can be as effective as 

human surveyors at detecting occurrences (Holmes et al. 2014; Kalan et al. 2015), the greater 

number of false negatives from an automated analysis (Brauer et al. 2016) reduces the apparent 

occupancy estimate for an organism at a location (MacKenzie et al. 2002). It has been suggested 

that the difference in recall between automated signal recognition and human listening is caused 

by a smaller detection radius of the recognizer relative to the human listener (Jahn et al. 2017, 

unpublished data), which could be due to both the signal detection and classification components 

of the recognizer and would explain our reduced occupancy estimates. This may not be an error 

per se but may instead reflect the fact that more standardization is needed when using ARUs to 

determine the effective area being sampled (Yip et al. 2017a). We also found that occupancy 

estimates became unstable at high score thresholds with low recall, and therefore caution against 

the use of occupancy models produced from recognizer data with low recall recognizers because 

low recall contributes to low detectability, which biases occupancy estimates (MacKenzie et al. 

2002). Future research should investigate the sensitivity of occupancy modelling to this new data 

type. 

Although automated signal recognition is effective for common nighthawks, there is little 

consensus to date on the overall effectiveness of the existing technology for avian ecological 

research and monitoring. Future application of our recommendations would be most useful for 

taxa with more complex acoustic signals, different calling rates, and in environments with 

varying levels of ambient noise. Thorough performance evaluation in recognizer studies 
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following our general recommendations will contribute to building a body of literature for future 

meta-analysis on the overall effectiveness of automated signal recognition for wildlife 

monitoring and research. 

Supplementary materials are available at https://www-ace-eco-

org.login.ezproxy.library.ualberta.ca/vol12/iss2/art14/. 

  

https://www-ace-eco-org.login.ezproxy.library.ualberta.ca/vol12/iss2/art14/
https://www-ace-eco-org.login.ezproxy.library.ualberta.ca/vol12/iss2/art14/
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Automated recognition is increasingly used to extract information about species 

vocalizations from audio recordings. During processing, recognizers calculate the probability of 

correct classification (“score”) for each acoustic signal assessed. Our goal was to investigate the 

implications of recognizer score for ecological research and monitoring. We trained four 

recognizers with clips of common nighthawk (Chordeiles minor) calls recorded at different 

distances: near, midrange, far, and mixed distances. We found distance explained 49% and 41% 

of the variation in score for the near and mixed-distance recognizers, but only 3% and 6% of the 

variation for the midrange and far recognizers. We calculated detection functions for each of the 

recognizers at various score thresholds and found that the detection function for the near and 

mixed-distance recognizers satisfied the assumptions of density estimation for most score 

thresholds, while the detection function for the midrange and far recognizers did not. The 

detection functions also showed that score threshold choice is a decision about sampling area, 

not just about the balance between recall and precision. Overall, we showed that training 

recognizers with ‘high-quality’ clips that were recorded at close range will improve the utility of 

the data without affecting how many true positives the recognizer detects. 

Autonomous recordings units (ARUs) are increasingly used by wildlife ecologists and 

managers to survey for animal species that communicate with acoustic signals (Shonfield & 
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Bayne 2017). In particular, ARUs are used to survey for focal species that are of conservation or 

management concern because they are a non-invasive method that can record time-series data in 

a cost-effective manner (Drake et al. 2016). ARU recordings can also provide a permanent 

record that can be used to verify identification of rare species (Swiston & Mennill 2009; Holmes 

et al. 2014) or reanalysed later to study other species (Derryberry et al. 2018). ARU data can be 

used for a variety of ecological research applications for focal species including monitoring 

population trends (Furnas & Callas 2015), behavioural studies (Ehnes & Foote 2014), occupancy 

modelling (Chambert et al. 2017), density estimation (Marques et al. 2012), and habitat 

modelling (Campos-Cerqueira & Aide 2016). 

Recordings collected by ARUs require processing to extract information about detections 

of the focal species, which is time consuming to do by listening or visual scanning if large 

volumes of recordings are collected. Automated recognition can be an efficient way to extract 

species detection information from large bioacoustic datasets (Stowell et al. 2016; Shonfield & 

Bayne 2017; Priyadarshani et al. 2018). Automated recognition is the process of training a 

computer to detect and classify a focal species’ vocalization. The training process produces a 

detection algorithm (hereafter “recognizer”) that can then be run over audio recordings to 

classify the acoustic signals therein. For each signal evaluated, the recognizer assigns a 

classification probability (hereafter “score”), which can be interpreted as a measure of the 

probability that the signal being evaluated can be classified as the focal species. The recognizer 

then registers a detection for each signal with a score above a user-defined threshold (hereafter 

“score threshold”). 

A variety of automated recognition approaches have been developed over the past decade 

and a half. Some of the common approaches include random forests (Aide et al. 2013; Campos-
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Cerqueira & Aide 2016), hidden Markov models (Skowronski & Harris 2006; Potamitis et al. 

2014; Oliveira et al. 2015) and/or Gaussian mixture models (Heinicke et al. 2015; Ganchev et al. 

2015), binary point matching (Katz et al. 2016), spectrogram cross- correlation (Katz et al. 

2016), artificial neural networks (Tachibana et al. 2014; Nicholson 2016), decision trees (Digby 

et al. 2013), and band-pass filters (Charif et al. 2010). Some of the approaches mentioned 

employ a single step process that runs the algorithm against every window of an audio recording 

and reports a score value for each window (hereafter “moving window recognizer”). Others use a 

two-step process that first conducts signal detection with a moving window, and then runs the 

algorithm only on detected signals (hereafter “signal detection recognizer”). Regardless of the 

process, all single-species recognizers calculate a score metric and thus require setting a score 

threshold to separate detections of the focal species from other non-target signals. 

Studies using recognizers have typically treated score as a measure of classification 

probability; thus, score threshold choice is usually described as a subjective decision based on 

the priorities of the user (Wildlife Acoustics 2011; Katz et al. 2016) to balance precision (i.e., 

minimizing false positives) and recall (i.e., minimizing missed detections). Some authors have 

used statistical tests such as Youden’s J statistic (Youden 1950) to select a score threshold 

(Swiston & Mennill 2009; Ganchev et al. 2015; Ulloa et al. 2016; Crump & Houlahan 2017), but 

score is often selected arbitrarily. Score threshold can have a substantial impact on the 

performance of a recognizer (Katz et al. 2016; Brauer et al. 2016) and yet is not reported in most 

papers that use recognizers to extract species detection information from audio recordings 

(Chapter 2). 

The application of signal processing to ARU surveys for ecological applications must be 

considered in the context of the properties of sound. Sound attenuates with distance in a 
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predictable way in the absence of environmental conditions that affect spherical spreading. As 

the call of a focal species attenuates, the signal fades and distorts, becoming dissimilar to the 

training data in a similarly predictable way. We predict that if a recognizer is trained with audio 

clips of the focal species that were recorded at close range, that recognizer score will have a 

predictable relationship with the distance at which a sound is recorded. If score has a predictable 

relationship with distance, then score threshold is a decision about sampling area when 

recognizers are trained with clips recorded at close range. One of the drawbacks of using 

recognizers to date is that the perceived inability to determine sampling radius. Without 

knowledge of sampling radius, ARU data are unsuitable for density estimation (Dawson & 

Efford 2009). 

Our goal was to investigate the implications of score threshold for ecological research 

and monitoring. We tested whether score has a predictable relationship with distance, and if so, 

whether it depends on how the recognizer was trained. First, we trained multiple recognizers 

with clips recorded at known distances. We then modelled score as a function of distance with 

polynomial regression for each of the recognizers. Next, we explored the generalizability of the 

relationship between score and distance by including random effects and weather covariates in 

the top model for the recognizer trained with clips recorded at close range. Finally, we examined 

how recognizer training data and score threshold affect the probability of detecting a call at 

various distances, and thus the suitability of the processed data for distance sampling. 
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We used the common nighthawk (Chordeiles minor) as a model species to test our 

hypothesis because this non-passerine species has a simple and consistent call that is effectively 

recognized by a variety of automated recognition programs (Figure 3.1; Chapter 2). 

Understanding recognizer data quality and utility is also a conservation priority because this 

species is listed as Threatened under Canada’s Species at Risk Act, and there are limited data for 

the species because it is active during crepuscular periods when standard bird surveys are not 

typically conducted (Canada 2016a). 

 

Figure 3.1. Spectrogram of the same common nighthawk vocalization recorded at multiple 

distances (near, midrange, far) and used to build recognizers. Spectrogram constructed with the 

same parameters used for recognizer construction. 
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We collected audio recordings of common nighthawks with known locations by 

attracting a territorial male to the beginning of a transect of ARUs using conspecific broadcast 

calls. An observer stood at the beginning of the transect and recorded the time stamp, height, 

horizontal distance, and bearing of every vocalization from the target individual. We minimized 

distance estimation error by using the same observer for all observations, by the observer 

calibrating their distance estimates with a laser range finder prior to every observation period, 

and by limiting observations to those within 20 m horizontal distance of the observer because 

human observer distance estimation error is minimized at short distances (Nadeau & Conway 

2012). We collected recordings on five transects (i.e., of five individual males) between July 13 

and July 20, 2016, starting at 1 hour before sunset and ending at sunset. Each transect consisted 

of 11 ARUs placed at standardized distances along a linear feature (30 m, 60 m, 90 m, 120 m, 

150 m, 180 m, 210 m, 240 m, 300 m, 400 m, 500 m). We measured temperature, wind speed, and 

humidity during each survey using a Kestrel 3000 (Kestrel Meters, Minneapolis, MN, USA). We 

played an airhorn at the start of the recording period from the beginning of the transect. 

Following acoustic data collection, we clipped each of the recordings at the airhorn to 

synchronize the target vocalizations therein. Next, we visually confirmed the time stamp of each 

vocalization of the target individual and identified any vocalizations that were masked by the 

broadcast call. We then used the seewave package (Sueur et al. 2008) in R to clip each unmasked 

detection from each of the 11 recordings along the transect as 0.7 s clips. We reviewed the 

clipped vocalizations and removed any sets of vocalizations where the target individual was 

masked by other individuals or background noise. The final dataset comprised 64 vocalizations 
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at each of the 11 distances, or 704 clips in total. See Yip et al. (2020) for detailed acoustic data 

collection methods. 

We used Song Scope software (Wildlife Acoustics, Maynard, MA, USA) to train 

recognizers with the acoustic clips of known distances. Song Scope is a signal detection 

recognizer that extracts Mel Frequency Cepstral Coefficients from each detected signal and 

computes the overall score using Hidden Markov Models (Wildlife Acoustics 2011). Although 

Song Scope was recently discontinued by its manufacturer, we chose it because it outperformed 

all other ‘out-of-the-box’ recognizer programs in a recent comparison for our model species 

(Chapter 2), including its replacement software Kaleidoscope (Wildlife Acoustics, Maynard, 

MA, USA). Despite its deprecation, Song Scope remains freely available from the manufacturer 

and continues to be effectively used for wildlife research and monitoring (Chambert et al. 2017; 

Venier et al. 2017; Shonfield & Bayne 2017). 

We trained each recognizer with 50 clips of common nighthawk vocalizations from the 

known distance dataset. We trained three single-distance recognizers (near, midrange, far; Figure 

3.2) with the same 50 vocalizations recorded at different distances, and one mixed-distance 

recognizer with the same 50 vocalizations, but randomly and evenly selected from the three 

single-distance training datasets. We used a standardized set of signal detection parameters for 

all three recognizers (Supplementary Materials) and ensured that each of the training clips was 

fully recognized by the signal detection process in Song Scope. We ran each recognizer over the 

full dataset of known distance clips using a score threshold of 0. The first author validated the 

recognizer results by reviewing each recognizer hit visually and aurally to confirm the clip was 

of the target individual for that transect. 
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Figure 3.2. Recording distance of training clips used to build four different recognizers to detect 

common nighthawk calls. 

We tested whether distance was a significant predictor of score for each of the near, 

midrange, far, and mixed-distance recognizers using polynomial linear models. Prior to fitting 

each model, we removed the fifty clips that had been used in training to avoid including over-

fitted score values in the analysis. For each of the four recognizers, we ran a null model and 

models with first, second, and third order polynomials for distance. We ranked models using 

small sample size corrected Akaike’s Information Criterion (AICc) and selected the most 

parsimonious model with AICc <2 from the top model as the best fitting model.  
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We then selected the recognizer that had the strongest relationship between score and 

distance (the near recognizer) and added weather covariates and random effects to the best fitting 

model to explore the generalizability of the relationship between score and distance. We included 

fixed effects for temperature, wind speed, and humidity because weather can affect sound 

attenuation, and a random effect for vocalization ID nested within individual bird ID because 

recognizer score can vary between individuals. We tested for significant collinearity between 

fixed effects by calculating the variance inflation factor (VIF) for each predictor. We retained all 

predictors for model selection because the maximum VIF was 1.70. We compared a global 

model to simplified models using AICc and selected the most parsimonious model with AICc 

<2 from the top model as the best fitting model. We used the sigma estimates from the best 

fitting model to calculate the interclass correlation (ICC; i.e., the correlation in score value), for 

the random effects (vocalization and individual bird). 

Finally, we modelled the probability of detection as a function of distance (i.e., the 

detection function) (Buckland et al. 2015) for each of the recognizers to determine the suitability 

of the processed data for distance sampling (Sòlymos et al. 2013; Buckland et al. 2015). We used 

a generalized linear model with a binomial response to estimate the detection function because 

our data were not a random sample of distances, but a series of binary data for non-randomly 

placed ARUs on the transect (Marques et al. 2009; Buckland et al. 2015). To model the detection 

function, we followed a half-normal detection function using a generalized linear model with a 

binomial distribution and a complementary log-log link (“cloglog”) function (Sòlymos et al. 

2013). We did not fix the intercept at 1 because we wanted to test whether the probability of 

detection was near 1 at zero metres, which is a key assumption of distance sampling (Buckland 

et al. 2015). We used the entire dataset of 704 clips and modelled whether or not the recognizer 
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had reported a hit for each clip as the binomial response variable with the negative squared 

distance of the clip as the predictor variable. We then created additional models using different 

score thresholds (40, 45, 50, 55, 60, 65, 70) by removing any hits from each dataset that were 

below the chosen score threshold. We also calculated the recall for each recognizer for each 

score threshold as the number of detections divided by the total number of clips processed (704). 

Recall is the proportion of calls that were detected by the recognizer and is a recommended 

metric for assessing recognizer performance (Chapter 2, Priyadarshani et al. 2018). 

All analyses were conducted in R version 3.4.3 (R Core Team 2017) using the packages 

lme4 (Bates et al. 2015) and usdm (Naimi et al. 2013). 

The best fitting model for the prediction of score with distance was a second order 

polynomial for the near and mixed-distance recognizers and a third order polynomial for the 

midrange and far recognizers (Supplementary Materials; Figure 3.3). Distance from all four 

recognizers were significant predictors of recognizer score (all P < 0.001); however, distance 

explained more of the variation in score for the near and mixed-distance recognizers than for the 

midrange and far recognizers (near: R2 = 0.49; midrange: R2 = 0.03; far: R2 = 0.06; mixed: R2 = 

0.41; Figure 3.3).  
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Figure 3.3. Relationship between recognizer score and distance of common nighthawk 

detections from audio clips for four recognizers built with training data of differing known 

detection distances. Lines and 95% confidence intervals are model predictions from polynomial 

models and are plotted against the raw data. 

When we added weather covariates and random effects to the second order polynomial 

model for the near recognizer and compared models with AICc, none of the models with weather 

covariates had strong support (Table 3.1). The top ranked model was the model with no weather 
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covariates (AICc = 0.57). Both random effects had strong ICCs: the ICC for vocalization was 

0.67 and the ICC for individual bird was 0.53 (Figure 3.4). 

Table 3.1. AICc ranking of models for prediction of distance with score of common nighthawk 

detections from acoustic data processed with automated acoustic recognition. All models 

included a second order polynomial for vocalization distance as a fixed effect and vocalization 

nested within individual bird as random effects. Bold indicates the model selected as the most 

parsimonious model with AICc <2 from the top model. 

Model df logLik AICc AICc AICc w 

score = null 6 -1339.0 2690.1 0.00 0.27 

score = temperature 7 -1338.8 2691.8 1.69 0.12 

score = wind speed 7 -1338.5 2691.3 1.20 0.15 

score = humidity 7 -1338.2 2690.7 0.57 0.20 

score = temperature + wind speed 8 -1338.5 2693.2 3.15 0.06 

score = temperature + humidity 8 -1338.0 2692.4 2.28 0.09 

score = wind speed + humidity 8 -1338.0 2692.4 2.30 0.09 

score = temperature + wind speed + humidity 9 -1337.9 2694.3 4.18 0.03 

 

 

Figure 3.4. Relationship between recognizer score and distance of common nighthawk 

detections from audio clips of vocalizations of five individual birds recorded at multiple 

distances. Lines are model predictions for each vocalization from polynomial mixed effect 

models and are plotted against the raw data. 

Each of the recognizers detected vocalizations in approximately 75% of the 704 clips that 

were processed when there was no score threshold applied (i.e., only the signal detection process 

was applied). The near recognizer detected 495 vocalizations, the midrange recognizer detected 

513 vocalizations, the far recognizer detected 488 vocalizations, and the mixed-distance 

recognizer detected 510 vocalizations. When score threshold was applied, recall declined faster 



 64 

for the far recognizer than for the other three recognizers, which had similar recall across all 

score thresholds applied (Figure 3.5). 

 

Figure 3.5. Recall of common nighthawk call detection from audio clips using recognizers built 

with training data of differing known detection distances and run with varying score thresholds. 

Recall is the number of correctly detected common nighthawk vocalizations divided by the total 

number of clips scanned with the recognizer. 

The probability of detection at distance = 0 was near 1 and the 95% confidence intervals 

for the detection overlapped for all four recognizers when there was no score threshold applied 

(i.e., only the signal detection process was applied). When a score threshold was applied to the 

near recognizer, the probability of detection at distance = 0 was near 1 for all score thresholds 

less than 70 (Figure 3.6). As score threshold increased, the maximum distance at which the 

recognizer was able to detect calls decreased. The mixed-distance recognizer behaved similarly 

to the near recognizer, except that the probability of detection at distance = 0 was less than 1 for 

score thresholds of 65 and 70. For the midrange and far recognizers, the probability of detection 

at distance = 0 was near 1 only for low score thresholds (40, 45). For score thresholds of 50 and 

greater, the probability of detection at distance = 0 decreased with increasing score threshold. 
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Figure 3.6. Probability of detecting a common nighthawk call from audio clips using recognizers 

built with training data of differing known detection distances and run with varying score 

thresholds. Lines and 95% confidence intervals are model predictions from binomial detection 

data. 

We showed that the probability of correct classification reported by a recognizer, or 

score, has a predictable relationship with distance if the recognizer is trained with clips recorded 

at minimal distances or with clips evenly distributed across a range of distances. In contrast, little 

of the variation in score values reported by recognizers trained with clips recorded at midrange 

or large distances were explained by distance. When we applied a variety of score thresholds to 

the processed results of each of the recognizers and modelled the detection function for each, we 
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found that the maximum distance at which the recognizer was able to detect calls decreased, 

which shows that applying a score threshold also limits the sampling area for those two 

recognizers. Overall, our results have two important implications. First, that choosing a score 

threshold will affect the sampling area. Second, that training data for recognizers affects the 

quality and utility of the results. 

Score threshold impacts the performance of a recognizer due to the trade-off between 

recall and precision. Both Katz et al. (2016) and Brauer et al. (2016) have shown that low score 

thresholds produce more false positives, while high score thresholds increase the probability of 

missing a detection of the focal species. We have also previously shown that high score 

thresholds may be inappropriate for occupancy modelling due to the low number of detections 

produced (Chapter 2). Due to the trade-off between recall and precision, choosing a score 

threshold has previously been regarded as a subjective decision based on the priorities of the 

user; however, our results suggest that score threshold should also be regarded as a decision 

about sampling area. Several studies have shown that recognizer recall is lower than that of a 

human listener unless minimal score thresholds are used (Katz et al. 2016; Chapter 2). Our 

detection functions show that this difference in recall is caused by a smaller detection radius of 

the recognizer relative to the human listener, which has also been suggested by Jahn et al. 

(2017). Lower recall compared to human listening is, therefore, not due to classification errors 

per se, but reflects the fact that the effective area being sampled should be determined when 

using ARUs (Yip et al. 2017b). If researchers are interested in quantifying the sampling radius of 

their recognizer for a particular score threshold, we recommend developing a known distance 

dataset, modelling the detection function for that score threshold, and calculating the distance at 
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which the number of individual birds detected outside is equal to the number of missed 

individuals within (Buckland et al. 2005). 

The amplitude of a sound at a particular distance is known to be affected by humidity, 

temperature, and wind because those weather conditions affect the amount of sound attenuation 

(Harris 1966). We therefore expected that the fade and distortion of the spectral signature of 

sound would similarly be affected by weather conditions, which would be reflected in the score 

of the recognizer detection. We may not have detected an effect of weather conditions because 

we did not sample a wide range of temperature, humidity, and wind over the five days of 

acoustic data collection. Instead, much of the variation in the relationship between score and 

distance was attributed to the characteristics of the individual bird and vocalization, with greater 

than 50% intraclass correlation for both random effects. Individual variation in vocalizations has 

been shown in many bird species (Linhart & Šálek 2017) and has also been suggested for the 

common nighthawk (Armstrong 1965). The mono-syllabic nature of the common nighthawk call 

likely limits the extent of variation compared to other species, especially passerines that learn 

their songs and often have individual-specific repertoires of more than one song (Catchpole & 

Slater 2008); therefore, the relationship between score and distance will likely be more variable 

for those species. Researchers should ensure that known distance datasets reflect the same 

amount of variation in song as the recognizer to accurately determine the relationship between 

score and distance. We did not test for an effect of vegetation type but note that vegetation will 

likely alter the relationship between score and distance via sound attenuation and thus should 

also be considered when building known distance datasets. 

We showed that the relationship between score and distance facilitates density estimation, 

which is a key objective for wildlife management (Buckland et al. 2005, 2015). ARUs have 
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previously been criticized because of the inability to determine sampling area (Dawson & Efford 

2009); however, we showed here that the detection function of data processed with near or 

mixed-distance recognizers satisfies the assumption that the probability of detection is near one 

at zero metres. This assumption is important for density estimation methods that model 

probability of detection as a function of distance sampling (Sòlymos et al. 2013; Buckland et al. 

2015). The detection functions of the recognizers built with midrange and far clips did not satisfy 

this assumption when score values were greater than 50. When score thresholds were applied to 

both these recognizers, hits at all distances were classified as negative detections because there 

was no linear, negative relationship between score and distance, which resulted in a probability 

of detection of less than 1 at zero meters. While the relationship between score and distance for 

the near and mixed-distance recognizers results in data that is suitable for density estimation, we 

do not recommend using score to estimate distance to a particular individual because the 

variation introduced by any given individual may introduce bias in results. Instead, we have 

previously shown that relative sound level, or the loudness of a particular sound, is a robust 

proxy for distance (Yip et al. 2020). 

Due to the variation in approaches to automated recognition, some of our results are 

likely generalizable to other automated recognition approaches and some are not. We suggest 

that the relationship between distance and score is likely generalizable because it is based on the 

principle of spherical spreading and sound attenuation, but that the shape of the relationship may 

depend on the feature extraction and classification methods. The shape of the detection function, 

however, may depend more on the signal detection performance of the recognizer. We showed 

that when no score threshold was applied (i.e., all detected signals were included), the detection 

function for all four recognizers was suitable for density estimation. The detection function for 
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moving window recognizers may not follow the same pattern. The detection function will also be 

less ideal for recognizers applied to full-length field recordings because the recall rate of the 

recognizers will be reduced by sound masking from other noises in the recording (Priyadarshani 

et al. 2018). Future research should investigate the extent of generalizability for the relationship 

between score and distance, particularly for moving-window recognizers. 

In general, recognizers are trained with ‘high quality’ audio clips (Venier et al. 2017; 

Shonfield et al. 2018). ‘Quality’ is a subjective and undefined term; however, most authors imply 

it has two components: amount of background noise and recording distance (Priyadarshani et al. 

2018). Previous studies have investigated the impact of background noise and found that 

developing a training dataset with minimal background noise improves the precision of the 

recognizer (Wildlife Acoustics 2011, Duan et al. 2013). We are unaware of any studies that have 

investigated the distance component of quality. We found that the recall of the recognizer was 

not affected by the distance of the training data unless far training data was used. We note, 

however, that we did not investigate the precision, or false positive rate of the recognizers. We 

also found that the implications and utility of the data differ between the distance of the 

recognizer training data. Although both the near and mixed-distance recognizers showed a 

relationship between distance and score, the relationship was strong for the near recognizer, and 

thus it satisfied the assumptions of distance sampling for a larger range of score thresholds than 

the mixed-distance recognizer. We are unsure whether the relationship between score and 

distance for mixed-distance recognizers is specific to the balanced training data design we used. 

Our results therefore confirm the existing standard to train recognizers with clips recorded at 

close range, or ‘high quality’ data (Priyadarshani et al. 2018). 
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The continued accrual of large bioacoustic datasets in many parts of the world 

emphasizes the increasing importance of automated methods to extract focal species information 

from those datasets. Many approaches to automated recognition have been attempted and their 

performance compared, but the processed data is rarely evaluated for specific ecological 

applications. Species detection data can be used for a wide variety of ecological applications, 

ranging from habitat models (Campos-Cerqueira & Aide 2016) to studying phenology (Willacy 

et al. 2015) to detecting rare species (Sidie-Slettedahl et al. 2015); however, each of those 

applications comes with a separate set of assumptions. We showed here for the first time that the 

distance of training data and the score threshold applied to focal species recognizers can impact 

the meaning and utility of the processed data, particularly with respect to density estimation. We 

therefore encourage practitioners to think carefully about the desired data application before 

choosing how to train their recognizer. For most applications, training recognizers with ‘high 

quality’ clips that were recorded at close range will improve the utility of the data without 

affecting the recall performance of the recognizer. 

Table 3.A.1. Parameter settings for recognizers built in Song Scope software. 

Parameter Setting 

FFT size 256 

FFT overlap ½ 

Frequency minimum 40 

Frequency range 80 

Amplitude gain (dB) 0 

Background filter (s) 1 

Max syllable (ms) 432 

Max syllable gap (ms) 0 

Max song (ms) 432 
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Parameter Setting 

Dynamic range (dB) 35 

Algorithm 2.0 

Maximum complexity 32 

Maximum resolution 8 

Score threshold 0 

Quality threshold 20 

 

Table 3.A.2. AICc ranking of polynomial models for prediction of distance with score of 

common nighthawk detections from acoustic data processed with automated acoustic 

recognition. Recognizers were trained with vocalizations recorded at three different distances. 

“Mixed” indicates that the recognizer was trained with vocalizations from all three distances. 

Bold indicates the model selected as the most parsimonious model with AICc <2 from the top 

model. 

Recognizer Model df logLik AICc AICc AICc 

w 

Near Distance = null 1 -1662.6 3329.1 313.33 0.00 

Near Distance = score 2 -1507.5 3021.0 5.17 0.05 

Near Distance = score + I(score^2) 3 -1503.9 3015.8 0.00 0.69 

Near Distance = score + I(score^2) + 

I(score^3) 

4 -1503.8 3017.8 2.02 0.25 

Midrange Distance = null 1 -1667.9 3339.9 11.81 0.00 

Midrange Distance = score 2 -1667.7 3341.5 13.41 0.00 

Midrange Distance = score + I(score^2) 3 -1662.0 3332.0 3.95 0.12 

Midrange Distance = score + I(score^2) + 

I(score^3) 

4 -1659.0 3328.1 0.00 0.88 

Far Distance = null 1 -1439.8 2883.6 27.21 0.00 

Far Distance = score 2 -1437.6 2881.3 24.93 0.00 

Far Distance = score + I(score^2) 3 -1430.4 2826.9 12.50 0.00 

Far Distance = score + I(score^2) + 

I(score^3) 

4 -1423.1 2856.4 0.00 1.00 

Mixed Distance = null 1 -1622.7 3249.4 253.41 0.00 

Mixed Distance = score 2 -1622.7 2999.2 3.21 0.11 

Mixed Distance = score + I(score^2) 3 -1493.9 2995.9 0.0 0.56 

Mixed Distance = score + I(score^2) + 

I(score^3) 

4 -1493.5 2997.1 1.11 0.32 
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Research and monitoring of most landbirds uses auditory cues from displaying males for 

determining habitat relationships. Unfortunately, using cues that signal territory boundaries can 

underestimate home range size and exclude extraterritorial habitat from critical habitat 

designation, environmental impact assessments, or other habitat studies. We show that the 

common nighthawk wing-boom display is a territorial signal associated with the nest location 

that can be used to differentiate territorial from home range habitat use. The common nighthawk 

is a poorly understood but widespread species whose populations are declining across most of 

North America. Precise information about habitat requirements and space use is required to 

fulfill conservation objectives but is difficult to obtain due to the extreme mobility of this 

species. We captured, tagged, and tracked 21 male common nighthawks in northeastern Alberta 

to confirm the biological significance of the wing-boom display and describe common 

nighthawk territoriality. Mean wing-boom use density (hereafter “area") size was 10.2 ha 

(SD=11.7 ha). We found minimal overlap in wing-boom area (5 of 15 neighboring male pairs, 

0.2%-4.5% overlap), suggesting the wing-boom display represents an exclusive territory. 

Comparison of wing-boom locations and random points within the wing-boom area confirmed 

that male common nighthawks select areas near the nest to perform wing-boom displays. There 

was high wing-boom area overlap for the same individual between years. Differences between 

years reflected shifts in nest location, suggesting that the wing-boom display is a good indicator 

of the nest location and territory. Future common nighthawk surveys should record acoustic 

detection type to differentiate between territorial and extraterritorial habitat use. Failure to 
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incorporate biological significance in habitat studies could lead to management actions that do 

not fully satisfy the resource requirements of species of conservation concern. 

Research and monitoring of most avian landbird species has long focused on using 

auditory cues from displaying males for a variety of applications, most notably population size, 

trend estimation and understanding habitat relationships (Ralph et al. 1993; Hudson et al. 2017; 

Rosenberg et al. 2017). For many species, the song is a signal produced to communicate territory 

boundaries to conspecifics and attract a mate (Catchpole & Slater 2008). In other words, males 

sing at the edges of their territories to delineate and defend an exclusive area (Nice 1941; Odum 

& Kuenzler 1955; Maher & Lott 1995). This defended territory has been considered the 

‘fundamental unit of space’ for passerines and other landbird species because many field 

ornithology methods like point counts and territory mapping rely on visual and auditory 

observation of males during conspicuous territory displays (Whitaker & Warkentin 2010). 

In recent years, radiotelemetry and GPS tracking have facilitated following the movement 

of birds undertaking less perceptible behaviors. In contrast to the territory, the home range is the 

total ‘area traversed by an individual in its normal activities of food gathering, mating, and 

caring for young’ (Burt 1943). Nice (1941) facilitated this distinction by providing a 

classification system that distinguishes territories used for mating, nesting, and feeding young 

(Type A) from territories used only for reproduction (Types B-D). Since then, tracking 

individual movements has revealed that many birds use areas outside the song-defended territory 

(reviewed by Whitaker and Warkentin 2010). Extraterritorial movements are made by many 

species, often for foraging, but also for extrapair mating opportunities, roosting, access to water, 
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or to gain information on habitat quality in the surrounding area. These extraterritorial 

movements can result in home range sizes 1.4 to 4 times larger than Type A territories (Leonard 

et al. 2008; Anich et al. 2009; Streby et al. 2012; Jirinec et al. 2016; Bas et al. 2016; Frantz et al. 

2016). 

Although unstudied, there are likely consequences of territory and home range mismatch 

for the understanding of habitat requirements during the breeding season (Whitaker and 

Warkentin 2010, Streby et al. 2012). Vegetation characteristics can vary between territorial and 

extraterritorial areas; for example, both Wood Thrush and Sardinian Warblers use denser 

vegetation outside the territory for roosting (Bas et al. 2016, Jirinec et al. 2016). Failure to 

incorporate extraterritorial habitat in critical habitat designation, environmental impact 

assessments, or other habitat studies could lead to management actions that do not fully satisfy 

the resource requirements of the target species. Understanding the biological purpose of 

territorial and extraterritorial areas is thus required to understand those resource requirements 

and provide context to habitat studies. 

The nightjars (Family Caprimulgidae) are a group for which there is likely a large 

mismatch in estimates between territory and home range. Most nightjar species have type B or C 

territories (Nice 1941), where they defend a small area for nesting and sometimes mating but 

conduct extraterritorial movements for foraging and roosting. Observation of “inconsistencies in 

expected territorial behavior” for this family date back to Lack’s observation of breeding male 

European Nightjars roosting near each other outside of their territories (1932). Since then, 

radiotelemetry and GPS tracking have revealed that European Nightjars forage up to ~4 km from 

the nest, and habitat characteristics vary between the breeding territory and extraterritorial 

foraging areas (Evens et al. 2018, 2020, 2017). Similar patterns have also been detected for the 
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Red-necked Nightjar (C. Camacho, pers. comm.) and the Egyptian Nightjar (Yohay Wasserlauf, 

pers. comm.). 

Among the nightjars, the common nighthawk (Chordeiles minor) is likely to have a high 

degree of mismatch between territory and home range. The common nighthawk is among the 

most mobile nightjar species; tracking data have revealed home range estimates hundreds of 

times larger than the breeding territory (unpublished data). This extreme mobility impedes the 

ability to track common nighthawks with anything but GPS tags, and so there is confusion about 

whether the species is territorial, and if so, what the territory size estimates are (Brigham et al. 

2011). As a result, there is rarely a distinction made between territorial and extraterritorial 

detections in habitat studies (Newberry et al. 2018; Farrell et al. 2019; Viel et al. 2020), which is 

particularly problematic when results are interpreted in the context of nesting (Hagar et al. 2004). 

Accurate information about territoriality and individual spacing is critical for the common 

nighthawk; research and management at biologically appropriate scales is sorely needed for this 

poorly understood and declining species that is listed as of conservation concern in multiple 

jurisdictions (Environment Canada 2016a). 

Fortunately, the common nighthawk makes two distinct sounds that could be used during 

research and monitoring to differentiate territorial from home range habitat use. The wing-boom 

is a mechanically produced acoustic signal that occurs when the primary feathers are flexed 

downwards at the bottom a steep aerial dive (Miller 1925). The resultant sound is a ‘vroom’, 

between 0 and 1 kHz, that can be heard at long-range due to its frequency (Figure 4.1). The 

wing-boom is thought to be a territorial signal, potentially associated with the nest (Gross 1940, 

Rust 1947; Ng 2009). In constrast, the call is a short (~0.3 second) ‘peent’ between 

approximately 2-5 kHz that has an effective detection radius of approximately 300 m (Figure 
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4.1; Chapter 3). This call is a more general-purpose signal, although it is most frequently 

produced near the nest location as well (Armstrong 1965; Wedgwood 1973; Caccamise 1974), in 

part because the wing-boom is always accompanied by the call (unpublished data). 

 

Figure 4.1. Spectrogram of the common nighthawk ‘peent’ call and wing-boom recorded at 

McLelland Lake, Alberta, Canada on July 13, 2017. 

Our goal was to confirm the biological significance of the common nighthawk wing-

boom display to inform and aid management of this species. Our first objective was to determine 

whether the mechanical wing-boom is analogous to song in that it is a signal that delineates an 

exclusive, discrete area within the home range. We used kernel density estimation to estimate 

and map the wing-boom use distribution (hereafter “area”) of male VHF-tagged common 

nighthawks at five study sites in northeastern Alberta, Canada and quantify overlap in wing-
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boom area between adjacent territories. We also described inter-annual territory fidelity by 

quantifying overlap of wing-boom area between 2016 and 2017. Our second objective was to 

confirm that the territory is used for nesting. We used a resource selection function to determine 

whether male common nighthawks were selecting areas closer to the nest to perform wing-boom 

displays.  

We conducted our study in the boreal forest north of Fort McMurray, Alberta, Canada 

(Figure 4.2). The area is within the Athabasca Plain natural subregion, which is characterized by 

sandy and gravelly uplands of glaciofluvial, deltaic, and eolian origins (Natural Regions 

Committee 2006). The dominant upland vegetation was a mix of surviving and regenerating jack 

pine (Pinus banksiana) after the area burned in 2011. To the southwest lies McLelland Lake and 

a large wetland complex, and directly east is the Athabasca River.  Immediately to the south is 

Alberta’s oilsands region and, thus the area has substantial anthropogenic disturbance including 

retention clearcuts, transmission and water lines, roads, and open-pit bitumen mines. We chose 

the study area because the region has a large, dense population of breeding common nighthawks. 

Additionally, the anthropogenic disturbance and distribution of wetlands in the area facilitated 

radiotracking of our highly mobile study species.  
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Figure 4.2. Study area north of Ft. McMurray, Alberta, Canada where common nighthawks at 

five study sites were tracked with VHF tags to study acoustic behavior and territoriality. Google 

earth imagery accessed via the package ggmap in R version 4.0.3 on May 3, 2021. 

We captured and fitted male common nighthawks with VHF tags during the breeding 

seasons of 2016 and 2017. We used broadcast calls and a decoy to lure individuals into 38 mm 

mist nets. Individual males captured in 2016 were selected based on presence at our five study 

sites. In 2017, we attempted to recapture the same individuals from the previous year, as well as 

additional males at the same study sites. Upon capture, each individual was fitted with either a 
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0.6 g PicoPip Ag376, 1.1 g Pip Ag392 (Lotek wireless, Newmarket, ON, Canada), 0.35 g BD-

2X, or 1.2 g BD-2 (Holohil Systems Ltd., Carp, ON, Canada) VHF transmitter (0.4 – 1.7% body 

mass [mean=1.0%  0.5% SD]). All tags were attached to fall off naturally: BD-2X VHF tags 

were glued to the bare patch of skin between the feather tracts on the back with super glue gel 

(Gorilla Glue Company, Cincinnati, Ohio); Pip Ag 392 and BD-2 VHF transmitters were tied 

and glued to one of the central rectrices. All individuals were banded with a uniquely-numbered 

metal leg band for individual identification between years. All work was conducted under 

University of Alberta Animal Care and Use Approval AUP00001523. 

We relocated each individual throughout the breeding season and conducted observations 

of their acoustic behavior. We waited at least one day following capture to allow the birds to 

acclimate to the presence of the VHF tags. All observations were conducted between June 1 and 

July 20 when common nighthawks are nesting and between 21:30 and 03:30 when birds were 

active. Following relocation of the target individual, an observer conducted 10 minutes of focal 

observation of the bird, marking the location of each wing-boom display on a datasheet with 

distance measurements. Focal observations were terminated early if the target individual was 

confused with other individual nighthawks. In a few instances, we also terminated the 

observation if the focal individual moved out of the observation area (> 200 m); we assume those 

individuals were not leaving the area to wing-boom in other locations. Following each focal 

observation, the observer walked to the estimated location of each recorded wing-boom and used 

a GPS device to record the coordinates.  
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We attempted to locate the nest of each tracked nighthawk. Nightjar nests are cryptic and 

difficult to locate because incubating or brooding individuals will not flush until disturbed 

(Holyoak 2001). We thus relied on eyeshine to locate each nest; nightjar retinas have highly 

reflective tapeta lucida that reflects a yellow-orange luminescence. We searched each study site 

after dark by walking transects spaced approximately 100 m apart and sweeping back and forth 

with a high-powered headlamp. We assumed that the identity of the male for each nest was the 

male performing wing-boom displays around the nest area. On several occasions, we directly 

observed the male provisioning the chicks at that nest or interacting with the female. 

Kernel density estimation: We used kernel density estimation (KDE) to determine the 

wing-boom area of each tracked nighthawk. We considered all observations as biologically 

independent because there was more time between them than the interval required to reach any 

point within the territory (approximately 10 seconds) (Barg et al. 2005). There was variation in 

the number of wing-boom locations available for each individual (5-110 points), so we tested for 

an effect of sample size on wing-boom area. We randomly sampled between 5 (the minimum 

number required to calculate KDE) and 110 (the maximum number available) wing-boom 

locations for each individual and estimated the wing-boom area from those randomly sampled 

points. We used the ad hoc method in the adehabitatHR package (Calenge 2006) in R version 

4.0.3 (R Core Team 2020) to estimate the smoothing parameter of the bivariate normal kernel 

with a grid size of 1000 and an extent of 2. We bootstrapped this process 100 times, then fit a 

nonlinear least squares growth curve to the results, with the area of the 100% isopleth (quantile 
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of kernel estimate) as the response and the number of wing-boom locations as the predictor. We 

fit this growth curve separately for each individual bird and selected only birds for which the 

growth curve estimate reached 90% of the model asymptote (Supplementary Materials). In other 

words, we used only birds for whom the relationship between sample size and home range area 

appeared to asymptote and removed birds for whom our sample size was inadequate to 

accurately predict home range size. This approach resulted in a sample size threshold of 30 wing-

boom locations, which is also the recommended minimum sample size for kernel density 

estimation (Seaman et al. 1999). We removed six individuals for which there were fewer than 30 

wing-boom locations in a given year (range: 5-23 locations). We then used KDE and the same 

settings as before to estimate the 29 remaining wing-boom areas (i.e., individual-year 

combinations). 

Objective 1: Confirm territoriality: We determined whether wing-booms were a 

territorial signal by testing whether there was overlap in the 95% isopleth of the wing-boom area 

between adjacent male common nighthawks. There were 13 pairs of immediately adjacent 

neighbors amongst our VHF-tagged focal individuals. In other words, we evaluated whether the 

wing-boom area was exclusive to a particular male. For each neighbor pair, we used the 

adehabitatHR package to calculate the mean probability of home range overlap, which takes into 

account the relative probability of use of the area of overlap (i.e., three-dimensional overlap; 

hereafter “overlap”) (Fieberg & O’Kochanny 2005). We used the adehabitatHR package and a 

grid size of 2000 to calculate the volume of each individual’s wing-boom area that was contained 

within the wing-boom area of its neighbor, and then calculated the mean overlap for each 

neighbor pair. 
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We also examined the degree of interannual territory fidelity using the ten males for 

which we had two years of sufficient wing-boom locations to estimate wing-boom area. We 

again calculated mean overlap of the 95% wing-boom area between years. We tested for territory 

fidelity using a one-sample t-test. Although our hypothesis was directional because overlap 

cannot be less than 0, we used a two-sided test to ensure our conclusions were conservative. We 

also tested for differences in the area of the 95% isopleth between years using a paired two-tailed 

t-test. We calculated the distance between nests in successive years for the 5 males with known 

nest locations in both years. Of those five males, one in 2016 renested after the first nest failed, 

so we calculated the distance to his 2017 nest from both 2016 nests.  

Objective 2: Confirm nest defense: We used a resource selection function (RSF; Manly 

2002) to determine whether common nighthawk wing-booms were associated with the nest 

location. In other words, we tested whether individual male common nighthawks were selecting 

areas closer to the nest than available to perform their wing-boom displays. We defined the 

domain of availability as the 95% isopleth of the wing-boom locations. This definition is a highly 

conservative estimate of home range, as common nighthawks in the study area can have 40 km2 

home ranges (unpublished data). We then created 100 random points within the 95% isopleth for 

each individual (available points). We measured the distance to the nest for each available point 

and each wing-boom location (used points). We modelled the relative probability of wing-boom 

selection using mixed-effects logistic regression with a logit link in the lme4 package (Bates et 

al. 2015). We included distance to nest, the area of the 95% isopleth, and the interaction between 

the two as predictors. Individual ID was fit as a random intercept. We compared this model to a 

model with only distance to nest as a predictor, and to a null model using AICc. We centered and 

scaled both predictors prior to model fitting. We used the merTools package (Knowles and 
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Frederick 2020) to generate mean predictions and 95% confidence intervals of wing-boom 

relative selection probability across a range of distances to nest and 95% isopleth areas by 

drawing 1000 sampling distributions for the random and fixed effects, estimating the fitted value 

across each distribution, and taking the mean and 95% quantile of those 1000 fitted values. 

We captured and tracked 21 male common nighthawks in 2016 and 2017 and estimated 

the wing-boom use density for 27 bird-year combinations after removing samples with fewer 

than 30 wing-boom locations (n=6). Fourteen of those wing-boom areas were estimated for 

males captured and tracked in 2016 and 13 were for males capture and tracked in 2017. Ten of 

those individuals that were caught and tracked in both years; no effects of tags applied the 

previous were noted on recaptured individuals. The number of wing-boom locations for each 

bird ranged from 31 to 110 (mean=60.3, SD=19.7). We found nests for 21 of the 27 bird-year 

combinations. 

The mean 95% isopleth of the wing-boom area was 10.2 ha (SD=11.7 ha, min=1.1 ha, 

max=54.9 ha.; Figure 4.3). The largest wing-boom area was nearly twice the area of the next 

largest (45.9 ha vs. 26.8 ha) and was for an individual tracked in both years who appeared to be 

unpaired in 2017. After removal of that wing-boom area, the mean 95% isopleth of the wing-

boom area was 8.5 ha (SD=7.7 ha, max=26.8 ha). 
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Although males often traversed each other’s territories, the overlap in the 95% wing-

boom area between neighbouring males was minimal (Figure 4.3). We tracked individuals in 13 

pairs of directly adjacent territories and found five instances of territory overlap. The amount of 

overlap in four of those instances was minimal, ranging from 0.2% (SD=0.1%) to 4.5% 

(SD=1.9%) overlap. The remaining pair of territories had a mean overlap of 57.2% (SD=48.9%) 

and included one bird whose 2016 territory boundaries shifted north after his first nest failed and 

his female renested further north (Figure 4.3). 

There was significant overlap in the mean 95% wing-boom area between years (t9=17.24, 

P<0.001; Figure 4.4). We tracked 10 individuals in both years and found overlap in individual 

wing-boom areas for all ten. The mean overlap between years was 68.4% (SD=12.6%) and 

ranged from 38.3% to 82.7%. We found nests in both years for five of those males. The mean 

distance between nests in successive years was 101 m (SD=78 m) and ranged from 22 m to 209 

m (Figure 4.4). One male at site 5 had two nests in 2016 after the first nest failed; his 2017 nest 

was 90 m from the first nest and 209 m from the renest (Figure 4.3). There was no significant 

difference in wing-boom area between years (t9 = -1.45, P = 0.18). 
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Figure 4.3. 95% and 50% isopleths from kernel density estimation of wing-boom display 

locations for male common nighthawks breeding in northeastern Alberta, Canada in 2016 and 

2017. Individuals were marked with VHF tags and relocated to observe and record the location 

of their wing-boom displays. Nest sites are plotted when the location was known. Note the two 

nest locations for one bird at Site 5 in 2016. 
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Figure 4.4. Between-year overlap of 95% and 50% isopleths from kernel density estimation of 

wing-boom display locations for male common nighthawks breeding in northeastern Alberta, 

Canada in 2016 and 2017. Individuals were marked with VHF tags and relocated to observe and 

record the location of their wing-boom displays. Nest sites are plotted where nest location was 

known. 

The RSF with distance to nest, KDE area, and the interaction between the two was much 

more predictive than the null model (distance RSF: AICc=80.4; null RSF: AICc=301.9), 
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suggesting that common nighthawks select areas near the nest to perform wing-boom displays 

(Figure 4.5). The relative probability of a wing-boom display within the territory declined with 

distance from the nest. The distance at which the relative probability of wing-boom display 

approached zero depended on the size of the 95% isopleth. 

 

Figure 4.5. Mean and 95% confidence interval of relative selection probability for where 

common nighthawks perform wing-boom displays relative to the nest location. Individuals were 

marked with VHF tags and relocated to observe and record the location of their wing-boom 

displays. Predictions are the mean and 95% quantile of 1000 fitted values from simulated fixed 

and random effects. 

We used focal observations of VHF-tagged male common nighthawks to evaluate 

territoriality by this highly mobile species of conservation concern. There was minimal overlap 
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of the 95% isopleth of wing-boom use density (hereafter “area”) between adjacent neighboring 

common nighthawks. Resource selection confirmed that the wing-boom signal is associated with 

the nest location, as the relative probability of a wing-boom display within the territory declined 

with distance from the nest. For individuals that were tracked in both years of the study, there 

was high wing-boom area overlap between years, suggesting high interannual territory fidelity. 

Furthermore, slight differences in the wing-boom area between years as nest location shifted 

suggested that the wing-boom display is a good indicator of the nest location and territory. 

Territoriality has three common conceptual definitions: 1) a defended area, 2) an 

exclusive area, and 3) site-specific dominance (Maher & Lott 1995). We confirmed the common 

nighthawk wing-boom signal is territorial signal using the exclusive use definition. Although we 

do not report behavioral data to confirm defense and site-specific dominance in this study, we 

observed many instances of wing-boom displays directed at other males and territorial intruders, 

as have other authors (Armstrong 1965; Caccamise 1974). A complementary behavioral study of 

aggressive signal should be conducted to confirm common nighthawk wing-boom territories as 

defended areas with site-specific dominance (Searcy & Beecher 2009). Territoriality can be 

described as a multidimensional gradient, one axis of which is the resources being defended. 

Nice’s (1941) territorial classes follow this resource gradient, from Type A territories that are 

used for foraging, mating, and nesting resources, to Type D territories that are used exclusively 

as a nest site. We showed that the wing-boom display is specifically associated with the nest 

location, confirming that common nighthawk territories are used for nesting. Some songbird 

species with Type A territories also sing more frequently near the nest location (Simpson 1985); 

however, common nighthawks are well known to have overlapping home ranges (Armstrong 

1965; Ng 2009), roost within each other’s home ranges (Ng 2009), and forage communally 
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outside the territory (Brigham & Fenton 1991; Aldridge & Brigham 1991; Brigham et al. 1992; 

Brigham 1990). These behaviors are congruent with evolutionary expectations because if 

territoriality is adaptive, it should optimize the trade-off between resource defensibility and 

limited resource abundance (Peiman & Robinson 2010). Common nighthawk change roosts 

frequently and roosts vary widely in characteristics; thus, roosts are unlikely to be a limited 

resource in our postfire study area (Fisher et al. 2004). Aerial insects in the boreal forest are an 

abundant but difficult to defend resource. In fact, the majority of aerial insectivorous birds do not 

have Type A territories, which may be in part due to their reliance on a food source that is 

difficult to defend and their “exceptional powers of flight” (Nice 1941). 

Armstrong (1965) and Caccamise (1974) arrived at different conclusions about common 

nighthawk territoriality; they both reported little excursion outside the territory, and Armstrong 

specifically concluded common nighthawks nesting in downtown Chicago held type A 

territories. Varying conclusions about the territoriality of the common nighthawk may be due to 

plasticity in territorial behavior associated with population density, particularly if the resource 

being defended is a female mate. Our study area provided breeding grounds for a particularly 

dense population of common nighthawks at the time of study, and so may differ from other 

areas. Territoriality typically increases with decreasing population density because the cost of 

defensibility decreases with fewer rivals; however, this relationship has been reported less often 

for birds (Maher & Lott 2000), perhaps because the probability of extra-pair copulation increases 

with density (Westneat & Sherman 1997; Petrie & Kempenaers 1998). Alternatively, varied 

conclusions about common nighthawk territoriality may be driven by the same mechanism as the 

omission of extraterritorial habitat in passerine studies: the inability to track a highly mobile and 

cryptic species outside the territory where it is less conspicuous. Neither Armstrong nor 
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Caccamise (1965, 1974) had the technology to confirm individual identities or to track 

individuals when they are not vocalizing on territory. Furthermore, Armstrong reported 

overlapping home ranges and unidentified nighthawks flying in and out of his study area, 

suggestive of type B, rather than type A territories. A comparative study of territoriality across 

the range of common nighthawks using standardized methods is required to confirm whether the 

species exhibits territorial plasticity. 

What remains unclear, however, is whether the resource being defended by male 

common nighthawks is the nesting habitat, the nest contents, or the female. We suggest nesting 

habitat is unlikely, at least in this population, because bare sand is not a limited resource within 

the study area; however, nest site selection research is needed to formally reject this hypothesis. 

Territoriality in other populations may be more linked to nesting habitat availability; for 

example, Gross (1940) concluded that nesting sites were the driver of territoriality due to reports 

of individuals nesting within a few meters of each other. Secondly, defence of nest contents (i.e., 

eggs or nestlings) against conspecifics is also unlikely because infanticide has not been 

documented in caprimulgids. Thirdly, mate defense is common across bird species because 

extra-pair copulation occurs in the majority of species (Petrie & Kempenaers 1998; Griffith et al. 

2002). Given the extreme mobility of the common nighthawk and the repercussions of extra-pair 

copulation for a species that generally fledges two young per year, we suggest the female is the 

most likely resource being defended. Our conclusion is supported by records of males 

performing wing-boom displays at females when they are not on the nest (Bowles 1921, 

Sutherland 1963). The wing-boom signal may also communicate information to the female like 

food delivery (Halkin 1997) or safety to forage (Boucaud et al. 2017) as common nighthawk 

parental care is shared between the male and female (Brigham et al. 2011). Future research 
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should investigate the role of the female in common nighthawk territoriality, including nest site 

selection and density dependence. 

Understanding territoriality and regional variation of it is important for management of 

common nighthawks because it determines whether this species is using separate or overlapping 

areas for different resource needs. Furthermore, type B territories will have a much greater 

degree of mismatch than type A territories and thus likely have larger differences in habitat 

characteristics between territorial and extraterritorial habitat use. We recommend future common 

nighthawk monitoring and research differentiate between the call and the wing-boom display 

during breeding surveys (Knight et al. 2019a) to facilitate differentiating territorial and 

extraterritorial habitat use. Wing-boom surveys can potentially also facilitate occupancy and 

density estimation of this species. Home range sizes are much too large to satisfy the ‘closure’ 

assumption of occupancy models (MacKenzie et al. 2002); however, territory size estimates here 

(mean 10.2 ha) and elsewhere (10.4 ha, Armstrong 1965; 10.5 ha, Wedgwood 1973) suggest this 

assumption may be valid for the time of day when male common nighthawks are actively 

defending territories. Existing occupancy estimates derived from detections of the ‘peent’ call 

should instead be interpreted as probability of habitat use (MacKenzie & Royle 2005). Although 

the call is also thought to have a territorial purpose, it is also emitted outside the home range and 

during other activities (unpublished data). Finally, the wing-boom signal can be used to improve 

the effectiveness of environmental impact assessment and environmental monitoring by focusing 

on the presence of common nighthawks during nesting. We caution that common nighthawk 

nests are mobile after the semi-precocial chicks hatch (Kramer & Chalfoun 2012) and can move 

up to 48 m from the incubation location. Our study included wing-boom locations from before 

and after nest hatching, but we did not investigate potential differences between the two nesting 
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periods. We also emphasize the importance of restricting inferences from the wing-boom signal 

to the breeding season and grounds; however, because there are anecdotal reports of wing-booms 

produced on migration. Acoustic behavior of common nighthawks on the wintering grounds is 

unstudied but reported as primarily silent (K. Cockle pers. comm.). 

In summary, understanding the biological significance of auditory cues is an important 

prerequisite for using those cues to inform wildlife management, particularly when there is a 

mismatch between territorial and home range habitat use. Nightjar species are excellent 

candidates for using auditory cues to differentiate between territorial and home range habitat use 

because acoustic communication is particularly important to these crepuscular birds. Many 

nightjars are silent during most of the annual cycle but begin to deliver calls from prominent 

vantage points at the beginning of the breeding season, indicating territorial significance 

(Holyoak 2001; Cleere 2010). Using those cues to differentiate between territorial and 

extraterritorial habitat use is likely important because all known tracking studies have revealed 

extensive extraterritorial foraging and roosting movements (Evens et al. 2017, Events et al. 2018, 

Evens et al. 2020, C. Camacho pers. comm., Y. Wasserlauf pers. comm.). Links found between 

habitat loss and demographics of other aerial insectivorous bird species (Spiller & Dettmers 

2019) further emphasize the importance of correctly understanding habitat associations for this 

guild, which is declining faster than any other group of birds in Canada (Canada 2019). Failure 

to understand how resource requirements are separated spatially across the home range, 

particularly when using auditory cues to model habitat, could lead to inappropriate management 

actions. 
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Methods: We used kernel density estimation (KDE) to determine the wing-boom use 

distribution (hereafter “area”) of each tracked nighthawk. There was variation in the number of 

wing-boom locations available for each individual (5-110 points), so we tested for an effect of 

sample size on size of wing-boom area. We randomly sampled between 5 (the minimum number 

required to calculate KDE) and 110 (the maximum number available) wing-boom locations for 

each individual and estimated the wing-boom area from those randomly sampled points. We 

bootstrapped this process 100 times, then fit a nonlinear least squares growth curve to the results, 

with the area of the 100% isopleth (quantile of kernel estimate) as the response and the number 

of wing-boom locations as the predictor. We fit this growth curve separately for each individual 

bird and selected only birds for which the growth curve estimate reached 90% of the model 

asymptote. In other words, we used only birds for whom the relationship between sample size 

and home range area appeared to asymptote and removed birds for whom our sample size was 

inadequate to accurately predict home range size.  

Results: We used a sample size threshold of 30 wing-boom locations, which is also the 

recommended minimum sample size for kernel density estimation (Seaman et al. 1999). We 

removed six individuals (2016: Birds 24, 29, 30, 76; 2017: Birds 36, 91) for which there were 

fewer than 30 wing-boom locations in a given year (range: 5-23 locations; Figure 4.A.1). 
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Figure 4.A.1. Growth curves of sample size and area of the 100% isopleth of the wing-boom use 

distribution of adult male common nighthawks from kernel density estimation. Samples were 

randomly selected from the available points for each individual in each year (2016, 2017), each 

sample size was bootstrapped 100 times, and a nonlinear least squares growth curve was fit to 

the results. Dashed lines represent the asymptote of 100% isopleth area for each individual.  
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Movement is one of the proposed mechanisms for the scale at which a species responds 

most strongly to its environment, or the “scale of effect. Scarcity of empirical evidence for this 

hypothesis may be because studies determine scale of effect for individual environmental 

variables; however, seasonal movement is the complex product of reactions to multiple variables. 

We predicted scale of effect should correspond to movement range for the most predictive single 

scale habitat model (“overall scale of effect”), but not for individual predictors. We used passive 

acoustic monitoring and machine learning to model territorial and home range habitat for the 

common nighthawk. We modeled extents from 0.1 to 12.8 km to determine the overall scale of 

effect. We used the scale of effect for each predictor to build optimized multiscale models and 

evaluated their spatial predictive performance. The overall scale of effect was 0.2 km for 

territorial habitat and 1.6 or 6.4 km for home range habitat, which roughly equate to territory and 

home range size. The scale of effect for the strongest individual predictors did not correspond to 

overall scale of effect. Optimized, multiscale models offered no substantial improvements in 

predictive performance relative to overall scale of effect models. Our new perspective on scale of 

effect suggests that different mechanisms drive overall scale of effect and scale of effect of 

individual variables. Further research should revisit the relationship between movement and 

scale of effect in pursuit of a mechanistic framework for prediction. 
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The effect of the surrounding landscape on species occurrence has long been understood 

to vary with scale (Wiens 1989; Levin 1992). In particular, the scale at which environmental 

variables are measured can influence the strength and even direction of the effect of those 

variables on species occurrence (Holland et al. 2004; Smith et al. 2011). Understanding the scale 

at which a species responds most strongly to the surrounding landscape for a particular response 

variable, or the ‘scale of effect’ (sensu Jackson and Fahrig 2012), is thus important for 

understanding habitat requirements, testing ecological predictions, and ultimately, guiding land 

use and wildlife management actions (Thornton & Jr 2013; Miguet et al. 2016).  

While the importance of scale of effect is well understood, the mechanisms that drive this 

phenomenon have yet to be generalized. One of the most intuitive and thus common hypotheses 

is that scale of effect is driven by movement traits of a species because mobility determines the 

scale at which that species interacts with the surrounding landscape (Miguet et al. 2016). More 

mobile species should have larger scales of effect because they interact with environmental 

variables at a larger spatial extent. For small species like songbirds that conduct daily 

movements within a small breeding territory, scale of effect is predicted to be driven by dispersal 

movements (Tittler 2008). In contrast, scale of effect is predicted to be driven by seasonal home 

range movements for highly mobile species that travel within a larger home range for various 

resource needs (e.g., foraging, roosting, extra-pair copulation; Tittler 2008). A variety of 

predictions can be derived from the potential relationship between movement and scale of effect, 

including larger scales of effect for larger-bodied species, flying (i.e., more mobile) species, 

species at higher trophic levels, and migratory species (Miguet et al. 2016). 
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Despite the logical theoretical link between movement and scale of effect, the current 

consensus is that supporting evidence is limited (Miguet et al. 2016). There is simulation support 

for a link between dispersal range and scale of effect (Jackson & Fahrig 2012; Ricci et al. 2013); 

however, the linkage is difficult to evaluate empirically, and the one existing study with data for 

22 bird species is not supportive (Tittler 2008). No evidence of a link between home range size 

and scale of effect has been found across nine studies (eight bird, one mammal; reviewed by 

Jackson and Fahrig 2015). This lack of support may be because scale of effect is rarely measured 

across a wide enough range of scales; many studies report scales of effect equal to the smallest or 

largest scale evaluated (Jackson and Fahrig 2015). Alternatively, there may be other mechanisms 

driving scale of effect including population density, reproductive rate, predator avoidance, and or 

competition, to name a few (Miguet et al. 2016). 

We suggest that the lack of empirical support for a link between home range size and 

scale of effect for highly mobile species is because existing studies have focused on optimizing 

scale of effect for individual environmental variables; however, seasonal movement within a 

home range is the complex product of reactions to multiple environmental variables. The scale of 

effect of a single environmental variable is more likely to be driven by movements to fulfill 

specific resource requirements (Miguet et al. 2016), which typically do not encompass the entire 

home range. For example, the scale of effect for open water may be quite small relative to the 

home range for a species that travels short distances daily to drink during the course of larger and 

longer-term movements within the home range. In contrast, the scale of effect for the 

combination of environmental variables that a species is influenced by is more likely to 

correspond to home range size because the home range is the sum of all movement conducted to 

seek out the individual resource requirements those environmental variables reflect. 



 98 

We predict that seasonal movement scale should correspond to the scale at which a single 

scale habitat model explains the most variation in species occurrence data (hereafter “overall 

scale of effect”). Comparing overall scales of effect between behaviours with different 

movement extents of habitat use would provide insight into the link between movement and 

scale of effect; however, this type of comparison has yet to be conducted (Miguet et al. 2016). In 

other words, is the overall scale of effect for a territorial habitat model smaller than the overall 

scale of effect for a home range habitat model? We used this behavioural comparison approach 

to test our hypothesis for a long-distance migratory bird, the common nighthawk (Chordeiles 

minor). The acoustic behaviour of the common nighthawk presents an opportunity to test 

whether overall scale of effect is linked to movement because this species has two behaviours 

with different movement extents that can be distinguished by acoustic signals. It uses a 

mechanical wing-boom display to defend a small territory (~10 ha; Chapter 4) for mating and 

nesting but vocalizes across a much larger home range for foraging and roosting (> 40 km2; 

unpublished data). Common nighthawk habitat use can thus be studied across large spatial scales 

using passive acoustic monitoring. 

We explicitly tested the hypothesis that movement range corresponds to scale of effect of 

single scale habitat models, but not for individual predictors within the models. To test our 

hypothesis, we built a dataset of common nighthawk detections by using signal recognition 

software to process a large dataset of acoustic recordings from Canada’s boreal forest. We used a 

standard multiscale approach to determine scale of effect, where we summarized our 

environmental variables of interest at multiple, nested buffers surrounding each survey location 

(i.e., extents; hereafter “scale”; summarized by Miguet et al. 2016). We included all 

environmental variables that we thought could affect habitat use in a single scale model and 
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defined overall scale of effect as the single scale model that explained the most variation in the 

data. We also partitioned deviance for each individual variable in each model and determine the 

scale of effect for each variable. We predicted that the overall scale of effect for territorial habitat 

use would be smaller than that for home range habitat use, but that this relationship would not 

necessarily hold for individual environmental variables. Finally, we tested whether we could 

improve the predictive performance of our model by building a final multiscale model that 

contained the scale of effect for each individual environmental variable. We create spatial 

predictions for territorial and home range habitat use from the final models to facilitate 

management of this species in Canada’s boreal forest. 

We defined our study area as an approximately 75,000 km2 area in north-eastern Alberta 

(Figure 5.1). We selected the study area based on available sampling locations and extent of 

available environmental data (Supplementary Materials). The study area was primarily within the 

central mixedwood natural subregion (Natural Regions Committee 2006). The landscape was 

characterized by a mosaic of upland forest types and lowland peat bogs and fens. At the time of 

study, the region was subject to frequent and widespread disturbance, including active forestry, 

oil and gas development, and wildfire. 
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Figure 5.1. Study area, recording stations (dots), environmental variables, and extent of buffers 

(0.2 – 12.8 km) used to study scale of effect of common nighthawk territorial and home range 

habitat use. 

We extracted common nighthawk detections from an archived bioacoustic database 

(https://www.wildtrax.ca/) of recordings collected with autonomous recording units (ARUs; 

SM2, SM2+, and SM3; Wildlife Acoustics Inc.). We selected 827 recording stations (Figure 5.1) 

that were sampled by ARUs following a standardized protocol (Lankau 2015) between June 1 

and July 31, 2015. The 827 stations were part of six different bioacoustic projects with varying 

recording schedules, but all recordings were 10 minutes long. All recordings were made with two 

omnidirectional microphones at a sampling rate of 44.1 kHz with a 16-bit depth. 

We used Song Scope (Wildlife Acoustics 2011) software to extract common nighthawk 

detections from the ARU recordings at each station (6,216 recordings in total). We created a 
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recognizer by training Song Scope with 138 unmasked clips of common nighthawk calls 

recorded at close proximity in north-eastern Alberta and south-central British Columbia. We 

used the recognizer to scan the recordings using a minimum score threshold of 70 and a 

minimum quality threshold of 30, which we have previously shown optimizes the trade-off 

between false positive and false negative detections, while limiting the effective detection radius 

of the recognizer to approximately 150 m (Chapter 2, Chapter 3). The first author visually 

validated all potential common nighthawk detections to confirm whether they were true or false 

positive detections. During validation, the first author also noted all detections that were 

accompanied by a mechanical wing-boom display. Common nighthawks vocalize every time 

they perform a wing-boom display (unpublished data). 

We extracted 15 environmental variables for each scale (Figure 5.1, Supplementary 

Materials). The environmental variables chosen were general dominant vegetation classes known 

to drive boreal bird community (Cumming et al. 2013), soil property variables that may influence 

common nighthawk ground nest site selection, and disturbance variables that may influence 

common nighthawk habitat use (Chapter 6). First, we resampled all data sources to 30 m raster 

layers to standardize the grain of our variables and facilitate further processing. We then 

reclassified each of the raster layers to extract the classes of interest. For three of the disturbance 

variables (fire, harvest, oil well site), we weighted each cell from 0 to 1 by dividing by time since 

disturbance. For the two soil property variables, we converted the classes to ordinal integers and 

standardized them as 0 to 1. The result was 15 raster layers of identical grain (30 m) and extent 

(Figure 5.1) and cell values ranging from 0 to 1. 
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Next, we calculated the mean value for each environmental variable within eight spatial 

scales for each station. We chose scales ranging from the smallest known territory radius (100 m; 

Chapter 4) to the largest known home range radius (~12 km) for common nighthawks 

(unpublished data). We decided to select scales of doubling value to avoid strong correlation 

between subsequent scales. The selected scales were thus 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 

km (Figure 5.1). We extracted the mean value for each of our 15 environmental variables by 

using a moving window to create a new raster for each variable at each scale (120 raster layers in 

total), with the value of each cell calculated as the mean value within the specified scale. We 

then extracted the cell value for each recording station from each of the 120 raster layers. We 

used this raster-based approach instead of using buffers around each recording station to 

calculate the mean so that we could use the raster to create spatial predictions of habitat use later. 

All environmental data processing was done in ArcGIS version 10.5 (raster conversion & 

resampling only; Esri Inc 2016) and in R version 3.5.2 using the packages raster, rgdal, and rgeos 

(Hijmans 2020, Bivand and Rundel 2020, Bivand et al. 2021). 

Modelling Approach: We used boosted regression trees to build habitat use models for 

territorial and home range habitat use. Boosted regression trees (BRTs) are a machine learning 

approach that maximizes the predictive performance of the model by combining regression trees 

with boosting (Elith et al. 2008). The regression trees fit the explanatory variables to the 

response variable by recursively splitting the data into homogenous rectangular groups and 

fitting a constant for each explanatory variable to each group (De’Ath & Fabricius 2000). The 

boosting improves the predictive performance of the regression trees by iteratively fitting 

regression trees in a forward stagewise process to reduce deviance (Elith et al. 2008). We choose 
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BRTs to model habitat use because they can accommodate a large number of potentially 

correlated predictors and are robust to overprediction, which is necessary when building an 

overall habitat model to maximize predictive capacity. Further, boosted regression trees can 

model non-linear reactions and incorporate complex interactions between predictors, which 

could contribute substantially to model performance, and thus to correctly identifying the overall 

scale of effect. 

Spatial Thinning: The sampling effort of the acoustic recordings used was strongly 

clustered in several areas, which can cause habitat model bias towards those clustered areas 

(Ploton et al. 2020; Robinson et al. 2017). We therefore used a grid sampling approach to 

spatially thin the dataset before habitat modelling. We divided the study area into 1 km cells, 

randomly picked one recording station from each cell, and retained data from the remaining 

stations for validation of spatial predictions (see ‘Spatial Predictions’ below). 

Survey Effort: We standardized survey effort at each recording station by sampling a set 

number of recording minutes from each station from times and days when common nighthawk 

availability for detection was maximized. We used survival analysis in the package survival 

(Therneau and Grambsch 2020) to estimate the probability of common nighthawk territorial 

activity. In other words, for any given recording, what is the probability that a nighthawk is 

calling, if it is present at the study site? We fit a parametric survival regression model with time 

to first detection in each of our 6,216 recordings as the response variable (Sòlymos et al. 2018, 

2013). For recordings in which a common nighthawk was not detected, we treated non-

detections as censored events with a time of detection of 10 minutes (i.e., recording length). We 

included day of year, a quadratic effect of day of year, the sin of time of day, and the cos of time 

of day as predictor variables. We included time of day as trigonometric functions of time of day 



 104 

to allow for circularity. We built a global model with all predictor variables and compared it to 

all potential simpler models using AICc (Supplementary Materials). We selected the global 

model as the best fitting model. The probability of availability (𝑝𝑖) for a 10-minutes recording is 

given as: 

𝑝𝑖 = 1 − 𝑒−10𝑎𝑖 

where 𝑎𝑖 is the event rate per minute. 

We then restricted the available data for each station to only the recordings that were 

collected at a day of year and time of day with a 99% probability of detection (Figure 5.2). From 

the remaining available recordings, we randomly selected eight (the minimum number available) 

for each recording station and summarized whether a common nighthawk was detected at that 

station for each detection type (wing-boom, call). The result was a binomial dataset of detected 

(1) or not detected (0) at each station (n=382) during 80 minutes of recording during peak 

detection probability time. We used this summary approach for each recording station instead of 

treating each recording as a visit with an occupancy (MacKenzie et al. 2002) or mixed modelling 

approach because our chosen model type, boosted regression trees, does not accommodate either 

approach. This standardized approach also allowed us to incorporate variation in ARU sampling 

at each recording station when bootstrapping (see ‘Bootstrapping’ below). 
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Figure 5.2. Probability of availability for detection of common nighthawks across day of year 

and hour of day. 

Habitat Models: We modelled territorial and home range habitat use at each scale by 

using 10-fold cross-validation to fit a binomial BRT with the package dismo (Hijmans et al. 

2020). We used detection or non-detection of the common nighthawk’s territorial wing-boom 

signal at each recording station as the response variable for the territorial model and detection or 

non-detection of the more general call as the response variable for the home range model 

(Chapter 4). We selected a learning rate of 0.001 to ensure at least 1,000 trees (Elith et al. 2008), 

a tree complexity of 3 to allow up to third-order interactions between environmental variables, 

and a bag fraction of 0.75 for all models. The number of trees was determined by the lowest 
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residual deviance across the ten cross-validation folds. We also used 10-fold cross validation to 

assess the predictive performance of each BRT.  

Bootstrapping: We used bootstrapping to estimate variation in predictive performance 

and proportion of deviance explained for each type of habitat use at each scale. We bootstrapped 

the entire spatial thinning, survey effort standardization, and model fitting process 100 times, 

thereby incorporating variation in the station and recordings selected for each iteration. The final 

result was 16 sets (2 types of habitat use x 8 spatial scales) of 100 fitted boosted regression trees, 

each with 10-fold cross validation. 

Scale of Effect: We used two performance parameters from the 10-fold cross validation 

to determine overall scale of effect: the area under the curve of the receiver operating 

characteristic (ROC AUC; Fielding and Bell 1997), and the percent test deviance explained. We 

determined overall scale of effect for each type of habitat use as the scale with the highest mean 

value across the 100 bootstraps. To determine scale of effect for each individual environmental 

variable, we calculated the percent test deviance explained by each variable (i.e., percent test 

deviance explained by the overall model multiplied by the relative influence of the variable) for 

each bootstrap and selected the scale with the highest mean percent test deviance explained 

across the 100 bootstraps. 

Spatial Predictions: We used the scale of effect for each environmental variable to build 

a final multiscale model and make spatial predictions for each of the two types of habitat use. We 

used the same spatial thinning, survey effort standardization, and model fitting approach, and 

bootstrapped the whole process 100 times. For each bootstrap, we fit the model to the 

appropriate raster layers (resampled to 100 m resolution for efficiency) to create spatial 

predictions of common nighthawk territory and habitat use in northeastern Alberta. We then 



 107 

evaluated the performance of each prediction by comparing it to the data from the recording 

stations that were withheld during spatial thinning. We created this test dataset for each bootstrap 

by randomly selecting one test station for each remaining 1 km grid and using the same survey 

effort standardization method used to compile the training data. We used the dismo package 

(Hijmans et al. 2020) to calculate three metrics of predictive performance for each spatial 

prediction: (1) the ROC AUC, (2) the maximum correct classification rate of the model across a 

range of probability thresholds from 0 to 1, and (3) the maximum Cohen’s kappa coefficient 

across a range of probability thresholds from 0 to 1 (Cohen 1960). We repeated the same 

prediction and evaluation process for the single scale models at the overall scale of effect to 

compare the performance of our multiscale and single scale models. 

Covariate Effects: We used generalized additive models (GAMs) in the mgcv package 

(Wood 2011) to summarize the partial predictions of each environmental variable at each scale 

across the 100 bootstrapped models. We chose GAMs because boosted regression trees model 

nonlinear responses (i.e., partial predictions) and GAMs can model complex, nonlinear patterns 

by averaging multiple regressions with varying coefficients. For each environmental variable, we 

fit a Gaussian GAM with a penalized thin plate regression spline to the bootstrapped marginal 

effects predictions estimates with the value of that environmental variable as the predictor 

variable. We used generalized cross validation to determine the optimal number of knots (Table 

5.1). 
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There were 65,358 ten-minute recordings available from across our 827 recording 

stations. The detectability analysis indicated that common nighthawks in our study area have a 

detection probability of 0.99 after approximately 7:30 PM and before 5:00 AM, with some 

seasonal variation due to an interaction with day of year (Figure 5.2). Of those 65,358 

recordings, common nighthawk home range behaviour (vocalization) was detected in 3,810 

recordings and territorial behaviour (wing-boom) was detected in 1,174 recordings. Common 

nighthawk territorial and home range behaviour was detected at 17.3% and 44.4%, respectively, 

of the 827 recording stations. After spatial thinning to 382 recording stations and survey effort 

standardization to 80 recording minutes per station, the mean number of detections of common 

nighthawk territorial and home range behaviour was 8.6% and 21.6%, respectively. 

The scale of effect of territorial habitat use was smaller than the scale of effect for home 

range habitat use (Figure 5.3). Both the ROC AUC and the percent deviance explained indicated 

that 0.2 km was the overall scale of effect for territorial habitat use, with 0.1 km a close second. 

At scales larger than 0.2 km, both performance metrics dropped substantially and continued to 

decline with increasing scales. For home range habitat use, the two metrics supported different 

overall scales of effect. The ROC AUC indicated that 6.4 km was the overall scale of effect, 

while the percent deviance explained indicated 1.6 km was the overall scale of effect; however, 

the difference between performance of models built with 1.6, and 6.4 km scales was insignificant 

for both metrics. Model performance was lowest at the smallest scales for common nighthawk 
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home range use. There were strong (mean of at least 6.3 across the 100 bootstraps) two-way 

interactions in all boosted regression tree models that likely contributed to the overall scale of 

effect. Interactions were stronger for the territorial movement scale than the home range 

movement scale and were also generally stronger at smaller scales. 

 

Figure 5.3. Model performance (top) of species distribution models for territorial and home 

range habitat use of common nighthawks. Error bars show the 95% confidence interval across 

100 bootstraps and bold indicates the selected scale of effect for that model and/or variable. 
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Figure 5.4. Percent deviance explained by individual environmental variables in species 

distribution models for two territorial and home range habitat use of common nighthawks. Error 

bars show the 95% confidence interval across 100 bootstraps and bold indicates the selected 

scale of effect for that model and/or variable. 
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The scale of effect for individual environmental variables varied widely, with little 

relationship between the scale of effect for the most important variables and the overall scale of 

effect (Figure 5.4). Interestingly, the scale of effect for each environmental variable was similar 

between territorial and home range habitat use, with the exception of soil moisture, well site, 

mixedwood forest, and deciduous forest. The difference in overall scale of effect was instead 

driven by variation in proportion of deviance explained between the two types of habitat use. The 

scale of effect for territorial habitat use was driven primarily by a strong scale of effect for 

harvest index and soil nutrient level, both of which were among the top five most predictive 

environmental variables. The environmental variables driving the scale of effect for home range 

habitat use were less clear. 

The models for both types of habitat use predicted similar regions of high probability of 

habitat use, particularly the area in the northeastern section of the study area that burned in 2011 

and is characterized by jack pine (Pinus banksia) forest with sandy soils (Figure 5.5). Overall, 

home range habitat use probability was higher than territorial habitat use probability across the 

study area, but also had a higher standard deviation across bootstraps. Using the scale of effect 

for each individual environmental variable in a multiscale model did not substantially improve 

model performance over single scale models at the overall scale of effect. The cross validation 

from model fitting indicated that the multiscale model was an improvement for home range 

habitat use; however, evaluation of the spatial predictions using the withheld data suggested this 

was not the case (Figure 5.5). Alternatively, the multiscale model provided slight improvement   
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Figure 5.5. Mean and variance of 100 spatial predictions for territorial and home range habitat 

use of common nighthawks and predictive performance of those spatial predictions. Predictive 

models are multiscale models that include the specific scale of effect for each individual 

environmental variable included in the model. Predictive performance was evaluated with cross 

validation during model fitting (“cross validation) and after spatial prediction with a withheld 

dataset (“spatial prediction”). Lower and upper box boundaries are 25th and 75th percentiles; 

lower and upper whiskers are 1.5 times the interquartile range; individual points are those 

outside 1.5 times the interquartile range.  
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in model performance of territorial habitat use for the spatial predictions (mean 0.04), but not 

during cross validation. Comparison of ROC AUC from cross-validation and spatial prediction 

suggested cross-validation evaluation was overly optimistic; spatial prediction performance 

evaluation suggested model performance was “fair” (0.6-0.7; Duan et al. 2014). 

Overall, the effect of the selected covariates was similar between territorial and home 

range habitat use when the scale of effect was also the same (Figure 5.6). When the scale of 

effect differed, the shape of the marginal effect generally also differed (e.g., soil moisture, 

roads). The proportion of pine forest was the strongest predictor for both territorial and home 

range habitat use (Table 5.1). The probability of habitat use was relatively low for both 

movement scales until approximately 30% cover, and then probability increased steadily to 0.3 

(territory) and 0.5 (home range) probability of use at 100% cover (Figure 5.5). Wildfire index, 

harvest index, and the proportion of conifer forest were the next three strongest predictors, 

although their relative influence varied between the movement scales. All three variables had a 

positive influence on common nighthawk habitat use, but with varying thresholds for the values 

at which that effect took place. There was a particularly strong interaction between the 

proportion of pine forest and forest harvest (mean 13.3 across all bootstraps of all single scale 

models), particularly in smaller scale models.  
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Figure 5.6. Marginal effect for the scale (extent) of effect of 15 environmental variables on 

territorial and home range habitat use of common nighthawks. Plotted effects are the mean (line) 

and 95% confidence interval (shaded ribbon) of a generalized additive model (GAM) fit to 100 

bootstrapped species distribution models.  
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The GAMs used to fit the marginal effect plots varied in degrees of freedom from one to 

9, and the amount of variation explained (R2) by the GAM also varied from <0.01 to 0.69 (Table 

5.1). There was an overall positive relationship between the relative influence of the covariates 

included in the boosted regression tree models and the R2 value of the GAM fit to the 100 

bootstraps of each model, suggesting that the stronger predictors had more consistent marginal 

effects on habitat use. The exception was soil nutrients, which explained 5.43% of the variation 

in the model, but the effect of the relationship was highly variable across bootstraps. 

Table 5.1. Scale (extent) of effect and relative influence at that scale for 15 environmental 

variables on territorial and home range habitat use of common nighthawks. Standard deviation 

(SD) of relative influence was calculated across 100 bootstrapped species distribution models. 

Generalized additive models (GAMs) were used to smooth the marginal effects of each 

environmental variable on habitat use. 

Habitat use 

type 
Covariate 

Scale of effect 

(km) 

Relative influence 

(SD) 

GAM 

df 

GAM 

R2 

territory pine 0.8 32.43 (13.03) 9 0.53 

territory wildfire 12.8 10.52 (7.59) 9 0.29 

territory conifer 6.4 9.93 (7.99) 9 0.3 

territory harvest 0.2 9.61 (4.88) 9 0.27 

territory soil nutrients 0.1 5.43 (3.1) 6 <0.01 

territory seismic lines 12.8 5.4 (3.97) 9 0.34 

territory soil moisture 0.2 5.21 (3.41) 7 0.05 

territory 
wetland 

probability 
0.1 5.13 (3.92) 9 0.1 

territory industry 6.4 3.31 (2.34) 8 0.09 

territory open water 12.8 3.11 (1.86) 8 0.07 

territory deciduous 12.8 2.9 (2.69) 9 0.01 

territory well sites 0.4 2.47 (2.1) 6 0.02 

territory mixedwood 12.8 2.23 (1.67) 7 0.03 

territory roads 12.8 1.24 (1.02) 4 <0.01 

territory gravel roads 6.4 1.08 (0.88) 1 <0.01 

home range pine 0.8 23.15 (6.16) 9 0.69 

home range harvest 0.2 12.17 (3.37) 9 0.56 

home range wildfire 12.8 7.53 (4.35) 9 0.35 

home range conifer 6.4 6.92 (4.29) 9 0.36 

home range soil moisture 12.8 6.38 (2.4) 9 0.54 
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Habitat use 

type 
Covariate 

Scale of effect 

(km) 

Relative influence 

(SD) 

GAM 

df 

GAM 

R2 

home range deciduous 0.8 6.36 (2.45) 6 0.38 

home range oil well sites 1.6 5.53 (2.88) 8 0.15 

home range roads 6.4 5.08 (2.41) 9 0.18 

home range seismic lines 6.4 5.03 (2.48) 9 0.45 

home range open water 12.8 4.59 (1.85) 9 0.17 

home range industry 6.4 4.59 (2.03) 8 0.06 

home range mixedwood 1.6 3.42 (2.03) 9 0.3 

home range soil nutrients 0.1 3.34 (1.78) 8 0.01 

home range 
wetland 

probability 
0.1 3.33 (1.66) 9 0.13 

home range gravel roads 12.8 2.58 (1.32) 9 0.11 

We defined a new type of scale of effect, “overall scale of effect” (i.e., scale of effect of 

an entire habitat model), and compared the overall scale of effect of two different types of habitat 

use for a single species, a line of inquiry first suggested by Miguet et al. (2016). We built 

territorial and home range habitat models for the common nighthawk to explore whether overall 

scale of effect corresponds to movement extent. We found support for our prediction: the overall 

scale of effect for common nighthawk home range habitat use was larger than the overall scale of 

effect for territorial habitat use. In contrast, the scale of effect for individual environmental 

variables varied widely, with little relationship between the scale of effect for the most important 

variables and the overall scale of effect. Using the scale of effect for each environmental variable 

in a final model did not improve spatial predictive performance relative to the single scale model 

for the overall scale of effect. 

Support for a relationship between movement and scale of effect is sparse (reviewed by 

Jackson and Fahrig 2015), despite the obvious mechanistic link, and we suggest the lack of 

evidence may be in part because previous studies have not examined overall scale of effect. Our 
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results support theoretical predictions that the scale of effect of environmental variables on 

species occurrence or abundance is driven by local movements (Jackson & Fahrig 2012; Miguet 

et al. 2016). The machine learning approach we used here may be particularly valuable in linking 

overall scale of effect to movement because not only does it allow for inclusion of many 

potential predictors, but it also models complex interactions that could be driven by local 

movement (Elith et al. 2008). For the common nighthawk, the overall scale of effect for 

territorial habitat use (200 m) corresponded almost perfectly to the mean radius size of territories 

in the study area (186 m; Chapter 4). Relating the overall scale of effect to home range 

movement is less straightforward. Tracking data are unavailable to estimate home range size for 

this species; however, the home range size available for a single individual within the study area 

(40 km2; 3.6 km radius; unpublished data) suggests that the overall scales of effect (1.6 km, 6.4 

km) we found correspond approximately to home range size. The other reason comparing overall 

scale of effect to home range size is difficult is because we found support for two overall scales 

of effect (1.6 km and 6.4 km). Martin and Fahrig (2012) suggest multiple scales of effect indicate 

a particular variable is important for more than one life stage. Although there is evidence that 

dispersal movement can explain scale of effect (Jackson & Fahrig 2012; Ricci et al. 2013), this is 

an unlikely explanation for multiple home range scales of effect because anecdotal evidence 

suggests common nighthawk dispersal range is two orders of magnitude larger than the overall 

home range scale of effect (several hundred kms; unpublished data). Predictions by Tittler 

(2008) also suggest that scale of effect is not related to dispersal for species that travel within 

large home ranges. Instead, we suggest the signal for scale effect for the home range is less clear 

perhaps because home range use combines many different drivers of movement (e.g., foraging, 

mating, roosting) and thus there is more noise in home range detection data. This conclusion is 
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supported by a lower proportion of variation explained in the home range models than the 

territorial detection models.  

Our prediction that individual environmental predictors would have varying scales of 

effect unrelated to the overall scale of effect was also supported. Variation in scale of effect 

across environmental predictors is a known phenomenon (Martin 2018; Galán‐Acedo et al. 

2018), but how to interpret this variation? If local movement also determines the scale of effect 

of individual variables, then the variables that share the overall scale of effect should be those 

that influence that movement behaviour most strongly. Our results are not consistent with this; 

for example, the variables that shared a scale of effect with territorial habitat use (forest harvest 

and soil moisture) were the 4th and 8th most predictive of territorial habitat use. Interpretation of 

scale of effect for individual environmental variables may be less straightforward and influenced 

by factors other than movement. Options include resource availability, predator movement, 

competition, and density dependence (Miguet et al. 2016). In fact, the similarity in scale of effect 

and marginal effects between territorial and home range habitat use for the top explanatory 

variables (pine, wildfire, conifer, soil nutrients, harvest) suggest that the scale of effect of these 

variables is explained by factors other than movement. For example, the scale of effect for pine 

forest, strongest explanatory variable, was 0.8 km for both types of habitat use, suggesting 

perhaps an indirect effect of conspecific attraction to neighbouring common nighthawks. The 

scale of effect for the next strongest explanatory variable, fire, was the largest scale measured 

(12.8 km) for both habitat use types and suggests we did not measure large enough scales to 

adequately detect the scale of effect for this variable (Jackson & Fahrig 2015). Fire scale of 

effect may perhaps be driven by dispersal because common nighthawks are a post-disturbance 

specialist in the boreal forest (Chapter 6), and dispersal may be critical to their population 
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dynamics, as it is for Black-backed Woodpeckers (Picoides articus; Tingley et al. 2018). In 

contrast, environmental variables that differ in scale of effect between territorial and home range 

habitat use may be those that are specifically important for that behaviour. For example, soil 

moisture had opposite scales of effect for territorial and home range habitat use (0.2 vs 12.8 km). 

Concordant with common nighthawk ecology, soil moisture also had opposing marginal effects. 

Nesting territories require low soil moisture at small scales because nighthawks lay their eggs 

directly on the ground, while high soil moisture likely affects home range habitat at large scales 

use because nighthawks forage over wetlands for aerial insect prey (Brigham et al. 2011). 

Due to the influence of context-dependent factors like density dependence and resource 

availability, scale of effect is often population-specific (McGarigal et al. 2016; Miguet et al. 

2016; Galán‐Acedo et al. 2019). For example, scales of effect are predicted and empirically 

shown to be lower in fragmented landscapes than contiguous landscapes because lower 

connectivity in fragmented landscapes leads due to disrupted dispersal (Galán‐Acedo et al. 2019; 

Miguet et al. 2016). We suggest overall scale of effect is likely also population-specific, as 

movement ranges are also context-dependent. We reiterate the recommendations of others that 

caution should be taken when attempting to generalize the overall scales of effect from our study 

to other regions (Galán‐Acedo et al. 2019; Miguet et al. 2016). In terms of scales of effect for 

individual environmental variables, the scale of effect for open wetland availability on common 

nighthawk home range habitat in Ontario, Canada (1.5 km) (Farrell et al. 2019) was much 

smaller from that reported here for open water (12.8 km; potentially larger) (Jackson & Fahrig 

2015). This difference may indicate a greater importance of open water wetlands for common 

nighthawk foraging in Ontario relative to northern Alberta. Alternatively, the difference in scales 

of effect may simply be an artifact of varying quantitative definitions of wetland availability. In 
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fact, methodological differences between studies may be one of the reasons for region-specific 

conclusions about scale of effect. 

Ultimately, the purpose of determining and understanding scale of effect is to inform 

ecological analyses and inferences. McGarigal et al. (2016) recommend determining scale of 

effect for each environmental variable prior to building a final model to produce a “truly 

optimized multi-scale, multi-variable model” and comparing this model to the best single scale 

model. Similar to Martin and Fahrig (2012), we found minimal to no improvement in predictive 

performance from an optimized multiscale model. Other comparisons of multiscale and single 

scale model performance found a slight improvement of approximately 0.05 increase in ROC 

AUC (refs from Martin & Fahrig); however, variability in performance across bootstraps shown 

here and elsewhere (Martin and Fahrig 2012) suggests such improvements should be taken with 

a grain of salt. Martin and Fahrig (2012) provide two explanations for the similar or superior 

performance of single scale models over multiscale models. First, that similarity between single 

scale and multiscale models can be driven by same scale of effect of particular predictors. 

Second, if strong predictors have different scales of effect from the overall scale of effect, single 

scale models can still be good predictors if those predictors still have a strong effect at the 

overall scale of effect. Our study supports this second explanation, as the scale of effect of the 

most important predictors differed from the overall scale of effect. We further suggest that 

differences in the interactions between single and multiscale models may be partially responsible 

for the failure of multiscale models to perform better in our study. 

The ideas and analysis here represent preliminary evidence that contributes to an ongoing 

conversation about the mechanistic underpinnings of scale of effect. If movement range is indeed 

a determinant of scale of effect but has gone undetected due to a focus on individual 
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environmental variables, then our idea of overall scale of effect may be the first step towards “a 

framework for predicting scales of effect a priori” (Miguet et al. 2016). We used a novel 

approach of comparing habitat use of different behaviours of a single species to test this 

prediction. Next steps should explore a link between movement range and overall scale of effect 

for other populations or species, and then test for a relationship between overall scale of effect 

and home range size, as has been done for scale of effect of single environmental variables 

(Tittler 2008; Fisher et al. 2011; Desrochers et al. 2010). We note, however, that these 

predictions are likely specific to occurrence, occupancy, or abundance as the response variable. 

The scale of effect of other response variables such as species richness, reproductive success, or 

genetic diversity are likely driven by other mechanisms (Miguet et al. 2016; Moraga et al. 2019).  

Regardless, our study suggests that the interpretation of scale of effect may be more 

nuanced than previously thought. Researchers and practitioners should consider differentiating 

between overall and individual variable scale of effect. Martin and Fahrig (2012) suggested that 

single scale models at the overall scale of effect could be used to inform overarching 

management actions for simplicity’s sake. We show however, that the scale of effect of the most 

important environmental variables does not necessarily correspond to the overall scale of effect; 

using a single scale of effect for management may still lead to suboptimal wildlife options 

(Thornton & Jr 2013; Holland et al. 2004; Smith et al. 2011). For example, the proportion of pine 

forest has the strongest positive effect on common nighthawk territorial habitat use but using the 

overall scale of effect or territory radius of 200 m to manage forest harvest of this species at risk 

may lead to less suitable nesting habitat. Furthermore, basing the scale of measurements for 

individual environmental predictors on estimates of movement ranges is inappropriate because 

our study suggests that the scale of effect of individual predictors is more likely attributed to 
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other factors. Finally, our study adds to the large and continually growing body of literature that 

supports the importance of multiscale habitat studies as a critical step in informing wildlife 

management (Mayor et al. 2009; McGarigal et al. 2016; Martin 2018). 
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Table 5.A.1 Source geospatial datasets used to extract environmental variables for common nighthawk habitat modelling. 

Dataset name Description Proprietor Original 

data 

format 

(cell size) 

Variables extracted 

(calculations or 

reclassification) 

Available from 

(access date) 

Available 

reference or 

metadata 

Historical 

Wildfire 

Perimeters 

Polygon features representing wildfire 

perimeters dating back to 1931. The 

datasets from 1998 on should include 

most of the fires 12 hectares (29.7 acres) 

or larger that occurred within the 

legislated Forest Protection Area. The 

datasets prior to these years may include 

some fires smaller than 200 hectares 

(494.2 acres), but the emphasis on the 

data collection for these years was to 

provide Class E fires (wildfire larger 

than 200 hectares or 494.2 acres). 

Alberta 

Agriculture 

and Forestry 

Vector Wildfire (weighted 

by time since fire) 

https://wildfire.alb

erta.ca/resources/h

istorical-

data/spatial-

wildfire-data.aspx 

(March 5, 2019) 

https://wildfire

.alberta.ca/res

ources/historic

al-

data/default.as

px 
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Dataset name Description Proprietor Original 

data 

format 

(cell size) 

Variables extracted 

(calculations or 

reclassification) 

Available from 

(access date) 

Available 

reference or 

metadata 

Human 

Footprint 

Inventory 2016 

Twenty-one human footprint categories 

(based on more than 115 anthropogenic 

disturbance types) collated into a single 

integrated dataset by applying a specific 

order of precedence. The dataset was 

developed in part by a collaborative 

effort of data accumulation between the 

Government of Alberta and the ABMI, 

together forming the Alberta Human 

Footprint Monitoring Program 

(AHFMP) to better enhance and update 

human footprint data in Alberta. 

Alberta 

Biodiversity 

Monitoring 

Institute 

Vector Harvest (class 17; 

weighted by time 

since harvest) 

Wellsite (classes 9 

and 16; weighted by 

time since 

deactivation) 

Roads (class 3) 

Gravel roads (class 

3, code 305 and 

306) 

Seismic lines (class 

20) 

Industrial (classes 

1-16) 

https://www.abmi.

ca/home/data-

analytics/da-

top/da-product-

overview/Human-

Footprint-

Products/HF-

inventory.html 

(September 9, 

2019) 

https://ftp-

public.abmi.ca

/GISData/Hu

manFootprint/

2016/HFI2016

_Metadata.pdf 

Alberta 

Vegetation 

Inventory 

This photo-based digital inventory 

dataset is a compilation of the original 

blocks of Crown Alberta Vegetation 

Inventory data collected using aerial 

photography dating between 1987 and 

2014. A variety of standards was used to 

collect the original blocks of data. It was 

developed to identify the type, extent 

and conditions of vegetation in the 

province. 

Alberta 

Agriculture 

and Forestry 

Vector Pine (SP1=Pj) https://geodiscove

r.alberta.ca/geopor

tal/rest/metadata/it

em/100b275712b4

42acbda4a0358d8

a4951/html 

(Feb 12, 2013) 

https://www.al

berta.ca/veget

ation-

inventory-

standards.aspx 
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Dataset name Description Proprietor Original 

data 

format 

(cell size) 

Variables extracted 

(calculations or 

reclassification) 

Available from 

(access date) 

Available 

reference or 

metadata 

Boreal Wetland 

Probability 

The Boreal Wetland probability dataset 

was generated using a machine learning 

framework in R statistical software. The 

machine learning model was based off of 

a Digital Elevation Model, optical 

satellite data, and Synthetic Aperture 

Radar data. The model was trained with 

photo-plots that were derived from high 

resolution 3D image interpretation and 

give detailed attribution of land cover 

information. 

Alberta 

Biodiversity 

Monitoring 

Institute 

Raster 

(10 m) 

Wetland probability https://abmi.ca/ho

me/data-

analytics/da-

top/da-product-

overview/Advanc

ed-Landcover-

Prediction-and-

Habitat-

Assessment—

ALPHA—

Products/Boreal-

Wetland-

Probability-

Data.html 

(September 10, 

2019) 

Hird et al. 

2017 

2010 Land 

Cover of 

Canada 

The Canada Centre for Remote Sensing 

created the 2010 Land Cover of Canada 

map as the Canadian contribution to the 

2010 Land Cover Map of North America 

under the North American Land Change 

Monitoring System. The dataset was 

produced using observations from 

Thematic mapper ™ and Enhanced 

Thematic Mapper (ETM+) Landsat 

sensors. 

Natural 

Resources 

Canada 

Raster 

(30 m) 

Deciduous (class 5) 

Coniferous (class 1 

and 2) 

Mixedwood (class 

6) 

Open water (class 

18) 

https://open.ccana

d.ca/data/en/datas

et/c668b87f-e85f-

4842-b0e1-

a8f79ebf1133 

(September 9, 

2019) 

https://geoapp

ext.nrcan.gc.c

a/arcgis/rest/se

rvices/FGP/La

ndCover_EN/

MapServer/0 



 126 

Dataset name Description Proprietor Original 

data 

format 

(cell size) 

Variables extracted 

(calculations or 

reclassification) 

Available from 

(access date) 

Available 

reference or 

metadata 

Alberta 

Derived 

Ecosite Phase 

The province of Alberta is divided into 

21 natural subregions, each of which 

contain distinct plant communities, or 

‘ecosites’. The Derived Ecosite Phase 

(DEP) dataset was developed by using 

the Alberta Vegetation Inventory and 

several LiDAR-derived datasets to 

classify areas into ecosites. Each ecosite 

is characterized by a unique combination 

of soil nutrient and moisture conditions. 

Alberta 

Agriculture 

and Forestry 

Vector Soil moisture 

(moisture regime 

classes 2-9 rescaled 

from 0 to 1) 

Soil nutrients 

(nutrient regime 

classes A-E rescaled 

from 0 to 1)  

https://open.albert

a.ca/dataset/derive

d-ecosite-phase-

version-2 

(September 9, 

2019) 

https://open.al

berta.ca/datase

t/49cd2d77-

4153-41bd-

b0fc-

059627b0a7a9

/resource/6461

6ee4-8c5c-

4e70-ab7c-

d2ef002ca79a/

download/af-

derived-

ecosite-phase-

version-2-0-

2020.pdf 
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Table 5.A.2. AICc ranking of parametric survival regression models for estimation of common 

nighthawk availability for detection in acoustic recordings. Day represents day of year. Sin and 

cos represent trigonometric functions of time of day and were used to allow for circularity. All 

models with quadratic terms also included a linear term of the same variable. Bold indicates the 

model selected to estimate availability for detection in acoustic recordings. 

Model df logLik AICc AICc AICc w 

~day2*sin2 + day2*cos2 11 34226.4 -68430.9 0.0 1.0 

~day*sin2 + day*cos2 10 34095.7 -68171.4 259.5 0.0 

~day2 + sin2 + cos2 7 33963.7 -67913.5 517.4 0.0 

~day + sin2 + cos2 6 33848.4 -67684.7 746.2 0.0 

~sin2 + cos2 5 33810.6 -67611.3 819.6 0.0 

~day2 3 29897.2 -59788.3 8642.5 0.0 

~day 1 29563.2 -59124.4 9306.5 0.0 

~1 2 29563.7 -59123.4 9307.4 0.0 
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Understanding how disturbance affects species is a critical component of management in 

the boreal forest, particularly for disturbance specialist species that often help initiate the 

regeneration process. Emulation of natural disturbance rarely incorporates the disturbance 

response of those specialist species, which may be potentially sensitive to disturbance 

characteristics because they are attracted to resources provided by the disturbance itself. 

Identifying disturbance specialist species and the reasons they occur in post-disturbance habitat 

is thus a priority for maintaining biodiversity in managed forests. We used a novel approach of 

comparing two types of habitat use to fill this information gap for a potential boreal forest 

disturbance specialist, the common nighthawk (Chordeiles minor). The common nighthawk is of 

particular interest to forest managers because this wide-ranging species is declining and listed as 

of conservation concern in multiple jurisdictions. We used passive acoustic monitoring to survey 

for nighthawks at 400 locations in the boreal forest of northeastern Alberta, Canada where land 

use pressure for resource extraction is high. We used an occupancy modelling framework to 

compare two competing hypotheses for why nighthawks use post-disturbance habitat: nesting or 

foraging resources. The nesting resource hypothesis was supported by all three lines of evidence 

that we examined. First, time since disturbance negatively affected territorial habitat use, but not 

extraterritorial habitat use, confirming that this species is only a disturbance specialist for the 

territorial component of its home range. Second, territorial habitat use differed between 

disturbance types, with a higher probability of habitat use for post-harvest and abandoned well 
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sites, which are more likely to have lower amounts of residual vegetation. For our third line of 

evidence, open pine forest mitigated the effects of time since disturbance for territorial habitat 

use for all three disturbance types, but especially for postfire areas. We discuss each line of 

evidence and provide industry-specific recommendations for incorporating the common 

nighthawk into forest management plans. Our research emphasizes that understanding the 

context-dependence of species responses to disturbance provides insights that facilitate effective 

forest management. We advocate that understanding the behavioural context of habitat use can 

provide this insight and is often more likely to be aligned with the operational scale of forest 

management. 

The ecology and management of the boreal forest are governed by disturbance. The 

frequency, intensity, size, season, and spatial distribution of recurrent fires control vegetation 

structure and species assemblage, nutrient cycling, energy flow and the resulting wildlife 

community (Bonan & Shugart 1989; McLauchlan et al. 2020). The distribution of fire 

characteristics on the landscape creates a “shifting mosaic” of heterogeneous patches of forest 

that change dynamically over time (Bormann and Likens, 1979). More recently, this mosaic 

includes patches of anthropogenic disturbance. Most of the southern extent of the North 

American boreal forest is used for forestry (Pasher et al. 2014; Pickell et al. 2015; Timoney 

2003). In the northwest, oil and natural gas extraction is increasingly prominent, and the resultant 

seismic exploration lines, pipelines, well sites, and open pit mines are novel disturbances relative 

to the natural boreal forest disturbance regime (Pickell et al. 2015). 
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One approach to mitigating the effects of these anthropogenic disturbances is the 

“emulation of natural disturbance”, which mimics the frequency, size, and residual organic 

matter of the long-term spatiotemporal patterns of natural disturbance through actions like 

variable retention and prescribed burning (Hunter 1993; Kuuluvainen & Grenfell 2012; Long 

2009). To successfully maintain biodiversity on the boreal landscape, emulation of natural 

disturbance must provide the same balance of resources for wildlife as the natural disturbance 

regime. Understanding how wildlife responds to disturbance is thus important for informing 

forest management; however, disturbance ecology is primarily founded in the responses of 

disturbance tolerant or avoidant species and largely ignores the resource requirements of 

disturbance specialist species. Disturbance specialists may be more sensitive to disturbance type 

because they are attracted to resources provided by the disturbance itself. For example, 

infestations of bark- and wood-boring beetles and the cavity-nesting opportunities provided by 

wildfire disturbance are the resources that attract Black-backed and other postfire specialist 

woodpeckers (Picoides articus; Hobson & Schieck 1999; Schieck & Song 2006; Hutto 2002). 

Meta-analysis revealed that western boreal bird communities differ between postburn and 

postharvest areas and only begin to converge between 11 and 30 years post-disturbance (Schieck 

& Song 2006). Incorporating disturbance specialists into plans for emulating natural disturbance 

is important because they facilitate succession by initiating seeding and accelerating nutrient 

cycling, among others (Lindenmayer et al. 2019). 

Comparing habitat use of disturbance specialist species between disturbance types can 

thus provide insight into their ecology because those varying effects are ultimately driven by 

differences in the resources provided. Forest harvest may be planned to emulate wildfire through 

variable retention that mimics postfire residual vegetation structure; however, emulating the 
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ecological processes of nutrient cycling such as postfire beetles that provide foraging resources is 

more difficult (Kimmins 2008, McLean et al. 2015). Disturbances linked to energy infrastructure 

like oil well sites, seismic exploration lines, and transmission lines are even less likely to emulate 

the ecological processes of fire because they are more dissimilar to the natural disturbance 

regime than forest harvest (Pickell et al. 2013). Post-disturbance specialist species that occupy 

postfire areas for foraging opportunities should thus be sensitive to disturbance type, while those 

that are attracted to the open vegetation structure will be less sensitive.  

Comparing disturbance effects on habitat use for different behaviours can thus also 

provide insight into the resources that disturbed areas provide. Although songbirds typically 

acquire all their resources from within their territory boundaries, many other bird species and 

some mammal species hold territories for reproduction but undertake extraterritorial movements 

to obtain other resources like food (Whitaker & Warkentin 2010). Understanding the behavioural 

context of disturbance effects will help facilitate successful emulation of natural disturbance 

because it provides insight into the relevant spatial and temporal scale of disturbance effects. 

In the boreal forest, the common nighthawk (Chordeiles minor) is thought to be a 

disturbance specialist because it primarily inhabits postfire and postharvest areas and is generally 

absent from older forest stands (Hagar et al. 2004; Foley 2018; Sidler 2017). Common 

nighthawks are crepuscular birds that lay their eggs directly on the ground within small, 

exclusive territories (~10 ha; Chapter 4) and conduct extraterritorial movements to constant-

flight forage for aerial insect prey within large, overlapping home ranges (~40 km2; unpublished 

data). Territorial and extraterritorial habitat use are differentiated by an aerial wing-boom 

display around the nest location, where the male produces a ‘vroom’ sound by flexing his 

primary feathers downward at the bottom of a steep aerial dive (Miller 1925, Chapter 4). The 
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degree to which nighthawks use recently disturbed areas for foraging resources relative to 

nesting resources is unknown. The absence of vegetation and abundance of postfire wood-boring 

beetles likely provide foraging opportunities and common nighthawk diet in the boreal forest is 

dominated by wood-boring beetles (Knight et al. 2018), suggesting that the resource provided by 

disturbed areas in the boreal forest is aerial insect prey. In contrast, the scarcity of vegetation 

likely provides suitable nesting substrate and in other parts of its breeding range, however, the 

common nighthawk inhabits open vegetation types such as grasslands, sand spits, and pine 

forests (Brigham et al. 2011), suggesting that the resource provided by disturbed areas in the 

boreal forest is scarcity of vegetation. Furthermore, common nighthawks in northwestern 

Ontario’s boreal forest, occupied postfire, postharvest, and wetland areas equally, further 

suggesting no reliance on disturbed areas for foraging; however, this study only examined home 

range habitat use (Farrell et al. 2017). The common nighthawk is a species of conservation 

concern across its range due to population declines with habitat loss via fire suppression as a 

potential mechanism for those declines (Environment Canada 2016a); therefore, a species-

specific understanding of its disturbance response and the appropriate scale of that response is 

critical for incorporation into forest management plans. 
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Table 6.1. Three sets of predictions for each of two competing hypotheses about common 

nighthawk use of post-disturbance areas in the boreal forest. 

 Nesting Resource Hypothesis: post-

disturbance areas provide nesting 

habitat 

Foraging Resource Hypothesis: post-

disturbance areas provide foraging 

habitat 

1. Time since 

disturbance 

Time since disturbance only affects 

territorial habitat use because 

succession affects availability of 

bare ground. 

Time since disturbance affects both 

territorial and extraterritorial habitat 

use because it affects open vegetation 

structure for foraging and aerial insect 

availability (Morissette et al., 2002; 

Schowalter et al., 1981). 

2. Disturbance 

type 

Postfire habitats have lower initial 

probability of territorial habitat use 

due to greater amounts of coarse 

woody debris and retained 

vegetation on the ground (McRae et 

al., 2001, Bognounou et al. 2021). 

Postfire habitats have higher initial 

probability of territorial and 

extraterritorial habitat use due to an 

abundance of wood-boring beetle prey 

and other aerial insects associated with 

retained vegetation (Deans et al., 

2005). 

3. Vegetation Pine forest mitigates negative 

effects of time since disturbance on 

territorial habitat use because the 

sandy soils remain relatively free of 

ground cover. 

Wetland probability mitigates negative 

effects of time since disturbance on 

both types of habitat use because it 

provides abundant aerial insects. 

Pine forest does not mitigate negative 

effects of time since disturbance 

because the sandy soils drive low aerial 

insect productivity. 

Our goal was to inform boreal forest management for the common nighthawk by 

confirming that this species is a disturbance specialist and understanding how it uses post-

disturbance areas. We explored differences in common nighthawk habitat use between natural 

and anthropogenic disturbance types to derive three lines of evidence for the competing 

hypotheses that common nighthawks use post-disturbance areas for nesting or foraging (Table 

6.1). We used a large, archived bioacoustic data set to study common nighthawk habitat use in 

multiple disturbance types in Canada’s boreal forest. We selected recordings from sites across a 

range of times since disturbance for three disturbance types: wildfire, forest harvest, and 

petroleum well site (hereafter “fire”, “harvest”, and “well site”). We determined common 

nighthawk detection or non-detection in each recording with automated processing and used 
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those detections in an occupancy framework to study probability of habitat use. We built two sets 

of analyses to compare between different types of habitat use by using the common nighthawk 

wing-boom signal to differentiate between territorial and extraterritorial habitat use. For each set, 

we conducted our analysis in three stages. First, we determined which detectability covariates to 

include in our occupancy models. Second, we tested for effects of two vegetation covariates, 

pine forest, which provides open area with minimal ground vegetation for nesting, or wetland 

probability, which provides abundant aerial insects for foraging. This second step was a 

prerequisite to evaluating our hypotheses about whether vegetation can mitigate disturbance 

effects (Table 6.1). Third, we fit a model that tested our hypotheses by testing for effects of 

disturbance type, time since disturbance, and vegetation covariates. 

We conducted our study in north-eastern Alberta where the boreal forest is subject to 

intensive resource extraction including active forestry and multiple types of oil and gas 

exploration and extraction (Figure 6.1). The study area was primarily within the Central 

Mixedwood Natural Subregion (Natural Regions Committee 2006) where the natural landscape 

is characterized by a mosaic of upland forest types and lowland peat bogs and fens. Our study 

area is an approximately 75,000 km2 area based on available sampling locations and extent of 

available environmental data (Supplementary Materials).  
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We selected sites from available survey locations in the WildTrax database, which is an 

online archive of audio recordings from autonomous recording units (ARUs) deployed for 

various research and monitoring projects across the study area and beyond 

(https://www.wildtrax.ca/home). Some sites had ARUs deployed in multiple years, providing 

multiple years of time since disturbance, so we used ARU deployments (i.e., combinations of site 

and deployment year) as our unit for random selection. We used inventories of each disturbance 

type (Supplementary Materials) to randomly select 400 ARU deployments with a disturbance 

(fire, harvest, and well site) within 200 m. We used 200 m because we have previously 

determined this is the scale of effect for common nighthawk nesting (unpublished data) and it is 

also the approximate effective detection radius of our acoustic processing (Chapter 3; see below). 

During site selection, we prioritized disturbance type and age class combinations based on the 

strata with the fewest available sites so that we sampled as evenly as possible across a post-

disturbance temporal gradient (Figure 6.1). We used the most recent event to determine time 

since disturbance if there were overlapping disturbances of the same type at a potential site. We 

only used sites for which there was one disturbance type within the 200 m radius. Across our 400 

sites, we sampled 33 individual fires, 159 individual harvest blocks, and 95 individual well pads. 
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Figure 6.1. Variation in disturbance ages sampled with acoustic recorders (dots) at three 

disturbance types for common nighthawk habitat use in the boreal forest of northeastern Alberta, 

Canada. 

For each ARU deployment, we randomly selected up to 20 three-minute recordings 

(mean=8.4, SD=3.3, range=1-20). We used only recordings collected between June 1 and July 31 

when common nighthawks are on their breeding territories in the study area (Knight et al. 2021a; 

Ng et al. 2018) and within a half hour before sunset to 1.5 hours after sunset, when the 

probability of detecting common nighthawks in the study area is maximized (Knight et al. 2021b, 

Hannah et al. In Review). All recordings were collected by ARUs with two omnidirectional 

microphones (ARUs; SM2, SM2+, and SM3; Wildlife Acoustics Inc.) at a sampling rate of 44.1 

kHz with a 16-bit depth and following a standardized deployment protocol (Lankau 2015). 
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We used Song Scope software (Wildlife Acoustics Inc.) to extract common nighthawk 

detections from all ARU recordings at each station. We used the vocalization for acoustic data 

processing because it is easier for a computer to detect and classify and because the wing-boom 

signal is always accompanied by a call. We trained a recognizer with 50 audio clips of common 

nighthawk vocalizations that were recorded at close-range (mean = 11.7 m; Chapter 3), as 

determined by a human observer (Yip et al. 2020). We used the recognizer to scan the recordings 

using a minimum score threshold of 60 and a minimum quality threshold of 20, which we have 

previously shown optimizes the trade-off between false positive and false negative detections, 

while limiting the effective detection radius of the recognizer to approximately 200 m (Chapter 

2, Chapter 3). The first author visually validated all potential common nighthawk detections 

identified by Song Scope to confirm they were true positive detections. During validation, the 

first author also noted all detections that were accompanied by a mechanical wing-boom display. 

For each disturbance type, we quantified the time since disturbance relative to the time 

the recording was collected. For well sites, time since disturbance was calculated as 1 year for 

active wells and the time since well abandonment (i.e., year when well is sealed, taken out of 

service, and the site is no longer maintained) for inactive wells. We did not use initial clearing 

date to calculate time since disturbance because well sites are maintained as vegetation free 

while active (i.e., continued disturbance). We did not quantify total disturbance size because 

there was a near perfect confound between disturbance size and disturbance type (mean  

standard deviation: well site 0.7  0.4 ha, harvest 59.3  92.5 ha, fire 64,197  155,149 ha). 
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Where multiple disturbances of the same type overlapped, we assigned that area to the most 

recent disturbance. We did not include intensity of disturbance because the majority of fires in 

this region of the boreal forest are classified as burn class 5 (>94% tree kill; Supplementary 

Materials) and there is little to no residual vegetation remaining after forest harvest (< 2% 

residuals; Alpac 2015) and well site clearance (0%). 

We also quantified two vegetation covariates within the 200 m radius that could mitigate 

the effects of time since disturbance on habitat use (Table 6.1). We defined pine forest as any 

areas that had jack pine (Pinus banksia) as the primary tree species and quantified the proportion 

of the 200 m radius that was pine forest at each site. Wetland area fluctuates with annual 

variation in precipitation, so we instead calculated the mean wetland probability within the 200 

m radius for each site from the boreal wetland probability data set, which describes the 

probability of wetland habitat at 10 m resolution for Alberta’s boreal forest (Supplementary 

Materials). 

We calculated the day of year and time relative to sunset for each recording to account 

for any phenological or circadian differences in availability for detection. We also quantified the 

signal-to-noise ratio (StN) and power spectrum density (PSD) of two frequency bands (0.6-1.2 

kHz, 4.4-5.6 kHz) in each recording to quantify potential weather effects on perceptibility via 

sound masking or degradation. We chose these signal bands because they have been shown to be 

effective at classifying heavy rainfall, but also because they correspond to the two acoustic 

signals of the common nighthawk, the call and the mechanical wing-boom signal. We used the 

hardRain package, which uses these two measures to classify heavy rainfall (Metcalf et al., 

2020). To account for potential changes in rainfall intensity during a recording, we quantified 
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StN and PSD for each thirty second interval and calculated the mean for each metric in each 

recording.  

We used an occupancy modeling framework to estimate the probability of common 

nighthawk habitat use using the unmarked package (Fiske 2011) in R version 4.0.3 (R Core 

Team 2020). We interpreted our results as probability of seasonal habitat use instead of 

occupancy because common nighthawks have large home ranges (~40 km2 in the study area; 

unpublished data) and thus do not satisfy the closure assumption that requires they are present 

within the effective detection radius during the time of sampling (MacKenzie et al., 2002). We 

used each recording as a visit to build two sets of habitat models: 1) territorial models that used 

detection or non-detection of the territorial wing-boom signal as the response variable, and 2) 

extraterritorial models that used detection or non-detection of the more general peent call as the 

response variable. For the extraterritorial models, we used only detections at sites where there 

were no wing-booms detected because we were interested in how disturbance affects habitat use 

outside of the breeding territory (i.e., foraging, travelling, and roosting). For each set, we 

conducted our analysis in four stages. Prior to each analysis, we screened our predictor variables 

and removed any with a variance inflation factor (VIF) greater than 5 or covariation greater than 

0.7.  

First, we tested for effects of day of year, time relative to sunset, PSD and StN on 

common nighthawk detectability to determine which variables to include in subsequent analyses. 

For each model set (territorial, extraterritorial) we built a global model with all detectability 

covariates and compared it to all potential simpler models with AICc. We inspected all variables 

with generalized additive models (GAMs) and included StN values as second-order polynomials 
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in the occupancy model based on these results. We excluded PSD for the higher frequency band 

(4.4-5.6 kHz) because it was highly correlated with PSD of the lower frequency band (corr = 

0.88) and had the highest VIF value of the two PSD measurements (4.60 vs 4.57). We did not 

include any occupancy covariates in these models. We used small-sample Akaike’s information 

criterion (AICc; Akaike 1987) to compare models and select the most parsimonious within 

AICc < 2. For each model set, we included the covariates of the best-fitting model as 

detectability covariates in all subsequent analyses. 

Second, we tested for effects of our vegetation covariates, proportion of pine forest and 

mean wetland probability, on common nighthawk habitat use to confirm their use in subsequent 

analyses. To prevent disproportionate influence of heavily sampled areas, we divided our study 

area into a 1 km grid and randomly selected one site for each grid cell from all available sites 

(Ploton et al., 2020; Robinson et al., 2017). For each model set, we built a global model that 

included the amount of pine forest and mean wetland probability and the interaction between the 

two. We included mean wetland probability as a second-order polynomial because common 

nighthawk probability of occurrence has previously been shown to be highest at intermediate 

values of wetland probability (Chapter 5). We bootstrapped this sampling and model fitting 

process 100 times and calculated the mean AICc value for each model across bootstraps. We 

selected the best fitting model for each model set as the most parsimonious model with mean 

AICc < 2. For each model set, we added the vegetation covariates of the best fitting model as 

occupancy covariates in subsequent analyses.  

Third, we investigated whether disturbance type affects common nighthawk habitat use, 

and if so, whether there is an interaction with time since disturbance. We again spatially thinned 

our dataset for this analysis by selecting up to one site for each 1 km grid cell for each 
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disturbance type. For sites where there was more than one disturbance, we used the minimum 

time since disturbance as the response variable (0.85 correlation with mean time since 

disturbance). We also included an interaction between time since disturbance and the relevant 

vegetation covariates to assess our predictions about vegetation type mitigating negative effects 

of time since disturbance (Table 6.1). For each model set, we built a global model with both 

interactions and all additive effects and compared it to all simpler models that included the 

relevant vegetation covariate for that model set (pine for territorial models, wetland for 

extraterritorial models). We bootstrapped this sampling and model fitting process 1000 times. 

We selected the best fitting model for each model set as the most parsimonious model with mean 

AICc < 2. 

We processed 4,523 3-minute ARU recordings from 326 sites and 400 ARU deployments 

(i.e., combinations of site and deployment year). The recognizer reported a possible 25,129 

common nighthawk detections, 16,351 of which were true positive common nighthawk calls. 

672 of those true positives were accompanied by a territorial wing-boom display. The territorial 

detections occurred at 44 of the sites, 116 of the ARU deployments and 460 of the ARU 

recordings, resulting in a predicted probability of detection of 0.20 (0.16-0.25 95% CI) when all 

detectability covariates were held at their mean. The remaining extraterritorial detections 

occurred at 50 of the sites, 56 of the ARU deployments and 497 of the ARU recordings, 

predicted probability of detection of 0.18 (0.15-0.22 95% CI) when all detectability covariates 

were held at their mean. 
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The selected model for both territorial and extraterritorial habitat use included only the 

signal to noise ratio (StN) of the higher frequency band (4.4-5.6 kHz; Table 6.2, Figure 6.2). 

Time relative to sunset and day of year both had positive effects on territorial and extraterritorial 

habitat use, but were not included in the selected models, likely because we selected recordings 

for times and dates with high detectability. 

Table 6.2. Occupancy model selection results for detectability of common nighthawk territorial 

and extraterritorial habitat use. Comparison included global model and all potential simpler 

models with time relative to sunset (time), day of year (day), power spectrum density (PSD) and 

signal to noise ratio (StN) of two frequency bands. Only the top 5 models are shown, sorted in 

descending order by mean model weight (Wt). Bold indicates the most parsimonious model 

within AICc < 2 that was selected to include the covariates of in subsequent analyses. Psi ~ 1 

for all models. 

Model K AICc AICc Wt 

Territorial habitat use 

p ~ PSD1 + StN22 + time 6 875.67 0.00 0.18 

p ~ StN22+ time 5 876.05 0.38 0.15 

p ~ StN22 4 876.12 0.46 0.14 

p ~ PSD1 + StN22 5 876.31 0.64 0.13 

p ~ StN22 + time + day 6 877.57 1.90 0.07 

Extraterritorial habitat use 

p ~ StN22 4 996.25 0.00 0.56 

p ~ StN12 + StN22 6 996.59 4.03 0.07 

p ~ StN12 + StN22 + day 7 998.06 5.50 0.04 

p ~ StN22 + time 5 998.13 5.57 0.03 

p ~ StN22 + day 5 998.13 5.58 0.03 
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Figure 6.2. Predicted effects of detectability covariates on probability of detection (left) and of 

vegetation covariates on probability of habitat use (right) for territorial and extraterritorial 

common nighthawks. Lines and shaded areas represent predicted mean and 95% confidence 

intervals from occupancy models. Vegetation covariate predictions are the mean of 100 

bootstraps used to spatially thin the available dataset. 

The selected model for territorial habitat use included only the proportion of pine forest 

within 200 m and the selected model for extraterritorial habitat use included only a quadratic 
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effect of mean wetland probability within 200 m (Table 6.3, Figure 6.2). Across the 100 

bootstraps, there was a mean 0.10 increase in probability of detection for every 10% increase in 

proportion of pine forest within 200 m. The highest probability of extraterritorial habitat use was 

at approximately 50% wetland probability. 

Table 6.3. Occupancy model selection results for effects of vegetation on common nighthawk 

territorial and extraterritorial habitat use. Models included the proportion of pine within 200 m 

(pine) and a quadratic effect of the mean wetland probability within 200 m (wetland2; also 

includes the linear term). Data were spatially thinned to a 1 km grid and the analysis was 

bootstrapped 100 times. Results are the mean and standard deviation (SD) of AICc, AICc, and 

model weight (Wt) across the 100 bootstraps. Bold indicates the most parsimonious model 

within mean AICc < 2 that was selected to include the covariates of in subsequent analyses. 

Model K AICc AICc Wt 

Territorial habitat use 

psi ~ pine + wetland2 7 494.97 

(SD=48.42) 

0.61 

(SD=0.9) 

0.43 

(SD=0.17) 

psi ~ pine 5 495.67 

(SD=48.61) 

1.3 

(SD=1.36) 

0.32 

(SD=0.15) 

psi ~ pine*wetland2 9 496.1 

(SD=48.55) 

1.74 

(SD=1.28) 

0.26 

(SD=0.15) 

psi ~ wetland2 6 513.8 

(SD=52.61) 

19.44 

(SD=6.06) 

0.00 

(SD=0.00) 

psi ~ 1 4 522.08 

(SD=53.86) 

27.72 

(SD=6.69) 

0.00 

(SD=0.00) 

Extraterritorial habitat use 

psi ~ wetland2 6 698.8 

(SD=30.5) 

0.00 

(SD=0.00) 

0.65 

(SD=0.03) 

psi ~ pine + wetland2 7 700.69 

(SD=30.47) 

1.89 

(SD=0.23) 

0.25 

(SD=0.02) 

psi ~ pine*wetland2 9 704.17 

(SD=30.45) 

5.38 

(SD=0.63) 

0.05 

(SD=0.01) 

psi ~ 1 4 705.23 

(SD=30.6) 

6.43 

(SD=1.61) 

0.03 

(SD=0.02) 

psi ~ pine 5 706.67 

(SD=30.53) 

7.87 

(SD=1.56) 

0.02 

(SD=0.01) 

The selected model for territorial habitat use was the global model including time since 

disturbance and an interaction with both disturbance type and proportion of pine forest (Table 
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6.4). The probability of territorial habitat use declined with time since disturbance for all 

disturbance types but was mitigated by the proportion of pine forest present within 200 m. When 

there was a high proportion of pine forest within 200 m, postharvest and post-disturbance well 

sites had an almost perfect mean predicted probability of habitat use, while postfire areas had a 

slightly lower initial probability (0.75; Figure 6.3). In contrast, the predicted probability of 

habitat use at postfire sites with minimal pine forest was between 0.01 and 0.50 across the tree 

disturbance types. Probability of habitat use dropped steeply at postharvest sites, reaching 0 at 

approximately 20 years postharvest for sites with minimal pine forest and approximately 40 

years for sites with high proportions of pine forest. Mean probability of habitat use dropped less 

steeply at post-disturbance well sites, and even more slowly at postfire sites with a high 

proportion of pine forest; however, the 95% confidence intervals were quite wide for all 

estimates. Interestingly, the probability of habitat use at postfire sites with minimal pine 

increased with time since disturbance, reaching approximately 0.21 at 77 years post-disturbance. 

We investigated the landscape context of the six sites with wing-boom detections that were 

driving this relationship and found that all of them were in lowland areas interspersed with 

islands of sparse pine forest and that all had areas of pine forest just outside our 200 m buffer 

radius. 

There was minimal evidence that common nighthawk extraterritorial habitat use outside 

the territory is influenced by disturbance; the selected model for extraterritorial habitat use 

included only a quadratic effect of mean wetland probability (Table 6.4). 
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Table 6.4. Occupancy model selection results for effects of disturbance type (type) and time 

since disturbance (time) on common nighthawk territorial and extraterritorial habitat use. 

Territorial models also included the proportion of pine within 200 m (pine) and extraterritorial 

models also included the mean wetland probability within 200 m (wetland). Data were spatially 

thinned to a 1 km grid and the analysis was bootstrapped 100 times. Results are the mean and 

standard deviation (SD) of AICc, AICc, and model weight (Wt) across the 100 bootstraps. Bold 

indicates the most parsimonious model within mean AICc < 2 that was selected to include the 

covariates of in subsequent analyses. 

Model K AICc AICc Wt 

Territorial habitat use 

psi ~ time*type + time*pine 11 421.02 

(SD=21.13) 

0.22 

(SD=0.51) 

0.52 

(SD=0.23) 

psi ~ time*type + pine 10 423.09 

(SD=21.16) 

2.29 

(SD=2.48) 

0.23 

(SD=0.14) 

psi ~ pine 5 424.39 

(SD=20.51) 

3.59 

(SD=2.4) 

0.12 

(SD=0.09) 

psi ~ time + pine 6 426.35 

(SD=20.5) 

5.55 

(SD=2.4) 

0.05 

(SD=0.03) 

psi ~ time*pine 7 427.51 

(SD=20.31) 

6.71 

(SD=2.25) 

0.03 

(SD=0.03) 

Extraterritorial habitat use 

psi ~ wetland2 6 597.12 

(SD=33.36) 

0.03 

(SD=0.14) 

0.43 

(SD=0.09) 

psi ~ time + wetland2 7 598.68 

(SD=33.46) 

1.58 

(SD=0.47) 

0.20 

(SD=0.04) 

psi ~ type + wetland2 8 599.28 

(SD=33.36) 

2.19 

(SD=1.06) 

0.15 

(SD=0.06) 

psi ~ time*wetland2 9 599.82 

(SD=33.52) 

2.73 

(SD=1.17) 

0.12 

(SD=0.06) 

psi ~ time + type + wetland2 9 601.27 

(SD=33.41) 

4.17 

(SD=1.06) 

0.06 

(SD=0.02) 
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Figure 6.3. Predicted effects of disturbance and proportion of pine forest on probability of 

territorial habitat use (right) for common nighthawks. Lines and shaded areas represent predicted 

mean and 95% confidence intervals from occupancy models. Predictions are the mean of 100 

bootstraps used to spatially thin the available dataset. 

To inform boreal forest management, we modelled different types of habitat use to test 

two competing hypotheses for why common nighthawks use post-disturbance areas in the boreal 

forest: nesting or foraging resources. We used occupancy models of territorial and extraterritorial 

detections of common nighthawks from passive acoustic monitoring to test three lines of 

evidence for our two hypotheses (Table 6.1). Across all three lines of evidence, we found support 

for the nesting resource hypothesis. For our first line of evidence, time since disturbance 

negatively affected territorial habitat use, but not extraterritorial habitat use, confirming that this 

species is only a disturbance specialist for the territorial component of its home range. For our 

second line of evidence, territorial habitat use differed between disturbance types, with higher 

probability of habitat use for harvest and well site disturbances immediately after disturbance. 

For our third line of evidence, pine forest mitigated the effects of time since disturbance for 
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territorial habitat use for all three disturbance types, but especially for postfire areas. 

Extraterritorial habitat use was affected only by mean wetland probability. Although common 

nighthawks almost certainly also use post-disturbance areas for foraging resources as well, we 

conclude that the relative importance of nesting resources is the primary driver of post-

disturbance habitat use. We discuss each line of evidence below and the management 

implications of our results. 

Successional stage affects the abundance and distribution of many boreal bird species 

(Hobson and Schieck, 1999; Schieck and Song, 2006). Whether the effects of succession are 

because birds are adapted to disturbance itself or to the resultant vegetation structure is unclear 

(Bunnell 1995, Thompson 2008). Regardless, we confirmed that the highest probability of 

common nighthawk territorial habitat use is immediately after disturbance. We conclude this 

effect of time since disturbance is due to vegetation succession that renders sites unsuitable for 

laying eggs on bare ground for nesting, as opposed to change in the foraging resources because 

we did not find any disturbance effects for extraterritorial habitat use and common nighthawks 

do not restrict their foraging to the territory (Brigham et al., 2011). Hagar et al. (2004) concluded 

common nighthawks only occupied thinned forest stands and not intact forest due to increased 

nesting opportunities and foraging opportunities provided by a more open canopy. Farrell et al. 

(2017) previously found no difference between harvest, fire, and wetland sites; however, they 

also examined habitat use at the home range scale and thus were unable to disentangle the effects 

of wetlands on extraterritorial habitat use and disturbance on territorial habitat use. 

Although our time since disturbance results confirm common nighthawks track 

disturbance across the landscape, the mechanism through which this occurs is less clear. Do 
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common nighthawks find and colonize new disturbances during natal or adult dispersal? In other 

words, does the breeding habitat at post-disturbance sites become unsuitable as succession 

proceeds and breeding adults relocate elsewhere, or does the population at a given site go extinct 

as the breeding adults die off? In landscapes with relatively high disturbance rates, like the boreal 

forest, specialists are expected to have high dispersal abilities (Büchi & Vuilleumier 2016; Johst 

et al. 2002) and the extreme mobility of the common nighthawk corroborates this dispersal 

ability. Territorial fidelity is high in this species (Gross 1940, Dexter 1961, Ng 2018, Chapter 4) 

pointing towards natal dispersal as the mechanism driving metapopulation dynamics. Within a 

population, the abundance of disturbance specialists that rely on natal dispersal to find suitable 

habitat is expected to track the same trajectory as the survival curve for that species (Southwood 

1977); however, the lifespan of the common nighthawk is unclear, so we are unable to evaluate 

this hypothesis (Brigham et al., 2011). Future research to inform common nighthawk 

management should use mark-recapture techniques to disentangle the relative roles of 

survivorship and natal and adult dispersal on the metapopulation dynamics of common 

nighthawks (Driscoll et al. 2010). 

Differences between disturbance types in the rate at which probability of habitat use 

declines with time since disturbance suggests adult dispersal is at least partially responsible for 

the decline in territorial habitat use. Succession rate likely differs between disturbance types, 

which results in adults dispersing to new breeding territories at different rates. Succession at well 

sites is slower than at forest harvest sites (Osko 2001), and we found the rate of decline of 

common nighthawk habitat use reflected this difference in succession. Succession at postfire 

sites is also slower that at forest harvest sites because fire kills the understory layer, while 
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harvest either simply tramples or in some cases retains it (Seedre et al. 2011), and we also found 

the rate of decline of habitat use reflected this difference. Differences in rate of decline of habitat 

use between disturbance types may also be driven by the vegetation community, which 

regenerates at different rates. Harvested areas are typically in mixedwood or trembling aspen 

(Populus tremuloides) stands and occur during winter (Chen & Popadiouk 2002), which 

regenerate fastest, while fires and oil well sites can occur in any vegetation type and fires can 

also be a range of severities.  

We also found differences in the initial probability of territorial habitat use between 

disturbance types. As per our predictions for the nesting resource hypothesis, we suggest 

differences in initial probability are likely driven by differing effects on the amount of residual 

vegetation immediately following disturbance (Bognounou et al. 2021). If foraging resources 

were the driver of post-disturbance habitat use, then we would expect to see the highest initial 

probability of habitat use in postfire areas because they a) have higher availability of wood-

boring beetle prey in the first decade after disturbance, which common nighthawks are known to 

consume (Knight et al. 2018), and b) postfire areas likely have higher aerial insect availability 

due to higher amounts of residual vegetation (Deans et al. 2005; Morissette et al. 2002). Instead, 

we saw the lowest initial probability of habitat use at postfire areas, likely due to those higher 

amounts of downed woody debris and residual vegetation (McRae et al. 2001) that reduce 

nesting substrate availability. We note, however, that there is substantial variability in downed 

and residual vegetation across postfire and postharvest sites (Lindenmayer et al. 2019), which 

may be in part responsible for the large confidence intervals around our estimates. This is in 

direct contrast to many other disturbance-specialist species, which are attracted to post-
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disturbance sites specifically for the wood-boring beetle prey and cavity nesting opportunities 

(Saab et al. 2007; Tingley et al. 2020). 

There are also potential confounds that could contribute to differences between 

disturbance type. Disturbance size is directly confounded with disturbance type in the boreal 

forest, and so we were unable to examine its effects here. As per island biogeography theory, fire 

size is expected to be positively related to occupancy and abundance (Turner et al. 1997). Black-

backed woodpeckers show the opposite relationship because they are limited by dispersal 

distance (Tingley et al. 2018). Given that common nighthawks are unlikely to be dispersal 

limited, we would expect postfire areas to have the highest probability of habitat use because 

they are the largest disturbance type; however, this is opposite of our results. 

Pine forest is the least productive stand type in the boreal forest because it typically 

grows in sandy soil with low organic content. The positive effect of proportion of pine forest on 

common nighthawk territorial habitat use was stronger than any of the other covariates we 

examined and pine forest mitigated the effects of time since disturbance by increasing the initial 

probability of habitat use and decreasing the rate of decline of habitat use. This effect of pine 

forest provides strong support for the nest resource hypothesis because if common nighthawks 

were attracted to disturbance for the foraging resources, we would expect them to avoid pine 

forest due to the relatively low availability of aerial insects. In fact, this propensity for pine forest 

suggests that common nighthawks are not necessarily disturbance specialists, but rather “bare 

ground specialists”, at least on territory. This label jibes with common nighthawk nesting habitat 

in other biomes, including coastal sand dunes and beaches, rocky outcrops, sagebrush and 

grassland habitat, and flat gravel rooftops (Brigham et al., 2011). Across biomes, common 
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nighthawk select nest sites with high amounts of bare ground (Allen & Peters 2012; Lohnes 

2010). 

Outside of the territory, mean wetland probability was the only covariate that affected 

habitat use. Areas of open water are important for breeding common nighthawks in southern 

landscapes because large flocks of individuals are frequently seen foraging for emergent insects 

over lakes and rivers in southern ecosystems (Brigham et al., 2011) and presence-absence 

modelling in southern Saskatchewan found that common nighthawks use home ranges closer to 

areas of open water (Ng, 2009). Although the distribution of aerial insect availability in the 

boreal forest is more homogenous than in grasslands, wetland areas may still provide richer 

foraging resources. Probability of extraterritorial use was highest at intermediate levels of mean 

wetland probability, suggesting that common nighthawks are using wetland edges for foraging, 

as opposed to over the middle of large wetland complexes. Maximal use at wetland edges may 

be because the vegetation zonation from emergent to submergent community supports higher 

species richness and abundance of aquatic emergent insects (Stagliano et al. 1998, Bush and 

Wissinger 2016). 

The conclusion that the common nighthawk is a disturbance specialist or “bare ground 

specialist” bodes well for the persistence of this species on the boreal landscape. In the 

northwestern boreal, where anthropogenic disturbance from forestry and oil and gas extraction is 

the dominant disturbance (Pickell et al. 2014), we found no detrimental differences in common 

nighthawk habitat use between natural and anthropogenic disturbance types. We also suggest 

increases in the frequency and severity of fires due to climate change (de Groot et al. 2013) will 

likely benefit nighthawks due to the resultant greater availability of bare ground for nesting. We 
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caution that although we found no negative differences in disturbance effects of anthropogenic 

disturbance types on common nighthawk habitat use, that there may still be differences in vital 

rates (e.g., nest success, juvenile survivorship) that reflect differences in habitat quality between 

disturbance types (Johnson 2007). For example, postharvest areas can be ecological traps for 

Olive-sided Flycatchers (Contopus cooperi) because they preferentially select postharvest areas 

but have lower reproductive success than in postfire areas (Robertson & Hutto 2007). We also 

note that our study only examined disturbance effects at the local scale, but the spatial context of 

disturbance on the landscape (i.e., disturbance regime) can also affect habitat use (Turner 2010); 

thus, it remains unknown whether fire, forestry, and oil and gas disturbance regimes have 

differing effects on common nighthawk habitat use. The disturbance regime affects the process 

of colonization for metapopulation-structured species (Amarasekare & Possingham 2001) and 

the oil and gas disturbance regime is a completely novel regime on the boreal landscape (Pickell 

et al. 2013); therefore, future research should use a cumulative effects framework to examine if 

the novel disturbance regime of the northwestern boreal forests drives common nighthawk 

metapopulation dynamics.  

Although we found no negative differences in common nighthawk habitat use between 

disturbance types, care must be taken in disturbed areas to avoid undue harm to disturbance 

specialist species that are already using that habitat. Given that common nighthawks use recently 

disturbed areas as ground-nesting habitat, post-disturbance activities such as chain-dragging, 

furrow trenching, and replanting cutblocks, clearing and maintenance of wells and lines at well 

sites, retention logging of burned areas, and vehicle access to any disturbed area all have the 

potential to disturb nesting adults and/or destroy their nests. These activities should be done 

outside the breeding season whenever possible to avoid disturbing nesting common nighthawks, 
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particularly in Canada where this species is protected under the Migratory Bird Conservation Act 

SC 1994 and the Species at Risk Act SC 2002. We note that the common nighthawk breeding 

season extends later than most songbirds in the boreal forest, with the potential for eggs from the 

beginning of June through mid-August and the potential for flightless young possible through 

late August (unpublished data). If activities cannot be scheduled outside this breeding season, 

pre-activity surveys should be conducted to evaluate the potential for nesting common 

nighthawks. We showed here that common nighthawks only use disturbed areas for territorial 

purposes, and so not all common nighthawk detections should be of concern. Surveys should 

focus on the presence of the wing-boom signal, which is an indication of the nest location 

(Chapter 4). These recommendations should be applied to other managed disturbance types 

including transmission lines and open-pit mines. 

We conclude by suggesting that understanding the behavioural context of habitat use is 

important for effective management. The operational scale of forest management (e.g., stand 

size) is more likely to be aligned with the scale of habitat components than that of the home 

range for highly mobile species like the common nighthawk. Examining different types of 

habitat use not only provided insight into our contrasting nest and food resource hypotheses, but 

also revealed that the ‘disturbance specialist’ label is context-dependent: Common nighthawks 

are not disturbance specialists outside of the territory. Behaviour-specific habitat studies have 

similarly revealed attributes of function-specific habitat components like encampment behaviour 

of elephants (Roever et al. 2013) and prey capture locations of burrowing owls (Atene 

cunicularia; Marsh et al. 2014) that would otherwise have been masked with home range 

analyses. Behavioural context of habitat use is particularly important for highly-mobile species 
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because they often use spatially distinct habitats to fulfill their life-history needs as opposed to 

multitasking within a single geographic area (Frans et al. 2017; Law & Dickman 1998; Roever et 

al. 2013). Furthermore, ignoring habitat function can lead to erroneous conclusions about habitat 

attributes because function-specific habitats can have opposing attributes that nullify, change the 

strength of, or distort the signal of habitat use (Roever et al. 2013). We advocate that 

understanding the behavioural context of habitat analyses can help inform management of other 

species with large home ranges.  



 156 

Disturbance covariate data sources: We used a different data source to quantify each 

disturbance type (fire, harvest, wells). Historical wildfire perimeters were sourced from the 

Alberta Ministry of Agriculture and Forestry (2018; Table 6.A.1). Harvest polygons was sourced 

from the Alberta Biodiversity Monitoring Institute (ABMI) wall-to-wall human footprint 

inventory (2016; Table 6.A.1) using the feature type “HARVEST-AREA”. Well polygons were 

also sourced from the ABMI wall-to-wall human footprint inventory using both active wells 

(WELL-BIT, WELL-GAS, WELL-CASED, WELL-OTHER, WELL-OIL feature types) and 

abandoned wells (WELL-ABAND feature type). We assigned time since disturbance as 1 year 

for active wells and used the year of disturbance field for abandoned wells, which identifies the 

year that well was last drilled. We then converted all three disturbance type layers to raster to 

prioritize the most recent disturbance where multiple disturbances of the same type overlapped. 

We resampled each raster layer to 30 m resolution to standardize it across datasets. We then 

converted the raster layers back to polygons for further processing with buffers (see Covariate 

quantification below). 

Vegetation covariate data sources: We also sourced each vegetation covariate (pine, 

wetland) from separate data sources. We used the Alberta vegetation inventory (AVI) from the 

Alberta Government (2013; Table 6.A.1) to quantify pine forest habitat by identifying all 

polygons for which the primary dominant tree type was jack pine (Pinus banksia). We used the 
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ABMI boreal wetland probability (Hird et al. 2017; Table 6.A.1) dataset to quantify wetland 

habitat. We also resampled both vegetation layers to 30 m cell size to standardize resolution. 

Covariate quantification: We quantified all three of our occupancy covariates (time 

since disturbance, proportion of pine forest, mean wetland probability) for a 200m radius buffer 

around each site where an ARU was deployed. For time since disturbance, we determined 

whether or not there was a disturbance (i.e., 1 or 0) within the 200 m buffer for each of the three 

disturbance types by clipping each disturbance polygon layer with a layer of 200 m buffers for 

each site. For pine forest, we quantified the proportion of the 200 m buffer that was pine forest 

by clipping the pine polygon layer with the 200 m buffer layer. For wetland probability, we 

calculated the mean wetland probability within the 200 m buffer. 
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Table 6.A.1. Source geospatial datasets used to extract environmental variables for common nighthawk habitat modelling. 

Dataset 

name 
Description Proprietor Original 

data 

format 

(cell size) 

Variables 

extracted 
Available from 

(access date) 
Available 

reference or 

metadata 

Historical 

Wildfire 

Perimeters 

Polygon features representing wildfire 

perimeters dating back to 1931. The datasets 

from 1998 on should include most of the 

fires 12 hectares (29.7 acres) or larger that 

occurred within the legislated Forest 

Protection Area. The datasets prior to these 

years may include some fires smaller than 

200 hectares (494.2 acres), but the emphasis 

on the data collection for these years was to 

provide Class E fires (wildfire larger than 

200 hectares or 494.2 acres). 

Alberta 

Agriculture 

and Forestry 

Vector Time since 

fire 
https://wildfire.albert

a.ca/resources/histori

cal-data/spatial-

wildfire-data.aspx 

(March 5, 2019) 

https://wildfire.alb

erta.ca/resources/hi

storical-

data/default.aspx 

Human 

Footprint 

Inventory 

Twenty one human footprint categories 

(based on more than 115 anthropogenic 

disturbance types) collated into a single 

integrated dataset by applying a specific 

order of precedence. The dataset was 

developed in part by a collaborative effort 

of data accumulation between the 

Government of Alberta and the ABMI, 

together forming the Alberta Human 

Footprint Monitoring Program (AHFMP) to 

better enhance and update human footprint 

data in Alberta. 

Alberta 

Biodiversity 

Monitoring 

Institute 

Vector Time since 

harvest, 

time since 

well site 

disturbance 

https://www.abmi.ca

/home/data-

analytics/da-top/da-

product-

overview/Human-

Footprint-

Products/HF-

inventory.html 

(September 9, 2019) 

https://ftp-

public.abmi.ca/GI

SData/HumanFoot

print/2016/HFI201

6_Metadata.pdf 



159 

 

Dataset 

name 
Description Proprietor Original 

data 

format 

(cell size) 

Variables 

extracted 
Available from 

(access date) 
Available 

reference or 

metadata 

Alberta 

Vegetation 

Inventory 

This photo-based digital inventory dataset is 

a compilation of the original blocks of 

Crown Alberta Vegetation Inventory data 

collected using aerial photography dating 

between 1987 and 2014. A variety of 

standards was used to collect the original 

blocks of data. It was developed to identify 

the type, extent and conditions of vegetation 

in the province. 

Alberta 

Agriculture 

and Forestry 

Vector Proportion 

of pine 
https://geodiscover.a

lberta.ca/geoportal/r

est/metadata/item/10

0b275712b442acbda

4a0358d8a4951/html 

(Feb 12, 2013) 

https://www.albert

a.ca/vegetation-

inventory-

standards.aspx 

Boreal 

Wetland 

Probability 

The Boreal Wetland probability dataset was 

generated using a machine learning 

framework in R statistical software. The 

machine learning model was based off of a 

Digital Elevation Model, optical satellite 

data, and Synthetic Aperture Radar data. 

The model was trained with photo-plots that 

were derived from high resolution 3D image 

interpretation and give detailed attribution 

of land cover information. 

Alberta 

Biodiversity 

Monitoring 

Institute 

Raster 

(10 m) 
Mean 

wetland 

probability 

https://abmi.ca/home

/data-analytics/da-

top/da-product-

overview/Advanced-

Landcover-

Prediction-and-

Habitat-Assessment-

-ALPHA--

Products/Boreal-

Wetland-Probability-

Data.html 

(September 10, 

2019) 

Hird et al. 2017 
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Density and population estimation is at the core of wildlife management, particularly at 

the regional, national, or species range scale. Passive acoustic monitoring and automated 

recognition have the potential to greatly facilitate population estimation via efficient collection of 

multi-visit data; however, existing approaches to estimate density from data produced by 

recognizers are limited and not particularly well-suited for application at large geographic scales. 

We developed a five-step density estimation approach for recognizer data that is based on the 

theoretical cascade of processes that occur from habitat suitability through to species detection. 

First, we used time to detection from the occurrence dataset produced by recognizers to estimate 

availability for detection. Second, we used conditional likelihood zero-inflated models to 

estimate occupancy of suitable sites from a dataset of abundance at a subset of our acoustic 

recordings. Third, we use the results from the previous two steps as inputs for a modified 

occupancy model that estimates habitat suitability and the probability of species presence during 

survey (i.e., closure). Fourth, we used a known distance dataset to estimate the effective survey 

area of our recognizer. Fifth, we combined the parameters from the previous approaches to 

estimate and predict density and territory size across our study sites and areas. We used our 

approach to estimate density of territorial male common nighthawks in four study areas in 

Canada’s western boreal forest: two in recently burned areas (“wildfire”) and two in forests of 

mid to late seral stages (“multi-seral”). We used two pieces of information to validate our 

approach. First, density was much higher in wildfire areas (0.038 and 0.030 males/ha) than 
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multi-seral areas (0.000 and 0.005 males/ha), which is congruent with the “disturbance-

specialist” habitat preferences of territorial common nighthawks. Second, our territory size 

estimates for one of the wildfire areas (9.7 ha/male) was nearly identical to estimates from VHF-

tagged birds for the same area (10.2 ha/male). Our novel approach to density estimation is 

flexible, can be applied at large scales, incorporates habitat effects, and is suitable for mobile 

species that do not necessarily satisfy the closure assumption of multi-visit modelling. We are 

confident it will be an excellent tool in the toolbox of density estimation, particularly for species 

assessment and recovery, which occur at large geographic scales. 

Across the globe, species density and population size estimates are a fundamental 

component of wildlife management and conservation. Population size estimates are used in 

addition to trend estimates as criteria for assessing species conservation status across agencies 

and jurisdictions, usually following criteria set out by the International Union for the 

Conservation of Nature (IUCN 2012). Population size is also often used as part of the recovery 

objectives for species of conservation concern (National Recovery Working Group 2005). 

Finally, spatial variation in population density needs to be quantified for prioritizing landscapes 

with higher conservation values (e.g., the abundance center hypothesis) (Brown 1984). For 

example, information on spatial variation in density and abundance helps inform Critical Habitat 

Identification for species listed as Threatened in Canada (Government of Canada 2016). Density 

estimation as a means of estimating population size and providing a more nuanced understanding 

of habitat use (vs. occupancy models) is thus an important tool for management of bird 

populations. 
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A variety of density estimation approaches are available due to the importance of this 

metric for wildlife management; however, existing methods that provide reliable estimates are 

time and/or cost intensive and thus limit their application at the national or range-wide scales that 

are often used for wildlife management. For example, distance sampling requires highly trained 

observers to reliably estimate distance of vocalizing animals (Buckland et al. 2005, 2015), 

repeated count approaches require multiple visits by trained observers (MacKenzie et al. 2002, 

2006), and mark-recapture requires intensive trapping and handling effort of wild animals 

(Pollock et al. 1990). In contrast, methods like the Partners in Flight approach that use existing 

community science datasets like the North American Breeding Bird Survey (BBS) are 

inexpensive to estimate population size at national and range-wide scales (Will et al. 2020) but 

are known to be imprecise in various situations (Thogmartin et al. 2006; Sòlymos et al. 2020; 

Thogmartin 2010). Furthermore, these wide-ranging approaches are ineffective for species that 

are rare, irruptive, colonial or semi-colonial, and vocalize rarely or at different times of day and 

thus are not well monitored by traditional dawn point count surveys like the BBS (Matsuoka et 

al. 2014; Rosenberg et al. 2017). 

Passive acoustic monitoring (PAM) offers an alternative approach to data collection for 

wildlife monitoring and research at large geographic scales. The number of studies that use PAM 

for all purposes, including density estimation (Pérez‐Granados & Traba 2021), has increased 

over the last two decades (Shonfield & Bayne 2017; Gibb et al. 2018; Sugai et al. 2018). 

Autonomous recording units (ARUs) are cost and time effective because they allow for multiple 

visits, are better for detecting rare species, and can be scheduled to record those species that are 

not well surveyed by dawn recordings.  
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One of the drawbacks to PAM is the time and skill required to process the acoustic 

recordings into detections of species (Shonfield & Bayne 2017; Gibb et al. 2018; Sugai et al. 

2018). In response, a variety of computer algorithms have been developed to automatically 

process acoustic recordings (Priyadarshani et al. 2018; Stowell et al. 2018). Acoustic indices 

quantify and summarize recordings into single metrics of the amount of sound in each one-

minute interval (i.e., the soundscape), which can be used to quantify disturbance and biodiversity 

(Lawrence et al. 2019). Several authors have attempted to use acoustic indices to estimate 

density, with limited success (Arneill et al. 2020; Orben et al. 2019). The alternative is 

automated recognition, where the computer scans acoustic recordings and assigns classification 

probabilities to detected sounds for the species (or multiple species) it has been trained to 

classify (Gibb et al. 2018; Priyadarshani et al. 2018). The hurdle with automated recognition is 

that it produces occurrence rather than abundance data because the algorithm is trained at the 

species level and individuals are indistinguishable to the computer (Priyadarshani et al. 2018). 

Existing methods for density estimation from recognizer data therefore rely on 

supplementary information sources. The first type of model uses vocal activity rates as a proxy 

for abundance in a distance sampling framework (Sebastián-González et al. 2018; Pérez‐

Granados & Traba 2021). Unfortunately, the variation in vocal activity rate across time, space, 

and ecological conditions limits the use of these models to the context under which the vocal 

activity rate data was collected and they are unlikely to be reliable if implemented at broad 

geographic scales (Pérez‐Granados et al. 2019; 2021). The other type of density model for 

automated recognition data uses paired human point counts for abundance information in a 

multi-visit n-mixture framework (Doser et al. 2021). These models are thus not full passive 

acoustic monitoring approaches; they still require data collection by skilled observers. 
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Furthermore, they assume population closure between visits (i.e., recordings) to compute density, 

however, species with large home ranges are sure to move in and out of the survey area between 

visits (Rota et al. 2009). A third group of density model exists, which uses arrays of ARUs 

(Marques et al. 2012; Stevenson et al. 2015); however, the resources required to deploy arrays of 

ARUs as opposed to single point records also renders this approach costly at large geographic 

scales. 

Our goal was to develop a density estimation approach that could be applied to data from 

single point ARUs processed with recognizers and implemented at large geographic scales. Our 

model is based on a theoretical cascade of processes that determine survey outcomes, starting 

with site suitability and ending with detection (Figure 7.1). The model uses four pieces of 

information from three data sources. 1) The time to first detection in each recording from 

occurrence data was used to estimate probability of common nighthawk activity. 2) The 

detection and non-detection information across multiple recordings (i.e., visits) from the 

occurrence data was used to estimate probability of availability, 3) the abundance data from 

recordings with known occurrence was used to estimate mean abundance for each study area, 

and 4) the known distance data was used to estimate perceptibility. The model itself is an 

adaptation of single season single species occupancy modelling (MacKenzie et al. 2002) that 

uses inputs from survival modelling and zero-inflated modelling to account for a) multiple 

individuals at a location (i.e., abundance), and b) deviations from the closure assumption. We 

chose this approach because passive acoustic monitoring, particularly when data is processed by 

recognizers, is well-suited for hierarchical occupancy-style modelling because it creates multi-

visit datasets. 



 165 

We estimated density of the common nighthawk (Chordeiles minor) at four study areas in 

the boreal forest as a case study for our method. Reliable density estimates do not exist for this 

species because it is nocturnal and thus poorly surveyed by existing point count programs 

(Knight et al. 2021b) and is a highly mobile aerial insectivorous species that occupies large home 

ranges (at least 40 km2; unpublished data). Generating meaningful population size estimates for 

the common nighthawk is a conservation priority because it is listed as Threatened under the 

Canadian Species at Risk Act (Environment Canada 2016a) and management for recovery and 

future assessment requires setting population objectives. We collected ARU recordings in 

Canada’s western boreal forest and derived detections of territorial males using automated 

recognition. We used the mechanical wing-boom display of the common nighthawk to identify 

territorial males within recordings (Chapter 4). We estimated density of territorial male common 

nighthawks for four study areas: two that were recently burned by wildfire and two with a 

mosaic of mid and late seral stages (“multi-seral”). We used these study areas because the 

common nighthawk is a ‘disturbance specialist’ in the boreal forest Chapter 6; Sidler 2017; 

Farrell et al. 2017, 2019; Foley 2018), and thus there are reliable predictions about higher density 

in burned areas that we used to rationalize which study areas would be expected to have higher 

density. Territory size estimates are also available for one of our burned study areas (Chapter 4), 

which we also used to validate our estimates. 
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Figure 7.1. Overview of modelling framework for estimating density from passive acoustic 

monitoring data. The top diagram represents the theoretical cascade of processes that occur 

between survey site selection and species detection. The bottom diagram represents the five steps 

of the modelling process. The dashed lines indicate connections between the process and the step 

of the modelling process that estimates the probability of that process. 

We selected four study areas in Canada’s western boreal forest for common nighthawk 

density estimation: two in large, recent (< 10 years) wildfires and two in areas with a mix of mid 

and late seral stages (multi-seral; Figure 7.2). One of each study area type was in the southern 

portion of the western boreal forest in northeastern Alberta, Canada where land use pressure for 

resource extraction is high, and one of each type was in the relatively undisturbed northern 

portion in the Northwest Territories, Canada. We chose these two regions to compare density 

estimates at different latitudes and different levels of anthropogenic disturbance. The vegetation 

(pre-fire for the wildfire sites) was a typical mix of coniferous and deciduous upland forests and 
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lowland peatlands, with varying amounts of jack pine (Pinus banksia), which has previously 

been associated with common nighthawk habitat use (Chapter 5, 6). We chose the perimeter for 

the wildfire study areas as the footprint of the fire that our sampling locations spanned. We chose 

the perimeter for the north multi-seral area as the perimeter of the Edéhzhíe Protected Area that 

contained our sampling locations. We determined the perimeter for the south multi-seral area by 

placing a 5 km buffer around the sampling locations for that region. Known mean territory size 

of territorial male common nighthawks was 10.2 ha (SD = 11.7 ha; Chapter 4) in the south 

wildfire study area. 

 

Figure 7.2. Study areas (left) and individual sampling locations (right) for density estimation of 

common nighthawks from passive acoustic monitoring data. Two study areas were in recent (< 

10 years) wildfires and two were in multi-seral landscapes. 

We randomly selected sampling locations for each of our four study areas from an archived 

dataset of acoustic recordings collected between 2012 – 2016 (https://www.wildtrax.ca/home). 

Within each study area, we randomly selected at least 104 sampling locations, which was the 
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minimum available at our smallest study area. We only selected locations that were at least 500 m 

apart to ensure common nighthawks were not double counted between locations, resulting in 

slightly different sample sizes at each study area (southern multi-seral: n=104, southern wildfire: 

n=105, northern multi-seral: n=134, northern wildfire: n=134). At each of those sampling 

locations, we randomly sampled 30 ten-minute recordings that were collected between 22:00 and 

05:00 when common nighthawks are most vocally active, and between June 1 and July 30 when 

common nighthawks are present on the breeding grounds (Ng et al. 2018; Knight et al. 2021a). All 

recordings were collected by Wildlife Acoustics Inc. ARUs (SM2+, SM3, SM4; Maynard, 

Massachusetts, USA). All recordings were made with two omnidirectional microphones at a 

sampling rate of at least 44.1 kHz with a 16-bit depth.  

We used Song Scope (Wildlife Acoustics 2011) software to extract common nighthawk 

detections from all ARU recordings at each station. Song Scope software has previously been 

shown to perform well for building occurrence datasets for the common nighthawk calls 

(Chapter 2). We trained our recognizer with 138 unmasked clips of common nighthawk calls 

recorded at close proximity (< 50 m). Training recognizers with calls recorded at close proximity 

is important to ensure the processed data meets two important assumptions of density estimation 

(Chapter 3). First, that the probability of detection is approximately one at zero metres, and 

second, that it decays with increasing distance following a half-normal distance curve (Buckland 

et al. 2015; Sòlymos et al. 2013). 

We used the recognizer to scan the recordings using a minimum score threshold of 65 

and a minimum quality threshold of 30, which we have previously shown optimizes the tradeoff 
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between false positive and false negative detections, while ensuring that the probability of 

detecting an individual at 0 m is near 1 (Chapter 2, 3). All potential detections of common 

nighthawks reported by the recognizer were visually and/or aurally validated to confirm whether 

they were true or false positive detections. During validation, observers also noted all detections 

that were accompanied by a mechanical wing-boom display that indicates territorial habitat use. 

Common nighthawks vocalize when they perform a wing-boom display (unpublished data).  

Using the processed occurrence results, we randomly selected at least 14 (minimum 

number available for a study area; south multi-seral: 14, south wildfire: 42, north multi-seral: 20, 

north wildfire: 19) recordings with confirmed nighthawk presence from each study area to 

determine abundance of territorial nighthawks in each recording. Individual common nighthawks 

are vocally distinct (Armstrong 1965) and can be separated by experts through aural and visual 

interpretation of the spectrogram based on call duration, band width, region of maximum 

amplitude, and time between vocalizations (Figure 7.3). The first author reviewed all 

vocalizations with wing-booms in each selected recording and assigned an individual 

identification to each. 
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Figure 7.3. Spectrogram of multiple individual common nighthawks vocalizing and performing 

aerial wing-boom displays. Individuals are labelled A, B, and C and were distinguished visually 

based on call duration, band width, region of maximum amplitude, and time between 

vocalizations. Recorded on June 7, 2016 north of Ft. MacKay, Alberta, Canada. 

We collected recordings of common nighthawk vocalizations with known distances so 

that we could estimate the effective survey area of our recognizer, allowing us to convert our 

abundance estimates into density estimates. We collected 495 clips of common nighthawk 

vocalizations with known distance by attracting territorial males with conspecific broadcast calls 

to the beginning of an transect of ARUs (detailed methods in Chapter 3; Yip et al 2020). We 

scanned those vocalizations with our recognizer using the same score and quality thresholds we 

used to produce the occurrence dataset (60, 35, respectively); EDR decreases with increasing 

score threshold due to the trade-off between true and false positive detections (Chapter 3). The 

first author visually reviewed the recognizer results to remove false positives. The result was a 

binomial dataset of 495 detections and non-detections for vocalizations of known distance. 

We determined two environmental covariates for each study area that were shown to 

affect common nighthawk habitat use (Chapter 5, 6). The first was the proportion of coniferous 

forest within 200 m of each survey location. We reclassified the North American Land Cover 

Classification (30 m cell size; Canadian Centre for Remote Sensing 2010) as coniferous (classes 
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1 and 2). We created a new raster layer with the value of each cell calculated as the mean percent 

coniferous cover within a 200 m buffer. We used this raster-based approach instead of using 

buffers around each recording station to calculate the mean so that we could use the raster to 

create spatial predictions of habitat use later. The second covariate was fire year at each site, for 

which we sourced vector layers for Alberta (Alberta Agriculture and Forestry 2020) and 

Northwest Territories (NWT Centre for Geomatics 2020) and converted to raster layers at the 

same grain and extent as the conifer layer. We extracted the point value of each raster for each 

survey location. For the fire layer, we then converted fire year to time since fire by subtracting 

fire year from recording year. Any locations with no historic fire information were assigned the 

highest time since fire in that region’s dataset. We similarly converted the fire raster layer to time 

since fire for spatial prediction by subtracting fire year from the year the layer was produced. 

Model Overview: We estimated the density of common nighthawks from recognizer-

processed data by adapting the traditional single-season occupancy model (MacKenzie et al. 

2002) to include elements of the qPAD approach (Sòlymos et al. 2013) and zero-inflated 

conditional likelihood (Lambert 1992; Sòlymos et al. 2012). PAM, particularly when data is 

processed by recognizers, is well-suited for hierarchical occupancy-style modelling because it 

creates multi-visit datasets that can be used to estimate detectability. Our model is based on a 

theoretical cascade of processes that determine survey outcomes, starting with site suitability and 

ending with detection (Figure 7.1). As an adaptation of occupancy modelling, these processes 

can be split into two levels: the site level, and the visit level. 
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At the site level, we split the probability of occupancy into two separate parameters: 

suitability and inhabitancy (to differentiate from “occupancy”; Figure 7.1). A site can either be 

suitable or unsuitable habitat, which is determined by the environmental resources (i.e., 

predictors) available at that site. If a site is suitable, it can either be inhabited or uninhabited if 

the habitat is not saturated. Because we are interested in density, not inhabitancy, there can be 1, 

2, 3, or more individuals at occupied sites. In a single season occupancy model, the effect of 

environmental predictors is considered when estimating the probability of occupancy; however, 

we have separated the effect of predictors out by adding this separate suitability parameter so 

that we can use zero-inflated conditional likelihood to estimate the probability of suitable yet 

uninhabited sites from our abundance data, which separates truly uninhabited sites (i.e., true 

zeros) from false negative detections. 

At the visit level, we also split the probability of availability for detection into two 

components: territorial activity and territorial presence (Figure 7.1) (Marsh & Sinclair 1989). An 

occupied site can either have at least one bird that is present or absent at the time of survey. If a 

bird is present, they can either be active and available for detection or not. We separated out 

availability for detection into these two different components, presence and activity, because our 

study species (and many others) are often away from the study site somewhere else in their home 

range. Because we had two different sources of information for availability of detection, time to 

first detection and multiple visits, we were able to separate out presence from activity. And 

finally, if a bird is active on territory, it can be detected or not detected by the ARU and 

recognizer, and this probability of perception is a function of distance. Perceptibility is a critical 

component of density estimation because it determines the amount of area that individuals are 

detected within. We used our separate dataset of detections of known distance to estimate the 
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effective detection radius of our surveys to convert our abundance estimates from the modelling 

process into density estimates. 

In summary, our approach used four pieces of information from three different data 

sources (Figure 7.1). 1) The time to first detection in each recording from occurrence data was 

used to estimate probability of common nighthawk activity. 2) The detection and non-detection 

information across multiple recordings (i.e., visits) from the occurrence data was used to estimate 

probability of availability, 3) the abundance data from recordings with known occurrence was 

used to estimate mean abundance for each study area, and 4) the known distance data was used 

to estimate perceptibility. 

Step 1. Territorial activity: First, we used survival analysis to estimate the probability 

of common nighthawk territorial activity. In other words, for any given recording, what is the 

probability that a nighthawk is active and performing wing-boom displays, if it is present at the 

study site? We fit a parametric survival regression model with time to first wing-boom detection 

in each of our 14,310 recordings as the response variable. For recordings in which a common 

nighthawk was not detected, we treated non-detections as censored events with a time of 

detection of 10 minutes (i.e., recording length). As predictor variables, we included region to 

account for latitudinal differences in territorial activity (Hannah et al. In review), day of year and 

a quadratic effect of day of year to account for seasonal differences in activity, and the sin and 

cos of time of day to account for circadian patterns of activity. We included time of day as 

trigonometric functions of time of day to allow for circularity. The probability of territorial 

activity (paj) for a given recording is thus: 

𝑝𝑎𝑗 = 1 − 𝑒−10𝑎𝑗 
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where ai is the event rate per minute. We built a global model with all predictor variables and 

compared it to all potential simpler models using AICc. We selected the most parsimonious 

model within AICc = 2 and used it to predict the probability of territorial activity for each 

recording in our dataset. 

Step 2. Inhabitancy: Next, we used a conditional likelihood model to estimate the 

proportion of uninhabited but suitable sites in each of our four study areas (Sòlymos et al. 2012). 

In other words, what is the proportion of true non-detections (i.e., true zeros) in our dataset, 

given the distribution of abundances observed at sites with detections? We used our dataset of 

abundance per recording in a zero-inflated model and to estimate the mean abundance of 

common nighthawks (h), conditional on the abundances observed in recordings of known 

occurrence. We fit two sets of models: one with study area as a predictor and a null model. For 

each set, we fit a zero-inflated Poisson model (ZIP) and a zero-inflated negative binomial 

(ZINB) model and selected the model with the lowest AICc. Including ZINB models at this step 

is important because the Poisson distribution does not always reliably fit the abundance-

occupancy relationship that this conditional likelihood step estimates (He et al. 2016). We 

selected the model with the lowest AICc (ZIP with treatment) and then used a sandwich 

estimator to estimate h because our abundance dataset had multiple recordings sampled for 

some survey stations. We randomly sampled one recording for each survey site within the 

abundance dataset and fit our best fitting model to that sample. We repeated the process 300 

times and calculated the mean, 2.5% and 97.5% quantiles of the h estimates. We estimated the 

probability that a given site (Ni) is uninhabited for each study region as: 

𝛲(𝑁𝑖 = 0|𝛿ℎ) = 𝑒−𝜆ℎ 
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Step 3. Suitability and Territorial Presence: Next, we used the outputs from the 

previous two steps as inputs for our modified occupancy model. We made two modifications to 

the traditional single species single season occupancy model, one to each level of the model 

(detectability and occupancy levels) (MacKenzie et al. 2002). 

First, we included the predicted probabilities of territorial activity for each recording as a 

statistical offset on the detectability side of the model, which essentially accounts for differences 

in detectability by converting count data to rates. Including this second source of availability 

information to the multi-visit information in the occupancy model allowed us to separate out the 

two components of availability in each recording (pdj): activity (paj) and presence (ppj; Figure 

7.1): 

𝑝𝑑𝑗 = 𝑝𝑎𝑗𝑝𝑝𝑗 

The benefit of separating these two components of availability is that it removes the closure 

assumption of occupancy modelling, which assumes that if a site is occupied during one survey, 

that it is occupied during all surveys (MacKenzie et al. 2002; Rota et al. 2009). In other words, 

the site is “closed” to movement in and out of the survey radius between visits or recordings. 

Estimating the probability of presence also provides a quantitative estimate of the closure 

assumption for other applications. 

Second, we redefined the probability of occupancy (i) at a given site as the sum of 

suitability (i) and occupied given suitable (1-e-h; Figure 7.1): 

𝛹𝑖 = 𝛿𝑖(1 − 𝑒−𝜆ℎ) 

The covariates included in the model therefore are interpreted as those that predict habitat 

suitability, not occupancy. 
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We fit a global model with both environmental covariates (coniferous, fire) and an 

interaction between the two as predictors of suitability. We compared that global model to all 

simpler models and selected the model with the lowest AICc for density estimation and 

prediction. 

Step 4. Effective survey area: We then used our third dataset of detections and non-

detections for vocalizations of known distance to estimate the effective survey area of our 

recognizer (Aeff). We fit loglinear models to our binomial dataset with distance as the predictor, 

although we transformed distance as the negative squared distance so that it was a linear 

predictor. We did not include vegetation covariates in our loglinear models because common 

nighthawks vocalize and perform the wing-boom display above the canopy and thus should be 

relatively unaffected by differential attenuation of varying vegetation type. We fit two models: 

one with a log link and one with a complementary log-log link and selected the model with the 

lowest AICc value. Following the half-normal detection function (refs), we then calculated the 

effective detection radius () of our recognizer as 

𝜏 = (
1

𝛽
)
−0.5

 

where  is the coefficients from the selected loglinear model and  is the distance at which the 

number of individual birds detected outside  is equal to the number of individual birds missed 

within . Finally, we converted  to Aeff using the area of a circle: 

𝐴𝑒𝑓𝑓 = 𝜋𝜏2 

Step 5. Density Estimation & Population Prediction: Finally, we put all the pieces 

together to estimate density at each study site. 
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𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 =
𝛿𝑖𝜆ℎ
𝐴𝑒𝑓𝑓

 

We also converted our density estimates into mean territory size estimates using the occupancy 

estimates: 

𝑇𝑒𝑟𝑟𝑖𝑡𝑜𝑟𝑦ℎ =
1

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∗ 𝛹𝑖
=

1

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∗ 𝛿𝑖(1 − 𝑒−𝜆ℎ)
 

We used the density estimates for each combination of study area and habitat variables to create 

spatial predictions and population estimates for each study area. First, we aggregated our raster 

files by a factor of ten (30 m cells to 621 m cells) to reduce computation requirements. We used 

the selected occupancy model to predict i for all possible combinations of covariates, calculated 

density for each combination in each study area, converted our per hectare density estimates to 

individuals per raster cell, and assigned the appropriate density estimate to each raster cell in 

each study area. We then summed the raster cell density estimates to create a population estimate 

for each study area. 

The mean time to first wing-boom detection of the raw data was 4.54 minutes for 

recordings with detections and 8.91 minutes for all recordings, with non-detections assigned the 

maximum time of 10 minutes. The selected survival model for probability of territorial activity 

was the global model, which included a linear and quadratic term for day of year, the cos and sin 

of time of day, and latitudinal region (Supplementary Materials). The probability of territorial 

activity was highest just after midnight and during the month of June, with higher overall 
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probability of territorial activity in the south study region (Figure 7.4). The mean predicted time 

to first wing-boom detection from the selected model was 4.29 minutes (SD = 6.00 minutes) and 

the mean probability of territorial activity in a 10-minute recording was 0.18 (SD = 0.21). 

 

Figure 7.4. Probability of common nighthawk territorial activity during the breeding season at 

two latitudes of Canada’s western boreal forest (south = northeastern Alberta, north = Northwest 

Territories). Probabilities were predicted from the coefficients of a parametric survival regression 

model. 

The number of nighthawks detected in a recording ranged from 1-4, with the maximum 

detected at the south wildfire site. The ZIP model with study area as a covariate was the selected 

model for prediction of mean abundance (AICc = 2.23, Supplementary Materials). The wildfire 

areas had higher predicted mean abundance at suitable sites than the multi-seral sites, with the 

highest overall abundance at the south wildfire site (Table 7.1). The mean abundance () of 

suitable sites across all four study areas was estimated as 0.25. The mean suitable and 

uninhabited probability was 0.89. The mean suitable and inhabited probability was 0.11.  
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Table 7.1. Suitability, inhabitancy, abundance, density, and territory size estimates for common 

in Canada’s western boreal forest at four study areas (south = northeastern Alberta, north = 

Northwest Territories).  

Study area Mean 

habitat 

suitability 

Proportion 

of suitable 

sites that 

were 

inhabited 

Mean abundance 

at suitable sites 

(𝜆ℎ; 2.5 – 97.5% 

quantile) 

Mean density 

(males/ha) 

Mean 

territory 

size (ha) 

South multi-

seral 

0.80 0.00 0.00 (0.00 – 0.01) 0.000 14.6 

South 

wildfire 

0.93 0.42 0.54 (0.32 – 0.81) 0.038 9.7 

North multi-

seral 

0.80 0.08 0.08 (0.00 – 0.16) 0.005 14.0 

North 

wildfire 

1.00 0.32 0.39 (0.22 – 0.44) 0.030 9.7 

We detected territorial common nighthawks at 159 of the 477 study sites: 6 in the south 

multi-seral study area, 50 in the south wildfire area, 19 in the north multi-seral area, and 84 in the 

north wildfire area. The selected modified occupancy model included a strong positive effect of 

the proportion of conifer within 200 m and a weak negative effect of years since the most recent 

wildfire (Table 7.2). Suitability across the study sites ranged from 0.31 to 1.00, with a mean 

suitability of 0.89. Mean suitability was higher in the wildfire study areas than the multi-seral 

areas (Table 7.1). 

Table 7.2. AICc ranking of modified occupancy models for estimation of common nighthawk 

density. Conifer represents the proportion of coniferous forest in a 200 m radius and firetime 

represents the number of years since the most recent wildfire. 

Model df logLik AICc AICc AICc w 

~conifer*firetime 5 -2057.04 4124.20 0.00 0.49 

~conifer + firetime 4 -2058.88 4125.85 1.66 0.21 

~conifer 3 -2060.07 4126.19 2.00 0.18 

~firetime 3 -2061.89 4127.81 3.61 0.08 

~1 2 -2061.53 4129.11 4.91 0.04 
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We detected territorial common nighthawks in 853 of the 4,770 recordings at sites with 

territorial common nighthawk occupancy: 18 at the south multi-seral study area, 511 at the south 

wildfire study area, 57 at the north multi-seral study area, and 267 at the north wildfire study 

area. After accounting for the probability of territorial activity and the overall probability of 

availability for detection in these multi-visit data, the probability of territorial presence after 

accounting for imperfect probability of territorial activity was 0.95. 

Three hundred of the 495 common nighthawk vocalizations of known detection distance 

were detected by the recognizer (Figure 7.5). The log model was the best-fitting model (AICc = 

116.44). The effective survey area of the recognizer was 13.3 ha. 

 

Figure 7.5. Relative sound level and distance from the recorder for common nighthawk 

vocalizations and whether those vocalizations were detected with automated recognition. The 

black line indicates the probability of detection (i.e., perceptibility), as determined with a 

loglinear function. Dashed line represents the effective detection radius; the distance at which the 

number of individual birds detected outside that radius is equal to the number of individual birds 

missed within. Rugs indicate detected (orange) and undetected (blue) data points. 
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Figure 7.6. Density estimates of territorial male common nighthawks at four study areas in 

Canada’s western boreal forest. Two study areas were in recent (< 10 years) wildfires and two 

were in areas with multi-seral forest. One of each type was in northeastern Alberta (south) and 

one of each in the Northwest Territories (north). 

The mean estimated density across the 477 study sites was 0.018 territorial male 

nighthawks per ha, with much higher densities estimated for the wildfire areas (Table 7.1, Figure 
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7.6). The estimated territory size for the south wildfire area was very similar to existing territory 

size estimates from VHF-tagged birds from the same area (9.7 vs 10.2 ha: Chapter 4). 

We developed and implemented a new model for density estimation of animals from 

acoustic recordings collected by single point autonomous recording units (ARUs) and processed 

with automated recognition. Our method used three different data types to estimate density in 

five steps, including a modified occupancy model. We applied our method to estimate density of 

territorial male common nighthawks from ARU recordings collected in four different study 

areas: two recently (< 10 years) burned and two with forest of mid and late seral stages (“multi-

seral). As predicted, we found much higher densities in the wildfire study areas (0.038 and 0.030 

males per ha) than in the multi-seral areas (0.000 and 0.005 males per ha). Our territory size 

estimate for the south wildfire area was similar to existing territory size estimates from VHF-

tagged birds in the same study area (9.7 vs 10.2 ha), suggesting our approach yields accurate 

density estimates.  

The motivation for our density estimation approach was to develop a model that could be 

applied at broad geographic scales. To limit the site-specificity of our approach, we based our 

model on a theoretical cascade of processes from site suitability to detection and estimated 

parameters at each step in that cascade. Estimating each parameter separately allowed us to add 

covariates at each step of the model, therefore adjusting each parameter according to the 

conditions under which the data was collected. The ability to incorporate covariates is 

particularly important for availability of detection because vocal activity of animals is known to 

vary with time of day and season (York et al. 2014; Amrhein et al. 2002), moon phase (York et 
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al. 2014), breeding status (Amrhein et al. 2002; Upham‐Mills et al. 2020) and more. In contrast, 

vocal activity rate methods of density estimation incorporate availability by averaging it out 

across dates, times, and locations (Pérez‐Granados & Traba 2021; Pérez-Granados et al. 2021). 

Taking an average as opposed to accounting for availability with covariates in the modelling 

process limits the applicability of the vocal activity estimates. Call rate methods of estimating 

density are thus unlikely to be applicable at broad geographic scales because exogenous and 

endogenous variation in call rate may render this method imprecise and only applicable to the 

study sites where vocal activity information was collected (Pérez‐Granados & Traba 2021; 

Sebastián-González et al. 2018; Stevenson et al. 2015). Furthermore, if the ARU dataset is 

skewed in the sampling of any predictor of availability, the density estimates will also be 

skewed. 

Other approaches for estimating density from single ARUs that accommodate covariates 

of availability have other assumptions that renders then unsuitable for many species. Doser et 

al.’s (2021) model uses a multi-visit n-mixture framework, which assumes population closure 

and thus is unsuitable for species with large home ranges. Our model does not assume closure, 

and in fact, provides an estimate of the probability of closure (“presence” in our model). The 

probability of closure between recordings for territorial common nighthawks was 0.95, which is 

expected because the mean territory size in the study area is slightly less than the effective 

survey area of our recognizer (9.7 vs 13.3 ha). Quantification of closure and subsequent effects 

on occupancy estimates suggest it is common and can bias estimates (Rota et al. 2009). 

An additional advantage of including covariates at each step is that our density estimation 

approach can incorporate predictors of habitat suitability directly in the model. Separate 

parameter estimates for suitability and inhabitancy will prove particularly useful for applications 
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like critical habitat modelling, which aim to provide habitat for the long-term recovery and 

conservation of species (Government of Canada 2016). The downside of incorporating covariates 

into the model is that it can bias predictions if the wrong covariates are used. For example, we 

found coniferous forest strongly affected common nighthawk habitat suitability; however, this is 

association is likely driven by a strong selection for pine forest specifically (Chapter 5, 6), and 

thus the density predictions for spruce-dominated forests are likely to be high. We also 

recommend that if the study area is large enough to contain multiple metapopulations or 

biozones, users should include region as a covariate in the model or model each region separately 

(including separate abundance datasets), with overlap, and blend to create a final model. 

There are limitations and disadvantages to our model, the greatest of which remains the 

challenge of obtaining the abundance and detection distance datasets. We used a spectrogram 

analysis approach for obtaining our abundance dataset; however, spectrogram analysis does not 

work for all species and so any of the other established methods for obtaining abundance data 

could be used in lieu, including paired point counts (Doser et al. 2021) or vocal activity rate 

(Pérez-Granados et al. 2021). Regardless, we recommend that the abundance dataset used in the 

model is a paired subset of the ARU recordings used for the survival and occupancy models; 

otherwise, population differences in abundance can bias density estimates.  

The detection distance dataset is a critical component of all density estimation 

approaches; without information on the perceptibility of the ARU surveys, abundance estimates 

cannot be converted to density. Perceptibility can either be incorporated via distance sampling or 

by estimating the effective survey area. Our approach requires estimation of the effective survey 

area, which can be done either with a dataset of reference recordings at known distances, as done 

here, or by comparing the abundance dataset to paired point recordings (Wilgenburg et al. 2017). 
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We echo the endorsement of Perez-Granados (2021) for the reference dataset approach because 

it can be used for other purposes, like estimating distance from relative sound level (Darras et al. 

2018, Yip et al. 2020) and using that information to limit the radius of ARU surveys (Hedley et 

al. 2020). Sourcing the reference dataset from the same study sites and area as the density 

estimation is less important; however, for many species, it will be important to at least sample 

vegetation types that are representative of the main ARU dataset because effective survey area 

depends on vegetation type via differential amounts of sound attenuation (Yip 2020). Regardless 

of the approach used to incorporate perceptibility in density estimation, we reiterate the 

importance of doing so for the automatic recognition algorithm and classification threshold used 

to process the data per se, as both components can greatly affect the survey area, in addition to 

the recorder type (Chapter 3, Yip et al. 2017); using the survey radius of human listeners and 

especially human point counts is inappropriate and will underestimate density by overestimating 

the survey area. 

We conclude that our model is another tool in the density estimation toolbox. Vocal 

activity rate approaches are relatively easy and quick to implement for small-scale studies 

(Sebastián-González et al. 2018), n-mixture model approaches that incorporate false positive 

detections are efficient and suitable for species that have small home ranges (Doser et al. 2021), 

and acoustic SECR approaches with ARU arrays are best for applications that require highly 

precise estimates (Stevenson et al. 2015). Our approach is well-suited for estimation at broad 

geographic scales or species with large home ranges that do not satisfy the closure assumption. 

Although we designed our density modelling approach with data from automated recognition in 

mind, our model is extendable to acoustic recordings processed by human listeners or even 

human point count data. Our model can also easily incorporate integration of multiple datatypes 
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via the availability and perceptibility steps of the model. As the availability of acoustic 

recordings that cover large geographic extents increases (Sugai et al. 2018), so does the capacity 

to estimate population size more accurately. Our method may be preferable to existing 

population estimates for species that are poorly monitored by existing surveys (Rosenberg et al. 

2017), that occupy remote regions (Sòlymos et al. 2020), or that have geographic variability in 

availability for detection (Hannah et al. in review). The common nighthawk checks all three of 

these boxes, and our results suggest that the existing population estimate is low (Partners in 

Flight 2020). For example, our density estimate for the wildfire study area in Alberta’s boreal 

forest (~61,000 territorial males) is almost as large as the PIF estimate for the entire province 

(71,000 individuals), despite sizeable populations in many other areas of the province. We 

therefore suggest that population estimation for wildlife management move towards an 

integrative, species-specific “if the shoe fits” approach, as opposed to the current “one size fits 

all” approach, and our density estimation approach will be a valuable tool to help this shift 

towards more accurate estimates, especially for wide-ranging species.  
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Table 7.A.1. AICc ranking of parametric survival models for estimation of common nighthawk 

availability for detection. Day represents day of year. Sin and cos represent trigonometric 

functions of time of day and were used to allow for circularity. Region represents a categorical 

covariate for study area region (north, south) to account for differences in civil twilight between 

latitudes. All models with quadratic terms also included a linear term of the same variable. 

Models with quadratic terms also include the linear term of that covariate. 

Model df logLik AICc AICc AICc w 

~day2 + sin + cos + region 6 -3679.23 7373.68 0 0.96 

~day2 + cos + region 5 -3683.93 7380.09 6.4 0.04 

~day + sin + cos + region 5 -3686.33 7384.88 11.2 0 

~day +cos + region 4 -3690.82 7391.06 17.38 0 

~ sin + cos + region 4 -3704.17 7417.77 44.08 0 

~ cos + region 3 -3708.27 7423.37 49.69 0 

~day2 + sin + cos 5 -3753.33 7518.88 145.19 0 

~day + sin + cos 4 -3757.36 7524.15 150.47 0 

~day2 + cos 4 -3757.89 7525.21 151.53 0 

~sin + cos 3 -3761.52 7529.86 156.18 0 

~day + cos 3 -3761.8 7530.43 156.75 0 

~cos 2 -3765.76 7535.91 162.23 0 

~day2 + region 4 -3995.59 8000.61 626.92 0 

~day + region 3 -3997.58 8001.99 628.31 0 

~region 2 -4014.96 8034.31 660.63 0 

~1 1 -4187.17 8376.48 1002.79 0 

~day 2 -4187.14 8378.69 1005 0 

~day2 3 -4187.1 8381.02 1007.34 0 

Table 7.A.2. AICc ranking of zero-inflated models for conditional likelihood estimation of 

common nighthawk occupancy and abundance at suitable sites. Two distributions were 

compared, Poisson and negative binomial. For each distribution, a null model was compared to a 

model with study area as a categorical covariate. 

Model df logLik AICc AICc AICc w 

Poisson(),~ study area 4 -52.17 112.8 0.00 0.74 

NegBinom(r, p), ~ study area 5 -52.17 115.0 2.23 0.24 

Poisson(),~ 1 1 -59.86 124.3 8.98 0.01 

NegBinom(r, p), ~ 1 2 -59.74 128.6 10.82 0.00 
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In this thesis, I demonstrated the importance of spatial and behavioural context for using 

passive acoustic monitoring (PAM) and automated recognition in ecology, with application to 

the common nighthawk (Chordeiles minor). In Chapters 2 and 3, I showed that the classification 

threshold (hereafter, “score threshold”) of recognizers is a proxy for survey area and that the 

performance of a recognizer strongly depends on the threshold used. In Chapter 4-6, I showed 

that the common nighthawk’s wing-boom display is an indication of breeding territoriality and 

nesting, and that this behavioural context can provide greater insight into common nighthawk 

habitat use and ecological principles. In Chapter 5, I used the behavioural context of the wing-

boom display to understand common nighthawk habitat use in the western boreal forest and 

explore a new idea about the relationship between scale and movement. In Chapter 6, I again 

used the wing-boom display to test two competing hypotheses for why common nighthawks use 

recently disturbed areas in the boreal forest. In Chapter 7, I combined my results on spatial and 

behavioural context to a new method for density estimation from recognizer data and applied it 

to show common nighthawk populations are particularly dense in post-wildfire areas. Below I 

synthesize my research across my research chapters and the scientific literature for common 

nighthawk conservation and passive acoustic monitoring. I have included select references to 

media features that highlight my research throughout the following sections. 

Although the goal of my thesis was to contribute to the broad-scale use of PAM, the 

motivation was to contribute to knowledge and conservation of the common nighthawk 
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(Chordeiles minor). I have admired, studied, and championed this species for over a decade. 

Given that my thesis and associated work make up a large proportion of existing common 

nighthawk research to date, my perspective on its ecology and management are below, with 

reference to chapters of my thesis for evidence and recommendations. 

The thesis components of my common nighthawk research were set in Canada’s western 

boreal forest, which has previously been estimated to provide breeding habitat for a large portion 

of Canada’s common nighthawk population (Haché et al. 2014). Three other studies have 

examined common nighthawk habitat associations, one in the western boreal forest (Sidler 2017) 

and two in the eastern boreal forest (Foley 2018; Farrell et al. 2017, 2019). All three support the 

conclusion of my research that common nighthawks are “disturbance specialists” in the boreal 

forest, with higher occupancy or abundance detected in earlier seral forests (media features: CBC 

News 2017, Struzik 2017). Chapter 6 of my thesis adds nuance to this label by specifying that 

common nighthawks are disturbance specialists for territorial habitat, but not for extraterritorial 

habitat use. This distinction will greatly facilitate conservation prioritization for this species in 

the boreal forest because it narrows down areas of conservation interest, as seen in the spatial 

predictions of Chapter 5. 

The confirmation of common nighthawks as disturbance specialists in the boreal forest 

does present a challenge, however, because protection of post-disturbance areas where common 

nighthawks currently nest is not an effective long-term or even medium-term conservation 

strategy. Instead, regional land use planning in Canada’s boreal forest should incorporate an 

emulation of natural disturbance approach that includes early seral habitats. Regenerating forests 

are the most poorly understood seral stage (Lindenmayer et al. 2019); incorporating the early 
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seral component of the boreal forest’s shifting mosaic into land use planning will also benefit 

other disturbance specialist species in the boreal forest like the black-backed woodpecker 

(Picoides arcticus) (Tingley et al. 2016, 2020, 2018), tree swallow (Tachycineta bicolor) 

(Hobson & Schieck 1999), and olive-sided flycatcher (Contopus cooperi) (Haché et al. 2014; 

Environment Canada 2016b). Alternatively, Chapters 5-7 of my research also show, that pine 

forest is an even better predictor of common nighthawk territorial habitat in the boreal forest. If 

long-term habitat protection for the common nighthawk is ever considered in the boreal forest, it 

should focus on open pine forest, particularly the sandy, post-glacial areas of the Athabasca 

Plain. Similarly, any designation of critical habitat based on a set of environmental conditions 

(Rosenfeld & Hatfield 2006) should include pine forest and sandy soils. 

That being said, the fire regime in the boreal forest is shifting with climate change (de 

Groot et al. 2013). As fire frequency increases, so will the proportion of the boreal landscape that 

is suitable for common nighthawk nesting and other post-disturbance specialists. Which begs the 

question, do common nighthawks need habitat protection in the boreal forest? Perhaps not, 

although further research on effects of fire severity on common nighthawk nesting habitat 

suitability should be conducted prior to drawing any conclusions. Community-level research 

suggests common nighthawks are most abundant after low severity fires (Knaggs 2018) and fire 

severity is also expected to increase with climate change. Population forecasting would also be 

helpful to confirm whether habitat protection is needed, and the tools in my thesis, particularly 

Chapter 7, provide an analytical foundation to do so. Regardless of forecasting results, care 

should continue to be taken to avoid disturbance or damage to common nighthawk nests, as per 

the Migratory Bird Conservation Act SC 1994, and my research in Chapter 4 provides 

recommendations on how to do so. 
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Although my thesis was restricted to the boreal forest, synthesis of my results with 

research from the rest of the common nighthawk’s breeding range provides further insight into 

its ecology. The limited literature available suggests that common nighthawks use separate areas 

for nesting, foraging, and roosting across the breeding range (Fisher et al. 2004; McGuire & 

Brigham 2017; Caccamise 1974; Armstrong 1965; Newberry et al. 2018); therefore, behavioural 

context is important for interpreting the habitat associations of this species in southern 

landscapes as well. I discuss nesting and foraging habitat separately below. 

In non-boreal landscapes, wetlands are a key habitat component for aerial insectivore 

foraging. Tree swallows select for wetlands for foraging, particularly in agroecosystems 

(Michelson et al. 2018; Elgin et al. 2020) and aquatic insects improve nestling development and 

breeding success (Twining et al. 2018) due to added nutritional benefits of omega-3 fatty acids 

relative to terrestrial insects (Génier et al. 2021). Although the importance of wetlands for 

common nighthawk foraging has not been directly tested, the presence of nighthawks was 

positively related to distance to water in southern Saskatchewan (Ng 2009) and flocks of 

common nighthawks are known to forage over open water during the breeding season (McGuire 

et al. 2021). I predicted wetlands to be unrelated to common nighthawk habitat use in the boreal 

forest based on the dominance of terrestrial beetles we found in food boluses (Knight et al. 2018) 

and the proliferation of aerial insects in the boreal forest; however, the results from Chapter 6 

suggests that wetlands may be important common nighthawk foraging habitat across the range. 

Farrell et al. (2017) found similar common nighthawk occupancy rates in wetlands and post-

disturbance areas, which would be explained by the combined effects of foraging and nesting, 

respectively. Given that wetlands are emerging as a fundamental component of resource 
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requirements for the common nighthawk and other aerial insectivorous species, I echo the call to 

strengthen wetland protection and management across Canada to conserve aerial insectivores and 

preserve valuable ecosystem services (Nebel et al. 2020), including in the boreal forest where 

wetland loss also occurs (Morissette et al. 2019). 

Common nighthawk nesting habitat in non-boreal parts of the range is highly diverse; 

however, there are two characteristics that most nesting habitats have in common. The first is a 

paucity of ground cover, at least at the nest site level (Lohnes 2010; Allen & Peters 2012; 

Jennifer 2015). The second characteristic is the relative permanence of nesting habitats. In the 

boreal forest, post-fire nesting habitat availability shifts across the landscape over time. In 

contrast, non-boreal nesting habitats like gravel rooftops, rocky outcrops, sand bars and dunes 

(Brigham et al. 2011) are permanent fixtures on the landscape. The exception would be areas like 

thinned Oregon forests where common nighthawk is disturbance associated (Hagar et al. 2004). 

Even within grassland habitat, the areas with minimal ground cover that are most suitable for 

nesting are likely to be relatively spatially stable because they are driven by soil characteristics. 

Conservation of common nighthawk nesting habitat in non-boreal landscapes is therefore a much 

more important consideration for habitat protection. High densities of common nighthawk nest 

sites (e.g., 25 m between nests; Sutherland 1963) in some locations further emphasizes that 

nesting habitat is limited in some non-boreal populations. No non-boreal habitat studies have 

been conducted that model the wing-boom signal per se, however, and so I recommend nesting 

habitat research for southern populations is important to begin the process of identifying habitat 

for protection. The PAM and behavioural context tools from Chapters 2, 3, 4, and 7 of my thesis 

will greatly facilitate nesting habitat research. In the meantime, the community science dataset 

from the Canadian Nightjar Survey differentiates the wing-boom signal from the call and could 



 193 

be used immediately to pinpoint areas with particularly high densities of breeding males for 

protection (Knight et al. 2019a). 

The difference in permanence of nesting sites between boreal and non-boreal populations 

suggests that there are likely regional differences in metapopulation dynamics for this species. In 

landscapes with relatively high disturbance rates like the boreal forest, specialist species are 

expected to have high dispersal abilities (Büchi & Vuilleumier 2016; Johst et al. 2002). In 

contrast, species that inhabit more stable environments are expected to be characterized by high 

competition and low dispersal (Büchi & Vuilleumier 2016). Common nighthawk dispersal in the 

boreal forest is virtually unstudied; however, one male captured and tagged for our migratory 

connectivity study relocated 125 km northeast between breeding seasons (Knight et al. 2021a). 

In non-boreal populations, gene flow between cities is low for rooftop nesting common 

nighthawks (Mays et al. 2019). Furthermore, there is a area of low predicted probability of 

occurrence of common nighthawks between the boreal and non-boreal portions of the common 

nighthawk breeding range, at least in western North America, that could be a barrier to gene flow 

(Haché et al. 2014, Knight et al. 2021a). Anecdotally these three pieces of evidence together 

suggest there may be genetic differences between boreal and non-boreal populations. A range-

wide genoscape (Ruegg et al. 2014) of this species would provide insight into the dispersal 

ecology of the species and much-needed direction for species management. 

As it stands, the common nighthawk is assessed and listed as a single species under 

Canada’s Species at Risk Act SC 2002, despite its massive breeding range and obvious 

differences in ecology between boreal and non-boreal populations. Lumping both regions 

together under a single listing has led to an ineffective conservation process. For example, the 

threat assessment process during the recent species reassessment by the Committee on the Status 
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of Endangered Wildlife in Canada (COSEWIC) concluded that threats to the common nighthawk 

were “high – low” due to differences between boreal and non-boreal populations. The result of 

the reassessment process was that the species was recommended for down-listing from 

Threatened to Special Concern, in part due to the abundance of common nighthawks detected in 

the boreal forest by the studies mentioned in this thesis (COSEWIC 2018). This decision may 

come at the cost of non-boreal populations, which have declined 68% since 1970 and continue to 

do so, albeit at a slower rate than previously (COSEWIC 2018). Unfortunately, COSEWIC has 

taken a “guilty until proven innocent” approach with this species and has refused consideration 

of splitting the common nighthawk into two designatable units (i.e., separate assessment and 

listing for boreal and non-boreal populations), citing “genetic and other consistency across the 

three subspecies” (COSEWIC 2017); however, there is no existing genetic research for boreal 

common nighthawks and subspecies designations are exclusively phenotypic. Research to 

determine whether there are genetic differences between boreal and non-boreal populations of 

common nighthawks should therefore be conducted as soon as possible before removing the 

species off Schedule 1 of the Species at Risk Act SC 2002 further threatens non-boreal common 

nighthawk populations. I have initiated the process of collecting tissue samples for genetic 

analysis with a network of collaborators to facilitate this top priority. 

Comparing and contrasting boreal and non-boreal populations could also provide some 

insight into mechanisms of population decline. Our recent work on migratory connectivity 

suggests that the drivers of differential common nighthawk population trends may be on the 

breeding grounds because populations from across North America mix during migration and on 

the wintering grounds (Knight et al. 2021b) (media features: The Globe and Mail 2018, 

American Bird Association 2020). As mentioned, there is a myriad of potential causes for 
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common nighthawk population declines, even on the breeding grounds, but one of the major 

differences between boreal and non-boreal regions is the historical role of natural disturbance 

and the contemporary level of anthropogenic disturbance. Industrial agriculture has been 

pinpointed as a potential cause of aerial insectivore declines due to breeding habitat loss, wetland 

drainage, pesticide-caused reductions of insect abundance, and sub-lethal effects of 

neonicotinoid pesticides on birds themselves; however, empirical evidence of effects is mixed 

(Spiller & Dettmers 2019; Berzins 2020). Relating long-term monitoring data to land use change 

and pesticide use could provide some insight into population threats, although it will need to be 

done at a fine spatiotemporal grain because there is little spatial concordance in aerial insectivore 

population trends (Michel et al. 2015). 

Unfortunately, quantitative comparison of boreal and non-boreal common nighthawk 

populations is impeded by limited long-term monitoring data on the boreal breeding grounds. 

Thanks to latitudinal differences in vocal activity (Hannah et al In Review) that are likely driven 

by differences in civil twilight (Sidler 2017), there are limited common nighthawk datapoints for 

the boreal forest (Haché et al. 2014). Even existing datasets for non-boreal regions like the North 

American Breeding Bird Survey are suboptimal for management because they are dawn surveys 

(Knight et al. 2021b). The recently formalized Canadian Nightjar Survey will improve long-term 

population monitoring for the common nighthawk and other nightjar species (Media feature: 

Global News 2021); however, additional ARU data collection and/or processing of existing ARU 

data would further facilitate habitat modelling and population estimation. The PAM tools in my 

thesis, both for data processing and analysis are transferrable across the species’ breeding range 

to facilitate future research, although the behavioural context study in Chapter 4 should be 

repeated at a location where nest density is high (e.g., Sidney Island, British Columbia, Canada) 
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to confirm territoriality in other populations (Brigham et al. 2011). Additional tools for common 

nighthawk management will likely become available as PAM continues to advance. 

Development of deep learning methods to differentiate common nighthawk individuals 

(Armstrong 1965) would be particularly useful to collect demographic data via acoustic mark-

recapture. Current demographic datasets for the common nighthawk are few and far between 

because individuals are nearly impossible to recapture (Knight et al. 2021a) and nest monitoring 

is impeded by semi-precocial chicks (Kramer & Chalfoun 2012) 

The caveat for much of the boreal versus non-boreal comparison above is that it is based 

on Western science. Common nighthawks have likely bred in the boreal forest since the last 

glacial maximum and being a conspicuous species, the Cree and Dene likely hold much wisdom 

about their ecology over time. Indigenous participation in conservation can lead to better 

outcomes via the inclusion of multiple perspectives (e.g., Schuster et al. 2019) and is a critical 

step towards reconciliation, decolonization, and upholding indigenous rights. If I regret anything 

about the last six years of my PhD research, it is not investing the time and effort to build 

collaborative relationships with the indigenous communities in the Fort MacKay and Fort 

Chipewyan areas of northeastern Alberta where much of my research was conducted. Above all 

else, I recommend future common nighthawk research involve indigenous people and 

perspectives. 

The failure of macroecology to find many broad rules for ecology is a nod to the 

importance of context in ecological research (Lawton 1999). The literature is rift with studies 
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describing the context-dependency of ecological phenomena (e.g., Subalusky et al. 2019) and so 

it is our duty as ecologists to always be looking for opportunities to understand more about our 

data and how it affects our ecological inferences. When using PAM and recognizer technology, 

Chapter 2 of my thesis supports the conclusion of others that it is critical to think through 

objectives and analysis before deciding to use automated recognition (Priyadarshani et al. 2018). 

Practitioners should ask themselves whether the lack of context inherent in ARU data will 1) 

invalidate any assumptions of the planned statistical analysis, or 2) have the potential to provide 

misleading inferences. Below I discuss the value of considering the spatial and behavioural 

context of recognizer data. 

Together, Chapters 2 and 3 of my thesis showed that the ‘performance’ of recognizers 

varies with score threshold, the mechanism of which is spatial context. In Chapter 3, I showed 

that score threshold is a proxy for survey area. The implication of this work is that survey areas 

for recognizer-processed data are influenced by three factors: 1) the ARU model used (Yip et al. 

2017b), 2) the recognizer algorithm and training data (Chapter 2, 3), and 3) the score threshold 

applied (Chapter 3). Recognizers will almost always have fewer detections than human listeners 

due to this survey area phenomenon. While maximizing recall (i.e., number of detections of the 

target species) is valuable because more detections provide greater statistical power for analysis, 

I suggest PAM researchers should move away from the dogma that human listeners are the “gold 

standard” and that false negatives relative to human observers are inherently bad (Priyadarshani 

et al. 2018; Stowell et al. 2018). Lower recall of recognizers relative to human observers is not 

necessarily because they are inferior to human observers, but that they are simply sampling a 

smaller area. Quantifying this survey area is important for density estimation (Pérez‐Granados & 
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Traba 2021) and can also have other applications like limiting the survey radius to limit the 

inferences of a study to specific areas (Hedley et al. 2020). 

Several methods are available for determining the survey area of PAM data. Chapter 3 of 

my thesis provides one approach for determining the effective survey area of a recognizer and 

Chapter 7 shows how that area can be used to convert abundance estimates to density. 

Alternatively, the relative sound level (RSL) of sounds in ARU data can also be automatically 

derived during the automated recognition process, used to predict the distance of vocalizing 

animals, and analyzed in a distance sampling framework for density estimation (Sebastián-

González et al. 2018, Yip et al. 2020). A third method involves training human listeners to 

estimate distance, although this is a more time-intensive and subjective process because it is not 

automated (Darras et al. 2018). A fourth and final method involves paired ARU and human point 

count datasets and calculating an offset for known effective survey areas of human points counts 

via the relative number of detections between the two datasets (Van Wilgenburg et al. 2017). 

Central to all these approaches for providing spatial context to recognizer data, save the 

paired dataset approach, is a dataset of sounds of the focal species recorded at varying known 

distances. I cannot emphasize enough how valuable a known distance dataset is for ecological 

applications of recognizer data. The known distance dataset I collected was at the foundation of 

this thesis as well as an additional paper that used machine learning to automatically weed out 

false positives from unvalidated recognizer data (Knight et al. 2020). I echo the call of Pérez-

Granados and Traba (2021) for building sound libraries of known distance recordings to support 

future density estimation studies. There are three known methods for developing known distance 

datasets. The first and most precise method uses triangulation from an array of ARUs; however, 

this method is laborious to set up and post-process to obtain individual locations. The second 
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method is the one used in my thesis, which uses broadcast calls to attract an individual to a 

transect of recorders and a human surveyor to estimate bird location relative to that transect. The 

third method, presented by Sebastián-González et al. (2018), involves manually recording any 

vocalizing individuals that are visually detected while simultaneously measuring distance with a 

laser rangefinder. A similar variant, presented by Darras et al. (2018), uses an ARU paired with a 

surveyor who measures distance to any visual detections of vocalizing individuals during a point 

count survey. The pros and cons of these methods are discussed at length in Yip et al. (2020). 

Chapters 4-7 showed that understanding the behavioural context of species detections can 

deepen ecological inferences and open doors to new lines of inquiry. Behaviour-specific habitat 

modelling can be particularly important for highly mobile species because they are more likely to 

use spatially distinct habitats to fulfill their life history needs (Roever et al. 2013; Law & 

Dickman 1998; Frans et al. 2017) and because they spend substantial amounts of time moving 

through suboptimal areas where they can be detected (Marsh et al. 2014). Despite these known 

pitfalls, studies rarely compare presence-absence models to function-specific models (Roever et 

al. 2013; Frans et al. 2017; Brambilla & Saporetti 2014). For example, the home range habitat 

spatial predictions from Chapter 5 showed moderate suitability across the landscape, while the 

territorial habitat predictions were much better for pinpointing areas of high suitability. 

Movement is another type of context that is lacking from recognizer data, but that could 

potentially be derived using the principles in Chapter 3 and Yip et al. (2020). If RSL and/or score 

are proportional to distance, then the change in either measurement between vocalizations should 

be a reasonable proxy for movement rate. Relative signal strength between stereo microphones 

could be used to rule out changes in RSL/score caused by changes in directionality of 
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vocalization. Furthermore, changes in RSL/score between vocalizations could be used a 

parameter in a hidden Markov model (HMM) to predict behavioural context. HMMs are 

commonly used to identify behavioural patterns from animal tracking data in movement 

modelling (Joo et al. 2019), and could easily be extended to PAM. 

The field of automated recognition is transitioning from single species to multispecies 

recognizers as deep learning methods emerge that can be trained on an infinite number of classes 

(Stowell et al. 2018, Kahl et al. 2021). Two annual birdsong classification competitions are 

driving the development of bigger and better algorithms (Stowell et al. 2018; Kahl et al. 2020). 

Neural networks are so powerful that highly accurate multispecies classifiers can be built with 

small training datasets and pretrained networks (Stowell et al. 2018; Knight et al. 2019) (media 

feature: CBC Radio 2020). There are several large multispecies neural net recognizers currently 

available to the public. For example, BirdNET from the Cornell Lab of Ornithology, which is 

trained to recognize 984 species from North American and Europe, is even available as a 

smartphone app (Kahl et al. 2021). 

As multispecies classifiers become mainstream and accessible, it continues to be 

important to think about the context of the species detection datasets they produce. The spatial 

context principles I demonstrated in this thesis may not necessarily apply to multispecies 

recognizers because classification probability differs between binary and categorical classifiers 

(Sokolova & Lapalme 2009). Where single species recognizers report a single probability from 

zero to one that a particular sound is the target species, multispecies recognizers report a 

probability from zero to one for each species they have been trained on, and those probabilities 

sum to one. Multispecies classifiers therefore do not typically use score thresholds. Instead, a 
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particular species is reported as detected if it has the highest classification probability for that 

sound. Research should be conducted to determine whether classification probability remains a 

proxy for score in multispecies classification; it is possible that the probabilities of the other 

species in the classifier interfere with this relationship.  

As ecology becomes more technologically-driven, there is a risk that ecologists will lose 

touch with the context of data they use (Hebblewhite & Haydon 2010). Although PAM and 

automated recognition have great potential to contribute to ecology and conservation, there is no 

replacement for time spent in the field observing the species or system of focus. My thesis and 

the questions herein were inspired by several thousand hours spent observing, monitoring, 

catching, tracking, and appreciating common nighthawks across North America. Given the 

demonstrated importance of context in my thesis, I strongly encourage all ecologists considering 

the use of PAM to ensure they keep one foot in the field because it’s hard to understand context 

without first-hand experience. 

To conclude, I come back to the value of collaboration. My thesis exposed a disciplinary 

gap in PAM between the computing scientists that design recognizer algorithms and the 

ecologists that apply them (Thessen 2016). I believe one of the drivers of this disciplinary gap is 

that success is measured by a recognizer’s “accuracy” and thus algorithm designers are 

motivated solely by this one-dimensional goal. I recommend birdsong classification competitions 

consider a broader suite of purpose-driven challenges and evaluations that would encourage 

computing scientists to understand how algorithms are applied. For example, detection of a rare 

species, species richness estimation, abundance estimation, and call rate estimation. I further 
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recommend closer working relationships between the two disciplines to reap benefits on both 

sides of the equation. For example, I read deeply through the computing science literature as part 

of my thesis and worked with a team of computing scientists and a linguist on a multispecies 

recognition project (Knight et al. 2019b). Those experiences and relationships greatly improved 

my understanding of deep learning, signal detection, and acoustic theory and played a strong role 

in shaping my thesis. The Ecoacoustics Lab at Queensland University of Technology is an 

excellent example of scientists and ecologists working in-house together to design purpose-

driven algorithms (Burivalova et al. 2019). 

Throwing biostatisticians into the collaborative mix would further benefit PAM because 

it would provide yet another perspective from the PAM pipeline. Given the increasing emphasis 

on statistical integration in ecology, input from experts in data integration on statistical 

assumptions would be particularly valuable when making decisions about training and using 

recognizers. For example, I showed in Chapter 3 of this thesis that recognizers that are not 

trained with clips recorded at close range do not satisfy the assumptions of density estimation. 

Biostatistical focus on continuing to develop methods to integrate PAM with other data types, 

especially large-scale community science projects like eBird will be key to expanding the 

temporal and spatial scale of how PAM is used (la Sorte et al. 2018). The use of statistical offsets 

to account for differences in survey area is a simple and elegant approach to integration that is 

gaining increasing traction and is applicable across a variety of analysis approaches (Matsuoka et 

al. 2012; Sòlymos et al. 2013). Other approaches also exist for the integration of PAM data for 

species distribution modelling (Isaac et al. 2019; Jr. et al. 2019) and density estimation (Doser et 

al. 2021; Sebastián-González et al. 2018).  
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The success of PAM and its ability to help solve global ecological crises is dependent 

upon the willingness of scientists to collaborate. Other disciplines that it would be helpful to 

have closer relationships with include the sound engineers that design ARUs, and linguists, 

whose work in speech classification (e.g., Siri, Alexa) is always several years ahead of 

bioacoustics. Ultimately, however, we need PAM researchers from across the globe to bring 

datasets together to answer some of the pressing questions in ecology and conservation. 

Understanding the health and maintenance of global pollinator and kelp forest diversity, the 

efficacy of varying protected area strategies, and effects of human settlement strategies, are just a 

few of the pressing questions in conservation that could be answered by pooling remotely sensed 

acoustic datasets (Sutherland et al. 2019, 2009). The ongoing culture shift towards open data and 

collaboration is extremely encouraging (Pannell et al. 2019; Aubin et al. 2020; Tenopir et al. 

2015); it is a challenging but exciting time to be an ecologist. 
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