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Abstract

Weighted sum-rate and common-rate optimization problems in wireless net-

works can be represented as the general forms of max
∑N

i=1 ai log2(1 + γi) and

max min
i
(γi), respectively, where γi represents the signal to noise ratio (SNR)

of user i and ai is a constant weight. In general, these problems are hard to

solve. In this thesis, we propose a framework for finding the optimal solution

of a class of such problems. To develop this framework, we first pose the opti-

mization problems in general forms. Subject to some conditions on the region

of feasible SNRs, the optimal solutions then are analytically derived. We show

that these solutions apply to several practical scenarios. In particular, we op-

timize two different two-way relay networks where either the relay has a large

number of antennas or the users. For these systems, we derive closed-form

expressions for the optimal weighted sum rate and common rate. Numerical

results and simulations verify the optimality of the analytical approach.

ii



Acknowledgements

I want to thank my supervisors professors Masoud Ardakani and Chintha

Tellambura who shed some light on the road of my research with their advice

and ideas during my masters study at the University of Alberta. Moreover, I

would like to thank professors Khabbazian and Liang for their valuable com-

ments for improving the quality of the thesis. Furthermore, I would like to

thank my friends who gave me all forms of assistance during my study at the

University of Alberta. Last but not least, I want to thank my family—Heybat,

Sima, Pooya and Hana— for their invaluable supports during the tough times.

I am always in your debt.

iii



Contents

1 Motivation 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Relaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Data Transmission Modes . . . . . . . . . . . . . . . . . . . . . 8

2.3 Receiver & Transmitter Diversity . . . . . . . . . . . . . . . . . 9

2.4 Jensen’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Arithmetic Mean-Geometric Mean Inequality . . . . . . . . . . . 14

2.6 Discrete memoryless channel, Capacity and Rate . . . . . . . . . 15

3 A General Solution For a Class of WSR and CR Maximization 18

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Definitions and The Proposed Solutions . . . . . . . . . . . . . . 19

3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 The Proposed Solutions . . . . . . . . . . . . . . . . . . 20

3.3 Two Mathematical Examples . . . . . . . . . . . . . . . . . . . 22

4 Applications 24

4.1 Two-way Relay Network with Single-antenna Relay . . . . . . 24

4.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . 26

iv



4.1.3 Optimal Power Allocation . . . . . . . . . . . . . . . . . 26

4.1.4 Ergodic sum rate . . . . . . . . . . . . . . . . . . . . . 28

4.1.5 Additional QoS constraints . . . . . . . . . . . . . . . . . 29

4.1.6 Numerical And Simulation Results . . . . . . . . . . . . 33

4.2 Two-way Relay Network with Multiple-antenna Relay . . . . . 36

4.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Common-rate . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Weighted sum-rate . . . . . . . . . . . . . . . . . . . . . 39

4.2.4 Numerical And Simulation Results . . . . . . . . . . . . 40

4.3 Case Study: [ShahbazPanahi et al., 2012] . . . . . . . . . . . . 41

5 Conclusion & Future Works 43

v



List of Figures

2.1 An example of relay communication. . . . . . . . . . . . . . . . 5

2.2 Non-cooperative relaying. . . . . . . . . . . . . . . . . . . . . . 7

2.3 Cooperative relaying. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Simplex Communication. . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Half duplex Communication. . . . . . . . . . . . . . . . . . . . . 9

2.6 Full duplex Communication. . . . . . . . . . . . . . . . . . . . . 9

2.7 SISO system model. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 MISO system model. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 SIMO system model. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 MIMO system model. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.11 Discrete channel. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 System model of a two-way relay network using multiple anten-

nas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Achievable sum rate performance using PPA and UPA with ν =

100, σ2
a = σ2

b = 1, mb = 1 and N0 = 1. . . . . . . . . . . . . . . 32

4.3 Achievable sum rate performance using PPA and UPA with ν =

20, σ2
a = σ2

b = 1 and mb = 1. . . . . . . . . . . . . . . . . . . . 33

4.4 Impact of ν on the achievable sum rate with σ2
a = σ2

b = 1,

mb = 1, N0 = 1 and Nb = 1. . . . . . . . . . . . . . . . . . . . . 34

4.5 The achievable sum rate of Sub-Optimal PA for a feasible system

with σ2
a = σ2

b = 1,mb = 1, N0 = 1, Nb = 10, ζ = 1.4 and ν = 100. 34

vi



4.6 The achievable sum rate of Sub-Optimal PA for an infeasible

system with σ2
a = σ2

b = 1, mb = 1, N0 = 1, Nb = 10, ζ = 1.4 and

ν = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 The system model of a two-way relay network using multiple-

antenna relay. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Achievable common-rate a1 = 2, a2 = 1, σ2
1 = 0.25, σ2

2 = 1 and

σ2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Achievable weighted sum-rate a1 = 2, a2 = 1, σ2
1 = 0.25, σ2

2 = 1

and σ2 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



List of Abbreviations
List of commonly used abbreviations

WSR Weighted Sum Rate

CR Common Rate

QoS Quality of Service

MIMO Multiple-Input Multiple-Output

AF Amplify-and-Forward

DF Decode-and-Forward

CF Compress-and-Forward

SISO Single Input-Single Output

MISO Multiple Input- Single Output

SIMO Single Input- Multiple Output

dB Decibels

AWGN Additive White Gaussian Noise

AM-GM Arithmetic Mean-Geometric Mean

PA Power Allocation

UPA Uniform Power Allocation

SNR Signal-to-Noise Ratio

viii



List of Symbols
List of Symbols

Ps Signal power

Pn Noise power

Θ Feasible region of achievable SNRs

γ̄ Vector of communication links SNRs

γi SNR of i-th communication link

ai Weight of i-th communication link

Na Number of source a antennas

Nb Number of source b antennas

Pa Transmit power at the source a

Pb Transmit power at the source b

Pr Transmit power at the source R

ha Channel coefficient between source a and relay

hb Channel coefficient between source b and relay

wl Transmit weight vector for source l

G Relay gain

nl Noise at source l

ml Fading parameter for source l

σl Noise power at source l

R̄ Average sum rate

ix



Chapter 1

Motivation

Wireless networks are inseparable parts of today’s world. Various types of

wireless networks such as wireless personal area networks (PANs), wireless lo-

cal area networks (LANs), wireless ad hoc networks and cellular networks are

widely used for different purposes. Satellites communication, medical applica-

tions and mobile communications are only a few examples of wireless network

applications. The main advantages of wireless networks include enabling mo-

bility, supporting numerous devices simultaneously and increasing efficiency in

terms of cost and energy. Due to the success of wireless networks, the number

of wireless devices has exploded and is predicted to exceed 40 billions by 2020

[1]. This has led to an emerging technology called 5G which will be the next

generation of wireless technology providing faster speed, higher capacity and

lower latency.

Wireless networks are evaluated based on various performance measures,

e.g. throughput, spectral efficiency, power consumption and coverage. Hence,

many efforts have been dedicated to improve their performance [2–12]. As a

result, relays as a way of enhancing wireless networks performance have been

introduced. Relays can help reduce the detrimental effects of path loss and

shadowing in addition to increasing the path diversity in wireless networks

[13]. Relays also enable wireless networks to achieve higher throughput and

1



spectral efficiency [13].

For wireless relay networks, weighted sum rate (WSR) and common rate

(CR) maximizations are of great importance. The WSR and CR parameters

are generally used for wireless resource management, cross-layer and beam-

forming design, link-scheduling, quality of service (QoS) and many more. For

example, maximizing WSR in a multiple-input multiple-output (MIMO) sys-

tem is equivalent to achieving a point on the boundary of the capacity region

of the considered network [14]. The weight dedicated to a user of WSR max-

imization problem in a wireless network can be interpreted as the quality of

service (QoS) provided by the service provider to that user. In a cognitive radio

network, WSR maximization problem can be used for the optimal beamformer

design [15]. Many power allocation strategies rely on WSR maximization prob-

lems in multi-way relay networks [16]. Furthermore, solving CR maximization

problems is a way to follow fairness in wireless networks.

Despite the extensive applications of WSR and CR problems, the general

WSR and CR maximizations are still open problems. For instance, the authors

in [17] have shown that the general WSR problem is non-convex and NP-hard.

To this end, many efforts have been dedicated to solve these problems under

various assumptions and setups during past years.

Two general approaches have been used by researchers to attack WCR

and CR maximizations. The first way is to convexify the problem in order

to take advantage for standard convex optimization methods, e.g. Lagrange

multipliers, Karush-Kuhn-Tucker conditions. Another approach is to employ

numerical algorithms to solve these problems. Subgradient projection, Bundle,

Cutting-plane and Dual subgradients and the drift-plus-penalty methods are

some commonly used iterative algorithms. That said, in many cases even for

fully convex cases, an analytical approach or a closed-form solution is not avail-

able. To this end, proposing a framework that offers an analytical approach or

a a closed-form solution in many cases for WSR or CR maximization problems
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is of great interest.

1.1 Thesis Contributions

In this thesis, we propose a general framework for solving a class of optimiza-

tion problems including WSR and CR optimization problems. To show the

practicality and usefulness of the proposed framework, we also present a few

examples which can be solved using the proposed framework. More specifically,

• We propose a theorem for solving a class of WSR maximization problems

in wireless network based on Arithmetic mean-Geometric mean inequal-

ity.

• We present another theorem for solving CR optimization problems sub-

ject to satisfying a common feasibility constraint in wireless systems.

• ForWSRmaximization problem, we propose two novel practical examples

of massive MIMO two-way relay networks. More specifically, we propose

the optimal power allocations for solving WSR problems in different sce-

narios. Owing to the closed-form solution obtained using the proposed

theorems for the first example, we also derive a closed-form expression

for ergodic sum-rate of the users.

• We solve a new CR maximization problem using the proposed theorems.

We also present the simulation results to verify our analysis.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we discuss some essential

concepts and background. Chapter 3 is divided into different sections as fol-

lows. Section 3.1 mathematically defines the problems of interest. In Section

3.2, using Arithmetic mean-Geometric mean inequality, we propose our main
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theorems for solving the presented problems. Section 3.3, gives two simple

mathematical examples for better illustration of the theorems. Chapter 4 pro-

vides some applications of the proposed theorems. More specifically, we propose

two new examples of massive MIMO 1 two-way relay networks in Sections 4.1

and 4.2 to show the practicality of the presented theorems. In Section 4.3, we

show that the results of [18] can be restated under the proposed theorems and

can be solved using these theorems. In Chapter 5, some possible extensions of

this work have been discussed. We also conclude our work in this chapter.

1Multiple Input-Multiple Output
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Chapter 2

Background

2.1 Relaying

Relaying is a powerful communication method to improve the spectral effi-

ciency of wireless networks [13]. This method is used when there is no direct

link between the source and destination nodes or the received signal by the

destination is weak (in terms of power, signal-to-noise ratio, etc.). Hence, the

destination node is beyond the transmission range —the maximum distance

that a node can send its data— of the source node. Figure 2.1 shows a wireless

relay network.

Figure 2.1: An example of relay communication.

In a relaying protocol, the source node sends its information to the relay in

the first time slot. The relay processes the received information and forwards it

to the destination node in the second time slot. Based on the process that the

relay performs on the received information, the relaying protocols are divided

into three major categories: Amplify-and-Forward (AF), Decode-and-Forward
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(DF) and Compress-and-Forward (CF) relaying. Different relaying protocols

are explained in details below.

Amplify and Forward Relaying: Amplify and Forward (AF) relaying

was first introduced in [19]. In this protocol, sender transmits its data to the

relay in the first time slot and the relay amplifies the received signal with a

factor and forwards it to the receiver in the second time slot. As we can see, in-

formation transmission is completed in two time slots. The major disadvantage

of this strategy is that the noise will be magnified with the signal as the relay

amplifies its received signal. However, the simplicity of this protocol made it

very practical.

Decode and Forward Relaying: In this protocol, the sender sends its

information to the relay in the first time slot. Then, the relay extracts the true

signal from the received signal and decodes it. If the received signal can be

decoded successfully, the relay forwards it to the receiver in the second time

slot. However, the communication terminated when an error occurs during the

decoding. As it can be seen, DAF strategy eliminates the noise in the received

signal by the relay. However, privacy, complexity and delay are still major

concerns of this strategy as the signal is being decoded by the relay.

Compress and Forward Relaying: The decoding part in this proto-

col is replaced with compression. That is, the received signal by the relay is

compressed (instead of decoding) and is forwarded to the receiver. Various

compression schemes can be used by the relay such as WynerZiv [20]. Dis-

cussing and comparing different compression schemes are avoided here since

they are beyond the focus of this thesis.

Relaying schemes are divided into two categories based on the way the

receiver is able to decode the true signal. This two categories is discussed

below.

Non-cooperative Relaying: In this scheme, the receiver only uses the

forwarded signal by the relay to decode the information of the sender. This
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happens when there is no direct link between the sender and receiver and the

sender signal cannot reach the receiver. Figure 2.2 illustrates non-cooperative

relaying.

Figure 2.2: Non-cooperative relaying.

Cooperative relaying: In this protocol, there is a direct link between

sender and receiver, and thus the received signal (sent by the sender) is avail-

able, but probably too weak to be decoded on its own. . In this case, the

receiver combines the received signal of the sender and the forwarded signal of

the relay to detect the true information. The major advantage of this scheme

compared to the non-cooperative relaying scheme is the diversity gain which

increases signal to noise ratio. Increasing the diversity gain significantly im-

proves the chance of successful detection in wireless networks. Figure 2.3 shows

this type of relaying.

Figure 2.3: Cooperative relaying.
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2.2 Data Transmission Modes

Data transmission between two wireless devices can occur in different modes.

The difference between these modes are the direction of data transmission

and/or the ability of a device to send and receive information simultaneously.

We briefly discuss each mode below.

Simplex: In a simplex communication, information transmission occurs

only in one direction. That means sender sends information to the receiver

and the receiver can not reply. Some examples include satellite Internet con-

nection, television broadcasting, the connection between a keyboard and the

computer which employ simplex protocol for their communication. A simplex

communication has been illustrated in Figure 2.4.

Figure 2.4: Simplex Communication.

Half Duplex: In a half duplex transmission mode, a device can send or

receive information one at a time. In other words, the device cannot send and

receive information simultaneously. However, information can be exchanged in

both directions. Figure 2.5 illustrates a half duplex communication protocol.

Walkie-talkie is an example of half duplex protocol in which only one user

can talk at a time and the other user should remain silent until the end of the

first user’s transmission.

Full Duplex: A user can simultaneously send and receive information in

a full duplex communication protocol. A full duplex communication has been

depicted in Figure 2.6. The major advantage of a full duplex protocol is speed.

A full duplex communication system is much faster than a half duplex system
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Figure 2.5: Half duplex Communication.

since the users do not need to stay silent while receiving information and are

able to send and receive information simultaneously.

Telephones, modern I/O such as USB and computers connected via ethernet

cable are some examples of full duplex devices. These devices are capable of

sending and receiving data simultaneously.

Figure 2.6: Full duplex Communication.

2.3 Receiver & Transmitter Diversity

A two-way communication system consists of a transmitter (source) and a

receiver (destination). According to the number of antennas employed at
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the source and destination, communication systems are divided into different

groups: SISO (single input-single output), MISO (multiple input- single out-

put), SIMO (single input- multiple output), MIMO (multiple input-multiple

output) and massive MIMO. In this terminology, the word input refers to the

transmitter as it sends the signal to the communication channel. Similarly, the

word output refers to the receiver as it receives the output signal of the com-

munication channel. Employing more than one antenna in a receiver or trans-

mitter increases the data throughput (assuming a fixed bandwidth). However,

increasing the number of antennas increases the complexity. In the following,

each of the above five concepts is explained.

SISO: In this setup, the transmitter and receiver both use a single antenna

for information transmission. Figure 2.7 shows a SISO system. The major

advantage of these systems are their simplicity since they do not use any di-

versity technique. That is, the receiver does not need any further processing to

employ diversity when it receives the signal. In this context, diversity refers to

when a system uses two or more antennas to solve the problem of fading and

interference by receiving different forms of a transmitted signal.

In SISO systems, interference and fading can reduce the SNR which can

further results in lower data rate and capacity.

Figure 2.7: SISO system model.

MISO: Here, the transmitter uses multiple antennas and the receiver has

single antenna. Transmit diversity is another term for this setup as it employs

multiple antennas at the transmitter. A MISO system is depicted in Figure 2.8.
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This model is used in communication between cell phones and base stations

where the base stations use multiple antennas and each cell phone has a single

antenna.

Using a single antenna at the receiver allows the receiver to be small. This

also allows the receiver to be energy efficient and cost-effective.

Figure 2.8: MISO system model.

SIMO: In this setup, the transmitter has single antenna and the receiver

has multiple antennas. This is also called receive diversity. Figure 2.9 illustrates

this model. Opposite to MISO systems, employing multiple antennas at the

receiver increases cost, energy consumption and size of the receiver device which

can cause problems in some applications, e.g. mobile receivers.

Figure 2.9: SIMO system model.

MIMO: In MIMO systems, both transmitter and receiver have multiple an-

tennas. A MIMO system has been depicted in Figure 2.10. Although employing

multiple antennas at both receiver and transmitter adds some complexity to

the system but it also increases the SNR of the received signal and therefore

the communication capacity to a great extent [21]. Moreover, MIMO systems
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benefit from multipath phenomenon 1 to increase the coverage range of signal

transmission.

MIMO systems are widely used in different setups such as IEEE 802.11n,

4G, LTE-A, WiFi and WiMAX systems.

Figure 2.10: MIMO system model.

Massive MIMO: By exploiting large number of antennas at the receiver

(or transmitter) one can further increase the data throughput and coverage of

the communication systems in a limited bandwidth. Such systems are called

massive MIMO systems. Moreover, employing a large number of antennas

increases the energy efficiency while simplifying the required signal processing

[22].

2.4 Jensen’s inequality

Johan Jensen proposed a very useful inequality known as Jensen’s inequality

in 1906. Assume F is a concave function. Let x1, x2, ..., xn be real numbers.

Also, let a1, a2, ..., an be nonnegative values so that
∑n

i=1 ai = 1. We have:

F (a1x1 + ...+ anxn) ≥ a1F (x1) + ...+ anF (xn). (2.1)

1When different versions of the transmitted signal reach the receiver through different

paths.
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Also when F is a convex function, we have:

F (a1x1 + ...+ anxn) ≤ a1F (x1) + ...+ anF (xn). (2.2)

A simple proof based on induction is provided in [23] and is given below.

Proof. Here we only focus on the concave case. Th proof for convex function

is very. We use by induction.

Basis: Based on the definition of concave functions, for any two real valued

x1, x2 and nonnegative values a1, a2 satisfying a1 + a2 = 1, we have:

F (a1x1 + a2x2) ≥ a1F (x1) + a2F (x2). (2.3)

Inductive step: Assume the statement holds for n. Then, for n + 1 we

have:

F (a1x1 + ...+ anxn) = F (a1x1 + (1− a1)
n+1
∑

i=2

ai
1− a1

xi)

≥ a1F (x1) + (1− a1)F (
n+1
∑

i=2

ai
1− a1

xi)

Since
∑n+1

i=2
ai

1−a1
= 1 and there are n such coefficients, based on the inductive

step assumption, one can extend the second term in the last equation and reach

the result.

The following example gives a better insight into Jensen’s inequality.

Example:

Let F (x) = x2, a1 = 0.3, a2 = 0.5 and a3 = 0.2. Also assume x1 = 1, x2 = 2
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and x3 = 6. Since F ′′(x) = 2 > 0, F is a convex function. then, we have:

F (a1x1 + a2x2 + a3x3) = F (2.5) = 6.25 ≤ a1F (x1) + a2F (x2) + a3F (x3)

= 0.3× 1 + 0.5× 4 + 0.2× 36

= 9.5.

2.5 Arithmetic Mean-Geometric Mean Inequal-

ity

Arithmetic Mean-Geometric Mean (AM-GM) inequality is a powerful math-

ematical tool that is useful for solving many problems. AM-GM inequality

states that for any collection of nonnegative real numbers, the geometric mean

of the collection is less than or equal to their arithmetic mean. That is,

∑n

i=1 ai
n

≥
n
∏

i=1

ai
1

n . (2.4)

in (2.4), the equality holds if and only if a1 = a2 = ... = an. Next, we review a

proof provided by [24].

Proof. According to Jensen’s inequality, since the logarithmic function is con-

cave we have:

ln
n

∑

i=1

λiai ≥
n

∑

i=1

λi ln ai = ln
n
∏

i=1

ai
λi (2.5)

Using the increasing property of the logarithmic function, we get

n
∑

i=1

λiai ≥
n
∏

i=1

ai
λi . (2.6)

Setting λi =
1
n
completes the proof.

Note that the presented proof proves a more general form of AM-GM inequal-

ity (
∑n

i=1 λiai ≥ ∏n

i=1 ai
λi) that is called weighted AM-GM inequality. The
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Figure 2.11: Discrete channel.

following example better illustrates AM-GM inequality.

Example:

Assume a1 = 2, a2 = 7, a3 = 5 and a4 = 12. The arithmetic mean of this set is

6.5 and the geometric mean is 5.38. As can be seen, AM-GM inequality holds.

2.6 Discrete memoryless channel, Capacity and

Rate

In this Section, we discuss some basic concepts which are necessary for our later

discussions in the next chapter. We first start by formal definition of discrete

channel. It should be note that the most of the materials in this section derived

from [25].

Definition 1. Consider a single-input single-output system with input random

variable X and output random variable Y . If X take values in a discrete subset

Ω, and Y take values in another discrete set Υ such that

Pr{X = x, Y = y} = Pr{X = x}p(y|x), ∀
(

x, y
)

∈ Ω×Υ (2.7)

where p(y|x) is the transition matrix from Ω to Υ, the channel p(y|x) is called
a discrete channel.

The name discrete channel comes from the fact that the input and output

symbols are chosen from discrete subsets. The following definition formally

defines a discrete memoryless channel [25].
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Definition 2. Assuming instantaneous transmission, let Xi and Yi denote the

transmitted and corresponding received symbol at time i. Moreover, Ti− de-

notes all the transmitted random variable before time i. Then, the following

equality holds for a discrete memoryless channel

Pr{Xi = x, Yi = y, Ti = t} = Pr{X = x, Ti = t}p(y|x), (2.8)

for all
(

x, y, t
)

∈ Ω×Υ×Θ.

That is, given the input of the channel in time i, the output of the channel

is independent of the transmitted symbols before time i. This, illustrates the

memoryless property of the channel.

To measure how much knowing one variable (X) decreases uncertainty

about the other variable (Y ), mutual information denoted as I(X;Y ) was in-

troduced. In other words, I(X;Y ) gives the mutual information between two

variables X and Y and is defined as

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(x, y) log

(

p(x, y)

p(x) p(y)

)

. (2.9)

For example, if X and Y are independent, then knowing one variable does

not give any information about the other one, and hence the mutual information

is equal to zero as p(x, y) = p(x) p(y). In the following, the capacity of a discrete

memoryless channel is given [25].

Definition 3. For a discrete memoryless channel with transmission matrix

p(y|x), the capacity is defined as

C = sup
pX(x)

I(X;Y ). (2.10)

Channel capacity is measured as bits/channel-use. It can be shown that

C is the maximum rate at which the information can be communicated with
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small error probability [25]. The following Theorem states the channel coding

theorem which defines the achievable rate for a discrete memoryless channel

[25].

Theorem 1. In a discrete memoryless channel, a rate R is called achievable

if and only if R is equal or less than the channel capacity, i.e. R ≤ C.

Channel coding theorem states that the reliable communication is possible

at any rate equal or less than the channel capacity. Next Theorem gives the

capacity of a band-limited white Gaussian channel which is useful for our later

discussions in Chapter 3. The proof is skipped since it is beyond the scope of

this thesis.

Theorem 2. The capacity of a band-limited white Gaussian channel with band-

width B can be expressed as

C = B log2

(

1 +
S

N

)

(2.11)

where S
N

shows the signal-to-noise ratio (SNR), S denotes the signal power and

N is the noise power.
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Chapter 3

A General Solution For a Class

of WSR and CR Maximization

3.1 Problem Definition

Consider N ≥ 1 communication links. For example N users trying to commu-

nicate with a base station or an ad-hoc network with N users. The specific

communication setup of these N links is not our concern at this point. Let us

denote the SNR of i-th communication link at the destination by γi. Assuming

additive white Gaussian noise (AWGN), the weighted sum-rate optimization

problem is defined as











max
∑N

i=1 ai log2(1 + γi)

s.t. γ̄ ∈ Θ,

(3.1)

Where γ̄ = (γ1, γ2, ..., γn) ∈ IR+n

is the vector of communication links SNRs

and Θ is the feasible region of achievable SNRs. ai is the weight assigned to

the rate of the i-th communication link in the weighted sum rate.
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The weighted sum-rate optimization problem can be further simplified as











max
∏N

i=1(1 + γi)
ai

s.t. γ̄ ∈ Θ.

(3.2)

The weights in WSR maximization can be representative of different QoSs for

different links (users).

Similarly, common-rate optimization problem in this general setup, can be

expressed as










max min
i

log2(1 + γi)

s.t. γ̄ ∈ Θ.

(3.3)

that can be simplified to











max min
i
(γi)

s.t. γ̄ ∈ Θ.

(3.4)

The goal in CR maximization is to maximize the rate of the worst link.

Also, in systems when all users have to transmit with the same rate, common

rate maximization is equivalent to maximizing the system rate.

3.2 Definitions and The Proposed Solutions

3.2.1 Definitions

To achieve the optimal solutions of (3.2) and (3.4), we first define some useful

notations.

Definition 4. For a given set B = {b1, b2..., bn} ⊂ IR+ we define ΩB(K) as the

set of all points X = (X1, X2, ..., Xn) ∈ IR+n

such that
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n
∑

i=1

biXi ≤ K,

where K ∈ IR+ is the greatest value that the above linear summation of Xi’s,

i.e.
∑n

i=1 biXi, can achieve.

Definition 5. Let A = {a1, a2..., an} and B = {b1, b2..., bn} be non-zero finite

subsets of Z+ and IR+, respectively, and K be a given positive constant. We

define ϑK
A,B = (ϑK

a1,b1
, ϑK

a2,b2
, ..., ϑK

an,bn
) ∈ IRn where

ϑK
ai,bi

=
aiK

bi
∑n

i=1 ai
, ∀i ∈ {1, 2, ..., n}.

One can easily show that for any arbitrary A ⊂ IR+, ϑK
A,B ∈ ΩB(K). We

are now ready to propose the solutions.

3.2.2 The Proposed Solutions

Here we propose the main theorems and their proofs.

Theorem 3. Consider X = (X1, X2, ..., Xn) ∈ IR+n

, Θ ⊂ ΩB(K) and ϑK
A,B ∈

Θ. Then, X = ϑK
A,B is the optimal solution of the following optimization prob-

lem










max
∏n

i=1 X
ai
i

s.t. X ∈ Θ

(3.5)

Proof. Using Definition 4 and weighted geometric-mean arithmetic-mean in-

equality, we have:

K
∑n

i=1 ai
≥

∑n

i=1 ai
biXi

ai

a
(3.6)

≥ a

√

√

√

√

n
∏

i=1

(
bi
ai
)aiXai

i
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where a =
∑n

i=1 ai.

Geometric-mean achieves its upper bound (arithmatic-mean) if

biXi

ai
=

bjXj

aj
∀i, j ∈ {1, 2, ..., n}

Since we want to maximize the geometric-mean the arithmatic mean should

achieve its upper bound (K) simultaneously. Therefore,

n
∑

i=1

biXi =
n

∑

i=1

ai
biXi

ai
=

n
∑

i=1

ait = K ⇒ t =
K

∑n

i=1 ai
,

which completes the proof.

The following Theorem proposes the optimal solution for a class of opti-

mization problems which includes common-rate optimization problems.

Theorem 4. Let X = (X1, X2, ..., Xn) ∈ IR+n

, Θ ⊂ ΩB(K) and ϑK
A,B ∈ Θ.

Then, the optimal solution of optimization problem











max min
i
(Xi)

s.t. X ∈ Θ

(3.7)

is Xopt = ( K∑
n

i=1
bi
, ..., K∑

n

i=1
bi
) where bi’s defined in Definition 4 if and only if

Xopt ∈ Θ.

Proof. Simply we have:

n
∑

i=1

bi min {Xi} ≤
n

∑

i=1

biXi ≤ K (3.8)

min {Xi} ≤ K
∑n

i=1 bi

To achieve the optimal solution we let min {Xi} =
K

∑n

i=1 bi
.
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Now if ∃j ∈ {1, 2, ..., n} Xj >
K

∑n

i=1 bi
then

n
∑

i=1

biXi ≥
n

∑

i=1,i 6=j

bi min {Xi}+ bjXj

>

K(
n
∑

i=1,i 6=j

bi)

n
∑

i=1

bi

+
Kbj
n
∑

i=1

bi

= K

which is a contradiction and completes the proof.

3.3 Two Mathematical Examples

In this section, we present two mathematical examples to better illustrate the

proposed theorems in previous section.

Example 1: Consider the following optimization problem







































max X3
1X

2
2

s.t. 2X1 +X2 ≤ 14

1 ≤ X1 ≤ 6

2 ≤ X2 ≤ 8

(3.9)

Here, we have a1 = 3, a2 = 2, b1 = 2, b2 = 1 and K = 14. Moreover, ΩB(K) =

{(X1, X2) ∈ IR | 2X1 +X2 ≤ 14, 1 ≤ X1 ≤ 6, 2 ≤ X2 ≤ 8}. Thus,

Xopt
1 = ϑK

a1,b1
=

a1K

b1(a1 + a2)
= 4.2

Xopt
2 = ϑK

a2,b2
=

a2K

b2(a2 + a2)
= 5.6.

Since ϑK
A,B = (4.2, 5.6) ∈ ΩB(K), the obtained solution is optimal.
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Example 2: Consider another problem as











max min
i
(Xi)

s.t. X ∈ Θ

following the same procedure as Example 1 and using Theorem 4, we have

Xopt
1 =

K

b1 + b2
=

14

3

Xopt
2 =

K

b1 + b2
=

14

3
.

Again since (Xopt
1 , Xopt

2 ) = (4.66, 4.66) ∈ ΩB(K), the obtained solution is opti-

mal.
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Chapter 4

Applications

In this Chapter, we propose some real-world examples of massive MIMO two-

way relay networks to show the practicality of the presented Theorems in Chap-

ter 3.

4.1 Two-way Relay Network with Single-antenna

Relay

4.1.1 System model

We consider a two-way relay system including one single antenna relay R and

two multiple antenna terminals Ta and Tb with Na and Nb antennas, respec-

tively, where Na ≫ Nb. This, for example, can be the case when a massive

MIMO base station (Ta) is communicating with a MIMO base station (Tb) us-

ing a mobile user (R) as relay. The channel coefficients ha and hb between Ta

and Tb, and relay R are assumed to be reciprocal and independent. Moreover,

additive white Gaussian noise (AWGN) with mean zero and variance σ2 are

assumed for each link. let Pa, Pb and Pr denote the transmit powers at the

sources Ta, Tb and R respectively. The system model is shown in Fig. 4.1.

The bi-directional communication between the two terminals takes two time
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Figure 4.1: System model of a two-way relay network using multiple antennas.

slots for completion. In the first time slot, both terminals transmit to the relay.

In the second time slot, the relay broadcasts the received composite signal to the

two terminals. The received signal at R in the first time slot can be expressed

as

yr =
√
Pah

T
awaxa +

√
Pbh

T
b wbxb + nr, (4.1)

where xa and xb are unit energy transmit signals at the terminals and nr is addi-

tive white gaussian noise (AWGN). With maximum ratio transmission (MRT)

beamforming (see [26]), the transmit weight vectors are wl = (
h
†
l

‖hl‖)
T , ∀l ∈

{a, b}. The transmit signal of the relay may be written as ŷr = Gyr where

G =

√

Pr

Pa‖ha‖2 + Pb‖hb‖2 + σ2
, where the gain G is selected to satisfy the re-

lay power constraint. Finally, the received signals at terminals Ta and Tb, are

given by

yl = hlG(
√

Pl‖hl‖xl +
√

Pc‖hc‖xc + nr) + nl, ∀l ∈ {a, b} (4.2)

where c = {a, b} \ {l} and nl denotes the AWGN vector at terminal l. After

self-interference cancellation and maximum ratio combining (MRC) (see [26])

reception with weights wT
l = (

h
†
l

‖hl‖), ∀l ∈ {a, b}, the received signals at both
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terminals can be expressed as

ŷl = G
√

Pc‖hl‖‖hc‖xc +G‖hl‖nr + n̂l, ∀l ∈ {a, b} (4.3)

where n̂l =
h
†
l
nl

‖hl‖ , ∀l ∈ {a, b}. Using (4.3), the SNRs at the two terminals can

be obtained as

γl =
PcPr

σ2

[

‖hc‖2‖hl‖2
(Pl + Pr)‖hl‖2 + Pc‖hc‖2 + σ2

]

, ∀l ∈ {a, b} (4.4)

4.1.2 Problem Formulation

Restricting the total power consumed below a threshold is one way to con-

trol the total interference of this network on neighbouring networks. The total

power constraint has also been considered in [18, 27–29]. Therefore, we maxi-

mize the achievable sum rate of the system subject to a total power constraint,

which can be formulated as

max
Pa,Pb,Pr

R

s.t Pa + Pb + Pr = Pt,

(P1)

where R =
1

2
log2(1 + γa) +

1

2
log2(1 + γb). Since log(x) is an increasing func-

tion, by combining the two log terms, we can reformulate (P1) as

max
Pa,Pb,Pr

(1 + γa)(1 + γb)

s.t Pa + Pb + Pr = Pt,

(P2)

4.1.3 Optimal Power Allocation

In the following, we give the exact solution:

Theorem 1. For massive antenna users, the optimal power allocation of (P2)
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is

Pa =
Pt

2(
√
ν + 1)

, Pb =
Pt

√
ν

2(
√
ν + 1)

, Pr =
Pt

2
(4.5)

where ν =
γar
γbr

, γar =
Pt

σ2
||ha||2 and γbr =

Pt

σ2
||hb||2.

Proof. We rewrite the total power constraint Pa + Pb + Pr = Pt with two

auxiliary variables α and β such Pa = αβPt, Pb = (1−α)βPt and Pr = (1−β)Pt

( 0 ≤ α, β ≤ 1). We need to find the optimal value of α and β. Now, (P2)

is a special case of problem (3.5) with n = 2, X1 = 1 + γa, X2 = 1 + γb

and a1 = a2 = 1. Using Theorem 3, one can easily show that for ν ≫ 1, if

γopt
a = γopt

b =
γbr

2 + 4
√

1
ν

is in the feasibility region then the corresponding power

allocation is optimal. Hence, we only need to show that

γopt
a = γopt

b =
γbr

2 + 4
√

1
ν

(4.6)

is feasible. This is equivalent to showing that 0 ≤ αopt, βopt ≤ 1. The corre-

sponding α, β can be obtained as:

αopt =
1√
ν + 1

, βopt =
1

2
, (4.7)

which both satisfy 0 ≤ αopt, βopt ≤ 1.

It is interesting to see that the optimal allocation requires that half of

the total power be allocated to the relay and the remaining half is divided

according to the ratio 1 :
√
ν. Since ν is large, more power is thus allocated to

Tb. Note that ν (4.5) is a random variable. However, since one of the terminals

is massive MIMO, by using the weak-law of large numbers, we approximate

it as ν ≃ Naσ
2
a

Nbσ2
b

. The details of the approximation are detailed in (4.9), and

numerical evidence for its accuracy is given in Section 4.1.6. This constant
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value is used for the ergodic sum rate analysis next.

4.1.4 Ergodic sum rate

While the optimal solution derived in (4.5) yields the instantaneous total sum

rate as a function of instantaneous channel gains, the ergodic sum rate, a far

more important performance measure, is derived by averaging over all channel

statistics. For this purpose, all the entries in the channel vectors ha and hb

between Ta and Tb, and relay R are assumed to be independent and Nakagami-

m distributed with parameters ma,mb ∈ N and average fading powers σa and

σb, respectively. Therefore, our results also include Rayleigh fading channels

as a special case when ma = mb = 1.

Theorem 2. The ergodic sum rate for the optimal PA obtained in Theorem 1

can be expressed as

R̄ = s(2 + 4

√

1

ν
)mbNb exp(

mb(2 + 4
√

1
ν
)

γ̄br
)

mbNb
∑

k=1

Γ

(

k −mbNb,
mb(2+4

√
1

ν
)

γ̄br

)

(
mb(2+4

√
1

ν
)

γ̄br
)k

(4.8)

where s =
(mbNb − 1)!

ln 2 Γ (mbNb)
(
mb

γ̄br
)mbNb .

Proof. Using the weak-law of large numbers,

Nl
∑

i=1

|hli|2

Nl

p−→ E(|hl|2) = σ2
l as

Nl → ∞, ∀l ∈ {a, b} where (
p−→) denotes the convergence in probability.

Hence:

ν =
Na

Nb

Na∑

i=1

|hai|2

Na

Nb∑

k=1

|hbk|2

Nb

=
Naσ

2
a

Nbσ2
b

(4.9)

However, even for small number of antennas, this approximation is good (see
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Section 4.1.6). To evaluate the ergodic sum rate, R̄ =
1

2
E[log2(1 + γa) + log2(1 + γb)] =

E[log2(1 + γa)], we have:

R̄ = E[log2(1 + γa)]

=

∫ ∞

0

∫ ∞

0

log2(1 + γa)f(γar, γbr)dγardγbr

(a)
=

∫ ∞

0

∫ ∞

0

log2(1 + γa)fγar(γar)fγbr(γbr)dγardγbr

(b)≃
∫ ∞

0

log2(1 + γa)fγbr(γbr)dγbr

(c)
=

1

ln 2Γ (mbNb)
(
mb

γ̄br
)mbNb

∫ ∞

0

ln(1 +
γbr

2 + 4
√

1
ν

)γmbNb−1
br exp(

−mbγbr
γ̄br

)dγbr

(d)
=

(2 + 4
√

1
ν
)mbNb(mbNb − 1)!

ln 2 Γ (mbNb)
(
mb

γ̄br
)mbNb×

exp(
mb(2 + 4

√

1
ν
)

γ̄br
)

mbNb
∑

k=1

Γ

(

k −mbNb,
mb(2+4

√
1

ν
)

γ̄br

)

(
mb(2+4

√
1

ν
)

γ̄br
)k

(4.10)

where:

(a) follows from the fact that two channel hops are independent.

(b) follows from the fact that γa is independent from γar.

(c) the reason is that channel coefficients follow Nakagami-m distribution.

(d) follows from the fact that
∫∞
0

ln(1+x)xn−1 exp(−tx)dx = (n−1)!et
n
∑

k=1

Γ(−n+k,t)
tk

for t > 0, n = 1, 2, ... [30, Appendix B].

4.1.5 Additional QoS constraints

In this part, we add more realistic QoS constraints to the previous problem

and try to solve it. We propose a sub-optimal solution for the new problem,

and we show that the proposed solution outperforms the conventional power

allocation solutions.
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Problem Formulation

Suppose, in comparison to the SNRs they have achieved in (4.6), one of the

terminals needs a higher SNR (e.g., for better quality of service) while the

other one does not. This scenario is of interest in wireless cellular networks

where some mobile users may require higher SNRs due to limitations such as

hardware requirements. In below, we treat the case where it is Terminal Tb

that needs higher SNR out of the two terminals.

In this scenario, we maximize the sum rate subject to the constraints that

the total power of the network is Pt and the SNRs at both terminals must

exceed target threshold values. Therefore, the optimization problem (P2) can

be reformulated as

max
Pa,Pb,Pr

R

s.t Pa + Pb + Pr = Pt

γa ≥ γ̂a

γb ≥ γ̂b

(P3)

where γ̂b > γopt
b .

Sub-Optimal Solution

In order to solve (P3), we first note that with the optimal power allocation (4.5),

both terminals reach SNRs approximately
γbr
2

as ν → ∞. From a practical

point of view, since Ta and Tb can be considered as base station and mobile

user, respectively, it makes sense to increase the SNR of the mobile terminal

(Tb), who has the fewer number of antennas. To quantify the SNR improvment,

we define an improvement coefficient γ̂b = ζ
γbr
2

where 1 ≤ ζ ≤ 2.

To achieve a sub-optimal solution for this case, we set the SNR of Tb, which

requires higher SNR, to the target value and maximize the SNR of Ta. So, let
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γb =
αβ(1− β)γar

αβν + 1
= γ̂b then we have

α =
γ̂b

β(1− β)γar − βνγ̂b
. (4.11)

To simplify the analysis, let ν ≫ 1 which is equivalent to exploiting large scale

antenna arrays at terminal Ta. Therefore, we have

γa(β) ≃ βγbr −
γ̂bγbr

γar(1− β − γ̂b
γbr

)
, (4.12)

By taking derivative of γa(β) with respect to β, we obtain

βs−opt = 1−
√

γ̂b
γar

− γ̂b
γbr

, (4.13)

Because 0 < βs−opt < 1, we have 0 <

√

γ̂b
γar

+
γ̂b
γbr

< 1. The second inequality

should be considered as the feasibility condition. By substituting βs−opt in

(4.11), one can easily show that 0 < α < 1. Using βs−opt, we obtain

γs−opt
a = γbr − γ̂b − 2γbr

√

γ̂b
γar

. (4.14)

Ergodic Sum Rate

We next provide the closed-form ergodic sum rate over Nakagami-m fading

channels for the solutions given in (4.11) and (4.13).

Theorem 3. The ergodic sum rate for the sub-optimal solutions given in (4.11)

and (4.13), can be expressed as

R̄ =
∑

i∈C
simbNb exp(

mbi

γ̄br
)

mbNb
∑

k=1

Γ
(

k −mbNb,
mbi
γ̄br

)

(mbi
γ̄br

)k
, (4.15)
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Figure 4.2: Achievable sum rate performance using PPA and UPA with ν =
100, σ2

a = σ2
b = 1, mb = 1 and N0 = 1.

where C = { 1

1− ζ

2
− 2

√

ζ

2ν

,
2

ζ
} and s is given in (4.8).

Proof. First, one should notice that 1 ≤ ζ < 2 where the upper bound comes

from the domain of logarithm function. Using this fact and equations (4.11)

and (4.13), the ergodic sum rate expression for the presented sub-optimal power

allocation can be proven similar to proof of Theorem 2.
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Figure 4.3: Achievable sum rate performance using PPA and UPA with ν = 20,
σ2
a = σ2

b = 1 and mb = 1.

4.1.6 Numerical And Simulation Results

In this section, Monte Carlo simulation results and theoretical analyses given

in (4.5) and (4.15) are compared for verification.

Figs. 4.2 and 4.3 show the ergodic sum rate of both optimal PA and uniform

power allocation (UPA) (Pa = Pb = Pr = Pt/3) for different values ν = 100, 20

and Nb = 1, 3. These figures show the following:

1) The analytical result (4.8) agrees well with the Monte Carlo simulations,

even for lower values of ν = 20.

2) The optimal PA offers better ergodic sum rates over the UPA. For example,

for ν = 100, Nb = 1 and R̄ = 4 bit/s/Hz, a 1 dB gap exists between (4.8)

and UPA. Moreover, as the antennas of Tb increases to 3, this gap increases to

about 5 dB.

Fig. 4.4, illustrates the impact of ν on the system ergodic sum rate for both

(4.8) and UPA. As can be seen, optimal PA outperforms UPA for different

values of ν.
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Figure 4.6: The achievable sum rate of Sub-Optimal PA for an infeasible system
with σ2

a = σ2
b = 1, mb = 1, N0 = 1, Nb = 10, ζ = 1.4 and ν = 100.

Fig. 4.5 shows that the simulation results match well with theoretical ex-

pression (4.15). Furthermore, the proposed sub-optimal power allocation out-

performs random PA which satisfies considered QoS constraints. For example,

for ν = 100, Nb = 10 and R̄ = 4 bit/s/Hz, the sub-optimal power allocation

strategy saves the total power about 2 dB in comparison with random PA.

In Fig. 4.6, γ̂a is set so that the system becomes infeasible. It is clear that

the sum rate for random PA is even greater than the PPA in low powers. In this

case, the system cannot provide the target SNR due to total power constraint.

However, when the systems becomes feasible, the presented sub-optimal power

allocation strategy outperforms the random PA.

As shown in Fig. 4.5 and Fig. 4.6, the derived sub-optimal solution is close

to the optimal solution of the first scenario which is a relaxed version of the

second scenario. Hence, the proposed sub-optimal solution is even closer to the

optimal solution of its own setup.

Finally, all the figures verify that the approximation ν ≃ Naσ
2
a

Nbσ2
b

results in
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Figure 4.7: The system model of a two-way relay network using multiple-
antenna relay.

the ergodic sum rate expressions that match well with the simulation results.

4.2 Two-way Relay Network with Multiple-antenna

Relay

In this section, to show the usefulness of the developed framework, we propose

another bidirectional (two-way) relay example. To the best of our knowledge,

the optimization results that we present are novel and have not appeared in

the literature.

4.2.1 System model

We consider a network (Fig. 4.7) consisting of one two-way relay which is

equipped with Nr ≥ 1 antennas and two single-antenna users U1 and U2. The

channel coefficients for the two links U1 ↔ R and U2 ↔ R are h1 and h2,

respectively. These channels are assumed to be reciprocal and the coefficients

are independent. The transmit powers for users U1, U2 and relay R are denoted

by P1, P2 and Pr, respectively. Moreover, we assume AWGN with mean zero

and variance σ2 for each hop. The communication protocol involves three time

slots and is as follows.

In the first time slot, both users transmit their signals to the relay. In the
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second time slot, the relay amplifies (with gain G) and employs maximal ratio

transmission beamforming with weight w1 =
h∗
1
h
†
2

‖h1‖‖h2‖ to forward the combined

signals to U1. In the third time slot, relay follows the same procedure as the

second time slot, with weight w2 =
h∗
2
h
†
1

‖h1‖‖h2‖ , to forward the received signal to

U2. Therefore, the received signal at R is given by:

yr =
√

P1h1x1 +
√

P2h2x2 + nr, (4.16)

where x1 and x2 are unit energy transmit signals and nr is the relay AWGN

term. The relay gain is

G =

√

Pr

P1‖h1‖2 + P2‖h2‖2 + σ2

Using the transmission weight vectors and after self-interference cancellation

by each user, the received signal at U1 and U2 can be expressed as:

ŷ1 = G
√

P2‖h1‖‖h2‖x2 + n1 + n̂1

ŷ2 = G
√

P1‖h2‖‖h1‖x1 + n2 + n̂2, (4.17)

where n̂1 = kw1h
T
1 nr, n̂2 = kw2h

T
2 nr and n1, n2 are the AWGN noises at users

U1 and U2, respectively. Using (4.17), one can easily show that the SNRs at

the receiver of each user are given by:

γ2 =
P1Pr

σ2

[

‖h1‖2‖h2‖2
(P2 + Pr)‖h2‖2 + P1‖h1‖2 + σ2

]

γ1 =
P2Pr

σ2

[

‖h1‖2‖h2‖2
(P1 + Pr)‖h1‖2 + P2‖h2‖2 + σ2

]

. (4.18)
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4.2.2 Common-rate

We need to maximize the common-rate subject to the total power constraint.

This problem can be formulated as











max
P1,P2,Pr

min(γ1, γ2)

s.t. P1 + P2 + Pr ≤ Pt.

(4.19)

We next provide a proposition in order to reformulate optimization problem

(4.19).

Proposition 1. The constraint P1 + P2 + Pr ≤ Pt is equivalent to

γ1 + γ2 ≤
γ1rγ2r

(√
γ1r + 1 +

√
γ2r + 1

)2 ,

where γk,r =
Pt

σ2
||hk||2 , k = 1, 2.

Proof. We can define P1 = αβPt, P2 = (1 − α)βPt and Pr = (1 − β)Pt with

(0 ≤ α, β ≤ 1). By substituting these definitions into the objective function

f(α, β) = γ1 + γ2 and forming the equations
∂f

∂β
= 0 and

∂f

∂α
= 0, the global

maximum of function f(α, β) can be obtained as
γ1rγ2r

(√
γ1r + 1 +

√
γ2r + 1

)2 .

Hence, the problem (4.19) is equivalent to the following:















max
(γ1,γ2) ∈ Θ

min(γ1, γ2)

s.t. Θ ⊂ ΩB(
γ1rγ2r

(
√
γ1r+1+

√
γ2r+1)

2 ),

(4.20)

which is a special case of Theorem 4.

We present the optimal solution for problem (4.20) using Theorem 4 and

show that the solution is in the subset Θ and therefore, is feasible.
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Using Theorem 4, one can show that the optimal solution is

γ1 =
γ1rγ2r

2
(√

γ1r + 1 +
√
γ2r + 1

)2

γ2 =
γ1rγ2r

2
(√

γ1r + 1 +
√
γ2r + 1

)2 ,

which results in

βopt = 0.5

αopt =
−γ2r − 1 +

√

(γ2r + 1)(γ1r + 1)

γ1r − γ2r
,

where both of them satisfy 0 ≤ α, β ≤ 1. Substituting βopt and αopt into

P1, P2, Pr, we have:

P1 =
Pt

(

−γ2r − 1 +
√

(γ2r + 1)(γ1r + 1)
)

2(γ1r − γ2r)

P2 =
Pt

(

γ1r + 1−
√

(γ2r + 1)(γ1r + 1)
)

2(γ1r − γ2r)
(4.21)

Pr =
Pt

2

where γ1r =
Pt

σ2
||h1||2 , γ2r =

Pt

σ2
||h2||2.

4.2.3 Weighted sum-rate

Here we aim to maximize the weighted sum-rate of the system (Fig. 4.7) subject

to the total power constraint. The weighted sum-rate can be expressed as

R =
a1
2
log2(1 + γ1) +

a2
2
log2(1 + γ2)

=
1

2
log2[(1 + γ1)

a1(1 + γ2)
a2 ] (4.22)
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Hence, the maximization problem can be reformulated as











max
P1,P2,Pr

(1 + γ1)
a1(1 + γ2)

a2

s.t. P1 + P2 + Pr ≤ Pt,

(4.23)

Using Proposition 1, optimization problem (4.23) turns to















max
(1+γ1,1+γ2)∈Θ

(1 + γ1)
a1(1 + γ2)

a2

s.t. Θ ⊂ ΩB(2 +
γ1rγ2r

(
√
γ1r+1+

√
γ2r+1)

2 ),

(4.24)

which is a special case of Theorem 3.

From Theorem 3, the optimal solution of (4.24) occurs when

γ1 =
a1 − a2
a1 + a2

+
a1

a1 + a2
(

γ1rγ2r
(√

γ1r + 1 +
√
γ2r + 1

)2 )

γ2 =
a2 − a1
a1 + a2

+
a2

a1 + a2
(

γ1rγ2r
(√

γ1r + 1 +
√
γ2r + 1

)2 )

For instance, assuming a1 = 2, a2 = 1, Pt = 0 dB, Nr = 100, γ1r = 24, and

γ2r = 96, the optimal solution will be γ1 = 7.3 and γ2 = 3.15 which translates

to P1 = 0.1996, P2 = 0.2362 and Pr = 0.5642.

4.2.4 Numerical And Simulation Results

In this section, we present simulation results to verify the optimality of the

solutions given by Theorems 3 and 4.

In Figs. 4.8 and 4.9, we have plotted the achievable common-rate and

weighted sum-rate of the considered system model for the presented solutions

in Section 4.2. To verify the optimality of these results, we also present the so-

lution which has been obtained through searching (with step 0.001) the feasible

SNR region. This has been performed for two cases of Nr = 16 and Nr = 100.

Furthermore, as a benchmark, the achievable common-rate of uniform power
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Figure 4.8: Achievable common-rate a1 = 2, a2 = 1, σ2
1 = 0.25, σ2

2 = 1 and
σ2 = 1.

allocation (UPA) has also been plotted. As can be seen, the theoretical re-

sults match well with the search method solutions in both cases. Moreover, as

expected, the optimal power allocations outperform the UPA.

4.3 Case Study: [ShahbazPanahi et al., 2012]

Here, the problem considered in [18] is briefly discussed to further demonstrate

the applicability of the proposed Theorems in Chapter 3.

A similar problem to (P2) has been considered in [18]. The only difference

is the transceivers and relay are all equipped with single antenna, . The authors

in [18] have shown the rate region achieved by the two transceivers is triangular.

The following remarks re-obtain the results achieved in [18] using the presented

Theorems in Chapter 3.

Remark 1. For the rate region Θ obtained in [18], K = 2 + 2γmax, bi =

1 ∀i ∈ {1, 2}, using Theorem 3, the optimal solution for maximizing the sum-
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Figure 4.9: Achievable weighted sum-rate a1 = 2, a2 = 1, σ2
1 = 0.25, σ2

2 = 1 and
σ2 = 1.

rate (ai = 1 and Xi = 1 + SNRi ∀i ∈ {1, 2} ) will be SNRi = γmax ∀i ∈ {1, 2}
which is equal to the optimal solution obtained in [18].

Remark 2. Using Theorem 4, the optimal solution for maximizing the common-

rate (Xi = SNRi ∀i ∈ {1, 2}) for the rate region Θ proposed in [18], can be

obtained as SNRi = γmax ∀i ∈ {1, 2} which is equal to the optimal solution

obtained in [18].
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Chapter 5

Conclusion & Future Works

In this thesis, we developed optimal solutions for weighted sum-rate and common-

rate optimization problems subject to certain conditions on the feasible SNR

region. Our solutions do not require the region to be convex. To verify our anal-

yses, two examples of massive MIMO networks have been presented. Moreover,

the results in [18] have been re-obtained using the presented theorems.

As the first example, a network of two MIMO terminals and a single-antenna

relay has been considered. One of the terminals is a massive MIMO device.

Subject to the total power constraint, we derived the exact closed-form opti-

mal PA to maximize the sum rate using the presented framework in Chapter 3.

The resulting sum rate is a function of instantaneous channel gains. Owning

to the closed-form solution achieved and by exploiting the weak law of large

numbers, we then derived the ergodic sum rates in closed-form. To provide a

degree of generality, we used the Nakagami-m fading model. We also derived a

sub-optimal PA to maximize sum rate when the SNRs at both terminals must

exceed target values. Both feasible and infeasible systems were simulated. Sim-

ulation results showed both the accuracy of the derived theoretical expressions

and the efficiency of proposed PA strategies.

For the second example, a two-way relay network has been considered where

the relay is equipped with a large-scale antenna array and the total transmit
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power is constant. The common rate and weighted sum rate optimization prob-

lems have been investigated for this network. The closed-form optimal power

allocations for these problems have been derived. Finally, simulation results

verified the optimality of the obtained theoretical solutions. An advantage of

closed-form optimal solutions is that they facilitate the investigation of per-

formance measures such as ergodic sum-rate, outage and error rates. Thus,

obtaining the closed-form expressions for outage and error rates of the consid-

ered networks may be of great interest.

Although the presented theorems provide the optimal closed-form solution

for weighted sum rate and common rate optimization problems in many cases,

some of the weighted sum rate and common rate problems remain unman-

ageable and hard to solve, e.g. when the effect of transmitter and receiver

distortion is taken into account for a multi-user multi-cell network. Developing

new theorems to obtain the closed-form solutions for the remaining cases is of

great interest.
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