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Abstract

While traditional machine learning algorithms learn to solve a task directly, meta-

learning aims to learn about and improve another learning algorithm’s performance.

However, existing meta-learning methods either only work with differentiable algo-

rithms or are handcrafted to improve a specific component of an algorithm. There-

fore, we develop a unifying meta-learning framework called reinforcement teaching to

improve the learning process of any algorithm. Within the reinforcement teaching

framework, a teaching policy is learned through reinforcement to improve a student’s

learning. To effectively learn such a teaching policy, we develop a reward function

based on learning progress, allowing the teacher’s policy to maximize the student’s

performance more quickly. Further, we introduce a parametric-behavior embedder

that learns a representation of the student’s learnable parameters from its input-

output behavior. Finally, to demonstrate the effectiveness of reinforcement teaching,

we perform a case study applying reinforcement teaching to the automatic curricu-

lum learning domain. In this setting, a curriculum policy is learned that selects

sub-tasks for a reinforcement learning student, outperforming handcrafted heuristics

and previously proposed reward functions. To that end, reinforcement teaching is

a framework capable of unifying different meta-learning approaches while effectively

leveraging existing tools from reinforcement learning research.
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A part of this thesis is in joint collaboration with Alex Lewandowski, Dale Schuur-
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published.
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“It is not the critic who counts; not the woman who points out how the strong

woman stumbles, or where the doer of deeds could have done them better. The credit

belongs to the woman who is actually in the arena, whose face is marred by dust and

sweat and blood; who strives valiantly; who errs, who comes short again and again,

because there is no effort without error and shortcoming; but who does actually

strive to do the deeds; who knows great enthusiasms, the great devotions; who spends

herself in a worthy cause; who at the best knows in the end the triumph of high

achievement, and who at the worst, if she fails, at least fails while daring greatly, so

that her place shall never be with those cold and timid souls who neither know

victory nor defeat.”

- Theodore Roosevelt
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Chapter 1

Introduction

As machine learning becomes ubiquitous, there is a growing need for algorithms that

generalize better, learn more quickly, and require less data. One way to improve ma-

chine learning methods without having to hand-engineer the underlying algorithm is

through a process called meta-learning. Meta-learning can be thought of as “learning

to learn,” in which the goal is to learn about and improve another machine learning

algorithm [1].

Various sub-domains have emerged that design handcrafted solutions for learning

about and improving a specific component of a machine learning process. The work

in these sub-domains has focused on solving one specific problem, whether that be

finding the best way to augment data [2], sample minibatches [3], adapt objectives

[4], or poison rewards [5]. Consequently, the meta-learning methods used in these

domains have been over-fit to solve the specific problem and, therefore, may not be

easily applied to solve new problems in a different domain. Furthermore, current

literature fails to recognize that a more general framework can be used to address

multiple problems across these varied sub-domains simultaneously.

Therefore, this thesis takes an important step toward answering the following ques-

tion:

Can we develop a unifying framework for improving machine learning algorithms

that can be applied across sub-domains and other learning problems?
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As a critical step toward this unifying framework, we introduce reinforcement teach-

ing, a novel solution concept that frames meta-learning in terms of a Markov decision

process (MDP), in which a teaching policy interacts with a student’s learning pro-

cess to achieve a goal. In reinforcement teaching, a teacher learns a policy through

reinforcement learning to improve the student’s learning process. The teacher ob-

serves a representation of the student’s behavior and then takes actions that adjust

components of the student’s learning process. The teacher changes aspects of the

student’s learning process that the student is unable to change on its own, such as

the objective, optimizer, data, or environment. The teacher’s reward is then based

on the student’s relative improvement.

Notably, the choice of action space for the teacher results in different meta-learning

problem instances (See Figure 1.1). By having a flexible action space, our single

teaching architecture can learn a variety of policies, such as a curriculum policy to

sequence tasks for an RL student or a step-size adaptation policy for a supervised

learning student.

Our reinforcement teaching framework has several advantages to both gradient-

based meta-learning and other RL teaching methods:

1. Our MDP formalism is domain agnostic and thus does not rely on problem-

specific heuristics [2, 3, 6–11] or access to the optimal student model, as required

for most machine teaching approaches [5, 12].

2. Unlike gradient descent meta-learning methods [13–15], our framework learns a

teaching policy; therefore, the teacher has the ability to adapt to the student’s

needs at each step in the student’s learning process.

3. Our MDP approach does not assume all student learning components are fully-

differentiable, an assumption typically necessary for gradient descent meta-

learning methods.
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Figure 1.1: This diagram demonstrates how the choice of teacher action space leads
to the teacher learning a policy to solve various sub-problems.

To showcase the potential of reinforcement teaching, we perform a case study

applying reinforcement teaching to the automatic curriculum learning domain. In

both discrete and continuous control settings, we show that reinforcement teaching

can be used to learn a policy that selects sub-tasks for a reinforcement learning

student. This curriculum policy guides the student’s experience and improves its

learning on a target task.

1.1 Thesis Contributions

This thesis makes the following contributions:

1. The reinforcement teaching framework is formalized as an MDP in which the

teacher learns a policy that helps a student to reach a goal quickly.

2. Rather than having the teacher learn directly from the student’s parameters, a
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parametric-behavior embedder learns a state representation from the student’s

behavior (i.e., inputs and outputs). This provides a domain-agnostic state rep-

resentation that improves the teacher’s learning.

3. A learning progress reward function is defined that further accelerates learning

by improving the teacher’s credit assignment.

4. We demonstrate the effectiveness of reinforcement teaching in the curriculum

learning domain in which the teacher learns a policy that selects sub-tasks for

an RL student and improves its learning over several RL teaching baselines.

Contributions (1-3) allow our framework to be leveraged by different kinds of stu-

dents in different problem settings. This allows existing approaches to be unified

under our reinforcement teaching framework.

1.2 Thesis Outline

We begin with Chapter Two by discussing background information on the domains

relevant to the reinforcement teaching framework. In Chapter Three, we focus on the

proposed framework and the methodologies used. This is followed by Chapter Four,

where we delve into an application of reinforcement teaching, curriculum learning,

and the associated experimental results. Finally, we end the thesis in Chapter Five

by discussing limitations and future work.
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Chapter 2

Background

In this chapter, we provide background information on reinforcement learning as well

as the domains pertinent to the reinforcement teaching framework. We then discuss

the gap in research that this thesis fills.

2.1 Reinforcement Learning

In the reinforcement learning (RL) paradigm, agents interact with an environment

with the goal of maximizing a scalar reward signal. Through trial and error, an RL

agent learns which actions yield a higher reward. RL problems are commonly modeled

as a Markov decision process (MDP). An MDP is a tuple ⟨S,A, T,R, µ, γ⟩, where S

is the state space and A is the action space. The state must include all relevant past

agent-environment interactions necessary to make future decisions. If this property

holds, a state s is considered Markov. More formally, a state s is Markov if and only

if:

P (St+1|St, At) = P (St+1|S1, A1, S2, A2..., St, At)

At every time-step t, the agent finds itself in a state s ∈ S and must choose an action

a from the set A. Further, the transition rule, T of the environment (stochastic or

deterministic), determines the p(s′, r|s, a), the probability of transitioning to state s’

and receiving reward r, given the agent was in state s and executed action a. Next,

the reward function R : A × S → R maps a state and an action to a scalar reward,
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and µ is the initial state distribution. Lastly, γ ∈ [0, 1] is the discount factor, which

determines the present value of future rewards. The agent’s goal is to maximize the

expected sum of discounted rewards, Gt at any time-step, t:

Gt
.
=

∞∑︂
k=0

γkRt+k+1

An agent interacts with its given environment by taking actions according to its

policy π. A policy is a mapping from states to a probability distribution over all

possible actions, π : S → A. An agent aims to find the optimal policy, π∗, that

maximizes the sum of discounted rewards by following policy π∗ until termination T,

with T = ∞ in the continuing setting.

Further, the state-action value, qπ(s, a), defines the value of taking action a in

state s under policy π. More formally, the state-action value function qπ(s, a) is the

expected sum of discounted rewards given that an agent is in state s, takes action a,

and thereafter follows policy π.

qπ(s, a)
.
= Eπ

[︄
∞∑︂
k=0

γkRt+k+1|St = s, At = a

]︄
The state-action value function can be estimated from the agent’s experience with

the environment. In an iterative process, qπ(s, a) can be learned and can converge to

the optimal state-action value function q∗(s, a) under certain conditions [16, 17]:

q∗(s, a)
.
= maxπqπ(s, a) ∀s, a

Furthermore, given q∗(s, a), an agent can obtain the optimal policy π∗ by acting

greedily with respect to q∗(s, a):

π∗(s, a) = argmaxa∈Aq∗(s, a)

2.2 Meta-Learning

Meta-learning is often described as “learning to learn,” in which the goal is for a

meta-learner to learn about and improve upon a base learning algorithm. Inherent
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to meta-learning are two objectives: (1) the base learning objective is to learn a task

(e.g., image classification), and (2) the meta-learning objective is to improve the base

learner’s ability. These objectives are hierarchical in nature; therefore, meta-learning

can be cast as a bi-level optimization process. In this setup, while a base learner

is solving a task, a meta-learner updates the base learning algorithm such that the

baser learner improves the meta-objective [1]. This two objective process is a defining

feature across various meta-learning methods.

However, meta-learning approaches differ in what component of the base learner’s

algorithm the meta-learner learns about and improves on. For example, in MAML,

the meta-learner aims to learn the best base learner initialization [18]; whereas, in

the learned optimizer literature, the meta-learner can learn how to adjust the step-

size of the base-learning algorithm. Other examples include the related sub-areas

of machine-teaching and curriculum learning. In machine teaching, the goal of the

meta-learner is to learn the best sequence of training datasets for the base-learner [12],

whereas, in curriculum learning, the meta-learner’s goal is to learn the best sequence

of source tasks for the base-learner [19, 20].

2.3 Machine Teaching

Machine teaching is a general teacher-student paradigm in which a teacher is used to

guide a student. A widely studied application of machine teaching is the supervised

learning setting in which a teacher is tasked with choosing the best training set

such that a machine learning student can learn a target model [3, 12]. Recent work

has applied machine teaching to RL students. In the RL student setting, machine

teaching has been used to study a wide range of problems, from finding the best set

of demonstrations to finding the best reward shaping strategy [5, 21].

The primary issue with traditional machine teaching approaches is the strict as-

sumptions they make on behalf of the teacher. In traditional approaches, the teacher

must have full knowledge of the student and the optimal target model [12]. Unfor-
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tunately, these assumptions are unrealistic in practice. If we assume the teacher has

access to the optimal target model, then we already know how to solve the task at

hand. Therefore, it is not necessary to train another student agent/model to solve

the task. To relax these assumptions, recent work treats the teacher’s task of finding

the optimal training set for the student as an RL problem [3, 22, 23].

2.4 Automatic Curriculum Learning

Learning tasks of increasing difficulty is fundamental to human learning. In machine

learning, this “easy to hard” approach is called curriculum learning. In traditional

curriculum learning approaches, a designer must (1) be able to order all sub-tasks by

difficulty and (2) design a curriculum of sub-tasks that results in improved student

learning on the target task. To develop such a curriculum, these methods are often

time-consuming and rely on expert domain knowledge [24, 25]. In contrast, automatic

curriculum learning aims to learn the optimal curriculum over tasks such that an

agent’s competence on a target task or over a set of tasks is maximized [19].

In the past literature, curricula have been learned through a variety of mechanisms.

One subset of automatic curriculum learning focuses on learning the best sequence

of initial states for an RL agent to learn from. For a typical RL environment, an

agent is placed in a start state, and its job is to learn how to reach a goal state. In

environments with rich state spaces, this task is made quite challenging by the large

amount of exploration required for the agent to reach the goal state and obtain a

learning signal. One approach to alleviate this issue is to allow the agent to start

learning from states closer to the goal state and, over time, increase the distance

between the agent’s start state and the goal state. Therefore, at later stages in the

curriculum, the agent is placed progressively closer to the target start state. This

approach has seen success in several continuous control robotic domains [26, 27].

Another body of work surrounding automatic curriculum learning aims to learn

the best sequence of goals for an RL agent. Racaniere et al. (2019) and Florensa

8



et al. (2017) apply Generative Adversarial Networks [28] in this setting. By using

dual agents, one agent is used to generate goals and another is used to evaluate the

proposed goal’s quality. Further, Zhang et al. (2020) developed a curriculum of goals

of increasing complexity by using a measure of epistemic uncertainty based on an

ensemble of value functions. This method enables the proposed goals to be neither

“too easy” nor “too difficult”; however, this method maintains multiple networks for

each value function and thus can be computationally expensive.

Another promising line of research is student-teacher curriculum learning. In this

setting, a teacher agent learns, via RL, to provide appropriate tasks to a student

agent based on the student’s current skill set [29]. Narvekar et al. (2017) proposed a

two-level MDP, in which a teacher agent operates in a curriculum MDP that chooses

tasks for the student, and the student agent operates in an MDP associated with the

given task [6, 7]. Campero et al. (2020) extended the teacher-student curriculum

formulation in the Deep RL context by taking an adversarial training approach. The

student maximizes its reward by reaching goals quickly, therefore, would rather receive

“easy” tasks from the teacher. However, the teacher in this case maximizes its reward

by only proposing goals to the student that are of appropriate difficulty. This yields

an adversarial relationship between the teacher and student. As noted, this method

makes progress towards applying teacher-student curriculum learning in the Deep

RL setting. However, by the construction of the teacher’s reward function, it is

likely more suited for navigation-related tasks and may not easily port over to the

continuous control setting.

These approaches can be contrasted with other formulations of the student-teacher

setting that treats the teacher’s problem of selecting a task as a multi-armed bandit

[30, 31]. In this setting, the teacher agent relies on learning progress [32] to detect

how much improvement a student is making on a given task. Using a multi-armed

bandit algorithm, the teacher’s goal is to find a policy over tasks that continually

maximizes the student’s overall learning progress. The use of bandits simplifies the
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problem because we no longer need to represent the state of the student’s learning

process. However, it sacrifices the teacher’s ability to differentiate between different

students.

2.5 Learning Progress

Connected to the idea of teaching, is a rich body of literature on learning progress.

Learning progress prescribes that a learning agent should focus on tasks for which

it can improve on. This mechanism drives the agent to learn easier tasks before

incrementally learning tasks of increasing complexity [32]. Learning progress has been

characterized in several ways, such as the change in model loss, model complexity,

and prediction accuracy. In addition, learning progress has been successfully applied

in a variety of contexts, including curriculum learning [29–32], developmental robotics

[32–34], and intelligent tutoring systems [35].

2.6 Gaps in Literature

Across the various domains we have previously discussed, researchers have sought to

learn a teaching policy via RL to control a particular aspect of a student ML process

[3, 4, 6–11, 36, 37]. In these works, the overarching goal is for the teacher to learn

how to adjust the student’s learning algorithm in order to improve the student’s

task ability. However, the specific component of the student’s learning algorithm

the teacher learns about is dependent on the sub-domain. For example, in research

focused on adaptive loss functions, an RL teacher learns a teaching policy to adapt the

parameters of the student’s loss function [8]; while in the data simulator literature, an

RL teacher learns a policy that adjusts the student’s data distribution [11]. Notably,

these works are narrowly focused on solving one specific problem. Consequently, the

solution methods are typically handcrafted to fit the specific problem. Therefore,

the solution method to solve one problem may not easily generalize to solve a new
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problem. This thesis, in contrast, focuses on crafting a general-purpose solution

method that can be used to solve various meta-learning sub-problems. Therefore, we

propose the reinforcement teaching framework as a problem-agnostic approach that

enables tractable meta-learning across diverse problems/domains.
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Chapter 3

Reinforcement Teaching

In this chapter, we describe the reinforcement teaching framework. We start by

describing the framework’s goal, followed by the abstraction of the student learning

process that forms the “teaching environment.” We then describe the Teaching MDP

— the backbone of the reinforcement teaching framework.

3.1 Reinforcement Teaching

In reinforcement teaching, student refers to any learning agent or machine learning

model, and teacher refers to an RL agent whose role is to adapt to and improve the

student’s learning process. We formulate the teacher’s responsibility of improving

the student’s learning process as an MDP, in which a teaching policy interacts with

a student’s learning process to achieve some goal.

By using the MDP formalism, reinforcement teaching is agnostic to the meta-

learning problem of interest. Therefore, the teacher is not limited in how to improve

the student’s learning process. As an analogy, consider a personal trainer in a gym —

the goal of a personal trainer is to help an athlete more quickly reach their fitness and

health goals. The trainer has several means to accomplish this; they can customize the

athlete’s workouts and their meal plans. In other words, the trainer is not confined

to just one form of help. This is directly analogous to the teacher’s role in the

reinforcement teaching framework. The teacher can improve the student’s learning

12



Full Form Notation

Student fθ

Student learnable parameters θ

Student learning domain D

Student learning algorithm Alg

Student objective function J(fθ,D)

Student performance measure m(fθ,D)

Student performance threshold m∗

Teaching environment E(Θ)

Student input xi

Student output fθ(xi)

Mini-state {xi, fθ(xi)}Mi=1

Parametric-behavior embedder PE

Learning progress reward function LP

Table 3.1: This table shows the primary notation associated with the reinforcement
teaching framework. The details of each term will be described in Section 3.1.
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process by using various methods. For example, the teacher can learn a curriculum

policy [6, 7] or a policy to sample appropriate training data [3] with the goal of

improving the student’s learning.

3.2 Teaching Environment

To start, we define the student learning process and its components. Consider a

student fθ, with learnable parameters θ ∈ Θ. The student receives experience from

a learning domain D, which can be labelled data (supervised learning), unlabelled

data (unsupervised learning), or an MDP (reinforcement learning). How the stu-

dent interacts with its domain and how it learns, given that interaction is specified

by the student’s learning algorithm Alg that optimizes the student’s objective func-

tion J(fθ,D). Over time, the student’s learning algorithm updates the student’s

parameters through interaction with the learning domain and the objective function,

θt+1 ∼ Alg(fθt ,D, J). The goal is to maximize a performance measure, m(fθ,D),

that evaluates the student’s current ability.

One natural choice form is the objective function directly optimized by Alg, butm

can also be a non-differentiable surrogate objective such as accuracy in classification

or the Monte-Carlo return in RL. Note that the learning domain, D, can contain

many tasks. This would occur, for example, in the domain of curriculum learning, in

which there are several sub-tasks that an agent needs to learn to solve a more difficult

target task. In this setting, we can simply index D by the sub-task index i, Di.

The combination of the student, learning domain, learning algorithm, and per-

formance measure is hereafter referred to as the student learning process : E(Θ) =

{fθ,D,Alg,m}. Specifically, the student learning process summarizes the compo-

nents contributing to the student’s parameters as it learns the optimal parameters

that maximize its performance measure θ∗ = argmaxθm(fθ,D).

The teacher’s goal is to then learn about and improve the student’s learning process

via reinforcement learning; therefore, E(Θ) will act as the environment the teacher

14



interacts in, namely the teaching environment.

3.3 Teaching MDP

We now describe the state representation, reward function, and action space used to

construct the Teaching MDP.

3.3.1 States of the Teaching MDP

We define the state of the teaching environment to be the current learnable param-

eters of the student, st = θt. The state space is then the set of possible parameters,

S = Θ, as similarly suggested in Narvekar et al. (2017) and Zhang et al. (2020). The

initial state distribution, µ, is determined by the initialization method of the parame-

ters, such as Glorot initialization for neural networks [38]. Furthermore, the transition

function, T , is then defined through the learning algorithm, θt+1 ∼ Alg(fθt ,D, J). Al-

though the learning algorithm is known, the explicit transition dynamics (i.e., prob-

ability of transitioning from θt to θt+1) is typically unknown. This can be true in

several cases. To start, there can be randomness due to the student’s optimizer J .

For example, if the student’s optimizer used stochastic or batch gradient descent.

Moreover, randomness can also arise due to the student’s learning domain, D. For

example, if the student was an RL agent, then the student’s environment dynamics

are typically unknown. Therefore, due to the unknown transition dynamics, at every

time-step, it is only possible to sample E(Θ) for the next state θt+1 and reward rt+1.

The sequence of learnable parameters, {θt}t≥0, form a Markov chain, as long as

fθ, D and Alg do not maintain a state that depends on the parameter history. This

occurs when the learning algorithmAlg is Stochastic Gradient Descent [39, 40]. While

adaptive optimizers, like Adam [41], violate the Markov property of Alg, we show

empirically in Section 4.4 that this does not hinder the teacher’s ability to learn an

effective curriculum policy.

Although Θ is a Markov state representation, it is not ideal for learning a teaching
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policy. First, the parameter space is large and mostly unstructured. Ideally, the

teacher’s state representation should be much smaller than the concatenated set of

parameters θ. In addition, using the parameter state representation would hinder the

teacher’s ability to generalize to new student models with different architectures or

activations.

Parametric-behavior Embedder To avoid learning from the parameters directly,

we propose the parametric-behavior embedder (PE), a novel method that learns a rep-

resentation of the student’s parameters from the student’s behavior. To capture the

student’s behavior, we use the inputs and outputs of fθ. For example, if we consider

an RL student, the inputs of fθ would be the environment states the student encoun-

ters, and the outputs can be the corresponding Q(s, a) values or the corresponding

actions with the highest value, argmaxaQ(s, a).

To learn the PE state representation, we first assume that we have a dataset or

replay buffer to obtain the student inputs, xi. Then we can randomly sample a

minibatch of M inputs, {xi}Mi=1 and retrieve the student’s corresponding outputs,

fθ(xi). The set of inputs and outputs ŝ = {xi, fθ(xi)}Mi=1, or mini-state, provides local

information about the true underlying state s = θ.

To learn a representation from the mini-state, we recognize that ŝ is a set and use a

permutation invariant function h to provide the PE state representation h(ŝ) [42]. The

input-output pair is jointly encoded before pooling, h(ŝ) = hpool
(︁
{hjoint(xi, fθ(xi))}Mi=1

)︁
,

where hpool is a pooling operation over the minibatch dimension (See Figure 3.1). We

note that our parametric-behavior embedder does assume that the student has no

memory. One example of the student having memory is if the student uses a recur-

rent neural network. If the student did have a memory, the student’s input-output

behavior would not fully capture the state of the student’s learning process. However,

we leave this consideration for future work.

We argue that the local information provided by the student’s behavior, for a
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Figure 3.1: This is the basic architecture used for the teacher. Green indicates learning
the parametric-behavior embedder state representation. Orange indicates learning the
corresponding action-value functions.

large enough minibatch of inputs and outputs, is enough to summarize pertinent

information about θ while still maintaining the Markov property. Moreover, methods

that attempt to learn directly from the parameters must learn to ignore aspects of

the parameters that have no bearing on the student’s progress. This is inefficient for

even modest neural networks. We demonstrate in Section 4.4 that learning from the

PE state representation allows the teacher to learn an effective curriculum policy over

several teaching baselines.

3.3.2 Rewards of the Teaching MDP

To specify the reward function for the teaching environment, we first identify common

criteria for training and measuring a learner’s performance. For ease of reference, let

the student performance measure m(fθt ,D) = m(θt) at time-step t.

In the episodic learning setting, one naive approach, adapted from Narvekar et

al. (2017), is the time-to-threshold reward function. With this reward function, the
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teacher is trained until the student reaches a pre-defined performance condition, such

as a sufficiently high performance measure (i.e., m(θt) ≥ m∗ for some threshold m∗).

In this case, the teacher’s reward function is constant R(θ) = −I (m(θt) < m∗) until

the student’s performance condition, m(θt) ≥ m∗, is reached, which then terminates

the teacher’s episode. Therefore, the teacher is rewarded for taking actions such that

the student reaches a performance threshold m∗ as quickly as possible.

Another common training procedure in the undiscounted, episodic case is to train

a learner for T time-steps and record the final performance. In this case, the teacher’s

reward function is zero everywhere except that R(θT ) = m(θT ); thus, the teacher is re-

warded for taking actions that improve the student’s final performance. Furthermore,

similar to the discussion in Section 3.3.1, both sparse reward functions described are

Markov, as long as the performance measure m is Markov.

Learning Progress Reward At a high level, the time-to-threshold and final per-

formance reward functions serve to inform the teacher on which actions increase the

student’s performance; however, we demonstrate in Section 4.4 that these reward

functions are insufficient to enable the teacher to learn an adequate teaching policy.

We argue that these sparse reward formulations lack integral information about

the student’s learning process. As an alternative, we propose to shape the time-to-

threshold reward function using the student’s learning progress. The learning progress

signal provides feedback about the student’s capacity for improvement and can better

inform the teacher about how its policy influences the student.

We define Learning Progress (LP) as the change in the student’s performance

measure given the student learning domain D:

LP (θ′, θ) = m(θ′)−m(θ) (3.1)

at subsequent states θ and θ′ of the student’s learning process. To shape the time-

to-threshold reward, we can simply add the learning progress term, LP (θ′, θ), to
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the existing reward R(θ′) previously described. Therefore, our resulting LP shaped

reward function is:

R(θ′, θ) = −I (m(θ′) < m∗) + LP (θ′, θ) (3.2)

until m(θ′) ≥ m∗, terminating the episode. It follows that learning progress is a

potential-based reward shaping, given by R′ = R+Φ(θ′)−Φ(θ), where the potential

is the performance measure Φ(θ) = m(θ).

This means that combining learning progress with the time-to-threshold reward

does not change the optimal policy [43]. With the inclusion of learning progress,

the teacher can now identify actions that improve the student’s performance, even

without having the student reach the performance threshold. The learning progress

term provides critical information on how the teacher’s action affected the student’s

performance in its learning domainD. The learning progress term indicates the extent

to which the teacher’s adjustment (i.e., action) improved or worsened the student’s

performance. For example, consider the curriculum learning setting in which the

teacher’s actions correspond to changing the student’s sub-tasks. The teacher would

propose a sub-task for the student to learn in. If this sub-task was too difficult, then

the student’s learning progress would be 0 or negative. The learning progress term

then indicates to the teacher that given the student’s current skill level (as described

by the student’s parameters), this sub-task was too difficult and did not improve the

student’s performance. Therefore, the teacher will be deterred from selecting this

sub-task. We show empirically in Section 4.4 that the LP reward is a richer reward

signal that can enable the teacher to learn a more effective teaching policy.

Moreover, it is important to note that given the reward function, the teacher’s goal

is to maximize its average discounted (i.e., γ is non-zero) sum of rewards. Issues may

arise if the teacher were to simply act greedily (i.e., γ is zero) and only maximize

its immediate reward. We hypothesize that by only maximizing immediate reward,

the teacher may be incentivized to propose any action that results in higher learning

19



progress irrespective of its relevance to the student’s target task. This can result in

the teacher proposing actions that are not necessary for the student. We leave it to

future work to empirically investigate the effects of using an RL teacher agent versus

a bandit teacher agent.

3.3.3 Actions of the Teaching MDP

Thus far, we have described the state representation and reward function of the

Teaching MDP. However, in order for the teacher to improve the student’s learning

process, it must be able to intervene. The teacher’s responsibility is to oversee the

student’s learning process and take actions that adjust this process. The action set,

A, enables the teacher to control any component of the student’s learning process. An

action can change internal components of the student, such as its hyperparameters,

learning algorithm, or objective function, as well as external components such as

the student’s learning domain (e.g., the task or data sample). Notably, the choice

of action space leads to different meta-learning problem instances, thereby allowing

our reinforcement teaching framework to be used across a wide range of problems.

This can include curriculum learning (learning a policy for sequencing tasks of D),

learning to sample (learning a policy for sampling mini-batches from D), and adaptive

optimization (learning to adapt the student’s step-size).

Furthermore, the frequency of the teacher’s intervention is also dependent on the in-

stantiation of the meta-learning problem. More specifically, the action set determines

the time-step of the teaching MDP. The base time-step of the teaching environment

is each student parameter update. The teacher operates at this frequency in settings

where it controls an aspect of the learning algorithm, such as the step-size. However,

in other meta-learning problem instances, such as curriculum learning, the teacher

acts at a slower rate, thereby inducing a semi-MDP [44]. In the curriculum learning

setting, the teacher’s action changes the student’s task. The student typically has a

prolonged interaction in the proposed environment and makes several parameter up-
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dates before the teacher takes another action. Therefore, depending on the problem

instance, the teacher and the student may operate at different time scales.

With the states, transitions, rewards, and actions now fully defined, we have con-

structed the Teaching MDP, M = ⟨S,A, T,R, µ, γ⟩, as summarized in Figure 3.2.

We are now able to learn a teaching policy for the Teaching MDP. When discussing

specific instantiations of the Teaching MDP, we will specify what the teacher controls.

Figure 3.2: Teaching MDP: The teacher takes actions a ∈ A, influencing an aspect
of the student, fθ,Alg or its learning domain D. The student will then update its
model under the new configuration. The student’s learning process will then output
r, s′.
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3.4 Teacher-Student Interaction Protocol

We summarize the basic interaction between the teacher and student when the teacher

uses the parameter state representation and LP reward function:

1. The teacher RL agent selects an action A ∈ A. This action will change a

component of the teaching environment E(Θ).

2. The student will then train its model under the new configuration.

3. We retrieve the updated student parameters θs
′
and set the next teacher state,

S ′ to be θs
′
.

4. We calculate the performance measure m(θs
′
) on data/task D.

5. We calculate the LP reward based on Eqn. 3.2 to get the teacher reward R.

6. We store the teacher’s transition (S,A,R, S ′) in a replay buffer and update the

teacher’s model parameters according to the teacher’s RL algorithm ψT .

We refer to the RL algorithm used to train the teacher agent as ψT , and the

student’s ML algorithm as ψs. The inputs to the framework are the teacher and

student learning algorithms, the teacher’s action set A, and the student performance

threshold m∗. The teacher’s action set is problem-dependent and therefore defines

the frequency of the teacher’s action. For example, if the teacher’s goal is to learn an

adaptive step-size for the student’s optimizer, then the teacher will propose an action

(e.g., step-size) at every student time-step. However, if the teacher’s goal is to learn

a curriculum policy, then the teacher will propose an action (e.g., sub-task) at every

student episode after several student parameter updates. Therefore, the time-scale

and frequency of the teacher-student interaction can vary. Lastly, the output of this

teacher-student process will be a teaching policy that the teacher can now use to

improve the learning process of new students. The reinforcement teaching framework

is further detailed in Algorithm 1.
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Algorithm 1 Reinforcement Teaching Framework

Input: teacher RL algorithm ψT , student ML algorithm ψs, teacher action set
A, initial teacher parameters θT , learning domain D, and student performance
threshold m∗ ∈ [0, 1]
Loop for each teacher episode:

Initialize student parameters θs and m(θs) = 0
Set initial teacher state S0 = θs
While m(θs) < m∗ do:

Choose teacher action A ∈ A and update E(Θ)
Train student via ψs and observe θ′s
Evaluate student on task D to obtain m(θ′s)
Calculate R′ based on Eqn. 3.2.
S ′ = θ

′
s

Store transition (S,A,R′, S ′) in replay buffer
Update θT according to ψT

23



Chapter 4

Experiments

In this chapter, we discuss the experiments and the results of our proposed reinforce-

ment teaching framework in the curriculum learning domain.

4.1 Environments

In our experiments, three environments were used to highlight the effectiveness of the

reinforcement teaching framework in both discrete and continuous control environ-

ments. We describe the environments in order of increasing complexity. See Table

4.1 for a summary of the environment characteristics.

Maze Four Rooms Fetch Reach

Env action type Discrete Discrete Continuous

Number of env actions 4 3 NA

Env state space type Discrete Continuous Continuous

Dimension of env state 1 243 10

Max number of time-steps 40 40 50

Env reward R(t) = 0 except R(T ) = (.99)T R(t) = 0 except R(T ) = 1− 0.9 ∗ T
maxsteps

R(t) = −1 except R(T ) = 0

Teacher action Start state Start state Goal distribution

Number of teacher actions 11 10 9

Table 4.1: Environment characteristics. T denotes the time-step at termination.

Maze The Maze environment is an 11 × 16 discrete grid with several blocked states

(see Figure 4.1a). An agent can take four deterministic actions: up, down, left, or

right. If an agent’s action takes the agent off the grid or into a blocked state, the agent

will remain in its original location. The environmental reward is 0 until the agent
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reaches the goal state. Once the agent reaches the goal state, the reward is (.99)t,

where t is the number of time steps it took the agent to reach the goal. To make this

environment more difficult, we limited the max number of time-steps per episode to

only 40. Therefore, the agent cannot simply randomly explore until it reaches the

goal. Furthermore, in this environment, the teacher’s action will change the student’s

start state. The teacher can start the student at 11 possible locations, including the

start state of the target task. The teacher’s action set contains both impossible tasks

(e.g., start states that are completely blocked off) and irrelevant tasks (e.g., start

states that are not necessary to learn for the target task). This environment is useful

to study for several reasons. First, the reduced maximum time-step makes exploration

difficult thus curriculum learning becomes a necessity. Secondly, the set of impossible

and irrelevant sub-tasks in the teacher’s action set ensure that the teacher is able to

learn to avoid these actions and only suggest actions that enable the student to learn

the target task efficiently (i.e., navigating from the blue to green state, see Figure

4.1a).

(a) Maze (b) Four Rooms

Figure 4.1: The green square represents the goal state, and the blue square represents
the start state of the target task. Yellow squares indicate the teacher’s possible actions
— possible starting states for the student.

Four Rooms The Four Rooms environment is adapted from the MiniGrid suite

[45]. It is a discrete state and action grid-world. Although the state space is discrete,
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it is very large. The state encodes each grid tile with a 3 element tuple. The tuple

contains information on the color and object type in the tile. Due to the large state

space, this environment requires a neural network function approximator on behalf of

the RL student agent. The large state space makes Four Rooms much more difficult

than the tabular Maze environment. Similar to the Maze domain, Four Rooms has a

fixed start and goal state, as shown in see Figure 4.1b. In addition, the objective is for

an agent to navigate from the start state to the goal state as quickly as possible. In

our implementation, we used the compact state representation and reward function

provided by the developers. The state representation is fully observable and encodes

the color and objects of each tile in the grid. The reward function is 1−0.9∗ time−step
maxsteps

for successfully reaching the goal and 0 otherwise. To make the environment more

challenging, we reduced the maximum number of time-steps to 40. Moreover, there

were three actions: turn left, turn right, and go forward. If an agent’s action takes

the agent off the grid or into a blocked state, the action is undone. Moreover, the

teacher’s action set is similar to the maze environment in that the action changes the

student’s starting state to one of 10 possible states (as shown by the yellow states in

4.1b).

Figure 4.2: Image of Fetch Reach environment

Fetch Reach Fetch Reach is a continuous state and action simulated robotic en-

vironment [46]. It is based on a 7-DoF Fetch robotics arm, which has a two-fingered
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parallel end-effector (see Figure 4.2). In Fetch Reach, the end-effector starts at a fixed

initial position, and the objective is to move the end-effector to a specific goal posi-

tion. The goal position is 3-dimensional and is randomly selected for every episode.

Therefore, an agent has to learn how to move the end-effector to random locations

in 3D space. Furthermore, the observations in this environment are 10-dimensional

and include the Cartesian position and linear velocity of the end-effector. The ac-

tions are 3-dimensional and specify the desired end-effector movement in Cartesian

coordinates. In addition, each action is applied for 20 simulator steps. As for the

environmental reward, the reward function is sparse and binary. The agent receives

a reward of 0 if the end-effector is at the goal position (within a tolerance of 5 cm)

and -1 otherwise. As for the teacher’s action set in Fetch Reach, the teacher controls

the goal distribution. The goal distribution determines the location the goal is ran-

domly sampled from. There are 9 actions in total, each action gradually increasing

the maximum distance between the goal distribution and the starting configuration

of the end-effector. Therefore, “easier” tasks are ones in which the set of goals are

very close to the starting configuration. Conversely, “harder” tasks are ones in which

the set of goals are far from the starting configuration of the end-effector. It is im-

portant to note, however, that the goal distribution of each action subsumes the goal

distribution of the previous action. For example, if action 1 allows the goal to be

sampled within the interval [0, .1], then action 2 allows the goal to be sampled within

the interval [0, .2]. This allows for learning on “easy” tasks to be useful for learning

on “harder” tasks.

4.2 Experimental Details

To formalize curriculum learning through reinforcement teaching, we establish the

teaching MDP. To begin, the teacher’s actions will control an aspect of the student’s

environment discussed in Section 4.1. For the student’s learning algorithm, we used

Q-learning [47], PPO [48], and DDPG [49], for the Maze, Four Rooms, and Fetch
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Reach environments, respectively. This highlights that reinforcement teaching can be

useful for a variety of students. For the PPO and DDPG students, we used existing

open-source implementations [50, 51]. For a complete list of the hyperparameters

used across these algorithms, see Table 4.2.

For the teacher’s state representation, we consider two variants of the parametric-

behavior embedder that use different student outputs fθ. In both cases, the inputs are

the states that the student encounters during its learning process. For PE-QValues,

the embedded student outputs are the state-action values, whereas for PE-Action,

the embedded student outputs are one-hot encodings of the student’s greedy policy.

In addition, for all reward functions, the performance measure is the student’s re-

turn on the target task. Table 4.3 provides the performance threshold, m∗, for each

environment.

Next, to train the teacher, we use the vanilla DQN [52] with a decaying epsilon

policy. We follow the teacher-student interaction protocol as described in Algorithm

1. See Table 4.3 for a complete list of the training hyperparameters and Appendix

A for the teacher hyperparameters and the associated grid-searches. Moreover, to

access the teacher’s curriculum policy, we evaluate the trained teacher’s policy on a

Maze Four Rooms Fetch Reach

Student Agent Type Tabular Q Learning PPO DDPG

Optimizer NA ADAM ADAM

Batch size NA 256 256

Learning rate .5 .001 .001

Gamma .99 .99 NA

Entropy coefficient/Epsilon .01 .01 NA

Adam epsilon NA 10−8 10−3

Clipping epsilon NA .2 NA

Maximum gradient norm NA .5 NA

GAE NA .95 NA

Value loss coefficient NA .5 NA

Polyak-averaging coefficient NA NA .95

Action L2 norm coefficient NA NA 1

Scale of additive Gaussian noise NA NA .2

Probability of HER experience replay NA NA NA

Actor Network NA 3 layers with 64 units each, Tanh activation 3 layers with 256 units each, ReLU activation

Critic Network NA 3 layers with 64 units each, Tanh activation 3 layers with 256 units each, ReLU activation

Table 4.2: Student hyperparameters.
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Maze Four Rooms Fetch Reach

Student training iterations 100 50 50

# episodes/epochs per student training iteration 10 25 1

Cycles per epoch NA NA 6

Batches per cycle NA NA 5

Evaluation episodes/rollouts 30 40 80

Max # of environment steps 40 40 50

Performance Threshold .77 (discounted return) .6 (discounted return) .9 (success rate)

# of teacher episodes 300 90 50

Table 4.3: Hyperparameters used in the teacher-student training procedure.

newly initialized student. Therefore, we can determine the impact of the teacher’s

learned curriculum on the student’s learning efficiency and final performance on the

target task

4.3 Baselines

To analyze the effectiveness of our reinforcement teaching framework, we compare it

against the following baselines: L2T [3], Narvekar et al. (2017) [6], a random teacher

policy, and a student learning the target task from scratch (no teacher). Narvekar et

al. (2017) and L2T [3] are both RL teaching methods in which a teacher is trained, via

RL, to adjust a component of the student learning process. In Narvekar et al. (2017),

the RL teacher is used to learn an optimal curriculum policy for an RL student.

Further, in the L2T framework, the teacher is tasked with learning how to sample

minibatches of data for a supervised learning student.

Narvekar et al. (2017) are representative of approaches that use the parameter state

representation and the time-to-threshold reward function, while the L2T framework

is representative of domain-specific approaches that rely on handcrafted heuristics.

In the L2T framework, the teacher’s state representation includes several heuristics

about the data and student model, and is heavily designed for the task of minibatch

sampling. Therefore, to apply this method to the curriculum learning setting, we

used an approximation of their state representation. This approximated state repre-
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sentation includes a one hot vector of the teacher’s action, the student’s target task

score, the student’s source task score, and the current student episode number. Fur-

thermore, for the reward function, the L2T framework considers a sparse variant of

the time-to-threshold reward (see Table 4.4). Next, to highlight the importance of

our learning progress reward function, we ablate over three additional reward func-

tions used in the RL teaching literature. This includes Matiisen et al. (2017) [29], in

which the teacher’s reward is strictly the learning progress term (see Definition 3.1),

and Ruiz et al. (2019) [11], in which the teacher’s reward is based on the student’s

performance. See Table 4.4 for full details of the reward baselines. In these ablations,

we fixed the teacher’s state representation to be the PE-Action, and just changed the

reward. This ensures any difference in the teacher’s policy results from the reward

function alone.

Baseline Reward Function State Representation

Ours R = −I (m(θ) < m∗) + LP (θ′, θ) Behavior Embebber

Narvekar et al. (2017) R = −I (m(θ) < m∗) Student Parameters

Fan et al. (2018) R = 0 except R(T ) = − log( T
max−steps

) Heuristic-based

Matiisen et al. (2017) R = LP (θ′, θ) NA

Ruiz et al. (2019) R = m(θ′) NA

Sparse Ruiz et al. (2019) R = 0 except R(T ) = m(θ′) NA

Table 4.4: This table highlights the reward and state representation used across
various baselines. For Fan et al. (2018) baseline, T denotes the last teacher-time-step
in the teacher’s episode, and max-steps is the maximum number of teacher time-steps.

4.4 Results

In this section, we first compare our reinforcement teaching method with the existing

RL teaching baselines. Then, to emphasize the significance of our learning progress

reward function, we show results ablating over several rewards functions. All results

are averaged over 30 seeds with shaded regions indicating 95% confidence intervals

(CI). To test differences between methods, we also report the mean area under the
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student’s learning curve (AUC) when trained using each of the teacher’s learned

curricula. We use a one-tailed independent-samples Welch t-test (i.e., equal variances

are not assumed) to determine if there is a difference in the average AUC between

methods with α = .05. The Welch t-test was found to be more robust to violations

of their assumptions compared to other parametric and non-parametric tests (e.g.,

t-test, ranked t-test, and Mann-Whitney non-parametric test) [53]. In certain results

we found the normality assumption to be violated, therefore the Welch t-test a better

choice than others.

4.4.1 Comparison of Existing Baselines

Across all environments, we found that by using the PE state representation and

the LP reward signal together, the teacher is able to learn a superior curriculum

policy compared to the baselines. These teacher policies generated a curriculum of

start/goal states for the student that improved the student’s learning efficiency and/or

final performance, as shown in Figures 4.3 and 4.4.

More specifically, we found that in the Maze domain, the PE-QValues + LP teacher

policy initially selected starting states close to the target goal state. However, as the

student’s skill set improved over time, the teacher adapted its policy and selected

starting states farther away from the goal state (see Figure 4.5). This curriculum

policy enabled the student to solve the Maze task (reach the performance threshold)

in approximately 400 student training episodes. Comparatively, the L2T, random

teacher, and learning from scratch baselines were unable to make any progress on

the student’s learning even after 10,000 student training episodes (see Figure 4.3).

Our PE-Action + LP method and the Narvekar et al. (2017) baseline resulted in

a similar speedup on behalf of the student’s learning, however the student’s aver-

age performance did not surpass the performance threshold. In addition, with our

method (PE-QValues + LP) the teacher only selected “irrelevant” and “impossible”

tasks 2.6% of the time. The Maze domain was designed to contain “irrelevant” and

31



Figure 4.3: Top: Maze, Bottom: Four Rooms. This figure shows the student’s learn-
ing curves on the target tasks with the assistance of the respective trained teacher
policies. Purple/orange curves indicate our methods. Our method outputs a more
effective teaching policy resulting in improved student final performance and/or learn-
ing efficiency across both environments. Dotted line indicates performance threshold
m∗.
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Figure 4.4: This figure shows the student’s learning curve in Fetch Reach with the as-
sistance of the respective trained teacher policies. Our method (purple curve) achieves
a superior teaching policy resulting in improved student final performance compared
to the baselines. Dotted line indicates performance threshold m∗.

Maze Four Rooms Fetch Reach

PE-Actions + LP (Ours) 58.05 ± 3.61 23.95 ± 0.50 33.82 ± 1.06

PE-QValues + LP (Ours) 58.55 ± 1.48 25.60 ± 0.51 NA

L2T 3.44** ± 2.38 9.02** ± 1.79 15.49** ± 2.22

Narvekar et al. (2017) 54.3 ± 4.15 1.88**± 0.64 5.87** ± 1.52

Random curriculum 4.17** ± 1.36 14.86** ± 1.14 13.41** ± 1.06

Learning from stratch 0** ± 0 0.16**± 0.11 13.76** ± 1.13

Table 4.5: This table shows the student’s average area under the curve when using
the trained teachers’ curriculum. ** Indicates a significant difference (p<.05) between
baseline and both of our methods (PE QValues/Actions + LP reward).
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Figure 4.5: The beginning (left), middle (center), and ending (right) stages of the
curriculum generated by the PE-QValues + LP method for the Maze environment.
States outlined in white indicate possible teacher actions. States outlined in blue/-
green indicate the target start and goal state respectively. Brighter colors (more
yellow/white) indicates the start state was chosen more frequently by the teacher.
Darker red/black indicates the start state was chosen less frequently by the teacher.

“impossible” tasks in order to test whether RL teachers can learn to avoid them.

However, it is likely that in other environments the set of “irrelevant” or “impos-

sible” tasks is unknown. Therefore, it is important that with our method, the RL

teacher is able to learn to avoid these tasks in order to improve the student’s learning

ability.

Moreover, the Narvekar et al. (2017) curriculum policy only improved the stu-

dent’s performance in the Maze domain. This is not surprising because (1) as noted

in Section 3.3.1, the student parameters are Markov and (2) the parameters in this

domain are simply the student’s tabular state-action value table. This tabular rep-

resentation is small and does not come with the same issues as the parameters of a

function approximator as described in Section 3.3.1.

Next, in the Four Rooms domain, by using the PE state representation and LP re-

ward, the teacher’s learned curriculum enables the student to surpass the performance

threshold after only training for 500 episodes. The random teacher was the second

best baseline in this domain. However, the random curriculum over doubled the

amount of student training time, with the student finally reaching the performance

threshold after approximately 1,125 student training episodes (see Figure 4.3).
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As for the Narvekar et al. (2017) baseline, issues with the parameter state repre-

sentations quickly arose in the Four Rooms domain. Although the parameter state

representation is a Markov state, generalization in parameter-space is difficult even

for this student’s relatively small neural network (40k parameters). This resulted in

the student’s average return plateauing around .1 (see Figure 4.3).

Furthermore, while the L2T baseline uses a heuristic state representation that is

much smaller than the parameter representation, it is only able to improve over the

Narvekar et al. (2017) and target baselines in the Four Rooms domain. We hypoth-

esize that the sparse reward function used in this method is a major contributing

factor to its poor performance. In this method the teacher’s reward is 0 except for a

positive reward once the student’s performance on the target task surpasses the per-

formance threshold. With this reward formulation, the teacher is not able to easily

recognize the impact of each of its actions on the student’s performance. This can

make it difficult for the teacher to learn an adequate policy.

Moreover, in both the Four Rooms and Maze environments, when learning from

scratch (without the assistance of RL teachers) the student is unable to make any

progress on the target task. This highlights the importance of our reinforcement

teaching framework in the curriculum learning setting. There are environments, es-

pecially hard-exploration environments, in which learning from scratch is infeasible.

Therefore, learning curriculum policies becomes essential to be able to solve this class

of environments.

Lastly, in the Fetch Reach environment, all methods yielded similar student per-

formance gains as in Four Rooms. Only our teaching method, using PE-Actions +

LP, was able to output an effective curriculum that drastically improved the student’s

learning efficiency and final performance compared to all other baselines (see Figure

4.4). This highlights that our method is not limited to grid-worlds and can be helpful

in more complex robotic environments.

To that end, by using the LP reward, the teacher can quickly identify actions
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that improve the student’s performance, even without having the student reach the

performance threshold. Moreover, by using the PE state representation, the teacher

is still able to learn about Θ via the student input-output behavior, without the issues

of directly learning from Θ. For these reasons, with our method the teacher is able to

learn a superior curriculum policy that enables the student to quickly solve various

discrete and continuous environments.

4.4.2 Teacher Learning Efficiency

We have demonstrated that our reinforcement teaching approach can successfully

train an RL teacher to learn effective curriculum policies. These curriculum policies

can improve both the learning efficiency and final performance of RL students in

discrete and continuous environments. However, a typical consequence of using RL

to train a teacher is the additional training computation. In our method, there is

both an inner RL training loop to train the student, and an outer RL training loop

to train the teacher. Although this is true, we show that our method can greatly

improve the teacher’s learning efficiency and therefore reduce the overall amount of

computation. In the Maze environment, by using either PE state representations

with the LP reward, the teacher is able to plateau to its final average return in

approximately 150 teacher episodes. More impressively, in Four Rooms and Fetch

Reach, the teacher is able to plateau in approximately 40 and 25 teacher episodes

respectively (see Figure 4.6).

However, one can still argue that the extra compute necessary to train the teacher

can be used to train a student on the target task from scratch. It is critical to

recall that there are environments, particularly hard exploration environments, where

learning a task from scratch is not feasible without assistance. To further emphasize

this point, in the Maze environment, we trained an RL student from scratch with the

same amount of compute required to train the RL teacher with our approach. We

defined compute as the total number of student episodes involved to train the teacher
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Figure 4.6: Top: Maze, Middle: Four Rooms, Bottom: Fetch Reach. This figure
shows the teacher’s training curves when using our method (PE state + LP reward)
in each environment. We observe that with our method, the teacher can quickly
plateau to its maximum cumulative return.
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to plateau. More specifically, it took approximately 150 teacher episodes until the

teacher reached its best cumulative return. For each teacher episode, the student

had a maximum of 1,000 training episodes. Therefore, we trained the student from

scratch on the target task for 1, 000 X 150 episodes. We found that even with the

same amount of compute, the student is unable to learn the Maze task from scratch.

Moreover, with our framework, the RL agent is able to learn curriculum policies

that can be useful for new student agents with differing learning rate, learning algo-

rithm or neural network architecture (See Figure 4.7). In the transfer experiments, we

used the same trained teacher as in 4.3, except we changed either the student’s learn-

ing rate, learning algorithm, or neural network architecture. Therefore, the teacher

is “seeing” a different student during its evaluation than it did during its training. In

the Maze experiments, the teacher was originally trained with Q-Learning students

that used a learning rate of .5. During the Maze transfer experiment, we evaluated

the teacher’s learned curriculum policy with either (1) SARSA students or (2) Q-

Learning students with a learning rate of .0001 or .25. Moreover, in the Four Rooms

transfer experiment, we evaluated the teacher’s learned curriculum policy on PPO

students that had a deeper neural network architecture (i.e., more neural network

layers) than the PPO students encountered during the teacher’s training.

In most cases, we found that the trained teacher is able to generalize to students

it had not seen before and still output effective curriculum that resulted in improved

student performance in terms of both final performance and learning efficiency. The

teacher’s generalization success is likely due to our parametric-behavior embedder.

The parametric-behavior embedder learns a representation from the student’s behav-

ior, therefore as long as new students (i.e., students with different hyperparameters

than the ones the teacher trained with) still behave similarly during the task, the

teacher should be able to effectively generalize. Interestingly, in the Maze transfer

experiments, in which the student’s learning rate changed to 0.0001, we found that

the teacher could not generalize when using the PE-QValues state representation.
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This resulted in extremely poor student performance. This is not surprising because

the PE-QValues state representation encodes the student’s Q-Values. Stark changes

to the learning rate can drastically change the resulting Q-Values, which can make

it difficult for the teacher to generalize. Therefore, between the two PE variants, the

PE-Actions state representation may be more robust to changing students. To that

end, this highlights the importance of using our reinforcement teaching method to

learn effective and robust curriculum policies.

4.4.3 Ablation of Reward Functions

To highlight the importance of our reward function on the teacher’s learned policy,

we ablate over various reward functions used in the literature. In this setting, we fix

the state representation to be our PE representation. All results are averaged over

10 seeds with shaded regions indicating 95% confidence intervals (CI). See Table 4.3

for a complete list of the training hyperparameters and Appendix A for the teacher

hyperparameters and the associated grid-searches.

To test differences between methods, we also report the mean area under the

student’s learning curve (AUC) when trained using each of the teacher’s learned

curricula. We use a one-tailed independent-samples Welch t-test (ie., equal variances

are not assumed) to determine if there is a difference in the average AUC between

methods with α = .05. Across all environments, we found that the student achieves

a comparable or higher average AUC value when trained with a teacher utilizing our

LP reward (See Table 4.6).

More specifically, in both the Maze and Four Rooms environment, we found that

using our LP reward function resulted in a significantly higher student AUC value

compared to the Matiisen et al. (2017) baseline. Matiisen et al. (2017) uses a reward

formulation based solely on the learning progress signal. This is unlike our LP reward

function, which uses the learning progress signal as a shaping function. A limitation

of the Matiisen et al. (2017) reward design is that it can easily be affected by the
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Figure 4.7: Top: Maxe environment, teacher is evaluated on students with different
learning rates, Middle: Maze environment, teacher is evaluated on students with a
different learning algorithm, Bottom: Four Rooms environment, teacher is evaluated
on students with a different neural network architecture. All curves are averaged over
10 runs with shaded regions indicating 95% confidence intervals.
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Reward Ablation

Maze Four Rooms Fetch Reach

LP (Ours) 58.55 ± 1.48 26.54 ± 0.46 34.55 ± 1.61

Matiisen et al. (2017) reward 10.79* ± 1.33 21.28* ± 1.36 34.39 ± 1.51

Time-to-threshold 45.11* ± 4.46 20.25* ± 2.65 16.52* ± 4.63

Fan et al. (2018) reward 9.89* ± 3.89 23.60 ± 2.43 14.18* +/- 3.20

Ruiz et al. (2019) reward 62.26 ± 1.25 27.15 ± 0.77 19.60* ± 3.66

Sparse variant of

Ruiz et al. (2019)
61.16 ± 1.27 24.90 ± 1.26 22.63* ± 4.12

Table 4.6: Ablation of teacher reward functions with fixed PE state. Reporting
mean area under the student’s learning curve over 10 runs. * Indicates a significant
difference (p<.05) between baseline and our method (PE state + LP reward).

size of the teacher’s action space. For example, if the teacher’s action set consists of

several sub-tasks that may be “easy” but not necessary for the student to learn in

order to improve learning on the target task. By using the learning progress signal

alone, the teacher is always incentivized for proposing easier tasks first (i.e., tasks for

which the student can make progress). Therefore, this can delay the teacher from

selecting a more challenging but relevant task which is required for the student to

learn the target task.

Moreover, in both the Maze and Four Rooms environment, there were several

teacher actions that fell under the category of “easy” but not necessary.” Therefore,

it is not surprising that in these domains the teacher was unable to learn an adequate

policy under the Matiisen et al. (2017) reward function. The Fetch Reach domain

did not include unnecessary actions that can hinder the teacher’s curriculum policy,

therefore we found that the Matiisen et al. (2017) achieves a comparable policy to

our LP reward.
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Figure 4.8: Top: Maze, Middle: Four Rooms, Bottom: Fetch Reach. Student learning
curves on the target tasks with the assistance of the respective trained teacher policies.
Purple/orange curves indicate our method using the LP reward function. By using the
LP reward function, the teacher is able to learn a comparable or better teaching policy
resulting in improved student final performance and/or learning efficiency across all
environments. Dotted line indicates performance threshold m∗.
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Furthermore, we found that using our LP reward function resulted in a significantly

higher student AUC value compared to the Narvekar et al. (2017) and Fan et al.

(2018) baselines in two out of three of the environments. In both of these reward

formulations the teacher is rewarded for taking actions such that the student reaches

a performance threshold as quickly as possible. Although simple approaches, the

teacher is not able to quickly differentiate between the impact of different actions on

the student’s performance. In the Narvekar et al. (2017) formulation, each action

has the same cost of −1, therefore it takes several teacher training episodes before

the teacher can update its action-value network and learn which actions are better or

worse for the student. A similar issue arises in the Fan et al. (2018) formulation.

Our LP reward function maintains the primary benefits from both the Matiisen

et al. (2017) and Narvekar et al. (2017)/Fan et al. (2018) reward formulations.

Similar to Matiisen et al. (2017), our LP reward function benefits from the learning

progress term but does not fall into the trap of selecting irrelevant actions. Instead by

using the learning progress term to shape the time-to-threshold reward, the teacher is

encouraged to select actions that allow the student to solve the target task as quickly

as possible.

Lastly, when comparing our LP reward function to the Ruiz et al. (2019) baselines,

we found that our LP reward function resulted in a significantly higher student AUC

value in the Fetch Reach environment. The reward function used in the Ruiz et al.

(2019) baseline is based on the performance measure of the target task. Therefore,

the teacher is rewarded for actions that result in the student’s target task performance

being high. We hypothesize that the main limitation of this reward function is that

it only considers the student’s performance measure on the target task. It does not

take into account how well the student is performing on the intermediate sub-tasks.

During the early stages of the student’s learning process, the student may not be

making progress on the target task. Assuming the target task is difficult, it can take

several iterations learning on the “easier” sub-tasks before the student can make any
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progress on the target task. This can result in a sparse reward formulation early on

which can hinder the teacher’s ability to learn which actions are promising for the

student.

This confirms that the LP reward is critical for our reinforcement teaching method.

To that end, we have successfully demonstrated that reinforcement teaching can be

used to learn effective curricula that improve student learning.
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Chapter 5

Conclusions and Future Work

We conclude this thesis by discussing limitations and future work.

5.1 Limitations and Future Work

In this thesis, we presented reinforcement teaching: a general formulation for meta-

learning using reinforcement learning. We focused on one domain application of rein-

forcement teaching: curriculum learning. Under this framework, an RL teacher learns

a curriculum policy that updates the tasks for an RL student. We have demonstrated

that using the learning progress shaped reward function and the parametric-behavior

embedder state representation enables the teacher to learn a superior policy most

efficiently compared to several baselines. Although this thesis focused on curriculum

learning, several other meta-learning problems can be formulated using Reinforce-

ment Teaching (see Figure 1.1). For example, reinforcement teaching can be used to

learn a step-size adaption policy that continually changes the step-size of the student

[54]. It can also be used to learn a teaching policy to sample mini-batches of student

training data.

Furthermore, some of the main limitations of reinforcement teaching are the lim-

itations of current reinforcement learning algorithms. For example, we chose to use

an episodic formulation in designing the reward function because RL algorithms cur-

rently struggle in the continuing setting with average reward [55]. In addition, RL
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algorithms can have difficulty learning if the number of discrete actions is too large;

therefore, we limited the size of the action set.

Moreover, there are several interesting extensions for the teacher’s state repre-

sentation. First, our parametric-behavior embedder learns a representation of the

student’s input-output behavior which in turn becomes the teacher’s state represen-

tation. The use of the student’s input-output behavior was a design choice for which

we describe its benefits in Section 3.3.1. However, another possibility is to learn a

representation directly from the raw student parameters, and use this learned pa-

rameter representation as the teacher’s state. Although this may present challenges

in terms of generalization and scalability, future work can empirically investigate the

impact of learning the teacher’s state representation in an end-to-end manner.

In addition, it is important to note that our parametric-behavior embedder does

assume that the student has no memory. One example of the student having memory

is if the student uses a recurrent neural network. If the student did have a memory,

the student’s input-output behavior would not fully capture the state of the student’s

learning process. Future work can consider ways to extend the parametric-behavior

embedder to account for student memory.

Another limitation of the reinforcement teaching methodology is that it is focused

on learning student-specific teaching policies. The RL teacher only learns from one

type of student. An interesting extension of reinforcement teaching could consider

the setting in which the teacher learns from multiple, diverse student agents. For

example, consider Cliff World, a tabular Maze environment in which an RL agent

must learn how to travel from a start state to a goal state without falling off the cliff.

In such environment, the SARSA and Q-Learning algorithms learn two very different

policies [47]. Therefore, it would be interesting to discover whether our RL teacher

can learn to customize its teaching policies depending on the policy of the student

agent.

Furthermore, reinforcement teaching has only considered the teacher-student rela-
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tionship in which the teacher is an RL agent, and the student is a model/agent. An

important next step could be to consider the setting in which the teacher is used to

teach a human student, as is the case for cognitive tutors [22, 23].

5.2 Conclusion

In this thesis, we presented reinforcement teaching, a general formulation that allows

a teacher to learn a policy to adjust components of the student’s learning process.

To facilitate the teacher’s learning, we introduced a learning progress based reward

function to allow the teacher to recognize promising actions more quickly. In addition,

we developed the parametric-behavior embedder that learns a representation of the

student’s behavior. Our reward and state design does not rely on problem-specific

heuristics and can therefore more easily generalize to different problem settings.

While reinforcement learning as a method for meta-learning has certain limitations,

reinforcement teaching provides a unifying framework for the meta-learning problem

formulation. As reinforcement learning algorithms improve, the set of meta-learning

problems solvable by reinforcement teaching will continue to increase.
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Appendix A: Hyperparameters

A.1 Teacher Hyperparameters

In the Maze experiments, for the DQN teacher, we performed a grid search over batch

size ∈ {64, 128, 256}, learning rate ∈ {.001, .005}, and minibatch ∈ {75, 100}. Next,

in the Four Rooms experiments, for the DQN teacher, we performed a grid search over

batch size ∈ {128, 256}, and minibatch ∈ {75, 100}. We use a constant learning rate

of .001. Lastly, in the Fetch Reach experiments, for the DQN teacher, we performed

a grid search over batch size ∈ {128, 256}. We use a constant learning rate of .001

and mini-batch size of 200. The best hyperparameters for each of the baselines are

reported in the tables.

Hyperparameters used across all envs

Teacher agent type DQN

Optimizer ADAM

Gamma .99

Tau 10−3

Target network update frequency 1

Starting epsilon .5

Epsilon decay rate .99

Value network 2 layers with 128 units each, Relu activation

Table A.1: Fixed teacher hyperparameters used across all methods.
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Maze

PE-QValues x LP PE-Actions x LP

Batch size 256 256

Learning rate .005 .001

Minibatch size 100 100

Four Rooms

PE-QValues x LP PE-Actions x LP

Batch size 128 128

Learning rate .001 .001

Minibatch size 100 100

Fetch Reach

PE-QValues x LP PE-Actions x LP

Batch size NA 256

Learning rate NA .001

Minibatch size NA 200

Table A.2: Teacher hyperparameters with our reinforcement teaching method
(Parametric-behavior state and LP reward function).
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Maze

Baseline Batch size Learning rate Mini-batch size

Narvekar et al. (2017) 128 .001 NA

L2T (Fan et al., 2018) 128 .005 NA

PE state x Time-to-threshold 256 .001 75

PE state x Fan(2018) reward 256 .001 100

PE state x Ruiz(2019) reward 128 .001 100

PE state x Sparse Ruiz(2019) 128 .001 75

PE state x Matiisen(2017) 256 .001 100

Four Rooms

Baseline Batch size Learning rate Mini-batch size

Narvekar et al. (2017) 128 .001 NA

L2T (Fan et al., 2018) 256 .001 NA

PE state x Time-to-threshold 256 .001 100

PE state x Fan(2018) reward 256 .001 100

PE state x Ruiz(2019) reward 128 .001 100

PE state x Sparse Ruiz(2019) 128 .001 75

PE state x Matiisen(2017) 256 .001 75

Fetch Reach

Baseline Batch size Learning rate Mini-batch size

Narvekar et al. (2017) 128 .001 NA

L2T (Fan et al., 2018) 256 .001 NA

PE state x Time-to-threshold 256 .001 200

PE state x Fan(2018) reward 256 .001 200

PE state x Ruiz(2019) reward 128 .001 200

PE state x Sparse Ruiz(2019) 128 .001 200

PE state x Matiisen(2017) 128 .001 200

Table A.3: Teacher agent hyperparameters for the baselines.
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