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Abstract 

This thesis examines the problem of designing least-squares Kirchhoff migration 

algorithms for imaging the subsurface. In particular, the imaging problem is posed 

as an inverse problem. The forward operator is constructed via a Kirchhoff de-

migration operator. Smoothing constraints are used to find a stable solution to the 

inversion of the de-migration operator. 

Numerical strategies (based on semi-iterative solvers) are used to estimate 

seismic images that are consistent with measured wave fields. The algorithm, 

denoted Least-squares PreStack Time Migration (LS-PSTM), is used to estimate 

common image gathers (CIG) with reduced acquisition artifacts. The algorithm is 

also capable of regularizing the data, in other words, it can be used to reconstruct 

missing seismograms. 

Synthetic and real data examples are used to validate theoretical findings and 

test the performance of the proposed LS-PSTM algorithm. 
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Chapter 1 

Introduction 

1.1 Background 

Reflection seismology is a geophysical prospecting method used for hydrocarbon reser

voir exploration, geotechnical studies, and imaging the earth's crust. In this method, a 

source or array of sources releases energy in the form of elastic waves. The energy prop

agates down into the earth and is reflected back by geological interfaces. The reflections 

are acquired and processed to form a model of the subsurface. 

The recorded data may contain unwanted events and suffer from acquisition prob

lems. It is important to mention that not all the data can be recorded. In general, logistic 

and economical constraints often dictate the amount of data that one can collect. 

In order to form a model of the subsurface, the goal of exploration seismology, col

lected raw data must undergo a seismic processing flow. In seismic data processing, 

random noise and unwanted deterministic signals are removed to obtain a data set rich 

in reflected energy. The data are then processed to account for the geometrical position of 

sources and receivers, and to improve the signal-to-noise ratio. For instance, the effect of 

source and receiver distance for a given seismogram is removed via the step called "Nor

mal MoveOut (NMO) correction". The resulting data corresponds to seismograms that 

mimic an acquisition where the source-receiver distance was reduced to zero. Stacking 

(averaging) seismograms corresponding to the same reflection point in the subsurface 

leads to the stack section. This is an image of the subsurface displaying the position of 

geological interfaces in time. The main assumption in the aforementioned process is that 

the reflectors are horizontal, or in another words, the earth is horizontally homogeneous. 
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1.1. BACKGROUND 

In the real world, however, layering in the crust does not conform a horizontally strat

ified model. Dips of layers need to be considered and the typical image of the subsurface 

gained via the seismic section is incorrect as we will illustrate. 

When reflected wave fields arise from a dipping layer as shown in Figure (1.1), the 

real reflector point is denoted by CDP, (Common Depth Point) and the corresponding 

trace (seismogram) must be placed in the position SR2. However, conventional methods 

of seismic processing places the trace in the position SRI, in the middle of S and R. As 

a result, the final zero-offset seismic section will show the dipping layer A as A'. The 

mispositioned reflector A' underestimate the real dip of the reflector A. A solution to 

this problem is to apply a "migration" algorithm to put reflectors in their correct spatial 

position. 

/ ' 
I S SR2 SR1 R 

Figure 1.1: Positioning error for dipping reflectors. The true reflector A will be mispositioned in 
the seismic section and appear as the reflector A'. 

Migration not only moves reflection events to their true spatial positions with true 

amplitudes and dips but also collapses the diffracted signal back to scattering points in 

the seismic section. Migration transforms a time section seismic wavefield, recorded on 

the earth surface, to an earth reflectivity map which can be expressed as surface position 

versus depth (depth migration) or surface position versus time (time migration). 
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1.1. BACKGROUND 

The history of migration goes back to 1920s, when mechanical migration on data were 

done by hand. Hagedoorn (1954) introduced the method of diffraction summation. The 

primary methods were based on the concept of ray tracing and scalar diffraction theory. 

In the beginning of 1970s John Claerbout and his colleagues at the University of Stan

ford introduced migration as an approximate solution to the wave equation (Claerbout 

and Doherty, 1972). It was the first link between migration and the wave equation. The 

idea was that a zero-offset seismic section can be modeled as an upgoing zero offset 

wavefield produced by exploding reflectors. In this model migration is considered as 

downward continuation followed by imaging. Because downward wavefield continu

ation is conveniently implemented via the finite difference solution to the scalar wave 

equation, this method of migration is called "finite difference migration". 

Schneider (1978) introduced Kirchhoff wave equation migration. He showed that 

by ignoring multiples and with proper scaling and filtering, the diffraction summation 

method is an exact solution to the wave equation. Shortly after that, Gazdag (1978) and 

Stolt (1978) showed that the migration sum can also be obtained via Fourier transform 

methods. For instance, Stolt's (1978) method is a coordinate transformation from fre

quency to vertical wavenumber. Gray et al. (2000) summarized the history of migration 

and provides a good survey of methods often used by the oil/gas exploration industry. 

In the method of Kirchhoff migration each point in the image domain is considered 

a diffractor point. This method tries to collapse all diffracted energy back to the scat-

terer point. In the resulting image each dipping reflector is moved to the correct location 

with the true dip and length. The Kirchhoff migration method is not able to deal with 

multipathing rays. It has many advantage, however, such as efficiency and low cost, the 

ability to handle irregularly sampled data, adapt well to prestack or postack volumes, 

work with converted waves, and allows data aliasing to be controlled, to name afew. 

For a simple structural model, Kirchhoff migration of regular and dense (high sub

surface foldage) seismic data with long aperture often gives acceptable images of the 

subsurface. In reality, however, well-sampled data are often difficult to obtain. Econom

ical aspects, human made obstructions, geographical obstacles (rivers, lakes) and envi

ronmental regulations often leads to data that are not sampled according to theoretical 

needs. In the marine case, steamer feathering due to water currents un-parallel to in-line 

3 



1.2. LEAST-SQUARES MIGRATION 

direction, acquisition interruptions due to severe storms, etc, can also lead to data sets 

with missing or poorly positioned data on a regular grid. 

1.2 Least-Squares migration 

Methodologies to overcome the aforementioned shortcomings of standard Kirchhoff mi

gration can be managed by approximating the exact inverse by a generalized inverse as 

proposed by Tarantola (1984) and studied by many other researchers (LeBras and Clayton 

(1988), Beydoun and Mendes (1989), Lumley and Beydoun (1997), Nemeth et al. (1999), 

Nemeth et al. (2000), Duquet et al. (2000), Xu et al. (2001), Kuehl and Sacchi (2001b) and 

Kuehl and Sacchi (2003)). We often refer to this approach the Least-Squares Migration 

(LSM) algorithm. LSM has been used as a method to overcome many problems in seis

mic imaging such as migration of irregular data, removing coherent noise, removing mi

gration artifacts, and true amplitude AVA (Amplitude Versus Angle)/AVO (Amplitude 

Versus Offset) analyzes. LSM is computationaly expensive and consequently, it has not 

become a standard method to process seismic data. 

We can consider two classes of LSM algorithms: first those Kirchhoff type proposed 

by Nemeth et al. (1999) and Duquet et al. (2000), and wave equation types proposed by 

Kuehl and Sacchi (2001b). In the LSM algorithm, the forward modeling operator builds 

data from a subsurface reflectivity model using a method such as Kirchhoff diffraction 

forward modeling. The image of the reflectivity is found by numerically finding a solu

tion to the inverse of the de-migration operator. 

Nemeth et al. (1999) and Nemeth et al. (2000) showed that LSM can reduce seismic 

artifacts arising from data sampling problems. 

LSM is not limited to the Kirchhoff or wave equation migration and can be used with 

any other migration method such as Fourier transform methods. Methods based on wave 

equation migration have higher cost compare to the Kirchhoff method. Kuehl and Sacchi 

(Kuehl and Sacchi (2001a), Kuehl and Sacchi (2001b) and Kuehl and Sacchi (2003)) used 

wave equation LSM methods to migrate incomplete data and for AVP (Amplitude Versus 

ray Parameter) and AVA inversion. Wang and Sacchi (2007) also added a sparseness 

constrain to wave equation LSM to enhance vertical resolution of CIG for AVP studies. 

4 



1.3. OVERVIEW OF THE DATA RECONSTRUCTION PROBLEM 

1.3 Overview of the data reconstruction problem 

In seismic methods, the recorded data are the discrete version of a continuous 3D elastic 

wavefield. A perfect wavefield sampling is impossible in the real world and the recorded 

seismic data always suffer from incompleteness and irregularity. 

Irregularity in the seismic data is a direct result of data acquisition. Data acquisition 

is the most expensive and time consuming part of seismic surveying. Rivers, swamps, 

jungles, and human-made structures cause un-even distribution of sources and receivers. 

This is due to economical and environmental aspects on land, especially in 3D data ac

quisition. 

In the case of marine data gathering, irregularity and incompleteness of the data are 

results of streamer feathering (especially in far offsets), marine traffic, well-sites, etc. Also 

in the case of 3D marine data acquisition, the lack of wide-azimuth information and miss

ing near offset data is inevitable. Missing or unreadable tapes and bad-trace muting are 

considered another sources of data irregularity. 

The problem of irregularity in seismic data affects many processing steps such as: 

multiple attenuation, full 3D wave-equation imaging and AVO/AVA/AVAz (Amplitude 

Versus Azimuth) studies, 4D seismic monitoring, and resolution enhancement. 

Multiple attenuation is an important step in seismic data possessing. The Gulf of 

Mexico data set is an example of the previous statement (Chapter 5). There are many 

methods for multiple elimination. Some of the most effective methods need regular data 

sampling. For these methods, data reconstruction with regular and complete positions 

of sources and receivers is necessary. 

Wave equation migration solves the acoustic wave equation in the frequency domain 

and needs regular sampling of data. Usually missing data are replaced by zeros and 

consequently they will introduce artifacts in the final image. Using the method of least-

squares wave equation migration is a computationally expensive solution to the prob

lem. Using methods that are less expensive and less dependent to the velocity, for exam

ple Kirchhoff Least-squares PreStack Time Migration (LS-PSTM), for data reconstruction 

prior to the wave equation migration can decrease the computational cost. 

Regular distribution of offsets/azimuths is vital information for AVA and AVAz anal-

5 



1.4. SCOPE OF THIS THESIS 

ysis for reservoir characterization. 

4D reservoir monitoring compares two or more 3D (or 2D) seismic images of sub

surface. Positioning sources and receivers in the same locations as the previous 3D (or 

2D) is only possible in the Ocean Bottom Seismic (OBS) surveying. In order to properly 

put newer seismic images with older ones, side by side, different acquisition geometries 

must be transferred to one acquisition geometry. 

Kirchhoff prestack migration of incomplete/irregular data results artifacts in the mi

grated image (Gardner and Canning, 1994). 

In this thesis, I simulated the incompleteness of data by purposely removing some 

traces or shot gathers prior to imaging. Removing parts of data allows measurement of 

the performance of the algorithm for resolution improvement and data reconstruction. 

When the data reconstruction is perfect, the difference between the original data and 

reconstructed data must include only random noise. 

However, It is emphasized that Kirchhoff LS-PSTM algorithm is not effective in an 

areas with complex geological structures, for example in the Marmousi data set (Chapter 

4). Data reconstruction via Kirchhoff LS-PSTM is less expensive than a depth migration 

implementation and also it is less sensitive to the velocity model than depth imaging. 

Therefore it can be performed for data regularization and reconstruction prior to the 

more expensive, depth imaging methods. 

1.4 Scope of this thesis 

This thesis focuses on constrained Least-Squares PreStack Time Migration (hereinafter 

called "LS-PSTM") of the Kirchhoff type. In particular, I will discuss implementation 

issues, and the impact on resolution for the case of irregularly sampled data. 

1.5 Outline of this thesis 

In Chapter 2 the basic theory of Kirchhoff integral migration/ modeling and practical 

aspects of operator design are reviewed. The implementation of Kirchhoff migration 

with amplitude preserving weights, anti-aliasing and aperture limitation is presented. 
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1.5. OUTLINE OF THIS THESIS 

In Chapter 3 I present LS-PSTM and I introduce a offset-dependent regularization 

strategy that helps to overcome sampling and migration artifacts. 

In chapter 4 the applications of LS-PSTM to the problem of seismic data reconstruc

tion is studied. 

Chapter 5 deals with problems associated with LS-PSTM and data reconstruction of 

a Gulf of Mexico data set contaminated with strong multiple reflections. 

Finally, Chapter 6 concludes the thesis and provides recommendations for future 

work. 
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Chapter 2 

Kirchhoff Time Migration and 
Modeling 

2.1 Wave equation and Kirchhoff migration 

Helmholtz scalar acoustic wave equation in the frequency domain is given by 

V24>{X,OJ) + y£il>(x,v) = S(x,u>), (2.1) 

where I/J is the seismic wavefield in the frequency domain, to is angular frequency, V is 

speed of sound, x is position and S denotes source wave function (Morse and Feshbak, 

1953). 

The wavefield ijj is composed of a downgoing wavefield D and an upgoing wave-

field U. For a source point at xs, the downgoing wavefield at any location x inside the 

volume v under the recording surface can be expressed by the following equation in the 

frequency domain (Audebert et al., 1997): 

D(X,UJ\XS)= f G{x,u\x')S(x',w\xa)dx', (2.2) 

where G(x, u>\x') is the Green function solution to the scalar wave equation (2.1) at x with 

source at x', and S(x', w\xs) is the source function at x', given point source at x.,. Neglect

ing the absolute amplitude of source, assuming that the source has a delta function shape 

in time and space, S(t)5(x' - xs), and considering that the downgoing wavefield contains 

only primary arrivals from the source (Audebert et al., 1997): 



2.1. WAVE EQUATION AND KIRCHHOFF MIGRATION 

D(x,u\xa) « / G(x,Lo\x')S{t)S{x' - xs)dx' = G(x, u\xa), (2.3) 

which means that the downgoing wavefield can be reconstructed by forward modeling 

with the Green function (Lumley, 1989). 

On the other hand, the upgoing wavefield, contains only primary energy reflected 

back from the reflection point x and recorded by the receiver at position .<•,., is obtained by 

space-frequency integration over the recorded boundary data, weighted by the normal 

derivative of the Green function: 

U(X,OJ\X3) = n.VG(xr,u)\x)ip(xr,w\xs)dxr, (2.4) 
s 

where s is recording surface enclosing v, G(xr,u>\x) is receiver Green function, fi is a 

normal vector to the recording surface, and V is the gradient operator to x along the 

recording surface at x — xr. 

The dynamic imaging condition approximates the upgoing wavefield via the f con

volution of the earth reflectivity R(x) with the downgoing wavefield D{x, to) (Claerbout, 

1971): 

U(x,u) = R(x)D(x,w), (2.5) 

where R(x) is weighted zero-lag cross-correlation of the source and the reflected wave-

fields, normalized by the local energy of the source wavefield, DD': 

R(x) * T WUD> « V U
n^

U)Z{rl (") 
v ^ *-< D(X,UJ)D'(X,U) 

here W represents the migration weight which using equation (2.3) can be estimated via 

(Audebert et al., 1997): 

W" 1 = DD' «= G(x,u,'\x,)G'(x,u;\xs) = |G(.y;,w|.i;.s)|
2. (2.7) 

The cross-correlation imaging condition evaluated at zero-lag, prevents instability in the 

reflectivity when the downgoing wavefield is weak. It distorts the true amplitude re

sponse but enhances stability (Claerbout, 1971). 
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2.2. KIRCHHOFF MIGRATION AND MODELING IN THE TIME-DOMAIN 

By averaging weighted versions equation (2.6) over all single shot-profile, the reflec

tivity or Kirchhoff migration in the frequency domain has the following form (Audebert et 

al., 1997): 

m(x) — R(x) « / / W[h.VG(xr,uj\x)}G'(x,uj\xs) x 4>{xr,uj\xs)dxrdxsdul. (2.8) 

Assuming sources and receivers located on the earth surface z = 0 and a reflection 

point at depth of z, (2.8): 

G{XT,UJ\X) « Aa:re-<(wT*-''"-'0+*r)
1 (2.9) 

and 

G{xs,Uj\x) « ^ ; r e ' (^»,O,:,: , ,+0.s), (2.10) 

where / l^ , TjJ and 0; are the VVKBJ amplitude factors, traveltimes and phase rotations 

for a single arrival Green function from i to j . 

Prestack Kirchhoff migration in the frequency domain (Equation 2.8) can be converted 

to a time domain equation by performing an inverse temporal Fourier transform on it 

(Audebert et al., 1997): 

rn(x)^ I fcoseryVei^'+(l,r)d{xll,Xr,t = Tar)dxrdxs, (2.11) 

where 8r is incident angle at each receiver position, cos 0r is the obliquity factor, and d is 

rsr time shifted data. Using WKBJ approximation, equation (2.11) can be easily used for 

Kirchhoff prestack migration. 

In the next section an efficient time-domain version of migration equation (2.8) and 

its adjoint with some of their practical aspects are introduced. 

2.2 Kirchhoff migration and modeling in the t ime-domain 

Kirchhoff seismic modeling in the time-domain can be stated by equation (Nemeth et al., 

1999): 
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2.2. KIRCHHOFF MIGRATION AND MODELING IN THE TIME-DOMAIN 

d(x,,xr,t) = I m(x, z)W{t) * G{xr,Q,t\x, z) * G{x, z,t\xll,U)d.v.dz, (2.12) 

where d(xs,xr,t) are the observed data on the earth surface, (z = 0), and xs and xr are the 

position of source and receiver along the seismic line, respectively. The earth reflectivity 

is denoted by m{x, z), W(t) is the source wavelet, and G(xr,0, t\x, z) and G(x, z, t\xs,0) 

denote the time-domain Green functions from reflector point (x, z) to the receiver loca

tion and from source location to the reflector point (.;;, z), respectively, and G denote the 

second derivative of Green function. 

Using zeroth order asymptotic Green functions, the Green functions are given by 

G(x,z,t\xa,0) = AsxS(t - rXs,o„T,2), (2.13) 

G(xr,0,t\x,z) = Axr5{t-Tx,Z)Xr,0), (2.14) 

where rr^()„,.,. and rx.,„,.,.,o are the traveltimes from the reflection point to source and 

receiver, respectively. The traveltimes are computed via ray tracing and or via numerical 

solution of the Eikonal equation (Reshef and Kosloff (1986), Vidale (1988), and Gray and 

May (1994)). The weights Asx and Axr are WKBJ amplitude terms that can be computed 

by solving the Transport equation (Bleistein (1984) and Cerveny (1985)). 

In a constant velocity medium, the travel-times have simple analytical forms: 

T*» •"•*•' = V v* + W ( 5 ) 

and 

(xr — x)2 z2 

Tx,z,x^ = f~L
W

1-+y-2- (2-16) 

After combining Green functions, the forward equation in the time-domain can be 

written as follows: (Nemeth et al., 1999): 

d(x,,xrJ-)= I I m(x.z)Aa:rAxrW(t-T^<l)^z-Tx<ZiX7..o)(Lr.(lz. (2.17) 
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2.2. KIRCHHOFF MIGRATION AND MODELING IN THE TIME-DOMAIN 

which is an explicit form of the Kirchhoff forward modeling. In the matrix/operator 

notation this equation can be stated by 

d = Lm, (2.18) 

where d, L, and m are data, forward modeling operator, and reflectivity model, respec

tively. 

Seismic migration may be defined as the adjoint (conjugate transpose) of the seis

mic modeling operator (Claerbout, 2004). The adjoint operator is only an approxima

tion to the inverse of the forward modeling operator. The migration operator may be 

modified to better approximate the inverse of the forward modeling operator. Exam

ples of the latter are given by Bleistein et al. (1987) and Jin et al. (1992) who provided 

high frequency asymptotic migration/inversion formulas under the assumption of infi

nite recording aperture. 

Using matrix notation, Kirchhoff migration can be written as (Nemeth et al., 1999): 

m = L'd. (2.19) 

In equation (2.19) m and d are the migrated model and data respectively and L' is the 

migration operator. 

Similar to equation (2.12) using equations (2.8) and (2.11) the Kirchhoff PSTM (equa

tion 2.19) can be expressed by the explicit form of (Nemeth et al., 1999): 

ih(x,z) = / dshs(s) I drhr(r) x ( / d(xs,xr, t)AsxAxrW(t - TXsfitXyZ - TXyZiXryl))dt 

{220) 

in the time-domain, where h.s(s) and hr(v) are source and receiver sampling functions 

respectively, d is recorded data, and in is the migration image. 

In practice, in order to implement equation (2.20), the integration is replaced by a 

summation and the infinite limits in the integrals are replaced by finite limits of sources 
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2.2. KIRCHHOFF MIGRATION AND MODELING IN THE TIME-DOMAIN 

and receivers. Migration is the result of summation of all amplitudes on the data along 

the traveltime hyperbola and mapping the result to an image point x, z. 

This summation is called "diffraction summation"'. Repeating the diffraction summa

tion for each point in the image returns the earth's reflectivity model. 

In the case of time migration equations (2.15) and (2.16) are used to calculate corre

sponding traveltimes. Then the time r, will be: 

l(xs-x)2 I2 l(xr-x)2 P ~ 
r = TXat0,Xt, + Tx<ZtXr<0 = f—yT1- + y-2 + V V2 + 72 ' (Z21) 

which is called Double-Square-Root (DSR) equation. 

If in equation (2.21), term z2/V2 replaced by to/2/ half of zero-offset two-way travel-

time, the DSR equation will have the following form which is used in the Kirchhoff time 

migration: 

r = ^ # + 1 + V^T^f • (2-22) 

With this parameterization our output image is given in x, to (lateral position - migration 

time) as opposed as x, z (lateral position depth). The advantage of working in time is that 

we remove the complexity of computing travel-times via ray tracing by approximating 

reflected energy via waveform with hyperbolic travel-time signatures. 

When the difference between minimum and maximum offset is large enough, it is 

possible to separate data to different offset bins and migrate the data of each bin sepa

rately. 

The advantage of splitting the data and the migration image to different offset bins is 

that it keeps the offset dependent information. AVO analysis is an example of this kind 

of information. The migrated image can have an additional dimension, the offset, and 

the reflectivity can be expressed as: m(.r, z, ht),i = 1, nh. Also by performing migration 

on each offset bin separately, it is possible to have some controls or constraints on the 

Common Image Gather (CIG)s in LSM, as will be shown in the next chapters. CIG is 

a gather containing traces with same x and different offsets, m{x — const., z, /i),;=i,„/,. 

(Section 4.2.1). 
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2.2. KIRCHHOFF MIGRATION AND MODELING IN THE TIME-DOMAIN 

In case of considering different offsets, the Kirchhoff seismic modeling (equation 2.12) 

is replaced by: 

d{xa,xr, t, hi) = / m(x, z, ht)W{t) * G(xr,0, t\x, z) * G(x, z, t\xs, 0)dxdz, (2.23) 

i = I,nil, 

where /?.,; and nh are the offset bin number and the total number of offset bins, respec

tively. 

However, separating data to a large number of offsets needs more memory for storing 

copies of model. Another thing that must be considered is that the number of offsets must 

be chosen in a way that there are enough traces for each bin to construct an acceptable 

common offset image, m(x, z, hi). Experiences show with the data including hundreds 

of shotgathers, having 3 to 5 traces per offset bin per shot is necessary. 

2.2.1 Forward and adjoint operators in midpoint offset space 

A change of coordinate systems permits one to represent seismic data in midpoint-offset 

space: 

x — (xr + xa)/2, midpoint, 

and 

h = (xa - xr)/2, offset. 

Using the aforementioned change of variables the forward and adjoint operators can 

be expressed as a function of midpoint-offset-time (data) and midpoint-offset-migration 

time (reflectivity model). In our numerical implementation the operator L' maps data 

d(m, h, t) to a subsurface model m(x, h, to) where now the image of the reflectivity has 

redundancy due to the fact that the offset variable has not been removed. The subsurface 

image (structural image) is computed via J2h >n{x, h, t0). 
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2.3. IMPLEMENTATION OF KIRCHHOFF TIME MIGRATION/MODELING 

2.3 Implementation of Kirchhoff time migration/modeling 

2.3.1 Migration weight 

The final goal of seismic prospecting is the estimation of material properties or quantities 

that can be easily related to material properties. In other words, one is not only concerned 

with positioning layers in the subsurface but also having a quantitative assessment of the 

properties of the formations originating at an interface. The problem of locating layers is 

often called the structural imaging problem. In this case imaging is used to estimate the 

boundaries of the geological interfaces. 

Amplitude preserving migration attempts to provide an image where the "strength 

of the migrated image" is proportional the true strength of the earth reflectivity. In other 

words we want not only to know where are the layers but how "strong" is a given inter

face. 

Migration methods that accurately handle amplitude information are often denoted 

as true amplitude migration methods. True amplitude migration is achieved by including 

wave-theoretical weights to the diffraction summation. In other ways, weights derived 

from simple models are used to perform the migration in a way the recovered strength 

of a reflector is proportional to its true strength (or reflectivity) (Zhang et al., 2000). 

Computing the weight function in Kirchhoff migration is done in the most internal 

loop of the algorithm. The latter will notably increases the cost of migration. Therefore 

approximate weights with a function which can be computed outside the internal loops 

reduces the migration cost. 

However, for many purposes the following simplified weight function satisfies both 

weight and obliquity factor and is used in the industry: 

Wg=(-y (2.24) 

where ID is zero-offset traveltime and r is migration time. 

2.3.2 Migration aperture 

Kirchhoff migration is a costly procedure in the seismic data processing flow. The cost 

grows higher when an iterative method (for example CG) is used similar to the method 
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2.3. IMPLEMENTATION OF KIRCHHOFF TIME MIGRATION/MODELING 

of LS-PSTM. Each sample in the output image is a result of summation of all amplitudes 

along the hyperbola's flank, multiplied by the corresponding calculated weight factor. 

The amplitude terms are small and negligible for image points far from the trace 

position. Restricting the summation to a certain distance from the trace position reduces 

the cost of migration without significant changing the result. This restriction is called the 

migration aperture implementation. 

Because steeper dips are excluded when the aperture is small, a small aperture will 

also help to avoid spatial aliasing (Abma et al., 1999). Small aperture also increases the 

S/N ratio by reducing the stacking of noises far from image point (Hertweck et al., 2003). 

Kirchhoff migration is limited to the area of seismic data acquisition, therefore it auto

matically has an aperture limitation. However, the limitation imposed by the cable length 

may not be sufficient and one needs to impose an extra limitation onto the algorithm. 

It is important to stress that a small aperture might not preserve amplitudes since 

one is ignoring the effect of events far from the image point. Therefore a large enough 

aperture is required to preserves amplitudes in the migrated image. In addition, a nar

row aperture will filter out necessary dipping events and smears the data in the deeper 

part of the migrated image (Rastogi and Phadke, 2002). In short, as often in geophysics, 

there is a trade-off at the time of selecting the aperture for our algorithm. In this thesis I 

propose to use a time-variant aperture by increasing width of aperture while increasing 

time (or depth). This is illustrated in Figure (2.1 b). Choosing the right aperture size is 

an important decision in Kirchhoff migration since it affects both the quality and cost of 

algorithm. 

Using a dynamic ray tracing method, Schleicher et al. (1997) showed that the mini

mum migration aperture can be calculated from the projected Fresnel zone for a certain 

frequency. In the case of linear events, when the aperture is larger than twice the Fres

nel zone size, the migration amplitudes are true reflection amplitudes (Sun and Bancroft, 

2001). The Fresnel zone is the circle area on the reflector where a spherical wave sweeps 

after first touch, during half wavelength penetration. This area is shown schematically 

by mhn2 in Figure (2.2). For a wave with single frequency / in a zero-offset section, the 

Fresnel zone radius is equal to (Sheriff, 1980) 
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2.3. IMPLEMENTATION OF KIRCHHOFF TIME MIGRATION/MODELING 

Midpoint Rccivcr 

Figure 2.1: Implementation of aperture in Kirchhoff PSTM. a) A triangular aperture, b) A com
bination of triangle and constant aperture. For each trace in the midpoint position, Kirchhoff 
summation is applied on samples in the area inside the aperture. 
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Figure 2.2: Fresnel zone for a wave with wavelength= A is equal to the distance of niAm'l. 
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2.3. IMPLEMENTATION OF KIRCHHOFF TIME MIGRATION/MODELING 

where to is zero-offset two-way traveltime and VRMS is RMS velocity. To derive the 

size of prestack Fresnel zone as a function of offset for an offset sections, we consider 

the double-square-root (DSR) equation for Kirchhoff traveltime calculation in an offset 

section: 

u-jy^+lh^ 
here h is half-offset, x is the horizontal distance between the midpoint and the scatterer 

point. 

By calculating the square of £/,., the DSR equation (2.26) has the following form: 

2 t2 2(x2 + h2) d 2(x2 + h2) , t (x
2 - h2)2 

which can be rewritten as: 

, _ t2 2(x2 + h2) [4 2(x> + h*) 2 (x2 + h2)2 Wx2h2 

tk--+ —2 + y 4 + y 2 h) +4 ^ ^ j — , (2.28) 

After defining the following new variable: 

a = ^ + ^fl, (2.29) 

Equation (2.28) can be expressed by: 

#k = " + \ l « 2 - ^ - (2-30) 
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By calculating the square of t\ , we have: 

tl = 2az -
16a:2/i2 

V4 + 2a\ a 
16x2h2 2 7,2 

= 2c 
16xzh 

~V4 
+ 2a(t2-a), (2.31) 

or 

tl 2ai{ 
2 7,2 16xzh 

(2.32) 

By some mathematical computation and substituting a from equation (2.29) the DSR 

equation can be exactly expressed by (Sun and Bancroft, 2001): 

a _ a Tk - h) 

4 xz + hz -
Ax2h2 

V2 (2.33) 

If we consider x as the Fresnel zone radius displacement, Rjh, then tf. will be replaced by 

th + T/2 where T — 1 / / is the period of the source wavelet and th = y/t^ + Ah2/V2, is 

the migration travel time for offset, 2h, as seen in Figure (2.3) (Sun and Bancroft, 2001): 

4/;2 T 

( 4R2
f h2* 

4 R2 + h*--^g-
\ Jh V2tl 

M + ,/2 2 =f- + 
V 

(2.34) 

The Fresnel zone radius for an offset section, Rfh, can be exactly expressed by (Sun 

and Bancroft, 2001): 

Fir,. = 

2 . / / 2 TV\ t + 
4/ i 2 

V2 

mh' 
(2.35) 

V'H2 + 4/i2 

The best minimum aperture for each depth (time) is twice of the Fresnel zone diame

ter at that depth (time). This minimum aperture size has a direct relationship with depth 

19 



2.3. IMPLEMENTATION OF KIRCHHOFF TIME MIGRATION/MODELING 

Figure 2.3: Fresnel zone for an offset section after Sun and Bancroft (2001). Here, x; is Fresnel 
zone radius and ti, is the offset traveltime h is half source-receiver distance. 

(time). Calculating equation (2.35) "on the fly" for each depth (time) increases the cost 

of migration. It is better to start the aperture at surface with a triangle and continue it to 

reach the width of a pre-calculated minimum aperture for all depths (times) as a constant 

aperture until the end of the section. 

2.3.3 Spatial anti-aliasing of the migration operator 

Migration operator aliasing is different from data aliasing or image aliasing. According 

to sampling theory, if there are frequencies in the seismic data greater than /,/ given by 

/d = l/r/(4sin£rAp), (2.36) 

for a local plane wave with the incident angle of 9r with the recording surface, data alias

ing occurs (Lumley et al., 1994). In equation (2.36) Ap is the trace spacing, and Vr is the 

velocity at the receiver location. After recording aliased data, it is difficult to remove 

the aliasing artifacts. To avoid data aliasing, the receiver spacing must be chosen small 

enough during data acquisition. In data processing, one way to overcome spatial aliasing 

is to reduce the trace spacing (Ap in equation (2.36)) by adding interpolated traces (with

out interpolating the aliased events) between existing traces. On the other hand, image 

aliasing simply can be avoided just by building a finer grid in the image space. 
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As shown by Lumley et al. (1994) and Bevc and Lumley (1994), Kirchhoff migration 

operator aliasing exists for all frequencies above /,„.„.,•, where 

J max — / r\. \ > \Z.J/) 

and (dtk/dp)Ap is the time shifting operator between two adjacent traces and Ap is equal 

to trace spacing in 2D and \/(Ax con 6)2 + (Ay sin 9)2 in case of the 3D, where A;;: and Ay 

are in- and cross-line trace spacing, respectively. The highest frequency in the data is 

(Bevc and Lumley, 1994) 

^=2W (Z38) 

where P = St/Sx is the maximum stepout or dip in the events. It means that with a trace 

spacing of Ap and P as a stepout of the layer, fd is the maximum frequency in data that 

we can have without aliasing. 

The anti-aliasing is necessary when the frequency content of data lies between /,/ and 

/,„„..,. . A 3D data acquisition is relatively expensive and the acquired data is irregular and 

sparse. Therefore, usually anti-aliasing is more necessary in 3D Kirchhoff migration than 

in 2D implementations. Aliasing in the migration operator produces migration noise. 

The migration noise may be seen in the migrated seismic section as artifacts (Abma et a l , 

1999). 

The simplest way to avoid aliasing in the Kirchhoff migration is truncating migra

tion operator by aperture limitation and operator dip filtering. Another possibility is 

decreasing the distance between traces by adding some new interpolated traces as we 

do in data antialiasing. Gray (1992)'s method for avoiding aliasing in the Kirchhoff mi

gration operator includes low-pass filtering the input traces. But this method increases 

the data volume and consequently the migration cost, by several times copying the input 

data and low-pass filtering them with different high-cut frequencies. The latter is not vi

able for LS-PSTM where all the data volume is kept in memory during the optimization 

process (this is discussed in Chapter 4). 

The method given by Claerbout (1992) and Lumley et al. (1994) is the most convenient 

for our algorithm. In Lumley et al.'s (1994) method, the maximum un-aliased frequency 

of the operator at each point is calculated, then a triangle filter is designed to remove 
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the higher frequencies in the data by a smoothing operator. They reduced the Appoint 

triangle filter to one three-point operator. This operator is a result of summation of three 

(shifted a n d / o r scaled) ramp functions r(n + k - 1), 2r(n) and —r(n — k - 1) where k is 

shifting amount. The operator r[n) and its Z transform are given by: 

, - i 

•'<"> = U III ~ "" = 7 1 ^ (2-39) 

The summation in the Z domain is (Lumley et a l , 1994) 

fa) = h Tn - n . (2'4°) 
a(l - z)(l - z ' ) 

where a = (A: + l ) 2 . 

By replacing z by e~
lioAt the amplitude spectrum of g(z) is obtained (Lumley et al., 1994): 

_ W(t + .)/2) 
sin (ctiAf/2) 

which is discrete version of .sine2 function. Hence, g(z) is the Z transform of a triangular 

smoothing operator of length N = 2k + 1. When we want /,„„.,. as the maximum non-

aliased frequency, we choose ./V in such a way that the first notch of the sine2 function 

attenuates / m a : r . Therefore 

N^Mj-> {1A2) 

L-^IJJ max 

satisfies operator anti-aliasing. 

As mentioned by Lumley et al. (1994), the denominator of g(z) is composed of a causal 

integration of the trace (1/(1 - z)) followed by an anticausal integration of the trace 

(1/(1 - z~[)). The nominator is a gaped three-point Laplacian operator where the length 

of gap determines fmax-

Lumely's anti-aliasing operator is less expensive than other methods, however, trian

gle smoothing is not a perfect method of filtering due to excessive ringing. Despite the 

efficiency of the three-point operator it also adds some extra expense to the migration op

erator. As argued by Abma et al. (1999), the two summations along the seismic trace also 
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may cause some numerical precision problems. However, it is better to implement it only 

when it is necessary to control the aliasing operator by limiting the migration aperture. 

With small enough migration aperture and in areas with attenuation of high frequencies, 

anti-aliasing might be unnecessary. 

2.3.4 Pseudocode for Kirchhoff time migration/modeling 

Claerbout and Black (2005) 's simple tutorial code for migration and modeling is a good 

reference for understanding the necessary concepts of migration and modeling algo

rithms. Based on their code we provided a functional code in Fortran which considers 

more practical aspects of migration. 

In this code we consider the Kirchhoff PSTM as adjoint and the Kirchhoff forward 

modeling as forward. We added interpolation and antialiasing by Lumley et al. (1994)'s 

method in the adjoint and also in the modeling. Aperture implementation, a proper 

weight function, and cross correlation and convolution with the wavelet in the case of 

adjoint and forward are considered. The ability to do migration and modeling in different 

offset domains and also parallel coding with OpenMP (Chandra et al., 2001) in order to 

accelerate running the code using multiprocessor computers are other additions to the 

code. 

In this code, M(T, X, h) is the model matrix where x is horizontal distance vector, r 

is two way time, and h is offset and D is data matrix. Also, V(T, X) represents the RMS 

velocity in the image position. 

Psecode for Kirchhoff time migration/modeling: 

if adjoint == true 

M(T, x, h)=0 

Endif 

If forward == true 

D(n,t, ntrace) = 0 

Endif 
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Start parallelization (OpenMP) 

Do k = 1, ntrace 

If adjoint == true 

X-correlation of trace with wavelet 

Double integration of trace 

Endif 

Calculate offset index, nh, for the trace 

Do IT — 1, TIT 

Calculate aperture indexes: ixmin, ixmax 

Do ix = ixmin, ixmax 

-((1fef1)2
+(^)2)"'5

+((1fef)2
 + ( If1)2)°S 

it = t/dt 

dtt=l- 100(t - it.dt) 

Calculate length the antialiasing filter=./V 

Calculate wei$\\.=W g 

If it < nt - N and it > N 

Ifforivard == true 

trace(it) = trace(it) + M(iT,ix,nh) * dtt * Wg 

trace(it + 1) = trace(it + 1) -f M(ir, ix, nh) * (1. - dtt) * Wg 

trace(it - N) = trace (it - N) - 0.5 * M(ir,ix, nh) * dtt. * Wg 

tra<:e.(it - N + 1) = trace(i.t - JV + 1) - 0.5 * M(ir, ix, nh) * (1. - dtt) * Wg 

trace(it + N) = trac.c(it + N) - 0.5 * M(i.T,ix,nh) * dtt * Wg 
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trace(it + N +1) = trace(it + N +1) - 0.5 * M(ir, ix, nh) * (1. - dtt) * I¥r/ 

If adjoint == true 

M(ir,ix,nh) = M(ir,ix,nh) + (trace(it) — 0.5 * (trace(it - N) 

+trace(it + N))) * dtt *Wg + (trace(it + 1) - 0.5* 

(trace(it - N + 1) + trace(it + N + 1))) * (1. - <i«) * Wy 

Endif 

Endif 

Enddo 

Enddo 

If forward == true 

Double integration of trace 

Convolution of trace with wavelet 

Endif 

Enddo 

End parallelization 

2.4 Summary 

In this chapter, a formulation of migration/de-migration in terms of Kirchhoff diffraction 

integrals was provided. 

The migration aperture and antialiasing operator were defined as well. Also the basic 

equations for the PreStack Kirchhoff time modeling as the adjoint of Kirchhoff PSTM 

were presented. 
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We finally provide an algorithm to construct the two canonical operators needed by 

this thesis: the forward modeling operator and it adjoint also called the migration oper

ator. 
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Chapter 3 

Seismic Data Migration and 
Inversion 

3.1 Discrete inverse theory 

As defined by Menke (1989), inverse theory is a set of computational methods used to 

reduce geophysical data to information about the physical world. Discrete inverse the

ory uses matrix equations rather than integrals which are often used in the continuous 

formulation of inverse theory. The solution to an inverse problem is often found by min

imizing the difference between the real observations and synthetic data computed via 

forward modeling. 

Most geophysical problems are ill-posed. In other words, problems that do not have a 

unique and stable solution. Ill-posed problems are neither completely under-determined 

nor completely over-determined. We often acquire more observations than unknown 

model parameters. The observations, however, are often not linearly independent. To 

retrieve a unique, stable solution, the cost function is modified by the addition of a regu-

larization term or other constraint. 

In this chapter we study the linear inverse problem associated to the inversion of the 

Kirchhoff de-migration operator. In other words, the data are assumed to be generated 

by a de-migration operator acting on a reflectivity model. The goal is to retrieve the 

reflectivity in the presence of noise and incompleteness of the recorded wave field. 
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3.2. KIRCHHOFF LS-PSTM 

3.2 Kirchhoff LS-PSTM 

Many seismic processing and imaging problems can be written in the general form of 

d = Lm + n. (3.1) 

where d is the data, m is the model and L is an operator acting on m. Radon Transforms 

and deconvolution are two examples that can be formulated as a linear inverse problems. 

We have also included a modeling error or noise term denoted by n. Seismic modeling 

or de-migration is another example of an operator that can be written in terms of a linear 

model as shown in Chapter 2. This is valid in the linear imaging method where one as

sumes a known background velocity model and data composed of primary reflections. 

In that case one attempts to invert for perturbations such as velocity or impedance dis

turbances or, like in our case, a model of the subsurface reflectivity (deBruin et al., 1990). 

An imaging problem is the solution of the inverse problem where from incomplete 

and inaccurate da,ta d, one attempts to retrieve a model of the subsurface m. Without 

going into much detail, the model of the subsurface can be given by actual physical pa

rameter perturbations or by signals easily related to the model parameter perturbations. 

An example of the latter are angle and offset gathers (Lumley and Beydoun (1997), Bleis-

tein (2002), Kuehl and Sacchi (2003) and Wang and Sacchi (2007)). In this case one can 

find the solution m by solving an inverse problem. We attempt to extract the important 

subsurface information via an optimization problem where one needs to minimize the 

following cost function: 

J ( m ) = | | L m - d | | 2 + ^ 2 f t ( m ) . (3.2) 

The cost function J is composed of two terms. The first term is the data misfit. The 

latter term stresses the fact that the recovered image of the subsurface must honor the 

observations. We are also making the usual assumption of normally distributed errors. 

This assumption leads to the V i o r m misfit measure (Beydoun and Mendes, 1989). The 

second part of the cost function, TZ(m), is called the regularization term. It is a penalty 

term that serves to eliminate models with undesired features, for instance, models with 

28 



3.2. KIRCHHOFF LS-PSTM 

non-smooth character along one or more spatial dimensions. The trade-off parameter // 

is used to balance the amount of regularization versus the amount of misfit reduction. 

The trade-off parameter permits one to produce a family of solutions with different level 

of data fitting. If the parameter /x is small, the regularization term becomes negligible and 

the focus is on the reduction of the misfit. The latter is quite dangerous; one can produce 

solutions where data overfitting translates in unstable models. On the other hand, if /i is 

a large number, the regularization term dictates the form of the solution and the data is 

underfit. In other words, the model of the subsurface does not honor the observations. 

Nemeth et al. (1999) showed that one can represent pre-processed seismic data d as 

follows: 

d = Lm + n (3.3) 

where rn, L and n are the real reflectivity model vector, forward modeling operator and 

noise, respectively. For simplicity if we assume that n ~ 0 then by substituting equation 

(2.18) into (2.19) we have: 

m = L'Lm. (3.4) 

If L is the Kirchhoff de-migration operator, then L' is the transpose or adjoint opera

tor. The transpose operator L' maps data to model space (migration). The latter shows 

that Kirchhoff migration will reconstruct the real earth model m if the operator L'L is 

an identity matrix. This is only true if L is an orthogonal operator. However, L'L is 

not an identity matrix. It has off-diagonal non-zero elements (Nemeth et al., 1999). The 

departure of L'L from the identity matrix is due to geometrical spreading losses, incom

pleteness or irregularity in the data sampling and illumination problems associated to 

sparse ray coverage (Nemeth et al., 1999). 

We first consider the minimization of the cost function, J, by setting the regularization 

term equal to zero (// = 0). We take derivatives of the cost function with respect to model 

parameters and set them to zero and arrive to the classical least-squares solution: 

m = (L'L)-1L'd. (3.5) 
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The last equation serves to illustrate a couple of interesting points. First, it is clear that 

the migrated imaged expressed as L'd is corrected (de-blurred) by the inverse operator 

(L'L)"1 to produce the inverted image. From this point of view least-squares migration 

can be considered similar to classical migration with an adjoint operator modified via a 

de-blurring operator. Secondly, one needs to realize that in practice it is not possible to 

calculate (L'L) - 1 because either it is non-invertible or large. Therefore, finding an ap

proximate of m by an iterative method like Conjugate Gradients (CG) is recommended. 

The advantage of this method is that we do not need to have the matrices L and L'. We 

can use the forward and adjoint subroutines instead. In scenes rather than computing the 

solution via direct inversion of the operator L'L, the method of CG minimizes the cost 

function by a series of steps (iterations). 

An important aspect of working with the method of CG is that the number of itera

tions can be truncated to obtain an approximate solution to our optimization problem. In 

general, an approximate solution is desirable as we often want to reduce computational 

time and avoid overfitting the data. 

3.3 Regularized Kirchhoff LS-PSTM 

As Nemeth et al. (1999) showed, migration artifacts can be attenuated by minimizing the 

general objective function of the form: 

J(m) =|| Lm - d |)2 +fi2TZ{m). (3.6) 

In equation (3.6), 1Z is the regularization function which is often chosen according to a 

priori information about the unknown model m. An example is the similarity of adjacent 

common offset images used by Duquet et al. (2000). As we have already mentioned, the 

trade-off parameter /x controls the amount of regularization. A small /;, gives more weight 

for minimizing the misfit over the model norm and vise versa. To minimize the objective 

function (3.6) we must take its derivatives with respect to m and set them to zero 
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The regularization function 'R can be chosen from a variety of functions (Sacchi et al., 

2006): 

1. If 7£(m) =|| m HJ, which is the Euclidean norm of the model, the solution is called 

the "minimum norm solution" or "Damped Least-Squares" or the "Least-squares 

solution with zero-order quadratic regularization" (Tikhonov, 1963). 

The solution is given by: 

m = (L'L + ^ I ^ L ' d (3.8) 

2. If TZ(m) =|| Dj/^m \\\ and D ^ . is the first order derivative in the offset direction: 

Dih x 

/ - 1 1 0 0 \ 
0 - 1 1 0 
0 0 - 1 1 

\ o o o - l / 

(3.9) 

The derivative is a high-pass filter, therefore minimizing a cost function with this 

regularization function is equivalent to penalizing high frequency solutions. Higher 

order of derivatives are possible as well. For instance we may replace D\)lx by D2/,,. 

where 

D 2h x 

( 1 -2 1 0 \ 
0 1 - 2 1 
0 0 1 - 2 

\ 0 0 0 1 / 

(3.10) 

Using first and second order derivative operators leads to the following solutions 

m = (L'L + //.'2D'1/l:i;D1/[J-1L'd. (3.11) 

and 
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m = (L'L + / i 2D^D 2 f cJ- xL'd, (3.12) 

respectively. 

3. If we chose K{m) = Xw=i I'"'! w e have an l[ norm regularization. Minimizing an 

objective function with this regularization produces sparse solutions. The l\ norm 

solution has this form (Wang, 2005): 

m = (L'L + /i2Q(m))_1L'd (3.13) 

where Q is a diagonal matrix with the diagonal elements: 

_ i |m,|~' if |m.j| > e 
V " I e- l i f |m , |<e 

and e is a threshold value. 

It is clear that the l\ solution requires an iterative algorithm as Q depends on un

known model parameters. 

3.3.1 The Method of Conjugate Gradients (CG) 

The operator L'L can be inverted via direct solvers whenever L is not a large operator. 

In general, the dimensions of L are number of observations x number of cells used to 

describe the subsurface model. In a typical seismic survey the number of observations 

can be of the order of 107 and the number of cells (for a 3D survey) of the order of 105. It 

is clear, that in real scenarios L is a large operator not amenable of direct manipulations. 

For small problems, one could use a direct method. In this case the solution can 

be found by calculating the inverse of the matrix L'L by a conventional method such 

as Gaussian elimination (Strang, 1986). In reality, not only L is a large operator but in 

addition, it does not have an explicit matrix form. In other words, we never have access 

to L in the form of a matrix. The operator L is a function (subroutine) that given an 

input vector (m) produces an output vector of observations d. Similarly, the transpose 
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(adjoint) operator V is a function (subroutine) that takes an input d to produce an output 

vector m' (a vector that belongs to the space of models). To summarize, we do not have 

matrices, we do have operators and therefore we need to use an iterative strategy that 

relies of the action of L and L' on model and data space vectors, respectively. 

With the previous discussion in mind, the cost function can be minimized using two 

algorithms. One possibility is to use the Steepest Descent method where we need to as

sume that L'L is positive definite. With this condition, the cost function is a paraboloid 

with a single minimum at the solution point. The algorithm follows the opposite direc

tion of the largest gradient until it reaches a minimum. Then it changes the direction and 

follows a new descent direction. The problem with this method is that the algorithm re

quires too many steps to find the right path toward the minimum (Strang, 1986). A more 

efficient alternative is to use the method of Conjugate Gradients (CG). The CG algorithm 

is able to follow directions orthogonal to all previous steps. Subsequently it finds the 

minimum more quickly than the Steepest Descent method. 

The method of CG initially introduced by Hestenes and Steifel (1952) is used solve a 

system of linear equation of the form 

Ax = b (3.14) 

where A is a positive-definite symmetric matrix and b and x are data and unknown 

vectors, respectively. In our case, it can be used to solve the problem 

L'Lm = L'd (3.15) 

where L'L is symmetric as required by the CG method. A modified version of the CG 

method (Scales, 1987), known as least-squares conjugate gradients (LSCG), works di

rectly with the operators L and L' and does not require the new operator L'L to be found. 

The CGLS method is summarized as follows: 

Initialization 

mo = 0 

s() = d - Lnio = d 
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ro = L'SQ Migration 

Po = ro 

q0 = Lp 0 Modeling or de-migration 

i = 0 

Do while i < fl of iterations 

r,-.r. 
*;+i qi-qt 

m i + i = mi + ai+1pi 

si+i = Sj - c*;+iqj 

r i + 1 = L 's i + i J Migration 

,, r , : + i . r i + 1 

Pt+\ = 
r.r 

Pv + i = r + :Jpi 

q.i+1 = Lpi+i Modeling or de-migration 

i = i + l 

EndDo 

It is clear that the cost of the algorithm is dominated by the cost of applying the 

operator L (modeling or de-migration) and L' (migration) times the number of iterations. 

At this point some comments are in order. In the previous analysis of CGLS we have 

assumed no regularization term Qi = 0) and one may think that the algorithm will not 

converge as the operator L'L may not be positive definite. In this situation, the CG algo

rithm converges to the minimum norm solution providing that the method is initialized 

with the null solution m = 0 (Strang, 1986). 

In the case of using a regularization term in the form of damping or a first/second 

derivative, equation (3.1) will be replaced by 

Lm = d (3.16) 
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for regularization with damping term, (3.17) 

for regularization with first order derivative, (3.18) 

and 

d = ( o ) - (3.19) 

To summarize, CG is quite flexible as it permits the incorporation of regularization 

terms and operates without the necessity of prescribing matrices in implicit form. 

3.4 Summary 

Many problems encountered in seismic data processing are ill-posed problems. As stated 

by the Discrete Inverse Theory, the solution to these problems can be found by minimiz

ing the differences between the real data (observations) and the synthetic data computed 

using discrete operators with the addition of a regularization term to stabilize the solu

tion. 

In this chapter, I have discussed how one can pose imaging as an inverse problem. 

In particular, the problem of dealing with large (non-invertible operators) can be circum

vented via the method of conjugate gradients. Using CG we do not need operators in 

explicit form, the forward and adjoint operators (de-migration and migration pair) are 

implemented via subroutines and never stored in memory as matrices. 
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Chapter 4 

LS-PSTM for Resolution and 
Regularization of Incomplete and 
Irregular Data 

4.1 Migration of incomplete synthetic data 

Kirchhoff PSTM is commonly used for seismic imaging. The ability to work with incom

plete and/or irregularly sampled data is one of the advantages of Kirchhoff PSTM. As 

mentioned in Chapter one, Kirchhoff PSTM can lead to accurate images of the subsurface 

in cases of low geological complexity. 

In practice, irregularity or incompleteness of seismic data is inevitable. When data 

are incomplete or irregular, Kirchhoff time migration will generate seismic images dom

inated by artifacts. The problem is severe in 3D acquisitions. The concept, however, will 

be illustrated with 2D problems where the "bad" sampling was created by removing data 

from known data sets prior to imaging. In other words, I am trying to prove a concept 

and it is clear that more work is needed to extend my findings to 3D real world industrial 

implementations. 

To show the effect of incomplete data in the migrated image, I consider an earth re

flectivity model with variable background velocity. The model is portrayed in Figure 

(4.1). This is an earth model with a few horizontal, dipping and folded layers. All lay

ers have undergone normal faulting. The velocity increases from 1200m/s at the top to 

215()vu/.s at the bottom. The model is 4km long in the horizontal direction and 2 seconds 

deep vertically. 
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Figure 4.1: Synthetic model used to test PSTM and LS-PSTM. a) Reflectivity model, b) Velocity 
model. The vertical bar indicates compressional seismic velocities in m/s. 

The Kirchhoff time modeling operator was adopted to generate synthetic data. A 

very dense acquisition pattern including 80 shots with 50m spacing and 140 receivers 

per shot with 10m spacing was used to illuminate the model. The time sampling interval 

is 4ms. A Ricker wavelet with the dominant frequency of 18Hz was used to synthesize 

the seismic source. In addition 5% random Gaussian noise is added to the data. Figure 

(4.2 a) shows a portion of a shot gather from the synthetic data set. Kirchhoff PSTM was 

used to estimate the image provided in Figure (4.2 b). 

The effect of data irregularity is investigated by randomly removing traces from the 

data set. Figures (4.3)a and c show the effect of randomly removing 75% and 90% of 

the data, respectively. Figures (4.3)b and d portray the PSTM of the decimated data. As 

expected, the images are dominated by artifacts. 
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Figure 4.2: a) Synthetic data generated from the reflectivity model in in Figure (4.1) displaying 
125 traces from one shot gather, b) Seismic image generated via Kirchhoff PSTM. 
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Offset(m) 
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Figure 4.3: Migration with missing observations, a) and b) Decimated data with 75% of data 
removed and PSTM. c) and d) Decimated data with 90% of data removed and PSTM. 
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4.2 LS-PSTM of incomplete data 

In equation (3.5) m is a damped LS-PSTM image which is expected to be a de-blurred 

version of standard migration. 

The LS-PSTM of the incomplete data is shown in Figure (4.4). The method of LS-

PSTM increased the image resolution and the image is closer to the original model. The 

effect of wavelet has been removed as well as the source wavelet function was built in the 

forward operator. These images are the result of 30 iterations of the CG scheme. Figure 

(4.5) shows the convergence of CG method when 90% of data is removed. As it is ex

pected, after 5 iterations the residual is decreased by 50%. There are two problems with 

LS-PSTM method in comparison to the conventional migration. First, the ability of LS-

PSTM to increase resolution strongly depends on the accuracy of the velocity model. A 

wrong velocity model will prevent the method from convergence to a reasonable image. 

The second problem is the cost of the method. Each iteration in the CG is equal to two 

standard migrations, in addition both data and model are kept in memory as opposed 

to conventional migration where one trace at the time is placed in memory. The mem

ory restriction is important and this is why this research required to use multi-processor 

systems with large memory. 

4.2.1 Offset dependent regularized LS-PSTM of incomplete data 

In the previous example I used damped least squares to produce LS-PSTM solutions. 

In this section, I introduce offset dependent regularization using regularization with the 

first order derivative operator. This is done by splitting the image in common image 

gathers and imposing offset dependent regularization. In other words, the unknown 

seismic image is a now a function of migration time trnHI, lateral position x, and offset h. 

The model vector is now a function of 3 variables: 

m -> m(x,h,tmig). 

Common image gather (CIG) is a gather of NMO corrected traces from various off

sets (or reflection angles) in time or depth. It is obtained by splitting the model vector 

m(x, h, t,nuj) to nx model with the dimension of m(x = constant , h, tmig). In the other 
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Figure 4.4: With incomplete data, resulted LS-PSTM has more resolution than standard migra
tion and is comparable with the original model as in Figure (4.1). a) LS-PSTM when 50% of data 
is randomly removed, b) 90% of data is removed. 

word all traces is a common image gather include information of the same subsurface 

position which may be offset-dependent. 

If the velocities used for migration are correct, common image gathers should be com

posed of horizontal events. This is why we choose to use a regularization term that in

volves penalizing fast changes in the h axis for constant x. We will refer to this LS solution 

as the offset dependent regularized LS-PSTM solution. As always we use the available 

data to estimate a model of the subsurface by minimizing 

| | d - L m | | 2 + | |£>w ,xm||2 . 

To investigate the effect of offset dependent regularization on the resolution enhance

ment of LSM, the LS-PSTM algorithm is applied on the aforementioned data set with 90% 

of data removed, and different amount of tarde-off parameter. 
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Figure (4.7) shows the effect of using regularized LS-PSTM when applied to deci

mated data. Each gather includes 10 offset bins. Only two adjacent common offset gath

ers are shown. Figure (4.7)a shows the offset gathers without any regularization, and 

(4.7)b,c, and d show the cases with offset dependent regularization with trade-off param

eters fj, = 1, 10, and 150, respectively. 

A large trade-off parameter causes more smoothness in the offset direction, and re

sults in less artifacts in the migration image. Figure (4.6) shows the final image of the 

LS-PSTM without regularization and regularized LS-PSTM. 

Figure (4.8) shows the effect of different values of the trade-off parameter on the con

vergence of LSCG algorithm. This figure shows that constraining the LS-PSTM (smooth

ing in the offset direction with a first derivative operator) changes the behavior of the 

LSCG convergence. 

In Figure (4.8) we compare various inversion strategies. The case n = 0 represent 

no smoothing constraint. Decreasing fi from 50 to 10, 1, and .01, increases the speed of 

convergence. For /i = 0, after 30 iterations, the residuals decrease about 20% ,whereas for 

/i = 0.01, the residuals decreases about 10%. Increasing the trade-off parameter does not 

improve the convergence, the quality of migrated section improves with smoothing but 

it becomes more difficult fitting the data. 
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Figure 4.5: Convergence of LSCG method when only 10% of data is present. 
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Figure 4.6: Effect of using regularized LS-PSTM on the estimation of common image gathers. 
Each gather corresponds to one midpoint position and 10 offset bins, a) CIG of PSTM. b) CIG of 
regularized LS PSTM with // = 1, c) // = 10, and d) /i, = 150. 
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Figure 4.7: Effect t)f using offset dependent regularized LS-PSTM on the stack images. Each 
image is obtained by stacking common image gather along the offset dimension, a) Without 
regularization (//. = 0), b) /* = I, c) /t = 10, and d) fi = 150. 
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Figure 4.8: Convergence of offset dependent regularization LS-PSTM when 90% of the data are 
missing as a function of trade-off parameter /z. 
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4.3 Data reconstruction by LS-PSTM 

Nearest neighborhood, linear and spline interpolation are the simplest seismic trace in

terpolation/extrapolation methods. Methods like Spitz (1991) and Porsani (1999) use 

properties of the Fourier transform for interpolation and are applied in the F - X do

main. Also Gulunay (2003)'s method is applied in the F - K domain for spatial regularly 

sampled data. 

Nemeth et al. (1999) proposed the LSM for reconstruction of missing data. This 

method is relatively expensive and the success of recovering data depends on operator 

and velocity precision. 

The idea is that using a incomplete/irregular sampled data, it is possible to construct 

a reasonably high resolution LS-PSTM image as seen in the first parts of this chapter. 

If d; is considered as incomplete data and L/ as the corresponding Kirchhoff forward 

modeling operator, then we have: 

d7 = L/rh. (4.1) 

The regularized LSM with first derivative in the offset direction as a regularization, re

turns the de-blurred image, m, from this incomplete data: 

rh = (L'jL/ + ̂ T>'lhjT>lhr)-%d,. (4.2) 

The reconstructed data sets and the corresponding Kirchhoff forward modeling operator 

( Ac and Lc) can be are related via the following expression: 

d c = L c m. (4.3) 

Replacing rh from equation (4.2) into equation (4.3) gives the formula for data reconstruc

tion by regularized LS-PSTM: 

dc = LC(L'/L/ + ̂ B'^BuJ^L'jdL (4.4) 

This method of data reconstruction is robust but it is relatively expensive. More missing 

data requires a large number of iterations for the same speed of convergence. On the 
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other hand more missing data makes the operator smaller and migration/de-migration 

faster. Strong dependency to the accurate velocity information is another disadvantage 

of the method. 

4.3.1 Synthetics examples of data reconstruction via LS-PSTM 

The aforementioned method of data reconstruction is used for reconstructing the 90% of 

removed traces from the synthetics data set showed in Figure (4.3 a). The offset depen

dent regularized LS-PSTM is used to estimate a de-blurred image of the earth reflectivity, 

the estimated image is used to reconstruct the data. Figure (4.9 a) shows a part of (125 

traces) a shot gather from the data set including 80 shots, each has 140 receivers. Figure 

(4.9 b) shows the decimated data with 90% of the traces removed. Figure (4.9 c) shows the 

recovered data by the aforementioned method with (i = 150. Panel (d) in Figure (4.9) is 

the difference between the true data and the reconstructed data. The difference between 

the original and reconstructed data mostly covered by random Gaussian noise added to 

the synthetic data. Most reflection events are modeled with the migration/de-migration 

operators and reconstructed data are almost free of random noise. 

In order to measure of the difference between the reconstructed data using method 

of regularized LS-PSTM, and the observations (true data), the root-mean-square (RMS) 

errors is calculated for different trade-off parameters. Figure (4.10) shows the result. The 

minimum RMS error corresponds to /x = 150. Increasing \i gives a smoother image of 

LS-PSTM, however, it does not improve the data reconstruction. The reconstructed data 

are shown in Figure (4.9). 
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Figure 4.9: Data reconstruction by offset dependent regularized LS-PSTM for the synthetic 
model of Figure (4.1). a) Original data, b) Decimated data with 90% of the data removed, c) 
The reconstructed data, d) Error panel or difference between original and reconstructed data. 
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Figure 4.10: RMS error for data reconstruction by offset dependent regularized LS-PSTM for 
the synthetic model of Figure (4.1) versus trade-off parameter, \i. The best data reconstruction is 
obtained when fj, = 150. The reconstructed data are shown in Figure (4.9). 
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4.4 LS-PSTM and data reconstruction of the Marmousi data set 

The Marmousi data set is an example of a complex 2D synthetic model. This data set was 

created by Institut Francais Petrole (1FP) and presented in the 52nd meeting of the Euro

pean Association of Geoscientists and Engineers (EAGE) as a benchmark for a workshop 

on practical aspects of seismic inversion (Versteeg, 1993). 

The Marmousi model was inspired by the complex geology of the Cuanza basin in 

North Quenguela, Angola. A streamer data acquisition was simulated via a 2D acoustic 

finite difference modeling program (Versteeg, 1993). The Cuanza basin has strong hori

zontal and vertical velocity variation, with velocities ranging from 1500?n,/,s to 5000m/s. 

The Marmousi Data set includes 240 shots and 96 receivers per shot. This amounts 

to a total of 23040 seismograms or traces. The receiver spacing is 25m and the simu

lated recorded time is 2.9sec with a 4ms sampling interval (725 samples per trace) that 

corresponds to a Nyquist frequency of 125 Hz. This model is shown in Figure (4.11)(a). 

Both the structural complexity and the strong velocity variation make the Marmousi 

model a challenging benchmark to test migration and inversion methods. It is impor

tant to stress that raytracing and Prestack Depth Migration are necessary tools to give a 

reasonably true image of subsurface earth reflectivity for this data set. In this thesis, I 

have tested the ability of LS-PSTM for data reconstruction. It is clear that the algorithm I 

have constructed (time migration algorithm) is not optimal for this type of data sets. It is 

important to stress, however, that prestack migration implemented via LS-PSTM is less 

expensive than a depth domain implementation and also it is less sensitive to the veloc

ity model than depth imaging. If one is interested in obtaining an accurate image of the 

subsurface then a depth imaging code is in order for this particular data set. However, 

if one relaxes the need of high accuracy imaging, and is concerned with data reconstruc

tion, LS-PSTM seems to be a good compromise between accuracy in the reconstruction 

and computational cost. 

The original velocity model is given by a grid of Am x Am. In order to have a smoother 

model with grid size, the velocity field was convolved with five point smoothing operator 

(0.25,0.5, 0.75,0.5,0.25) in both the vertical and horizontal directions. 

In order to show the ability of method to reconstruct data from complex models, I 
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removed half of data by removing one trace and leaving the next one. Figure (4.11 ) (b,c) 

shows the PSTM and LS-PSTM image solutions. Comparing images it is clear that the 

image obtained via LS-PSTM has higher resolution than the image obtained via classical 

migration. In addition, the LS-PSTM image is less contaminated by sampling artifacts. 

Figures (4.12) show the data reconstruction of the Marmousi data set. Figures (4.12) 

(a), (b), (c), and (d) are the complete data (for shot record 230), incomplete data, recon

structed data, and difference between true and reconstructed data, respectively. 

The method is able to reconstruct the most energetic seismic events. However, be

cause we have chosen a time-migration implementation, our algorithm can only recog

nized hyperbolic events, and therefore, not all the reflections were properly modeled. 
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Figure 4.11: The Marmousi synthetic model, a) Velocity model, b) Image obtained by migrating the decimated data with PSTM. c) 
Image obtained by migrating the decimated data with LS-PSTM. 
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Figure 4.12: Data reconstruction for Marmousi data set. a) Original data, in this case field record 
230. b) Decimated data with 50% of traces removed, c) Reconstructed data, d) Error panel or 
difference between original data and reconstructed data. 
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INFORMATION 

4.5 Dependency of LS-PSTM data reconstruction on velocity in
formation 

In Kirchhoff time migration (and also in the other migration methods), velocity is an 

inseparable part of migration equations. Prestack Kirchhoff time migration practically 

uses equation (2.22). In equation (2.22), V is the velocity of the medium, which can be 

replaced by RMS velocities, VRMS-

To show the effect of small inaccuracy in velocity information on migration, the data 

set portrayed in Figure (4.2 a) was migrated with velocities that were perturbed ±10% 

with respect to the true velocity model. The results of standard migration are shown in 

Figure (4.13). Comparing the results of migration with the true velocity model in Figure 

(4.2 b) and with ±10% error in Figures (4.13 a,b), one can appreciate the importance of 

having an accurate velocity model for migration. 

The LS-PSTM reconstruction algorithm was tested with the perturbed velocity model 

as well. We examine the case where 90% of the data were removed ( Figure (4.14)). The 

reconstruction algorithm uses offset dependent regularized LS-PSTM with the number 

of iterations equal to 30. Figures (4.14 a and b) show the reconstructed data and (4.14 c 

and d) show the difference between original and reconstructed data. Comparing these 

figures with Figures (4.9 c and d) shows that the problem with data reconstruction is 

that reconstructed events are not in the right position. This is a consequence of using the 

wrong velocity model. It is clear that seismic data reconstruction using LS-PSTM requires 

accurate velocity models. This is not unexpected; the velocity information is an integral 

part of the operator that models the data. 

4.6 Summary 

Irregular or incomplete data introduces artifacts in Kirchhoff PSTM. The LS-PSTM algo

rithm can be used to minimize sampling artifact in migrated images. 

High resolution images computed via LS-PSTM can be used for data reconstruction. 

In this chapter, I showed the effect of vising LS-PSTM and regularization on the resolution 

enhancement of migrated image. Two synthetic examples were used to test the feasibility 

of the method for velocity dependent seismic data reconstruction. 
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4.6. SUMMARY 

The reconstruction of the Marmousi data shows that time-domain algorithms are not 

sufficient for data arising from complex velocity models. A a least-squares prestack depth 

migration (LS-PSDM) is required in situations of high structural complexity. 
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Figure 4.13: Effect of inexact velocity information on Kirchhoff PSTM. a) 10% velocity error, b) 
— 10% velocity error. The image obtained with the correct velocity model in displayed in Figure 
(4.2 b) 
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Figure 4.14: Effect of inexact velocity information on data reconstruction, a) Reconstructed data 
with 10% velocity error, b) Reconstructed data with —10% velocity error. Error panels for a) and 
b) are shown in panels c) and d), respectively. . 
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Chapter 5 

PSTM, Regularized LS-PSTM and 
Data Reconstruction of Real Data 

5.1 Gulf of Mexico data set 

The Gulf of Mexico data set is a long 2D seismic line acquired over a shallow salt pillow 

in deep water (1500m). The Gulf of Mexico data set with its strong multiples is a typical 

marine data set. This data set was distributed at the workshop on Comparison of Seismic 

Multiple Attenuation Techniques held at the SEG's annual meeting in 1997 (Vreschuur 

and Prein, 1999). 

In the Gulf of Mexico data set, multiples are generated by both, the hard deep sea 

floor, and the tabular salt body. Variable strength of multiples and weak primaries cause 

multiple removal and consequently, imaging of subsalt layers a problem. Figure (5.1) 

shows the stacked section of this data set after a processing flow that does not include 

multiple attenuation. 

Strong first order multiples are seen at 3.2, 3.7, 4.4, and 5se.c in the middle and 

right-hand side of the image. After Qsec a series of second order multiples are visible 

(Vreschuur and Prein, 1999). Also, diffraction hyperbolas with apex at 2.3sc.c are de

tectable. Strong multiples make the identification of primaries a difficult task. This is 

particularly true under the salt pillow (2.3sec to 2.8sec in the middle and right-hand side 

of the image.) 

The available data set donated to the Signal Analysis and Imaging Group (SAIG) con

sists of 810 marine (end-off) shot-records. Each shot-record has 183 receivers, leading to 
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5.1. GULF OF MEXICO DATA SET 

Figure 5.1: Stacked section of the Gulf of Mexico data set. Processed with the Seismic Unix 
software prior to multiple attenuation. Strong first order multiples are visible at 3.2, 3.7, 4.4, and 
5.s«- in the middle and right-hand side of image. After 0 sec another series of multiples are visible. 

148220 traces in 1800 CDP (Common Depth Point) gathers. The first CDP is numbered as 

818, and the first shot-record numbered, is the shot-record 45. CDPs started at the posi

tion of -2437m and ended at the position of 24003m, with 13.335m interval in between. 

Recording time is Isec with 4ms time sampling interval and 1751 samples per trace. 

In this chapter we demonstrate the use of PSTM and LS-PSTM to produce an image of 

the subsurface for this data set. In addition, we discuss the data reconstruction problem 

with the addition of one complication: the data is severely contaminated by multiple 

reflections which are not modeled by the de-migration and migration operator. We also 

investigate PSTM and LS-PSTM after and before multiple attenuation via the parabolic 

Radon transform. 
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5.2 Velocity analysis and multiple attenuation 

In seismic imaging, one basic assumption is that multiple reflections have been removed 

(or at least attenuated) from the recorded data. There exists many methods to attenuate 

multiples. Each of these methods is restricted to its assumptions or prerequisites. A 

classification of multiple removal methods is provided by Weglein (1999) who divides 

them in two main categories: 

1. Filtering methods which seek for some features or properties in the data that are 

different in multiples and primaries. Predictive deconvolution is an example of a 

filtering method. Radon transforms, stacking, eigenimages and Fourier transform 

which all are based on separability of multiples from primaries in a surrogate do

main are another examples of filtering methods (Weglein, 1999). 

2. Prediction methods that try to predict and then subtract multiples from data. These 

methods predict multiples using modeling or inversion of seismic wavefields. Wave-

filed extrapolation, feedback loops, and inverse scattering series are examples of 

prediction methods (Weglein, 1999). 

The multiple removal method proposed by Liu (1996) and Nemeth et al. (2000) (LSM 

multiple attenuation) can placed in the first category. They modeled both primaries, as 

well as multiples, and then subtract the multiples from the data. 

As it was mentioned in Chapter 2, Kirchhoff migration and modeling do not account 

for multiples. However, multiples will remain in the migrated image when their Move-

Out is close to the primaries' MoveOut or they are strong enough to mask primaries. 

Subsequently, when strong multiples are present in the data, Kirchhoff LS-PSTM is 

not able to improve the quality of the subsurface image. In this chapter, PSTM and LS-

PSTM of data before and after multiple attenuation are studied. We will clearly show the 

importance of de-multiple prior to imaging. 

5.2.1 Parabolic Radon Transform 

The parabolic Radon transform is used to remove multiple reflections. The parabolic 

Radon transform was introduced for multiple attenuation by Hampson (1986). After 
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NMO correction, the residual move out of the seismic reflection events can be approxi

mated by parabolas. In a CDP gather, the traveltime t for an event at offset h, with the 

velocity V, and zero-offset traveltime r, is calculated via the following expression 

V2 

After NMO correction, using velocity VJVA/O/ the events shift up by the amount of At: 

t=\lr'2 + Vr (5.1) 

*t = \r + w—-T- (5-2) 
1/ v M 

2*L 
' NMO 

Therefore, the travel time of the NMO corrected data will be given by the following ex 

pression (Moldoveanu, 2006) 

(5.3) 

which, after expanding the last expression via a Taylor series, one arrives to the parabolic 

travel-time equation 

t = r + ph2. (5.4) 

where 

p=h(vi-v*—)- (5-5) 

*T \ v vNMO/ 

is the curvature of the reflection after NMO correction (Moldoveanu, 2006). Summation 

of all amplitudes along the parabolic trajectories transforms the data into the parabolic 

(r, p) domain. In this new domain the primaries are separable from the multiples. 

For multiple attenuation, the NMO correction is applied to CMP gathers, and then 

the Radon transform is used to map the data to the (r,p) space. In the (r,p) domain, 
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ATTENUATION 

primaries are muted, and then by transforming back to the original domain, one obtains 

an estimate of the multiples. The modeled multiples are finally subtracted from the data. 

Low ratio of primaries to multiples in the Gulf of Mexico data set cause velocity anal

ysis to be problematic. Figure (5.2 a) shows the velocity semblance for CDP gather 2100. 

High amplitude events with velocity less than IbQOm/sec are produced by multiples. 

Figure (5.2 b), on the other hand, shows the stacking velocity semblance for the same 

CDP gather after multiple attenuation. 

Using the Seismic Unix software (CWP, 1984), velocity analysis is performed on a 

selected CDP gathers and the results were extrapolated to all the area. Then the parabolic 

Radon transform is used for multiple attenuation of NMO corrected data. After that, 

the data underwent an inverse NMO. Figure (5.3) shows the result of this procedure in 

the field record 647. Figure (5.3) (a), (b), (c), and (d) show this shotgather before NMO 

correction, after NMO correction, after multiple attenuation, and after applying inverse 

NMO, respectively. 

In the resulted shotgather, (Figure 5.3 d), strong multiples are attenuated especially in 

the depths below 3.5-scc. Stacking velocity semblance of this shotgather, (Figure 5.2, b), 

shows that there is not any strong event in the depths more than Usee with the semblance 

velocity less than 1500m/sec, which is a little more than the speed of sound in water. 

5.3 PSTM and LS-PSTM and reconstruction prior to multiple at
tenuation 

I performed PSTM and LS-PSTM with the velocity information acquired by the analysis 

of stacking velocities. PSTM is performed on the raw data with 50% of the shot records 

removed. Figures (5.4) (a) and (b) show the images obtained via PSTM and LS-PSTM 

with 20 conjugate gradients iterations, respectively. A comparison of Figures (5.4) and 

(5.1) shows that LS-PSTM has produced an image with higher temporal resolution. This 

is due to the fact that source wavelet removal is incorporated into the inversion process. 

One problem with these images is that the multiples, not modeled by the de-migration 

and the migration operators, are leaking into the final images. In other words, the im

ages are corrupted by events that were not considered in the formulation of the imaging 
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Figure 5.2: Velocity analysis using semblance analysis for the CDP 2100 from the Gulf of Mexico 
data set. a) Velocity analysis of the original data, b) Velocity analysis of the data after removing 
multiples using the Radon transform. 

operator. 

Figure (5.5) shows data reconstruction of shotgather 647. Half of the original data 

(shotgathers with odd numbers) have been removed. Figures (5.5) (a), (b), (c), and (d) 

show the original shot gather 647, the decimated gather, the reconstructed shot gather, 

and the difference between original and reconstructed data, respectively. The difference 

in Figure (5.5)(d) shows that many events were not modeled. These events may be multi

ples in the original data plus coherent signals arising from improper modeling of primary 

signals. 

In order to see if the events which are not modeled during data reconstruction cor

respond to the multiples or not, Figure (5.6) compares the extracted multiples by the 

Radon transform, (Figure 5.6 a), and the differences between the original data and the 

reconstructed data using LS-PSTM, (Figure 5.6 b). Figure (5.6 c) shows that the residual 
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ATTENUATION 

events in the difference are not necessarily multiples. However, the failure of data recon

struction is due to the presence of multiples. As we will show in the next section, after 

multiple attenuation, data reconstruction of is more successful. 
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Figure 5.3: Multiple removal from the Gulf of Mexico data set, field record 647. a) Original data 
with strong multiples, b) NMO corrected data, c) Data after multiple attenuation, d) Data after 
inverse NMO correction. 
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Figure 5.4: Migration images of the Gulf of Mexico data set with 50% of shot records removed, 
a) PSTM subsurface image, b) LS-PSTM image. 
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Figure 5.5: Data reconstruction of Gulf of Mexico data set. Multiples are present in the original 
data, a) The original data displaying shotgather 647. b) Decimated data, c) Reconstructed shot 
gather, d) Difference between original and reconstructed data. 
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Figure 5.6: Comparison between multiples and un-constructed events in the process of data reconstruction of the row data. Field 
record 647, a) Estimated multiples using RT (the differences between original data (Figure 5.3 a) and demultipled data by RT (Figure 
5.3 d)). b) Un-constructed events in the data reconstruction (Figure 5.5 d). c) Difference between a) and b). 
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5.3. PSTM AND LS-PSTM AND RECONSTRUCTION PRIOR TO MULTIPLE 
ATTENUATION 

The CIG associated to CDP 2100, are portrayed in Figures (5.7)(a) and (b) for PSTM 

and LS-PSTM, respectively. Multiples present in the data show themselves in the com

mon image gathers as parabolic events. These strong non-horizontal events prevent the 

effect of smoothing in the offset direction to be effective in the improvement of subsurface 

image. In other words, as we have already mentioned, the multiples were not include in 

the operator (L) and therefore, they will corrupt the image estimated via LS-PSTM. 
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5.3. PSTM A N D LS-PSTM AND RECONSTRUCTION PRIOR TO MULTIPLE 
ATTENUATION 
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Figure 5.7: CIG of CDP 2100 of the Gulf of Mexico data set. The multiples show themselves 
as parabolic events, therefore performing smoothness in the offset direction is not effective, a) 
PSTM. b) LS-PSTM. 
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5.4. REGULARIZED LS-PSTM AND DATA RECONSTRUCTION AFTER 
MULTIPLE ATTENUATION 

5.4 Regularized LS-PSTM and data reconstruction after multi
ple attenuation 

With the same velocity information as in the previous section, PSTM and LS-PSTM are 

performed on multiple attenuated data. In both cases 50% of the shot records were re

moved to simulate a sub-optimal acquisition. Figures (5.8) (a) and (b) show the images 

obtained via PSTM and LS-PSTM (20 iterations). 

Comparing the results of PSTM when multiples are attenuated (Figure 5.8 a) with 

PSTM prior to multiple attenuation (Figure 5.4 a) shows an important improvement in 

image quality. 

The image obtained via LS-PSTM is used for data reconstruction. Figure (5.9) shows 

data reconstruction of shotgather 647 when half of original data (shotgathers with odd 

numbers) were removed. Figures (5.9) (a), (b), (c), and (d) show the original shot gather, 

the decimated gather, the reconstruction, and the error panel, respectively. Most events 

are reconstructed properly and the difference between original and reconstructed data is 

minor. It is clear, that after multiple removal the de-migration operator (L) can properly 

model the wavefield. 

The common image gather (CIG) associated to CDP position 2100 of the multiple 

attenuated data is shown in Figure (5.10). In this CIG most event are flat. However, some 

events have a minor MoveOut in the mid- and far-offsets and also CIG is noisy. 

In order to remove these artifacts, smoothing in the offset direction via offset depen

dent LS-PSTM was implemented. Figures (5.3) (c ) and (d) show the effect of the afore

mentioned regularization for trade-off parameters \i = 100 and \x = 2000, respectively. 

Increasing the trade-off parameter causes more smoothness in the offset direction. 

The effect of regularization on the resolution enhancement of LS-PSTM image is shown 

in Figure (5.11). Figures (5.11 a and b) show the image obtained via regularized LS-PSTM 

with //, = 100 and //. = 2000, respectively. Increasing the tradeoff parameter has removed 

migration artifacts and attenuated sampling noise. Subsurface layers are more continu

ous especially at times > isec. 

Figure (5.12) shows the data reconstruction of regularized LS-PSTM for field record 

647 with fi — 100 and \x = 2000. The difference between the original data and the re-
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5.5. SUMMARY 

constructed shows that our algorithm improves the quality of the migration. However, 

the data reconstruction is not improved as we have introduced smoothness in the com

mon image gather that have make the inverted model less capable of modeling the data. 

In other words, we have found a stable smooth solution but at the price of not honor

ing properly the data (overfitting) and as consequence, one is not able to model missing 

observations as well. 

In order to measure of the difference between the reconstructed data using method of 

regularized LS-PSTM, and the observations in the Gulf of Mexico data set, the root-mean-

square (RMS) errors is calculated for different amounts of trade-off parameter. Result is 

shown in Figure (5.13). The RMS error increases with increasing fi. Increasing fi may 

give a smooth and less noisy image of LS-PSTM, however, dose not improve the quality 

of data reconstruction. 

5.5 Summary 

In this chapter, Kirchhoff PSTM and LS-PSTM were used to study the feasibility of LSM 

to image and reconstruct real data. The Gulf of Mexico data set includes strong multiples 

which make the imaging of subsalt layers a problem. 

The parabolic Radon transform was used for multiple attenuation. PSTM and regu

larized LS-PSTM were applied to both data with and without multiple attenuation. 

As expected, PSTM and LS-PSTM should be applied to data after multiple removal. 

The reconstruction problem for this data is quite difficult for a time migration algorithm. 

It seems that using damped least squares (LS-PSTM with damping) gives more flexibil

ity to reconstruct the data than offset dependent regularized LS-PSTM. More research is 

needed to find optimal regularization strategies to properly reconstruct large volumes of 

seismic data. 
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Figure 5.8: Migration images of the Gulf of Mexico data set after multiple attenuation using 50% 
of the shot records, a) PSTM. b) LS-PSTM. 
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Figure 5.9: Data reconstruction of the Gulf of Mexico data set after multiple removal with 
parabolic Radon Transform, a) Original data, b) Decimated data c) Reconstructed data, d) Differ
ence between original data and reconstructed data. 
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Figure 5.10: CIG of CDP 2100 from data after multiple removal, a) PSTM. b) LS-PSTM. c) LS-
PSTM with offset dependent regularization with p = 100 and d) with //, = 2000. 
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Figure 5.11: Regularized LS-PSTM images of the Gulf of Mexico data set after multiple attenua
tion, a) Offset dependent regularized LS-PSTM with /i = 100 and . b) fi = 2000. 
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Figure 5.12: Data reconstruction of the Gulf of Mexico data set after multiple attenuation with 
offset dependent LS-PSTM. a) /t = 100. b) Difference between original data and reconstruction 
with /j = 100. c) Reconstructed data using regularized LS-PSTM with \i = 2000. d) Difference 
between original data and reconstruction with \i = 2000. 
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Figure 5.13: RMS error for data reconstruction by offset dependent regularized LS-PSTM for the 
Gulf of Mexico data set versus trade-off parameter, //. The data reconstruction is not improved by 
introducing smoothness. 
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Chapter 6 

Discussion and Conclusions 

Kirchhoff PSTM is an effective tool to image seismic data and produce subsurface models. 

In this thesis I have investigated the problem of designing a PSTM algorithm that is able 

to honor prestack seismic data. The latter is achieved by posing the imaging problem 

as an inverse problem and trying to minimize the difference between the observed data 

volume and the synthetic data volume generated by the prestack de-migration operator. 

The algorithm for LS-PSTM is implemented via the method of CG. I have also inves

tigated a smoothing regularization constraint that improves the quality of CIG. 

LS-PSTM was applied on two synthetics data set and one marine experiment. For 

the synthetic data, LS-PSTM is able to improve the quality of the subsurface reflectivity. 

The quality of data reconstruction is investigated as well and synthetics results leads to 

the conclusion that LS-PSTM can be part of our tools for regularization of seismic data in 

circumstances where the background velocity model is known with high accuracy. 

The real data examples reveal the need to properly remove multiples prior to LS-

PSTM. This is a well-known problem in seismic imaging and it is clear that constraint 

least-squares inversion will not be able to handle multiple reflections unless they were 

incorporated in the modeling operator. This is not a surprise and the test of migration 

prior to multiple suppression are simple added to the thesis to illustrate a well-known 

problem. LS-PSTM applied to data after multiple removal shows an enhancement of 

resolution and the ability to reconstruct the main reflections in the data. The examples 

with real data, as expected, are of quality well below the synthetic ones. More research 

in needed to make LS-PSTM robust for real world data conditions. 
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6.1. FUTURE WORK 

6.1 Future work 

The results presented in this thesis can also be improved by incorporating velocity errors 

in the operator. There is a vast literature dealing with the problem of velocity update 

for prestack data (migration velocity analysis) and incorporating those concepts into LS-

PSTM can lead to interesting improvements when dealing with real data. 

Finally, the problem of computational cost of LS migration methods needs to be ad

dressed. This thesis has dealt with 2D problems. In reality, 2D data is well-sampled. 

Acquisition problems arise in 3D surveys. It is in this case where LS-PSTM can become 

extremely demanding in computational needs. Consequently, preconditioning strategies 

to accelerate the convergence of the conjugate gradients schemes are required. 
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