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Abstract

HDBSCAN* is a hierarchical density-based clustering method that requires

a single parameter mpts, a smoothing factor that implicitly influences which

clusters are more detectable in the resulting clustering hierarchy. While a

small change in mpts typically leads to a small change in the clustering struc-

ture, choosing a “good” mpts value can be challenging: depending on the

data distribution, a high or low mpts value may be more appropriate, and

certain clusters may reveal themselves at different values. This thesis aims at

studying the problems related to the effects of mpts on the clustering hier-

archies produced by HDBSCAN*. We present an analysis of HDBSCAN*’s

density estimator and discuss how it could be improved to mitigate the issues

with the choice of a mpts value. We also discuss how this modification affects

the results obtained by HDBSCAN* and why one might still need to explore

multiple parameter settings to better understand the cluster structures in the

data. Hence, we are interested in the efficient computation and exploration

of hierarchies constructed under different parameter settings, and in strategies

that can ease the task of finding the appropriate amount of smoothing for den-

sity estimation in different regions of the data. More specifically, we propose a

strategy that is able to efficiently compute over 100 clustering hierarchies with

the computational cost of running HDBSCAN* twice. Our strategy is based

on the replacement of the complete graph in HDBSCAN* with a much smaller

graph, the RNG, that provably contains all the information needed to com-

pute a set of clustering hierarchies for a range of mpts values. In order to help
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with the analysis of the clustering hierarchies computed with our RNG-based

strategy, we propose MustaCHE, a visualization tool that helps users explore

a set of clustering hierarchies and focus their analyses on values of mpts that

produce “significantly” different results. Moreover, we observed that, for some

datasets, a single value of mpts is not enough to reveal all the cluster struc-

tures in the data simultaneously. Therefore, we discuss how HDBSCAN* can

be used to compute hierarchies that contain cluster structures found with dif-

ferent values of mpts, and how users can select which values of mpts are to be

used in different parts of the data to construct clustering hierarchies in this

fashion. While these contributions were made in the context of unsupervised

clustering with HDBSCAN*, their relevance go beyond their original purpose.

Thus, we discuss how each of the contributions presented in this thesis can be

extended to a class of semi-supervised clustering and semi-supervised classifi-

cation algorithms.
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Chapter 1

Introduction

The discovery of groups within datasets plays an important role in the explo-

ration and analysis of data. For instance, information about customer groups

purchasing particular products can guide providers in the planning of their

business. Discovering groups in data can also aid the analysis of medical im-

ages [30] or the discovery of knowledge from text documents [48], to cite but a

few examples. For scenarios where there is little to no prior knowledge about

the data, clustering techniques are widely used. They aim at grouping the

elements of a dataset in such a way that elements in the same group are more

similar or interrelated to each other than they are to elements in other groups,

according to a certain similarity or relatedness measure. Density-based clus-

tering, in particular, is a popular clustering paradigm that defines clusters as

high-density regions in the data space, separated by low-density regions. Algo-

rithms in this class, such as DBSCAN [16], DENCLUE [24], OPTICS [2] and

HDBSCAN* [9], stand out for their ability to find clusters of arbitrary shapes

and to differentiate between cluster points and noise. HDBSCAN*, the current

state-of-the-art among those, computes a hierarchy of nested clusters, repre-

senting clusters at different density levels. It generalizes and improves several

aspects of previous algorithms, and allows for a comprehensive framework for

cluster analysis, visualization, and unsupervised outlier detection [9]. It re-
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quires a single parameter mpts, a smoothing factor that implicitly influences

which clusters are detectable in the cluster hierarchy. Choosing a “correct”

value for mpts is typically not trivial. For instance, consider the examples in

Figure 1.1, which shows the results of HDBSCAN* (using automatic cluster

extraction) for two datasets A and B and two sample mpts values, mpts = 5

and 25. Dataset A (Figures 1.1a and 1.1b) is completely labeled as noise for

mpts > 24, while the two structures in dataset B (Figures 1.1c and 1.1d) only

start to be detected formpts > 24. The main observation here is that (1) there

is no single value of mpts that would result in the extraction of the clusters

in both cases, and (2) a user would not know which value for mpts is suitable

for a general dataset. It may even be the case that different values of mpts

are needed to reveal clusters in different areas of the data space of the same

dataset.

To analyze clustering structures in practice, users typically run HDB-

SCAN* (like other algorithms with a parameter) multiple times with several

different mpts values, and explore the resulting hierarchies. Ideally, one would

want to analyze cluster structures w.r.t. a large range of mpts values, in order

to fully explore a dataset in a given application. A larger range of HDBSCAN*

solutions for multiple values ofmpts values offers greater insight into a dataset,

also providing additional opportunities for exploratory data analysis. For in-

stance, using internal cluster validation measures such as DBCV [33], one can

identify promising density levels from different hierarchies, produced from dif-

ferent parameter configurations of the algorithm’s density estimates (based on

mpts).

However, one is typically constrained by the non-negligible computational

cost of running HDBSCAN* once for each desired value of mpts. The main

component of the computational cost is due to the fact that HDBSCAN* is

based on computing a Minimum Spanning Tree (MST) for a complete graph
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task of finding the appropriate amount of smoothing for finding the density-

based clusters in the data. Hence, this thesis is based on the investigation of

the following research questions:

• Can we improve HDBSCAN* and avoid the issues related to the choice

of a mpts value?

• What can users do to select a good value for mpts?

• How can one efficiently explore the clustering results for a range of mpts

values?

• Is a single value of mpts enough to reveal all the cluster structures in

the data?

• Are these issues only observed in HDBSCAN*?

In an attempt to answer these questions, we first studied the properties

of HDBSCAN*’s density estimator and the influence of mpts on the cluster-

ing hierarchies computed by HDBSCAN*. We propose a new measure for

density estimation in HDBSCAN* that provides advantages over its original

formulation. We observed that the estimates obtained by this new measure

are smoother and offer a better interpretation of the results, even though the

conclusions drawn from the clustering results are similar to the ones drawn

from using HDBSCAN*, and one cannot easily exploit the properties of such

estimator for an efficient exploration of a range of parameter settings. Due

to these observations, we have concentrated our research efforts on strategies

that can help with the computation and exploration of clustering results based

on the original formulation of HDBSCAN* for multiple parameter settings.

As one of the contributions of this thesis, we provide theoretical and prac-

tical results that lead us to a method for computing multiple clustering hierar-

chies w.r.t. a range of mpts values (k1, . . . , kmax), which is much more efficient
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than re-running HDBSCAN* for each individual value of mpts in that range.

This method gives access to a large range of HDBSCAN* solutions at a low

computational cost, in fact equivalent to the cost of running the original HDB-

SCAN* for only 1 or 2 values of mpts. In order to achieve that, we replace the

complete graph used by HDBSCAN* with the smallest known graph that can

still guarantee the algorithm’s correctness, and we prove that such graph only

needs to be computed once and all the hierarchies for a range of mpts can be

extracted from it. Moreover, this graph has typically much fewer edges than

the complete graph so its construction cost is more than outweighed by the

reduction in edge weight computations.

In this thesis, we also address the considerable challenge that users face

when wanting to analyze a collection of hierarchies, which can be rather over-

whelming without a proper tool. In order to help with the exploration of

multiple clustering hierarchies computed for a range of values of mpts, we pro-

pose MustaCHE, a visualization tool that allows users to inspect clustering

hierarchies in a visual and interactive manner. The use of MustaCHE al-

lows users to get a deeper understanding of the cluster structures in a dataset

with respect to different parameter values, and of how different clustering hi-

erarchies compare to one another. MustaCHE can be used to narrow down

the exploratory analysis to the values of mpts that yield the most significant

hierarchies, preventing users from having to examine dozens of hierarchies

unnecessarily.

Furthermore, to deal with cases where different cluster structures are un-

veiled at different values of mpts, we discuss how HDBSCAN* can be adapted

to support the use of multiple values of mpts to construct a single hierarchy.

By properly selecting the values of mpts to be used in different subsets of the

data, users are then able to build hierarchies that contain cluster structures

that would otherwise not be detectable with a global amount of smoothing.
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This provides more flexibility and turns HDBSCAN* into a more adaptive

method w.r.t. the local characteristics of different regions of the space or dif-

ferent subsets of the data.

Last, we discuss how other algorithms in the literature that are based

on the same fundamental concepts as HDBSCAN* can suffer from the same

issues related to the selection of a value of mpts and how our contributions for

exploration of results with HDBSCAN* can be reused in other contexts other

than unsupervised clustering.

1.1 Contributions

The contributions of this thesis can be summarized as follows:

1. We analyse HDBSCAN*’s density estimator and assess whether the is-

sues related to the choice of a value of mpts can be mitigated with an

improved estimator.

2. We propose a highly efficient approach to compute all cluster hierarchies

for a range of mpts values.

3. We propose MustaCHE, a visualization tool that allows users to analyze

a collection of hierarchies for a range of mpts values, and we present case

studies that illustrate how these analyses can be performed.

4. We discuss the use of multiple values of mpts in a single clustering hi-

erarchy as an attempt to make HDBSCAN* more adaptive to the local

density of points.

5. We discuss how our contributions made towards unsupervised clustering

with HDBSCAN* can be directly applied or adapted to other algorithms

in the literature.
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1.2 Thesis Layout

This thesis contains eight chapters. Chapter 2 presents an overview of the

background concepts used throughout this thesis. Chapter 3 presents an anal-

ysis of HDBSCAN*’s density estimator w.r.t. the parameter mpts and dis-

cusses the consequences of improving such estimator. Chapter 4 presents our

efficient strategy to compute a set of HDBSCAN* hierarchies w.r.t. a range

of values of mpts. Chapter 5 presents MustaCHE, a visualization tool for

exploring a set of clustering hierarchies. Chapter 6 discusses the problem of

using multiple values of mpts in a single hierarchy and presents the necessary

adaptations in HDBSCAN*. Chapter 7 discusses how the contributions of this

thesis can be adapted or directly applied to other methods in the literature.

Chapter 8 recapitulates the contributions of this thesis and discusses future

research directions.
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Chapter 2

Background

In this chapter, we cover the fundamental concepts that at the foundation of

this thesis. We formally introduce density-based clustering and present the

classic algorithms that constitute the basis of this thesis. We discuss the intu-

ition behind hierarchical density-based clustering and HDBSCAN*, the main

object of study of this thesis. Last, we introduce the notion of proximity graphs

and discuss the aspects that make them interesting for clustering applications.

2.1 Density-Based Clustering

Density-based clustering is a popular paradigm of clustering that aims at find-

ing high-density regions in the data (clusters) separated by low-density regions.

Contrary to the traditional notion of clustering, where objects are grouped to-

gether based solely on their pairwise similarity, density-based clustering cap-

tures contiguous regions in the space where the density does not drop below

a certain threshold. Hartigan [21] formalized this intuition by introducing the

concept of density contour clusters. Given a dataset X and a density level λ,

Hartigan defines the density-contour clusters based on the unknown probabil-

ity density function f from which X was sampled. Thus, the density-contour

clusters of X at a level λ correspond to the maximal connected components

of the upper level set L(λ) = {x : f(x) ≥ λ}. Figure 2.1 illustrates a prob-
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Figure 2.1: Upper-level Set

ability function f where the connected components w.r.t. the upper-level set

λ = 0.15 correspond to the highlighted intervals. Note that any point x that

is not in the highlighted intervals does not belong to the upper-level set and

is considered noise at that level. It is easy to see that in order to go from one

of the components to the other, one has to “go through” regions where the

function f is smaller than λ.

Besides the ability to model arbitrary-shape clusters and noise in the data,

another advantage of density-based clustering is that users typically do not

need to select the number of clusters to be found by the algorithm. These

characteristics have led to an abundance of works that followed this paradigm

over the years (e.g. [2], [16], [24]). Among those works, DBSCAN [16] is

considered one of the most popular density-based clustering algorithms in the

literature. Given a dataset X and two input parameters ε andmpts, DBSCAN

estimates the density at each point x ∈ X by looking at their ε-neighborhood,

denoted by Nε and defined in Equation 2.1.

Nε(x) = {y : d(x, y) ≤ ε} (2.1)
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Points that have more than mpts many points in their ε-neighborhood are

called core-points. In an analogy to Hartigan’s model, the upper-level set L

w.r.t. ε and mpts determined by DBSCAN can be defined as follows:

L(ε,mpts) = {x : |Nε(x)| ≥ mpts}

In fact, it is easy to see that L(ε,mpts) is simply the set of core-points in X.

Now, in order to find the density-based clusters of X, one has to construct the

maximal connected components w.r.t. L(ε,mpts). Connectivity in DBSCAN

is determined according to the following definitions:

Definition 1 (Directly Density-Reachable) A point xi is directly density-

reachable from a point xj w.r.t. ε and mpts if xj is a core-point and xi ∈

Nε(xj).

Definition 2 (Density-reachable) A point xi is considered density-reachable

from xj w.r.t. ε and mpts if there is a chain of direct density-reachability from

xj to xi.

Definition 3 (Density-connected) Two points xi and xj are density-connected

w.r.t. ε and mpts if they are density-reachable from each other.

Based on these definitions, a density-based cluster C w.r.t. ε and mpts is a

non-empty subset of X that satisfies the following conditions:

• ∀xi, xj ∈ C: xi and xj are density-connected;

• ∀xi, xj: if xi ∈ C and xj is density-reachable from xi, then xj ∈ C;

The first condition guarantees that there is a chain of connections between

any two points in the same cluster where the density does not drop below

the threshold determined by ε and mpts. The second condition guarantees

that clusters are maximal w.r.t. the density threshold determined by ε and
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mpts, i.e. no other points can be added to that cluster at that density level.

Note that these properties conform with the model of density-contour clusters

proposed by Hartigan.

2.2 Hierarchical Density-Based Clustering

Despite its advantages, DBSCAN is only able to find clusters w.r.t. to a single

density-level determined by ε and mpts. As an attempt at mitigating this

issue, OPTICS [2] was proposed as an evolution of DBSCAN with the purpose

of detecting density-based clusters at different density levels. The main idea

behind OPTICS consists in creating an ordering of the points in a dataset that

reveals the structure of its density-based clusters. Roughly speaking, points

that are in the same density-based cluster appear spatially close in the order.

The order imposed by OPTICS can be visualized in what the authors

call a reachability plot. A reachability plot can be represented as a bar plot,

where each bar corresponds to a point in the dataset, and the height of each

bar is determined by the smallest distance at which its corresponding point

is density-reachable from the points that precede it in the plot. Thus, the

density-based clusters appear as valleys separated by peaks. Figure 2.2 illus-

trates the reachability plot constructed from the ordering induced by OPTICS

in a toy dataset containing three clusters. Note that each valley in the plot

corresponds to a cluster in the data. Along with OPTICS, the authors have

proposed a post-processing procedure for extracting clusters from a reacha-

bility plot. However, this procedure requires setting an input parameter that

is not intuitive to users. Thus, while OPTICS can be regarded as an impor-

tant step towards finding the hierarchical organization of the density-based

clusters at different density levels, its formulation does not include an explicit

representation of a clustering hierarchy of the data.

One of the earliest formal definitions of hierarchical density-based clus-
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Figure 2.3: Upper-level Set

stands out for its ability to build a hierarchical organization of the cluster

structures embedded in the data rather than just a single flat partitioning or

an ordering of the points in the data. HDBSCAN*’s main output is a clus-

ter hierarchy that describes the nested structure of density-based clusters in

a dataset w.r.t. the parameter mpts. In order to determine this structure in

a dataset X, one needs to know (i) for each point p ∈ X: the smallest radius

ε around p that covers mpts other points, called p’s “core distance” 1 w.r.t.

mpts; and (ii) for each value of ε: the clusters and the noise points w.r.t. ε and

mpts. The latter information can be derived conceptually from a complete,

edge-weighted graph, called Mutual Reachability Graph, denoted by Gmpts,

where nodes represent the points in X, and the edge weight of an edge be-

tween two points p and q corresponds to the “mutual reachability distance”

(w.r.t. mpts) between p and q, defined as:

mrdmpts(p, q) = max{cmpts(p), cmpts(q), d(p, q)} (2.2)

where d(·, ·) represents the underlying distance function (typically Euclidean

1The core distance can be interpreted as inversely proportional to an unnormalized k-
nearest neighbor (k-NN) density estimate.
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distance), and cmpts(p) represents the core distance of p, which is formally the

distance from p to its mpts-th nearest neighbor, mpts -NN(p):

cmpts(p) = d(p,mpts -NN(p)) (2.3)

In this work, we assume that the underlying distance d(·, ·) is a proper metric,

and, without loss of generality, we use Euclidean Distance in our examples.

Intuitively, an edge weight in Gmpts corresponds to the minimum radius ε

at which the corresponding endpoints are directly ε-reachable w.r.t. mpts, i.e.,

the smallest distance at which both points are in each other’s ε-neighborhood,

and both ε-neighborhoods contain at least mpts points (i.e., both are dense).

Moreover, Gmpts has the following important characteristics related to mrdmpts

and to how these edge weights change when changing the value of mpts:

• Increasing the value of mpts usually leads to higher values of cmpts, never

smaller;

• When increasing cmpts, more edges tend to have the same edge weight,

since a point p with a high cmpts value determines the weight of all edges

between itself and its mpts-nearest neighbors with a smaller cmpts, given

the definition of mrdmpts as a max function;

• When decreasing the value of mpts, edge weights can either decrease or

remain the same, but never increase.

Considering the concepts represented by Gmpts, the HDBSCAN* hierarchy

w.r.t. mpts for a dataset X is computed in the following way: First, the core

distances of all points in X w.r.t. mpts are computed. Then, an MST of

Gmpts is dynamically computed.2 From this MST, the complete density-based

2The authors of HDBSCAN* [7], [9] deem Gmpts a conceptual graph as it does not need
to be explicitly materialized or stored; edge weights can be computed on demand, when
needed.
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cluster hierarchy w.r.t. mpts is extracted, by removing edges from the MST in

descending order of edge weight, and (re-)labeling the connected components

and noise at the “next” resulting level. For a specific density level (ε and

mpts), removing all edges from Gmpts with weights greater than ε reveals

the maximal, connected components, i.e., clusters, of that density level. The

density-based clustering hierarchy can thus be compactly represented by (and

more easily be extracted from) a Minimum Spanning Tree (MST) of Gmpts.

Moreover, one can extract a flat clustering partitioning from the hierarchy

produced by HDBSCAN*. Trivially, a straight cut in the hierarchy at a level

ε is equivalent to a partitioning found by DBSCAN* w.r.t. ε and mpts 3.

HDBSCAN*’s framework includes an automatic cluster extraction method,

based on the FOSC framework [8], that allows the extraction of clusters at

different ε levels according to suitable criteria.

2.3 Minimum Spanning Tree

The representation of structures formed by the points of a dataset in the space

plays an important role in the detection of density-based clusters. Moreover, a

suitable data structure for a density-based clustering algorithm must be able

to model the distances between pairs of points of a dataset in a way that

allows one to infer how groups of points are organized and separated. As

previously mentioned, HDBSCAN* makes use of a minimum spanning tree in

order to compute a clustering hierarchy of a dataset. We now introduce the

formal definition of a minimum spanning tree and discuss why its properties

are useful in clustering applications.

Let G = (V,E) be an undirected connected graph with a set of vertices

V and a set of edges E, and w(·) be a function that determines the weight

3HDBSCAN* is based on DBSCAN*, in which clusters contain only core-points; in DB-
SCAN clusters can contain ”border-points”, which are not core-points but only in the ε-
neighborhood of a core-point.
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of the edges in E. The minimum spanning tree T = (V,E ′) of G corresponds

to a connected sub-graph of G such that
∑

e∈E′ w(e) is minimal among all

connected sub-graphs (V,E ′).

By defining the function w(·) in a way such that edges represent the den-

sity levels at which groups of points are connected, one is able to estimate the

connected components (clusters) at multiple levels by decomposing the mini-

mum spanning tree in decreasing order of edge weight. Due to this property,

the minimum spanning tree is a key component of some clustering algorithms

in the literature (e.g. [9], [19], [43]).

Regarding practical aspects, the time complexity for computing an MST

depends on the number of edges in the original graph G. When no index

support is used, the construction of an MST takes O(|E|) time. In the case of

the complete mutual reachability graph used in HDBSCAN*, this represents

a complexity of O(|V |2). This performance bottleneck is one of the issues

explored in this thesis and will be addressed in more details in Chapter 4.

2.4 Proximity Graphs

In computational geometry, proximity graphs are often used to express ge-

ometric relationships between objects distributed in the space. In practice,

the connectivity in these graphs is determined by how close objects are to

each other, or by regions of the space that must satisfy certain constraints.

While the focus of this thesis is mainly density-based clustering, proximity

graphs can be rather useful as a way of representing how data points are or-

ganized/distributed in the space. Similarly to minimum spanning trees, prox-

imity graphs can be used to represent the connections that correspond to the

density-based clusters in the data. We discuss two proximity graphs, namely

the Relative Neighborhood Graph [45] and the Gabriel Graph [17].
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2.4.1 Relative Neighborhood Graph

The Relative Neighborhood Graph (RNG) [45] is characterized by the notion

of relative neighborhood between pairs of points. In essence, two points are

relative neighbors when no other point is closer to both of them than they are

to each other, as expressed in Equation 2.4.

d(a, b) ≤ max{d(a, c), d(b, c)}, ∀c 6= a, b (2.4)

Another intuitive way to express the connectivity between points in the

RNG is through the geometric interpretation of relative neighborhood. Figure

2.4 shows two points a and b, and two circles (2-dimensional hyper-spheres)

with radius d(a, b) centered at a and b. The highlighted region corresponds to

the intersection of the two circles and is called the lune of (a, b). Whenever the

lune of a pair of points is empty, these points are considered relative neighbors

and, consequently, are connected in the RNG.

a b

Figure 2.4: lune(a, b).

One of the characteristics that make the RNG interesting for clustering

applications, and especially to HDBSCAN*, is that it is a super-graph of the

Euclidean Minimum Spanning Tree. Since the RNG of a set of points has

typically much fewer edges than the complete graph, computing a Euclidean

Minimum Spanning Tree from the RNG is typically much faster than doing

so from the complete graph. In the context of our work, one must show that

the same property is still valid when the edge weights are determined by a
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a b

Figure 2.5: Gabriel Graph constraint region.

different measure. The use of the RNG as a replacement for the complete

graph in HDBSCAN* is discussed in details in Chapter 4.

2.4.2 Gabriel Graph

Similarly to the RNG, the Gabriel Graph (GG) is also defined according to a

spatial constraint. In this case, two points a and b are connected in the GG

when the hyper-sphere of radius equals to d(a,b)
2

with center at the mid-point

between a and b is empty. Figure 2.5 illustrates two points a and b and the

highlighted circle (2-dimensional hyper-sphere) that has a and b on opposite

sides of the circle.

It is easy to see that the GG is a super-graph of the RNG, as the region of

the space that determines connectivity for the GG is completely contained in

the region of the space that determines connectivity for the RNG, as illustrated

in Figure 2.6. If two points a and b are connected in the RNG, there is no

other point c in the lune(a, b), and consequently, there is no other point in

the region that determines connectivity for the GG. Furthermore, one can say

that a and b are also connected in the GG. If a and b are not connected in

the GG, there must exist a point c located in the hyper-sphere that has a

and b on the opposite sides of its diameter. Thus, such point c must also be

in the lune(a, b), which prevents a and b from being connected in the RNG.

Due to the relationship between the RNG and the GG (RNG ⊆ GG), the
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GG inherits all the properties w.r.t. the representation of the structures in the

data discussed for the RNG. In this thesis, the GG is used in a pre-processing

phase to filter out edges that do not belong to the RNG.

a b

Figure 2.6: GG and RNG constraint regions.
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Chapter 3

A Closer Analysis of
HDBSCAN*

3.1 Introduction

In our motivation, we have argued that choosing a value of mpts is not trivial

and that, for some datasets, multiple values of mpts might be necessary to

reveal the cluster structures in the data. In this chapter we present an analysis

of the density estimator used in HDBSCAN* and investigate whether changing

its formulation can mitigate the issues studied related to the selection of a value

for the parameter mpts.

The density estimator used in HDBSCAN* is based on the distances be-

tween data points and their mpts-nearest neighbors. Intuitively, when a point

a has more than mpts many neighbors in its ε neighborhood, a is considered to

be dense w.r.t. mpts at a density-level λ = 1/ε. This is then used to determine

density-connectivity between points according to their mutual reachability dis-

tance. Moreover, the density-based clusters at a level λ = 1/ε are determined

by the connected components of the minimum spanning tree in the space of

mutual reachability distances when all edges of weight equal to or larger than

ε are removed from the tree. This formulation tries to capture the concepts

established in Hartigan’s density-contour model [21] that formalizes density-

based clusters. In this model, when two points are part of the same cluster at
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a density level λ, the density along every path connecting those two points,

passing through other points in the same cluster, never drops below λ.

In the following, we analyze the paths connecting data points corresponding

to the straight lines determined by the edges of the MST in the space of mutual

reachability distances. When removing edges with weight larger than ε, the

remaining edges that compose each of the resulting connected components

have a weight necessarily smaller than ε. However, in a closer examination of

HDBSCAN*’s formulation, one can observe that the density along the paths

determined by these edges is not guaranteed to be above the density level

λ = 1/ε.

a b

Figure 3.1: Overestimation of density

Figure 3.1 shows two points a and b, and their core-distances w.r.t. mpts =

3 represented by the black dashed circles. In this example, the mutual reach-

ability distance between a and b is equal to the distance d(a, b) between both

points (see Chapter 2). Thus, in order for a and b to be part of the same

cluster at a density level λ = 1/d(a, b), one expects the density along the path

between a and b w.r.t. mpts to be above λ = 1/d(a, b). This should mean that

a circle (2-dimensional ball) of radius d(a, b) placed anywhere along the path

between a and b must enclose at least mpts = 3 points. However, one can see

in Figure 3.1 that the red dotted circle of radius d(a, b) placed along the path

between a and b does not enclose mpts = 3 points. In this case, a circle with a
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radius larger than d(a, b) would be needed to guarantee that all points along

the path between a and b are dense w.r.t. mpts. Thus, by determining that

a and b are part of the same cluster at a level λ = 1/d(a, b), HDBSCAN* is

overestimating the density along the path between a and b.

a b

Figure 3.2: Underestimation of density.

On the other hand, Figure 3.2 shows a different configuration of points

where a and b are further apart from each other than their core-distances.

Similarly to the example in Figure 3.1, the core-distances of points a and b

w.r.t. mpts = 3 are represented by the black dashed circles. As in the previous

example, the mutual reachability distance between a and b also corresponds

to the distance d(a, b) between them. However, as seen in Figure 3.2, the red

dotted circle with radius d(a, b) is actually much larger than it needed to be in

order to meet the density requirement determined by mpts. In this case, the

formulation of HDBSCAN* underestimates the density along the path between

a and b.

Both examples in Figures 3.1 and 3.2 show configurations of points where

the density estimate as determined by the mutual reachability distance lead
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to certain errors and the density along the paths between points cannot be

interpreted the same way as the density at points in the data – number of

points enclosed by a circle of radius ε. Motivated by these observations, we

investigate an alternative measure for density estimation in HDBSCAN* that

addresses the issues with underestimation and overestimation of density along

the straight path between two points, and we discuss how this measure affects

the results obtained by HDBSCAN* and the need for exploring results w.r.t.

multiple values of mpts.

This chapter is organized as follows. In Section 3.2 we present a new mea-

sure for density estimation in HDBSCAN* that offers a more precise estimate

of the density along straight paths between points and allows a better inter-

pretation of the resulting clustering hierarchy. In Section 3.3 we present our

conclusions and directions for future research. A discussion on why the formu-

lation of HDBSCAN’ cannot be easily exploited for the efficient computation

of multiple clustering hierarchies w.r.t. to a range of values of mpts is provided

in Appendix A.1.

3.2 HDBSCAN’

The current definition of mutual reachability distance (Equation 3.1) available

in HDBSCAN* captures the levels at which data points are directly density-

reachable, and these levels are ultimately used to build the clustering hierarchy

of the dataset.

mrdmpts(a, b) = max{cmpts(a), cmpts(b), d(a, b)} (3.1)

However, that formulation imposes a strong requirement for connectivity

between pairs of points – direct density-reachability – and can lead to under-

estimation or overestimation of density. As a consequence, the density along

the paths (indicated by the edge weights of the MST) cannot be interpreted
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the same way as the density measured at data points.

With that in mind, we propose an adjusted definition of mutual reachabil-

ity distance that provides an interpretation of the density along the straight

paths (between data points) similar to the interpretation of the density at data

points. Intuitively, we want to find the smallest value r such that, at any point

p along the straight path between points a and b, the ball Br(p) with radius r

encloses at least mpts many points. At the points a and b, the smallest radius

r such that the ball Br(p) encloses mpts many points corresponds to the core-

distances of each point. Thus, the value r must be at least equal to or larger

than the core-distances of each point. Note that this is are already achieved

by the current formulation expressed in Equation 3.1. However, the underesti-

mation/overestimation of density can happen when the distance d(a, b) is too

small to enclose mpts many points along the straight path between a and b

or is larger than necessary to enclose mpts many points along the same path.

Therefore, we replace d(a, b) in the formulation with a function d∗(a, b), as

shown in Equation 3.2, that is able to guarantee the density level along the

path.

mrd′mpts(a, b) = max{cmpts(a), cmpts(b), d
∗(a, b)} (3.2)

This formulation of mutual reachability distance mrd′mpts defines what we call

HDBSCAN’, an attempt at mitigating the issues with HDBSCAN* discussed

in Section 3.1.

A straightforward way to define the function d∗(a, b) is to consider the

radius r such that, for any point p along the path between a and b, the ball

Br(p) encloses either a or b’s mpts nearest neighbors. Figure 3.3 shows two

points a and b with their core-distances represented by the black dashed circles,

and a red dotted circle Br centered at the point p′ along the path between a and

b. Note that “moving” Br towards a makes it enclose all of a’s mpts nearest

neighbors, while and “moving” towards b makes it enclose all of b’s mpts
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nearest neighbors. Also, when centered exactly at p′, Br encloses both a and

b’s neighborhoods. Therefore, with Br, we guarantee that, at any point along

the straight path between a and b, either of a or b’s mpts nearest neighbors are

enclosed. When looking at the exact configuration of points and position of

Br as illustrated in Figure 3.3, one can determine that the diameter of the ball

Br corresponds to the sum of the core-distances of a and b and the distance

d(a, b) between both points. Consequently, the radius r of Br corresponds to

half of this value, as expressed in Equation 3.3.

a b

d(a, b)

p’

Figure 3.3: d∗(a, b)

d∗(a, b) =
dcore(a) + dcore(b) + d(a, b)

2
(3.3)

The diagram in Figure 3.4 shows how mrd′mpts compares to mrdmpts w.r.t.

several configuration of points and core-distances. The scale at the top of

Figure 3.4 represents the values of mrd′mpts in terms of mrdmpts. In the two

leftmost configurations, the circles with radii determined by the core-distances

of each point do not intersect – in the first configuration both core-distances

are zero. The density along the path between both points in these cases are

usually underestimated by HDBSCAN* (higher values of mutual reachability
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cmpts(a) = 0
cmpts(b) = 0

cmpts(a) + cmpts(b) < d(a, b)

cmpts(a) + cmpts(b) = d(a, b)

cmpts(a) + cmpts(b) > d(a, b)
cmpts(a) + d(a, b) < cmpts(b)
cmpts(b) + d(a, b) < cmpts(a)

cmpts(a) = d(a, b)
cmpts(b) = d(a, b)

1

2
×mrdmpts(a, b) mrdmpts(a, b)

3

2
×mrdmpts(a, b)

Figure 3.4: HDBSCAN* vs. HDBSCAN’

distance). On the other hand, the values estimated by mrd′mpts in these cases

are smaller than what is estimated by mrdmpts up to a factor of 1/2. In the two

rightmost configurations, where there is a non-empty intersection between the

circles determined by the core-distances of each point, the density estimates

found by HDBSCAN* are overestimated (lower values of mutual reachability

distance). In this case, mrd′mpts tries to compensate for the overestimation

and evaluates to values up to 3/2 the values obtained by mrdmpts. Last, in the

particular configuration where the sum of the core-distances is equal to the

distance between both points, both definitions of mutual reachability distance

coincide.

Note that in HDBSCAN’, as opposed to HDBSCAN*, when two points

are connected at a certain density level, it is guaranteed that there is a path

connecting these two points where the density does not drop below that den-

sity level, as stated in Hartigan’s model. However, neither HDBSCAN’ nor
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HDBSCAN* can guarantee that if two points are on the same density level,

they will be part of the same connected component (if the path that connects

then is not along the straight lines connecting points). Also, note that the

radius determined by Equation 3.3 does not correspond to the tightest esti-

mate of the density along the path between a and b. In fact, when centered at

point p′, the ball Br with radius determined by Equation 3.3 encloses 2×mpts

many points, which is twice the number of points needed for a point to be

dense. However, mrd′mpts is a safe bound that only takes into account the

core-distances of each point but not the actual position of each points’ neigh-

bors. For a tighter estimate, one can try and find smaller radii that enclose

only mpts many points. Figure 3.5 illustrates two points a and b and their

core-distances w.r.t. mpts from 1 to 4, with the highlighted dashed circles

representing the core-distance of a w.r.t. mpts = 3 and the core-distance of b

w.r.t. mpts = 2. When placing a circle Br along the path between a and b

such that it encloses exactly the two highlighted circles, one guarantees that at

least 5 points are enclosed by Br. This is represented in Figure 3.5 by the red

dotted circle. The radius r in this case is determined by the core-distances of

a and b w.r.t. mpts = 3 and mpts = 2, respectively, and the distance between

a and b: (c3(a)+ c2(b)+d(a, b))/2. In order to guarantee that any point along

the straight path between a and b is dense w.r.t. mpts, one must look at all

the pairs of core-distances of a and b that enclose a combined total of mpts

many points. This intuition is formally expressed in Equation 3.4.

d∗∗(a, b) = max
1≤i<mpts

{

d(a, b) + dmpts−i(a) + di(a)

2

}

(3.4)

We refer to the algorithm that uses the definition in Equation 3.4 as HDB-

SCAN”. Note that the definitions in Equations 3.3 and 3.4 can be similarly

interpreted and offer a minimum guarantee about the density along the paths

between data points. Even though neither of these definitions corresponds to
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a b

Figure 3.5: d∗∗(a, b)

the most precise estimate one can possibly get from the data, they represent

a trade-off between the accuracy of the estimates and the computational com-

plexity to find these estimates: while Equation 3.3 is simple to compute, it

corresponds to a less precise estimate; on the other hand, Equation 3.4 takes

an extra effort in the order of O(mpts), but results in a tighter estimate.

Our preliminary tests with HDBSCAN’ and HDBSCAN” have shown that

the density estimates measured by mrd′mpts are much smoother than the ones

measured by the original formulation available in HDBSCAN*, as shown in

Figures 3.6 and 3.7. Thus, when the clustering hierarchies computed with

HDBSCAN’ and HDBSCAN” are visualized as reachability plots, the sepa-

ration between density-based clusters appear as gradual/smooth transitions

instead of abrupt changes in the plot, as often observed in the hierarchies

computed by HDBSCAN*. We also observed that the hierarchies constructed

by HDBSCAN’ and HDBSCAN” present the same level of dendrogram purity1

[22] as the hierarchies constructed by HDBSCAN* and that all formulations

lead to similar conclusions about the cluster structures in the data. In Table

3.1, we compared the best dendrogram purity scores that can be achieved with

1The dendrogram purity measures the purity of the smallest clusters in the hierarchy
that contain pairs of points with the same label. If a cluster only contains points with the
same label, then the purity of that cluster is 1.
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3.3 Conclusions

In this chapter we presented a thorough analysis of how density is estimated

in HDBSCAN* and investigated HDBSCAN’, an adaptation of HDBSCAN*

based on a new definition of mutual reachability distance that offers a bet-

ter interpretation of the density along the straight paths between points and

mitigates the issues with overestimation and underestimation of density ob-

served in HDBSCAN*. However, we have found that the results obtained by

HDBSCAN’ are not fundamentally different from the ones obtained by HDB-

SCAN*, and apart from the theoretical advantages, both strategies lead to

essentially the same conclusions about the cluster structures in the data.

Overall, the important conclusion from the analysis in this chapter is that

the replacement of the mutual reachability distance in HDBSCAN* with a

theoretically improved density estimate does not necessarily imply “better”

clustering results. Consequently, HDBSCAN* continues to be a state-of-the-

art algorithm, even though it might require the computation of clustering

hierarchies w.r.t. multiple values of mpts. In practice, the formulation of

HDBSCAN’ makes it harder for one to efficiently explore multiple parameter

settings, since the new definition of mutual reachability distance cannot be

exploited to achieve the same levels of performance as the original definition

available in HDBSCAN*. In Chapter 4, we present an efficient strategy for

the computation of a collection of clustering hierarchies based on the original

density estimator available in HDBSCAN*. A more detailed discussion on why

the same strategy cannot be applied to HDBSCAN’ is available on Appendix

A.1.
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Chapter 4

RNG-HDBSCAN*

The first contribution in this thesis is an approach to efficiently compute all

HDBSCAN* hierarchies for a range of mpts values by building upon results

from computational geometry to replace HDBSCAN*’s complete graph with

a smaller equivalent graph. To achieve that, we show the following:

1. The smallest known proximity graph containing the Euclidean Minimum

Spanning Tree (EMST) is the relative neighborhood graph (RNG) —

as a first step towards finding a small, single spanning subgraph that

can replace the complete graph in HDBSCAN*, while maintaining the

correctness of the results.

2. The proximity measure used in HDBSCAN*, which depends on mpts,

can be used to define RNGs that can replace the complete graph in

HDBSCAN* with one RNG for each value of mpts.

3. For a range of mpts values, RNGs for smaller values are contained in

RNGs for larger values of mpts, that is, a single RNG is sufficient to

compute the hierarchies for the whole range of mpts values.

4. Information related to “core-distances” that is needed in HDBSCAN*

and that can be computed in a pre-processing step, allows us to formulate

a highly efficient strategy for computing the single RNG, suitable for a
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whole range of mpts values.

These results combined allow us to replace the (virtual) complete graph of the

data in HDBSCAN* with a single, pre-computed RNG that contains all the

edges needed to compute the hierarchies for every value of mpts ∈ [1, kmax].

Moreover, this RNG has typically much fewer edges than the complete graph

so its construction cost is more than outweighed by the reduction in edge

weight computations. Our experimental evaluation shows that our approach

can obtain over one hundred hierarchies for the computational cost equivalent

to running HDBSCAN* about twice, which corresponds to a speedup of more

than 60 times, compared to running HDBSCAN* independently that many

times.

4.1 Related Work

To the best of our knowledge, there is no previous proposal for computing mul-

tiple clustering hierarchies efficiently. There are works on automatic parameter

selection strategies for density-based clustering, e.g., [13], [27], [39], which are

loosely related to the issue illustrated in Figure 1.1. However, those proposals

are unsuitable to be used with HDBSCAN*, since they were developed for

non-hierarchical clustering algorithms. In addition, they rely on assumptions

that are often not satisfied in practice and there is not enough evidence to

support their claims about parameter optimality.

If we denote the HDBSCAN*’s (virtual) complete graph for a givenmpts by

Gmpts, a line of work related to our goal of reducing the cost for computing an

MST for each Gmpts, are the works regarding (1) dynamically updating graphs,

specifically MSTs, and (2) neighborhood graphs that could potentially replace

HDBSCAN*’s (virtual) complete graph. We discuss some of those next.

The authors of [10], [23], [25], studied the problem of maintaining dynamic
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MSTs. However, these approaches are more suitable when the changes in

the underlying graph take place sequentially, i.e. considering each operation

(e.g., edge updates) individually. When it comes to major changes taking

place globally and simultaneously across the entire graph, as opposed to a few

localized changes, a sequence of applications of these techniques tends to be

computationally very costly, possibly even more costly than the construction

of the entire MST from scratch. This is the case for Gmpts, which is a complete

graph whose majority of edges will likely change as a result of a change in the

mpts value.

The works on neighborhood graphs that are most related to our proposal

aim at speeding up the special case of computing a Euclidean Minimum Span-

ning Tree (EMST), by first computing a spanning subgraph that is guaranteed

to contain all the EMST edges. One of these strategies uses a Delaunay Trian-

gulation [14] of the complete Euclidean graph G, since it has been shown that

the EMST is contained in the Delaunay Triangulation of G [45]. Other span-

ning subgraphs of the complete graphG that contain the EMST are the Gabriel

Graph [17], [46] and the Relative Neighborhood Graph (RNG) [45]. Unfortu-

nately, these results are not simply applicable to our problem because Gmpts

lies in a transformed space of the data that depends on mpts (Gmpts 6= G). It

is one of the main contributions of this thesis to formally show how to adapt

an RNG so that it can be used by HDBSCAN* as a suitable replacement for

Gmpts for different values of mpts.

When HDBSCAN* has to be run for a range, k1, . . . , kmax, of mpts values,

one MST for each value of mpts ∈ {k1, . . . , kmax} has to be computed by

taking the complete, unweighted graph G of the dataset, adding to it mutual

reachability distances as edge weights, to obtain an Gmpts, and then computing

the MST of this graph; the O(n2) edge weights of Gmpts have to be re-computed

for each mpts ∈ {k1, . . . , kmax} by running a k-Nearest-Neigbor (k-NN) query
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for each point in the dataset with k equal to the current mpts value, in order

to determine core distances.

One straightforward way to speed-up multiple runs of HDBSCAN* for all

values of mpts ∈ {k1, . . . , kmax} is to execute k-NN queries for each point only

once, using the largest value kmax in the range, and materialize the kmax-NN

query results. Since the k-NNs for k ≤ kmax are part of the kmax-NNs, the

core distances for all values in {k1, . . . , kmax} can be easily obtained from the

materialized kmax-NN query results. While this approach reduces the number

of k-NN queries that have to be executed significantly, a main determining

factor of the total runtime is still the large number of edges in the complete

graphs that have to be processed to construct MSTs. In the following, we will

formally prove that we can construct a single graph that is typically signifi-

cantly smaller than a complete graph, yet still contains the edges of the MSTs

of Gmpts for all mpts ∈ {k1, . . . , kmax}. Thus, we can use this graph instead of

the complete graph in HDBSCAN*, without changing the correctness of the

results. How much speed-up can be achieved depends, of course, not only on

the reduction in number of edges from the complete graph, but also on the

added computational cost for constructing this graph.

4.2 Results from Computational Geometry

Consider first the special case of mpts = 1, where all core distances are equal

to zero, and thus the mutual reachability distance mrdmpts reduces to the

underlying distance function. With Euclidean distance, what HDBSCAN*

has to compute then is the Euclidean Minimum Spanning Tree (EMST) of a

dataset X, i.e., the MST of a complete graph of X with Euclidean distance

between points as edge weights.

For the EMST, there are known results from computational geometry that

relate the EMST to the Delaunay Triangulation (DT), the Gabriel Graph (GG)
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and the Relative Neighborhood Graph (RNG) in the following way[45]:

EMST ⊆ RNG ⊆ GG ⊆ DT (4.1)

The RNG and GG are special cases of a family of graphs called β-skeletons

[29], which can range from the complete graph to the empty graph, when β

goes from 0 to ∞. A value of β = 1 results in the GG and β = 2 in the RNG.

Given this result, the RNG, or possibly a β-skeleton with even fewer edges,

may be a good replacement for a complete graph, if we can answer the following

questions positively:

1. Can we determine the smallest β-skeleton, w.r.t. number of edges, that

has the EMST as a subgraph?

2. Can the results for Euclidean distance be generalized to other reachabil-

ity distances w.r.t. mpts > 1?

3. Is there a single β-skeleton that contains all the edges needed to compute

an MST of Gmpts for each value of mpts in a range of values k1, . . . , kmax?

4. Does the reduction in the number of edges justify the additional com-

putational cost for constructing and materializing a β-skeleton for our

task?

We will answer these questions in the following sections.

4.3 The Smallest β-Skeleton Containing the

EMST

The family of β-skeletons for a set of d-dimensional points is defined as follows.

For a given β, an edge exists between two points a and b if and only if (iff ) the

intersection of the two balls centered at (β/2)a+ (1− β/2)b and (1− β/2)a+

(β/2)b, both with radius βd(a, b)/2, is empty. Larger values of β result in
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fewer edges in the β-skeleton. When β = 2 (RNG), the centers of the balls

coincide with a and b, and the radius is equal to d(a, b), as shown in Figure

4.1a. The highlighted region, called lune(a, b), must be empty for an edge to

exist between a and b. For β = 2, one can equivalently say that an edge exists

between a and b iff

d(a, b) ≤ max{d(a, c), d(b, c)}, ∀c 6= a, b (4.2)

The RNG is guaranteed to contain the EMST [45], which, in essence, can be

demonstrated by considering a configuration of three points a, b, c, such that

lune(a, b) contains c, as shown in Figure 4.2a. The edges (a, b), (a, c) and (b, c)

cannot all be part of an EMST, as they form a cycle. Since (a, b) is the largest

of these edges, (a, b) cannot be part of the EMST. Thus, a necessary (but

not sufficient) condition for an edge (a, b) to be in an EMST is that all other

points must lie outside lune(a, b). Hence, for a complete graph G = (V,E),

RNG = (V,E \ {(a, b) : lune(a, b) 6= ∅}) contains the EMST.

Here, we prove by counter example that the RNG is also the smallest β-

skeleton (i.e., there is no β > 2) with that property. Consider a dataset with

three points a, b and c, located at equal distance from each other, as illustrated

in Figure 4.1: When β = 2 (Figure 4.1a), according to Inequality (4.2), there

is an edge between every pair of points in the 2-skeleton of this dataset. For

any β > 2 (Figure 4.1b), however, the radius of the balls that define lune(a, b)

is increased by a factor of (β − 2)/2, and the centers of the balls are “pulled

apart” accordingly, so that c (equidistant from a and b) must now be inside

lune(a, b). Thus, a and b are (by definition of β-skeleton) no longer connected

by an edge. Analogously, there is no edge between the other pairs of points

for β > 2, resulting in an empty β-skeleton that obviously cannot contain the

EMST . Thus, it follows with the known result in Expression (4.1) that the

RNG (β = 2) is the smallest β-skeleton that contains the EMST and, for this
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Figure 4.1: β-skeletons

reason, we choose it as the basis for further analysis.

4.4 The RNG w.r.t. Mutual Reachability Dis-

tance

In this section, we prove that the results for RNGs in Euclidean space can be

extended to the space of mutual reachability distances.

Notation: (1) Let G = (V,E) denote the undirected, unweighted complete

graph corresponding to a dataset, i.e., the set of vertexes V represents the data

points, and the set of edges E ⊂ V ×V represents all pairs of vertexes/points.

(2) Let Gi = (V,E,mrdi) be the mutual reachability graph for mpts = i, i.e.,

the weighted, complete graph for the dataset with edge weights between points

p and q equal to mrdi(p, q), the mutual reachability distance w.r.t. mpts = i.

We can define a relative neighborhood graph w.r.t. the mutual reachability

distance mrdi, RNGi, as follows:

Definition 4 RNGi = (V,E ′) where E ′ ⊆ E and there is an edge (a, b) ∈ E ′

if and only if:

mrdi(a, b) ≤ max{mrdi(a, c),mrdi(b, c)}, ∀c 6= a, b;

and when there is an edge (a, b) ∈ E ′, we say that a and b are relative neighbors

w.r.t. mrdi. The unweighted graph RNGi can be extended with edge weights

defined by a distance function mrdj, which results in the weighed graph RNGi
j,
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where the weight of an edge connecting two points p and q is equal to mrdj(p, q).

We can prove that the RNGi
i contains the MST of Gi, and thus we can

replace Gi with RNGi
i when running HDBSCAN* for mpts = i.

Theorem 1 MST (Gi) ⊆ RNGi
i

Proof 1 The argument for why EMST ⊆ RNG [45] is in fact valid for any

distance function as edge weight as long as it is symmetric and satisfies triangle

inequality, which are all that is needed to guarantee that (a, b) is in fact the

largest edge in configurations like the one shown in Figure 4.2a. Consequently,

we only need to show that mrdi is symmetric and satisfies triangle inequality.

For symmetry, we can see from the definition of mrdmpts in Equation (2.2)

that mrdi(a, b) = mrdi(b, a) (given that the underlying distance d is symmetric

by assumption - (Chapter 2)). For the triangle inequality, we have to show that

for all a, b, c in a dataset X:

mrdi(a, c) ≤ mrdi(a, b) +mrdi(b, c) (4.3)

By assumption, the underling distance d in the definition of mrdi satisfies

the triangle inequality:

d(a, c) ≤ d(a, b) + d(b, c) (4.4)

Consider the definition of mrdi(a, c), as expressed in Equation 4.5:

mrdi(a, c) = max{ci(a), ci(b), d(a, b) (4.5)

Thus, there are three cases in which (4.3) must hold:

1) mrdi(a, c) = ci(a). The max function in the definition of mrdi implies

ci(a) ≤ mrdi(a, b). Hence, mrdi(a, c) = ci(a) ≤ mrdi(a, b) ≤ mrdi(a, b) +

mrdi(b, c).
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2) mrdi(a, c) = ci(c). (Analogous to case 1).

3) mrdi(a, c) = d(a, c). Since for any x, y it holds that x ≤ max(x, y), we

can replace the terms on the right side of Inequality (4.4) with max functions

to obtain the following inequality:

d(a, c) ≤ max{d(a, b), ci(a), ci(b)}+max{d(b, c), ci(b), ci(c)} (4.6)

Note that the terms on the right-hand side of Inequality 4.6 are equivalent to

mrdi(a, b) and mrdi(b, c), which allows us to rewrite Inequality 4.6 as follows:

d(a, c) ≤ mrdi(a, b) +mrdi(b, c)

Hence, according to the assumption in this case that mrdi(a, c) = d(a, c), we

can show that the triangle inequality holds:

mrdi(a, c) ≤ mrdi(a, b) +mrdi(b, c)

Since mrdi satisfies symmetry and triangle inequality, it follows from [45]

that RNGi
i contains the MST of Gi.

4.5 One RNG To Rule Them All

We have established that we can use RNGi
i as a substitute for Gi in HDB-

SCAN*. We will now show that all MSTs for HDBSCAN* w.r.t. mpts ∈

{k1, . . . , kmax} can be obtained from the single graph RNGkmax . For this we

only need to show that RNGi ⊆ RNGkmax , for all i < kmax. Then, we can

use the single graph RNGkmax to compute the MST of any Gi by adding edge

weights mrdi to RNGkmax , and computing the MST of this edge-weighted

graph RNGkmax

i .

Theorem 2 RNGi ⊆ RNGkmax, ∀i < kmax.

Proof 2 To prove this by contradiction, assume that there is a j < kmax for

which RNGj 6⊆ RNGkmax. Then, there must be at least one edge (a, b) that
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Figure 4.2: Illustration for proofs of Theorems 1 and 2

belongs to RNGj but does not belong to RNGkmax. According to the definition

of relative neighborhood graphs, this means that there is a point c, such that

for distance mrdkmax
, c ∈ lune(a, b), and for distance mrdj, c /∈ lune(a, b), as

illustrated in Figure 4.2. More formally:

For RNGkmax (Figure 4.2a) both of the following inequalities must be sat-

isfied so that c ∈ lune(a, b).

mrdkmax
(a, b) > mrdkmax

(a, c) (4.7)

mrdkmax
(a, b) > mrdkmax

(b, c) (4.8)

For RNGj (Figure 4.2b) at least one of the following inequalities must be

satisfied so that c /∈ lune(a, b).

mrdj(a, b) ≤ mrdj(a, c) (4.9)

mrdj(a, b) ≤ mrdj(b, c) (4.10)

Using the definition of mrdkmax
, we can rewrite Inequalities (4.7) and (4.8)

as follows:

max{ckmax
(a), ckmax

(b), d(a, b)} >

max{ckmax
(a), ckmax

(c), d(a, c)}
(4.11)

max{ckmax
(a), ckmax

(b), d(a, b)} >

max{ckmax
(b), ckmax

(c), d(b, c)}
(4.12)

There are three cases, ckmax
(a), ckmax

(b), and d(a, b), that the max function

on the left-hand side of the Inequalities (4.11) and (4.12) can evaluate to. If
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it evaluates to one of the core distances, we get an immediate contradiction with

one of the equations (4.11) and (4.12): In casemax{ckmax
(a), ckmax

(b), d(a, b)} =

ckmax
(a), we get from Inequality (4.11) the following:

ckmax
(a) > max{ckmax

(a), ckmax
(c), d(a, c)}

But since max(ckmax
(a), . . .) ≥ ckmax

(a), it follows that ckmax
(a) > ckmax

(a), a

contradiction! In case max{ckmax
(a), ckmax

(b), d(a, b)} = ckmax
(b), it follows,

analogously to the previous case, from (4.12) that ckmax
(b) > ckmax

(b), a con-

tradiction again! If it does not evaluate to one of the core distances, i.e.,

max{ckmax
(a), ckmax

(b), d(a, b)} = d(a, b), all the following inequalities must

hold.

d(a, b) > ckmax
(a) (4.13)

d(a, b) > ckmax
(b) (4.14)

d(a, b) > ckmax
(c) (4.15)

d(a, b) > d(a, c) (4.16)

d(a, b) > d(b, c) (4.17)

We also know that at least one of the Inequalities (4.9) and (4.10) must

hold, under our assumption that c /∈ lune(a, b) for distance mrdj. We can

rewrite (4.9), using the definition of mrdj as follows:

max{cj(a), cj(c), d(a, c)} ≥

max{cj(a), cj(b), d(a, b)}
(4.18)

There are again the three possibilities, cj(a), cj(c), d(a, c), that the max

function on the left-hand side of Inequality (4.18) can evaluate to, and we

show that each one contradicts what we already know about a, b, and c:

1) max{cj(a), cj(c), d(a, c)} = cj(a).

In this case, Inequality (4.18) yields the following.

cj(a) ≥ d(a, b) (4.19)
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Since core distances cmpts can only increase when mpts increases, we have

ckmax
(a) ≥ cj(a) and, accordingly, we obtain the following from Inequality

(4.19).

ckmax
(a) ≥ d(a, b) (4.20)

This contradicts Inequality (4.13)!

2) max{cj(a), cj(c), d(a, c)} = cj(c).

Analogously to the previous case, from (4.18) we get (4.21), and then from

ckmax
(c) ≥ cj(c) we get (4.22), which contradicts Inequality (4.15)!

cj(c) ≥ d(a, b) (4.21)

ckmax
(c) ≥ d(a, b) (4.22)

3) max{cj(a), cj(c), d(a, c)} = d(a, c).

In this case, we get from Inequality (4.18) that d(a, c) ≥ d(a, b), which is a

contradiction to Inequality (4.16)!

This proves that Inequality (4.9) cannot hold under our assumption. We

can prove analogously the same result for Inequality (4.10), which contradicts

our assumption that there is a j < kmax such that RNGj 6⊆ RNGkmax. Hence

RNGi ⊆ RNGkmax, ∀i ≤ kmax.

When we combine the results of Theorems 1 and 2, we obtain the following

corollary, which states that the MST (Gi) for all i < kmax is contained in

RNGkmax , and can thus be computed from RNGkmax

i , the graph obtained by

extending RNGkmax with edge weights mrdi.

Corollary 1 MST (Gi) ⊆ RNGkmax

i , ∀i ≤ kmax.

Proof 3 MST (Gi) ⊆ RNGi
i (Theorem 1), and RNGi ⊆ RNGkmax (Theorem

2). By extending both graphs from Theorem 2 with edge weights mrdi, we

obtain RNGi
i ⊆ RNGkmax

i . Hence, MST (Gi) ⊆ RNGkmax

i .
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4.6 RNG Computation

The performance gain when running HDBSCAN* w.r.t. all values of mpts ∈

{k1, . . . , kmax} by using RNGkmax

i instead of the complete graph G relies on a

number of factors: the additional time to construct RNGkmax

i (recall that G

does not have to be explicitly constructed), the number of edges in RNGkmax

i

compared to G, and the number of hierarchies kmax to be computed.

The naive way to compute an RNG for a set of points X is to check for

every pair of points p, q ∈ X and each third point c ∈ X, whether c is inside

lune(p, q). This algorithm runs in O(n3) time, which is inefficient for large

datasets. More efficient strategies are surveyed in [26].

We adopt the approach in [1] — which has sub-quadratic expected time

complexity under the assumption that points are in general position — with

an adaptation of the definition of well-separated pairs proposed in [6]. In the

first step, the entire dataset is decomposed recursively into smaller and smaller

subsets. Based on that decomposition, we find the smallest collection of pairs

of well-separated subsets (A,B) such that, for any two points p, q ∈ X, there is

exactly one pair (A,B) in the well-separated pair decomposition where p ∈ A

and q ∈ B (see [6] for details).

Intuitively, two sets A and B are well-separated “if the diameter of each

set is relatively small compared to the distance between the two sets” [5].

The distance is in our case the mutual reachability distance mrdmpts, and the

smallest possible mrdmpts between two point sets A and B is the shortest

possible Euclidean distance between a point a ∈ A and a point b ∈ B, because

of the max function in the definition of mrdmpts. In order to avoid computing

pairwise distances, one can use “safe” bounds instead of the exact distances to

define well-separability (the only consequence of using bounds instead of exact

distances is that more well-separated pairs may be generated than necessary).
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The distance between the sets A and B can be bounded, as in [6], by the

distance D(A,B) between the smallest enclosing balls BA and BB around the

minimum bounding hyper-rectangles enclosing A and B, respectively. The

largest possible mutual reachability distance within the sets A and B can be

bounded by max{diameter(BA), diameter(BB),maxp∈A∪B(cmpts(p))}. Then,

we can define that A and B are well-separated if:

D(A,B) ≥ s ·max{diameter(BA), diameter(BB), max
p∈A∪B

(cmpts(p))}

The separation factor s > 0 determines how far both sets have to be from

each other to be considered well-separated. The larger the separation factor,

the larger the number of generated well-separated pairs. This happens due to

a stronger requirement on separation between sets of points. For instance, if

two sets A and B are not well-separated w.r.t. s, one must look at all the pairs

involving subsets of A and subsets of B to find pairs that are well-separated

w.r.t. s. Therefore, for large values of s, the pairs of sets that are well-separated

have to be either very far away from each other or have very small diameters.

Thus, most of the pairs that are well-separated for large values of s are the

ones containing singleton sets (with diameter zero), which could be as many

as O(n2). For 0 < s < 1, there is no guarantee that the resulting graph

will contain all the RNG edges and, consequently, the MST edges. Figure

4.3 shows two sets A and B, whose distance between their enclosing balls is

smaller than the diameters of both balls. In this example, the closest point to

a3 in B is b2, and the closest point to b2 in A is a2. According to the graph

construction from the well-separated pairs (discussed next in the second step),

the edge between a3 and b2 is not included in the resulting graph, even though

a3 and b2 are relative neighbors. On the other hand, when a pair of sets (A,B)

is well-separated w.r.t. s ≥ 1, the points in one set are necessarily closer to

each other than to the points in the other set. Thus, if two points a ∈ A and
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b ∈ B are the closest pair of points from different sets, no other point in B

can be closer to a than b, and vice versa. Consequently, no point in A or B

can be closer to both a and b than they are to each other, which means that

a and b are potentially relative neighbors. Therefore, any value of s ≥ 1 is

enough to guarantee that pairs of points that are potentially relative neighbors

are connected with an edge in the graph constructed from the well-separated

pair decomposition. Hence, to have as few edges as possible and guarantee the

correctness of the resulting graph, we adopt s = 1.

a1

a2

a3

b1

b2 b3

A B

Figure 4.3: Well-Separated Pair Decomposition (0 < s < 1)

In the second step, a supergraph of the RNG, which we will call RNG**,

is constructed. This graph is built with edges between pairs of well-separated

sets and connects points that are potentially relative neighbors. For each well-

separated pair (A,B), the points ai ∈ A and bj ∈ B are connected with an

edge if they are Symmetric Bichromatic Closest Neighbors (SBCN), i.e., if

there is no other point in B that is closer to ai than bj and vice versa. For

example, in Figure 4.4, a3 and b3 are SBCN and thus the edge (a3, b3) is part

of the RNG**. This step is based on the fact that when two points are relative

neighbors, there is no other point in the data that is closer to both of them

than they are to each other. Thus, connecting the SBCN between sets that

are well-separated w.r.t. s = 1 results in a graph that contains all the edges

in the RNG, but also contains many more edges between points that are not

relative neighbors.

The third step of the RNG computation consists of filtering RNG** to
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remove edges that are not in the RNG. Although RNG** has typically far

fewer edges than the complete graph G, a naive filtering approach, which

checks for each edge (a, b) in RNG** whether each point c is in lune(a, b),

can be very time consuming for large datasets. Therefore, we propose an

alternative filtering strategy based on information that must be computed for

HDBSCAN* to determine core-distances, which can make the overall filtering

process more efficient. It is based on the intuition that points closer to a or b

are more likely in lune(a, b) than points that are farther away. For computing

multiple HDBSCAN* hierarchies, we initially compute and store core distances

(i.e., k-NN distances) ci for each value of i ∈ k1, . . . , kmax by performing a

kmax-nearest neighbor query for each point. This gives us access to the kmax

closest points to each point. To support our pruning strategy, we propose to

also store the actual kmax-nearest neighbors, so that we can first check for

each edge (a, b) with weight w if any of the kmax-nearest neighbors of a and

b is inside lune(a, b). As soon as we find one that is inside, we can safely

remove the edge without further checking. If none of those neighbors is inside

lune(a, b), we check if w is equal to the core-distance of a or b. If that is

the case (say for a), we know that no other point can be in lune(a, b) (since

lune(a, b) is a subset of the ball around a with radius w and we have checked

all points inside this ball); hence we know without further checking that the

edge is in the RNG. We can choose to perform only these 2× kmax checks per

edge to obtain a graph, which we call RNG*, that is smaller than RNG** but

may still contain edges that are not in the RNG. To obtain the exact RNG,

a1
a2

a3

b1

b2b3

A B

Figure 4.4: Symmetric Bichromatic Closest Neighbor (SBCN)
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we search the entire dataset whenever an edge cannot be excluded or included

based on the described, 2× kmax tests, to determine whether or not there is a

point in lune(a, b).

Algorithm 1

Require: X: dataset; n: |X|; [k1, . . . , kmax]: mpts range; T : graph to be computed
(RNG, RNG*, RNG**);

1: for i ∈ {1, ..., n} do
2: M [i]← [1-NN(i), . . . , kmax-NN(i)];

3:

4: wspd←WSPD(X,M);
5:

6: for (A,B) ∈ wspd do

7: RNGkmax ← RNGkmax ∪ SBCN(A,B);

8:

9: if T 6= RNG** then

10: remove← False;
11: for (a, b) ∈ RNGkmax do

12: for x ∈ M [a] ∪ M [b] do
13: if x ∈ lune(a, b) then
14: remove← True;
15: break;

16: if ¬ remove then

17: if mrdkmax
(a, b) = max{ckmax

(a), ckmax
(b)} then

18: remove← False;
19: continue;

20: if ¬ remove and T = RNG then

21: for x ∈ X do

22: if x ∈ lune(a, b) then
23: remove← True;
24: break;

25: if remove then

26: RNGkmax ← RNGkmax \ (a, b);
27: remove← False;

28:

29: for mpts ∈ {k1, . . . , kmax} do
30: MSTmpts ←MST (RNGkmax

mpts );
31: compute-hierarchy(MSTmpts);

The pseudo-code for the overall strategy is shown in Algorithm 1. It takes

as input a dataset X with n points, a range of mpts values, [k1, . . . , kmax], and

the type T of the RNG to be computed, namely, the exact RNG, RNG*, or
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RNG**. The kmax-nearest neighbors for each point x ∈ X are computed and

materialized in Line 2. It is important to emphasize that a single kmax-NN

query is performed for each x ∈ X. Next, the Well-Separated Pairs Decompo-

sition (WSPD) is performed in Line 4. In Lines 6-7, the RNG** is constructed

by adding one edge for each of the Symmetric Bichromatic Closest Neighbors

(SBCN) between the pairs (A,B) ∈ wspd. The edge filtering occurs between

Lines 11-27. In case the RNG** is chosen, the filtering process is completely

skipped (Line 9). Otherwise, the filter steps based on the kmax-nearest neigh-

bors are performed. The last filter, based on the sequential scan of the dataset

(Lines 21-24), is only performed when the exact RNG is to be computed, and

only for edges that cannot be excluded or included based on the previous

tests. Finally, in Lines 29-31, the MSTs and hierarchies are computed for all

the values of mpts ≤ kmax, using the computed RNG.

4.7 Computational Complexity

Our method can be decomposed into five main parts: (i) core-distance compu-

tations, (ii) Well-Separated Pair Decomposition (WSPD), (iii) RNG** con-

struction, (iv) edge filtering, and (v) hierarchy constructions. In part (i),

where the core-distances are computed, a kmax-NN query is executed for each

point in the dataset, resulting in an O(n2) time complexity. In part (ii), the

WSPD is computed according to the method proposed in [5], which runs in

O(n) time. In part (iii), the RNG** is constructed via the computation of the

Symmetric Bichromatic Closest Neighbors (SBCN) for each of the pairs in the

WSPD. Note that for every point p in the dataset, the number of comparisons

that involve p is of order n, as the remaining n − 1 points are placed in sets

that are well separated from a set containing p. Therefore, one needs O(n2)

comparisons in order to find the SBCNs for all pairs of well-separated sets

and, thus, building the RNG** takes O(n2) time. In part (iv), the edges of
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the RNG** are filtered to produce either the RNG* or the RNG. This pro-

cess relies on the information available from the core-distances to filter out

the edges that do not belong in the final graph. Therefore, the computational

complexity of this part depends directly on kmax and on how the points are

distributed in the space. In the best case scenario, checking whether an edge

belongs to the RNG or not can be done in constant time, and the entire fil-

tering process is done in O(|E ′|) time, where E ′ represents the set of edges in

the RNG**. On the other hand, in the worst case scenario a linear scan of

the points in the dataset has to be performed for each edge and the filtering

is done in O(|E ′| · n) time. The number of edges in the RNG** can vary

from O(n) to O(n2), depending on the distribution and dimensionality of the

points. Note that to produce the RNG* we only filter the edges that can be

discarded in constant time. In part (v), the Minimum Spanning Trees are

computed in O(|E|+ n log n) time, where E represents the set of edges in the

graph after filtering (step (iv)). As the RNG and its variants have in general

much fewer edges than the complete graph, the computation of the hierarchies

is much faster than applying the same algorithm on the complete graph.

4.8 Experimental Evaluation

We conducted experiments to evaluate the efficiency of the proposed method

with respect to changes in size and dimensionality of the dataset, and, most

importantly, with respect to the number of hierarchies to be computed. We

also show the sizes of the RNG, RNG*, and RNG** in comparison to the size

of the Gmpts, since the reduction in the number of edges is the source of our

performance gain.

To the best of our knowledge, no other strategy in the literature aims at

computing multiple hierarchies efficiently. Thus, we compare our strategy to

a straightforward baseline that runs HDBSCAN* multiple times, one for each
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mpts value in the given range, but with the optimization of pre-computing the

core distances for all points, as we do in our approach, using a single kmax-NN

query per point.

To study the computational trade-offs of the different edge filtering strate-

gies described in section 4.6, we show results for three variants: RNG**-

HDBSCAN*, which just uses the RNG** without any additional filtering;

RNG*-HDBSCAN*, which applies only the filtering based on kmax nearest

neighbors; and RNG-HDBSCAN*, which applies the complete filtering to ob-

tain the exact RNG.

All methods have been implemented on top of the original HDBSCAN*

code, provided by the authors of [9], in Java. The core-distances are computed

with the aid of aKd-Tree index structure, adapted from [47]. The experiments

were performed in a virtual machine with 64GB RAM, running Ubuntu. For

runtime experiments, we measure the total running time to compute core-

distances and MSTs, and report the average runtime over 5 experiments.

The datasets were obtained using the generator proposed in [20], varying

the number of dimensions from 2 to 128, and the number of points from 16k

to 1M; the ranges of mpts started with 1, varying the value of kmax from 2 to

128. Table 4.1 shows these values and indicates in bold the default value for

each variable when other variables are varied.

The datasets used to properly assess the efficiency of our method with

regard to the effects of a specific variable were generated by varying only that

variable, while the others were kept at their default values. For instance, in

order to evaluate how our strategy behaves with regard to different dataset

sizes, we take samples of different sizes from the largest dataset. Similarly,

in order to evaluate the effects of dimensionality on the performance of our

strategies, we vary the number of dimensions and keep the same number of

clusters and points in the dataset. In the evaluation of the effects of kmax, the
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Table 4.1: Experimental Setup

Variables Values

#points 16k, 32k, 64k, 128k, 256k, 512k, 1M

#dimensions 2, 4, 8, 16, 32, 64, 128

kmax 2, 4, 8, 16, 32, 64, 128

number of points and dimensions are kept fixed at their default values. Note

that kmax does not have any influence on the dataset generation.

4.8.1 Effect of Dataset Size
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Figure 4.5: Runtime and RNG size as a function of dataset size.

Figure 4.5a shows the total runtime as a function of the dataset size with

default values for the remaining variables. As expected, the runtime tends to

increase for all methods as the number of points increases. For datasets up to

64k points, all strategies have similar performances, but as the datasets be-

come larger, the difference between our approaches and the baseline increases

significantly. For 128k points, the baseline strategy already takes about twice

as much time as our approaches, and for 1024k points, we actually interrupted

each run of the baseline before it finished 1.

1The runs on this experiment were interrupted after 7500 minutes (≈ 5 days), as the
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Figure 4.5b shows the number of edges in Gmpts, RNG**, RNG*, and RNG,

as a function of the dataset size. As expected, the number of edges increases

with the number of points. However, the RNGs are significantly smaller than

the complete graph for all dataset sizes. In fact, even for the largest dataset,

the sizes of the RNG* and RNG are smaller than the size of the Gmpts for the

smallest dataset.

The sizes of RNG and RNG** are quite different, yet their running times

are quite similar (see Figure 4.5a), indicating that the gain in MST compu-

tation due to a smaller graph size is canceled out by the time spent filtering

to obtain the exact RNG. On the other hand, RNG*, which only uses the

very fast filter based on materialized k-nearest neighbors, is very close in size

to RNG, showing the effectiveness of our pruning heuristic, and leading to a

much faster runtime.

4.8.2 Effect of Dimensionality
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Figure 4.6: Runtime and RNG size as a function of dataset dimensionality.

Figure 4.6a shows the effect of dataset dimensionality on runtime. As

expected, all approaches are affected by increasing dimensionality, due to a

number of effects that are generally referred to as “curse of dimensionality.”

observed performance was already enough for comparison purposes
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However, since our datasets do contain cluster structures, these effects are not

critically severe even in 128 dimensions.

We can observe that all RNG-based strategies perform better than the

baseline in all datasets, but as dimensionality increases, the difference between

the unfiltered RNG (RNG**) and the filtered versions (RNG* and RNG) in-

creases. This can be explained by looking at the number of graph edges shown

in Figure 4.6b. The size of the exact RNG is barely affected by an increase

in dimensionality, while the size of the unfiltered RNG** grows significantly,

approaching the complete graph Gmpts. This shows that the generation of

well-separated pairs becomes less effective in implicitly excluding edges that

cannot be in an RNG as the dimensionality increases. On the other hand,

the exact RNG still has significantly fewer edges than a complete graph in

these scenarios — although, theoretically, it also must eventually approach

the complete graph [5], [26].

The number of edges of RNG* increases only slightly as the dimensionality

increases, which shows that the pruning strategy using only the pre-computed

k-nearest neighbors (16, as kmax = 16 in this experiment) stays quite effective,

even in the 128-dimensional datasets, resulting in the best runtime perfor-

mance overall.

4.8.3 Effect of Upper Limit kmax

Figure 4.7a and Table 4.2 show the runtimes w.r.t. kmax. The runtime of all

our methods is very low compared to the baseline, for which runtime increases

linearly, as expected.

The runtime of RNG**-HDBSCAN* increases very slightly with kmax as

also the number of edges increases slightly, but it stays significantly below the

number of edges in Gmpts, as shown in Figure 4.7b.

RNG-HDBSCAN* shows a slightly higher runtime for mpts = 2, which
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Figure 4.7: Runtime and RNG size as a function of kmax.

then decreases formpts = 4 andmpts = 8, after which it stays almost constant

and becomes almost indistinguishable in performance to RNG*-HDBSCAN*.

RNG*-HDBSCAN*, which only uses the kmax-nearest neighbors for prun-

ing RNG**, shows the most stable runtime behavior; its increase in runtime,

as kmax increases, is almost unnoticeable. For the largest value of kmax, the

difference in runtime to the baseline corresponds to a speed-up of about two or-

ders of magnitude. The runtime behavior of RNG and RNG* can be explained

by their number of edges, shown in Figure 4.7b. For mpts = 2, the number

of edges in RNG* is much larger than in RNG (while still being smaller than

in RNG**). The reason is that the filtering strategy is not yet very effective

when only two nearest neighbors are considered. Thus, for many edges (a, b)

a sequential scan has to be performed to check lune(a, b) in order to obtain

RNG, outweighing the gain in performance runtime for computing the MST

of RNG with fewer edges.

The results also show that (1) computing MSTs is very fast, compared to

the rest of the computation, if the underlying graphs are already relatively

small compared to the complete graph, and (2) that our pruning heuristic

based on kmax-NNs becomes more effective as kmax increases, leading to an

almost indistinguishable performance between RNG and RNG* for kmax ≥ 16.
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Table 4.2: kmax vs. Runtime (min.)

kmax HDBSCAN* RNG**-HDBSCAN* RNG*-HDBSCAN* RNG-HDBSCAN*

2 12 12 12 99
4 33 12 12 45
8 79 14 12 22
16 169 17 13 15
32 363 23 14 15
64 781 40 18 19
128 1759 72 29 30

The significance of our contribution and of the obtained speed-ups becomes

even more clear, if we look at the runtime from a different perspective. Figure

4.8 shows the ratio of the runtime to compute kmax MSTs over the runtime to

compute a single MST. RNG* exhibits a very stable ratio of about 2 for all

values of kmax, i.e, we can use it to compute as many as 128 MSTs/hierarchies

for the computational cost of naively computing about 2 MSTs/hierarchies.

4.9 Conclusion

In this chapter we presented RNG-HDBSCAN*, an efficient strategy for com-

puting multiple density-based clustering hierarchies. The key for its efficiency

is the replacement of the Mutual Reachability Graph by a suitable Relative

Neighborhood Graph which allows to incrementally explore HDBSCAN* so-

lutions w.r.t. a range of values of mpts. Our experiments showed that RNG-

HDBSCAN* can be more than 60 times faster than running the original HDB-
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SCAN* algorithm for the same ranges of mpts. In particular, it scales signifi-

cantly better when running on large datasets and more prominently for broader

ranges of mpts values.
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Chapter 5

MustaCHE: Multiple Clustering
Hierarchies Explorer

5.1 Introduction

RNG-HDBSCAN* [11], [36], presented in Chapter 4, is an efficient strategy

for computing multiple HDBSCAN* clustering hierarchies w.r.t. a range of

parameter values, and is able to compute over a hundred clustering hierar-

chies at a very low computational cost – equivalent to running HDBSCAN*

twice – while producing results identical to the ones produced by the original

HDBSCAN* formulation. These developments have made possible for users

to have access to a potentially large collection of clustering hierarchies for

analysis and exploration. However, finding the “best” value of mpts remains

an open problem, and analyzing a very large number of clustering hierarchies,

and learning from them, is still practically challenging. While close values of

mpts are likely to result in similar hierarchies, different ranges of mpts values

may produce significantly different hierarchies. Therefore, we address in this

chapter the following non-trivial questions: for a given dataset, (1) how many

of these ranges exist?, (2) how does one identify these ranges? and (3) how do

the hierarchies in each of these ranges look like?.

To address these questions, we propose MustaCHE1, a tool that leverages

1https://github.com/antoniocavalcante/mustache
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the main results of RNG-HDBSCAN* and allows a visual and interactive anal-

ysis and exploration of multiple clustering hierarchies, thus helping users to

better understand their data and its cluster structures. Users can then explore

hierarchies individually and, at the same time, see how they compare to the

other hierarchies. The simultaneous visualization of multiple clustering hier-

archies provided by MustaCHE makes it feasible (and easy) for a user to gain

a deeper understanding of the data and how its cluster structure reveals itself

under different parameter settings.

Next we present the different visualizations available in MustaCHE and

discuss what a user can learn from each of them, followed by a description of a

demonstration scenario that illustrates MustaCHE’s usability. We also present

a couple of small, real-world case studies to demonstrate the effectiveness of

our visualization tools for exploratory cluster analysis with multiple clustering

hierarchies.

5.2 Visualizations in MustaCHE

Given a set of HDBSCAN* hierarchies of a given dataset for different mpts

values, efficiently pre-computed using RNG-HDBSCAN*, MustaCHE offers a

set of visualizations that simplify and aid in the analysis of those hierarchies.

Its main overall goals are to assist the user to (1) (visually) find “good” values

for mpts and (2) to understand which cluster structures are detectable in the

data for different parameter values. In the following, we discuss each of the

visualizations available in MustaCHE and the motivations behind them.

5.2.1 Similarity Matrix

A common representation for a cluster hierarchy, which depends on a given

value of mpts, is a dendrogram. However, in order to gain a broad understand-

ing of how the parameter mpts affects the hierarchical organization of the data
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it is not necessary to look at actual dendrograms; but rather to identify the

ranges of mpts values that produce similar hierarchies.

To identify different ranges of mpts values that produce different relevant

hierarchies, we first need to measure how similar (or dissimilar) two hierarchies

are. In [31], the authors propose the Hierarchy Agreement Index (HAI) which

captures how much two hierarchies agree with each other w.r.t. the distances

between pairs of points in both hierarchies. The distance between a pair of

points xi and xj in a hierarchy H, dH(xi, xj), is defined as the size of the

smallest cluster where xi and xj appear together divided by the number of

points in the dataset. The HAI similarity between two hierarchies H1 and H2

is then defined by the average, normalized difference of the distances dH1
and

dH2
, between all pairs of points, in the following way:

HAI(H1, H2) = 1−
1

n2

n
∑

i=1

n
∑

j=1

|dH1
(xi, xj)− dH2

(xi, xj)|

After computing the HAI values for every pair of hierarchies, one is able

to represent the similarities in a symmetric matrix where a row index i and a

column index j represent mptsi and mptsj, respectively, from the given range

of mpts values. A cell (i, j) contains the HAI value for the pair of hierarchies

with respect to mptsi and mptsj, respectively.

Plotting these values in a color scale, where lighter colors indicate a higher

similarity, makes it possible to visually identify the mpts values that result in

similar hierarchies. For instance, Figure 5.1 shows the pairwise HAI values for

50 hierarchies from a sample dataset w.r.t. mpts ∈ [1, 50]. Note that any two

hierarchies w.r.t. mpts ∈ [1, 15] are highly similar.

Likewise, any two hierarchies w.r.t. mpts ∈ [16, 50] are also similar among

themselves, but to a lesser degree than in the previous case. Furthermore one

can observe that within both of these ranges of mpts values, there are smaller

sub-ranges for which the similarity is higher than in the larger one. Finally,
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5.2.2 Meta-Clustering Dendrogram

While the similarity matrix plot presents an overview of the similarity among

hierarchies for a range ofmpts values, extracting the exact ranges that produce

similar hierarchies only from this plot can still be difficult. For example, in

cases where changing the value of mpts leads to a smooth decrease or increase

of similarity, it is hard to draw boundaries that separate two ranges of values

just by looking at the plot. Also, there might be cases where two hierarchies for

non-consecutive values of mpts have a higher similarity than for consecutive

values. In order to deal with such cases, we propose to cluster these hierarchies

while at the same time allowing the user to set the similarity threshold needed

to consider two hierarchies as part of the same group.

To combine these two requirements, we do a meta-clustering process using

the HAI values to construct a clustering hierarchy of clustering hierarchies

with HDBSCAN*.2 This meta-hierarchy can be visualized as a dendrogram,

where the user can see similar hierarchies next to each other and is also able

to distinguish similarity levels more clearly.

Figure 5.2 shows the dendrogram of the 50 hierarchies computed from the

HAI values presented in the example in Figure 5.1. The meta-hierarchy makes

it easier to identify groups of hierarchies whose elements can be considered as

representing essentially the same clustering structure of the data, as well as

identify groups of hierarchies that represent “significantly” distinct clustering

structures of the data. Furthermore, deciding what is significant becomes more

intuitive and more practical with the use of dendrograms. Note that it high-

lights four main (meta) clusters selected by the automatic extraction method

(FOSC) [8] provided by HDBSCAN*, which is based on the stability of each

2Note that (1) as the HAI values express similarity between hierarchies, one has to convert
them into dissimilarity before using them with HDBSCAN* , and (2) we use mpts = 1 to
cluster the cluster hierarchies, which is equivalent to using Single Linkage clustering to
cluster the cluster hierarchies.
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erarchies they want to explore. While reachabilty plots are a great alternative

for visualizing the overall hierarchical structure of the nested density-based

clusters in the data, these plots do not offer an explicit representation of the

clusters in the hierarchy. As the elements in the plot (the bars) correspond to

data points, it might be challenging for users to identify with more precision

where clusters begin and end. Moreover, when performing an analysis, users

might want inspect the stability of clusters at different levels or how many

points there are in each cluster, which is unpractical with just reachability

plots.

In a more cluster-oriented visualization, each element in the plot corre-

sponds to a cluster, and nested clusters appear nested in the plot, implying a

hierarchical structure. Figure 5.7 shows a circle packing plot that represents

the hierarchical organization of the clusters in the data, where each circle cor-

responds to a cluster, their sizes are proportional to the number of points in

the cluster, and their colors represent their stability values – the warmer the

color of a cluster, the higher its stability.

When clustering hierarchies are represented in this fashion, one is able

to have access to other information about the clusters that are not practical

to access or even feasible with reachability plots. When a user hovers the

mouse over a circle representing a cluster in the plot, MustaCHE shows a

tooltip containing (1) the cluster’s identifier; (2) the number of points in that

cluster; (3) its birth and death levels; and (4) its stability value, as shown in

Figure 5.7. In order to allow the exploration of clusters at deeper levels in the

hierarchy, MustaCHE provides a zooming feature that makes it easy for users

to navigate the hierarchical structure by just clicking the clusters they want

to inspect closely.

Last, users are also able to highlight the clusters selected by FOSC accord-

ing to their stability/relative excess of mass. By clicking the button labeled
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5.3 MustaCHE Overview

In this section, we provided an overview of how users can interact with Mus-

taCHE. The first interaction is the selection of a dataset to be analyzed, or

the upload of a new dataset along with the parameter values for the com-

putation of clustering hierarchies with RNG-HDBSCAN*. Thus, when open-

ing MustaCHE, users are directly taken to the Datasets screen, where all

datasets available in MustaCHE are listed (Figure 5.9a). In order to submit a

new dataset, users must click the + icon at the bottom right of the Datasets

screen. Then, MustaCHE launches a pop-up window (Figure 5.9b) that al-

lows users to submit their data and labels (if available). In this context, labels

are merely references to the data points so users can easily identify them in

the visualizations provided by MustaCHE. After uploading their data, users

then move onto the next screen to enter the parameters settings for running

RNG-HDBSCAN* (Figure 5.9c) – dataset name, distance function, RNG fil-

ter, range of mpts values, and the minimum cluster size 3.

Then, when users click the Run button, MustaCHE launches the RNG-

HDBSCAN* processing and the newly added dataset entry in the Datasets

screen is updated according to the progress of the computation of the cluster-

ing hierarchies and the meta-clustering information. Once the processing is

finished, users can then click the Open button and access the visualizations of

the clustering hierarchies corresponding to that dataset.

In the main visualization screen (Figure 5.10), users have access to the

HAI similarity matrix (Figure 5.10, part b), the meta-hierarchy of clustering

hierarchies (Figure 5.10, part c), and the medoids of the meta-clusters identi-

fied in the meta-hierarchy (Figure 5.10, part d). When positioning the cursor

3HDBSCAN* receives a minimum cluster size parameter to decide whether a cluster is
splitting into multiple clusters or simply shrinking. As a result, all clusters in the hierarchy
have at least that many points.
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extracted 51 clusters. When compared to the true labels, we observed that

clusters corresponding to the same family/genus/species were split into sev-

eral micro sub-clusters. On the other hand, for the higher values of mpts,

we observed that some entries that belong to the same family, but not same

genus or specie, were put into the same cluster. In rare cases, a small number

of objects (e.g. 2 or 3) were put into the wrong cluster, but the overall results

are aligned with the taxonomic classification at some level. Note that, even in

cases where the ground-truth is unknown and this type of comparison is not an

option, narrowing the mpts search space to 5 values is already a good starting

point to a more detailed analysis, i.e., clustering as a primary exploratory data

analysis tool.

The plots in Figure 5.18 also reveal that the number of objects labeled as

noise increases as the value ofmpts increases, for the reasons already explained

in the previous case study. Also, there is a large cluster that can be detected in

all of the reachability plots. This cluster is not only the largest one, but is also

very dense and stable, as it can be observed for these very different density

estimate settings. This observation is only possible when multiple and “distant

enough” values of mpts are inspected. The medoids represent exactly these

distinct values across a range of mpts values for which one had no knowledge

before.

When looking at the circle packing (Figure 5.19) and condensed tree (Fig-

ure 5.20) visualizations, one can observe how clusters split as values of mpts

change. In this particular case, it is clear how part of the splits present a

certain pattern – clusters split into a small component and a large component

– that results in an unbalanced cluster tree. This can be interpreted as an

indicator that the dataset has a great amount of noise, or that the minimum

cluster size must be set higher to avoid these kinds of splits with very small

clusters.
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5.5 Conclusion and Future Work

We have presented MustaCHE, a visualization tool that allows the analysis of

multiple HDBSCAN* density-based clustering hierarchies in a visual and in-

teractive way. The use of MustaCHE makes it easier for a user to have a deeper

understanding of how the cluster structures in the data behave under different

density levels. We have also presented case studies that showcase MustaCHE’s

capabilities and demonstrate how analyses can be performed through the vi-

sualizations available in the application.

As future work, we believe MustaCHE could be deployed as an end-to-end

web-based “Clustering as a Service” where users can upload, cluster, visualize,

analyze, archive or share (if appropriate) their data and analyses. In terms of

performance, MustaCHE could also benefit from approximate solutions where

results could be available for analysis faster and refined later. Regarding func-

tionality, another direction for future work in MustaCHE is the addition of

visualizations for the data (2d and 3d plots, geolocated data on maps, word

clouds, etc.) being clustered. This would make it possible for users to per-

form more comprehensive analyses without having to recur to other tools. On

the same note, the support for semi-supervised algorithms would enrich Mus-

taCHE’s capabilities, allowing users to interactive explore labels and assess

results in real-time.
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Chapter 6

Multiple Values of mpts in a
Clustering Hierarchy

6.1 Introduction

In non-parametric density estimation, one is usually faced with the task of

choosing the amount of smoothing in the density estimates with the goal of get-

ting as close as possible to what is believed to be the true density of the data. In

density-based clustering, the main interest is the identification of high-density

regions of the space (clusters) separated by low-density regions. However, dif-

ferent amounts of smoothing might reveal different clustering structures. Also,

the presence of noise in the data might prevent cluster structures from being

detected, or the noise points themselves might be mistakenly interpreted as

clusters depending on how smooth the density estimates are. Hence, a more

adaptive strategy must be applied to cope with the underlying characteristics

of each cluster or region of the space.

HDBSCAN* works with a non-normalized k-NN density estimator, where

the density estimate at a point p corresponds to the inverse of the distance

from p to its k-th nearest neighbor in the data set. The smoothing parameter

mpts in HDBSCAN* acts as k and defines the minimum number of neighbors

that a point in space must have in its neighborhood in order to be considered

dense.
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Even though the use of a k-NN density estimator already makes the density

estimates more adaptive w.r.t. the local neighborhood of a point, there are still

situations where different values of mpts reveal different structures. Figure 6.1

shows the reachability plot representation of two hierarchies generated from

the same dataset w.r.t. mpts = 5 and mpts = 18, respectively. The dataset

contains 200 points in a 6-dimensional space, forming a total of 5 clusters.

Three of these clusters are well defined and well separated, while the other

two clusters have a certain amount of noise between them, which makes them

hard to separate from each other at low values of mpts. We can see this

clearly in Figure 6.1a, which shows the three small clusters and a large one

(with some spurious sub-clusters) with mpts = 5, while Figure 6.1b shows

three larger structures for mpts = 18, one of them corresponding to the three

smaller clusters seen in Figure 6.1a that were merged into a larger cluster as a

result of the larger amount of smoothing. In fact, this dataset is an example

where there is no single value of mpts that will make all five main cluster

structures in the data detectable in the same hierarchy.

DBSCAN finds clusters w.r.t. a single density level, defined by the two

parameters mpts and ε (see Chapter 2), while HDBSCAN* constructs a com-

plete hierarchy of clusterings w.r.t. all density levels corresponding to a single

value of mpts and multiple values of ε. This use of a single value of mpts can

be regarded as a global control of smoothing in HDBSCAN*. Ideally, it might

be advantageous to be able to fully adapt the amount of smoothing according

to the properties of the local neighborhood of each point. In HDBSCAN*’s

context, this means using different values of mpts for different subsets of the

data.

Let us first look at the ε×mpts space and try to understand what it means

to vary or fix these parameters. Figure 6.2 shows the possible combinations

of ε and mpts w.r.t. variability. When both ε and mpts are fixed, they define
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Figure 6.2: ε×mpts

ferent density levels similar to the one produced by HDBSCAN*. We refer to

this possible algorithm as Transposed HDBSCAN*. Essentially, this algorithm

counts how many neighbors each point has in its ε-neighborhood, and these

counts determine the levels at which the points are dense, i.e., each level of

the hierarchy corresponds to a value of mpts. Thus, the clusters at a level

µ correspond to connected components of the density level defined by ε and

µ, similarly to HDBSCAN*. Even though this might not be a very practi-

cal method on its own, its conceptual existence helps us understand how the

ε×mpts space is organized.

The missing piece in Figure 6.2 corresponds to the case where both ε and

mpts can vary in the same hierarchy, which is equivalent to the use of multiple

values of mpts in HDBSCAN*. In order to develop a solution for this case,

we investigate (1) how HDBSCAN* can be adapted to accommodate multiple

values of mpts in the same hierarchy, and (2) what is the interpretation of the

final results.

In Section 6.2, we discuss adaptive density estimation methods and com-

pare them to HDBSCAN*. In Section 6.3 we discuss theoretical aspects related
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to using different values of mpts in a single hierarchy, and in Section 6.4 we

discuss the practical aspects. In Section 6.5, we discuss the effects of multiple

values of mpts in the cluster extraction process. In Section 6.6 we present our

conclusion and discuss possible future work following this line of research.

6.2 Related Work

To the best of our knowledge, the problem of fully adaptive density-estimation

with HDBSCAN* has not been investigated in the literature. In a broader

sense, the goal we want to achieve in this chapter relates directly to the prob-

lem of estimating density with different amounts of smoothing in different

regions of the data. In fact, classic nonparametric methods for density estima-

tion such as histograms and kernel density estimators have been adapted to

accommodate such scenarios. In histograms [38], the amount of smoothing in

the estimates is controlled by the width of the bins placed over the samples of

data. In its adaptive version, the width of the bins can vary to better represent

the data distribution and avoid bins with a very low number of points. In [12],

for instance, the authors propose a method for estimating the best histogram

with k equiprobable bins to approximate a probability density function. Even

though k is an input to the problem, the width of the bins vary to adjust to

the local density of the data.

In kernel density estimation (KDE) [37], the smoothing of the estimates is

controlled by the bandwidth parameter h (Equation 6.1).

f̂(y) =
1

nh

n
∑

i=1

K

(

xi − y

h

)

(6.1)

In order to deal with cases where it is believed that different amounts of

smoothing should be applied to different regions of the space, one might recur

to variable-bandwidth approaches. In [44], Terrell and Scott discuss two main

adaptive methods, namely the balloon estimator and the sample-point estima-
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tor. In both methods, a function h(·) is used to determine the bandwidth of

the kernels. In the balloon estimator (Equation 6.2), the amount of smoothing

is determined by the point where the density is being measured, i.e. the band-

width of the kernel functions placed over the samples in the data, determined

by h(y), only depends on the point y.

f̂(y) =
1

nh(y)

n
∑

i=1

K

(

xi − y

h(y)

)

(6.2)

On the other hand, the sample-point estimator (Equation 6.3) adapts the

amount of smoothing according to each sample in the data. Thus, the band-

width of the kernels placed over the samples xi, determined by h(xi), only

depends on xi and is not influenced by the point y where the density is being

estimated.

f̂(y) =
1

n

n
∑

i=1

1

h(xi)
K

(

xi − y

h(xi)

)

(6.3)

The authors argue that the sample-point estimator has several advantages

over the balloon estimator. For instance, the sample-point estimator is able to

produce a proper probability density function, and performs better than fixed-

bandwidth approaches in high-dimensional scenarios. A function commonly

adopted as h(·) is the distance from a point to its k-th nearest neighbor. This

makes the density estimator more flexible as there is no global bandwidth h,

but rather a value k that can yield different bandwidth values in different

regions of the data. Note that with an appropriate kernel function, one is able

to construct a proper probability density function even with different values

of k for different points.

The k-Nearest Neighbor density estimator is another successful and pow-

erful method for adaptive density estimation, where a positive integer value k

is fixed and the density at a point x is estimated based on k and the distance

from x to its k-th nearest neighbor. Note, however, that a global parameter

k still controls the amount of smoothing applied to the final estimates, which
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might still cause situations as the ones discussed in Section 6.1.

While these methods offer some flexibility w.r.t. the smoothing of the esti-

mates, works in the literature usually focus their approach in finding the best

global smoothing factor (e.g. [41], [42]) to approximate the density function

from which the data was sampled. Our goal, however, is a user-centered ex-

ploratory analysis process that should provide information on the hierarchical

organization of the data under multiple parameter settings and in which users

can interactively select the structures that seem more prominent according

to application-specific requirements. Therefore, we focus on using different

smoothing factors rather than trying to find a globally ”best” value.

6.3 Multiple mpts values: Theory

Currently HDBSCAN* uses an ”unnormalized” measure, the core-distance, to

estimate the density at each point p. The core-distance represents the radius

of a ball around p that contains mpts points from the data set. Hence, the

density at individual points is based on the intuition that, the further away

a point is from its mpts-th nearest neighbor, the lower its density. In other

words, the density at a point is assumed to be inversely proportional to its

core-distance, as expressed in Equation 6.4.

density(a) ∝
1

cmpts(a)
(6.4)

Moreover, HDBSCAN* estimates density at all points according to a single

value of mpts, which leads to the following interpretation of the resulting

clustering hierarchy: a point p is considered dense at a level ε if the ball of

radius ε around p contains at least mpts many points; two points p and q are

considered mutually reachable w.r.t. mpts at a level ε if both p and q have

at least mpts many points in their ε-neighborhood and they are both in each

other’s ε-neighborhood; two points p and q are part of the same cluster at a
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level ε if there is a chain of points that are mutually reachable w.r.t. mpts at

a distance ε, and p and q are part of that chain.

Note that the interpretation relies on the value of mpts to determine

whether points are dense and part of the same connected component (clus-

ter) at a certain level. In order to accommodate the use of multiple values of

mpts in a single hierarchy, the first thing one has to consider is that each point

p in the data must be associated with one value of mpts, which we denote as

mptsp. For simplicity of notation, we also consider that the values of mpts for

each point are stored in an arrayM that can be seen as an assignment of mpts

to points in the data, in a way thatM(p) = mptsp. Based on that, we offer

the following interpretation of a clustering hierarchy: a point p is considered

dense at a level ε if the ball of radius ε around p contains mptsp many points;

two points p and q are considered mutually reachable at a level ε if p and q

have, respectively, mptsp and mptsq many points in their ε-neighborhood and

both are in each other’s ε-neighborhood; two points p and q are part of the

same cluster at a level ε if there is a chain of points that are mutually reachable

w.r.t. their respective values of mpts at a level ε, and p and q are part of that

chain.

The interpretation described above is achieved with the definition ofmutual

reachability distance expressed in Equation 6.5, that considers that each point

can be associated with a different value of mpts.

mrdM(a, b) = max
{

cM(a)(a), cM(b)(b), d(a, b)
}

(6.5)

This definition determines the smallest radius ε at which both points are dense

w.r.t. their own values of mpts and are in each other’s ε-neighborhood. Thus,

based on Equation 6.5, one is able to construct a clustering hierarchy where the

density at different points or subsets of points can be estimated w.r.t. different

values of mpts. Note that the formulation in Equation 6.5 is a generalization
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of the scenario where a single value of mpts is used. It is easy to see that when

mptsa = mptsb, Equation 6.5 reduces to Equation 2.2.

6.4 Multiple mpts values: Practice

In practical terms, our ultimate goal is to provide the necessary support to

allow the construction of hierarchies with clusters generated with different

values of mpts. In order to achieve this goal we discuss (1) how one can assign

a value of mpts to a subset of the data and then (2) how to construct the

clustering hierarchy according to this assignment.

6.4.1 Assignment of mpts values

Ideally, the assignment of a value of mpts to a data point would be done in a

way that makes the final density estimates at that point as close as possible

to the true density of the data. However, the lack of ground truth information

in unsupervised tasks makes it hard to validate which hierarchies, or branches

of hierarchies, are objectively better than others. Besides the accuracy of the

density estimates, an assignmentM of mpts values to (subsets of) data points

must have other properties to make the construction of a clustering hierarchy

w.r.t. M possible. An assignment M must cover all points in the data, i.e.

for every point p in the data,M(p) must correspond to a value of mpts. If a

point p is not associated with any value of mpts, the density at p cannot be

estimated as defined in HDBSCAN*. Moreover, an assignmentM must also

guarantee that each point in the data is associated with exactly one value of

mpts. Different values of mpts may result in a different density estimates for

a point, but the definitions of HDBSCAN* use a single value for each point.

Building an assignment that satisfies these requirements without any objective

criteria is not trivial.

A general and safe approach for assessing which values of mpts are more
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appropriate for different subsets of the data consists of manual/visual exami-

nation of the clustering hierarchies by users as part of an exploratory analysis.

Therefore, equipped with a proper visualization tool like MustaCHE [35] (see

Chapter 5), users can manually inspect clustering hierarchies and choose the

clusters or branches they see fit according to any application or domain require-

ments. Implicitly, the selection of a cluster from a hierarchy w.r.t. mpts = i

can be seen as an indication that i is an adequate value of mpts for estimating

density at all points in that cluster.

In order to formally define a selection of a cluster, we introduce the fol-

lowing definitions and notations. Let X be a dataset with n points, and

let H = {H1, H2, ..., Hkmax
} be a set of hierarchies of X computed w.r.t.

mpts ∈ [1, kmax]. Let {Ci,1, Ci,2, ..., Ci,mi
} be the set of clusters in the hierarchy

Hi, and φ(C) ∈ {0, 1} indicate whether a cluster C is selected (φ(C) = 1) or

not (φ(C) = 0). Thus, a selection of clusters S can be defined as follows:

S = {C | φ(C) = 1}

for which we require that the intersection of the selected clusters is empty:

⋂

C∈S

C = ∅

In practice, by using the condensed tree visualization available in Mus-

taCHE, users can select the clusters they want to include in S and MustaCHE

disables the clusters that are not available for selection based on the overlap-

ping with clusters already in S. This can be done in an interactive manner,

allowing a real-time visual assessment of the cluster selection. Then, the clus-

ter selection S can be transformed into an assignment of mpts values to data

points based on how clusters in S cover different subsets of the data. In sit-

uations where a cluster that a user wants to select slightly overlaps with the

clusters in S, MustaCHE offers the possibility to users to select the levels of
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that cluster at which there is no overlap with the clusters in S, if these levels

exist. This possibility ultimately helps with the construction of a selection

that is overlap-free and covers as much as possible of the clusters that the user

wants to select.

In an ideal scenario, a selection S would cover each point in the data and

a point x gets assigned the value of mpts corresponding to the cluster in S

that contains x. However, factors such as the presence of noise in the data

or simply the preferences of users when constructing S might result in points

not being covered by the selection. A natural interpretation of the selection of

clusters/subtrees from different hierarchies by a user is that it is the intention

of the user to focus on the selected clusters and “ignore”, i.e. smooth out, the

remaining points that are not included in the selection as much as possible.

Since larger values of mpts lead to smoother estimates, then the value of mpts

that corresponds to this interpretation, within the set for which we have pre-

computed density estimates for each point, is the maximum value kmax.

Based on this interpretation, we formally define an assignmentM : X →

[1, kmax] from points in a dataset X to values of mpts according to a cluster

selection S as follows:

M(x) =







i if there is a cluster Ci,j ∈ S such that x ∈ Ci,j

kmax otherwise
(6.6)

Note that users could choose different default values of mpts to assign to

data points that are not covered by a selection S. Other options include,

for example, any values in the range [1, kmax]; the maximum value of mpts

corresponding to the clusters in S; or a more elaborate function that assigns

values of mpts to data points based on their proximity to the selected clusters

in S.
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6.4.2 Constructing the Clustering Hierarchy

Having an assignment of mpts values to points in the data makes it possible

to build a clustering hierarchy where different amounts of smoothing are used

in different parts of the data. One strategy for doing so consists of running

HDBSCAN* from scratch with the formulation presented in Equation 6.5.

However, one does not need to use the complete mutual reachability graph as

originally proposed in HDBSCAN* in order to compute the complete hierarchy

in this case. While our RNG-based strategy was primarily designed to speed

up the computation of MSTs where all points are associated with the same

value of mpts, we can show that any MST whose edge weights are determined

by a combination of values of mpts ∈ [1, k] can also be computed from the

same RNG. We can show that, if two points are relative neighbors w.r.t. their

respective values of mpts as determined by the assignmentM, they are also

relative neighbors when the same value of mpts is used.

Theorem 3 If an assignmentM is defined over [1, k], then RNGM ∈ RNGk.

Proof 4 Consider two points a and b that are relative neighbors w.r.t. an

arbitrary assignmentM. Then, for all other points c in the data, the following

inequality is always satisfied.

mrdM(a, b) ≤ max{mrdM(a, c),mrdM(b, c)} (6.7)

Since the assignment M will only assign values of mpts in the range [1, k]

and the mutual reachability distance is monotone w.r.t. mpts, we have that

mrdM(a, b) ≤ mrdk(a, b). Therefore, we can replace the components of the

max function on the right-hand side of Inequality 6.7 and get the following:

mrdM(a, b) ≤ max{mrdk(a, c),mrdk(b, c)} (6.8)

The main idea of this proof is to transform the left hand side of Inequality 6.8

into the mutual reachability distance between a and b w.r.t. mpts = k with
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a sequence of operations that do not alter the validity of the inequality. Let

us start by expanding the right-hand side of Inequality 6.8 and simplifying the

resulting max functions into a single max function, which results in Inequality

6.9.

mrdM(a, b) ≤ max{max{ck(a), ck(c), d(a, c)},max{ck(b), ck(c), d(b, c)}}

mrdM(a, b) ≤ max{ck(a), ck(c), d(a, c), ck(b), ck(c), d(b, c)}

mrdM(a, b) ≤ max{ck(a), ck(b), ck(c), d(a, c), d(b, c)} (6.9)

Next, by expanding the left-hand side of Inequality 6.9 we get the following:

max{cM(a)(a), cM(b)(b), d(a, b)} ≤ max{ck(a), ck(b), ck(c), d(a, c), d(b, c)}

(6.10)

In this step of the proof, we start replacing the components of the max function

on the left-hand side of Inequality 6.10, while making sure that the resulting

inequality is still satisfied. Note that the max function on the right-hand side

of Inequality 6.10 evaluates to a value at least as large as ckmax
(a). In fact,

if we replace cM(a)(a) with ckmax
(a) in the max function on the left-hand side

of Inequality 6.10, one of the following cases must happen: (1) the result of

the max function on the left-hand side of the inequality is not altered – in

this case, it is trivial to see that the resulting inequality is still satisfied, as

the evaluation of both max functions have not changed; (2) the max function

on the left-hand side of the inequality evaluates to ckmax
(a) – similarly, the

right-hand side is still smaller than or equal to the right-hand side, and the

resulting inequality is still satisfied. Therefore, we can safely replace cM(a)(a)

with ckmax
(a), which results in the following inequality:

max{ck(a), cM(b)(b), d(a, b)} ≤ max{ck(a), ck(b), ck(c), d(a, c), d(b, c)} (6.11)

Based on the same reasoning, we can replace the cM(b)(b) with ck(b) in the
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left-hand side of Inequality 6.11 and get the following:

max{ck(a), ck(b), d(a, b)} ≤ max{ck(a), ck(b), ck(c), d(a, c), d(b, c)} (6.12)

Note that the left-hand side of Inequality 6.12 corresponds to the mutual reach-

ability distance between a and b w.r.t. mpts = k. Also, note that the max

function on the right-hand side of Inequality 6.12 contains all the components

of the mutual reachability distances between a and c and between b and c. In

fact, the right-hand side of Inequality 6.12 corresponds to the simplification of

the nested max functions corresponding to the mutual reachability distances in

the right-hand side of Inequality 6.8. Thus, let us then rewrite 6.12 in terms of

mutual reachability distances with the following sequence of simple operations:

mrdk(a, b) ≤ max{ck(a), ck(b), ck(c), d(a, c), d(b, c)}

mrdk(a, b) ≤ max{ck(a), ck(c), d(a, c), ck(b), ck(c), d(b, c)}

mrdk(a, b) ≤ max{max{ck(a), ck(c), d(a, c)},max{ck(b), ck(c), d(b, c)}}

mrdk(a, b) ≤ max{mrdk(a, c),mrdk(b, c)} (6.13)

With Inequality 6.13, we conclude that a and b are relative neighbors w.r.t.

mpts = k. Therefore, if two points a and b are relative neighbors w.r.t.

an arbitrary assignment M ∈ [1, k], then a and b are also relative neighbors

w.r.t. mpts = k. This means that a and b are connected with an edge in the

RNG computed w.r.t. mpts = k and, therefore, the MST corresponding to the

assignmentM can also be computed from the same RNG used for compute the

multiple clustering hierarchies w.r.t. mpts ∈ [1, k].

Finally, Figure 6.3 shows the reachability plot corresponding to the dataset

from Figure 6.1 when different values of mpts are used for different parts of

the data. More specifically, in this example mpts = 5 is used for the points

corresponding to the three smaller clusters visible at the left side of Figure 6.1a,
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6.5 Cluster Extraction

Many classical clustering methods try to find a flat partitioning of the data

into different groups/clusters instead of a hierarchical organization of nested

clusters. Even though HDBSCAN* is intrinsically a hierarchical clustering

algorithm, its framework offers a method for automatic cluster selection and

extraction called FOSC (Framework for Optimal Selection of Clusters) [8].

Given a suitable objective criterion, FOSC finds the set of clusters that opti-

mize this criterion over all possible non-overlapping combinations of clusters

in the clustering hierarchy.

A suitable criterion suggested by the authors, called the relative excess of

mass, tries to capture which clusters have a more stable structure in terms of

size and lifetime. The lifetime of a cluster can be measured by the difference

between the density levels at which a cluster appears and disappears in a

hierarchy. Thus, clusters that live longer with a large number of points are

deemed more stable than clusters that have shorter lifetimes or are much

smaller. The lifetime of a cluster and its size depend directly on the amount

of smoothing applied in the density estimation, which is controlled by the

parameter mpts. If the value of mpts is too low, the estimates are more spiky

and sets of smaller clusters tend to have a large combined relative excess of

mass. If the value of mpts is too high, the smaller clusters are smoothed out

and larger clusters are favoured in the cluster selection. Therefore, one can

argue that the value ofmpts has a significant influence on the cluster extraction

performed by FOSC w.r.t. relative excess of mass, as it affects which clusters

are more prominent in the clustering hierarchy. In the following, we discuss

how the adaptations to HDBSCAN*, allowing multiple values of mpts, affect

cluster extraction done by FOSC according to the cluster stability measure.

The stability of a cluster C w.r.t. its relative excess of mass can be ex-
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pressed as follows:

S(C) =
∑

x∈C

(λmax (x, C)− λmin (C)) (6.14)

where λmax(x, C) corresponds to the maximum density level at which a data

point x belongs to cluster C, and λmin(C) corresponds to the minimum density

level at which cluster C exists in the clustering hierarchy.

In the simple scenario where all points in the data are assigned the same

value of mpts, the stability values and the selected clusters are not affected

when compared to HDBSCAN*. However, in the more general scenario where

multiple values of mpts might be assigned to different subsets of the data, the

stability of clusters might be affected. When clusters from different hierarchies

are combined in a single hierarchy, the density level at which they are con-

nected might be higher or lower when compared to the value in their original

hierarchy due to the use of different values of mpts determining the mutual

reachability distance that separates the data points in the different clusters.

Thus, as stability takes into account the level at which a cluster first appears

in the hierarchy, clusters that would be extracted by FOSC in their original

hierarchy might not get selected when combined with clusters from different

hierarchies. Note that, in a hierarchy built from branches of different hier-

archies, only the clusters at the root of the selected branches will have their

stability affected, and not all the clusters in each branch.

Figure 6.4 illustrates the cluster extraction performed by FOSC on the

same dataset we use as example throughout this chapter for mpts = 5 and

mpts = 18. The extracted clusters are represented with different colors and the

bars in black correspond to points that are considered noise by the extraction

method. Thus, four clusters are extracted from the hierarchy represented in

Figure 6.4a, and three clusters are extracted from the hierarchy represented

in Figure 6.4b. Note that in both cases some points are considered noise
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and, consequently, are not part of any extracted cluster. However, there is no

single value ofmpts that can be used to detect and extract, simultaneously, the

three leftmost clusters in Figure 6.4a and the two rightmost clusters in Figure

6.4b. On the other hand, when using multiple values of mpts for different

subsets of the data, the 5 aforementioned clusters can not only be detected

simultaneously, but also extracted simultaneously, as shown in Figure 6.4c.

6.6 Conclusion and Future Work

We have proposed and discussed the use of different values of mpts to con-

struct a single hierarchy with HDBSCAN*. One of the advantages of this

new approach over the density estimates used in the original formulation of

HDBSCAN*, is the flexibility that allows users to apply different amounts of

smoothing in different regions of the space independently.

We believe that this new flexibility opens opportunities for new measures

or strategies to select different smoothing factors for different subsets of the

data. Moreover, the use of different values of mpts makes the extraction of

clusters more flexible, since one can extract clusters from different regions

of the space without a global parameter setting that controls the amount of

smoothing applied to all regions of the space.

Note that the assignment of values of mpts to data points does not need

to be done necessarily via a selection of clusters. One could, for instance,

devise a way to determine the value of mpts of each point based on its local

neighborhood rather than on how prominent clusters appear in the hierarchies.

The investigation of methods for automatic estimation of “good” values of

mpts for different regions of the data is an interesting direction for future

research.

We also believe that modeling the density estimates in HDBSCAN* as real

probability density function might open some doors for further research. While
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the use of kernel functions in HDBSCAN* has been investigated in [28], using

an adaptive bandwidth control has not been considered. Furthermore, when

using a proper probability density function, comparing density and stability

values will be more straightforward. However, this implies also investigating

efficient methods to compute hierarchies w.r.t. multiple values of mpts using

a kernel density estimator, which may prove to be difficult.
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Chapter 7

General Framework

7.1 Introduction

The contributions presented so far in this thesis have been developed in the

context of unsupervised hierarchical density-based clustering with HDBSCAN*.

The ability to efficiently compute clustering hierarchies for a range of mpts

values with our RNG-based approach has enabled other research directions

that were otherwise limited by the cost of exploring the space of parameter

values in HDBSCAN*.

In this chapter, we will show that our approach is not restricted to an

unsupervised setting but can be helpful in supporting density-based semi-

supervised clustering and semi-supervised classification, where users might

have to recur to a trial-and-error approach in order to explore which param-

eter settings produce the best results for a given application. In a recent

study [18], Getrudes et al. have thoroughly analyzed unsupervised and semi-

supervised clustering algorithms, as well as semi-supervised classification al-

gorithms, from the point of view of density-based clustering, and proposed a

unified framework that subsumes existing algorithms in the literature. When

presenting the building blocks of the unified framework, the authors argue

that these algorithms can be conceptually interpreted as a (direct or indirect)

processing of Minimum Spanning Trees (MST) constructed in the space of
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reachability distances, and that the MST construction can be decoupled from

these algorithms for performance and generalization purposes.

Similarly to HDBSCAN*, the computation of multiple MSTs from the

complete graph in the space of mutual reachability distances represents a per-

formance bottleneck that prevents one from efficiently exploring multiple pa-

rameter settings for a comprehensive data analysis. As both the unsupervised

and semi-supervised settings share the same performance issue related to the

computation of MSTs, it is reasonable to argue that the contributions made

for the unsupervised scenario can also be adapted or directly transferred to

the semi-supervised scenario.

In this chapter, we discuss how the semi-supervised classification and semi-

supervised clustering algorithms presented in [18] can benefit from the tech-

niques presented so far in this thesis, and how our contributions go beyond

the purpose to which they were developed.

In Section 7.2, we present a general overview of the framework proposed

by Gertrudes et al. [18]. In Section 7.3, we discuss how the contributions of

this thesis can be adapted or directly applied to semi-supervised classification

and semi-supervised clustering algorithms. In Section 7.4, we present our

conclusions and discuss directions for future work.

7.2 Background: Unified Framework [18]

Semi-supervised learning algorithms are designed to address problems where

ground truth information is available for only a small portion of the data, and

to make use of this information to improve its results. In clustering applica-

tions, for instance, ground truth can be expressed in the form of pre-labeled

objects or pairwise constraints of the type should-link and should-not-link.

In [18], the authors present a framework that unifies semi-supervised clus-

tering and semi-supervised classification techniques based on their common
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characteristics. Even though both categories have slightly different purposes –

for instance, in semi-supervised clustering the number of groups found can be

larger than the number of groups in the set of labels available, while in semi-

supervised classification the groups found are an expansion of the set of labels

given as input to the algorithm – many of these algorithms can be defined

according to the same set of fundamental concepts. Next we discuss the com-

ponents of the framework for semi-supervised clustering and semi-supervised

classification, and the algorithms they encompass.

7.2.1 Unified Density-based Clustering Framework

After a thorough analysis of several unsupervised and semi-supervised density-

based clustering techniques in the literature – DBSCAN* [7], [9], DBSCAN

[16], OPTICS [2], SSDBSCAN [32], HISSCLU (k-cluster) [4] and HDBSCAN*

[7], [9] – the authors observed that these algorithms can all be interpreted as

a (direct or indirect) processing of the minimum spanning tree computed in

the space of reachability distances. That observation allowed the authors to

generalize and group these techniques under the same framework.

While DBSCAN*, DBSCAN and OPTICS are originally unsupervised tech-

niques, SSDBSCAN and HISSCLU are intrinsically semi-supervised. As for

HDBSCAN*, even though it was originally proposed as an unsupervised tech-

nique in [7], its first semi-supervised version was proposed in [9] with a strat-

egy for extracting clusters from the clustering hierarchy based on a measure

that takes into account the ground truth received as input. In fact, one can

obtain different semi-supervised clustering algorithms based on different mea-

sures for extraction of clusters from the clustering hierarchies produced by

HDBSCAN*. Therefore, the authors present the following semi-supervised

variations of HDBSCAN* based on the the measures used for cluster ex-

traction: HDBSCAN*(CON), HDBSCAN*(MixCON), HDBSCAN*(BC) and
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HDBSCAN*(MixBC); enlarging the body of algorithms that fall under the

proposed framework. The first two algorithms, HDBSCAN*(CON) and HDB-

SCAN*(MixCON), are based on the original publication of semi-supervised

clustering with HDBSCAN* [9], where the ground-truth information is ex-

pressed in terms of pairwise constraints of the type should-link and should-not-

link – in HDBSCAN*(CON), the cluster extraction is performed solely based

on the pairwise constraints, and in HDBSCAN*(MixCON) the cluster extrac-

tion is performed based on a combination of cluster stability (relative excess

of mass) and pairwise constraints. The last two algorithms, HDBSCAN*(BC)

and HDBSCAN*(MixBC), rely on label-based information to select clusters

from the clustering hierarchy computed by HDBSCAN*. The authors use the

FB3 measure as the optimization criterion for cluster selection with FOSC to

capture how much the clusters in the hierarchy conform with the labels given

as input. In HDBSCAN*(BC), the selection is performed based only on the

FB3 measure, and in HDBSCAN*(MixBC) the selection is performed accord-

ing to a combination of the FB3 measure and the stability w.r.t. to the relative

excess of mass of each cluster.

Note that the only aspect that differentiates these algorithms from each

other is the criterion used for extracting clusters from the density-based clus-

tering hierarchy. In fact, as these algorithms are fundamentally similar in their

processing, it is expected that they perform similarly in terms of running time.

This expectation is is confirmed by the experimental evaluation conducted in

[18] that shows virtually no difference in the running time of all algorithms.

7.2.2 Unified Density-based Classification Framework

The algorithms under the unified framework for density-based clustering share

a common characteristic that is the processing of the MST computed in the

space of mutual reachability distances. Additionally, each of these algorithms
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can be further decomposed into “building blocks” that can be recombined to

create new algorithms. Thus, in order to construct a new framework for clas-

sification under the perspective of density-based clustering, Gertrudes et al.

extended HDBSCAN* based on the addition of the following optional “build-

ing blocks” decoupled from the algorithms in Subsection 7.2.1: (1) definition

of core- and reachability-distances; (2) MST computation; (3) label expansion;

and (4) preprocessing of the distances based on the labels.

In the first block, the authors consider two definitions of core-distances for

estimating the density at points, and consequently, the mutual reachability

distance between points. They consider the original definition of core-distance

already available in HDBSCAN*, and the all-points core-distance (Equation

7.1) proposed in [33] in the context of density-based cluster validation.

daptsCore(x) =







∑

xi∈X\{x}

(

1
d(x,xi)

)d

n− 1







− 1

d

(7.1)

Note that the definition of all-points core-distance does not depend on the

parameter mpts, instead its definition corresponds to the generalized mean of

the inverse of the distances between a point and all the other points in the

data. The second building block corresponds to the computation of the MST

in the space of mutual reachability distances, and the third building block

corresponds to the expansion of labels to obtain a class label for each object

in the data. The fourth building block corresponds to a label-based distance

weighting that can be applied to the distances between the objects in the

data as performed by the HISSCLU algorithm. This processing is applied to

increase separation between objects of different classes guided by the labels

available for a subset of the data.

The algorithms resulting from different combinations of these building
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blocks are listed in the diagram1 in Figure 7.1. The algorithms are named ac-

cording to the used core-distance and the applied label-based distance weight-

ing. The algorithms based on the original definition of core-distance are

marked with “cd”, and the ones based on the definition of all-points core-

distance are marked with “ap”. Moreover, when label-based distance weight-

ing is applied directly to the distance matrix, the techniques are marked with

“wPWD”, and when the weighting is applied only to the edges of the MST,

they are marked with “wMST”. The experimental evaluation presented in [18]

has shown that these techniques behave similarly with regard to runtime per-

formance.

7.3 Applicability of our Contributions

In the following subsections we discuss how the contributions of this thesis,

originally developed for unsupervised clustering with HDBSCAN*, can be ex-

tended to the collection of algorithms presented in [18] for semi-supervised

clustering and semi-supervised classification. Our goal is to highlight the rel-

evance of our techniques in different applications other than the one that

initially motivated our work.

7.3.1 RNG-based Approach

One of the main contributions of this thesis is the use of the relative neigh-

borhood graph along with HDBSCAN* to speed-up the computation of a

collection of clustering hierarchies w.r.t. to a range of values of mpts. Our ap-

proach outperforms the naive strategy of running HDBSCAN* for each value

of mpts in the given range, and guarantees the correctness of the results when

compared to the original algorithm.

While our RNG-based strategy has been primarily proposed to speedup

1This is a reproduction of the diagram presented in [18].

108



Distance
matrix

Label-based
distance
weighting

Core
distance

MSTr

Label
Expansion

All-points
Core

distance

MSTr

Label
Expansion

Core-
distance

MSTr

Label-based
distance
weighting

Label
Expansion

Label
Expansion

All-points
Core-

distance

MSTr

Label-based
distance
weighting

Label
Expansion

Label
Expansion

H
D
B
S
C
A
N
*(cd

,
w
P
W

D
)

H
D
B
S
C
A
N
*(ap

,
w
P
W

D
)

H
D
B
S
C
A
N
*(cd

,
w
M
S
T
)

H
D
B
S
C
A
N
*(cd

,
-)

H
D
B
S
C
A
N
*(ap

,
w
M
S
T
)

H
D
B
S
C
A
N
*(ap

,
-)

Figure 7.1: Unified Framework for Semi-supervised Classification [18]

HDBSCAN*, its applicability goes beyond its original purpose. Due to the

developments made in [18], our strategy can be regarded as a more general

approach that can be used with several other algorithms in the literature to

aid in the process of exploring multiple parameter scenarios more efficiently.

The unified framework for density-based clustering presented in [18] is

based on the processing of an MST in the space of mutual reachability dis-
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tances determined by a value of mpts. Similarly to HDBSCAN*, the value

of mpts used to estimate the density at the points in a dataset can influence

the cluster structures found by the algorithms and, consequently, users would

have to explore multiple parameter settings in order to gain a deeper under-

standing of the cluster structures in the data and select a value of mpts that

is suitable for a given application. Since all algorithms in the density-based

clustering framework are based on the same fundamental data structure – the

MST in the space of mutual reachability distances – our RNG-based strategy

can be applied to help in the efficient computation of multiple clustering re-

sults w.r.t. different parameter settings in all algorithms that use the original

core-distance. Since the all-points core-distance does not have a mpts parame-

ter, only one hierarchy is created in these cases and our strategy trivially does

not apply.

According to the experimental evaluation conducted in [18], all clustering

algorithms in the framework present a similar performance in terms of runtime.

This runtime is largely determined by the time spent in the computation of the

minimum spanning tree, while the extraction of the clusters – the differential

aspect between these algorithms – can be performed quite efficiently. In fact,

as the most time-consuming part of all the algorithms is the computation of

the MST, it is safe to claim that the impact of our RNG-based strategy in these

algorithms are expected to be comparable to what is presented and discussed

for RNG-HDBSCAN* in Chapter 4.

In the semi-supervised classification framework, the algorithms presented

are based on extensions of HDBSCAN* with building blocks decoupled from

the algorithms in the density-based clustering framework. Even though the

MST is a key building block that is a part of all the algorithms in this frame-

work, the remaining blocks also have an influence on whether our RNG-based

approach can be applied to these algorithms.
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In HDBSCAN*(cd,wPWD), the authors apply the label-based weighting to

the input distance matrix, similarly to HISSCLU. After weighting the distance

matrix, the final values corresponding to the distances do not necessarily follow

the triangle inequality. Since our approach for computing the RNG relies on

the triangle inequality, one cannot guarantee that the resulting graph will be

correct and, consequently, that the classification results computed from such a

graph are consistent with the classification results computed with the original

algorithm. Thus, the computation of multiple classification results with the

algorithm HDBSCAN*(cd,wPWD) cannot be sped up with the use of our

RNG-based strategy without losing correctness guarantees of the results.

Moreover, even though the label-based weighting block is part of the algo-

rithm HDBSCAN*(cd,wMST), the weighting is applied only to the edges of a

previously computed MST rather than to the input distance matrix. Hence, all

MSTs can be computed with our RNG-based strategy before the weighting of

the distances takes place. Trivially, the HDBSCAN*(cd,-) algorithm can also

benefit from our RNG-based strategy, since it is based solely on the original

definition of core-distances and no distance weighting is applied.

Thus, among the algorithms in the semi-supervised classification frame-

work, the algorithms HDBSCAN*(cd,wMST) and HDBSCAN*(cd,-) can take

advantage of our RNG-based strategy to speed up the computation of a collec-

tion of classification results for different values of mpts. Similarly to the algo-

rithms in the density-based clustering framework, the semi-supervised classifi-

cation algorithms are also expected to be similarly impacted by our RNG-based

strategy, since their performance in terms of runtime are virtually equivalent

and are determined by the computation of the MST.
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7.3.2 MustaCHE

In Chapter 5, we have presented MustaCHE, a visualization tool developed for

the analysis and exploration of multiple clustering hierarchies computed w.r.t.

multiple values of mpts. Even though MustaCHE was primarily developed

based on the unsupervised setting, its visualizations can be adapted to consider

the algorithms discussed in [18].

In unsupervised clustering, the visual aspects of the clustering hierarchies

combined with the user expertise and any requirements of the analysis being

performed can help with the identification of interesting results among a collec-

tion thereof. When some ground truth is available, even if for a small subset

of the data, users can still make use of a visualization tool like MustaCHE

along with the ground truth information to guide their analysis. Even though

the semi-supervised clustering and semi-supervised classification algorithms

presented in [18] do not produce a hierarchical structure as a final output,

their core concepts are based on hierarchical structures that can be expressed

through the visualizations available in MustaCHE.

In a straightforward application, the set of labels available for a subset of

the data can be used to colour the reachability plots and guide users towards

results where the valleys visible in the plots (representing dense regions in

the data) match the labels given in the input or the clustering/classification

results found by the algorithms.

In a different direction, MustaCHE could be adapted to be used as a tool

that allows users to label subsets of data in order to produce semi-supervised

clustering results. Thus, users would be able to start their analysis with an

unsupervised setting and later switch to a semi-supervised setting without the

need to re-run any algorithms from scratch while assessing results in real-time.

As for the visualizations based on the cluster trees available in MustaCHE,
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they can be used to help users inspect the stability of clusters according to

measures such as the FB3 or its combination with with relative excess of mass.

As the algorithms are mostly based on the same data structure, MustaCHE

could be used as a tool for comparison between different algorithms, where

users could seamlessly switch between techniques and compare their differ-

ences.

We note that, while these features can be integrated into MustaCHE, it is

not the focus nor is in the scope of this thesis the support for semi-supervised

algorithms in MustaCHE. We mainly wanted to make the case that MustaCHE

is a tool that can be employed in other contexts other than unsupervised clus-

tering. In fact, we believe that leveraging visualizations to improve the analysis

of data in semi-supervised settings, along with user interactivity and efficient

computation of results, is a topic of research worth of further investigation.

7.3.3 Multiple values of mpts

In Chapter 6, we have discussed the benefits of using different values of mpts

in different subsets of the data for constructing hierarchies with HDBSCAN*,

along with the theoretical and practical aspects of doing so. In the semi-

supervised setting, a similar argument can be used to justify the use of different

values of mpts for different subsets of the data – different values of mpts can

produce different edge weights or even a different structure (in terms of edges)

of the MST, which, consequently, affects the clustering/classification results

found by the algorithms.

In semi-supervised clustering, a large amount of smoothing will make clus-

ters less separable and the resulting clusters found by the algorithms might not

conform with the set of labels available. On the other hand, a small amount of

smoothing will result in a large number of clusters and points with the same

label might be placed into different clusters. In semi-supervised classification,
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the values of the edge weights have a direct effect on how the labels given as

input are expanded to produce a classification of the data points. Analogously

to the semi-supervised clustering case, different amounts of smoothing might

lead to different classification results.

When parts of the data require more smoothing than others, the use of

multiple values of mpts might improve the final clustering/classification re-

sults, as one can adapt the amount of smoothing of the estimates to the local

density of the data points and to the subset of labels available. In summary,

the arguments and concepts presented in Chapter 6 along with adaptations

to the visualizations available in MustaCHE can be potentially useful in semi-

supervised clustering and classification tasks.

7.4 Conclusions and Future Work

In this chapter, we have discussed the applicability of our contributions, pri-

marily developed for unsupervised density-based clustering with HDBSCAN*,

in the semi-supervised setting. More specifically, we discuss how our RNG-

based approach for computing multiple unsupervised clustering hierarchies

(Chapter 4) can also be applied to a collection of semi-supervised algorithms

generalized in [18]. As a consequence of the advancements made in [18], our

approach can now be regarded as a more general strategy that is applicable

to other methods other than HDBSCAN*. We also discuss how can be used

to support data analysis in semi-supervised settings.

As for future work, we believe that the integration of semi-supervised tech-

niques into MustaCHE for analyzing multiple parameter settings would have

a positive impact on the ability of users to perform density-based clustering

and classification analyses. MustaCHE could then be used as a tool for nav-

igating, exploring and comparing not only different parameter settings, but

also different algorithms.
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Chapter 8

Conclusions

In this thesis we investigated problems related to the smoothing factor of

the hierarchical density-based clustering algorithm HDBSCAN*, defined by

its input parameter mpts. We observed that different values of mpts can

potentially reveal different structures in the data, and that exploring a range

of mpts values by running HDBSCAN* multiple times can be computationally

expensive and impractical for users.

Our first contribution is RNG-HDBSCAN*, a strategy for efficient com-

putation of multiple clustering hierarchies w.r.t. a range of values of mpts.

We replaced the complete graph originally used in HDBSCAN* with a much

smaller graph, the Relative Neighborhood Graph (RNG), and proved that the

results obtained by our strategy are correct in comparison to the results com-

puted by HDBSCAN*. Moreover, we showed that one is able to compute the

RNG once for the highest value of mpts in a given range, and all clustering hi-

erarchies for smaller values of mpts can be computed from the same RNG. Our

experimental evaluation showed that our RNG-based strategy is able to com-

pute over 100 hierarchies in the same time that the naive strategy of running

HDBSCAN* would compute only about 2 hierarchies.

Next, we presented MustaCHE, a visualization tool that allows the ex-

ploration of a collection of clustering hierarchies in an interactive manner.
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MustaCHE is composed of a series of visualizations that allow the analysis

of multiple hierarchies w.r.t. several mpts values, and makes it easier for a

user to have a deeper understanding of how the cluster structures in the data

behave under different density levels. We also presented case studies with real

datasets from different domains to showcase how the analysis of a collection

of clustering hierarchies can be performed with MustaCHE.

Subsequently, we presented an approach for constructing clustering hier-

archies containing structures found with different values of mpts with HDB-

SCAN*. Our strategy for selecting which values of mpts are more suitable

to the different subsets of the data is based on the visual aspects of the clus-

tering hierarchies that can be explored by users through MustaCHE. Users

can select clusters whose structure they find interesting and these clusters are

transformed into an assignment of values of mpts to points in the data. This

possibility offers flexibility to users for building hierarchies where different

amounts of smoothing can be applied to different subsets of the data.

Later, we have discussed how our contributions made originally in the con-

text of unsupervised clustering with HDBSCAN* can be extended to a class of

semi-supervised clustering and semi-supervised classification algorithms. Due

to the advancements made in [18], a collection of semi-supervised algorithms

that are based on the computation of an MST in the space of mutual reachabil-

ity distances can also benefit from our RNG-based strategy and, consequently,

from our visualization tool for computation and exploration of semi-supervised

clustering/classification results.

Last, we presented an analysis of HDBSCAN*’s density estimates and ob-

served that the estimates along the straight paths between points can be over-

estimated or underestimated. In an attempt to reduce these effects and to pos-

sibly make HDBSCAN* more robust to its parameter mpts, we investigated

a theoretically improved definition of mutual reachability distance that offers
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guarantees about the density along the straight paths between data points and

results in a better interpretation of the resulting clustering hierarchies. How-

ever, our preliminary tests have shown that this new definition presents no

practical advantage over HDBSCAN* and does not allow an efficient method

to explore results w.r.t. multiple values of mpts. These results suggest that

the mutual reachability distance used in HDBSCAN* is not only competitive

compared to other density estimates in terms of resulting cluster hierarchies,

but may offer the unique advantage that it is now feasible to explore and in-

tegrate clustering results for a whole range of parameter values (which other

density estimates will still have) - given the contributions made in this thesis.

8.1 Future Work

In our analysis, we have identified that the use of HDBSCAN’ does not imply

in significant changes in the conclusions that can be drawn from the clustering

results when compared with HDBSCAN*. However, the investigation of more

precise density estimators that can be efficiently explored as the one originally

available in HDBSCAN* and provide a better representation of the density in

the data is still an open research problem.

Moreover, we believe that the framework proposed in this thesis based on

the use of the relative neighborhood graph for efficient computation of cluster-

ing hierarchies can be extended to consider the use of approximate solutions

for achieving higher levels of runtime performance for cluster analysis. This

extension requires a thorough investigation on the trade-off between the qual-

ity of the clustering results obtained in this fashion and the efficiency of this

strategy when compared to the results and performance of HDBSCAN* and

our RNG-based strategy. In the same context, another future research direc-

tion is the study of measures that can be applied along RNG-HDBSCAN* to

evaluate the quality or stability of clustering hierarchies computed according
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to a range of mpts values. Closely related, the investigation of alternative

similarity measures for estimating how similar two clustering hierarchies are

is also an interesting future work direction.

As for the visualization of clustering results, we believe that MustaCHE

could be deployed as an end-to-end web-based “Clustering as a Service” where

users can upload, cluster, visualize, analyze, archive or share (if appropriate)

their data and analyses. In terms of performance, MustaCHE could also ben-

efit from approximate solutions where results could be available for analysis

faster and refined later. Another direction for future work in MustaCHE is

the addition of visualizations for the data (2d and 3d plots, geolocated data

on maps, word clouds, etc.) being clustered. This would make it possible

for users to perform more comprehensive analyses without having to recur to

other tools.

Regarding the use of multiple values ofmpts in a single clustering hierarchy,

we believe that this new flexibility opens opportunities for new measures or

strategies to select different smoothing factors for different subsets of the data.

For instance, the investigation of methods for automatic estimation of “good”

values of mpts for different regions of the data is an interesting direction for

future research. Furthermore, we believe that modeling the density estimates

in HDBSCAN* as real probability density function might open some doors

for further research. While the use of kernel functions in HDBSCAN* has

been investigated in [28], using an adaptive bandwidth control has not been

considered. When using a proper probability density function, comparing

density and stability values across different hierarchy is more straightforward.

However, this implies also investigating efficient methods to compute clustering

hierarchies w.r.t. multiple values of mpts using a kernel density estimator,

which may prove to be difficult.

As for the application of our contributions in semi-supervised tasks, we
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believe that the integration of semi-supervised techniques into MustaCHE for

analyzing multiple parameter settings can have a positive impact on the ability

of users to perform semi-supervised density-based clustering and classification

analyses. MustaCHE could then be used as a tool for navigating, exploring and

comparing not only different parameter settings, but also different algorithms.

Moreover, one can also make use of the set of labels available for part of the

data and measure, in a more objective manner, which hierarchies are more or

less conforming with such labels. This strategy has the potential of helping

users with the task of determining the appropriate amount of smoothing in

the density estimates.
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Appendix A

Computing Multiple
HDBSCAN’ Hierarchies

A.1 HDBSCAN’ and the RNG

As discussed in Section 3.2, the clustering hierarchies constructed with HDB-

SCAN’ offer a better interpretation of the density estimates along the straight

paths between points and results in smoother density estimates. However,

similarly to HDBSCAN*, the use of different values of mpts with HDBSCAN’

can lead to different results, and choosing an appropriate value of mpts can

be challenging. Therefore, users might still need to compute a collection of

HDBSCAN’ clustering hierarchies for a range of mpts values.

Unfortunately, our RNG-based approach presented in Chapter 4 is not

applicable to HDBSCAN’. One can show that the relative neighborhood graph

w.r.t. to a high value of mpts does not contain the necessary edges to compute

the hierarchies w.r.t. to lower values of mpts. Thus, we have devised and

evaluated a sophisticated adaptation of our RNG-based strategy that uses

the Gabriel Graph to reduce the computational cost of computing multiple

clustering hierarchies with HDBSCAN’ – the technical details of this approach

can be found in Appendix A.1. In our evaluation, we have observed that the

strategy of computing the graph G′ only outperforms the naive strategy of

running HDBSCAN’ for multiple values of mpts in certain scenarios. For
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the most part, both strategies present an equivalent performance in terms of

runtime. This equivalence is due to the very small number of edges in G′

when compared to the RNG used in RNG-HDBSCAN*. Since the estimates

in HDBSCAN’ are smoother, there are fewer mutual reachability distances

between different points with the same value and, consequently, the number

of points that are relative neighbors is quite low when compared to the RNG

generated according to the original definition of mutual reachability distance.

Thus, even though it takes longer to compute G′ than it takes to compute

a single RNG w.r.t. one value of mpts, computing minimum spanning trees

from G′ is faster than doing so from the RNG w.r.t. to the original definition

of HDBSCAN*. However, the performance gain in the MST computation is

only enough to make the strategy of computing G′ comparable to the naive

strategy. These observations reinforce the relevance of HDBSCAN* and of

our RNG-based strategy discussed in Chapter 4. Since replacing the density

estimator in HDBSCAN* does not necessarily solve the problem of selecting a

value of mpts, having a strategy to efficiently compute and explore clustering

hierarchies w.r.t. multiple parameter settings is essential, and is only possible

with the original definition of mutual reachability distance and our RNG-based

approach.

Due to the properties of mrd′mpts, our RNG-based strategy cannot be di-

rectly applied as-is to HDBSCAN’. In fact, it can be shown that a single RNG

computed w.r.t. the highest value of mpts in a range does not contain all the

edges needed to compute the MSTs/hierarchies w.r.t. the lower values of mpts.

Figure A.1 shows the relative neighborhood graph of a 2-dimensional dataset

with 8 points in the space of mutual reachability distances w.r.t. mpts = 2 us-

ing the adapted definition of mutual reachability distance, mrd′mpts. In this

case, the relative neighborhood graph coincides with its minimum spanning

tree. Similarly, Figure A.2 shows the relative neighborhood graph for the same
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Figure A.1: RNG w.r.t. mpts = 2
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Figure A.2: RNG w.r.t. mpts = 3

dataset but w.r.t. mpts = 3 and edge weights computed using mrd′mpts, which

also coincides with its minimum spanning tree. Note that since the edge (e, f)

is not in the relative neighborhood graph w.r.t. mpts = 3, one could not com-

pute the MST for mpts = 2 from such relative neighborhood graph.

Therefore, in order to compute a collection of HDBSCAN’ clustering hier-

archies w.r.t. multiple values of mpts, one can either run HDBSCAN’ multiple

times, or try and compute a graph G′ that corresponds to the union of the

relative neighborhood graphs for all values of mpts in a range (Equation A.1),

from which all hierarchies w.r.t. to the range of mpts values can be computed.

G′ =
⋃

i∈[1,mpts]

RNGi (A.1)

However, finding all the edges of this graph can be computationally expensive

and, if done naively, can be equivalent to computing the RNG once for each

mpts value of interest.

In RNG-HDBSCAN*, the strategy for computing the RNG consists of (1)

computing a well-separated pair decomposition, (2) finding the symmetric bi-
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chromatic closest neighbors (SBCN) between all well-separated sets and (3)

filter the edges that do not belong to the RNG. Among these steps, the com-

putation of the well-separated pair decomposition is the only step that does

not depend on the value of mpts or on the definition of mutual reachability

distance, and can be performed only once. However, the later two steps have to

be performed for each value of mpts in the range of interest, which is compu-

tationally expensive. Most notably, the SBCN computation takes O(n2)-time

for each value of mpts. Moreover, this process results in many edges between

points that are not relative neighbors w.r.t. to any value of mpts, and these

edges have to be later removed from the graph in step (3).

Based on the process described, one already expects that the time spent

computing G′ does not outweigh the performance gains from the computation

of multiple MSTs w.r.t. a range of mpts values. As an attempt to speed up the

construction of G′, one can try and perform the SBCN computation for only

part of the well-separated pairs while guaranteeing that all points that are

potentially relative neighbors are connected in the resulting graph. Consider

two well-separated sets A and B and their enclosing balls, as shown in Figure

A.3. Before computing the SBCN between A and B, one can see if it is possible

for two points a ∈ A and b ∈ B to be relative neighbors. This can be done

by checking if there is any point in the region of the space between A and

B, represented in Figure A.3 by the grey dotted circle. When that region is

not empty, it is safe to discard the pair (A,B) as no points from these sets

can be relative neighbors. Note that this spherical-shaped region between the

sets A and B correspond to the region of the space that defines the Gabriel

Graph, a super-graph of the Relative Neighborhood Graph (see Chapter 2).

In our tests, we have used an approximate nearest neighbor algorithm based

on random projection trees [40] to find the closest point to the center spherical

region between both sets. In this case, using an approximate nearest neighbor
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does not affect the correctness of the results, only the ability to discard pairs

of well-separated pairs whose points cannot be relative neighbors.

A B

Figure A.3: Well-Separated Sets A and B
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