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ABSTRACT

In the last three decades, the Ricci flow has proved to be an extremely

useful tool in mathematics and physics, and its footprint is now visible on

enterprises from the study of nonlinear sigma models in theoretical physics

[7], to the proof of the geometrization conjecture for closed 3-manifolds and

thus the Poincaré conjecture [15].

We explore numerically the long time existence of the Ricci-DeTurck flow

and the List flow for a one-parameter family of Riemannian manifolds with

non-essential minimal surfaces. This class of metrics is constructed to be an

intermediate case between the corseted spheres examined by Garfinkle and

Isenberg [8], and the RP3 geon explored by Balehowsky and Woolgar [2]. We

find that the Ricci-DeTurck flow of these manifolds depends on the value

of a geometric parameter k2, with immortal flow below a critical value, and

singularity formation above it. We also examine the List flow of this family

of manifolds with and without a stable minimal surface, we compare the long-

time existence properties to those observed in the case of the Ricci flow, and

we use these results to gain insights into both the results obtained by Gulcev,

Oliynyk, and Woolgar [10], and the general phenomena of singularity formation

and critical behavior in Ricci flow.
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Chapter 1

Introduction to the Problem

But anyone who has experienced flow knows that the deep enjoyment it

provides requires an equal degree of disciplined concentration.

−Mihály Cśıkszentmihályi

Generally, a given differentiable manifold admits many Riemannian metrics.

However, certain familiar manifolds, such as Rn, Sn, and Hn, admit what one

might call a “canonical metric” – a metric that is in some sense “natural,”

and which exhibits a high degree of symmetry. Despite the intuitive appeal

of this notion of a canonical metric, it is not clear a priori how to go about

defining the concept rigorously, nor is it clear whether the notion can be given

a rigorous definition in a sufficiently general context. We might think that we

know what we mean when we speak of a canonical metric on Rn, Sn, and Hn;

what do we mean by “canonical” for other Riemannian manifolds? Might it
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be possible to formalize this idea?

In 1981, using the intuition that one should be able to evolve a manifold to

such a canonical form, Richard Hamilton [11] invented the now famous Ricci

flow. The Ricci flow is a set of nonlinear weakly parabolic partial differential

equations, which attempts to diffuse the curvature of an initial metric1 in

much the same way that heat diffuses away from an initially concentrated

heat source.

In the three decades since its inception, Ricci flow and its subsequent elabo-

rations (e.g., [15], [5]) have provided mathematicians with a highly useful set of

tools for studying the different geometries that a given manifold admits. The

flow has found applications in theoretical physics, where it has been shown to

arise from the renormalization group flow of a nonlinear sigma model [21], [7],

and modifications of the Ricci flow (such as the Ricci-DeTurck flow and List’s

flow [12]) have proved useful in the study of general relativity [20]. The Ricci

flow has even gained cursory fame among non-mathematicians, following its

use in Perelman’s proof of the geometrization conjecture for closed 3-manifolds

[15], [16], [17], from which the famous Poincaré conjecture follows as a special

1Though as we will see, the curvature does not always diffuse away. The examples we

examine, in which the flow halts due to the collapse of a “throat-like” portion of the manifold,

provide an illustration of this fact. A simpler example is the (non-volume-normalized) flow

of Sn, in which the flow, having “spread-out” the curvature as much as possible, collapses

the manifold to a point in finite time.
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case.

A general feature of the flow is that it tends to converge to metrics consid-

ered to be “canonical” in some sense. The flow thus provides, at least in part,

a rigorous basis for the aforementioned intuitive notion. For example, if we

start the flow from a two dimensional manifold with genus ≥ 2 it eventually

(with proper rescaling) converges to a hyperbolic metric of constant negative

curvature. However, certain initial metrics do not flow to a canonical metric

in any sense of the word, but rather develop singularities after finite time. If

we want to understand the Ricci flow, then it is important that we develop

an understanding of these singularities, as well as the conditions under which

they arise, and whether they can be meaningfully classified.

Garfinkle and Isenberg [8] began a research program of studying Ricci flow

singularities numerically, and our purpose is to continue this exploration. We

explore both the Ricci flow and the List flow of a class of manifolds described

in chapter 3. The general form of the questions we consider is: Suppose we

have a one parameter2 family of manifolds, which will serve as our initial data.

Is there some value of the parameter below which the Ricci flow converges

to a “nice” (i.e. canonical) metric? Is there some value of the parameter

above which the Ricci flow develops singularities in finite time? Is there some

2This parameter typically describes some feature of the initial geometry. In our case the

parameter is the ratio of the areas of the “equator” S2 and the “throat” S2 of a slice of a

Schwarzschild metric glued to a 3-sphere. See chapter 3 for details.
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threshold value for which the flow exhibits qualitatively different behavior?

In their original paper on the topic [8], Garfinkle and Isenberg studied

a one-parameter family of “corseted sphere” metrics on S3, parametrized by

the amount of curvature at the neck pinch. Using numerical methods, they

found that metrics with a sufficiently small amount of corseting will flow to

the canonical round metric on S3, whereas metrics with a large amount of

corseting become singular after finite time as the “throat” (S2 minimal surface)

collapses.

What’s more, they found that for a certain value of the parameter, the

geometry neither flows to the round metric on S3 nor collapses, but instead

exhibits qualitatively different behavior. For this value of the parameter, the

flow was seen to converge on what they call a “javelin” geometry, with cur-

vature singularities at both poles, but approximately uniform curvature in

between. In a later paper, Garfinkle and Isenberg [9] found that this critical

geometry exhibits so-called degenerate neck pinch singularities, which are well

modeled by Bryant Solitons.

These results immediately suggest the question: Is this threshold behavior

a quirk of the particular class of metrics Garfinkle and Isenberg examined,

or might this behavior be a more universal feature of Ricci flow applied to

one-parameter families? The class of manifolds I examine below will address

this question.
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In chapter 2, we define the Ricci flow, and discuss some basic results in the

field, as well as extensions such as the Ricci-DeTurck flow and the List flow. In

chapter 3, we define our initial data, for the flow by gluing together coordinate

systems for S3 and a slice of Schwarzschild spacetime. We also discuss our

boundary conditions, and provide geometric motivation for them. In chapter

4, we discuss the numerical methods that we employ in our simulations, and

rudiments of how they work. We then describe a numerical singularity, and

discuss how to fix the problems arising from it, in the hope that this discussion

might benefit others who wish to pursue numerical simulations of rotationally

symmetric Ricci flow. Finally, in chapter 5, we summarize our results. First,

we examine the rotationally symmetric Ricci-DeTurck flow with a minimal

surface. We find that a critical parameter value separates the flow into two

domains. For sufficiently large values, the manifold collapses, while for sub-

critical values, the flow exists for all time. This is similar to the threshold

behavior observed by Garfinkle and Isenberg [8], and our results therefore sug-

gest that this behavior may be a common feature of the Ricci-DeTurck flow

applied to one parameter families. Next, we examine the long-time existence

of the List flow without an initial minimal surface. Here, we find that the

rotationally symmetric, asymptotically flat List flow exists for all time, thus

addressing a question raised recently by Gulcev, Oliynyk, and Woolgar [10].

Finally, we examine the List flow with an initial minimal surface. In this con-
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text, as in the Ricci-DeTurck case, we find threshold behavior. However, there

is no single critical value, but rather the point of transition from smooth flow

to collapse depends on the parameters of the initial scalar field. In addition,

we find that this field appears to increase the likelihood of collapse. That is,

a geometry whose Ricci-DeTurck flow exists for all time may well collapse in

the case of List flow with a minimal surface.
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Chapter 2

The Basics of Ricci Flow

2.1 Defining the Flow

In what follows I will use index notation for tensors. To facilitate reading, I

will use a, b, c, d to stand for uncontracted indices, and i, j, k, ` to stand for

contracted indices. Let M be a Riemannian manifold of dimension n, and let

{x`}n`=1 be a system of coordinates for M. For a fixed metric g on M , we define

the Christoffel Symbols by

Γabc =
1

2
ga`
(
∂g`b
∂xc

+
∂g`c
∂xb
− ∂gbc
∂x`

)
(2.1)

The Riemann Curvature Tensor can be defined in terms of the Christoffel

symbols as follows:

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + Γac`Γ

`
bd − Γad`Γ

`
bc (2.2)
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We then define the Ricci Tensor in terms of the Riemann curvature tensor by:

Rab := R`
a`b = g`kRa`bk = g`kR`akb = ∂`Γ

`
ab − ∂bΓ`a` + Γ`abΓ

k
`k − Γka`Γ

`
bk (2.3)

Now, let g(t) be a 1-parameter family of Riemannian Metrics on M , where

t ∈ [0, T ) ⊆ R. The Ricci Flow consists of the following system of quasilinear

partial differential equations

∂

∂t
gab = −2Rab (2.4)

It was first proved by Hamilton [11], and later proved more simply by DeTurck

[5] that if M is closed and g̃ is a C∞ metric on M , then there exists some ε > 0

such that the Ricci Flow has a unique solution g(t) for t ∈ [0, ε) with initial

data g̃ (i.e. g(0) = g̃). This is a short-time existence theorem for the Ricci

flow. The question of long time existence is complicated by the development

of singularities, and it is this question that we plan to examine.

2.2 The DeTurck Trick

Unfortunately for our purposes, the Ricci flow equation (2.4) is only weakly

parabolic, and numerical analyses of weakly parabolic systems are often ill-

posed. Moreover, even in well-posed cases, they are frequently unstable. Since

we plan to examine the collapse of our manifold numerically (see chapter 4),

we can use the so-called “DeTurck trick” to transform the weakly parabolic
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Ricci flow (2.4) into the strongly parabolic Ricci-DeTurck flow [5]:

∂

∂t
gab

DeTurck
= −2Rab + £Xgab = −2Rab +∇aXb +∇bXa (2.5)

where the one form Xa is defined to be

Xa = gakg
ij
(

Γkij − Γ̃kij

)
(2.6)

Γabc are the Christoffel symbols arising from gab via (2.1), and Γ̃abc are the

Christoffel symbols arising from a given fiducial metric. Notice that the non-

tensorial Christoffel symbols appear in the definition of Xa. However, since

the coordinate transformation law for Γkij is

Γ′kij
∂x`

∂x′k
= Γ`pq

∂xp

∂x′i
∂xq

∂x′j
+

∂2x`

∂x′i∂x′j
(2.7)

the difference of two connections is

(
Γ′kij − Γ̃′kij

) ∂x`

∂x′k
=
(

Γ`pq − Γ̃`pq

) ∂xp
∂x′i

∂xq

∂x′j
+

(
∂2x`

∂x′i∂x′j
− ∂2x`

∂x′i∂x′j

)
(2.8)

The two terms on the far right cancel, and so the difference between two

Christoffel connections transforms as a tensor. This is why the definition of

the DeTurck vector requires the fiducial connection Γ̃abc. The equation (2.5) is

strongly parabolic (see [3], pages 78-81). That is:

Rab = −1

2
∆gab −Qab(g

−1, ∂g) (2.9)

so

∂gab
∂t

= ∆gab +Qab(g
−1, ∂g) (2.10)
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Thanks to the strong parabolicity provided by the DeTurck trick, the system

is now more amenable to numerical methods than (2.4).

Moreover, if g(t) is a solution to (2.5), then the pullback φ∗tg(t) of g(t) by

a set of time-dependent diffeomorphisms φt generated by X is a solution to

(2.4) for the same values of t (see [3] for a more extensive discussion of the

DeTurck trick). Having solved (2.5), whether numerically or analytically, we

indirectly obtain a solution to the Ricci flow (2.4) as follows. First notice that

∂

∂s

∣∣∣∣
s=0

(
φ−1t ◦ φs+t

)
=
(
φ−1t
)
∗

(
∂

∂s

∣∣∣∣
s=0

φs+t

)
=
(
φ−1t
)
∗X(t) (2.11)

Now, we can show that if g(t) is a solution to the Ricci-DeTurck flow, then

φ∗tg(t) is a solution to the Ricci flow.

∂

∂t
(φ∗tg(t)) =

∂

∂s

∣∣∣∣
s=0

(
φ∗s+tg(s+ t)

)
(2.12)

= φ∗t

(
∂

∂t
g(t)

)
+

∂

∂s

∣∣∣∣
s=0

(
φ∗s+tg(t)

)
= φ∗t

(
−2Ric(g(t)) + £X(t)g(t)

)
+
∂

∂s

∣∣∣∣
s=0

((
φ−1t ◦ φs+t

)∗
φ∗tg(t)

)
= −2Ric (φ∗tg(t)) + φ∗t

(
£X(t)g(t)

)
−£[(φ−1

t )∗X(t)] (φ∗tg(t))

By ( 2.11)
= −2Ric (φ∗tg(t))

as desired. Therefore, given a solution g(t) to the strongly parabolic Ricci-

DeTurck flow, we obtain a solution φ∗tg(t) to the weakly parabolic Ricci version.

This fact can be exploited to stabilize the numerics in a numerical simulation of
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(2.4). Thanks to this result, even though we numerically implement the Ricci-

DeTurck flow, which is much easier to deal with, we can obtain a solution to

the Ricci flow if desired.

2.3 Building Intuition About the Ricci Flow

In the introduction, we mentioned that the Ricci flow attempts to diffuse the

curvature of an initial metric in much the same way that heat diffuses away

from an initially concentrated heat source. Anyone who has seen a visual

simulation of Ricci flow1 will have an intuitive understanding of this idea. Is

there any way in which we might make this intuition more precise? After all,

the heat equation with source

∂u

∂t
= ∆u+Q (2.13)

where u = u(t, x1, ..., xn) represents the temperature of a body, and Q =

Q(t, x1, ..., xn) is a known function that represents the body’s internally gen-

erated heat per unit volume2, is known to simulate well the diffusion of sub-

1See http://www.irp.oist.jp/mbu/sinclair/ricci_rot/ricci_rot.mov for a visual

simulation of Ricci flow by J. Hyam Rubinstein and Robert Sinclair. The visualization

method is described in [19].
2This quantity is often set to zero, as most objects internally generate a negligible amount

of heat. However, if one wanted to examine, say, the steel coils on a conventional stove, then

the function Q above would be a non-negative function with support on the coils when the

stove is turned on, and zero when the stove is turned off.
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stances other than heat. However, the Ricci flow equation does not, at first

glance, appear very similar to this equation, at least in the form (2.4) above.

Despite the superficial difference, there are some similarities. The heat

equation is the most natural example of a parabolic partial differential equa-

tion, and as we mentioned above, the Ricci flow equation is either strongly

or weakly parabolic, depending on whether or not one employs the DeTurck

trick. Moreover, both the Ricci flow equation and the heat equation contain

first order time derivatives of their dynamical variables g and u respectively,

as well as second order spatial derivatives. Equation (2.10) makes the analogy

with the heat equation precise. When written in the form of (2.10), we can

see that the Ricci flow can be understood as a heat equation for the metric

components gij, with heat source Qij(g
−1, ∂g).

2.4 A Heat Equation for the Ricci Scalar

The quantity that “diffuses” under the heat equation is the temperature u,

and the analogy with the heat equation together with (2.10) suggests that we

should view the metric as the object that diffuses under Ricci flow. Thus,

we have still not codified the intuition that it is the curvature, in some sense,

that diffuses under Ricci flow. However, from (2.4) one can also derive the

evolution equations for the tensors Ra
bcd, Rab and R. The following proposition

finally makes rigorous the intuition that the Ricci flow represents a diffusion
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of curvature in particular.

Proposition 2.1. If gab is a solution to the Ricci flow equation, then

∂R

∂t
= ∆R + 2RijRij (2.14)

Note, the quantity RijRij is often written |Ric|2

Proof. Let gab be a solution to the Ricci flow equation, and let Ra
bcd,Rab,and

R be the Riemann, Ricci, and scalar curvatures associated with gab. Then

0 = ∂t(δ
a
b ) = ∂t(g

a`g`b) = gcb∂tg
ac − 2gacRcb (2.15)

So ∂tg
ij = 2Rij. Also recall ∇

(
Rab − 1

2
Rgab

)
= 0. Now:

∂R

∂t
=

∂

∂t

(
gijRij

)
=

(
∂

∂t
gij
)
Rij + gij

(
∂

∂t
Rij

)
(2.16)

= 2RijRij + gij
[
∆LRij −∇i∇kRjk −∇j∇kRik +∇i∇jR

]
= 2RijRij + gij

[
∆Rij −R k

i Rjk −R k
j Rik +Rk l

i jRkl +Rk l
j iRkl

]
− gij

[
∇i∇kRjk −∇j∇kRik +∇i∇jR

]
= 2RijRij +

[
∆R−RjkRjk −RikRik + gijRkl (Rkilj +Rkjli)

]
−
[
∇j∇kR

jk −∇i∇kR
ik + ∆R

]
= 2RijRij +

[
2∆R− 2RijRij + 2gijRklRkilj − 2∇i∇jR

ij
]

= 2

(
∆R + 2gijRklRikjl −∇i

(
1

2
gij∇jR

))
= 2

(
∆R +RklRkl −

1

2
gij∇i∇jR

)
= 2

(
∆R +RklRkl −

1

2
∆R

)
13



∂R

∂t
= ∆R + 2RijRij

(2.17)

as desired. Note that this is exactly the scalar heat equation (2.13) with

“temperature” u = R, and internally generated “heat” (scalar curvature) per

unit volume Q = 2RijRij = 2 |Ric|2.

For the Ricci-DeTurck flow (2.5), carrying out a slightly modified version

of this argument gives

∂R

∂t
= ∆R + 2RijRij +X i∇iR =

(
∂R

∂t

)
Ricci

+ £XR (2.18)

2.5 Some Exact Solutions of the Ricci Flow

Equation

The Ricci flow is a highly nonlinear set of coupled partial differential equations.

It is no surprise, therefore, that we cannot solve this equation analytically in

most circumstances. Even so, in the same way that physicists build intuition

through the construction of “toy models” − models not meant to be physically

realistic, but which in their simplicity manage to illustrate the basic principles

encountered in more complex cases − we can gain considerable intuition about

the Ricci flow by examining somewhat trivial but nevertheless important cases

in which the equations can be solved exactly. One such case is the family of
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Einstein metrics.

Let g(0) = g̃ be an Einstein metric. That is, assume

Ric(g̃) = αg̃ (2.19)

where α ∈ R. We will build solutions to the Ricci Flow equation (2.4) by

letting g(t) = γ(t) · g̃ and placing constraints on the positive-valued function

γ(t). Notice that by definition of the Ricci tensor in terms of the Christoffel

symbols, we have Ric(g(t)) = Ric(γ(t)g̃) = Ric(g̃) = αg̃. By (2.4) we have

∂

∂t
g(t) =

∂

∂t
[γ(t)g̃] = γ′(t)g̃ = −2Ric(g(t)) = −2αg̃ (2.20)

So γ′(t) = −2α, and thus we have γ(t) = −2αt+ γ(0) = −2αt+ 1 Therefore,

we have found an exact solution to the Ricci Flow

g(t) = (1− 2αt)g̃ (2.21)

We call the α < 0, α = 0, and α > 0 cases expanding, steady, and shrinking re-

spectively. This terminology is motivated by the following calculation: Recall

that the volume of a Riemannian Manifold (M, g) is

V ol(M, g) =

∫
M

√
det(g)dnx (2.22)

provided the integral is defined. Plugging our solution to the Ricci Flow equa-

tion into this formula gives

V ol(M, g(t)) =

∫
M

√
det(g(t))dnx = (1− 2αt)

n
2

∫
M

√
det(g̃)dnx (2.23)
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And thus

V ol(M, g(t)) = (1− 2αt)
n
2 V ol(M, g̃) (2.24)

This helps us make sense of the above terminology. If α < 0, then

V ol(M, g(t)) is an increasing function of time, so we say g(t) is expanding.

Similarly, if α > 0, then V ol(M, g(t)) is decreasing, so we say g(t) is shrinking.

Finally, if α = 0, then V ol(M, g(t)) = V ol(M, g̃) is constant, and we say g(t)

is steady. Notice that if g(t) is shrinking, then g
(

1
2α

)
= 0, so the solution only

exists for t ∈
[
0, 1

2α

)
.

The canonical metrics on Sn, Rn, and Hn are all Einstein [13], and thus

their flows can can be solved exactly, as above. The Ricci flow of Sn collapses

the manifold to a point in finite time (at which point the flow stops), whereas

the flows of Rn and Hn exist for all t ≥ 0.

Another class of metrics for which the flow simplifies considerably is the

class of Ricci solitons [20], [21]. A Ricci soliton is a metric that satisfies:

∂gab
∂t

= cgab (2.25)

That is, the manifold remains self-similar under the flow. Plugging this def-

inition into the Ricci-DeTurck equation gives us the so-called Ricci soliton

equation:

Rab −
1

2
£Xgab − cgab = 0 (2.26)

where I have absorbed a constant into c. Due to a result dicussed in a recent

preprint by Figueras, Lucietti, and Wiseman [6], an appropriate choice of
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boundary conditions prevents the flow from converging to a soliton. As we

will discuss later in section 3.5, one of our boundary conditions at “pseudo-

infinity,” namely setting the DeTurck vector X = 0, is just such a boundary

condition.

Now, since we can solve the flow equations exactly both for spheres Sn, and for

Euclidean spaces Rm, we can solve the flow equations exactly for “cylinders”

Sn × Rm. A special case of this, namely segments of S2 × R, provide a kind

of toy model for the study of certain types of singularity formation, including

“collapse at a neck” − the type of singularity we will be most concerned with.

For a Riemannian metric g on a manifold M, we say M contains an ε-neck

centered at a point x ∈M if there exists a diffeomorphism

F : S2 × (−ε−1, ε−1) −→M (2.27)

where F−1(x) ∈ S2× 0, and such that the metric R(x)F ∗g (where R(x) is the

scalar curvature at x ∈ M) is within ε of the canonical metric gS2(
√
2) × δ on

S2(r =
√

2)× (−ε−1, ε−1) with respect to a certain topology3. The scale rM of

an ε-neck in M centered at x is defined to be R(x)−1/2. This gives a measure of

the radius of the smallest S2 in the neck, and thus in the context of Ricci flow,

it gives us a rough measure of how close a given segment of a manifold is to

collapse. Now let g̃ be the round metric on S2(
√

2), and consider the Ricci flow

with initial metric g̃. Then g(t) = (1−t)g̃ is an exact solution to the Ricci flow

3The so called C [1/ε]-topology. For a definition of this topology, see [13].

17



equation for t ∈ (−∞, 1). We may also consider a trivial generalization of this

flow to (S2(
√

2) × R, h(t) × δij). This is called the standard shrinking round

cylinder (see [13]), and it provides a model for the flow of ε-necks. This model

is important in the study of Ricci flow singularities because such singularities

often develop as a thin piece of the manifold, diffeomorphic to the product of

S2 and an interval, collapses under the flow. For example, in Garfinkle and

Isenberg’s numerical exploration of corseted S3s [8], [9], they found that the

critical value of the corseting parameter led the geometry to become “locally

cylindrical in a neighborhood of the initial pinching”. A cylinder is essentially

an ε-neck. This is important because the Ricci flow that Garfinkle and Isenberg

examined could not be solved exactly, but the flow of an ε-neck can be. So,

for geometries that exhibit similar collapse behavior, and especially for the

critical geometry in Garfinkle and Isenberg’s case, considerable insight can be

gained by studying an exactly solvable situation that approximates the case of

interest. Though the analogy may not be obvious, this is exactly what we are

doing in examining a numerical simulation: in such a simulation, we are not

solving the Ricci flow equations − rather, we are inverting an exactly solvable

matrix equation that behaves, in all the relevant ways, like the intractable

Ricci flow. Both examples are instances of the same principle. This section

examined exact solutions of the Ricci flow equation because doing so gives us

insight into cases that cannot be solved exactly; the same principle is at work
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in our choice to pursue a numerical approach in chapters 4 and 5.

We begin the discussion of our problem in chapter 3, and as we will see in

chapter 5, there exist certain parameter values for which our manifold develops

a singularity of the aforementioned type: collapse at a “neck.”

2.6 The List Flow

The List flow was invented by Bernhard List in his dissertation under the

direction of Gerhard Huisken [12]. The flow is constructed to converge on

solutions of the static vacuum Einstein equations, and as such, its fixed points

are of special interest. The defining equations arise from modifying the Ricci

flow through the addition of a scalar field u, such that if (u, g) solves the List

flow, then a certain combination of u and g gives a “spacetime” that solves

the Ricci-DeTurck flow [21]. As a result, this flow has proved useful in the

mathematical study of General Relativity. The List flow is defined by the

equations:

∂gij
∂t

= −2 (Rij −∇iu∇ju) (2.28)

∂u

∂t
= ∆u
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If the pair (u, g) satisfies the above equations, then we can construct a “space-

time” metric from the pair (see [21], [12]) via

gµνdx
µdxν = ±e2udt2 + gijdx

idxj (2.29)

such that the spacetime metric solves the Ricci-DeTurck flow with DeTurck

vector −∇u. That is,

∂gµν
∂t

= −2Rµν + £−∇ugµν (2.30)

We are free to choose the sign of the temporal term in (2.29), and interesting

but distinct results follow in each case. Choosing “−” gives us a Lorentzian

signature, and since the fixed points of (2.28) satisfy Rij = ∇iu∇ju, the

flow converges to a metric that obeys4 the Einstein equation for a massless

scalar field [21], [1]. Choosing “+” gives a Euclidean signature, and (with the

addition of a cosmological term Λgij) the fixed points of the List flow will be

Ricci solitons (see [1] for details). In the next section, we construct our initial

data. We examine the List flow of this initial data in section 5.2.

4Of course, the fixed points of the List flow obey this condition whether we choose “+”

or “−”, but only in the “−” case does the Einstein equation have its usual (Lorentzian)

form, and thus its usual (physical) interpretation.
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Chapter 3

The Rotationally Symmetric

Flow

3.1 Constructing the Initial Data

Recall that Garfinkle and Isenberg [8] found a 1-parameter family of corseted

spheres for which the flow either terminated due to a neck pinch, or converged

to a 3-sphere, depending on the value of the parameter. Moreover, they found

critical behavior at the point that separates the two domains.

Balehowsky and Woolgar [2] explored a similar problem for their own 1-

parameter family − a class of complete, noncompact manifolds with an es-

sential minimal hypersphere. Their manifold is known as the RP3 Geon, and

it arises as a quotient of a spacelike hypersurface of Schwarzschild spacetime.
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While Garfinkle and Isenberg found threshold behavior, Balehowsky and Wool-

gar found collapse for all parameter values.

The Garfinkle and Isenberg result raises the question: Is this threshold

behavior (collapse on one side, smooth flow on the other) a quirk of the par-

ticular class of metrics they examined, or might this behavior be a more uni-

versal feature of Ricci flow applied to one-parameter families? The manifold

constructed here is designed to address this question. The initial data from

which we will begin the flow is an intermediate case between Garfinkle and

Isenberg’s corseted 3-spheres, and the geometry examined by Balehowsky and

Woolgar. The manifold below contains “corseting” in a sense, but this results

from gluing a round (uncorseted) 3-sphere to the Schwarzschild slice in such a

way that the minimal surface of the Schwarzschild slice becomes the minimal

surface of our manifold.

In this section, we construct our initial data by gluing together a 3-sphere

and the Schwarzschild slice. We proceed as follows:

3.2 The Round 3-sphere Portion

The standard metric on a round 3-sphere is

ds2 = dR2 + sin2(R)dΩ2 (3.1)
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For our purposes, it will be convenient to work with coordinates of the form:

ds2 = e2A(r,t)dr2 + e2B(r,t)r2dΩ2 (3.2)

on both the 3-sphere portion and the Schwarzschild portion. Since our initial

geometry will be both piecewise-smooth and time dependent, the general forms

of A(r, t) and B(r, t) are intractably difficult to write down, which is why

we work numerically. For now, though, we simply want to write down the

form of these functions at time t = 0 on a particular piece of the geometry:

the 3-sphere. For the initial metric from which we start the flow, we have

A(r, 0) = B(r, 0) := A(r) in the round 3-sphere portion. By setting the above

two metrics equal to each other and solving for R in terms of r, we can obtain

A(r) in this part of the manifold. Equating (3.1) and (3.2) gives:

dR = eA(r)dr sin(R) = reA(r) (3.3)

These two equations together imply

dR

dr
=

sin(R)

r
=⇒ ln(r) = − ln (csc(R) + cot(R)) + const (3.4)

= ln

(
k · 1 + cos(R)

sin(R)

)
=⇒ r = k · 1 + cos(R)

sin(R)
= k · 1 + cos(R)√

1− cos2(R)

r = k · 1 + cos(R)√
(1− cos(R))(1 + cos(R))

= k ·

√
1 + cos(R)

1− cos(R)

Then

cos(R) =
(r/k)2 − 1

(r/k)2 + 1
=⇒ sin(R) =

±2(r/k)

1 + (r/k)2
(3.5)
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and now by (3.3) we have eA(r) = (2/k)
1+(r/k)2

, so squaring this and relabeling

ρ = r
k

we can write the initial metric for the sphere portion as

ds2 =
4k2

(1 + ρ2)2
(
dρ2 + ρ2dΩ2

)
(3.6)

where ρ ∈ (0,∞) and dΩ2 = dθ2 + sin2 (θ) dφ2. This coordinate system covers

the 3-sphere everywhere except the north and south poles, corresponding to

the values ρ =∞ and ρ = 0 respectively. For ρ ∈ (0,∞) a surface of constant

ρ is a 2-sphere of area

S(ρ) =

(
4k2

(1 + ρ2)2

)(
4πρ2

)
=

16π2k2

(1 + ρ2)2
(3.7)

with mean curvature of

H (ρ) =
1− ρ2

kρ
(3.8)

Notice that the combination

H2 (ρ)S (ρ) = 16π

(
1− ρ2

1 + ρ2

)
(3.9)

is independent of k. We will use this in the gluing phase. Since the equator of

the 3 sphere corresponds to the zero locus of H (ρ), we have

H (ρ) = 0 =⇒ ρ = 1 =⇒ S (ρ) = S (1) = 4πk2 (3.10)

3.3 The Schwarzschild Portion

As mentioned above, Balehowsky and Woolgar [2] examined the Ricci-DeTurck

flow of the so-called RP3 Geon. This metric arises from the t = 0 slice of
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the (n + 1)−dimensional Schwarzschild-Tangherlini metric. The metric on

a constant time hypersurface of Schwarzschild spacetime can be written in

isotropic coordinates as

ds2 =

(
1

2r0

)2 (
1 +

r0
2r

)4 (
dr2 + r2dΩ2

)
(3.11)

where r ∈ (−∞,∞) and dΩ2 is as defined above. This coordinate system

covers the constant time hypersurface of extended Schwarzschild spacetime

everywhere. A surface of constant r gives a 2-sphere of area

S(r) =

(
4πr2

4r20

)(
1 +

r0
2r

)4
(3.12)

and mean curvature

H (r) =

(
4r0
r

)(
1− r0

2r(
1 + r0

2r

)3
)

(3.13)

Notice that as in the 3-sphere case, the combination

H2 (r)S (r) = 16π

(
1− r0

2r

1 + r0
2r

)2

= 16π

(
2r − r0
2r + r0

)2

(3.14)

is independent of k. Since the throat (Event Horizon) of our Schwarzschild

slice corresponds to the zero locus of H (r), we have

H (r) = 0 =⇒ r =
r0
2

=⇒ S (r) = S
(r0

2

)
= 4π (3.15)

3.4 The Gluing Process

In this section, we join the two metrics as smoothly as possible. This gluing

cannot be accomplished to all orders, but we will see that the first two orders
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(joining the area S and the mean curvature H) is good enough. The ratio of

the area of the 3-sphere’s equator to the area of the throat of the Schwarzschild

slice is k2. That is,

S (ρ = 1)

S
(
r = r0

2

) =
S (H−1 (0))

S (H−1 (0))
=

4πk2

4π
= k2 (3.16)

First, notice that we can join these metrics only if k2 ≥ 1, and we get a stable

minimal surface iff k2 > 1. We will force the requirement k2 ≥ 1 in what

follows.

We want to join these two metrics at some 3-sphere coordinate ρ = ρJ

and some Schwarzschild coordinate r = rJ (The subscript J is meant to be

mnemonic for ‘join’). We will accomplish this by forcing the areas and mean

curvatures to match at these coordinate values. That is, we require the areas

to match

16π2k2

(1 + ρ2J)
2 ≡ S(ρJ) = S(rJ) ≡

(
4πr2J
4r20

)(
1 +

r0
2rJ

)4

(3.17)

And the mean curvatures to match

1− ρ2J
kρJ

≡ H(ρJ) = H(rJ) ≡
(

4r0
rJ

)
1− r0

2rJ(
1 + r0

2rJ

)3 (3.18)

This occurs at some value ρJ ≥ 1, and rJ ≤ r0
2

If we square (3.18) and multiply

the result by (3.17), we eliminate k. This is why we looked at H2 (r)S (r) and

H2 (ρ)S (ρ) in (3.9) and (3.14) above. This gives us(
1− ρ2J
1 + ρ2J

)2

=

(
1− r0

2rJ

1 + r0
2rJ

)2

(3.19)
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So (
1− ρ2J

)
(2rJ + r0) =

(
1 + ρ2J

)
(2rJ − r0) (3.20)

And thus

r0 − 2rJρ
2
J = −r0 + 2rJρ

2
J =⇒ ρJ =

√
r0

2rJ
(3.21)

We have now “glued” the two metrics together, but we still have two coordinate

systems as a vestige of the gluing process. To get a single coordinate system,

we define a new coordinate ‘r’ in the sphere metric by r ≡ rJ
ρJ
ρ. Then ρ =

ρJ =⇒ r = rJ , and so when (r ≤ rJ) the metric becomes

ds2 =

(
2k (ρJ/rJ)

1 + (ρ2J/r
2
J) r2

)2 (
dr2 + r2dΩ2

)
(3.22)

=

(
2kρJrJ
r2J + ρ2Jr

2

)2 (
dr2 + r2dΩ2

)
Also, by (3.18) we have

k =

(
rJ (1− ρ2J)

4r0ρJ

) (1 + r0
2rJ

)3
1− r0

2rJ

=

(
rJ

4r0ρJ

)(
1 +

r0
2rJ

)3

(3.23)

And now, using (3.21) we obtain

k =

(
rJ
2r0

)3/2(
1 +

r0
2rJ

)3

(3.24)

We can now express the sphere metric solely in terms of the global coordinate

r, r0, the join value rJ , and the metric dΩ2 on the 2-spheres:

ds2 =

(
1 + r0

2rJ

)6
4r20

(
1 + r0r2

2r3J

)2 (dr2 + r2dΩ2
)

(r ≤ rJ) (3.25)
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Recall that r0 originally appeared as a parameter in the Schwarzschild metric.

Notice that Sthroat = S
(
r0
2

)
is independent of r0, so we are free to vary r0

without changing the problem. We can simplify some of the above equations

by choosing r0 = 2. This gives

k2 =

[(
rJ
2r0

) 3
2
(

1 +
r0

2rJ

)3
]2

=
r3J
64

(
1 +

1

rJ

)6

=
1

64

(
√
rJ +

1
√
rJ

)6

(3.26)

In the spirit of item (3.16), we call k2 the Area Ratio. The name is appropriate

since k2 is a geometric quantity not dependent on our particular choice of

coordinates. Our choice to set r0 = 2 also allows us to simplify the metric

significantly. The metric is now

ds2 =



1
16

(
1 + 1

r

)4
(dr2 + r2dΩ2) : r ∈ [rJ ,∞)

1
16

(1+r−1
J )

6

(1+(r2/r3J ))
2 (dr2 + r2dΩ2) : r ∈ (0, rJ ]

The condition rJ ≤ r0
2

above now gives rJ ≤ 1. Notice that

S(r) ≡ S(t = 0, r) =



πr2

4

(
1 + 1

r

)4
: r ∈ [rJ ,∞)

πr2

4

(1+r−1
J )

6

(1+(r2/r3J ))
2 : r ∈ (0, rJ ]

Finally, we write the initial metric as

ds2 = e2A(r)dr2 +
S(r)

4π
dΩ2 (3.27)

or equivalently

ds2 = e2A(r)
(
dr2 + r2dΩ2

)
(3.28)
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where the function A(r) is defined to be

A(r) =



log
[
1
4

(
1 + 1

r

)2]
: r ∈ [rJ ,∞)

log

[
1
4

(1+r−1
J )

3

(1+(r2/r3J ))

]
: r ∈ (0, rJ ]

To summarize, this data defines a manifold that we constructed by gluing S3

to Sch3 (Sch3 is shorthand for the Schwarzschild slice described in section 3.3).

While we could use the shorthand S3#Sch3 to denote this space, even this is

quite ugly, so we will simply refer to it as “the bubble.” Figure 3.1 shows

a simple representation of the bubble. As a last step, we can solve for the

coordinate-dependent quantity rJ in terms of the geometrically meaningful

Area Ratio k2.

2k
1
3 =
√
rJ +

1
√
rJ

=⇒ rJ − 2k
1
3
√
rJ + 1 = 0 =⇒

√
rJ = k

1
3 ±

√
k

2
3 − 1 (Choose “−” since k ≥ 1 but rJ ≤ 1)

=⇒ rJ = 2
(
k2
) 1

3 − 1− 2
(
k2
) 1

6

√
(k2)

1
3 − 1 (3.29)

Looking at the initial data defined above, the reader might have noticed that

A(r) =
1

2
log

(
S(r)

4πr2

)
(3.30)

so

e2A(r) =
S(r)

4πr2
(3.31)
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Figure 3.1: A highly simplified representation of the manifold S3#Sch3
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and thus, in the notation of (3.2) we have A(r) := A(r, 0) = B(r, 0) =: B(r),

so

ds2(t = 0) = e2A(r)
(
dr2 + r2dΩ2

)
(3.32)

The question then arises of whether this is in fact a two dimensional problem.

If A(r, t) = B(r, t) at t = 0, can we not simply factor e2A(r,t) out of the metric

and start the flow, making this a one dimensional problem? At first, there

does not seem to be a problem with this, but as soon as we start the Ricci

flow, we see that if the above method was permissible, then our solution g(t)

would satisfy

2e2A
∂A

∂t
=
∂g11
∂t

= −2R11 (3.33)

2e2A
∂A

∂t
=
∂g22
∂t

= −2R22 (3.34)

This system has no solutions if R11 is not identically equal to R22. This

problem is solved by the DeTurck trick, and the resulting problem is indeed

two dimensional. This justifies our use of two different functions, even though

they are equal in the data we have specified.

3.5 Our Boundary Conditions and their Geo-

metric Motivation

In sections 3.1−3.4 we dealt with the initial conditions. The initial conditions

are defined by the question we want to ask − that is, they are defined by the
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geometry that we want to flow. The question of boundary conditions is not

quite as straightforward, especially for geometric PDEs such as the Ricci flow

equation. We must choose boundary conditions such that the solution of the

Ricci flow is, in fact, telling us something about the geometry in question, and

this is not always easy. We have two boundaries to deal with: the origin, and

the value rmax, which serves as “pseudo-infinity” in our numerical simulation.

At the origin, we want to tell the mathematics that we are dealing with

part of a 3-sphere. This may seem to be implied by the initial conditions,

but we need to say a bit more. If our boundary condition does not force

S(t, r = 0) = 0, then this allows for S(t, r = 0) > 0, in which case the flow

leads to a “hole” in the sphere at the origin1, or S(t, r = 0) < 0, in which case

the sphere is self-intersecting. This might suggest that we want a Dirichlet

condition on S(t, r) at the origin, namely S(t, r) = 0. But not so fast! We

would also like the sphere to be smooth at the origin. If, for example, a

cone point develops at the origin after any nonzero time, then the PDE is not

representing the geometric flow we want to explore. If the geometry is smooth

1This is an issue with PDEs that are meant to represent something geometrical − it is

easy to assume that “of course property X will hold,” if one is picturing the manifold we

intend to represent, rather than keeping in mind precisely which assumptions we are making

in our model. After all, the development of a “hole” in the manifold at the origin is entirely

consistent with the initial data we specified − the numerics do not know what we intend to

represent.
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at the origin, then by definition it is locally Euclidean, which means that we

should have S(t, s) −→ 4πs2 as s −→ 0, where s is arclength measured along

the 3-surface. This implies that

∂S

∂s
= 8πs = 0 (3.35)

at s = 0. As such, it would seem that we also must enforce a Neumann

condition at the origin. This is troubling, as we can only enforce one condition

on S at the origin. Luckily, a particular boundary condition does the trick.

We seek solutions that satisfy

Hs −→ 2 as s −→ 0 (3.36)

where H is the mean curvature. This manifests itself in MATLAB as the

Neumann condition mentioned above, and luckily, it also enforces the Dirichlet

condition S(t, r = 0) = 0.

The boundary condition on S(t, r) at rmax is the same as that used in [2].

This is justified since the geometry at infinity is the same in both cases (i.e.,

it is Schwarzschild). Written in geometric language, this condition is

H(t, rmax) = H(0, rmax) (3.37)

where as before, H(t, r) is the mean curvature.

The boundary condition on A(t, r) in both cases is to set the DeTurck

vector X = 0. At the origin, this is motivated by the rotational symmetry of
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the problem and the requirement that the DeTurck vector field be smooth. The

only way to force both of these conditions is to force X = 0. At the origin, this

condition becomes ∂A
∂r

= 0, while at “infinity,” the condition X = 0 becomes

e−2A(t,rmax)
(
∂rA− 2∂rB

)
−
(

2

rmax

)(
e−2A(t,rmax) − e−2B(t,rmax)

)
= 0 (3.38)
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Chapter 4

The Numerical Simulation of

Ricci Flow

4.1 MATLAB’s pdepe Routine

So far, we have described the general procedure of Ricci Flow, and the initial

data from which we will be flowing. Unfortunately, as we discussed in sec-

tion 2.5, it is extremely difficult to solve the Ricci Flow equation analytically

in most cases. We can circumvent this problem by implementing a numeri-

cal simulation of Ricci Flow. In what follows, we will describe the numerical

methods used to simulate Ricci Flow in MATLAB.

MATLAB’s pdepe routine is designed to numerically solve initial-boundary

value problems for elliptic and parabolic systems of PDEs in one space dimen-
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sion. Thankfully, since our problem is rotationally symmetric, our three space

dimensions can be reduced to one.

The pdepe routine is capable of solving systems of PDEs in which each equa-

tion of the system can be written in the following form:

c(x, t, u, ∂xu)
∂u

∂t
= x−m

∂

∂x

(
xmf (x, t, u, ∂xu)

)
+ s (x, t, u, ∂xu) (4.1)

The constant m is determined by the symmetries of the PDE, and can take

the values 0, 1, or 2, representing no symmetry, cylindrical symmetry, and

spherical symmetry respectively. Although our problem is concerned with a

geometry that displays a great deal of symmetry, we have suppressed redun-

dant dimensions before coding the PDE into MATLAB, and so our equation

has m = 0, corresponding to no symmetry.

To use pdepe, we must feed it two lattices, called xmesh and tspan. These

are discretizations of space and time respectively, and they are used quite

differently by the routine.

As for tspan, time integration is accomplished in pdepe using ode15s, one

of MATLAB’s many ODE solvers. This ODE solver dynamically adapts both

its time discretization and its update formula. As such, our choice of tspan

does not matter much for purposes of computation. The number of points

we choose to allocate to tspan weakly determines the “effort” that pdepe will

put into the computation, and the relative clustering of those points weakly
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determines which areas pdepe will focus its effort on, with areas of rapid change

“earning” more of the lattice points than other areas, all else being equal.

The vector xmesh is considerably more important, and it will serve as the

lattice on which space is discretized and on which second order approximations

to the exact solution are computed. Unlike tspan, the total points and their

relative clustering in xmesh strongly determine the total cost and relative

importance of those points in the computation. Clustering is desirable in

regions where the solution changes very quickly.

For reasons that are beyond the scope of our discussion, pdepe must often

perform fairly complicated adjustments of the initial parameters for certain

equations, especially elliptic PDEs. Fortunately, such adjustments are not

required for parabolic equations, such as our Ricci-DeTurck equation. This is

one of several considerations that make pdepe well suited for our problem. For

more details on the pdepe routine, see the MathWorks documentation [14].

4.2 What we’re simulating

For the sake of completeness, in this section we include a complete summary

of the system of PDEs we will be simulating numerically, as well as our initial

data, and boundary conditions.
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Our PDEs are:

∂A

∂t
= e−2A

(
∂2A

∂r2
−
(
∂A

∂r

)2

+
1

2S2

(
∂S

∂r

)2
)

(4.2)

+
8πr2

S

(
1

r

∂A

∂r
− 1

rS

∂S

∂r
+

1

r2

)
∂S

∂t
= e−2A

(
∂2S

∂r2
− 1

S

(
∂S

∂r

)2
)

+
8πr

S

∂S

∂r
− 8π (4.3)

Our initial conditions are:

A(0, r) =



log
[
1
4

(
1 + 1

r

)2]
: r ∈ [rJ ,∞)

log

[
1
4

(1+r−1
J )

3

(1+(r2/r3J ))

]
: r ∈ (0, rJ ]

S(0, r) =



πr2

4

(
1 + 1

r

)4
: r ∈ [rJ ,∞)

πr2

4

(1+r−1
J )

6

(1+(r2/r3J ))
2 : r ∈ (0, rJ ]

And finally, our boundary conditions on S(t, r) are:

Hs −→ 2 as s −→ 0 (4.4)

and

H(t, rmax) = H(0, rmax) (4.5)

while our boundary condition on A(t, r) at both endpoints is to set the DeTurck

vector X = 0.
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4.3 A Stumbling Block: The Spike Singularity

In this section, I will briefly describe an singularity that arose in the course of

the simulations, in the hope that it may save some time for others who wish

to pursue the application of numerical techniques to the study of Ricci flow.

Early in the simulations, we noticed that the plot of A(t, r) seemed to develop

a tall, thin “spike” at the origin, despite the fact that the “X = 0 at r = 0”

boundary condition forced ∂A
∂r

= 0. Eventually, I was able to localize the source

of the spikes to three terms in the PDE for A(t, r). The PDE for A(t, r) is:

∂A

∂t
= e−2A

(
∂2A

∂r2
−
(
∂A

∂r

)2

+
1

2S2

(
∂S

∂r

)2
)

(4.6)

+
8πr2

S

(
1

r

∂A

∂r
− 1

rS

∂S

∂r
+

1

r2

)
Since the problem occurs at the origin, we need to examine the behavior of

this PDE near the origin. To do so, it will prove to be helpful to rewrite the

equation in terms of arclength. The arclength, measured along the manifold,

from the “origin” to a point with coordinate r is

s(t, r) =

∫ r

0

eA(t,r
′)dr′ (4.7)

And so

∂s

∂r
= eA(t,r) (4.8)

Moreover, we have

s −→ reA(t,0) as r −→ 0 (4.9)
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Figure 4.1: An example of the spike singularity. The derivative should be zero

at the origin, but instead we see a rapid increase. Each curve represents A(t, s)

for a fixed time, and different curves represent different times. The passage

from blue to red corresponds to the direction of increasing time. See chapter 5

for a more complete discussion.
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Figure 4.2: A close-up of the spike singularity.
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This lets us rewrite (4.2) near r = 0 as:

∂A

∂t
=
∂2A

∂s2
−
(
∂A

∂s

)2

+
1

2S2

(
∂S

∂s

)2

+
8πs

S

(
∂A

∂s
− 1

S

∂S

∂s
+

1

s

)
(4.10)

Since our boundary conditions force the bubble to be locally Euclidean at the

origin, we have

S(t, s)

4πs2
−→ 1 as s −→ 0 (4.11)

Now, notice the behavior of the 3rd, 5th, and 6th terms to the right of the

equality in (4.10) as we replace S(t, s) with 4πs2. They become

1

2S2

(
∂S

∂s

)2

− 8πs

S2

∂S

∂s
+

8π

S
(4.12)

=
(8πs)2

2(4πs2)2
− (8πs)2

(4πs2)2
+

2

s2
(4.13)

=
2

s2
− 4

s2
+

2

s2
= 0 (4.14)

This leads to a singularity that anyone conducting a numerical simulation of

Ricci flow on a complete manifold with an origin of symmetry should look out

for. The problem results from the fact that, although these three terms cancel

exactly as s −→ 0, any error in the computation of S(t, s) and ∂sS can easily

lead to an error in the coefficients 2, −4, and 2 in equation 4.14. However, a

small error in the coefficients does not lead to a small error in the result, since

for all εi > 0

=
2 + ε1
s2
− 4 + ε2

s2
+

2 + ε3
s2

=
ε1 − ε2 + ε3

s2
−→∞ as s −→ 0 (4.15)
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unless we happen to be infinitely lucky and the errors cancel, which they gen-

erally do not. This was the source of the “spike” singularity. It is often difficult

to identify the source of such numerical instabilities, and to subsequently fix

them. As such, we discuss this singularity in the hope that it might help oth-

ers who wish to pursue numerical simulations of Ricci flow. The singularity

problem can be solved as follows. If we expand S near the origin by

S(t, s) ≈ 4πs2 + c(t)s4 (4.16)

then we see that the three terms in (4.12) do not cancel exactly, but rather

that they sum to c(t)
4π

. It remains to figure out what c(t) is. Plugging this

expansion into the PDE for S(t, s) gives an ODE for c(t), which can easily

be solved to give c(t) = 0. Therefore, we can remove the spike singularity by

manually setting

1

2S2

(
∂S

∂s

)2

− 8πs

S2

∂S

∂s
+

8π

S
= 0 as s −→ 0 (4.17)

This is accomplished by setting the above term equal to zero for the first 1

or 2 points in the spatial lattice. Notice that we are simply setting this term

equal to the value that it is manifestly equal to at s = 0. As such, we are not

changing either the problem or the PDE, but simply forcing the numerics to

behave as they should.
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Chapter 5

Our Results

5.1 Ricci-DeTurck flow of the bubble

The following section explores the numerical simulation of the Ricci-DeTurck

flow, as applied to the bubble, for various values of the geometric parameter

k2 =
S (H−1 (0))S3

S (H−1 (0))Sch3
=

Area of S3 equator

Area of Sch3 throat
(5.1)

We first analyze the Ricci-DeTurck flow of the initial data discussed in chapter

3. Our goal is to determine whether there exist values of k2 for which the flow

exists for all time, whether there are some “regions of collapse” in which the

metric becomes singular after some finite time, and in each case to obtain an

approximation of these values.

As we discussed in the introduction, the metric we examine here may be

thought of as an intermediate case between Garfinkle and Isenberg’s corseted
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spheres [8], which displayed threshold behavior, and Balehowsky and Wool-

gar’s RP3 Geon [2] which flows to a singular metric as the neck collapses for

all parameter values.

In the case of the Ricci-DeTurck flow, it suffices to examine the bubble in

the case of a stable minimal surface. By a stable minimal surface, we mean a

closed surface whose area is less than that of any neighboring closed surface.

This is possible thanks to a result of Oliynyk and Woolgar [18], which proved

that the flow of the bubble exists for all t > 0 when there is no minimal surface.

Figure 5.1 is an illustration of the flow for k2 = 2, using S(t, s) to study

collapse. Recall that the function S(t, s) represents area as a function of

arclength measured from the origin, at time t. Each line on the plots below is

the graph of S(t, s) at a given time, with different lines representing different

times. Dark blue lines correspond to times near t = 0, red lines represent times

near the end of the time interval examined in a given plot, and intermediate

colors represent intermediate times. The passage from “cool” colors (e.g., blue,

green) to “warm” colors (e.g., yellow, red) is thus the direction of increasing

time1. Although the meaning of S(t, s) is more geometrically transparent, we

also plot A(t, s) in figure 5.2 to give an overall flavor of the evolution.

Plotting S(t, s) versus arclength gives us a reasonably accurate picture of

1This visualization method allows for the comparison of the flow at different times, in a

way that standard 3-D plots often obscure on paper, when one cannot actively rotate the

plot to gain perspective.
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Figure 5.1: The evolution of S(t, s) for the Ricci-DeTurck flow of the bubble

when k2 = 2. We have cropped the picture for easy viewing, but the curves in

this data set have rMax = 10 (as do all plots of S(t, s) in the various cases

below) and continue up to approximately S(t, s) = 130. The direction from

blue curves through green, yellow and finally red represents the passage of time

from the initial data onward, respectively.
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Figure 5.2: The evolution of A(t, s) for the Ricci-DeTurck flow of the bubble

when k2 = 2

47



what the flow looks like after suppressing angular dimensions. It is apparent

that for k2 = 2, the minimal surface eventually disappears. The simulations

therefore suggest that there is a region, at least those values of k2 ∈ [1, 2], such

that the bubble flows to a metric without a minimal surface. From that point

on, the flow exists and converges to flat R3 as t −→∞ [18].

Now, we will explore the following question: Is there a region in which the

flow collapses the manifold at the throat? Since we are examining the issue

numerically, it is less straightforward to establish collapse than it is to establish

the disappearance of the minimal surface. This is due to the face that as the

manifold collapses, the curvature becomes very large near the throat. For a

fixed number of points in the spatial discretization, as the curvature becomes

very large, the plots eventually develop “kinks,” no matter how many points

we include in the spatial lattice. When such kinks have developed, we are no

longer justified in trusting the numerics. An example of this type of situation

is pictured in figure 5.3 for k2 = 3. However, we can still get strong evidence

of collapse before the kinks form. It is a sufficient, though not necessary,

condition for collapse that k2(t) is an increasing function of time. If k2(t) is

eventually increasing for a given initial value of k2 := k2(0), then this would

provide reasonable evidence that the flow becomes singular for this value of

k2. Figure 5.4 is the function of time Ratio(t) = S(t, requator)/S(t, rthroat) for

an initial ratio of 3: We see in figure 5.4 that the ratio starts at 3, and then
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Figure 5.3: The development of kinks in the Ricci-DeTurck flow when k2 = 3.

Notice that the code becomes unreliable at roughly the point of transition from

the pink curves to the red curves.
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Figure 5.4: Plotting Ratio(t) for k2 = 3 shows strong evidence of collapse
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decreases for a short period. This decrease is an initial “breathing in” of the

throat (i.e. a small decrease in Ratio(t) for short times) that can be seen

for all initial values of the ratio. However, the ratio soon begins to increase,

and at an increasing rate, until the code becomes unreliable as kinks form at

approximately t = 0.62. The data to the right of the point t = 0.62 can be

discarded, as good evidence of collapse can be obtained before the point of

breakdown.

Because this function is increasing before breakdown (as is its derivative),

we may expect it to increase for the short additional time required to reach

singularity formation. Remember that we do not need to extrapolate very

far: as soon as the “throat” collapses to zero, the flow stops existing (even

analytically), and the graphs above suggest that this collapse is happening

rather quickly. An alternative that could throw a wrench into this argument,

namely that the throat asymptotes to zero but never reaches it, is highly

unlikely. Ricci flow tends to lead, fairly quickly, to the collapse of spheres and

their products with intervals, namely ε-necks, as we discussed in section 2.5.

We are therefore confident that certain values of k2 lead to collapse for this

1-parameter family of geometries, while other values lead the geometry to flow

indefinitely and to approach a smooth, “canonical” metric.

Our simulations suggest that the critical value of the area ratio for the

Ricci-DeTurck flow lies somewhere in the neighborhood of k2 ≈ 2.2, although
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Figure 5.5: Plotting Ratio(t) for k2 = 2 shows that this geometry does not

collapse. The plot stops existing at roughly t = 0.6 as the minimal surface

disappears.

the methods we employ do not allow us a great degree of precision in pin-

pointing this value. Regardless, there exist values of k2 for which the manifold

flows smoothly to flat Rn, and values for which the flow becomes singular.

Figures 5.5 and 5.6 show the evolution of Ratio(t) for k2 = 2 and k2 = 2.3.

Notice that in the k2 = 2 case, we get smooth evolution until roughly t = 0.6,

at which time Ratio(t) = 1, and thereafter ceases to exist as the minimal

surface disappears. In the k2 = 2.3 case, notice that Ratio(t) never descends

below 1.5 (before breakdown), and starts to increase at roughly t = 0.58.
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Figure 5.6: Plotting Ratio(t) for k2 = 2.3 shows that this geometry collapses

before the point at which the code becomes unreliable near t = 0.65
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This suggests that the behavior displayed by Garfinkle and Isenberg’s

corseted spheres is neither a quirk of their particular choice of geometry, nor

specific to compact manifolds per se. Rather, this aspect of the flow of 1-

parameter families seems to be a general feature of Ricci flow. We expect that

there exists a value of k2 for which the geometry exhibits critical behavior,

similar in character to Garfinkle and Isenberg’s “javelin” geometry, but sim-

ulations thus far have not been able to address this question. The numerical

evidence therefore strongly suggests that the Ricci flow on asymptotically flat

Rn does not in general exist for all time.

Now, how does our value of k2 ≈ 2.2 compare to Garfinkle and Isenberg’s

value? In their original paper on the topic [8], they measured the degree of

corseting using a parameter λ, whose critical value was found to be approxi-

mately λ = 0.1639. Conveniently, it turns out that k2 = λ−1, which puts their

value of collapse at k2 ≈ 6.10 in our notation. Our results, therefore, imply

that the bubble family collapses “more easily” (i.e. for smaller values of k2,

and thus less “pinched” minimal surfaces) than the family of corseted spheres.

This result makes a great deal of sense if we think of the bubble, like before,

as an intermediate case between Garfinkle and Isenberg’s corseted spheres [8]

and Balehowsky and Woolgar’s RP3 geon [2]. We can summarize, in condensed

form, how our result fits nicely between these two results as follows:

Schwarzscild on both sides is too much − it always collapses; 3-spheres on
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both sides can collapse, but only with a lot of effort (i.e., once k2 ≥ 6.10);

Schwarzschild on one side and a 3-sphere on the other may or may not col-

lapse, as in the latter case, but the Schwarzschild side makes collapse easier to

achieve, as expected from the former.

5.2 The List-DeTurck Flow of the bubble

We now examine the List flow of the bubble (See section 2.6 for a discussion

of the List flow). In this section, we begin by focusing on the case of the

bubble without a minimal surface, and we will numerically explore questions

similar to those that were explored analytically in [10]. In the latter part of

this section, we examine the List flow of the bubble with a stable minimal

surface, and compare this flow’s behavior to the Ricci-DeTurck case.

Since the fixed points of the List flow give solutions to the static Einstein

equations, it is of considerable importance that the flow converge to those

few fixed points that exist. That is, we might hope that we could start the

flow at a more or less arbitrary initial geometry and flow to some fixed point

or another, without the flow stopping due to singularity formation along the

way. Long-time existence of the List flow in various cases is thus an important

question. Because of this, the first question we will examine is a question of

long-time existence: does the addition of the scalar field cause the List flow to

collapse in cases when the Ricci-DeTurck flow would exist for all time? We will
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examine the List flow of the bubble for the critical value k2 = 1, a value for

which the bubble is as close as it can be to having a minimal surface. We know

that the Ricci flow of this geometry exists for all time. Does the added scalar

field in List’s flow cause the throat to collapse? This question was addressed

analytically in [10], and plots 5.7− 5.9 and 5.15 below appear to justify an

assumption by Gulcev, Oliynyk, and Woolgar (as do as all simulations not

pictured). In [10], the authors showed analytically the long-time existence of

the rotationally symmetric List flow in the case of no minimal surface, but their

argument required the strong and undesirable assumption that there exists a

function f(t) : [0,∞)→ R, such that

|∇u|
r
≤ f(t) (5.2)

for the duration of the flow. As such, if the flow only exists for t ∈ [0, T ),

then 1
r
|∇u| ≤ supt f(t). Equivalently, the assumption may be expressed by

saying that 1
r
|∇u| is allowed to blow up, but not in finite time. The results

of our numerical simulations suggest that the List flow exists for all t > 0 in

the absence of any such assumption. For example, the List flow of the bubble

with initial scalar field u(0, r) = A sin(r)e−r
2

where A is constant satisfies

1

r
|∇u| = Ae−r

2 | cos(r)− 2r sin(r)|
r

−→∞ as r −→ 0 (5.3)

Yet our simulations suggest that the flow of this geometry exists for all time,

as we will see at the end of section 5.3. However, this only obliquely addresses
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the question of whether the assumption of Gulcev, Oliynyk, and Woolgar is

required. The assumption they required was that if one’s initial data satisfies

5.2, then so does the flow for the rest of the time that it exists. In that sense,

the initial scalar field u(0, r) = A sin(r)e−r
2

is even nastier than we strictly

need to test Gulcev et al’s assumption. Even so, the sectional curvatures for

this data smooth-out immediately (although they begin at infinity). This is

cause for optimism. If even such nasty data appears to become smooth and

stay smooth, then it appears that Gulcev et al’s weaker assumption may be

justified.

Figures 5.7− 5.9 show the evolution of S(t, s), A(t, s), and the scalar field

u(t, s) under the List flow. In these plots, we begin with an initially Gaussian

scalar field with an amplitude of 0.3 and a width of 0.1, though qualitatively

similar behavior was observed for all parameter values explored to date. The

single black curve in each plot represents that function’s initial condition: We

can see that the addition of the scalar field does not, even for short times, lead

to the development of a minimal surface, in agreement with Theorem 1.3 of

[10]. The flow appears to exist for all time, and the function S(t, s) converges

fairly rapidly to 4πs2. That is to say, the geometry of the bubble converges to

R3 with the flat metric.

57



Figure 5.7: The evolution of S(t, s) for the List flow of the bubble. Recall that

the change from blue curves to green, yellow and red represents the passage of

time from the initial data onward, respectively.
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Figure 5.8: The evolution of A(t, s) for the List flow of the bubble
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Figure 5.9: The evolution of u(t, s) for the List flow of the bubble
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5.3 Long Time Existence and Sectional Cur-

vature

By examining the plots above, we concluded that the List flow seems to exist

for all time when no stable minimal surface is initially present, and that the

bubble flows to flat R3. However, in our explorations of the Ricci-DeTurck flow

in section 5.1, we found that the numerics continued to generate data, even

after the point at which the simulation was no longer reliable. We can easily

notice the breakdown of numerical reliability in the case of the collapse of the

bubble at the throat, but we would like to be sure that there are not other

causes, perhaps more subtle and less easily detectable, of numerical breakdown.

One such possibility suggests itself: perhaps the List flow does not, in fact,

exist for all time, due to the development of a cone point at the origin. Such

a cone point may go undetected by the analysis above, which focused on the

long-time qualitative behavior of S(t, s), A(t, s), and u(t, s). If such a point

develops, though, this would prevent the long-time existence of the List flow,

and in turn prevent the extraction from the flow of a fixed point and thus

a solution to the static Einstein equations. The main concern in this case is

not the fixed point itself, nor the spacetime which we could construct from it.

After all, if the above simulations are accurate, then the fixed point is trivial −

it is simply flat R3. Rather, the goal is to understand the long-time behavior
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of the List flow in various cases (e.g., Is the development of cone points a

generic feature of the flow for rotationally symmetric geometries? Is long-time

existence generally very difficult to achieve?), in order that we might apply the

intuition thus gained to geometries from which the extraction of a nontrivial

solution to the Einstein equations is feasible. To answer some of these questions

for the List flow of the bubble, it suffices to examine the sectional curvatures at

the origin. If a cone point develops but is undetectable by the above methods,

then we should be able to see evidence of it in the divergence of the sectional

curvatures at the origin for long flow times. That is, the sectional curvatures

should blow up if a cone point develops. Figure 5.10 shows that this is not

the case. Although the sectional curvatures grow slightly after we turn on the

flow, they soon dive toward zero. These sectional curvatures, together with

the plots of S(t, s), A(t, s), and u(t, s) above, provide strong evidence that the

List flow in this case exists for all time, and eventually converges to R3 with

the flat metric. Note, figure 5.10 shows the sectional curvature in any plane in

the tangent space containing ∂
∂r

. The plot of the sectional curvature in planes

tangent to the S2 orbits of the rotational symmetry is not shown, because it

turns out to be identical (at least at the origin, which is the point of interest).

Now, what about the List flow of the bubble with a stable minimal surface?

We know that the addition of the List scalar field does not cause a minimal

surface to form if we flow from initial data that is “infinitely close” to having
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Figure 5.10: The List flow of the sectional curvatures at r = 0.
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a minimal surface − that is, initial data with k2 = 1. The first question

that arises is whether the addition of the scalar field tends to “push” the

bubble toward collapse, or away from it. That is, does there exist a value of

k2 for which the List flow and the Ricci-DeTurck flow exhibit different long-

time qualitative behavior? If so, in which direction is the difference? Our

simulations show that there is indeed an effect of the scalar field, and it seems

to push the geometry toward collapse. As an example, figures 5.11 and 5.12

show the evolution of Ratio(t) in the Ricci-DeTurck flow and the List flow for

k2 = 2. The scalar field for the List flow was a Gaussian with an amplitude

of 3 and a width of 0.1, though this behavior does not sensitively depend on

these particular parameter values. That is, although the size of the scalar field

(both in terms of its amplitude and its width) certainly influences collapse,

we did not have to finely tune the parameters to those values depicted in our

examples to get these results; the results appear to hold quite generally. In

both plots, we begin with the same geometry: the bubble with initial ratio

k2 = 2. In the first plot, the ratio steadily decreases until the time t ≈ 0.6, at

which point the function reaches a value of 1, and becomes undefined as the

minimal surface disappears. In the second plot, we see the familiar evidence of

collapse, similar to that observed for the Ricci-DeTurck flow for an initial ratio

k2 = 3. What this shows is that the addition of the List scalar field does affect

the long-time existence of the flow, and can lead a geometry whose flow was
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Figure 5.11: Plotting Ratio(t) for the Ricci-DeTurck flow with k2 = 2 shows

that this geometry does not collapse.
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Figure 5.12: Plotting Ratio(t) for the List flow with k2 = 2 and a Gaussian

scalar field shows that this geometry does collapse.
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Figure 5.13: Plotting Ratio(t) for the List flow with k2 = 2 and a wavelet

scalar field shows that this geometry also collapses.

previously immortal to cease fairly quickly due to singularity formation. This

behavior does not depend on the scalar field having a specific form, such as

being everywhere positive, or Gaussian. Figure 5.13 shows collapse behavior

nearly identical to that of the Gaussian case above, but with a wavelet as the

initial scalar field (i.e. a Gaussian with the same amplitude and width as we

used before, multiplied by cos(r)). In a similar vein, the results obtained in the
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case of List flow without a minimal surface do not depend upon a fine-tuning

of the scalar field, either in its form or in its specific parameters. Figure 5.14

shows the List flow with k2 = 1, but with a wavelet scalar field similar to that

in figure 5.13. As before, the behavior is similar to the case in which u(t, s) is

Gaussian.

Finally, we address the question of whether the strong and undesirable

assumption of Gulcev, Oliynyk, and Woolgar in [10] was strictly required.

That is, does the long-time existence of the rotationally symmetric List flow

(in the case of no minimal surface) require the assumption 5.2. We have

already shown that the plots of S(t, s) and A(t, s) in such a case suggest long-

time existence, but we must also examine the sectional curvatures at the origin

to ensure that they do not blow-up in finite time. Moreover, we must do so in a

case that violates the above assumption on ∇u. Our simulations suggest that

indeed, this assumption is not needed, at least not generally, and figure 5.15

is a representative case. Notice that because of equation 5.3, the geometry in

figure 5.15 violates the assumption in [10], and yet appears to exist for all time.

This suggests that further analytic progress may be possible in this direction.

5.4 Conclusions

We examined singularity formation in the Ricci-DeTurck flow and the List

flow of the bubble, a 1-parameter family of geometries that are intermediate
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Figure 5.14: Plotting S(t, s) for the List flow with k2 = 1 and a wavelet scalar

field shows that this geometry behaves similarly to the analogous Gaussian case.

Recall that the change from blue curves through green, yellow and finally red

represents the passage of time from the initial data onward.
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Figure 5.15: Plotting the sectional curvatures at the origin for the List flow

with k2 = 1 and a scalar field A sin(r)e−(r/σ)
2

shows that this geometry be-

haves similarly to the analogous Gaussian case. The case pictured has A = 0.3

and σ = 0.1, though similar behavior was observed for all parameter values

explored. Note that this geometry does not satisfy the assumption on ∇u im-

posed by Gulcev, Oliynyk, and Woolgar [10], yet their result appears to hold

even in this more general case.
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between Garfinkle and Isenberg’s corseted spheres, which exhibited threshold

behavior, and Balehowsky & Woolgar’s Schwarzschild slice, which did not.

We found threshold behavior in the case of Ricci-DeTurck flow with a minimal

surface, showing smooth long-time evolution for small values of the area ratio

k2, and collapse at the throat for large values. This behavior is similar to

that of Garfinkle and Isenberg’s corseted spheres, though our manifold was

non-compact. In the case of the List flow of the bubble without a minimal

surface, we showed that the flow appears to exist for all time, and that it

quickly converges to the flat metric on R3.

We explored the List flow of the bubble with a stable minimal surface, and

asked whether the scalar field helped or inhibited collapse. We found that,

provided the scalar field was sufficiently large, its effect was to push otherwise

stable geometries toward collapse.

Finally, we showed that the analytical results in [10] may hold under more

general conditions than those assumed in the authors’ proof of the long-time

existence of rotationally symmetric List flow. This suggests that additional

progress may be made on these questions analytically.

Further numerical explorations could explore possible critical behavior at

the threshold point in the case of Ricci-DeTurck flow of the bubble. Does

the bubble display critical behavior, similar to that observed in [8], or does

collapse immediately change to smooth evolution as we vary k2? I suspect the
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former. Is the critical solution a degenerate neckpinch, modeled on the Bryant

soliton, as in [9]? Either answer to any of these questions would be sufficiently

interesting to warrant further exploration.
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Chapter 6

Appendices

6.1 Appendix A: The Ricci-DeTurck Flow Code

function FinalFlow(rPoints,rMax,tPoints,tMax,ratio,graphs)

global rJoin;

global R;

global N;

rJoin = 2*(ratio^(1/3)) -1 -2*(ratio^(1/6))*sqrt((ratio^(1/3))-1)

R = rMax;

N = rPoints;

%r = [linspace(0,R/2,ceil(4*N/5)),...

%linspace(R/2+R/N,R,floor(4*N/5))];

73



%Can use this for clustering, if desired

r = linspace(0,R,N);

t = linspace(0,tMax,tPoints);

options = odeset(’AbsTol’,10^-8, ’RelTol’, 10^-8);

sol = pdepe(0,@flowPDE,@pdeic,@pdebc,r,t,options);

A = sol(:,:,1); %size(A) = size(S) = [tPoints, N]

S = sol(:,:,2);

%----------------------------------------------------------

%Building the arclengths vector

SizeA = size(A);

diexx1 = zeros(1,N);

for i=1:N

if i<N

diexx1(i) = r(i+1)-r(i);

else

diexx1(i)=diexx1(i-1);

end

end

diexx = repmat(diexx1,SizeA(1),1);
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expA(:,:) = exp(1).^(A(:,:));

arclengths = zeros(size(A));

arclengths(:,1) = 0;

for d = 2:N

arclengths(:,d) = (sum((expA(:,1:d).*diexx(:,1:d))’)’);

end

%----------------------------------------------------------

%The sectional curvatures at r=0

B(:,2) = (1/2)*log(abs(S(:,2)./(4*pi*r(2).*r(2))));

DAT = zeros(tPoints-1);

DBT = zeros(tPoints-1);

for i = 1:tPoints-1

DAT(i) = (A(i+1,2)-A(i,2))/(tMax/tPoints);

DBT(i) = (B(i+1,2)-B(i,2))/(tMax/tPoints);

end

SecR = (1/3)*DAT-DBT;

SecTh = (-2/3)*DBT;
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%----------------------------------------------------------

%Evidence of Collapse

DSR = zeros(tPoints-1,rPoints-1);

for i = 1:rPoints-1

DSR(:,i) = (S(1:tPoints-1,i+1)-S(1:tPoints-1,i));

end

Pos = DSR>0;

Max = zeros(1,tPoints-1);

Min = zeros(1,tPoints-1);

for j = 1:tPoints-1

for i = 1:rPoints-2

if Pos(j,i)==1 && Pos(j,i+1)==0

Max(j) = S(j,i);

end

if Pos(j,i)==0 && Pos(j,i+1)==1

%i

Min(j) = S(j,i);

end

end
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end

Max = double(Max);

Min = double(Min);

Frac = Max./Min;

%----------------------------------------------------------

%Plotting the results

for k=1:graphs

T=ceil(k*tPoints/graphs);

figure(1)

if T < ceil(tPoints/6)

plot(arclengths(T,:),S(T,:));

elseif T < ceil(2*tPoints/6) && T >= ceil(tPoints/6)

plot(arclengths(T,:),S(T,:),’c’);

elseif T < ceil(3*tPoints/6) && T >= ceil(2*tPoints/6)

plot(arclengths(T,:),S(T,:),’g’);

elseif T < ceil(4*tPoints/6) && T >= ceil(3*tPoints/6)

plot(arclengths(T,:),S(T,:),’y’);

elseif T < ceil(5*tPoints/6) && T >= ceil(4*tPoints/6)

plot(arclengths(T,:),S(T,:),’m’);
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else

plot(arclengths(T,:),S(T,:),’r’);

end

axis([arclengths(1,1), 6.5, 0, 50])

xlabel(’s’);

ylabel(’S(T,s)’);

title({’S(T,s) at T=’ num2str(k*tMax/graphs)},

’FontWeight’,’bold’);

hold on

grid off

end

for k=1:graphs

T=ceil(k*tPoints/graphs);

figure(2)

if T < ceil(tPoints/6)

plot(arclengths(T,:),A(T,:));

elseif T < ceil(2*tPoints/6) && T >= ceil(tPoints/6)

plot(arclengths(T,:),A(T,:),’c’);
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elseif T < ceil(3*tPoints/6) && T >= ceil(2*tPoints/6)

plot(arclengths(T,:),A(T,:),’g’);

elseif T < ceil(4*tPoints/6) && T >= ceil(3*tPoints/6)

plot(arclengths(T,:),A(T,:),’y’);

elseif T < ceil(5*tPoints/6) && T >= ceil(4*tPoints/6)

plot(arclengths(T,:),A(T,:),’m’);

else

plot(arclengths(T,:),A(T,:),’r’);

end

axis([arclengths(1,1), arclengths(1,end), -1.12, 4.5])

xlabel(’s’);

ylabel(’A(T,s)’);

title({’A(T,s) at T=’ num2str(k*tMax/graphs)},

’FontWeight’,’bold’);

hold on

grid off

end

figure(3)

plot(t(1:tPoints-1),Frac);
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axis([t(1), t(end), 0.2, ratio+0.3])

title(’Evidence of Collapse’)

xlabel(’t’)

ylabel(’Ratio(t)’)

hold on

grid off

figure(4)

plot(t(1:tPoints-1),SecR,’r’)

plot(t(1:tPoints-1),SecTh)

axis([0,t(end),-1,8])

title(’Sectional Curvatures at r=0’)

xlabel(’t’)

ylabel(’Sectional Curvatures(t,0)’)

hold on

grid off

%----------------------------------------------------------

function [c f s] = flowPDE(r,t,u,Du)

%Our function is of the form u = [A S]. The PDEs are

%written in the form c*(du/dt) = (d/dr)(f(r,t,u,du/dr))
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%...+s(r,t,u,du/dr)

global R;

global N;

for i=1:length(r)

if r < 4*R/N

Bad = 0;

else

Bad = (exp(-2*u(1))*(Du(2)^2)/(2*(u(2))^2) +...

(8*pi/(u(2)))*(-(r/(u(2)))*Du(2)+1));

end

end

c = [1 1];

f = exp(-2*u(1))*[Du(1) Du(2)];

s = [exp(-2*u(1))*(Du(1)^2)+(8*pi/(u(2)))*(r*Du(1))+Bad,...

exp(-2*u(1))*(2*Du(1)*Du(2)-(Du(2))^2/(u(2)))+...

(8*pi*r/(u(2)))*Du(2)-8*pi];

%----------------------------------------------------------

function u0 = pdeic(r)

%This function defines the initial conditions.

global rJoin;
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q = length(r);

A_init=zeros(1,q);

S_init=zeros(1,q);

for i=1:q

if (abs(r(i))>rJoin)

S_init(i)=(pi/4)*(r(i))^2*(1+(1/(abs(r(i)))))^4;

A_init(i)=2*log(1+1/(abs(r(i))))-2*log(2);

else

S_init(i)=(pi/4)*(r(i))^2*...

(1+1/rJoin)^6/(1+(r(i))^2/(rJoin^3))^2;

A_init(i)=3*log(1+1/rJoin)-2*log(2)-...

log(1+(r(i)^2)/(rJoin^3));

end

end

u0 = [A_init S_init];

%----------------------------------------------------------

function [pl ql pr qr] = pdebc(rl,ul,rr,ur,t)

%The boundary conditions are of the form p(r,t,u)+...

%q(r,t)*f(r,t,u,du/dr),

%Left BCs say dA/dr=0 at r=0 & dS(s-->0)=8*pi*s*ds
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pl = [0, -8*pi*rl*exp(ul(1))];

ql = [1, exp(ul(1))];

pr = [8*pi*rr/ur(2)-exp(-ur(1))*sqrt(16*pi/ur(2)),

-sqrt(16*pi*ur(2))];

qr = [1, exp(ur(1))];

6.2 Appendix B: The List Flow Code

function FinalFlowList(rPoints,rMax,tPoints,tMax,...

ratio,graphs,amplitude,width)

global rJoin;

global R;

global N;

global V;

global a;

%For no minimal surface, or non-stable min-surf, use this:

rJoin=2*(ratio^(1/3)) -1 + 2*(ratio^(1/6))*...

sqrt((ratio^(1/3))-1)

%For stable minimal surface, use this:

%rJoin=2*(ratio^(1/3)) -1 - 2*(ratio^(1/6))*...

%sqrt((ratio^(1/3))-1)
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N = rPoints;

R = rMax;

V = amplitude;

a = width;

r = linspace(0,R,N);

t = linspace(0,tMax,tPoints);

options = odeset(’AbsTol’,10^-8, ’RelTol’, 10^-8);

sol = pdepe(0,@flowPDE,@pdeic,@pdebc,r,t,options);

A = sol(:,:,1); %size(A) = size(S) = [tPoints, N]

S = sol(:,:,2);

v = sol(:,:,3);

%----------------------------------------------------------

%Building the arclengths vector

SizeA = size(A);

diexx1 = zeros(1,N);

for i=1:N

if i<N

diexx1(i) = r(i+1)-r(i);

else
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diexx1(i)=diexx1(i-1);

end

end

diexx = repmat(diexx1,SizeA(1),1);

expA(:,:) = exp(1).^(A(:,:));

arclengths = zeros(size(A));

arclengths(:,1) = 0;

for d = 2:N

arclengths(:,d) = (sum((expA(:,1:d).*diexx(:,1:d))’)’);

end

%----------------------------------------------------------

%The sectional curvatures at r=0

B(:,2) = (1/2)*log(abs(S(:,2)./(4*pi*r(2).*r(2))));

DAT = zeros(tPoints-2);

DBT = zeros(tPoints-2);

for i = 2:tPoints-1

DAT(i) = (A(i+1,2)-A(i,2))/(tMax/tPoints);

DBT(i) = (B(i+1,2)-B(i,2))/(tMax/tPoints);

end
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SecR = (1/3)*DAT-DBT;

SecTh = (-2/3)*DBT;

%----------------------------------------------------------

%Evidence of Collapse

DSR = zeros(tPoints-1,rPoints-1);

for i = 1:rPoints-1

DSR(:,i) = (S(1:tPoints-1,i+1)-S(1:tPoints-1,i));

end

Pos = DSR>0;

Max = zeros(1,tPoints-1);

Min = zeros(1,tPoints-1);

for j = 1:tPoints-1

for i = 1:rPoints-2

if Pos(j,i)==1 && Pos(j,i+1)==0

Max(j) = S(j,i);

end

if Pos(j,i)==0 && Pos(j,i+1)==1

%i
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Min(j) = S(j,i);

end

end

end

Max = double(Max);

Min = double(Min);

Frac = Max./Min;

%----------------------------------------------------------

%Plotting the results

for k=1:graphs

T=ceil(k*tPoints/graphs);

figure(1)

%plot(arclengths(1,:),4*pi*arclengths(1,:).^2,’k’);

plot(arclengths(1,:),S(1,:),’k’);

if T < ceil(tPoints/6)

plot(arclengths(T,:),S(T,:));

elseif T < ceil(2*tPoints/6) && T >= ceil(tPoints/6)

plot(arclengths(T,:),S(T,:),’c’);

elseif T < ceil(3*tPoints/6) && T >= ceil(2*tPoints/6)
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plot(arclengths(T,:),S(T,:),’g’);

elseif T < ceil(4*tPoints/6) && T >= ceil(3*tPoints/6)

plot(arclengths(T,:),S(T,:),’y’);

elseif T < ceil(5*tPoints/6) && T >= ceil(4*tPoints/6)

plot(arclengths(T,:),S(T,:),’m’);

else

plot(arclengths(T,:),S(T,:),’r’);

end

axis([arclengths(1,1), 6.5, 0, 60])

xlabel(’s’);

ylabel(’S(T,s)’);

title({’S(T,s) at T=’ num2str(k*tMax/graphs)},

’FontWeight’,’bold’);

hold on

grid off

end

for k=1:graphs

T=ceil(k*tPoints/graphs);
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figure(2)

plot(arclengths(1,:),A(1,:),’k’);

if T < ceil(tPoints/6)

plot(arclengths(T,:),A(T,:));

elseif T < ceil(2*tPoints/6) && T >= ceil(tPoints/6)

plot(arclengths(T,:),A(T,:),’c’);

elseif T < ceil(3*tPoints/6) && T >= ceil(2*tPoints/6)

plot(arclengths(T,:),A(T,:),’g’);

elseif T < ceil(4*tPoints/6) && T >= ceil(3*tPoints/6)

plot(arclengths(T,:),A(T,:),’y’);

elseif T < ceil(5*tPoints/6) && T >= ceil(4*tPoints/6)

plot(arclengths(T,:),A(T,:),’m’);

else

plot(arclengths(T,:),A(T,:),’r’);

end

axis([arclengths(1,1), arclengths(1,end), -1.12, 4.5])

xlabel(’s’);

ylabel(’A(T,s)’);

title({’A(T,s) at T=’ num2str(k*tMax/graphs)},

’FontWeight’,’bold’);
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hold on

grid off

end

for k=1:graphs

T=ceil(k*tPoints/graphs);

figure(3)

plot(arclengths(1,:),v(1,:),’k’);

if T < ceil(tPoints/6)

plot(arclengths(T,:),v(T,:));

elseif T < ceil(2*tPoints/6) && T >= ceil(tPoints/6)

plot(arclengths(T,:),v(T,:),’c’);

elseif T < ceil(3*tPoints/6) && T >= ceil(2*tPoints/6)

plot(arclengths(T,:),v(T,:),’g’);

elseif T < ceil(4*tPoints/6) && T >= ceil(3*tPoints/6)

plot(arclengths(T,:),v(T,:),’y’);

elseif T < ceil(5*tPoints/6) && T >= ceil(4*tPoints/6)

plot(arclengths(T,:),v(T,:),’m’);

else

plot(arclengths(T,:),v(T,:),’r’);
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end

axis([arclengths(1,1), arclengths(1,N)-0.25,

-0.01, amplitude])

xlabel(’s’);

ylabel(’v(T,s)’);

title({’v(T,s) at T=’ num2str(k*tMax/graphs)},

’FontWeight’,’bold’);

hold on

grid off

end

figure(4)

plot(t(1:tPoints-1),Frac);

title(’Evidence of Collapse’)

xlabel(’t’)

ylabel(’Ratio(t)’)

hold on

grid off

figure(5)
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plot(t(2:tPoints-1),SecR)

%axis([0,t(end),-0.5,2.5])

title(’Sec-Curv-r at r=0’)

xlabel(’t’)

ylabel(’Sec-Curv-r(t,0)’)

hold on

grid off

%----------------------------------------------------------

function [c f s] = flowPDE(r,t,u,Du)

%Our function is of the form u = [A S]. The PDEs are

%written in the form c*(du/dt) = (d/dr)(f(r,t,u,du/dr))+...

s(r,t,u,du/dr)

global R;

global N;

for i=1:length(r)

if r(i) < 4*R/N

Bad = 0;

else

Bad = (exp(-2*u(1))*(Du(2)^2)/(2*(u(2))^2)+...

(8*pi/(u(2)))*(-(r/(u(2)))*Du(2)+1));
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end

end

c = [1 1 1];

f = exp(-2*u(1))*[Du(1) Du(2) Du(3)];

s = [exp(-2*u(1))*(Du(1)^2 + 2*(Du(3))^2)+...

(8*pi/(u(2)))*(r*Du(1))+Bad, ...

exp(-2*u(1))*(2*Du(1)*Du(2)-(Du(2))^2/(u(2)))+...

(8*pi*r/(u(2)))*Du(2)-8*pi,...

exp(-2*u(1))*(2*Du(1)-(Du(2))/u(2))+8*pi*r/u(2)];

%----------------------------------------------------------

function u0 = pdeic(r)

%This function defines the initial conditions.

global rJoin;

global V;

global a;

q = length(r);

A_init=zeros(1,q);

S_init=zeros(1,q);

v_init=zeros(1,q);
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for i=1:q

%Gaussian

%v_init=V*exp(-(r(i)/a)^2);

%Wavelet

v_init=V*exp(-(r(i)/a)^2)*sin(r(i));

if (abs(r(i))>rJoin)

S_init(i)=(pi/4)*(r(i))^2*...

(1+(1/(abs(r(i)))))^4;

A_init(i)=2*log(1+1/(abs(r(i))))-2*log(2);

else

S_init(i)=(pi/4)*(r(i))^2*(1+...

1/rJoin)^6/(1+(r(i))^2/(rJoin^3))^2;

A_init(i)=3*log(1+1/rJoin)-2*log(2)-...

log(1+(r(i))^2/(rJoin^3));

end

end

u0 = [A_init S_init v_init];

%----------------------------------------------------------

function [pl ql pr qr] = pdebc(rl,ul,rr,ur,t)
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%The boundary conditions are of the form p(r,t,u)+...

%q(r,t)*f(r,t,u,du/dr),

pl = [0, -8*pi*rl*exp(ul(1)), 0];

ql = [1 exp(ul(1)) 1];

pr = [8*pi*rr/ur(2)-exp(-ur(1))*sqrt(16*pi/ur(2)),

-sqrt(16*pi*ur(2)), ur(3)];

qr = [1, exp(ur(1)), 0];
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