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Abstract

Risk can be decomposed along two dimensions: risk allocation and risk

attribution. On the one hand, the total risk of a company can be allocated to

its divisions, using that the company’s profit/loss is the sum of the divisions’

profits/losses. On the other hand, risk is attributed to risk drivers that may

affect the company’s profit/loss in a nonlinear way. This thesis deals with

risk allocation and risk attribution by extending results from a single-period

model to a dynamic setting. For risk allocation, we apply the Euler allocation

principle while for risk attribution, we use a linear approximation of the prof-

it/loss contributions of risk drivers and then apply risk allocation. We also

show an example for risk allocation and risk attribution, using the entropic

risk measure and simulating the risk drivers in MATLAB.
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Chapter 1

Introduction

Risk is the possibility of adverse events happening. In finance, risk is often

understood as the probability of losses. There are the following four main

types of financial risk:

• credit risk: the risk coming from a default of a borrower,

• market risk: the risk related to the performance of financial markets,

• operational risk: the risk incurred for breakdowns in internal processes,

people, and systems,

• liquidity risk: the risk arising when an investment cannot be bought or

sold quickly enough to minimize a loss.

Mathematics and statistics are used to model and quantify risk. A key concept

is that of a risk measure, which quantifies the risk related to potential losses.

Mathematically, a risk measure is a mapping from the set of random variables

to the real numbers satisfying the properties of being normalized, translative,
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and monotone; we will discuss these properties in Definition 2.1.1. Why do we

need to pay attention to risk measures? The answer is that risk measures can

identify high-risk situations and predict potential losses to prevent insolvency,

help manage risk by analyzing the efficiency of risk control measures, and

assist companies to make decisions. Balzer [2] said that there is “no single

universally acceptable risk measure”. Common risk measures are value at

risk (VaR), which is defined as a quantile of the loss distribution, and expected

shortfall (ES), which is also known as conditional VaR or expected tail loss.

ES is computed as the average loss over a percentage of worst-case scenarios.

To analyze risk in more detail, we focus on risk decomposition. Risk de-

composition deals with questions, such as, how much do a company’s divisions

contribute to the total risk? Or, how can the total risk be attributed to differ-

ent types of risk, for example, credit risk? Risk decomposition can be explained

by using Table 1.1, which has two dimensions: risk allocation and risk attri-

bution. For risk allocation, the company’s profit/loss is considered as the sum

risk allocation←−−−−−−−−−−−→

ri
sk

at
tr
ib
u
ti
on

←−
−−
−−
−−
−−
−−
−→ Division 1 Division 2 . . . Division K

Total

company

Risk driver 1

Risk driver 2

Risk driver 3

. . .

Cross effects

Total risk

Table 1.1: Decomposition of risk along two dimensions: risk allocation and attri-
bution. Illustration reproduced from Frei [8]
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of the profits/losses of its division. The goal is to allocate the company’s total

risk to its divisions so that the allocated risks sum up to the total risk. Note

that the risk allocated to a division is not equal to the risk that the division

would have stand-alone because of diversification benefits between divisions.

For risk attribution, differently from the situation with risk allocation, risk

drivers can contribute to the total profit/loss in a nonlinear way, and the total

profit/loss may not be the sum of profits/losses of different risk drivers. The

purpose is to identify risk drivers and attribute risk to them while cross effects

between risk drivers may remain. Therefore, the sum of the risk attributions

may not be equal to the total risk.

The Euler principle is widely used in academia and industry for risk allo-

cation; see, for instance, Li and Xing [14], McNeil et al. [15], and Tasche [20].

The methodology is to allocate to every division its marginal contribution

to the total risk: the risk allocated to the division equals the instantaneous

rate of change of the company’s risk when a division’s profit/loss contribu-

tion increases. The Euler principle has its name derived from Euler’s theorem

on homogeneous functions, which implies the full-allocation property (risks

allocated to the divisions sum up to the total risk) if the risk measure is

homogenous, which is satisfied for VaR and ES. The Euler principle has desir-

able economic properties, namely, it is compatible with return on risk adjusted

capital (RORAC); compare Tasche [20] and Proposition 2.1.1 below. It also

satisfies the property that it does not allocate more risk to a division than

the risk that the division would have stand-alone; see Denault [6] and Kalk-

brener [10]. A discussion about different risk allocation methodologies and

how they are affected by the risk measure and loss distribution can be found
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in Koyluoglu and Stoker [12], Urban et al. [21], and Zhang and Rachev [22].

There is not as much literature for risk attribution as for risk allocation.

The Shapley value is one of the possible methods to solve the risk attribution

problem. Its idea is to share the diversification effects among the risk drivers by

applying a concept from cooperative game theory that has been introduced by

Shapley [19]. The Shapley value for a risk driver is computed as the average of

the contribution of this risk driver when it enters at different stages. In the first

round, the impact of only a single risk driver on the loss variable is considered

and the corresponding value of the risk measure computed. In the second

round, the effect is considered that a risk driver has when there are two drivers

present, and the stand-alone contribution of the other driver is subtracted.

In the third round, the impact of a risk driver is considered when there are

three drivers present, and the joint contribution of the other two drivers is

subtracted. The procedure continues until all drivers are considered. The

average value over the different rounds gives the Shapley value; see Denault [6]

or Powers [17] for details. The shortage of the Shapley value is that it is very

computationally demanding when there is a large number of risk drivers.

As another approach to risk attribution presented in an insurance context,

Boonen et al. [4] show that the Euler principle applied to an auxiliary linearized

fuzzy game provides a plausible and easily implemented risk attribution. Rosen

and Saunders [18] employ the Hoeffding decomposition to express the loss

variable as a sum of functions of all subsets of risk factors and then apply the

Euler principle to the loss decomposition. Another method for risk attribution

has been proposed in Frei [8], using a linearization of the loss variable. It

considers the risk drivers over time, computes the change of the total risk with
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respect to the change of one particular risk driver at each time step, and then

sums up these changes to obtain the contribution of that risk driver. Therefore,

iterating this step for each risk driver leads to a linear approximation of the

loss variable. Applying the Euler principle to the approximation gives a risk

attribution.

Other related literature includes Bauer and Zanjani [3], who use the reverse

logic to identify the risk measure by calculating the marginal risk contribution

first. Then they find risk measures that can deliver the correct risk allocation.

While risk allocation and risk attribution go from the total risk to smaller enti-

ties or drivers, risk aggregation goes in the opposite direction, which computes

the total risk from several risk components. Risk aggregation is particularly

important when dealing with systemic and vector-valued risk measures, such

as in Cousina and Di Bernardino [5], Feinstein et al. [7], Jouini et al. [9], and

Landsman et al. [13].

This thesis aims to analyze risk allocation and risk attribution dynamically

over time, but we also revisit the static setting. For the static risk allocation,

we primarily base on Tasche [20], which we extend to the dynamic setting by

using time-consistent dynamic risk measures, discussed in Acciaio and Pen-

ner [1]. Furthermore, because the risk attribution in Frei [8] considers risk

drivers over time, we use this approach to generalize risk attribution from a

static to a dynamic setting.

The remainder of this thesis is organized as follows. Chapter 2 discusses

risk allocation in two sections, one section devoted to a static setting and the

other to a dynamic setting, where the static setting is a one-period model and

the dynamic setting is over an interval [0, T ] for a time horizon T . First, we
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introduce the RORAC of a portfolio and determine when risk allocations are

RORAC compatible and when the full-allocation property is satisfied for both

static and dynamic settings. Towards the end of Chapter 2, we analyze the

time consistency of risk measures and risk allocations in the dynamic setting.

Chapter 3 also has two sections about the static and dynamic settings, but

deals with risk attribution rather than risk allocation. In both sections of

Chapter 3, we start with a two-factor model and then apply the same logic

to a multi-factor model. The methodology for risk attribution is to use a

linearization of the profit/loss contributions and then apply risk allocation.

We show an example for both risk allocation and risk attribution in Chapter 4.

Firstly, we check the properties of a risk measure in the case of the entropic

risk measure. Then we calculate its Euler risk contributions by using risk

allocation and risk attribution. In addition, we simulate the risk attribution

for this example, when VaR and ES are used as risk measures. Chapter 5

concludes, and Appendix A contains MATLAB code used for the computations

in Chapter 4.
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Chapter 2

Risk Allocation

In this chapter, we discuss risk allocation, which addresses the question of how

to allocate the risk of some entities to different sub-entities. We start in Section

2.1 with a one-period model, following closely Tasche [20], but providing more

details. In Section 2.2, we analyze the situation when the model is over a

continuous time interval.

Throughout this master’s thesis, we are working on a probability space

(Ω,F , P ), and all equations and inequalities between random variables are

understood to hold almost surely.

2.1 Static Setting

We consider a portfolio consisting of n assets. Equivalently, we can think of a

company consisting of n divisions. Suppose that we describe the profit/loss of

asset i in the portfolio by a real-valued random variable Xi, then the portfolio-

7



wide profit/loss is,

X =
n∑︂

i=1

Xi.

In the equivalent interpretation, X is the company’s profit/loss while Xi is the

profit/loss of division i.

Definition 2.1.1. A risk measure ρ is a mapping from a set L of random

variables to the real numbers. The risk measure ρ : L → R ∪ {+∞} has the

following properties:

Normalized

ρ(0) = 0

Translative

If a ∈ R and Z ∈ L, then ρ(Z + a) = ρ(Z)− a

Monotone

If Z1, Z2 ∈ L and Z1 ≤ Z2 almost surely, then ρ(Z2) ≤ ρ(Z1)

The economic capital (EC) is the amount of capital allocated for preventing

insolvency. It depends on the profit/loss. Thus, we determine EC by a risk

measure ρ,

EC = ρ(X). (2.1)

Let the variable ui be the weight of asset i, and the vector u = (u1, . . . , un) ∈ Rn

be a portfolio. At present, the profit/loss of portfolio u is X(u) given by

X(u) =
n∑︂

i=1

uiXi

and the risk of portfolio u is ρ(X(u)). We use a function fρ,X(u) to present

the same risk measure ρ(X(u)). When we assume that the distribution of X

8



is fixed, we can write fρ,X as fρ. With that, we have

fρ(u) = ρ(X(u)). (2.2)

After defining EC for the whole portfolio as ρ(X) in (2.1), we still need to define

the risk contribution of Xi to ρ(X). It can help us get a better understanding

of the risk contribution of asset i to the total risk measure. We denote the risk

contribution of Xi to ρ(X) by ρ(Xi|X). With this notation, we can consider

the following notions of returns.

Definition 2.1.2. The total portfolio return on risk adjusted capital (RORAC)

is defined by

RORAC(X) =
E[X]

ρ(X)
.

The portfolio-related RORAC of the ith asset is defined by

RORAC(Xi|X) =
E[Xi]

ρ(Xi|X)
.

We next give two desirable properties of risk allocations.

Definition 2.1.3. Risk contributions ρ(X1|X), . . . , ρ(Xn|X) have the follow-

ing properties:

• They satisfy the full-allocation property if

n∑︂
i=1

ρ(Xi|X) = ρ(X).
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• They are RORAC compatible if there exists an ϵi > 0 such that

RORAC(Xi|X) > RORAC(X)⇒ RORAC(X + hXi) > RORAC(X)

for all 0 < h < ϵi.

RORAC compatibility says that if the portfolio-related RORAC of the ith

asset is greater than the portfolio RORAC, then increasing the weight of the

ith asset will increase the portfolio RORAC. The following result, taken from

Tasche [20], states that for a smooth risk measure, the RORAC compatibility

characterizes the risk contributions.

Proposition 2.1.1. Assume that fρ given in (2.2) is continuously differen-

tiable. Risk contributions ρ(X1|X), . . . , ρ(Xn|X) are RORAC compatible for

arbitrary expected values of X1, . . . , Xn, if and only if ρ(Xi|X) is uniquely

determined by

ρEuler(Xi|X) =
dρ

dh
(X + hXi)

⃓⃓⃓⃓
h=0

=
∂fρ
∂ui

(1, . . . , 1). (2.3)

The risk allocation given by (2.3) is called the Euler allocation principle.

Proof. Firstly, we prove if ρ(Xi|X) is uniquely determined by (2.3), then

ρ(Xi|X) is RORAC compatible. Set

M(u) = E[X(u)].
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Notice that RORAC can be written as

RORAC(X(u)) =
E[X(u)]

ρ(X(u))
=

M(u)

ρ(X(u)) +M(u)−M(u)
= R(u).

Because the risk measure is translative, we know

ρ(X(u)) +M(u) = ρ(X(u)−M(u)).

Then we define

ρX(u) = ρ(X(u)),

ρY (u) = ρ(X(u)−M(u)),

where (X(u)−M(u)) is the fluctuation of X(u). So we have ρX(u) = ρY (u)−

M(u). Thus,

RORAC(X(u)) =
M(u)

ρY (u)−M(u)
= R(u).

Given the notion of a per-unit risk contribution of the profit fluctuation ai(u),

we define it as

ai(u)
def
= ρ(Xi|X) +

∂M(u)

∂ui

.

We get

RORAC(Xi|X) =

∂M(u)
∂ui

ai(u)− ∂M(u)
∂ui

=
M ′

i(ui)

ai(u)−M ′
i(ui)

11



where

M(u) = (M1(u1), . . . ,Mn(un))
′.

We get

∂R(u)

∂ui

= (ρY (u)−M(u))−2

(︃
M ′

i(ui)(ρ
Y (u)−M(u))

−M(u)

(︃
∂ρY (u)

∂ui

−M ′
i(ui)

)︃)︃
= (ρY (u)−M(u))−2

(︃
M ′

i(ui)ρ
Y (u)−M(u)

∂ρY (u)

∂ui

)︃
.

If ai(u) =
∂ρY (u)
∂ui

, then

∂R(u)

∂ui

= (ρY (u)−M(u))−2
(︁
M ′

i(ui)ρ
Y (u)−M(u)ai(u)

)︁
.

If

RORAC(Xi|X) > R(u)

we get

M ′
i(ui)

ai(u)−M ′
i(ui)

>
M(u)

ρY (u)−M(u)
,

M ′
i(ui)(ρ

Y (u)−M(u)) > (ai(u)−M ′
i(ui))M(u),

M ′
i(ui)ρ

Y (u) > ai(u)M(u),

M ′
i(ui)ρ

Y (u)− ai(u)M(u) > 0.

Then ∂R(u)
∂ui

> 0, such that R is an increasing function in the ui-direction. So
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it is clear that RORAC(X +hXi) > RORAC(X), for all small enough h > 0.

So we have proved that if ai(u) =
∂ρY (u)
∂ui

, then ρ(Xi|X) is RORAC compatible.

Next, we prove ai(u) = ∂ρY (u)
∂ui

is equivalent to (2.3) as follows. Since

ρX(u) = ρY (u)−M(u),

∂ρX(u)

∂ui

=
∂ρY (u)

∂ui

− ∂M(u)

∂ui

= ai(u)−M ′
i(ui)

and ρEuler(Xi|X) = dρ
dh
(X + hXi)

⃓⃓
h=0

= per-unit risk contribution of the total

profit = per-unit risk contribution of profit fluctuation - per-unit risk contri-

bution of expect profit = ai(u) −M ′
i(ui) = ∂ρX(u)

∂ui
= ∂ρ(X(u))

∂ui
= ∂fρ

∂ui
. Thus, if

ρEuler(Xi|X) = dρ
dh
(X + hXi)

⃓⃓
h=0

= ∂fρ
∂ui

, then ρ(Xi|X) is RORAC compatible.

Secondly, we prove if ρ(Xi|X) is RORAC compatible, then ρ(Xi|X) is

uniquely determined by (2.3). Let

M(u) = m⊤u =
n∑︂

i=1

miui

where mi is the expected profit/loss of asset i. Thus,

∂M(u)

∂ui

= M ′
i(ui) = mi.

Define m(t) ∈ Rd by

mi(t)
def
= 1,

mj(t)
def
=

t

uj

(︃
ρY (u)

ai(u)
− ui

)︃
,

ml(t)
def
= 0 for l ̸= i, j,
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then

m(t)⊤u = t
ρY (u)

ai(u)
+ (1− t)ui

and

mi(t)ρ
Y (u)− ai(u)m(t)⊤u = (1− t)(ρY (u)− uiai(u)).

We obtain

(1− t)(ρY (u)− uiai(u)) +

(︃
ai(u)−

∂ρY (u)

∂ui

)︃(︃
t
ρY (u)

ai(u)
+ (1− t)ui

)︃
= mi(t)ρ

Y (u)− ai(u)m(t)⊤u+

(︃
ai(u)−

∂ρY (u)

∂ui

)︃
m(t)⊤u

= mi(t)ρ
Y (u)− ai(u)m(t)⊤u+ ai(u)m(t)⊤u−m(t)⊤u

∂ρY (u)

∂ui

= mi(t)ρ
Y (u)−m(t)⊤u

∂ρY (u)

∂ui

.

We can choose a sequence tk with tk → 1 such that RORAC(Xi|X) >

RORAC(X) and ρ(Xi|X) are RORAC compatible, then we haveRORAC(X+

hXi|X) > RORAC(X), and we can get ∂R(u)
∂ui
≥ 0 so that

M ′
i(ui)ρ

Y (u)−M(u)
∂ρY (u)

∂ui

≥ 0.

As M(u) = m⊤u and M ′
i(ui) = mi, taking t as tk, we get mi(tk)ρ

Y (u) −

m(tk)
⊤u∂ρY (u)

∂ui
≥ 0, thus (1− tk)(ρ

Y (u)− uiai(u)) + (ai(u)− ∂ρY (u)
∂ui

)(tk
ρY (u)
ai(u)

+

(1− tk)ui) ≥ 0.

Similarly, we can choose a sequence sk with sk → 1 such that we deduce
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RORAC(Xi|X) < RORAC(X) and get ∂R(u)
∂ui
≤ 0, then taking t as sk, we get

mi(sk)ρ
Y (u)−m(sk)

⊤u
∂ρY (ui)

∂ui

≤ 0.

Thus,

(1− sk)(ρ
Y (u)− uiai(u)) +

(︃
ai(u)−

∂ρY (u)

∂ui

)︃(︃
sk
ρY (u)

ai(u)
+ (1− sk)ui

)︃
≤ 0.

When k →∞, it follows that

0 ≤ ai(u)−
∂ρY (u)

∂ui

≤ 0

We get

ai(u) =
∂ρY (u)

∂ui

,

which is equivalent to ρEuler(Xi|X) = dρ
dh
(X+hXi)

⃓⃓
h=0

= ∂fρ
∂ui

, as shown before.

Consequently, if ρ(Xi|X) is RORAC compatible, then we have ρEuler(Xi|X) =

dρ
dh
(X + hXi)

⃓⃓
h=0

= ∂fρ
∂ui

.

After having discussed when risk contributions are RORAC compatible,

we now mention when the full-allocation property is satisfied. By Tasche [20],

the full-allocation property for the Euler allocation (2.3) holds if and only if

the risk measure is homogeneous of degree 1, which means ρ(τX) = τρ(X)

for all τ > 0. Examples of risk measures that are homogeneous of degree 1

include VaR and ES.
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2.2 Dynamic Setting

We continue to consider a portfolio with n assets, but now we are interested

in the risk allocation at time t ∈ [0, T ], where T is a fixed time horizon.

We define Ft for t ∈ [0, T ] as the information set which contains all the

information up to time t. Ft is a σ-algebra, and it holds that Ft1 ⊆ Ft2 for all

t1 ≤ t2. We assume that F0 is trivial in the sense that it consists of only sets

of probability 0 or 1. We further assume that FT = F .

Definition 2.2.1. For a random variable X and t ∈ [0, T ],

• X ∈ L∞ if there exists a real number c > 0 such that |X| ≤ c.

• X ∈ L∞
t if there exists a real number c > 0 such that |X| ≤ c and X is

Ft-measurable.

We note that L∞
0 = R and L∞

T = L∞.

Definition 2.2.2. For t ∈ [0, T ], a map ρt : L∞ → L∞
t is called a dynamic

risk measure if it satisfies the following properties for all X ∈ L∞:

Normalized

ρt(0) = 0

Translative

If at ∈ L∞
t , then ρt(X + at) = ρt(X)− at

Monotone

If X1, X2 ∈ L∞ and X1 ≤ X2 almost surely, then ρt(X2) ≤ ρt(X1)

Comparing with Definition 2.1.1, a dynamic risk measure is a mapping from

random variables to random variables, rather than from random variables to
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real numbers. In addition, ρt is measured at a fixed time t ∈ [0, T ]. Definition

2.1.1 can be thought of as Definition 2.2.2 on the trivial σ-algebra.

At time t, the economic capital (ECt) of the portfolio is ρt(X). The risk of

portfolio u is ρt(X(u)) at time t, where X(u) =
∑︁n

i=1 uiXi. We use a function

fρt,X(u) to present the same risk measure ρt(X(u)). When we assume that the

distribution of X is fixed, we can write fρt,X as fρt . With that, we have

fρt(u) = ρt(X(u)). (2.4)

After defining ECt for the whole portfolio at time t as ρt(X), we still need

to define the risk contribution of Xi to ρt(X). It can help us get a better

understanding of the risk contribution of asset i to the total risk measure at

time t. We denote the risk contribution of Xi to ρt(X) by ρt(Xi|X).

Definition 2.2.3. The total portfolio return on risk adjusted capital at time t

(RORACt) is defined by

RORACt(X) =
E[X|Ft]

ρt(X)
.

The portfolio-related RORACt of the ith asset is defined by

RORACt(Xi|X) =
E[Xi|Ft]

ρt(Xi|X)
.

We next give two desirable properties of risk allocations.

Definition 2.2.4. Risk contributions ρt(X1|X), . . . , ρt(Xn|X) at time t have

the following properties:
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• they satisfy the full-allocation property if

n∑︂
i=1

ρt(Xi|X) = ρt(X).

• they are RORACt compatible if there exists an Ft-measurable random

variable ϵi with ϵi > 0 such that

RORACt(Xi|X) > RORACt(X)⇒ RORACt(X+hXi) > RORACt(X)

almost surely, for any Ft-measurable random variable h with 0 < h < ϵi.

Proposition 2.2.1. For a fixed t ∈ [0, T ], assume that fρt given in (2.4)

is continuously differentiable. Risk contributions ρt(X1|X), . . . , ρt(Xn|X) are

RORACt compatible for arbitrary conditionally expected values E[X1|Ft], . . . ,

E[Xn|Ft] of X1, . . . , Xn at time t, if and only if ρt(Xi|X) is uniquely deter-

mined by

ρEuler
t (Xi|X) =

dρt
dh

(X + hXi)

⃓⃓⃓⃓
h=0

=
∂fρt
∂ui

(1, . . . , 1). (2.5)

Proof. Firstly, we prove if ρt(Xi|X) is uniquely determined by (2.5), then

ρ(Xi|X) is RORACt compatible. Set

Mt(u) = E[X(u)|Ft].

Notice that RORACt can be written as

RORACt(X(u)) =
E[X(u)|Ft]

ρt(X)
=

Mt(u)

ρt(X(u)) +Mt(u)−Mt(u)
= Rt(u).

18



Because the dynamic risk measure is translative, we know

ρt(X(u)) +Mt(u) = ρt(X(u)−Mt(u)).

Then we define

ρXt (u) = ρt(X(u)),

ρYt (u) = ρt(X(u)−Mt(u)),

where (X(u)−Mt(u)) is the fluctuation of X(u) at time t.

So we have ρXt (u) = ρYt (u)−Mt(u). Thus,

RORACt(X(u)) =
Mt(u)

ρYt (u)−Mt(u)
= Rt(u).

Given the notion of a per-unit risk contribution of the profit fluctuation at

time t as the notation ati(u), we define it as

ati(u)
def
= ρt(Xi|X) +

∂Mt(u)

∂ui

.

We get

RORACt(Xi|X) =

∂Mt(u)
∂ui

ati(u)− ∂Mt(u)
∂ui

=
M ′

ti(ui)

ati(u)−M ′
ti(ui)

where Mt(u) = (Mt1(u1), . . . ,Mtn(un))
′. We get

∂Rt(u)

∂ui

= (ρYt (u)−Mt(u))
−2

(︃
M ′

ti(ui)(pty(u)−Mt(u))

−Mt(u)

(︃
∂ρYt (u)

∂ui

−M ′
ti(ui)

)︃)︃
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so that

∂Rt(u)

∂ui

= (ρYt (u)−Mt(u))
−2

(︃
M ′

ti(ui)ρ
Y
t (u)−Mt(u)

∂ρYt (u)

∂ui

)︃
.

If ati(u) =
∂ρYt (u)

∂ui
, then

∂Rt(u)

∂ui

= (ρYt (u)−Mt(u))
−2(M ′

ti(ui)ρ
Y
t (u)−Mt(u)ati(u)).

If

RORACt(Xi|X) > Rt(u),

we get

M ′
ti(ui)

ati(u)−M ′
ti(ui)

>
Mt(u)

ρYt (u)−Mt(u)
,

M ′
ti(ui)(ρ

Y
t (u)−Mt(u)) > (ati(u)−M ′

ti(ui))Mt(u),

M ′
ti(ui)ρ

Y
t (u) > ati(u)Mt(u),

M ′
ti(ui)ρ

Y
t (u)− ati(u)Mt(u) > 0.

Then ∂Rt(u)
∂ui

> 0, such that Rt is an increasing function. This implies that there

exists an Ft-measurable random variable ϵi with ϵi > 0 such thatRORACt(X+

hXi) > RORACt(X) for all Ft-measurable random variables h with 0 < h <

ϵi. So we have proved that if ati(u) =
∂ρYt (u)

∂ui
, then ρt(Xi|X) is RORACt

compatible.

Next, we prove ati(u) =
∂ρYt (u)

∂ui
is equivalent to (2.5) as follows. Since
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ρXt (u) = ρYt (u)−Mt(u),

∂ρXt (u)

∂ui

=
∂ρYt (u)

∂ui

− ∂Mt(u)

∂ui

= ati(u)−M ′
ti(ui)

and ρEuler
t (Xi|X) = dρt

dh
(X +hXi)

⃓⃓
h=0

= per-unit risk contribution of the total

profit at time t = per-unit risk contribution of profit fluctuation at time t

− per-unit risk contribution of expect profit at time t = ati(u) −M ′
ti(ui) =

∂ρXt (u)

∂ui
= ∂ρt(X(u))

∂ui
= ∂fρt

∂ui
.

Thus, if ρEuler
t (Xi|X) = dρt

dh
(X+hXi)

⃓⃓
h=0

= ∂fρt
∂ui

, then ρt(Xi|X) isRORACt

compatible.

Secondly, we prove if given ρt(Xi|X) isRORACt compatible, then ρt(Xi|X)

is uniquely determined by (2.5). Let

Mt(u) = m⊤
t u =

n∑︂
i=1

mtiui

where mti is the expected profit/loss by asset i at time t. Thus,

∂Mt(u)

∂ui

= M ′
ti(ui) = mti.

Define mt(b) as a random vector valued in Rd by

mti(b)
def
= 1,

mtj(b)
def
=

b

uj

(︃
ρYt (u)

ati(u)
− ui

)︃
,

mtl(b)
def
= 0 for l ̸= i, j,
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then

mt(b)
⊤u = b

ρYt (u)

ati(u)
+ (1− b)ui

and

mti(b)ρ
Y
t (u)− ati(u)mt(b)

⊤u = (1− b)(ρYt (u)− uiati(u)).

We obtain

(1− b)(ρYt (u)− uiati(u)) +

(︃
ati(u)−

∂ρYt (u)

∂ui

)︃(︃
b
ρYt (u)

ati(u)
+ (1− b)ui

)︃
= mti(b)ρ

Y
t (u)− ati(u)mt(b)

⊤u+

(︃
ati(u)−

∂ρYt (u)

∂ui

)︃
mt(b)

⊤u

= mti(b)ρ
Y
t (u)− ati(u)mt(b)

⊤u+ ati(u)mt(b)
⊤u−mt(b)

⊤u
∂ρYt (u)

∂ui

= mti(b)ρ
Y
t (u)−mt(b)

⊤u
∂ρYt (u)

∂ui

.

We can choose a sequence bk with bk → 1 such that RORACt(Xi|X) >

RORACt(X) and ρt(Xi|X) are RORACt compatible, then RORACt(X +

hXi|X) > RORACt(X) almost surely, we can get ∂Rt(u)
∂ui

≥ 0, soM ′
ti(ui)ρ

Y
t (u)−

Mt(u)
∂ρYt (u)

∂ui
≥ 0.

As Mt(u) = m⊤
t u and M ′

ti(ui) = mti, taking b as bk, we get mti(bk)ρ
Y
t (u)−

mt(bk)
⊤u

∂ρYt (u)

∂ui
≥ 0, thus (1−bk)(ρ

Y
t (u)−uiati(u))+(ati(u)− ∂ρYt (u)

∂ui
)(bk

ρYt (u)

ati(u)
+

(1− bk)ui) ≥ 0.

Similarly, we can choose a sequence vk with vk → 1 so that we deduce

RORACt(Xi|X) < RORACt(X) and get ∂Rt(u)
∂ui

≤ 0, then taking b as vk, we

get mti(vk)ρ
Y
t (u)−mt(vk)

⊤u
∂ρYt (ui)

∂ui
≤ 0. Thus,

(1− vk)(ρ
Y
t (u)− uiati(u)) + (ati(u)−

∂ρYt (u)

∂ui

)(vk
ρYt (u)

ati(u)
+ (1− vk)ui) ≤ 0.
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When k →∞,

0 ≤ ati(u)−
∂ρYt (u)

∂ui

≤ 0.

We get

ati(u) =
∂ρYt (u)

∂ui

,

which is equivalent to ρEuler
t (Xi|X) = dρt

dh
(X + hXi)

⃓⃓
h=0

= ∂fρt
∂ui

, as shown

before. So, if ρt(Xi|X) is RORACt compatible, then we have ρEuler
t (Xi|X) =

dρt
dh
(X + hXi)

⃓⃓
h=0

= ∂fρt
∂ui

.

Similarly to Section 2.1, the full-allocation property is satisfied when the

risk measure is homogeneous of degree 1, which means ρt(τX) = τρt(X) for

all τ > 0.

We next analyze the relation between the time consistency of risk measures

and the time consistency of the risk contributions. To this end, we recall the

following definition; see for example, Acciaio and Penner [1].

Definition 2.2.5. A dynamic risk measure is time consistent if

ρt(X) > ρt(Y )⇒ ρs(X) > ρs(Y ) for all s ≤ t and X, Y ∈ L∞

Proposition 2.2.2. Assume:

• ρ is time consistent

• risk contributions are RORACt and RORACs compatible for t ≥ s

• fρt and fρs given in (2.4) are continuously differentiable,

then ρt(Xi|X) > ρt(Xj|X)⇒ ρs(Xi|X) > ρs(Xj|X).
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Proposition 2.2.2 shows that for RORAC compatible risk contributions,

time consistency of the risk measure translates to time consistency of risk

contributions.

Proof. From Proposition 2.2.1, since risk contributions are RORACt compat-

ible, we get ρt(Xi|X) = dρt
dh
(X + hXi)

⃓⃓
h=0

and ρt(Xj|X) = dρt
dh
(X + hXj)

⃓⃓
h=0

.

Similarly, as risk contributions areRORACs compatible, we obtain ρs(Xi|X) =

dρs
dh

(X + hXi)
⃓⃓
h=0

and ρs(Xj|X) = dρs
dh

(X + hXj)
⃓⃓
h=0

.

If ρt(Xi|X) > ρt(Xj|X), we obtain dρt
dh
(X + hXi)

⃓⃓
h=0

> dρt
dh
(X + hXj)

⃓⃓
h=0

.

Then we can conclude that ρt(X + hXi) > ρt(X + hXj) for small h. Using

Definition 2.2.5 and that ρ is time consistent by the first assumption, we get

ρs(X + hXi) > ρs(X + hXj) for all s ≤ t and small h. Therefore, we have

dρs
dh

(X+hXi)
⃓⃓
h=0

> dρs
dh

(X+hXj)
⃓⃓
h=0

. This implies ρs(Xi|X) > ρs(Xj|X).
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Chapter 3

Risk Attribution

In this chapter, we introduce risk attribution, which is about identifying and

quantifying risk drivers, risk classifications, and risk management features. We

begin with a simple model which contains two risk factors. Then we analyze

a model that has d risk factors.

3.1 Static Setting

In this section, we discuss the approximation of the total loss variable and loss

variables of divisions at time 0, following the approach of Frei [8].

3.1.1 Two-Factor Model

Assume a portfolio has two risk factors. We use random variables R1, R2 to

represent them. There is a function f that transforms the risk factors to the

total loss variable L = f(R1, R2). Thus, the risk measure of the portfolio is

ρ(−f(R1, R2)).
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For risk attribution, the risk drivers may contribute to a portfolio’s prof-

it/loss in a nonlinear way, so we need to linearize the loss L = f(R1, R2) ≈

A1 + A2, where Ai is the loss contribution of the ith risk factor (i ∈ {1, 2}).

We next discuss how to determine A1 and A2.

We consider the risk factors in discrete time for T time steps. We use

Ri
t to denote the value of the ith risk factor at time t, where i ∈ {1, 2} and

t ∈ {0, 1, . . . , T}. The loss at time T is f(R1
T , R

2
T ) ≈ A1 + A2 + f(R1

t , R
2
t ).

We define A1 as the losses arising from changes in R1 while R2 is fixed. This

implies that A1 = f(R1
T , R

2
0) − f(R1

0, R
2
0). Simply taking f(R1

0, R
2
0) = 0 and

defining A2 by using the same logic, we get

f(R1
T , R

2
T ) ≈ f(R1

T , R
2
0) + f(R1

0, R
2
T ).

To avoid a significant estimation error, we prefer computing the loss con-

tributions by summing up the marginal changes at different time steps, rather

than just one step, which leads to

A1 =
T−1∑︂
t=0

(︁
f(R1

t+1, R
2
t )−f(R1

t , R
2
t )
)︁

and A2 =
T−1∑︂
t=0

(︁
f(R1

t , R
2
t+1)−f(R1

t , R
2
t )
)︁
.

The approximation error can be decreased by dividing the time horizon into

more steps.

3.1.2 Multi-Factor Model

In this subsection, we discuss the general case with d risk factors. Applying

a similar idea to sum up the marginal changes in losses resulting from Rj at

26



different time steps while Ri for i ̸= j is fixed. This means the loss contribution

Aj is defined by

Aj =
T−1∑︂
t=0

(︁
f(Rj

t+1, (R
i
t)i ̸=j)− f((Ri

t)i)
)︁
, (3.1)

where f(Rj
t + 1, (Ri

t)i ̸=j)− f((Ri
t)i) is the change in losses caused by Rj from

time t to time t+ 1 while Ri for i ̸= j is fixed.

We obtain that Aj is the risk comes from the jth risk driver while the other

risk factors remain at the current values. Thus, the approximate change in

total loss from time 0 to T is the sum of Aj for j = 1, . . . , d whereas the real

change is f((Ri
T )i) − f((Ri

0)i). The overall residual, which is the difference

between the approximate change and the real change, is

f((Ri
T )i)− f((Ri

0)i)−
d∑︂

j=1

Aj

=
T−1∑︂
t=0

(︁
f((Ri

t+1)i)− f((Ri
t)i)
)︁
−

d∑︂
j=1

Aj

=
T−1∑︂
t=0

(︁
f((Ri

t+1)i)− f((Ri
t)i)
)︁
−

d∑︂
j=1

T−1∑︂
t=0

(︁
f(Rj

t + 1, (Ri
t)i ̸=j)− f((Ri

t)i)
)︁

=
T−1∑︂
t=0

(︁
f((Ri

t+1)i)− f((Ri
t)i)−

d∑︂
j=1

(︁
f(Rj

t + 1, (Ri
t)i ̸=j)− f((Ri

t)i)
)︁)︁
.

For the following results, taken from Frei [8], we fix the time horizon T , assume

that the risk factors are observable continuously on [0, T ], and consider the loss

contributions on a more and more granular time grid. The result then shows

that the sum of the loss contributions converges to the total losses under

suitable conditions.
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Proposition 3.1.1. Assume L = f(R1
T , . . . , R

d
T ) for a twice continuously dif-

ferentiable f and let (R1
t . . . , R

d
t )t∈[0,T ] be a continuous semimartingale on [0, T ]

with zero quadratic covariation ⟨Ri, Rj⟩t = 0 for all t ∈ [0, T ] and i ̸= j. We

set

Aj
N =

N−1∑︂
n=0

(︁
f(Rj

tn+1
, (Ri

tn)i ̸=j)− f((Ri
tn)i)

)︁
for 0 = t0 ≤ t ≤ · · · ≤ tN = T . Then

∑︁d
j=1A

j
N + f(R1

0, . . . , R
d
0) converges to

L almost surely as N →∞.

Proof. By Itô formula, we get

f(R1
T , . . . , R

d
T ) = f(R1

0, . . . , R
d
0) +

d∑︂
j=1

∫︂ T

0

fxj(R1
t , . . . , R

d
t ) dR

j
t

+
1

2

d∑︂
i,j=1

∫︂ T

0

fxixj(R1
t , . . . , R

d
t ) d⟨Ri, Rj⟩t.

We can rewrite it as,

f(R1
T , . . . , R

d
T )− f(R1

0, . . . , R
d
0) =

d∑︂
j=1

∫︂ T

0

fxj(R1
t , . . . , R

d
t ) dR

j
t

+
1

2

d∑︂
i,j=1

∫︂ T

0

fxixj(R1
t , . . . , R

d
t ) d⟨Ri, Rj⟩t.

Since ⟨Ri, Rj⟩t = 0 for all i ̸= j by assumption, we obtain

f(R1
T , . . . , R

d
T )− f(R1

0, . . . , R
d
0) =

d∑︂
j=1

∫︂ T

0

fxj(R1
t , . . . , R

d
t ) dR

j
t

+
1

2

d∑︂
j=1

∫︂ T

0

fxjxj(R1
t , . . . , R

d
t ) d⟨Rj, Rj⟩t.
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By the proof of Theorem 3.3 in Karatzas and Shreve [11], we conclude that

Aj
N converges almost surely to

∫︂ T

0

fxj(R1
t , . . . , R

d
t )R

j
t +

1

2

∫︂ T

0

fxjxj(R1
t , . . . , R

d
t ) d⟨Rj, Rj⟩t

Thus,

lim
N→∞

d∑︂
j=1

Aj
N + f(R1

0, . . . , R
d
0) =

d∑︂
j=1

∫︂ T

0

fxj(R1
t , . . . , R

d
t ) dR

j
t

+
1

2

d∑︂
j=1

∫︂ T

0

fxjxj(R1
t , . . . , R

d
t ) d⟨Rj, Rj⟩t

+ f(R1
0, . . . , R

d
0)

= f(R1
T , . . . , R

d
T )

= L almost surely.

We assume there are K divisions in the company, and Lk = fk((Ri
T )i) is

the loss contribution of the kth division to the total loss variable L, where

L =
∑︁K

k=1 L
k. We next introduce Ajk, which is the change in loss due to the

jth risk factor in the kth division. Similar to (3.1), we have

Ajk =
T−1∑︂
t=0

(︁
fk(Rj

t+1, (R
i
t)i ̸=j)− fk((Ri

t)i)
)︁
.

Therefore, we can use
∑︁d

j=1 A
jk to approximate Lk.
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3.2 Dynamic Setting

In this section, we discuss the approximation of the total loss variable and loss

variables of divisions at time t.

3.2.1 Two-Factor Model

Assume a portfolio has two risk factors, and we use random variables R1
T , R

2
T

at time T to represent them. There is a function f that transforms the risk

factors to the total loss variable L = f(R1
T , R

2
T ). Thus, the risk measure of the

portfolio is ρt(−f(R1
T , R

2
T )) at time t.

For risk attribution, the risk drivers may contribute to a portfolio’s prof-

it/loss in a nonlinear way, so we need to linearize the loss L = f(R1
T , R

2
T ) ≈

A1 + A2 + f(R1
t , R

2
t ), where Ai is the loss contribution of the ith risk factor

(i ∈ {1, 2}). We next discuss how to determine A1 and A2.

We consider the risk factors on the fixed time horizon T . Therefore, we

use Ri
t to denote the value of the ith risk factor at time t, where i ∈ {1, 2}.

The loss at time T is f(R1
T , R

2
T ) ≈ A1 + A2 + f(R1

t , R
2
t ). We define A1 as

the losses arising from changes in R1 while R2 is fixed. This implies that

A1 = f(R1
T , R

2
t ) − f(R1

t , R
2
t ). Simply taking f(R1

t , R
2
t ) = Xt and defining A2

by using the same logic, we get

f(R1
T , R

2
T ) ≈ f(R1

T , R
2
t )−Xt + f(R1

t , R
2
T )−Xt +Xt

≈ f(R1
T , R

2
t ) + f(R1

t , R
2
T )−Xt.

To avoid a significant estimation error, we prefer computing the loss contribu-
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tions by summing up the marginal changes at different time steps rather than

just one step, which leads to

A1 =
T−1∑︂
s=t

(︁
f(R1

s+1, R
2
s)−f(R1

s, R
2
s)
)︁

and A2 =
T−1∑︂
s=t

(︁
f(R1

s, R
2
s+1)−f(R1

s, R
2
s)
)︁
.

The approximation error can be decreased by dividing the time into more

steps.

3.2.2 Multi-Factor Model

In this subsection, we discuss the general case with d risk factors. Applying

the similar idea that summing up the marginal changes in losses result from

Rj at different time steps while Ri for i ̸= j is fixed. This means the loss

contribution Aj is defined by

Aj =
T−1∑︂
s=t

(︁
f(Rj

s+1, (R
i
s)i ̸=j)− f((Ri

s)i)
)︁
, (3.2)

where f(Rj
s + 1, (Ri

s)i ̸=j)− f((Ri
s)i) is the change in losses caused by Rj from

time s to time s+ 1 while Ri for i ̸= j is fixed.

We obtain that Aj is the risk coming from the jth risk driver while the other

risk factors remain at the current values. Thus, the approximate change in

total loss from time t to T is the sum of Aj for j = 1, . . . , d whereas the real

change is f((Ri
T )i)−f((Ri

t)i). Then the overall residual, which is the difference

between the approximate change and the real change, is

f((Ri
T )i)− f((Ri

t)i)−
d∑︂

j=1

Aj =
T−1∑︂
s=t

(︁
f((Ri

s+1)i)− f((Ri
s)i)
)︁
−

d∑︂
j=1

Aj,
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which can be written as

T−1∑︂
s=t

(︁
f((Ri

s+1)i)− f((Ri
s)i)
)︁
−

d∑︂
j=1

T−1∑︂
s=t

(︁
f(Rj

s+1, (R
i
s)i ̸=j)− f((Ri

s)i)
)︁

=
T−1∑︂
s=t

(︃
f((Ri

s+1)i)− f((Ri
s)i)−

d∑︂
j=1

(︁
f(Rj

s+1, (R
i
s)i ̸=j)− f((Ri

s)i)
)︁)︃

.

The following result is the analogue to Proposition 3.1.1 for dynamic risk

measures. We considered a fixed time interval [t, T ] and assume that the risk

factors are observable continuously on [t, T ].

Proposition 3.2.1. Assume L = f(R1
T , . . . , R

d
T ) for a twice continuously dif-

ferentiable f and let (R1
s . . . , R

d
s)s∈[t,T ] be a continuous semimartingale on [t, T ]

with zero quadratic covariation ⟨Ri, Rj⟩s = 0 for all s ∈ [t, T ] and i ̸= j. We

set

Aj
N =

N−1∑︂
n=1

(︁
f(Rj

sn+1
, (Ri

sn)i ̸=j)− f((Ri
sn)i)

)︁
for t = s0 ≤ s1 ≤ · · · ≤ sN = T . Then

∑︁d
j=1 A

j
N + f(R1

t , . . . , R
d
t ) converges to

L almost surely as N →∞.

Proof. Similar to the proof of Proposition 3.1.1, we can get

lim
N→∞

d∑︂
j=1

Aj
N + f(R1

t , . . . , R
d
t ) =

d∑︂
j=1

∫︂ T

t

fxj(R1
s, . . . , R

d
s) dR

j
s

+
1

2

d∑︂
j=1

∫︂ T

t

fxjxj(R1
s, . . . , R

d
s) d⟨Rj, Rj⟩s

+ f(R1
t , . . . , R

d
t )

= f(R1
T , . . . , R

d
T )

= L almost surely.
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We assume there are K divisions in the company and Lk = fk((Ri
T )i) is

the loss contribution of the kth division to the total loss variable L, where

L =
∑︁K

k=1 L
k. We next introduce Ajk, which is the change in loss due to jth

risk factor in the kth division. Similar to (3.2), we have

Ajk =
T−1∑︂
s=t

(︁
fk(Rj

s+1, (R
i
s)i ̸=j)− fk((Ri

s)i)
)︁
.

Therefore, we can use
∑︁d

j=1 A
jk to approximate Lk.

From Proposition 3.2.1, we have L = limN→∞
∑︁d

j=1A
j
N + f(R1

t , . . . , R
d
t ).

Assume that f(R1
t , . . . , R

d
t ) = 0, then L = limN→∞

∑︁d
j=1A

j
N . Thus, we con-

clude that, for all ϵ > 0, there exist an N0 such that
⃓⃓∑︁d

j=1 A
j
N − L

⃓⃓
< ϵ for

all N ≥ N0 almost surely. After letting
∑︁d

j=1A
j
N = AN , we apply RORAC to

Aj
N ,

RORACt(AN)
def
=

E[AN |Ft]
ρt(AN)

,

RORACt(A
j
N |AN)

def
=

E[Aj
N |Ft]

ρt(A
j
N |AN)

.

Risk contribution ρ(A1
N |AN), . . . , ρ(A

d
N |AN) are RORACt compatible if there

exists an Ft-measurable random variable ϵj with ϵj > 0 such that

RORACt(A
j
N |AN) > RORACt(AN)⇒ RORACt(AN+hAj

N) > RORACt(AN)

almost surely, for any Ft-measurable random variable h with 0 < h < ϵj. We

define

ρEuler
t (Aj

N |AN) =
dρt
dh

(AN + hAj
N)

⃓⃓⃓⃓
h=0

, (3.3)

which is RORACt compatible if (2.4) is continuously differentiable for Xi =
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Aj
N ; this can be shown similarly to Proposition 2.2.1.

Proposition 3.2.2. If
⃓⃓∑︁d

j=1A
j
N−L

⃓⃓
< ϵ almost surely, then

⃓⃓
ρt(
∑︁d

j=1 A
j
N)−

ρt(L)
⃓⃓
< ϵ almost surely.

Proof.
⃓⃓∑︁d

j=1A
j
N − L

⃓⃓
< ϵ almost surely implies −ϵ <

∑︁d
j=1A

j
N − L < ϵ

almost surely. Thus, L− ϵ <
∑︁d

j=1A
j
N < L+ ϵ almost surely. Then we apply

ρt on the both side of this inequality, by monotonicity, we obtain,

ρt(L+ ϵ) < ρt

(︄
d∑︂

j=1

Aj
N

)︄
< ρt(L− ϵ).

And by translativity,

ρt(L)− ϵ < ρt

(︄
d∑︂

j=1

Aj
N

)︄
< ρt(L) + ϵ.

This gives

−ϵ < ρt

(︄
d∑︂

j=1

Aj
N

)︄
− ρt(L) < ϵ

and thus, ⃓⃓⃓⃓
⃓ρt
(︄

d∑︂
j=1

Aj
N

)︄
− ρt(L)

⃓⃓⃓⃓
⃓ < ϵ.

Proposition 3.2.3. Assume:

• ρ is time consistent,

• Risk contributions ρt(A
1
N |AN), . . . , ρt(A

d
N |AN) are both RORACt and

RORACs compatible for t ≥ s,

• fρt and fρs given in (2.4) are continuously differentiable,
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• dρt(AN+hAj
N )

dh

⃓⃓
h=0
− dρt(L+hAj

N )

dh

⃓⃓
h=0

and
dρs(AN+hAj

N )

dh

⃓⃓
h=0
− dρs(L+hAj

N )

dh

⃓⃓
h=0

converge to zero almost surely for all j,

then lim inf
N→∞

(ρt(A
i
N |L)− ρt(A

j
N |L)) > 0⇒ lim inf

N→∞
(ρs(A

i
N |L)− ρs(A

j
N |L)) ≥ 0.

Proof. Because of the convergence in the last assumption, for every ϵ > 0,

there exists N0 such that

⃓⃓⃓⃓
dρt(AN + hAj

N)

dh

⃓⃓⃓⃓
h=0

− dρt(L+ hAj
N)

dh

⃓⃓⃓⃓
h=0

⃓⃓⃓⃓
< ϵ

for all N ≥ N0. Therefore, if lim inf
N→∞

(ρt(A
i
N |L)− ρt(A

j
N |L)) > 0, then

lim inf
N→∞

(︃
dρt(L+ hAi

N)

dh

⃓⃓⃓⃓
h=0

− dρt(L+ hAj
N)

dh

⃓⃓⃓⃓
h=0

)︃
> 0

and

lim inf
N→∞

(︃
dρt(AN + hAi

N)

dh

⃓⃓⃓⃓
h=0

− dρt(AN + hAj
N)

dh

⃓⃓⃓⃓
h=0

)︃
> 0,

which is equivalent to

lim inf
N→∞

(ρt(A
i
N |AN)− ρt(A

j
N |AN)) > 0.

So we conclude that, for N large enough,

ρt(A
i
N |AN)− ρt(A

j
N |AN) > 0.

By Proposition 2.2.2, for N large enough,

ρs(A
i
N |AN)− ρs(A

j
N |AN) > 0.
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Therefore, we get

lim inf
N→∞

(ρs(A
i
N |AN)− ρs(A

j
N |AN)) ≥ 0.

In conclusion, if we have the four assumptions, then

lim inf
N→∞

(ρt(A
i
N |L)− ρt(A

j
N |L)) > 0

implies lim inf
N→∞

(ρs(A
i
N |L)− ρs(A

j
N |L)) ≥ 0.
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Chapter 4

Example

We consider a filtered probability space (Ω,F , (Ft)0≤t≤T , P ). For a random

variable X, let ρt(X) = 1
γ
lnE[e−γX |Ft], where γ is a positive constant and ρ0

is called the entropic risk measure. To prove that ρ is a dynamic risk measure,

we check its normalization, transitivity and monotonicity:

Check normalization

ρt(0) =
1

γ
lnE[e0|Ft] =

1

γ
ln(1) = 0

Check transitivity

Let at ∈ L∞
t , then

ρt(X + at) =
1

γ
lnE[e−γ(X+at)|Ft]

=
1

γ
ln(E[e−γX |Ft]e

−γat)

=
1

γ
lnE[e−γX |Ft] +

1

γ
ln(e−γat)
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= ρt(X) +
1

γ
(−γat)

= ρt(X)− at.

Check monotonicity

Let X1, X2 ∈ L∞ and X1 ≤ X2 almost surely. Recall that in this example

ρt(X1) = 1
γ
lnE

[︁
e−γX1

⃓⃓
Ft

]︁
and ρt(X2) = 1

γ
lnE

[︁
e−γX2

⃓⃓
Ft

]︁
. And X1 ≤ X2

almost surely ⇒ −X1 ≥ −X2 almost surely ⇒ e−γX1 ≥−γX2 , by the mono-

tonicity of conditional expectation, we get E
[︁
e−γX1

⃓⃓
Ft

]︁
≥ E

[︁
e−γX2

⃓⃓
Ft

]︁
. Since

ln is an increasing function and γ is a positive constant, we conclude that

1

γ
lnE

[︁
e−γX1

⃓⃓
Ft

]︁
≥ 1

γ
lnE

[︁
e−γX2

⃓⃓
Ft

]︁
⇒ ρt(X1) ≥ ρt(X2).

As ρt satisfies the three properties, it is a dynamic risk measure. Next, we

check the time consistency.

Check time consistency

Let ρt(X) ≥ ρt(Y ) and s ≤ t, then

1

γ
lnE

[︁
e−γX

⃓⃓
Ft

]︁
≥ 1

γ
lnE

[︁
e−γY

⃓⃓
Ft

]︁
⇒ E

[︁
e−γX

⃓⃓
Ft

]︁
≥ E

[︁
e−γY

⃓⃓
Ft

]︁
⇒ E

[︁
E
[︁
e−γX

⃓⃓
Ft

]︁⃓⃓
Fs

]︁
≥ E

[︁
E
[︁
e−γY

⃓⃓
Ft

]︁⃓⃓
Fs

]︁
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by the tower property of conditional expectation for s ≤ t,

⇒ E
[︁
e−γX

⃓⃓
Fs

]︁
≥ E

[︁
e−γY

⃓⃓
Fs

]︁
⇒ 1

γ
lnE

[︁
e−γX

⃓⃓
Fs

]︁
≥ 1

γ
lnE

[︁
e−γY

⃓⃓
Fs

]︁
⇒ ρs(X) ≥ ρs(Y )

We proved that ρt(X) ≥ ρt(Y )⇒ ρs(X) ≥ ρs(Y ) for all s ≤ t.

Analyze risk allocation

Let X1 = σ1W1(T ), and X2 = σ2W2(T ), where W1 and W2 are Brownian

motion with correlation ρ. We can write W2(t) = ρW1(t) +
√︁

1− ρ2W3(t) for

all t, where W3 is a Brownian motion independent of W1. The total loss is X =

X1 +X2 = σ1W1(T )+ σ2W2(T ) = σ1W1(T )+ σ2(ρW1(T )+
√︁

1− ρ2W3(T )) =

(σ1 + ρσ2)W1(T ) +
√︁

1− ρ2σ2W3(T ).

By definition, ρEuler
t (X1|X) = dρt(X+hX1)

dh

⃓⃓
h=0

. Firstly, we calculate

ρt(X + hX1)

= ρt

(︂
(σ1 + ρσ2)W1(T ) +

√︁
1− ρ2σ2W3(T ) + hσ1W1(T )

)︂
= ρt

(︂
((1 + h)σ1 + ρσ2)W1(T ) +

√︁
1− ρ2σ2W3(T )

)︂
=

1

γ
lnE

[︂
exp

(︂
− γ(((1 + h)σ1 + ρσ2)W1(T ) +

√︁
1− ρ2σ2W3(T ))

)︂⃓⃓⃓
Ft

]︂
=

1

γ
lnE

[︂
exp

(︂
− γ(((1 + h)σ1 + ρσ2)(W1(T )−W1(t) +W1(t))

+
√︁

1− ρ2σ2(W3(T )−W3(t) +W3(t)))
)︂⃓⃓⃓
Ft

]︂
=

1

γ
lnE

[︂
exp(−γ((1 + h)σ1 + ρσ2)(W1(T )−W1(t)))

× exp(−γ((1 + h)σ1 + ρσ2)W1(t))× exp
(︂
− γ
√︁

1− ρ2σ2(W3(T )−W3(t))
)︂
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× exp
(︂
− γ
√︁

1− ρ2σ2(W3(t))
)︂⃓⃓⃓
Ft

]︂
.

Since W1(T ) −W1(t) and W3(T ) −W3(t) are independent of Ft, W1(t) and

W3(t) are Ft-measurable, we get

ρt(X + hX1) =
1

γ
lnE

[︂
exp(−γ((1 + h)σ1 + ρσ2)(W1(T )−W1(t)))

× exp(−γ((1 + h)σ1 + ρσ2)W1(t))

× exp
(︂
− γ
√︁

1− ρ2σ2(W3(T )−W3(t))
)︂

× exp
(︂
− γ
√︁

1− ρ2σ2(W3(t))
)︂⃓⃓⃓
Ft

]︂
=

1

γ
lnE[exp(−γ((1 + h)σ1 + ρσ2)(W1(T )−W1(t)))]

+
1

γ
(−γ((1 + h)σ1 + ρσ2)W1(t))

+
1

γ
lnE

[︂
exp(−γ

√︁
1− ρ2σ2(W3(T )−W3(t)))

]︂
+

1

γ

(︂
− γ
√︁

1− ρ2σ2W3(t)
)︂
.

Since W1(T ) − W1(t) and W3(T ) − W3(t) ∼ N (0, T − t), we continue the

previous calculation with

ρt(X + hX1)

=
1

2γ
γ2((1 + h)σ1 + ρσ2)

2(T − t)− ((1 + h)σ1 + ρσ2)W1(t)

+
1

2γ
γ2(1− ρ2)σ2

2(T − t)−
√︁

1− ρ2σ2W3(t)

=
γ

2
(σ2

1 + 2hσ2
1 + 2ρσ1σ2 + h2σ2

1 + 2hρσ1σ2 + ρ2σ2
2)(T − t)
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− ((1 + h)σ1 + ρσ2)W1(t) +
γ

2
(σ2

2 − σ2
2ρ

2)(T − t)−
√︁
1− ρ2σ2W3(t)

=
γ

2
(σ2

1 + 2hσ2
1 + 2ρσ1σ2 + h2σ2

1 + 2hρσ1σ2 + σ2
2)(T − t)

− ((1 + h)σ1 + ρσ2)W1(t)−
√︁

1− ρ2σ2W3(t).

Thus,

ρEuler
t (X1|X) =

dρt(X + hX1)

dh

⃓⃓⃓⃓
h=0

=
d(γ

2
(σ2

1 + 2hσ2
1 + 2ρσ1σ2 + h2σ2

1 + 2hρσ1σ2 + σ2
2)(T − t)

dh

⃓⃓⃓
h=0

+
d(−((1 + h)σ1 + ρσ2)W1(t)−

√︁
1− ρ2σ2W3(t))

dh

⃓⃓⃓
h=0

=

(︃
γ

2
(2σ2

1 + 2hσ2
1 + 2ρσ1σ2)(T − t)− σ1W1(t)

)︃⃓⃓⃓⃓
h=0

= γ(σ2
1 + ρσ1σ2)(T − t)− σ1W1(t).

Similarly, ρEuler
t (X2|X) = dρt(X+hX2)

dh

⃓⃓
h=0

, where

ρt(X + hX2)

= ρt

(︂
(σ1 + ρσ2)W1(T ) +

√︁
1− ρ2σ2W3(T )

+ h
(︂
σ2ρW1(T ) +

√︁
1− ρ2σ2W3(T )

)︂)︂
= ρt

(︂
(σ1 + ρσ2 + hσ2ρ)W1(T ) +

(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
W3(T )

)︂
=

1

γ
lnE

[︂
exp

(︂
− γ((σ1 + ρσ2 + hσ2ρ)W1(T )

+
(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
W3(T ))

)︂⃓⃓⃓
Ft

]︂
=

1

γ
lnE

[︂
exp

(︂
− γ((σ1 + ρσ2 + hσ2ρ)(W1(T )−W1(t) +W1(t))+

(σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2)(W3(T )−W3(t) +W3(t)))

)︂⃓⃓⃓
Ft

]︂
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=
1

γ
E[exp(−γ(σ1 + ρσ2 + hσ2ρ)(W1(T )−W1(t)))]

− (σ1 + ρσ2 + hσ2ρ)W1(t)

+
1

γ
E
[︂
exp

(︂
− γ
(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
(W3(T )−W3(t))

)︂]︂
−
(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
W3(t)

=
γ

2
(σ2

1 + 2σ1σ2ρ+ 2hσ1σ2ρ+ ρ2σ2
2 + 2hσ2

2ρ
2 + h2σ2

2ρ
2)(T − t)+

γ

2
(σ2

2 − σ2
2ρ

2 + h2σ2
2 − h2σ2

2ρ
2 + 2hσ2

2 − 2hσ2
2ρ

2)(T − t)

− (σ1 + ρσ2 + hσ2ρ)W1(t)−
(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
W3(t)

=
γ

2
(σ2

1 + 2σ1σ2ρ+ 2hσ1σ2ρ+ σ2
2 + h2σ2

2 + 2hσ2
2)(T − t)

− (σ1 + ρσ2 + hσ2ρ)W1(t)−
(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
W3(t).

Therefore,

ρEuler
t (X2|X)

=
dρt(X + hX2)

dh

⃓⃓⃓⃓
h=0

=
d(γ

2
(σ2

1 + 2σ1σ2ρ+ 2hσ1σ2ρ+ σ2
2 + h2σ2

2 + 2hσ2
2)(T − t)

dh

⃓⃓⃓⃓
h=0

+
d(−(σ1 + ρσ2 + hσ2ρ)W1(t)−

(︂
σ2

√︁
1− ρ2 + hσ2

√︁
1− ρ2

)︂
W3(t))

dh

⃓⃓⃓⃓
h=0

=
(︂γ
2
(2σ1σ2ρ+ 2hσ2

2 + 2σ2
2)(T − t)− σ2ρW1(t)− σ2

√︁
1− ρ2W3(t)

)︂⃓⃓⃓
h=0

=
γ

2
(2σ1σ2ρ+ 2σ2

2)(T − t)− σ2

(︂
ρW1(t) +

√︁
1− ρ2W3(t)

)︂
= γ(σ1σ2ρ+ σ2

2)(T − t)− σ2W2(t).

The result of ρEuler
t (X2|X) follows directly from ρEuler

t (X1|X) by symmetry.
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Analyze risk attribution

Let’s consider a two-step and two-factor model. In this example, we assume

R1
T = σ1W1(T ), R

2
T = σ2W2(T ) and L = f(R1

T , R
2
T ) = R1

TR
2
T , where W1 and

W2 are defined the same as the risk allocation example.

Then

A1 =
T−1∑︂
t=0

(︁
f(R1

t+1, R
2
t )− f(R1

t , R
2
t )
)︁

= f(R1
1, R

2
0)− f(R1

0, R
2
0) + f(R1

2, R
2
1)− f(R1

1, R
2
1)

= R1
1R

2
0 −R1

0R
2
0 +R1

2R
2
1 −R1

1R
2
1

= σ1σ2W1(2)W2(1)− σ1σ2W1(1)W2(1)

= σ1σ2W2(1)(W1(2)−W1(1)).

Similarly, A2 = σ1σ2W1(1)(W2(2) − W2(1)). By definition, ρEuler
t (A1|A) =

dρt(A+hA1)
dh

⃓⃓
h=0

, where A = A1 + A2, and t ∈ {0, 1, 2}. Firstly, let’s calculate

ρt(A+ hA1) at t = 1.

ρ1(A+ hA1)

= ρ1
(︁
σ1σ2W1(1)(W2(2)−W2(1)) + (1 + h)σ1σ2W2(1)(W1(2)−W1(1))

)︁
=

1

γ
lnE

[︁
exp(−γ(σ1σ2W1(1)(W2(2)−W2(1))

+ (1 + h)σ1σ2W2(1)(W1(2)−W1(1))))
⃓⃓
F1

]︁
=

1

γ
lnE

[︂
exp

(︂
− γσ1σ2W1(1)

(︁
ρ(W1(2)−W1(1))

+
√︁

1− ρ2(W3(2)−W3(1))
)︁
− γ(1 + h)σ1σ2W2(1)(W1(2)−W1(1))

)︂⃓⃓⃓
F1

]︂
=

1

γ
lnE

[︂
exp

(︂
− γσ1σ2W1(1)

√︁
1− ρ2(W3(2)−W3(1))
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− γσ1σ2

(︁
ρW1(1) + (1 + h)W2(1)

)︁
(W1(2)−W1(1))

)︂⃓⃓⃓
F1

]︂
=

1

γ
lnE

[︂
exp

(︂
− γσ1σ2W1(1)

√︁
1− ρ2(W3(2)−W3(1))

)︂⃓⃓⃓
F1

]︂
+

1

γ
lnE

[︂
exp

(︂
− γσ1σ2(ρW1(1) + (1 + h)W2(1))(W1(2)−W1(1))

)︂⃓⃓⃓
F1

]︂
=

1

γ
ln

(︃
exp

(︃
1

2

(︂
γσ1σ2W1(1)

√︁
1− ρ2

)︂2)︃
× exp

(︃
1

2

(︁
γσ1σ2(ρW1(1) + (1 + h)W2(1))

)︁2)︃)︃
=

1

2

(︂
γσ1σ2W1(1)

√︁
1− ρ2

)︂2
+

1

2

(︁
γσ1σ2(ρW1(1) + (1 + h)W2(1))

)︁2
.

Thus,

ρEuler
1 (A1|A) =

dρ1(A+ hA1)

dh

⃓⃓⃓⃓
h=0

=
d
(︂

1
2

(︁
γσ1σ2W1(1)

√︁
1− ρ2

)︁2)︂
dh

|
h=0

+
d
(︂

1
2

(︁
γσ1σ2(ρW1(1) + (1 + h)W2(1))

)︁2)︂
dh

|
h=0

= γσ1σ2(ρW1(1) + (1 + h)W2(1))γσ1σ2W2(1)
⃓⃓
h=0

= γ2σ2
1σ

2
2

(︁
ρW1(1)W2(1) +W2(1)

2
)︁

Then we calculate ρ1(A+ hA2):

ρ1(A+ hA2)

= ρ1
(︁
σ1σ2W2(1)(W1(2)−W1(1)) + (1 + h)σ1σ2W1(1)(W2(2)−W2(1))

)︁
=

1

γ
lnE

[︁
exp

(︁
− γ(σ1σ2W2(1)(W1(2)−W1(1))

+ (1 + h)σ1σ2W1(1)(W2(2)−W2(1)))
)︁⃓⃓
F1

]︁
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=
1

γ
lnE

[︂
exp

(︂
− γ(1 + h)σ1σ2W1(1)

(︂
ρ(W1(2)−W1(1))

+
√︁

1− ρ2(W3(2)−W3(1))
)︂
− γσ1σ2W2(1)(W1(2)−W1(1))

)︂⃓⃓⃓
F1

]︂
=

1

γ
lnE

[︂
exp

(︂
− γσ1σ2W1(1)

√︁
1− ρ2(W3(2)−W3(1))(1 + h)

− γσ1σ2

(︁
(1 + h)ρW1(1) +W2(1)

)︁
(W1(2)−W1(1))

)︂⃓⃓⃓
F1

]︂
=

1

γ
lnE

[︂
exp

(︂
− γσ1σ2W1(1)

√︁
1− ρ2(W3(2)−W3(1))(1 + h)

)︂⃓⃓⃓
F1

]︂
+

1

γ
lnE

[︂
exp

(︂
− γσ1σ2((1 + h)ρW1(1) +W2(1))(W1(2)−W1(1))

)︂⃓⃓⃓
F1

]︂
=

1

γ
ln

(︃
exp

(︃
1

2

(︂
γσ1σ2W1(1)

√︁
1− ρ2(1 + h)

)︂2)︃
× exp

(︃
1

2

(︁
γσ1σ2((1 + h)ρW1(1) +W2(1))

)︁2)︃)︃
=

1

2

(︂
γσ1σ2W1(1)

√︁
1− ρ2(1 + h)

)︂2
+

1

2

(︁
γσ1σ2((1 + h)ρW1(1) +W2(1))

)︁2
.

Thus,

ρEuler
1 (A2|A) =

dρ1(A+ hA2)

dh

⃓⃓⃓⃓
h=0

=
d
(︂

1
2

(︁
γσ1σ2W1(1)

√︁
1− ρ2(1 + h)

)︁2)︂
dh

|
h=0

+
d
(︂

1
2

(︁
γσ1σ2((1 + h)ρW1(1) +W2(1))

)︁2)︂
dh

|
h=0

= γσ1σ2W1(1)
√︁
1− ρ2(1 + h)γσ1σ2W1(1)

√︁
1− ρ2

⃓⃓
h=0

+ γσ1σ2

(︁
(1 + h)ρW1(1) +W2(1)

)︁
γσ1σ2ρW1(1)

⃓⃓
h=0

= γ2σ2
1σ

2
2(1− ρ2)W1(1)

2 + γ2σ2
1σ

2
2

(︁
ρ2W1(1)

2 + ρW1(1)W2(1)
)︁

= γ2σ2
1σ

2
2

(︁
W1(1)

2 + ρW1(1)W2(1)
)︁
.
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At time t = 0, ρt(A+ hA1) becomes

ρ0(A+ hA1)

= ρ0
(︁
σ1σ2W1(1)(W2(2)−W2(1)) + (1 + h)σ1σ2W2(1)(W1(2)−W1(1))

)︁
=

1

γ
lnE

[︁
exp

(︁
− γ(σ1σ2W1(1)(W2(2)−W2(1))

+ (1 + h)σ1σ2W2(1)(W1(2)−W1(1)))
)︁⃓⃓
F0

]︁
=

1

γ
lnE

[︂
E
[︁
exp

(︁
− γ(σ1σ2W1(1)(W2(2)−W2(1))

+ (1 + h)σ1σ2W2(1)(W1(2)−W1(1)))
)︁⃓⃓
F1

]︁]︂
=

1

γ
lnE

[︃
exp

(︃
1

2

(︂
γσ1σ2W1(1)

√︁
1− ρ2

)︂2)︃
× exp

(︃
1

2

(︂
γσ1σ2(ρW1(1) + (1 + h)W2(1))

)︂2)︃]︃
=

1

γ
lnE

[︃
exp

(︃
γ2σ2

1σ
2
2 (W1(1)

2 + 2ρW1(1)W2(1) + 2ρhW1(1)W2(1))

2

)︃]︃
× exp

(︃
γ2σ2

1σ
2
2(1 + 2h+ h2)W2(1)

2

2

)︃]︃
=

1

γ
lnE

[︃
E

[︃
exp

(︃
γ2σ2

1σ
2
2 (W1(1)

2 + 2ρW1(1)W2(1) + 2ρhW1(1)W2(1))

2

)︃
× exp

(︃
γ2σ2

1σ
2
2(1 + 2h+ h2)W2(1)

2

2

)︃⃓⃓⃓⃓
W1(1)

]︃]︃
=

1

γ
lnE

[︃
exp

(︃
γ2σ2

1σ
2
2W1(1)

2

2

)︃
E

[︃
exp

(︃
γ2σ2

1σ
2
2 (2ρa+ 2ρha)

2
W2(1)

+
γ2σ2

1σ
2
2(1 + 2h+ h2)

2
W2(1)

2

)︃]︃ ⃓⃓⃓⃓
a=W1(1)

]︄

=
1

γ
lnE

[︃
exp

(︃
γ2σ2

1σ
2
2W1(1)

2

2

)︃
E
[︁
exp

(︁
kz + c1Z

2
)︁]︁ ⃓⃓

a=W1(1)

]︃
,

where

k =
γ2σ2

1σ
2
2 (2ρa+ 2ρha)

2
,
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c1 =
γ2σ2

1σ
2
2(1 + 2h+ h2)

2
,

Z = W2(1) ∼ N (0, 1).

We compute

E
[︁
exp

(︁
kZ + c1Z

2
)︁]︁

=

∫︂ ∞

−∞
ekz+c1z2

e
−z2

2

√
2π

dz

=

∫︂ ∞

−∞

1√
2π

ez
2(c1− 1

2)+kz dz

=

∫︂ ∞

−∞

1√
2π

e
(c1− 1

2)
(︄
z+ k

2(c1− 1
2)

)︄2

− k2

4(c1− 1
2) dz

= e

−k2

4(c1− 1
2)
∫︂ ∞

−∞

1√
2π

e
(c1− 1

2)
(︄
z+ k

2(c1− 1
2)

)︄2

dz.

By assuming c1 <
1
2
, we obtain that

E
[︁
exp

(︁
kZ + c1Z

2
)︁]︁

=
e

−γ4σ4
1σ

4
2(2ρW1(1)+2ρhW1(1))

2/4

4

(︄
γ2σ2

1σ
2
2(1+2h+h2)

2 − 1
2

)︄
√︁

1− γ2σ2
1σ

2
2(1 + 2h+ h2)

=
e

−γ4σ4
1σ

4
2(ρW1(1)+ρhW1(1))

2

2(γ2σ2
1σ

2
2(1+2h+h2)−1)√︁

1− γ2σ2
1σ

2
2(1 + 2h+ h2)

Thus,

ρ0(A+ hA1) =
1

γ
lnE

⎡⎢⎢⎣e
(︃

γ2σ2
1σ

2
2W1(1)

2

2

)︃
e

−γ4σ4
1σ

4
2(ρW1(1)+ρhW1(1))

2

2(γ2σ2
1σ

2
2(1+2h+h2)−1)√︁

1− γ2σ2
1σ

2
2(1 + 2h+ h2)

⎤⎥⎥⎦
=

1

γ
ln

(︄
1√︁

1− γ2σ2
1σ

2
2(1 + 2h+ h2)

E

[︃
exp

(︃(︃
γ2σ2

1σ
2
2

2

47



− −γ4σ4
1σ

4
2ρ

2 (1 + 2h+ h2)

2 (γ2σ2
1σ

2
2(1 + 2h+ h2)− 1)

)︃
W1(1)

2

)︃]︃)︃
.

Let E

[︃
exp

(︃(︃
γ2σ2

1σ
2
2

2
− −γ4σ4

1σ
4
2ρ

2(1+2h+h2)
2(γ2σ2

1σ
2
2(1+2h+h2)−1)

)︃
W1(1)

2

)︃]︃
= E

[︂
ec2Z

2
1

]︂
, where

c2 =
γ2σ2

1σ
2
2

2
+

γ4σ4
1σ

4
2ρ

2 (1 + 2h+ h2)

2 (γ2σ2
1σ

2
2(1 + 2h+ h2)− 1)

,

Z1 = W1(1) ∼ N (0, 1).

By the moment generating function of Chi-square distribution, we get that

E
[︂
ec2Z

2
1

]︂
= 1√

1−2c2
for c2 < 1/2. For the following computations, we assume

that γσ1σ2 is small enough so that c2 < 1/2. Then

E
[︂
ec2Z

2
1

]︂
=

1√︂
1− γ2σ2

1σ
2
2 −

γ4σ4
1σ

4
2ρ

2(1+2h+h2)

1−γ2σ2
1σ

2
2(1+2h+h2)

and

ρ0(A+ hA1) =
1

γ
ln

(︄
1√︁

1− γ2σ2
1σ

2
2(1 + 2h+ h2)

)︄

+
1

γ
ln

⎛⎝ 1√︂
1− γ2σ2

1σ
2
2 −

γ4σ4
1σ

4
2ρ

2(1+2h+h2)

1−γ2σ2
1σ

2
2(1+2h+h2)

⎞⎠
= − 1

2γ
ln
(︁
1− γ2σ2

1σ
2
2(1 + 2h+ h2)

)︁
− 1

2γ
ln

(︃
1− γ2σ2

1σ
2
2 −

γ4σ4
1σ

4
2ρ

2 (1 + 2h+ h2)

1− γ2σ2
1σ

2
2 (1 + 2h+ h2)

)︃
.

Thus,

ρEuler
0 (A1|A) =

dρ0(A+ hA1)

dh

⃓⃓⃓⃓
h=0
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=
d
(︂
− 1

2γ
ln (1− γ2σ2

1σ
2
2(1 + 2h+ h2))

)︂
dh

|
h=0

+

d

(︃
− 1

2γ
ln

(︃
1− γ2σ2

1σ
2
2 −

γ4σ4
1σ

4
2ρ

2(1+2h+h2)
1−γ2σ2

1σ
2
2(1+2h+h2)

)︃)︃
dh

|
h=0

where

d
(︂
− 1

2γ
ln (1− γ2σ2

1σ
2
2(1 + 2h+ h2))

)︂
dh

|
h=0

=
γ2σ2

1σ
2
2 (2 + 2h)

2γ (1− γ2σ2
1σ

2
2 (1 + 2h+ h2))

|
h=0

=
γ2σ2

1σ
2
2

γ (1− γ2σ2
1σ

2
2)

=
γσ2

1σ
2
2

1− γ2σ2
1σ

2
2

and

d

(︃
− 1

2γ
ln

(︃
1− γ2σ2

1σ
2
2 −

γ4σ4
1σ

4
2ρ

2(1+2h+h2)
1−γ2σ2

1σ
2
2(1+2h+h2)

)︃)︃
dh

|
h=0

= − 1

2γ
× 1

1− γ2σ2
1σ

2
2 −

γ4σ4
1σ

4
2ρ

2(1+2h+h2)

1−γ2σ2
1σ

2
2(1+2h+h2)

× −γ4σ4
1σ

4
2ρ

2(2 + 2h)

1− 2γ2σ2
1σ

2
2 (1 + 2h+ h2) + γ4σ4

1σ
4
2 (1 + 2h+ h2)2

|
h=0

=
γ4σ4

1σ
4
2ρ

2

γ (1− γ2σ2
1σ

2
2) (1− 2γ2σ2

1σ
2
2 + γ4σ4

1σ
4
2 − γ4σ4

1σ
4
2ρ

2)

=
γ3σ4

1σ
4
2ρ

2

(1− γ2σ2
1σ

2
2) (1− 2γ2σ2

1σ
2
2 + γ4σ4

1σ
4
2 − γ4σ4

1σ
4
2ρ

2)
.
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We obtain that

ρEuler
0 (A1|A) =

γσ2
1σ

2
2

1− γ2σ2
1σ

2
2

+
γ3σ4

1σ
4
2ρ

2

(1− γ2σ2
1σ

2
2) (1− 2γ2σ2

1σ
2
2 + γ4σ4

1σ
4
2 − γ4σ4

1σ
4
2ρ

2)

=
γσ2

1σ
2
2 − 2γ3σ4

1σ
4
2 + γ5σ6

1σ
6
2 − γ5σ6

1σ
6
2ρ

2 + γ3σ4
1σ

4
2ρ

2

(1− γ2σ2
1σ

2
2) (1− 2γ2σ2

1σ
2
2 + γ4σ4

1σ
4
2 − γ4σ4

1σ
4
2ρ

2)
,

where we recall that we assumed for this computation that γσ1σ2 is small

enough. The computation of ρEuler
0 (A2|A) goes analogously, with W1 and W2

interchanged.

The above derivation has been done for two time steps. When there are

more than two steps, we using a numerical simulation. In MATLAB we cal-

culate the Euler contributions for two risk factors and their summation; see

Appendix A for the MATLAB code. To simulate Brownian Motion, we use

a discrete-time approximation with N steps and independent normally dis-

tributed increments:

W0 = 0, Wj T
N
= W(j−1) T

N
+

√︃
T

N
Zj for j = 1, . . . , N,

where Z1, . . . , ZN are independent and standard normally distributed and T is

the time horizon, which we choose T = 1. We set the maximal number of steps

to be 20, and compute the values of the risk measures and contributions using

10,000,000 simulations. For numerical tractability, we first simulate 1,000,000

sample paths and then repeat this 10 times before taking the average. For

this example, we choose γ = 1/2 as the value of the coefficient of absolute

risk aversion and choose both σ1 and σ2 as 1. To approximate the Euler
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contribution, we use

ρEuler
0 (A1|A) =

dρ0(A+ hA1)

dh

⃓⃓⃓⃓
h=0

≈ ρ0(A+ hA1)− ρ0(A)

h

for h = 1/100.

We plot the risk contributions of two risk factors for the different number

of steps as Figure 4.1. It shows that the risk contributions for the two risk

factors are almost the same for different numbers of steps as expected because

of symmetry.

We also plot the risk measure of the total risk and its approximation for

different numbers of steps in Figure 4.2. It illustrates that ρ(A1+A2) converges

to ρ(L) as the number of steps increasing, which consistent with Propositions

3.2.1 and 3.2.2. Note that the condition of zero quadratic variation in Propo-

sition 3.2.1 is satisfied because the correlation parameter ρ between the two

Brownian motions has been set to zero.

We also analyze numerically the underlying risk measure is given by VaR

or ES at the confidence level 95%. The choices of the parameters are un-

changed, and the computational procedure is analogous. We deduce from

Figures 4.3–4.6 the same conclusions as before. However, we observe that the

Euler contributions (two curves in each of Figure 4.3 and Figure 4.5) sum up

to ρ(A1 + A2) (red curves in Figure 4.4 and Figure 4.6). By contrast, the

sum of the Euler contributions in Figure 4.1 is not equal to ρ(A1 + A2) (red

curve in Figure 4.2). The reason is as follows. The risk measures VaR and ES

are homogeneous of degree 1. As mentioned in Section 2.1, this implies that

the Euler contributions satisfy the full-allocation property by Tasche [20]. By
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contrast, the entropic risk measure is not homogeneous, which is the reason

why its Euler contribution does not satisfy the full-allocation property.

Figure 4.1: Risk contributions of two risk factors for different numbers of steps,
using the entropic risk measure

Figure 4.2: Risk measure of total risk and its approximation for different numbers
of steps, using the entropic risk measure

52



Figure 4.3: Risk contributions of two risk factors for different numbers of steps,
using VaR as the risk measure

Figure 4.4: Risk measure of total risk and its approximation for different numbers
of steps, using VaR as the risk measure
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Figure 4.5: Risk contributions of two risk factors for different numbers of steps,
using ES as the risk measure

Figure 4.6: Risk measure of total risk and its approximation for different numbers
of steps, using ES as the risk measure
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Chapter 5

Conclusion

Risk measures have been a popular topic for decades in the financial risk

management field. A classical question is how to aggregate different sources

of risk by taking diversification effects into account. However, the converse

question of how to decompose risk is also relevant, which is the topic of this

thesis. We focus on two dimensions of risk decomposition, which are risk

allocation and risk attribution. Since a company’s total profit/loss is the sum

of the profits/losses of its divisions, this linear relationship is used to allocate

risk to different divisions. By contrast, risk drivers may contribute to losses

in a nonlinear way, so that additional techniques need to be used to attribute

risk to different risk drivers.

We use the economically justified Euler allocation principle to compute the

risk allocations and discuss when the risk allocations are RORAC compatible,

when they satisfy the full-allocation property, and when the dynamic risk mea-

sure is time consistent. The methodology for risk attribution is to construct

a linear approximation for the loss random variable and then apply the Euler
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principle. This approach has two main advantages. Firstly, it is computation-

ally more efficient than other methods, such as the Shapley value. Secondly,

it relies on the Euler principle, which has a solid economic justification in the

literature.

The contributions of this thesis are as follows. Firstly, we extend both

risk allocation and risk attribution to dynamic settings by computing the risk

contributions at time t for t ∈ [0, T ]. Secondly, we show that for RORAC

compatible risk contributions, time consistency translates from risk measures

to risk contributions. Thirdly, we illustrate the computation of risk contribu-

tions based on an example for the entropic risk measure where we computed

and simulated risk allocation and risk attribution.

Interesting questions for future research are about the relation of risk al-

location and risk attribution to stochastic differential equations (SDEs). The

link between risk measures and backward SDEs is well known in the literature;

see for example Øksendal and Sulem [16]. Using this link could help find new

results for risk allocation and risk attribution.
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Appendix A

MATLAB Code

The following code was used to create Figures 4.1 and 4.2 in the example of
Chapter 4.

1 rng('default')
2 T = 1;
3 Npaths = 1000000;
4 rho = 0;
5 gamma = 1/2;
6 Nruns = 10;
7 rhoEuler = zeros(Nruns,20);
8 rhoEuler2 = zeros(Nruns,20);
9 rhoA12 = zeros(Nruns,20);

10 rhoL = zeros(Nruns,20);
11

12 for j = 1:Nruns
13 for Nsteps = 1:20
14 s = (T/Nsteps)ˆ.5;
15 clear incr incr3
16 incr(1,:) = zeros(1,Npaths);
17 incr(2:Nsteps+1,:) = s*randn(Nsteps,Npaths);
18 paths = cumsum(incr);
19 incr3(1,:) = zeros(1,Npaths);
20 incr3(2:Nsteps+1,:) = s*randn(Nsteps,Npaths);
21 paths3 = cumsum(incr3);
22 W1 = paths;
23 W3 = paths3;
24 W2 = rho*W1 + sqrt(1-rhoˆ2)*W3;
25 A1 = sum(W1(2:end,:).*W2(1:end-1,:)-W1(1:end-1,:)
26 .*W2(1:end-1,:));
27 A2 = sum(W2(2:end,:).*W1(1:end-1,:)-W1(1:end-1,:)
28 .*W2(1:end-1,:));
29 h = 1/100;
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30 A = A1 + A2;
31 B = A + h*A1;
32 C = exp(-gamma*B);
33 D = mean(C);
34 rho0 = (1/gamma)*log(D);
35 E = exp(-gamma*A);
36 F = mean(E);
37 rhoa = (1/gamma)*log(F);
38 rhoEuler(j,Nsteps) = (rho0 - rhoa)/h;
39

40 B2 = A + h*A2;
41 C2 = exp(-gamma*B2);
42 D2 = mean(C2);
43 rho02 = (1/gamma)*log(D2);
44 rhoEuler2(j,Nsteps) = (rho02 - rhoa)/h;
45 rhoA12(j,Nsteps) = rhoa;
46

47 L = W1(end,:).*W2(end,:);
48 G = exp(-gamma*L);
49 H = mean(G);
50 rhoL(j,Nsteps) = (1/gamma)*log(H);
51 end
52 end
53 figure, plot(1:20,mean(rhoEuler),1:20,mean(rhoEuler2),
54 'linewidth',2);
55 legend('Euler contribution of A1','Euler contribution of A2');
56 set(gca,'fontsize',14,'FontWeight','bold');
57 title('Risk contributions for different number of ...

steps','fontsize',14);
58 xlabel('Number of steps','fontsize',14);
59 ylabel('Risk contributions','fontsize',14);
60

61 figure, plot(1:20,mean(mean(rhoL))*ones(20,1),
62 1:20,mean(rhoA12),'linewidth',2);
63 legend('\rho(L)','\rho(A1 + A2)');
64 set(gca,'fontsize',14,'FontWeight','bold');
65 title('Comparison of total risk','fontsize',14);
66 xlabel('Number of steps','fontsize',14);
67 ylabel('Values of risk measures','fontsize',14);

The following code was used to create Figures 4.3 and 4.4 in the example of
Chapter 4.

1 rng('default')
2 confidence level = 0.95;
3 T = 1;
4 Npaths = 1000000;
5 rho = 0;
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6 Nruns = 10;
7 rhoEuler = zeros(Nruns,20);
8 rhoEuler2 = zeros(Nruns,20);
9 rhoA12 = zeros(Nruns,20);

10 rhoL = zeros(Nruns,20);
11 for j = 1:Nruns
12 for Nsteps = 1:20
13 s = (T/Nsteps)ˆ.5;
14 clear incr incr3
15 incr(1,:) = zeros(1,Npaths);
16 incr(2:Nsteps+1,:) = s*randn(Nsteps,Npaths);
17 paths = cumsum(incr);
18 incr3(1,:) = zeros(1,Npaths);
19 incr3(2:Nsteps+1,:) = s*randn(Nsteps,Npaths);
20 paths3 = cumsum(incr3);
21 W1 = paths;
22 W3 = paths3;
23 W2 = rho*W1 + sqrt(1-rhoˆ2)*W3;
24 A1 = sum(W1(2:end,:).*W2(1:end-1,:)-W1(1:end-1,:)
25 .*W2(1:end-1,:));
26 A2 = sum(W2(2:end,:).*W1(1:end-1,:)-W1(1:end-1,:)
27 .*W2(1:end-1,:));
28 h = 1/100;
29 A = A1 + A2;
30 B = A + h*A1;
31 sorted returns = sort(B);
32 num returns = numel(B);
33 VaR index = ceil((1-confidence level)*num returns);
34 rho0 = - sorted returns(VaR index);
35 sorted returns a = sort(A);
36 num returns a = numel(A);
37 VaR index a = ceil((1-confidence level)*num returns a);
38 rhoa = - sorted returns a(VaR index a);
39 rhoEuler(j,Nsteps) = (rho0 - rhoa)/h;
40

41 B2 = A + h*A2;
42 sorted returns b2 = sort(B2);
43 num returns b2 = numel(B2);
44 VaR index b2 = ...

ceil((1-confidence level)*num returns b2);
45 rho02 = - sorted returns b2(VaR index b2);
46 rhoEuler2(j,Nsteps) = (rho02 - rhoa)/h;
47 rhoA12(j,Nsteps) = rhoa;
48

49 L = W1(end,:).*W2(end,:);
50 sorted returns L = sort(L);
51 num returns L = numel(L);
52 VaR index L = ceil((1-confidence level)*num returns L);
53 rhoL(j,Nsteps) = - sorted returns L(VaR index L);
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54 end
55 end
56 figure, plot(1:20,mean(rhoEuler),
57 1:20,mean(rhoEuler2),'linewidth',2);
58 legend('Euler contribution of A1','Euler contribution of A2');
59 set(gca,'fontsize',14,'FontWeight','bold');
60 title('Risk contributions for different number of ...

steps','fontsize',14);
61 xlabel('Number of steps','fontsize',14);
62 ylabel('Risk contributions','fontsize',14);
63

64 figure, plot(1:20,mean(mean(rhoL))*ones(20,1),
65 1:20,mean(rhoA12),'linewidth',2);
66 legend('\rho(L)','\rho(A1 + A2)');
67 set(gca,'fontsize',14,'FontWeight','bold');
68 title('Comparison of total risk','fontsize',14);
69 xlabel('Number of steps','fontsize',14);
70 ylabel('Values of risk measures','fontsize',14);

The following code was used to create Figures 4.5 and 4.6 in the example of
Chapter 4.

1 rng('default')
2 confidence level = 0.95;
3 T = 1;
4 Npaths = 1000000;
5 rho = 0;
6 Nruns = 10;
7 rhoEuler = zeros(Nruns,20);
8 rhoEuler2 = zeros(Nruns,20);
9 rhoA12 = zeros(Nruns,20);

10 rhoL = zeros(Nruns,20);
11 for j = 1:Nruns
12 for Nsteps = 1:20
13 s = (T/Nsteps)ˆ.5;
14 clear incr incr3
15 incr(1,:) = zeros(1,Npaths);
16 incr(2:Nsteps+1,:) = s*randn(Nsteps,Npaths);
17 paths = cumsum(incr);
18 incr3(1,:) = zeros(1,Npaths);
19 incr3(2:Nsteps+1,:) = s*randn(Nsteps,Npaths);
20 paths3 = cumsum(incr3);
21 W1 = paths;
22 W3 = paths3;
23 W2 = rho*W1 + sqrt(1-rhoˆ2)*W3;
24 A1 = sum(W1(2:end,:).*W2(1:end-1,:)-W1(1:end-1,:)
25 .*W2(1:end-1,:));
26 A2 = sum(W2(2:end,:).*W1(1:end-1,:)-W1(1:end-1,:)
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27 .*W2(1:end-1,:));
28 h = 1/100;
29 A = A1 + A2;
30 B = A + h*A1;
31 sorted returns = sort(B);
32 num returns = numel(B);
33 VaR index = ceil((1-confidence level)*num returns);
34 rho0 = - mean(sorted returns(1:VaR index));
35 sorted returns a = sort(A);
36 num returns a = numel(A);
37 VaR index a = ceil((1-confidence level)*num returns a);
38 rhoa = - mean(sorted returns a(1:VaR index a));
39 rhoEuler(j,Nsteps) = (rho0 - rhoa)/h;
40

41 B2 = A + h*A2;
42 sorted returns b2 = sort(B2);
43 num returns b2 = numel(B2);
44 VaR index b2 = ...

ceil((1-confidence level)*num returns b2);
45 rho02 = - mean(sorted returns b2(1:VaR index b2));
46 rhoEuler2(j,Nsteps) = (rho02 - rhoa)/h;
47 rhoA12(j,Nsteps) = rhoa;
48

49 L = W1(end,:).*W2(end,:);
50 sorted returns L = sort(L);
51 num returns L = numel(L);
52 VaR index L = ceil((1-confidence level)*num returns L);
53 rhoL(j,Nsteps) = - ...

mean(sorted returns L(1:VaR index L));
54 end
55 end
56 figure, plot(1:20,mean(rhoEuler),
57 1:20,mean(rhoEuler2),'linewidth',2);
58 legend('Euler contribution of A1','Euler contribution of A2');
59 set(gca,'fontsize',14,'FontWeight','bold');
60 title('Risk contributions for different number of ...

steps','fontsize',14);
61 xlabel('Number of steps','fontsize',14);
62 ylabel('Risk contributions','fontsize',14);
63

64 figure, plot(1:20,mean(mean(rhoL))*ones(20,1)
65 ,1:20,mean(rhoA12),'linewidth',2);
66 legend('\rho(L)','\rho(A1 + A2)');
67 set(gca,'fontsize',14,'FontWeight','bold');
68 title('Comparison of total risk','fontsize',14);
69 xlabel('Number of steps','fontsize',14);
70 ylabel('Values of risk measures','fontsize',14);
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