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Abstract

The weaning period is associated with an increased prevalence of gastrointestinal infection in many species. Glutamine (Gln) has been

shown to improve intestinal barrier function and immune function in both in vivo and in vitro models. The objective of the present

study was to determine the effect of dietary Gln supplementation on intestinal barrier function and intestinal cytokines in a model of

Escherichia coli infection. We randomised 21-d-old piglets (n 20) to nutritionally complete isonitrogenous diets with or without Gln

(4·4 %, w/w) for 2 weeks. Intestinal loops were isolated from anaesthetised pigs and inoculated with either saline or one of the two

E. coli (K88AC or K88 wild-type)-containing solutions. Intestinal tissue was studied for permeability, cytokine expression, fluid secretion

and tight-junction protein expression. Animals receiving Gln supplementation had decreased potential difference (PD) and short-circuit

current (Isc) in E. coli-inoculated intestinal loops (PD 0·628 (SEM 0·151) mV; Isc 13·0 (SEM 3·07)mA/cm2) compared with control-fed animals

(PD 1·36 (SEM 0·227) mV; Isc 22·4 (SEM 2·24)mA/cm2). Intestinal tissue from control, but not from Gln-supplemented, animals responded to

E. coli with a significant increase in mucosal cytokine mRNA (IL-1b, IL-6, transforming growth factor-b and IL-10). Tight-junction protein

expression (claudin-1 and occludin) was reduced with exposure to E. coli in control-fed animals and was not influenced in Gln-

supplemented piglets. Gln supplementation may be useful in reducing the severity of weaning-related gastrointestinal infections, by

reducing the mucosal cytokine response and altering intestinal barrier function.
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Diarrhoeal disease is the second leading cause of mortality

in children, killing approximately 1·5 million children world-

wide, annually(1). Weaning is a particularly vulnerable period,

as the removal of maternal immune components coincides

with the increased exposure to pathogens. Escherichia coli

is a common causative agent of diarrhoea in infants and

young children; numerous E. coli virotypes including entero-

toxigenic E. coli (ETEC), enterohaemorrhagic, enteroinvasive

and enteropathogenic E. coli exist(2). ETEC induces diarrhoea

via the expression of a choleragen-like enterotoxin that

adheres to intestinal epithelial cells and induces oversecretion

of electrolytes into the intestinal lumen. The piglet has been

used extensively as a model for infant E. coli infection(3).

A recent study has indicated that weaning suppressed adap-

tive immunity immediately after weaning and subsequently for

about a week(4). In contrast, variables of the innate immune

system seem to be stimulated immediately after weaning(4).

The post-weaning period involves significant changes in the

composition of immune cells in the blood and intestine(5–8).

At weaning, there is a change in the number and proportion

of T-cells in the blood, which is associated with a reduced

ability to respond to various challenges(5,9,10). Many antigens

encountered by the immune system gain access to the body

through mucosal surfaces such as the intestine and respiratory

tract. Gut-associated lymphoid tissue is the largest immune

organ of the body and is responsible for handling large quan-

tities of potentially harmful antigens (reviewed in Forchielli &

Walker(11)). Although gut-associated lymphoid tissue is an

important immune tissue and is the first and most significant

contact the immune system has with dietary antigens, few

studies have examined the effect of incorporating specific

nutrients into the weaning diet on the function of this tissue.

Experimental studies have shown that feeding glutamine

(Gln) to infants(12) and young animals(13,14) reduces the inci-

dence of infections and infectious morbidity. These effects have

primarily been attributed to the effect of Gln on the health of
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the intestinal epithelial cell(15). We have previously demon-

strated that Gln modifies immune cells in the mesenteric

lymph nodes of newly weaned piglets by supporting

a Th1-type cytokine response after T-cell stimulation(6).

Gln has also been shown to stimulate intestinal epithelial

cell proliferation(16) and reduce apoptosis(17). Gln is also an

energy substrate for lymphocytes(18) and macrophages(19),

is important for the optimal function of T- and B-cells

(reviewed in Newsholme(20)) and is required for neutrophil

bactericidal function(21). Gln increases intestinal expression

of genes related to growth and antioxidant function, and

preserves epithelial barrier function in the distal ileum of

21-d-old piglets during infection(22,23). These observations

have lent support for the concept that this amino acid may

become transiently essential during periods of immune stress

(reviewed in Field et al.(24)), notably, the weaning period.

When provided orally to rodents, Gln preserved intestinal

metabolism, structure and function by accelerating healing

of the gut mucosa in irradiated animals through increased

mitosis in the proliferative zone of the villous crypts(25). Simi-

larly, Gln supplementation has been shown to prevent villous

atrophy in early-weaned piglets(26).

Despite the important roles attributed to Gln in clinical

nutrition(27), supplementation during the vulnerable weaning

period has received little attention. The objective of the

present study was to determine the ability of dietary sup-

plementation with Gln (4·4 %, w/w) to improve immune and

gastrointestinal function and defence against an ETEC chal-

lenge in the early post-weaning period in a piglet model.

As the development of a reproducible orally induced model

of ETEC infection in the piglet has proved problematic(3,28),

an in vivo closed intestinal loop model of ETEC infection

was used to produce the early signs of ETEC infection.

Methods

Animals and diets

The study was reviewed and approved by the Faculty of Agri-

culture, Forestry and Home Economics Animal Policy and

Welfare Committee, and was conducted in accordance with

the Canadian Council on Animal Care guidelines. A total of

four litters (ten piglets per litter) of Dutch Landrace (Genex

Swine Group, Heartland Livestock Services, Regina, SK,

Canada) piglets were obtained at weaning (21 d) from the

University of Alberta Swine Research and Technology Centre

(Edmonton, AB, Canada), and were housed individually in

metabolism crates, each fitted with water nipples and creep

feeders. Upon receipt, piglets in each litter were randomly

assigned to one of the two diet treatments: (1) basal diet with

a control mixture of amino acid supplement (CTL); (2) basal

diet with Gln supplement (Gln) (Table 1). These diets were

formulated to meet 110 % of the requirements for piglets

weighing 5–10 kg as specified by the National Research

Council of Canada. The supplement portion of the Gln diet

(60 g/kg) consisted of 43·8 g Gln, and the CTL diet consisted

of an isomolar, isonitrogenous mixture of amino acids (ala-

nine, glycine and serine), which have limited or no metabolic

interaction with Gln and are not known to limit the growth or

immune function in piglets of this age(29). Gln supplemen-

tation level was designed to be consistent with an approxi-

mate amount (on a diet proportion) that has been added in

adult human clinical studies that found beneficial effects on

immune function and infection rates(30,31). The variable por-

tion of the diet was isonitrogenous and was made isoenergetic

by balancing the supplement with sucrose. Piglets were fed

the test diets for 14 d from weaning. Body weight and feed

intake (FI) were recorded daily during the feeding trial.

In situ surgical procedure

At approximately 35 d of age, animals underwent an in situ

closed intestinal loop ETEC infection procedure. A single

blood sample was taken from each piglet before receiving

anaesthesia for isolation of peripheral blood mononuclear

cells. Piglets received intramuscular injections of Torbugesic

(0·2 mg/kg), Ketamine (11 mg/kg), Rompun (2·2 mg/kg)

and Robinul (0·01 mg/kg). Anaesthesia was maintained with

1·0–1·5 % (v/v) halothane delivered with oxygen (3 litres/

min). The abdominal wall was opened by a midline incision,

and the ileum was exteriorised and gently flushed with PBS to

remove the intestinal contents. Intestinal loops (each 10 cm in

length and 50 cm apart) were ligated with braided umbilical

tape (Baxter International, Inc., Deerfield, IL, USA). The first

intestinal loop was located 15 cm from the ligament of

Table 1. Nutrient composition of the weaning diets

Diet (g/kg)

Ingredients CTL diet Gln diet

Wheat 382 382
Soyabean meal 232 232
Casein 232 232
Tallow 38·8 38·8
Safflower oil 21·5 21·5
Linseed oil 4·7 4·7
Limestone 6·0 6·0
Dicalcium phosphate 18·9 18·9
Salt 2·0 2·0
Swine vitamin/mineral premix* 0·75 0·75
Swine trace mineral 3† 1·00 1·00
Vitamin B12 1·67 £ 1025 1·67 £ 1025

Ser 21·0 0
Ala 17·8 0
Gly 15·0 0
Sucrose 6·2 16·2
Gln 0 43·8 g

CTL, control; Gln, glutamine.
* Vitamin premix contained (%, w/w): protein, 3·8912 %; fat, 0·99 %; moisture,

2·701 %; digestible energy, 359·8 kJ/kg; metabolisable energy, 343·1 kJ/kg; Ca,
25·7937 %; P, 0·225 %; available P, 0·0765 %; Mg, 0·1282 %; Na, 0·0328 %;
Fe, 642·2313 mg/kg; vitamin A, 7 000 014·2 IU(100 004·3mg)/kg; vitamin D3,
700 014·2 IU(17 500·4mg)/kg; vitamin E, 20 000·0117 IU(181 818 288 163mg)/kg;
vitamin K, 1500·0179 mg/kg; biotin, 40·0001 mg/kg; folic acid, 399·9008 mg/kg;
niacin, 20 000·0117 mg/kg; pantothenic acid, 7499·9741 mg/kg; pyridoxine,
533·9845 mg/kg; riboflavin, 3000·0051 mg/kg; thiamin, 580·5812 mg/kg; vitamin B12,
10 mg/kg.

† Trace mineral premix contained (%, w/w): fat, 0·99 %; moisture, 0·001 %; digesti-
ble energy, 359·8 kJ/kg; metabolisable energy, 343·1 kJ/kg; Ca, 15·1874 %; Mg,
0·0729 %; Na, 0·0283 %; S, 4·756 %; Co, 351 mg/kg; Cu, 5000 mg/kg; I,
749·3 mg/kg; Fe, 75 365·1328 mg/kg; Mn, 25 020 mg/kg; Se, 150 mg/kg; Zn,
75 024 mg/kg; choline, 100·001 g/kg.
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Treitz. Each loop was injected with either an ETEC suspension

(K88AC or K88 wild-type (WT), approximately 1 £ 109 colony-

forming units/ml, described later) or PBS (negative control).

Following an incubation period of 4 h, euthanasia was

induced by cardiac injection of pentobarbital (Euthanyl;

2 ml/4·5 kg body weight), and the gut sections were removed

and immersed in ice-cold PBS. The amount of fluid inoculated

into each loop was recorded, and the volume recovered from

each loop was measured at the end of the experiment. Muco-

sal scrapings from each segment were snap-frozen in liquid N2

and stored at 2808C. Mesenteric lymph nodes were excised

adjacent to the distal ileum (10–20 cm before the ileocaecal

junction), immersed in ice-cold PBS and stored on ice until

processing.

Bacterial preparation

E. coli cultures were prepared fresh from frozen stock immedi-

ately before each surgery. We chose two representative swine

ETEC strains: one well-characterised strain known to express

the K88AC fimbrial antigen and one K88 þ WT field isolate.

To ensure that we included a strain that was infective to pig-

lets, we also used a WT strain, isolated from infected piglets.

K88AC ETEC was kindly provided by Dr Marquardt (Univer-

sity of Manitoba, Winnipeg, MB, Canada). K88WT field isolate

was kindly provided by Dr Nick Nation (VPL Laboratories,

Edmonton, AB, Canada). To prepare fresh ETEC cultures,

ETEC frozen culture was inoculated into 6 ml of brain heart

infusion medium (Oxoid Limited, Basingstoke, Hampshire,

England, UK) and grown for 24 h at 378C with shaking,

then subcultured for 24 h. The final culture was prepared by

12 h incubation of a 1:100 dilution of the subculture into

brain heart infusion media. Bacteria were diluted in PBS to a

final concentration of approximately 1 £ 109 colony-forming

units/ml. The presence of K88 fimbriae was confirmed in

each culture by a latex agglutination test (Vetway Fimbrex

K88; Central Veterinary Laboratory, Addlestone, Surrey, UK)

immediately before the surgical procedure.

Epithelial monolayer barrier integrity measurements

Within 1 h of death, a small segment from each intestinal loop

was removed, transported in ice-cold PBS, stripped of the

serosa and mounted in an Ussing chamber. Once mounted,

sections were bathed in a bicarbonate Ringer’s solution

(143 mM-Naþ, 5 mM-Kþ, 1·1 mM-Mg, 1·25 mM-Ca2þ, 25 mM-

HCO3
2, 123·7 mM-Cl2, 0·3 mM-HPO4

2 and 20 mM-fructose)

with 95 % O2 and 5 % CO2 at 37oC, pH 7·4. Permeability was

measured via scintillation counter (b-ray scintillation; Beck-

man Coulter, Fullerton, CA, USA) to determine the flux of

[3H]mannitol (37 MBq; 1 mCi) across individual ileal speci-

mens. The spontaneous transepithelial potential difference

(PD) and short-circuit current (Isc) were determined for all

segments, and tissue conductance (G) was calculated from

PD and Isc according to Ohm’s law. At the end of the sampling

period, forskolin (10ml; Sigma) was added to the serosal

chamber, and the peak change in Isc was recorded, in order

to assess tissue viability.

RNA isolation and PCR analysis of cytokines

Mucosal samples were ground to a fine powder under liquid

N2 using mortar and pestle on dry ice. RNA was extracted

using TRIzol reagent (Invitrogen, Burlington, ON, Canada),

following the manufacturer’s instructions with a slight modifi-

cation. RNA was precipitated with isopropanol and linear

glycogen overnight at 2208C. The total RNA concentration

of each sample was quantified spectrophotometrically using

a NanoDrop ND-1000 Spectrophotometer (NanoDrop Tech-

nologies, Wilmington, DE, USA). DNA-free kit (Ambion,

Streetsville, ON, Canada) was used to remove any DNA con-

tamination. First-strand complementary DNA synthesis using

SuperScript II RT (Invitrogen) on 3mg RNA in a 30ml total

volume with random primers was done following the manu-

facturer’s guidelines. Real-time PCR was performed on a

7900 HT fast real-time PCR system using 1ml (approximately

100 ng) complementary DNA, 8ml diethylpyrocarbonate

water, 10ml TaqMan Fast Universal PCR Master Mix and 1ml

TaqMan Gene Expression Assay. Cycle threshold (Ct) values

were determined using SDS 2.3 software. The gene of interest

was normalised to the Ct value of our endogenous reference

gene, cyclophilin, using the DCt method described by

Pfaffl(32,33). The primer/probe sequences are listed in Table 2.

Western blotting

Protein lysates were prepared from intestinal mucosal scrap-

ings by PARISe Protein and RNA Isolation System (Ambion,

Austin, TX, USA). The protein concentration of the lysates

was determined by bicinchoninic acid assay (Sigma-Aldrich

Canada Limited, Oakville, ON, Canada). Equal amounts of

protein from each treatment (20mg) were separated by

SDS-PAGE on 7·5 % (Zona occludens-1) and 10 % (claudin-1

and occludin) polyacrylamide gels. ECL DualVuee Western

Table 2. RT-PCR primers 50 –30

Genes Forward primer TaqMan MGB probes Reverse primer

Cyclophilin AAT GCT GGC CCC AAC ACA ACG GTT CCC AGT TTT TCA GTC TTG GCA GTG CAA ATG
IL-6 TCTCCACAAGCGCCTTCAG TCCAGTCGCCTTCTCC CAGTAGCCATCACCAGAAGCA
TNF-a CCTACTGCACTTCGAGGTTATCG CCAGCTGGAAACTCTT GGCCAGAGGGTTGATGCT
IL-1b AAGGCTCTCCACCTCCTCA ATGCAGAACACCACTTCT TTGATCCCTAAGGTCACAGGTATCT
IFN-g GGAAACTGAATGACTTCGAAAAGCT AAATTCCGGTAGATAATCTG GGCTTTGCGCTGGATCTG
TGF-b CCTACATCTGGAGCCTAGACACT CCAGGACCTTGCTGTACTG GGGTTGTGCTGGTTGTACAGA

IFN, interferon; TGF-b, transforming growth factor-b.
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blotting markers (Amersham Biosciences, Baie D’Urfe, QC,

Canada) were used to monitor protein separation. Proteins

were electrophoretically transferred to polyvinylidene difluor-

ide membranes (Amersham Biosciences). Even protein load-

ing and transfer was confirmed by staining with Ponceau S

(Sigma-Aldrich Canada Limited). Membranes were blocked

for 1 h at room temperature with TBST (10 mM-Tris–HCl,

pH 7·4, 150 mM-NaCl, Tween-20 (1 ml/l)) and powdered

milk (50 g/l). Primary antibodies to claudin-1 (Santa Cruz Bio-

technology, Inc., Santa Cruz, CA, USA) and occludin (Santa

Cruz Biotechnology, Inc.) were diluted (1:750 and 1:1500,

respectively) in TBST containing powdered milk (50 g/l)

and incubated with membranes for 1 h at room temperature.

Membranes were incubated with horseradish peroxidase-con-

jugated anti-rabbit secondary antibody (BD Biosciences, Mis-

sissauga, ON, Canada) diluted in TBST containing powdered

milk (50 g/l) for 1 h at room temperature. Membranes were

developed using an enhanced chemiluminescence (ECL

Pluse) detection kit (Amersham Biosciences) and visualised

using a Typhoon Trioe Imager (GE Healthcare, Baie

D’Urfe, QC, Canada). Densitometric values for protein

bands were determined using ImageQuante software (GE

Healthcare).

Statistical analysis

All statistical analyses were completed using the SAS statisti-

cal package (version 8.1; SAS Institute, Cary, NC, USA).

Diet effect was tested using ANOVA, blocked for litter. For

epithelial barrier integrity measures and fluid recovery, the

effect of diet and loop was determined using a mixed

model, with loop comparisons performed by least-squares

means, with blocking for piglet litter. Repeated-measures

analysis was also performed on Ussing chamber data. For

all measurements, a probability of P,0·05 was accepted as

being statistically significant. Significant differences between

groups were identified by least-square means. All results

are presented as means with their standard errors. All

measured parameters were tested for normal distribution.

Values that were not normally distributed were log trans-

formed before statistical analysis.

Results

Animal weight gain and food intake

There was no effect of diet on final body weight, weight gain

or food intake (Table 3).

Water

Analysis of fluid recovery data revealed a significant loop

effect in which K88AC- and K88WT-inoculated loops were sig-

nificantly different than the loops that were not inoculated

with ETEC (P,0·0001; Fig. 1). Gln did not significantly

impact fluid secretion in non-inoculated, K88AC- or K88WT-

inoculated loops (P¼0·069, 0·70 and 0·09, respectively).

Epithelial monolayer barrier integrity measurements

Within both groups, mannitol flux was significantly higher

in intestinal segments inoculated with ETEC (K88AC and

K88WT) than non-ETEC segments (P,0·0001; Fig. 2(A)).

Diet did not influence mannitol permeability in either the

non-inoculated loops or the ETEC-inoculated loops (Fig. 2(A)).

Electrical measurements of intestinal loop tissue mounted

in Ussing chambers revealed that inoculation with K88AC

caused an increase in Isc in control-fed animals (Fig. 2(B))

compared with the CTL loops. Gln feeding resulted in

decreased Isc values in both K88AC- and K88WT-inoculated

loops (Fig. 2(B)).

CTL animals had a higher PD in the ETEC-inoculated loops

compared with Gln animals, which reached statistical signifi-

cance in the K88WT-inoculated loops (Fig. 2(C)). All groups

responded to forskolin equally at the end of the incubation

period, indicating similar viability (change in Isc; data not

shown). No differences in conductance (G) were observed

between the groups (Fig. 2(D)). These results confirm that

both E. coli strains produced the expected effects on the

gut physiology, therefore only the well-characterised K88AC

E. coli strain was used to study the effect of Gln on cytokines

and tight-junction proteins.

Table 3. Body weight (BW) and food intake of piglets fed the glutamine
(Gln) and control (CTL) diets

(Mean values with their standard errors)

CTL (n 20) Gln (n 20)

Mean SEM Mean SEM

Final BW (g) 7740 422 8155 423
Average weight gain (g) 1990 199 1896 248
Food intake (g/d) 174 16 172 16
Food intake (g/kg BW) 25 2 22 2
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Intestinal cytokine expression

Neither Gln nor the E. coli (K88AC) challenge significantly

influenced the expression of IFN-g in the mucosa of the intes-

tinal loops (Fig. 3). The presence of ETEC stimulated TNF-a

and IL-1b expression in both Gln and CTL diets compared

with uninfected loops (P,0·01; Fig. 3). The expression of

IL-6 was significantly increased in ETEC-infected loops of con-

trol-fed animals compared with uninfected loops, but there

was no difference in IL-6 expression in Gln-fed animals

between the control and ETEC loops. Transforming growth

factor-b and IL-10 were significantly higher in the ETEC-

challenged intestinal loops compared with the control loop

in control-fed animals, but in Gln-fed animals (P,0·05), no

differences were observed in these cytokines between the

ETEC-infected and control loops (Fig. 3). Gln supplementation

did not significantly alter the expression of any measured

cytokine in ETEC-infected loops compared with the CTL diet.

Effects on tight-junction proteins

There was a significant decrease in the levels of occludin

and claudin-1 in the mucosa from E. coli-challenged loops

(P , 0·002; Fig. 4). There was no significant effect of diet on

the expression of claudin-1 in the mucosa. After the ETEC

challenge, there was a trend (P ¼ 0·06) towards a higher

expression of occludin in Gln-fed piglets, compared with

CTL piglets.

Discussion

In the present study, we investigated the impact of feeding

Gln on immune and intestinal barrier function in a piglet

model of weaning-associated ETEC infection. We found

that piglets fed Gln before E. coli infection had decreased

intestinal PD and Isc compared with control-fed animals.

We also observed a significantly increased expression in
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or K88WT). Values are means, with their standard errors represented by vertical bars. a,b Mean values with unlike letters were significantly different (P,0·05).
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mucosal cytokine mRNA expression (IL-6, transforming

growth factor-b and IL-10) in response to ETEC infection in

control-fed animals, but not in Gln-fed animals. Fluid

secretion and tight-junction protein expression were both

negatively altered by E. coli infection in both control-fed

and Gln-fed piglets.

FI was slightly lower in the present study than that in a simi-

lar study of Gln supplementation (0–1 %) of 21 d weaned

piglets(26). In the present study, average daily FI was approxi-

mately 174 g/d over the 14 d experimental period, whereas the

above-mentioned study reports FI in two periods: the first

week post-weaning (about 140 g/d) and the second week

post-weaning (about 350 g/d). This makes the direct compari-

son difficult; however, it does appear that there was probably

a lower FI in the present study. Given that the control-fed and

Gln-fed piglets consumed the same amount of feed in the

present study, it seems unlikely that it is due to Gln sup-

plementation, which was significantly higher in the present

study (4·38 v. 1 %). This difference may be attributable to

the breed selected – the present study was performed using

Dutch Landrace cross piglets, whereas Wu et al. (26) utilised

Yorkshire £ Landrace sows and Duroc £ Hampshire boars.

ETECcausesdiarrhoeabyadhering to intestinal epithelial cells

via pili or fimbriae and subsequently producing enterotoxins

(heat-stable and heat-labile) (reviewed in Gyles(34)), which

lead to a decrease in the absorption of electrolytes by the

villus cells and an increase in Cl2 secretion by the crypt

cells. This rapid increase in the rate of secretion of electrolytes

and water from the intestine leads to diarrhoea. The immune

system becomes activated by the presence of ETEC on intesti-

nal cells, and inflammation ensues(35,36). This process was in

agreement with the present study, as shown by the higher

fluid absorption in non-ETEC-exposed loops (demonstrated

by the lower recovery of liquid from these loops). We found

that dietary Gln supplementation before an E. coli challenge

did not prevent the increase in fluid secretion. In contrast,

Silva et al.(37) used a rabbit model (cholera toxin-infected

intestinal loop sections) and found that Gln-supplemented

oral rehydration solution was capable of reducing water

secretion. Similarly, PG-induced secretion has been reported

to be reduced in the presence of Gln infusion in human

subjects(38). These discrepancies may be attributable to the

use of Gln after infection is initiated, whereas in the present

study, Gln supplementation occurred as a dietary pre-treat-

ment to E. coli infection, rather than an intestinal infusion

at the time of induction of secretion. Furthermore, since the

precise ionic composition of the luminal contents is unknown

in the present study, the aetiology of altered fluid secretion

is unknown.

We also observed solute movement across the paracellular

pathway, via measurement of the unidirectional serosal-

to-mucosal flux of mannitol. A significantly higher mannitol

permeability was found in loops inoculated with ETEC

(K88AC and K88WT), indicating an increased intestinal per-

meability in the presence of ETEC. An increase in permeability

due to the presence of pathogens has previously been

reported in studies of in vivo infection by transmissible gastro-

enteritis virus(39) and rotavirus(40) in piglets and rats, respect-

ively. Reduced enterotoxin-induced enterocyte death(41) and

decreased bacterial translocation(42) have also been reported

following oral administration of Gln. In the present study,

there was no significant effect of Gln supplementation

on mannitol permeability before or after an intestinal E. coli

challenge. Dietary Gln has been shown in numerous studies

to exert trophic effects on the intestinal epithelium, leading

to increased villus height, improved mucosal integrity and

cell proliferation(23,43,44). Since an increase in surface area

would also increase mannitol permeability, diet-induced

changes could potentially be masked if enterocyte prolifer-

ation and surface area were increased.

In the present study, jejunal intestinal sections did not

demonstrate a significant change in G in response to ETEC

in control-fed or Gln-fed piglets. The forskolin response

(change in Isc) was significantly higher in the intestinal loops

from Gln-fed piglets infected with both K88AC and K88WT

with ETEC exposure compared with the CTL-fed piglets.

Similarly, PD was higher in K88WT ETEC-infected loops

from Gln-fed animals compared with CTL-fed animals.

Tissue Isc in Ussing chambers is a measure of the net move-

ment of several actively transported ions, which significantly

increases following the addition of heat-stable enterotoxin

to rabbit distal ileal sections(45). PD is also related to ion
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Fig. 4. (A) Occludin and (B) claudin-2 and protein expression in intestinal

mucosa from piglets fed the glutamine (Gln) or control ( ) diets. a,b Mean

values were significantly different in the levels of occludin and claudin-1 in

the mucosa from Escherichia coli ( )-challenged loops (P,0·002). There

was no significant effect of Gln on the expression of claudin-1 in the mucosa.
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movement but measures changes in the electrochemical

gradient across the intestinal epithelium that is generated by

electrogenic ion pumps in epithelial cell membranes, mainly

the Na–K-ATPase(46). Although the movement of individual

ions was not measured in the present study, the higher

Isc and PD values in ETEC-infected loops of CTL-fed piglets

compared with Gln-fed piglets are suggestive of an increased

Cl2 secretion caused by ETEC. It is possible that enterocytes of

Gln-fed piglets were not influenced to the same extent by the

presence of ETEC, either by being less responsive to secreted

enterotoxins or because ETEC was not able to bind and

release enterotoxins to the same magnitude. The decrease

in intestinal cytokine production that we observed could

similarly be attributed to reduced binding and enterotoxin

production of ETEC.

Alternately, Gln may have had a direct effect on intestinal

cytokine production. Feeding Gln has been shown to reduce

the production of the pro-inflammatory cytokines IL-6 and

IL-8, in response to IL-1b stimulation in human intestinal

mucosa(47). Consistent with the present study, Gln supplemen-

tation has also been shown to reduce plasma inflammatory

cytokine concentrations (TNF-a and IL-6) in response to

E. coli lipopolysaccharide-induced shock, via induction of

HSP70 expression(48). In that study, Gln also enhanced the

production of the regulatory cytokine, IL-10(45). In the present

study, there was an increase in IL-10 in the intestines from

Gln-fed piglets compared with control-fed piglets.

Although it has been demonstrated that feeding Gln can

reduce the risk of enteric infections in piglets(14) and

infants(12), the relative contribution of dietary Gln to immune

development and health has not been clearly established.

In a previous study by our group, healthy piglets feeding a

weaning diet supplemented with Gln exhibited enhanced

immune function, including increased proliferation of periph-

eral blood mononuclear cells and mesenteric lymph node

cells after an antigen challenge and prevention of an increase

in antigen-naive CD4þ cells(6). To prevent post-weaning

ETEC-induced diarrhoea, an activated mucosal immunity

system is required(49). The process by which animals meet

the immediate response to infection is influenced by inflam-

matory cytokines produced primarily by macrophages and

professional antigen-presenting cells(50). It is possible that

this activated mucosal immunity in turn alters tight-junction

protein expression, as pro-inflammatory cytokines are known

to induce endocytosis of tight-junction proteins and sub-

sequently cause increased permeability(35).

In summary, the results of the present study suggest that

Gln supplementation during the weaning period is useful in

reducing early steps in weaning-related gastrointestinal infec-

tions by suppressing the inflammatory and regulatory cytokine

response in the gut and decreasing damage to tight junction

proteins and intestinal electrolyte movement.
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