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Abstract 1 

Agencies that manage mobile photo enforcement (MPE) programs must decide where and 2 
when to send their limited resources to monitor compliance with speed limits. Usually, the 3 
goal is to select locations based on a number of concerns (i.e., high collision sites, high speed 4 
violation sites, school zones, etc.) which, in most cases, is conflicting. If certain locations are 5 
given more MPE resources, then by definition, other locations will receive less attention, and 6 
vice versa. This paper aims to provide insights about such MPE program tradeoffs. We 7 
present a systematic procedure for interpreting the results of a multi-objective MPE resource 8 
allocation problem. The procedure consists of three steps: 1) Pareto front (PF) generation, 2) 9 
front representation, and 3) tradeoff analysis. First, in generating a PF, we sequentially apply 10 
two well-known scalar optimization methods to obtain a comprehensive set of Pareto-optimal 11 
solutions. Second, the 𝐾𝐾-medoids clustering algorithm and the silhouette index are adopted 12 
to partition the generated PF into similar-sized clusters, in order to help MPE program 13 
agencies choose from a reduced set of solutions on the PF. Third, we use the response surface 14 
method to determine tradeoff patterns on the PF. The results of the front generation analysis 15 
showed that applying two optimization methods together resulted in a nearly complete PF 16 
with a relatively uniform and dense spread of solutions. Consequently, the identified set of 17 
solutions (i.e., 13,210 cases) was further partitioned into 12 clusters by silhouette index and 18 
𝐾𝐾 -medoids. With the aim of reducing decision fatigue for agencies, each cluster’s 19 
representative solution is considered a possible MPE resource allocation candidate. The 20 
tradeoff analysis indicated how much one must sacrifice in the other objectives in order to 21 
increase attainment of one particular objective. Finally, the tradeoff rate and elasticity were 22 
used to explore the quantitative relationship between the considered objectives. 23 

 24 
Keywords: mobile photo enforcement program planning, multi-objective optimization, 25 
tradeoff analysis, Pareto front analysis, resource allocation.  26 
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1. INTRODUCTION 1 

Agencies that manage mobile photo enforcement (MPE) programs must decide where and 2 
when to send their limited resources for conducting speed enforcement. Locations include 3 
those with known traffic safety issues, those perceived by the public to be of concern, those 4 
with higher numbers of vulnerable road users. To this end, agencies may be aiming to achieve 5 
multiple, but often conflicting, goals through MPE. If certain (types of) locations are given 6 
more MPE resources, then by definition, other locations will receive less attention, and vice 7 
versa; both these resource allocation scenarios may be optimal in a multi-objective setting 8 
(Li, Kim, & El-Basyouny, 2016). For instance, managers may decide that greater MPE 9 
presence in school zones is warranted through September (i.e., usually start of the school 10 
term), which is achieved at the expense of presence at all other priority location types. The 11 
question is thus: what is the cost of achieving more school zone presence, in terms of reduced 12 
presence at other types of priority sites (high collision, high speed violation, etc.)? 13 

This paper aims to provide insights about such MPE program tradeoffs (also referred to as 14 
elasticities in transportation planning), by exploring the resource allocations generated 15 
through multi-objective optimization. Resource allocation solutions from a multi-objective 16 
optimization problem make up a Pareto front (PF). In a PF, no solution is absolutely superior 17 
over any other; instead, in comparing two solutions, we observe tradeoffs between the (two 18 
or more) objectives. By generating and understanding the PF of MPE resource allocation 19 
solutions, agencies can understand what they are gaining (in one objective) but losing (in 20 
another) by choosing a particular resource allocation over another. 21 

We present a systematic procedure for interpreting the results of a multi-objective MPE 22 
resource allocation problem (MPE-RAP). The procedure consists of three steps: 1) front 23 
generation, 2) front representation, and 3) tradeoff analysis. First, in generating a PF, we 24 
sequentially apply two well-known scalar optimization methods – weighted sum and epsilon 25 
constraint – to obtain a set of Pareto-optimal solutions approximating the PF of the MPE-26 
RAP. The two methods can be used together to efficiently find a satisfactory solution set. 27 
Second, the 𝐾𝐾-medoids clustering algorithm is adopted to partition the generated PF into 𝑘𝑘 28 
similar-sized clusters. 𝐾𝐾 -medoids was chosen because of its ease of implementation. In 29 
addition, it is well known for its efficiency in processing large amounts of data, so it was 30 
used to handle a large number of PF solutions quickly. In addition, 𝐾𝐾-medoids uses an 31 
existing solution on the PF to represent a cluster. In the third step we use the response surface 32 
method to determine tradeoff patterns on the PF. A quadratic polynomial model is estimated 33 
on the Pareto-optimal solutions (generated in step 1) to construct a continuous surface. From 34 
this, we can examine the tradeoffs between Pareto-optimal MPE resource allocation solutions. 35 
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We demonstrate our procedure using an example of the MPE program in the City of 1 
Edmonton, Canada, in September 2014. We aim to maximize enforcement coverage of high 2 
collision sites, high speed violation sites, and school zones (Li, Kim, & El-Basyouny, 2016). 3 
A set of Pareto-optimal solutions in the three-dimensional objective space were generated 4 
and further partitioned into clusters. Each cluster’s representative solution (12 clusters in total) 5 
is considered a possible MPE resource allocation candidate, with the aim of reducing decision 6 
fatigue for MPE decision makers. Moreover, we take one cluster representative (candidate 7 
solution) as an example to explore the tradeoffs between the three objectives under 8 
consideration. By moving among solutions on the optimal tradeoff surface (estimated using 9 
a quadratic polynomial function), we are able to observe, for instance, how much collision 10 
and speeding site coverage would be sacrificed to achieve more enforcement presence in 11 
school zones. 12 

This paper can help agencies managing MPE programs access and choose resource allocation 13 
strategies through a better understanding of the solutions generated, and the relationships 14 
(tradeoffs) between these solutions. It provides an evidence-based, methodologically sound, 15 
and ultimately traceable MPE resource allocation decision support system, in sharp contrast 16 
to existing MPE programs that rely on black box (i.e. qualitative, expert run) decision making. 17 
This paper adds to the literature on systematic methods of MPE resource allocation, in 18 
particular providing a method of better understanding the relationships between different 19 
allocation solutions. 20 

2. LITERATURE REVIEW 21 

A mobile photo enforcement MPE program requires radar and camera systems installed in 22 
vehicles to perform speed enforcement at various locations within a roadway network. MPE 23 
programs in Alberta, Canada, have six common enforcement goals: to provide presence at 24 
high collision sites, high speed violation sites, school zones, construction zones, high 25 
pedestrian volume sites, and sites with community speeding complaints (Li, Kim, El-26 
Basyouny, & Li, 2016). Other MPE programs throughout the world have similar objectives. 27 

To address multiple MPE deployment goals simultaneously, Kim et al. (2016) proposed a 28 
model for the MPE resource allocation problem MPE-RAP that combined multiple 29 
deployment goals together in a single weighted function. The proposed model measures the 30 
degree of achievement towards several deployment goals at a site, and combines these into a 31 
single numerical index for the site by the pre-determined weights assigned to each 32 
deployment goal. The authors select a pre-determined number of sites with the highest index 33 
rankings, to which a pre-set amount of enforcement resources are allocated randomly. 34 
Despite the model being easy to implement, in practice, it may be challenging for MPE 35 
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program managers to specify appropriate weight values between the enforcement goals 1 
considered in the model. 2 

The MPE-RAP was then further studied and solved in two stages: 1) generate candidate MPE 3 
resource allocation (operators & vehicles) plans for city neighborhoods while accounting for  4 
multiple goals (Li, Kim, & El-Basyouny, 2016), and 2) schedule neighborhood-level MPE 5 
resources for individual enforcement sites where the goals set in the 1st stage can be attained 6 
(Li, Kim, & El-Basyouny, 2017). In Stage 1, Li et al. (2016) constructed a multi-objective 7 
optimization model to simultaneously account for the multiple goals that an MPE program 8 
might aim for. These goals – previously only qualitatively defined by the Province of Alberta 9 
– had been quantified in previous work (Li, Kim, El-Basyouny, et al., 2016). The authors 10 
used an illustrative example of the City of Edmonton’s MPE program operations from 11 
September 2014 to demonstrate the optimized MPE deployment plans identified by the 12 
proposed model. Three frequently addressed deployment priorities were considered: 13 
maximizing enforcement presence at 1) high collision sites, 2) high speed violation sites, and 14 
3) school zones. These three deployment priorities were quantified into objectives using the 15 
measures of equivalent property-damage-only collision frequency per kilometer (𝐸𝐸𝐸𝐸𝐾𝐾 ), 16 
speed violation indicator (𝑆𝑆𝑆𝑆𝑆𝑆), and school zone density (𝑆𝑆𝑆𝑆𝑆𝑆), respectively. The values of 17 
the three metrics were taken from three years of data (2012-2014) from the City of Edmonton. 18 
Correspondingly, the objective functions are: maximize 1) ∑ 𝐸𝐸𝐸𝐸𝐾𝐾𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 𝑛𝑛

𝑖𝑖=1 , 2) ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖  𝑛𝑛
𝑖𝑖=1 , 19 

and 3) ∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑥𝑥𝑖𝑖 is the number of enforcement shifts (i.e., a shift is a 10-hour 20 

duty span for officers to conduct speed enforcement) assigned to each neighborhood 𝑖𝑖 ∈21 
[1, … ,388]. The objective functions are subject to two constraints: 1) ∑ 𝑥𝑥𝑖𝑖𝑖𝑖  equals the total 22 
number of shifts (𝐸𝐸 = 458) during the studied month and 2) there are minimum (𝐿𝐿𝑖𝑖) and 23 
maximum (𝑈𝑈𝑖𝑖) bounds on the number of times a neighborhood can be enforced (𝑥𝑥𝑖𝑖). The 24 
generalized differential evolution 3 algorithm (GDE3) (Kukkonen & Lampinen, 2005) was 25 
used to solve the model. The algorithm yielded a set of 200 optimal solutions, called a Pareto 26 
front (PF) of the MPE-RAP example. The purpose of this model is to present MPE program 27 
managers with different optimal allocation solutions, and allow them to choose solutions 28 
from month to month that address their changing priorities. 29 

In Stage 2, Li et al. (2017) developed a binary integer linear programming model to specify 30 
the daily sequence of enforcement shifts that are allocated to pre-determined enforcement 31 
sites within each neighborhood over one month. The model determines the shift sequence by 32 
minimizing the conflict between the shift assignment and the enforcement time halo effect. 33 
Enforcement time halo is the deterrent effect that an MPE program yields for a time period 34 
after its operation (Hauer, Ahlin, & Bowser, 1982), and therefore reducing shift assignment 35 
in the time halo period can achieve efficient resource utilization. In addition, the model 36 
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assigns a neighborhood’s shifts ( 𝑥𝑥𝑖𝑖 ) to the pre-determined enforcement sites of that 1 
neighborhood based on the sites’ weights in relation to the attainment of the desired goals set 2 
in Stage 1. An optimal solution of the PF generated for the MPE-RAP example in the 1st 3 
stage study was input to the scheduling model, which produced a diverse shift schedule for 4 
the City of Edmonton’s MPE program operation in September 2014. 5 

Although the MPE-RAP has been systematically addressed, program managers can face 6 
difficulties when presented with a Pareto front (PF) in the 1st stage of the proposed systematic 7 
approach. First, in many real-life multi-objective optimization problems, the PF can be very 8 
large or can even contain an infinite number of solutions; the greater the number of 9 
considered objectives, the larger the expected size is of the PF. It is therefore difficult to make 10 
a choice from a very large PF. Second, although each solution on the PF informs the value 11 
given to each objective, the exchange of the objective values between solutions is not directly 12 
revealed. This creates inconvenience for MPE program managers when they compare a large 13 
number of solutions and choose the desired tradeoff. 14 

There are two main approaches to reducing the number of solutions to represent a PF: 1) 15 
define objective preferences and establish utility functions, and 2) cluster analysis. In the first 16 
approach, Taboada et al. (2007) proposed a non-numerical preferences ranking method, 17 
where the authors proposed a weighted utility function of objectives. The weights were based 18 
on decision makers’ ranking of the importance of each objective. Pareto solutions were 19 
assessed by the utility function, and a subset of solutions having function values greater than 20 
a pre-defined pruning threshold can be identified. Branke et al. (2004) focus on the solutions 21 
in the center of the PF (referred to as knee solutions) in the absence of decision makers’ 22 
preferences. Solutions are evaluated by either an angular measure or a marginal utility 23 
measure, where the solutions with highest measure values are the preferred knee solutions. 24 
Mattson et al. (2004) propose an insignificant tradeoff region where the difference between 25 
any two objective values is less than a user-specified threshold. Solutions that are positioned 26 
within the insignificant tradeoff region of reference solutions are removed from the PF. 27 
However, the above first-category approach requires multiple iterative calculations and most 28 
also require a-priori determinations and estimates of preferences between objectives. 29 
Conversely, clustering techniques (the second approach to generating a PF representation) 30 
do not require significant computational efforts and prior preference information. 31 
Incorporating a clustering procedure in analyzing Pareto results can be found in many studies 32 
(Morse, 1980; Rosenman & Gero, 1985; Zitzler & Thiele, 1999; Taboada & Coit, 2007; 33 
Taboada et al., 2007). Despite the use of different clustering algorithms, all studies group 34 
solutions on a PF into a pre-defined range of clusters consisting of similar solutions; only the 35 
solutions that represent the clusters are chosen to stand in for the entire PF. 36 
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Approaches to analyze tradeoffs among conflicting objectives are mainly focused on plotting 1 
results on two axes (with 2 objectives) or a hypersurface (3 or more objectives) in a discrete 2 
PF. The tradeoff between any two objective functions when moving from one solution to 3 
another along a PF is the slope of the line connecting the two solutions in the two-objective 4 
space (Miettinen, 1999). Hence, by connecting the solutions on the PF with smooth curves 5 
or surfaces, the objective tradeoff implied can be analyzed in an efficient manner in a PF with 6 
a large number of data points. For instance, Bai et al. (2011) used polynomial regression to 7 
generate pairwise tradeoff curves for five performance objectives considered in a highway 8 
asset management program. Goel et al. (2007) applied the response surface method to 9 
simultaneously analyze the tradeoffs of three goals related to a rocket injector design program. 10 
The authors constructed a polynomial model to build an (optimized) tradeoff surface for the 11 
three goals considered. However, tradeoffs were analyzed on a 2D contour map of the surface 12 
for simplicity. Note that the higher the objective dimension is, the more complex and difficult 13 
it is to interpret tradeoffs on a hypersurface. Therefore, when there are more than two 14 
objectives to consider, the easiest method is to perform pairwise comparisons of objective 15 
tradeoffs in 2D while keeping other dimensions constant (Bai et al., 2011). 16 

Despite the rich literature on PF result analysis, there has been no application of this within 17 
MPE-RAP, which ideally benefits from PF tradeoff analysis. This paper is designed to help 18 
MPE agencies better understand and use the Pareto optimal set of resource allocation 19 
solutions obtained by multi-objective programming. First, to identify a representative subset 20 
of MPE optimal allocation solutions from a PF, we incorporate a clustering process that can 21 
be easily implemented without the user-specified preferences. Then, we use the response 22 
surface method to fit an optimal tradeoff surface that (typically) involves more than two 23 
enforcement objectives. Objective tradeoffs are evaluated in pairs, to provide easily-24 
understood guidance to MPE program managers looking for resource allocation solutions. 25 

Section 3 describes the methods to generate PF results for analysis. Section 4 explains how 26 
to cluster the PF results, and Section 5 presents the tradeoff analysis of the PF results. We 27 
close with concluding remarks in Section 6. 28 

3. PARETO FRONT GENERATION 29 

This paper uses the same City of Edmonton MPE-RAP example and data as previously 30 
introduced (in Section 2) by Li et al. (2016). Section 3.1 describes a method to generate a PF 31 
of the MPE-RAP example. Section 3.2 shows the generated PF results for the MPE-RAP 32 
example. 33 

3.1 Pareto Front Generation Method 34 
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As the MPE-RAP example is large (recall that the variable vector is 𝑛𝑛 = 388), the GDE3 1 
algorithm used in previous work (Li, Kim, & El-Basyouny, 2016) is not efficient for 2 
searching a large number of Pareto-optimal solutions in a reasonable time. Therefore, we 3 
employ traditional scalar optimization techniques, which allow for a much lower 4 
computational time compared to evolutionary algorithms (Chiandussi, Codegone, Ferrero, & 5 
Varesio, 2012). The advantage of using an evolutionary algorithm is its ability to generate a 6 
representative subset of Pareto optimal solutions. From the representative solutions, decision 7 
makers can interactively choose answers based on their specific needs and preferences. 8 
However, this paper focuses on how to explore the relationships (tradeoffs) after these 9 
solutions are found. Therefore, considering the computation effort, we chose the scalar 10 
optimization method that can yield a PF faster than GDE3. 11 

The weighted sum method (Miettinen, 1999), one of the most well-known and simplest scalar 12 
optimization techniques, is first employed to solve the MPE-RAP example. The formulation 13 
of the weighted sum method is shown in the following Problem P1.  14 

Problem P1: Weighted Sum Method Formulation 15 

As shown in Eqn. 1, the weighted sum method formulates the three-objective model of Li et 16 
al. (2016) as a single objective consisting of the weighted sum of the three individual 17 
objectives. Eqn. 2 normalizes the weights 𝛼𝛼𝑔𝑔,𝛽𝛽𝑔𝑔, and 𝛾𝛾𝑔𝑔 assigned to each of the three metrics 18 
such that they sum to 1. The subscript 𝑔𝑔 represents the algorithm iteration number (to a 19 
maximum of 𝐺𝐺). Eqns. 3 and 4 are the constraints from the original model on resources 𝑥𝑥𝑖𝑖 20 
(introduced in Section 2). Eqns. 1-4 are repeatedly evaluated for each 𝑔𝑔; each evaluation 21 
yields a Pareto-optimal solution. 22 

𝑚𝑚𝑚𝑚𝑥𝑥 𝑆𝑆𝑔𝑔 = 𝛼𝛼𝑔𝑔 ∙�𝐸𝐸𝐸𝐸𝐾𝐾𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖  
𝑛𝑛

𝑖𝑖=1

+ 𝛽𝛽𝑔𝑔 ∙�𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖  
𝑛𝑛

𝑖𝑖=1

+ 𝛾𝛾𝑔𝑔 ∙�𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (1) 

Subject to: 23 

𝛼𝛼𝑔𝑔 + 𝛽𝛽𝑔𝑔 + 𝛾𝛾𝑔𝑔 = 1, ∀ 𝑔𝑔 ∈ [1, … ,𝐺𝐺] (2) 

�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=0

= 𝐸𝐸 (3) 
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𝐿𝐿𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖, ∀ 𝑖𝑖 ∈ [1, … ,𝑛𝑛] (4) 

Note that the weighted sum method has a well-known drawback: it only searches for corner 1 
solutions in the feasible region of the weighted sum problem (Eqns. 1-4). Therefore, using 2 
various weight combinations is likely to also produce corner solutions (Branke, Deb, & 3 
Miettinen, 2008; Mavrotas, 2009). To identify intermediate (non-corner) solutions, we 4 
adopted another well-known scalar optimization approach, the ɛ-constraint method (Haimes, 5 
1971). The ɛ-constraint method formulation for the MPE-RAP example is described in the 6 
following Problem 2. 7 

Problem P2: ɛ-Constraint Method Formulation 8 

The ɛ-constraint method described in Eqns. 5-8 optimizes 𝐸𝐸𝐸𝐸𝐾𝐾  (equivalent property-9 
damage-only collision frequency per kilometer) and transforms the remaining two measures 10 
(𝑆𝑆𝑆𝑆𝑆𝑆, speed violation indicator, and 𝑆𝑆𝑆𝑆𝑆𝑆, school zone density) into inequality constraints that 11 
are greater than or equal to the pre-set values of 𝜀𝜀𝑔𝑔1  and 𝜀𝜀𝑔𝑔2 . The choice to optimize one 12 
particular measure and set the others as constraints is arbitrary; we would expect any 13 
configuration to yield the same results because this three-objective problem is convex. By 14 
changing the ɛ values of Eqns. 6 and 7, the ɛ-constraint method is able to generate a different 15 
Pareto-optimal solution at every iteration (𝑔𝑔). 16 

𝑚𝑚𝑚𝑚𝑥𝑥
𝑥𝑥∈𝛺𝛺

 𝑆𝑆𝑔𝑔 = �𝐸𝐸𝐸𝐸𝐾𝐾𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖  
𝑛𝑛

𝑖𝑖=1

 (5) 

Subject to: 17 

�𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 
𝑛𝑛

𝑖𝑖=1

≥ 𝜀𝜀𝑔𝑔1 (6) 

�𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

≥ 𝜀𝜀𝑔𝑔2 (7) 

𝛺𝛺 = {𝑥𝑥𝑖𝑖│�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=0

= 𝐸𝐸 𝑚𝑚𝑛𝑛𝑎𝑎 𝐿𝐿𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖,∀ 𝑖𝑖 ∈ [1, … ,𝑛𝑛]} (8) 

The major disadvantage of the ɛ-constraint method is that it can be difficult to specify the 18 
values of 𝜀𝜀𝑔𝑔1  and 𝜀𝜀𝑔𝑔2  without knowing the bounds of objectives 𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑆𝑆𝑆𝑆𝑆𝑆  for the PF 19 
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(Miettinen, 1999). However, the results from the weighted sum method in the previous step 1 
can be used to address this issue – we can define 𝜀𝜀𝑔𝑔1  and 𝜀𝜀𝑔𝑔2  values using the range of 2 
corresponding objective function values from the weighted sum solutions found in the 3 
previous step. 4 

3.2 Results 5 

To construct the weight combinations required for the weighted sum method (Eqns. 1-4), we 6 
first set each of 𝛼𝛼𝑔𝑔 , 𝛽𝛽𝑔𝑔 and 𝛾𝛾𝑔𝑔 to values at 0.05 increments between 0 and 1, to generate a 7 
total of 9,260 weight value combinations. Then, we normalized these weight values (i.e., 8 
such that they summed to 1) by dividing by the total weight of each combination. By 9 
removing the duplicated weight combinations and a zero-valued combination, a total of 7,758 10 
different remaining weight combinations were input to Eqn. 1. The 7,758 optimizations of 11 
Eqns. 1-4 were implemented by CPLEX in the MATLAB environment on a PC with Intel 12 
Core i7-3770 CPU (3.4GHz) and 16GB RAM. A total of 244 unique solutions were found in 13 
23 seconds. 14 

Of the 244 weighted sum solutions, the objective function values for 𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑆𝑆𝑆𝑆𝑆𝑆  are 15 
observed within the ranges of [208, 294] and [377, 1007], respectively. Therefore, these two 16 
ranges are used to limit the values of 𝜀𝜀𝑔𝑔1 and 𝜀𝜀𝑔𝑔2 used in Eqns. 6 and 7 of the ɛ-constraint 17 
method. We created 20,000 random numbers for 𝜀𝜀𝑔𝑔1 and 𝜀𝜀𝑔𝑔2 in a uniform sequence within the 18 
specified range. Eqns. 5-8 were implemented by the MATLAB CPLEX toolbox repeatedly 19 
at each of the 20,000 sets of 𝜀𝜀𝑔𝑔1 and 𝜀𝜀𝑔𝑔2 values. To build a dense PF, we limited the solution 20 
space of 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆 examined per iteration to the neighborhood of (𝜀𝜀𝑔𝑔1, 𝜀𝜀𝑔𝑔2). Specifically, 21 
each implementation is constrained in a search area where the 𝑆𝑆𝑆𝑆𝑆𝑆-axis step size was set to 22 
two and 𝑆𝑆𝑆𝑆𝑆𝑆-axis step size ten. The step size (of 2×10) accounts for 2% of the corresponding 23 
objective function interval; other sizes can be determined as needed. A total of 16,544 unique 24 
solutions were obtained in 27 seconds on the same PC described above. 25 

The solutions found by the weighted sum and ɛ-constraint methods are then put together and 26 
compared with each other. Although various weights were used in both methods, 97% of 27 
weighted sum solutions and 22% of ɛ-constraint solutions have the same objective values as 28 
the solutions in the combined set. Therefore, we eliminated these repeated solutions, and a 29 
total of 243 weighted sum solutions (black circles in Fig. 1) and 12,967 ɛ-constraint solutions 30 
(grey points in Fig. 1) are finally considered in the PF. 31 

Each point shown in Fig. 1 is the result of optimizing all metrics (represented on each of the 32 
three axes shown) simultaneously. The three red asterisks shown in Fig. 1 represent the 33 
extreme (corner) points of the PF; each corner point represents the maximization of one of 34 
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the three objectives. They are generated from the weighted sum method using weight 1 
combinations (1, 0, 0), (0, 1, 0) and (0, 0, 1) for the measures (𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆). The values 2 
of these three extreme solutions maximizing 𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑆𝑆𝑆𝑆𝑆𝑆 are (4599, 239, 470), (3059, 3 
294, 377), and (2449, 237, 1007) respectively. 4 

 5 
Fig. 1 Pareto front identified for the MPE-RAP example. 6 

As seen in Fig. 1, the 243 weighted sum solutions are not evenly distributed on the Pareto 7 
front despite the evenly spaced weights. This is because, in the weighted sum method, the 8 
relationship between the objective function weights and the objective function values of the 9 
Pareto solution (based on those weights) is nonlinear. Using geometry, Das & Dennis (1997) 10 
demonstrated that the weight used in a bi-objective weighted sum method to find a Pareto 11 
solution is the reciprocal of one minus the slope (i.e., the ratio of change between the two 12 
objective functions) of the PF at a given solution point. Thus, considering a uniform 13 
distribution of weights in Eqn. 1 is unlikely to result in uniformly distributed Pareto solutions. 14 

In addition, the identified weighted sum solutions comprise only 3% of the utilized weight 15 
combinations. This demonstrates the drawback of the weighted sum method discussed earlier: 16 
the method ignores non-corner solutions, rendering the usage of a large portion of the weight 17 
combinations redundant (Branke et al., 2008; Mavrotas, 2009). However, the solutions 18 
generated by the ɛ-constraint method fill the empty spaces left by the weighted sum solutions 19 
on the PF, as illustrated in Fig. 1. Applying both solution methods results in a nearly complete 20 
PF with a relatively uniform and dense spread of solutions. We will use the solutions 21 
generated by using both methods as the basis for the following two post-Pareto analyses in 22 
Sections 4 and 5. 23 

4. PARETO FRONT CLUSTERING  24 

To be able to analyze the most important and salient features of the PF generated as per Fig. 25 
1, we adopt the K-medoids algorithm (Kaufman & Rousseeuw, 1987) to group similar 26 
solutions into clusters and identify a representative solution for each cluster. K-medoids is a 27 
modification of the well-known K-means clustering algorithm (MacQueen & others, 1967), 28 
where existing data points are recognized as cluster centers (medoids) rather than creating 29 
new cluster centers. To use the existing Pareto-optimal solutions as candidates, we select K-30 
medoids to conduct the clustering analysis. 31 

Use of K-medoids requires a prior determination of how many data clusters should be created. 32 
A common tool for determining the optimal number of clusters is the silhouette index 33 
(Rousseeuw, 1987). The silhouette index evaluates the average distance, 𝑚𝑚(𝑖𝑖), between any 34 
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data point 𝑖𝑖 in cluster 𝑚𝑚 and all other points in the same cluster. It also compares 𝑚𝑚(𝑖𝑖) with 1 
the average distance of the point 𝑖𝑖 to all the points of a neighboring cluster 𝑏𝑏, 𝑏𝑏(𝑖𝑖). The 2 
silhouette index for point 𝑖𝑖 is close to one if 𝑏𝑏(𝑖𝑖) is much larger than 𝑚𝑚(𝑖𝑖) (Rousseeuw, 1987) 3 
– meaning, cluster 𝑚𝑚  points are more close to one another than points in cluster 𝑏𝑏 . The 4 
optimal number of clusters is found by maximizing the average silhouette index for all data 5 
points. 6 

We implement the R Package ‘NbClust’ (Charrad, Ghazzali, Boiteau, Niknafs, & Charrad, 7 
2014) to compute the silhouette index for a pre-set range of clusters between 10 and 20 in 8 
the data set as illustrated in Fig. 1. The maximum silhouette index is observed when the 9 
number of clusters is set to 12; thus, we took 12 as the best cluster count for our data set. 10 
Then clustering is done by a K-medoids algorithm in MATLAB with these 12 clusters. The 11 
K-medoids algorithm identifies 12 medoids and partitions all other solutions around the 12 12 
identified cluster medoids.  13 

Note that the scales of the three metrics (axes) shown in Fig. 1 are not the same. This is likely 14 
to cause the Euclidean distance measure used in the computation of silhouette index and K-15 
medoids clustering to be dominated by metrics with large values. Therefore, to avoid biases 16 
in results due to metric domination, we normalized metric values prior to the computation of 17 
silhouette index and K-medoids. The performance of a normalization method that takes the 18 
variable range (i.e. the difference between the minimum and maximum values of the variable) 19 
as the divisor has been proven to be superior over other normalization methods in cluster 20 
analysis (Milligan & Cooper, 1988); therefore, we selected this min-max normalization 21 
method to transform the objective vectors of the solutions in Fig. 1 into the range 0 to 1. 22 

Fig. 2 shows the rescaled data with the clustering result. The crosses in Fig. 2 represent each 23 
of the 12 cluster medoids. Fig. 2 also differentiates solution clusters by colors. Table 1 24 
summarizes the descriptive statistics for the 12 clusters. The size of each cluster is given. The 25 
range of objective vectors for the solutions in each cluster and the objective vectors of the 12 26 
medoids are also indicated in Table 1. 27 

 28 
Fig. 2 Clustering analysis of the Pareto front of the MPE-RAP example. 29 

From Table 1, one can observe an average of about 1,100 solutions per cluster. In each cluster, 30 
the objective function values of the solutions with respect to 𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑆𝑆𝑆𝑆𝑆𝑆 vary within 31 
ranges of 688, 28, and 190, respectively. It is observed that the average differences in the 32 
three objective function values of 𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑆𝑆𝑆𝑆𝑆𝑆 between the medoid and the farthest 33 
solution in the same cluster is 344, 14, and 95, respectively. These ranges are about half that 34 
of the ranges of the objective vectors within each cluster. Thus, we can conclude that the 12 35 



13 

medoids are located in the relative center of each cluster, and are a reasonable representation 1 
of their respective cluster. An agency managing an MPE program could take these medoids 2 
as the initial deployment candidate options. 3 

Table 1 shows that candidate options (or medoids) #1, #6, #7, and #9 have relatively low 4 
objective function values on the 𝑆𝑆𝑆𝑆𝑆𝑆 axis but high values on the 𝐸𝐸𝐸𝐸𝐾𝐾 axis. Therefore, these 5 
solutions lie on the left-hand side of the PF as illustrated in Fig. 2. The average objective 6 
function values of these solutions in 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐸𝐸𝐸𝐸𝐾𝐾 are 231 and 3,987, which fall in the first 7 
third of the 𝑆𝑆𝑆𝑆𝑆𝑆-axis scale (208 to 294) and in the last third of the 𝐸𝐸𝐸𝐸𝐾𝐾-axis scale (2,432 to 8 
4,599), respectively. By choosing these solutions, one gives priority to the 𝐸𝐸𝐸𝐸𝐾𝐾 objective 9 
(enforcing high collision sites) while largely ignoring 𝑆𝑆𝑆𝑆𝑆𝑆 (enforcing high speed violation 10 
sites).  11 

Conversely, candidate solutions occupying the PF’s right-hand side on Fig. 2, such as 12 
solutions #4, #5, and #12, show low objective function values for 𝐸𝐸𝐸𝐸𝐾𝐾 but high values for 13 
𝑆𝑆𝑆𝑆𝑆𝑆, with average values of 3,296 (two-fifths of the 𝐸𝐸𝐸𝐸𝐾𝐾 scale) and 279 (four-fifths of the 14 
𝑆𝑆𝑆𝑆𝑆𝑆  scale), respectively. Therefore, the solutions on the right-hand side of Fig. 2 give 15 
enforcement attention to high speed violation sites, regardless of the locations with high 16 
collision frequencies.  17 

Other solutions in the middle of the PF have relatively average values in both 𝐸𝐸𝐸𝐸𝐾𝐾 and 𝑆𝑆𝑆𝑆𝑆𝑆 18 
objectives (3757 and 259), indicating a balance of the two deployment goals. Specifically, 19 
solution #3 (in the middle top of the PF in Fig. 2) shows the highest 𝑆𝑆𝑆𝑆𝑆𝑆 objective value 20 
(957) among the 12 medoids. This solution assigns school zone enforcement the greatest 21 
priority, while maintaining relatively average enforcement intensity at high collision sites 22 
and high speed violation sites. In contrast, solution #2 (which lies in the middle bottom of 23 
the PF) presents the lowest 𝑆𝑆𝑆𝑆𝑆𝑆 value (477) among all the medoids; therefore, it gives school 24 
zone enforcement the lowest priority of the three objectives. Solutions #8, #10, and #11 are 25 
in the relative center of the PF. Their average values in 𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑆𝑆𝑆𝑆𝑆𝑆 are 3,840, 259, 26 
and 714, which lie at the midpoints of the corresponding axis’ intervals. These types of 27 
solutions represent a balance of the three conflicting enforcement deployment goals; they 28 
almost reach the optimal value for each. When MPE managing agencies have no preference 29 
among the three enforcement priorities, these solutions may be of most interest. 30 

5. PARETO FRONT TRADEOFF ANALYSIS 31 

After making an initial selection from the clustering result, if MPE agencies want to move 32 
from the initial selection to another solution on the PF that better suits their  requirements, it 33 
would be helpful to understand what the tradeoffs are (with respect to the three objectives) 34 
in moving to another solution on the PF. In other words, if one wanted to increase attainment 35 
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of one objective, how much would one need to sacrifice in the other two objectives to achieve 1 
this? In this section we present a function fit to the Pareto data points found in Section 3. 2 
Note that the data points discussed in this section are not normalized. The (continuous) PF 3 
fitting function can be used to quantitatively evaluate the tradeoffs between the deployment 4 
objectives as one moves between (discrete) solutions on the PF. 5 

5.1 Pareto Front Fitting Function 6 

A (continuous) polynomial function is estimated on the discrete multi-objective optimization 7 
solutions comprising the PF of Fig. 1. A polynomial functional form is chosen because of its 8 
simple implementation and its ability to approximate the true PF (Fang, Rais-Rohani, Liu, & 9 
Horstemeyer, 2005; Goel et al., 2007). However, other fitting techniques, such as exponential 10 
and translog functions, may also be suitable given different distributions of optimized 11 
solutions. 12 

In a multi-objective problem such as the MPE-RAP example (with three objectives 𝐸𝐸𝐸𝐸𝐾𝐾, 13 
𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑆𝑆𝑆𝑆𝑆𝑆), one objective should be chosen as the dependent variable of the PF fitting 14 
function while the remaining objectives are independent variables (Goel et al., 2007). To 15 
facilitate this decision, we created three quadratic polynomial functions for the three possible 16 
variable configurations using the response surface method. The quadratic polynomial is one 17 
of the most commonly used models for the response surface method, to describe the 18 
relationship between dependent and independent variables (Myers, Montgomery, & 19 
Anderson-Cook, 2016). The model is useful for generating a response surface that is 20 
reasonably close to the fitted data points (Box & Wilson, 1992), and such a model is easy to 21 
estimate and apply. Table 2 shows the 𝑅𝑅2 values for each of these three functions, indicating 22 
the goodness of fit of each function to the Pareto data points shown in Fig. 1. Because 23 
polynomial regression is a special case of linear regression, in that it is linear in the 24 
coefficients on the independent variables, it is appropriate to use 𝑅𝑅2 to determine model 25 
goodness-of-fit (Ostertagová, 2012).  26 

In Table 2, the 𝑅𝑅2 value of 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑓𝑓(𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆) is the highest (at 0.968) among all the three 27 
fitted functions. This suggests that the function taking the 𝑆𝑆𝑆𝑆𝑆𝑆 metric as dependent variable 28 
is the best-fitting function for the MPE-RAP Pareto points generated, compared to the 29 
functions generated by the other two variable configurations. Furthermore, the 𝑅𝑅2 value of 30 
this best-fitting function is close to one, suggesting that a quadratic polynomial function is 31 
an appropriate fit for the identified Pareto data points. Therefore, the function 𝑆𝑆𝑆𝑆𝑆𝑆 =32 
𝑓𝑓(𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆) is selected to represent the PF of the MPE-RAP example, and its estimated 33 
form is shown in Eqn. 9. All estimated parameters are statistically significant at the 95% 34 
confidence level. 35 
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𝑆𝑆𝑆𝑆𝑆𝑆 = −9.63𝑒𝑒−5 ⋅ 𝐸𝐸𝐸𝐸𝐾𝐾2 + 0.001 ⋅ 𝐸𝐸𝐸𝐸𝐾𝐾 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 + 0.149 ⋅ 𝐸𝐸𝐸𝐸𝐾𝐾 − 0.093 ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆2
+ 38.408 ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆 − 3360.688 (9) 

Fig. 3 shows a plot of the PF fitting function of Eqn. 9 as a grey surface, and compares it 1 
against the set of Pareto-optimal solutions (first shown in Fig. 1) used to fit the function. It is 2 
observed that the function fits the plotted Pareto data points closely (as the 𝑅𝑅2 value would 3 
indicate). 4 

 5 
Fig. 3 Pareto-optimal solutions and the fitted Pareto surface, for the MPE-RAP 6 
example. 7 

We observe a downward bend at the top of the fitted Pareto surface in Fig. 3(b). This bending 8 
is attributed to the fact that the graph of a quadratic polynomial is a parabola. Since the 9 
coefficients of the function terms with the highest degree in Eqn. 9 are negative, the function 10 
graph will always decrease exponentially at its edges. Therefore, it is important to note that 11 
the PF fitting function should only be used within the range of Pareto data point values taken 12 
to fit the function. 13 

5.2 Illustrative Example of the Objective Tradeoff Analysis 14 

Suppose Edmonton’s MPE program manager (i.e. the managing agency) had chosen solution 15 
3 from the 12 medoids identified in Fig. 2, for the month of September 2014. According to 16 
Table 1, among the 12 medoids, this solution reflects an elevated priority to have enforcement 17 
presence in school zones during the start of the school year, while also maintaining some 18 
coverage of high collision and high speed violation sites. This solution has the highest 𝑆𝑆𝑆𝑆𝑆𝑆 19 
value (at 957) of the 12 medoids, with relatively average values of 𝐸𝐸𝐸𝐸𝐾𝐾 and 𝑆𝑆𝑆𝑆𝑆𝑆 at 2,850 20 
and 248, respectively. The three metric values of solution 3 represent an initial decision, 21 
which assigns 957, 2850, and 248 enforcement coverage units in school zones, high collision 22 
sites and high speed violation sites, respectively. 23 

We assess the tradeoffs between each pair of the three metrics in solution 3, where the 24 
pairwise tradeoff results are benchmarked against set values of the 3rd metric. Fig. 4 illustrates 25 
the three cross sections of the PF fitting function along each of the three axes, viewed in 26 
solution 3. Curves in Fig. 4(a), (b), (c) are function contour lines at the solution 3’s objective 27 
values (𝑆𝑆𝑆𝑆𝑆𝑆 = 248, 𝐸𝐸𝐸𝐸𝐾𝐾 = 2,850, and 𝑆𝑆𝑆𝑆𝑆𝑆 = 957). Hence, these curves depict how a 28 
change in one objective function value of solution 3 impacts the other function values. 29 

 30 
Fig. 4 Contours of the Pareto fitting function at MPE-RAP example Solution 3. 31 
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Note that as discussed in Section 5.1, the polynomial function is only valid over the range of 1 
Pareto data points used to fit it. Therefore, based on the range of the found Pareto data points 2 
in the three axes (2,432-4,599 𝐸𝐸𝐸𝐸𝐾𝐾, 208-294 𝑆𝑆𝑆𝑆𝑆𝑆, 377-1,007 𝑆𝑆𝑆𝑆𝑆𝑆), we found two endpoints 3 
on each curve, between which the curve is considered a valid description of objective tradeoff. 4 
The two endpoints of each curve are marked as crosses and labeled A and B, D and E, H and 5 
I, in Figs. 4(a), (b), and (c) respectively. The three components of the objective vectors for 6 
these endpoints are shown in Table 3. 7 

The three plots in Fig. 4 show that as one objective decreases, the other two objectives 8 
increase. The average tradeoff rate (i.e., the slope of the curves) between 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆 9 
and 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐸𝐸𝐸𝐸𝐾𝐾 is -0.2, -7.8, and -0.02, respectively. This means that for every 10 
one unit decrease in 𝑆𝑆𝑆𝑆𝑆𝑆 (i.e., one less enforcement coverage unit in school zones), 𝐸𝐸𝐸𝐸𝐾𝐾 11 
increases by 0.2 (or, 0.2 more enforcement coverage units at high collision sites) when 𝑆𝑆𝑆𝑆𝑆𝑆 12 
is fixed at 248 (enforcement coverage units at high speed violation sites). However, if 𝐸𝐸𝐸𝐸𝐾𝐾 13 
remains at 2850, 𝑆𝑆𝑆𝑆𝑆𝑆 increases by 7.8 for each reduced unit in 𝑆𝑆𝑆𝑆𝑆𝑆. Additionally, a one unit 14 
decrease in 𝑆𝑆𝑆𝑆𝑆𝑆 leads to a 0.02 increase in 𝐸𝐸𝐸𝐸𝐾𝐾 when 𝑆𝑆𝑆𝑆𝑆𝑆 = 957. It is difficult for MPE 15 
program decision makers to intuitively interpret the tradeoff between more than two 16 
objectives. Therefore, these obtained pairwise tradeoff values provide useful information and 17 
support for multi-objective decision-making about MPE resource allocation. Specifically, 18 
decision makers can learn the result of changing a decision (choose a new PF solution), that 19 
is, when the expectations for the 3rd objective are met, how they adjust the resource allocation 20 
between the remaining two objectives. 21 

As the ranges of the three objective values are different, the concept of curve elasticity is 22 
introduced to further understand how responsive (in a proportional manner) one objective is 23 
to a change in another objective. Elasticity is a measure that evaluates the proportional change 24 
of the abscissa divided by the proportional change of the ordinate. The metric on the abscissa 25 
is classified as being ordinate metric elastic if elasticity is greater than one, unit ordinate 26 
metric elastic if elasticity is equal to one, or ordinate metric inelastic if elasticity is less than 27 
one. The ordinate metric elasticity of the abscissa metric at a specific point (𝑥𝑥∗,𝑦𝑦∗) on the 28 
curve is expressed by Eqn. 10, which computes the reciprocal of the curve’s derivative at that 29 
point multiplied by the ratio of 𝑦𝑦∗ to 𝑥𝑥∗. 30 

𝑒𝑒 =
𝑎𝑎𝑥𝑥∗

𝑎𝑎𝑦𝑦∗
∙
𝑦𝑦∗

𝑥𝑥∗
 (10) 

As can be seen from Fig. 4, as abscissa values increase, the slopes of each of the three curves 31 
become steeper, indicating a continuously decreasing elasticity of each curve in the abscissa 32 
direction. Thus, by manipulating Eqn. 10 and the curve function (i.e., the PF fitting function 33 
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holding one variable fixed), we found the location of the unit elastic point on each curve. 1 
Specifically, the unit-elastic points in Figs. 4(a), (b), (c) are marked as asterisks and labeled 2 
as C, F, G, respectively. Table 3 shows their objective function values. These unit-elastic 3 
points help divide the curve between two endpoints into two parts. The curve that lies to the 4 
left of the unit-elastic point is elastic, whereas the curve to the right side of the unit-elastic 5 
point is inelastic. 6 

In Fig. 4(a) where 𝑆𝑆𝑆𝑆𝑆𝑆 is fixed at 248, it is observed that 𝐸𝐸𝐸𝐸𝐾𝐾 is elastic to the changes in 7 
𝑆𝑆𝑆𝑆𝑆𝑆 along the part AC of the curve where 𝐸𝐸𝐸𝐸𝐾𝐾 is in the range of 2,432-3,561, and 𝑆𝑆𝑆𝑆𝑆𝑆 is 8 
in the range of 836-978 as shown in Table 3. Conversely, on the curve between points C and 9 
B, where 𝐸𝐸𝐸𝐸𝐾𝐾  lies between 3,561 and 4,599 and 𝑆𝑆𝑆𝑆𝑆𝑆  is between 489 and 836, 𝐸𝐸𝐸𝐸𝐾𝐾  is 10 
inelastic regardless of whether 𝑆𝑆𝑆𝑆𝑆𝑆 changes. The average elasticities of curve segments AC 11 
and CB are -3.2 and -0.7, respectively. This indicates that 𝐸𝐸𝐸𝐸𝐾𝐾 changes at 3.2 times the rate 12 
of 𝑆𝑆𝑆𝑆𝑆𝑆 change on the AC curve segment, but the rate of change of 𝐸𝐸𝐸𝐸𝐾𝐾 is reduced to 0.7 13 
times the rate of change of 𝑆𝑆𝑆𝑆𝑆𝑆 on the CB curve segment. Since solution 3 is positioned on 14 
the AC curve segment, reducing solution 3’s 𝑆𝑆𝑆𝑆𝑆𝑆 value by a small quantity, say 10%, may 15 
yield an approximately 32% increase in 𝐸𝐸𝐸𝐸𝐾𝐾. This tradeoff could be highly attractive to MPE 16 
program managers that are looking to reduce traffic collisions. 17 

In Fig. 4(b), the unit-elastic point F also specifies the elastic and inelastic regions for the 18 
tradeoff of the 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆 when 𝐸𝐸𝐸𝐸𝐾𝐾 equals 2850. It is worth noting that the endpoint D 19 
and unit-elastic point F are very close together. As seen in Table 3, they have a difference of 20 
5 and 18 respectively on the 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆 axes, accounting for only 6% and 3% of the 21 
corresponding axis interval. Therefore, the curve portion DF may be negligible, leading to 22 
the fact that 𝑆𝑆𝑆𝑆𝑆𝑆  is almost always inelastic in 𝑆𝑆𝑆𝑆𝑆𝑆 . The reason that 𝑆𝑆𝑆𝑆𝑆𝑆  almost always 23 
responds weakly to changes in 𝑆𝑆𝑆𝑆𝑆𝑆 may be due to the fact that neighborhoods with relatively 24 
high school zone densities also experience more speed violations (in turn, due to lowered 25 
area speed limits). According to data from 2012 to 2014, Edmonton neighborhoods with the 26 
top 10% of school densities (the average 𝑆𝑆𝑆𝑆𝑆𝑆 for these neighborhoods is 2.74) exhibited an 27 
average of 43% of speeding violations, 30% higher than the average of all city neighborhoods. 28 
Reducing MPE resource allocations to neighborhoods with more school zones may also have 29 
the secondary effect of reducing MPE resources to neighborhoods with high speed violations 30 
(because these neighborhoods are the same). It can be seen that solution 3 is on the FE curve 31 
segment with an average elasticity of -0.47. This suggests that a 10% decrease in 𝑆𝑆𝑆𝑆𝑆𝑆 results 32 
in only about a 5% rise in 𝑆𝑆𝑆𝑆𝑆𝑆. Consequently, at solution 3, it may not be productive to reduce 33 
𝑆𝑆𝑆𝑆𝑆𝑆 value to gain the expected increase in 𝑆𝑆𝑆𝑆𝑆𝑆. 34 

Contrary to the inelasticity of 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝑆𝑆, in Fig. 4(c) that sets 𝑆𝑆𝑆𝑆𝑆𝑆 fixed, it is observed 35 
from the position of the unit-elastic point G (located to the right of the curve segment HI) 36 
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that 𝐸𝐸𝐸𝐸𝐾𝐾 is always 𝑆𝑆𝑆𝑆𝑆𝑆 elastic. The average elasticity between points H and I on the curve 1 
is -6.8, indicating that a 10% drop in 𝑆𝑆𝑆𝑆𝑆𝑆 will result in a 68% increase in 𝐸𝐸𝐸𝐸𝐾𝐾. This high 2 
elasticity implies the strong responsiveness of 𝐸𝐸𝐸𝐸𝐾𝐾 to decreases in 𝑆𝑆𝑆𝑆𝑆𝑆. However, between 3 
solution 3 and endpoint I, the 𝑆𝑆𝑆𝑆𝑆𝑆 value that can be traded-off for 𝐸𝐸𝐸𝐸𝐾𝐾 is very limited, only 4 
4 in 𝑆𝑆𝑆𝑆𝑆𝑆 (as shown in Table 3). 5 

Based on the tradeoff and elasticity results observed above, MPE program managers may 6 
want to locate a more suitable solution (other than solution 3) with the desired level for all 7 
objectives on the fitted Pareto surface. Suppose the manager decides to relax 𝑆𝑆𝑆𝑆𝑆𝑆 by 100 (an 8 
approximately 10% decrease) and 𝑆𝑆𝑆𝑆𝑆𝑆 by 4 (approximately 2% decrease) to improve 𝐸𝐸𝐸𝐸𝐾𝐾. 9 
By entering the (relaxed) values of 𝑆𝑆𝑆𝑆𝑆𝑆 (854) and 𝑆𝑆𝑆𝑆𝑆𝑆 (244) to the PF fitting function, we 10 
can obtain an 𝐸𝐸𝐸𝐸𝐾𝐾  value of 3,522, which is an approximately 25% increase in 𝐸𝐸𝐸𝐸𝐾𝐾 11 
compared to that of solution 3 (we will refer this point on the fitted Pareto surface as solution 12 
𝑋𝑋). This procedure can be continued until the program manager obtains a solution that best 13 
satisfies their needs. Then, one of the Pareto-optimal solutions (Fig. 1) closest to their 14 
preferred solution determined on the Pareto surface can be selected. A search of the nearest 15 
Pareto-optimal solution to solution 𝑋𝑋 is conducted and the objective values of that Pareto-16 
optimal solution for 𝐸𝐸𝐸𝐸𝐾𝐾, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆 are obtained (3477, 243, 839 respectively). The Pareto-17 
optimal solution found nearest to 𝑋𝑋 deviates from 𝑋𝑋 by values of 45 (𝐸𝐸𝐸𝐸𝐾𝐾), 1 (𝑆𝑆𝑆𝑆𝑆𝑆), and 15 18 
(𝑆𝑆𝑆𝑆𝑆𝑆). Choosing this Pareto-optimal solution will generate a tradeoff that is slightly different 19 
from the tradeoff result estimated by the PF fitting function; however, the new tradeoff may 20 
not satisfy the desired tradeoff level. Therefore, it is recommended that in future research, 21 
we should further investigate how to identify the actual Pareto-optimal solution that best 22 
matches the solution found on the tradeoff surface. 23 

6. CONCLUSIONS 24 

Agencies that manage MPE programs must decide where and when to send their limited 25 
resources to monitor compliance with speed limits. Usually, the goal is to select locations 26 
based on multiple objectives (i.e., high collision sites, high speed violation sites, school zones, 27 
construction zones, high pedestrian volume sites, etc.) which, in most cases, is conflicting. If 28 
certain (types of) locations are given more MPE resources, then by definition, other locations 29 
will receive less attention, and vice versa. This paper aims to provide insights about such 30 
MPE program tradeoffs, by exploring the resource allocations generated through multi-31 
objective optimization. We present a systematic procedure for interpreting the results of a 32 
multi-objective MPE-RAP. The procedure consists of three steps: 1) front generation, 2) front 33 
representation, and 3) tradeoff analysis. A case study is used to demonstrate the procedure 34 
while simultaneously optimizing three metrics: equivalent property-damage-only collision 35 
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frequency per kilometer (𝐸𝐸𝐸𝐸𝐾𝐾), speed violation indicator (𝑆𝑆𝑆𝑆𝑆𝑆), and school zone density 1 
(𝑆𝑆𝑆𝑆𝑆𝑆). 2 

The procedure first generated an initial PF over the three-dimensional objective space by the 3 
weighted sum method. Then, based on the extent of the front obtained by the weighted sum 4 
method, the ε-constraint method was adopted to fill the vacant areas on PF that are not 5 
covered by the weighted sum solutions. The combination of the two scalar optimization 6 
methods were applicable to generate a PF with a large set of relatively uniform and dense 7 
distributed solutions over multi-dimensions in a time-efficient manner. 8 

The second part of the analysis procedure employed 𝐾𝐾-medoids clustering to partition all the 9 
PF solutions generated in Part 1 of the procedure into 12 clusters. 𝐾𝐾-medoids clustering was 10 
used to choose 12 existing Pareto-optimal solutions as representative solutions for each 11 
cluster. Each of the 12 representative solutions was relatively located at the center of each 12 
cluster, representing about 1,100 solutions with an average objective value interval of 688, 13 
28, and 190 in the three objectives 𝐸𝐸𝐸𝐸𝐾𝐾 , 𝑆𝑆𝑆𝑆𝑆𝑆 , and  𝑆𝑆𝑆𝑆𝑆𝑆 , respectively. Based on these 14 
objective values (representing the clusters), the MPE agency can initially choose a solution 15 
from these representative solutions that suits their preference. Selecting representative 16 
solutions from each cluster greatly simplifies the challenging task of making decisions from 17 
a large Pareto-optimal set (recall that the initial PF was made out of 13,210 solutions).  18 

The last part of the procedure created a tradeoff surface approximating the shape of the 19 
identified PF in Part 1. This surface was built using a quadratic polynomial regression, which 20 
models the relationship between the dependent variable (𝑆𝑆𝑆𝑆𝑆𝑆) and the independent variables 21 
(𝐸𝐸𝐸𝐸𝐾𝐾 and 𝑆𝑆𝑆𝑆𝑆𝑆). The determination of the dependent and independent variables was done by 22 
examining which modeling formulation best fit the Pareto data points. The tradeoff analysis 23 
using the PF fitting function is illustrated by a case example, which studies the objective 24 
relationship at the representative solution for cluster 3. Specifically, the tradeoff relationship 25 
between any pair of the three considered objectives at cluster 3 is visualized by the contour 26 
curves of the function and is quantified by two measures: tradeoff rate and elasticity. Pairwise 27 
comparison results (contingent on the 3rd objective’s set value) show that a one-unit reduction 28 
in 𝑆𝑆𝑆𝑆𝑆𝑆 will result in an average increase of 0.2 units in 𝐸𝐸𝐸𝐸𝐾𝐾, or an average increase of 7.8 29 
units in 𝑆𝑆𝑆𝑆𝑆𝑆, whereas reducing 𝑆𝑆𝑆𝑆𝑆𝑆 by one unit can lead to an increase in 𝐸𝐸𝐸𝐸𝐾𝐾 by 0.02. This 30 
means that one less enforcement coverage unit in school zones will compensate for 0.2 more 31 
enforcement coverage units at high collision sites or 7.8 more coverage units at high speed 32 
violation sites. Additionally, every one enforcement coverage unit reduction at high speed 33 
violation sites increases enforcement coverage at high collision sites by 0.02 units. Moreover, 34 
the elasticity measures show that 𝐸𝐸𝐸𝐸𝐾𝐾  is almost always elastic in 𝑆𝑆𝑆𝑆𝑆𝑆  with an average 35 
elasticity of -6.8, while 𝑆𝑆𝑆𝑆𝑆𝑆 is almost 𝑆𝑆𝑆𝑆𝑆𝑆 inelastic (-0.47 average elasticity). Additionally, 36 
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when 𝑆𝑆𝑆𝑆𝑆𝑆 is in the range of 836-978, 𝐸𝐸𝐸𝐸𝐾𝐾 is 𝑆𝑆𝑆𝑆𝑆𝑆 elastic; when 𝑆𝑆𝑆𝑆𝑆𝑆 lies in the range 489-1 
836, 𝐸𝐸𝐸𝐸𝐾𝐾 is 𝑆𝑆𝑆𝑆𝑆𝑆 inelastic. Specially, if 𝑆𝑆𝑆𝑆𝑆𝑆 drops by 10% within its elastic region, 𝐸𝐸𝐸𝐸𝐾𝐾 2 
rises by 32%; however, the same percentage decrease in 𝑆𝑆𝑆𝑆𝑆𝑆 will only increase 𝐸𝐸𝐸𝐸𝐾𝐾 by 7% 3 
in the inelastic region. The ability to quantitatively assess pairwise tradeoffs among 4 
objectives, allows MPE agencies to understand the relationships between any pair of 5 
objective values, when moving along the PF, and how responsive a change in one objective 6 
is in relation to the other.  7 

This paper presents a set of procedures that can lead to traceable and informed decisions on 8 
MPE deployment strategies. It specifically addresses a major limitation in current 9 
deployment plans by allowing an MPE agency to examine the effects of often conflicting 10 
enforcement objectives and quantitatively assessing their tradeoffs. Future work may include 11 
the study of more objectives (only three were considered in this paper), such as prioritizing 12 
enforcement in construction zones, high pedestrian volume sites and sites with community 13 
speeding complaints. In addition, future research will explore methods to help decision 14 
makers choose the final solution by applying clustering techniques to the tradeoff analysis. 15 
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Table 1 Statistical Summary of the Objective Vectors in the Twelve Partitioned 1 
Clusters 2 

Clusters No. of 
Solutions 

  EPK     SVI     SZD   

Medoid Min Max Medoid Min Max Medoid Min Max 
1 1175 3865 3555 4172 219 208 233 774 683 859 

2 1381 4416 4128 4572 270 255 284 477 402 557 

3 1028 2850 2432 3249 248 228 269 957 882 1007 

4 762 3813 3228 4184 286 278 294 491 378 623 

5 1008 3131 2440 3467 264 246 279 857 740 922 

6 1268 4209 3943 4438 233 215 248 663 581 742 

7 1186 3371 2928 3651 227 210 246 893 820 960 

8 1001 3665 3225 3902 270 257 283 736 624 803 

9 1502 4503 4282 4599 243 228 258 530 440 618 

10 1201 3727 3351 4016 245 231 258 779 693 857 

11 1313 4128 3877 4360 263 248 279 626 546 706 

12 385 2944 2433 3463 286 279 294 601 377 785 

 3 

Table 2 R-squared Values of the Quadratic Pareto Front Fitting Function, by Variable 4 
Configurations 5 

 𝑬𝑬𝑬𝑬𝑬𝑬 = 𝒇𝒇(𝑺𝑺𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺𝑺𝑺) 𝑺𝑺𝑺𝑺𝑺𝑺 = 𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬,𝑺𝑺𝑺𝑺𝑺𝑺) 𝑺𝑺𝑺𝑺𝑺𝑺 = 𝒇𝒇(𝑬𝑬𝑬𝑬𝑬𝑬,𝑺𝑺𝑺𝑺𝑺𝑺) 

𝑅𝑅2 0.939 0.899 0.968 
  6 
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Table 3 Objective Vectors of the Endpoints, the Unit-Elastic Points, and the 1 
Illustrative Candidate Point on the Tradeoff Curves. 2 

Point Labels Endpoint, unit-elastic 
point, or illustrative point 

EPK SVI SZD 

A Endpoint 2432 248 978 

B Endpoint 4599 248 489 

C Unit-Elastic Point 3561 248 836 

D Endpoint 2850 241 979 

E Endpoint 2850 294 564 

F Unit-Elastic Point 2850 246 961 

H Endpoint 2432 252 957 

I Endpoint 2956 244 957 

G Unit-Elastic Point 3081 238 957 

Solution 3 Illustrative Point 2850 248 954 
 3 
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