

A City-Wide Safety Analysis of Mobile Speed Enforcement

Presenter: Ran Li

Co-authors: Dr. Karim El-Basyouny, Dr. Amy Kim

Outline

Introduction

Road Safety Problem

Global Issue

- 1.2 million deaths, 50 million injuries per year
- Young adults (15~44) account for 59% of road traffic deaths
 (WHO, 2013)

□ In Canada

- More than 2,000 deaths and more than 166,000 injuries in 2013
- \$63 billion social cost, 5% of GDP in 2007

(Transport Canada)

Improving Safety

Education of children Driver training Public campaign

ENGINEERING

Road design Road engineering Vehicle technology "More than 48% of fatal collisions due to traffic violations"

Drink driving
Seat belt usage
Speed enforcement

Speed Enforcement

- Types of Speed Enforcement
 - Conventional speed enforcement
 - Automated speed enforcement
 - Fixed photo enforcement
 - Mobile photo enforcement

Objectives

- Examine the long-term impacts of enforcement on collisions
- □ Calculate the marginal collision reduction effects of deployment hours and number of issued tickets

Literature Review

France

- 1823 fixed and 933 mobile cameras were installed from 2003 to 2010
- Interrupted time-series analyses (ARIMA)
- □ 21% reduction in the fatality rate per 100,000 vehicles
- □ the reduction in non-fatal injuries dropped from 26.2% in 2003 to only 0.8% in 2010

(Carnis & Blais, 2013)

Queensland, Australia

- Randomized schedule method --- unpredictable
- Collision reductions were evaluated to adjust the program
- □ Largest reduction was found in fatal collisions at 31%
- Non-fatal collision reduction was revealed to increase with time
- Benefit-cost ratio for the program was estimated to be 55:1

(Newstead, Cameron, & Leggett, 2001)

Accident Modification Function

 Doubled enforcement intensity would further reduce injury collisions by 20%

(Elvik, 2011)

Data Description

Data Description

- Study Period: April 2005 March 2009
- City-Wide Monthly Data:
 - Severe Collision Data (fatal + injury)
 - Enforcement Statistics (deployment hour, number of issued tickets)
 - Employment Rate (socio-economic factors)

Number of Severe Collisions

Number of Deployment Hours

Number of Issued Tickets

Employment Rate

Methodology

Methodology

Generalized Linear Model

Model Form:

 $\ln(\mu) = \beta_0 + \beta_1 Hours + \beta_2 Tickets + \beta_3 Employment + \beta_4 Trend + \beta_{5-15} Monthly Dummies$

Model Distribution: Poisson Distribution (low dispersion parameter)

Model Calibration: SAS GENMOD procedure (maximum likelihood estimation)

Marginal Effect: $\frac{\partial E(\mu|x_j)}{\partial x_j} = \mu \cdot \beta_j$

	Intercept	January	February	March	April	May
Estimate	7.8961	-0.0611	-0.1835	-0.0381	-0.1551	0.0353
P Value	0.000	0.063	0.000	0.276	0.000	0.417
	June	July	August	September	October	November
Estimate	0.0709	0.089	0.1987	0.1911	0.1926	0.011
P Value	0.130	0.078	0.001	0.000	0.000	0.761
	Employment	Trend	Hours (1,000)	Tickets (10,000)		
Estimate	-0.02	-0.0034	-0.1131	-0.148	Significant at 95% filled with yellow color	
P Value	0.034	0.004	0.049	0.000		

		January	February	March	April	May
Estimate		-0.0611	-0.1835	-0.0381	-0.1551	0.0353
P Value		0.063	0.000	0.276	0.000	0.417
	June	July	August	September	October	November
Estimate	0.0709	0.089	0.1987	0.1911	0.1926	0.011
P Value	0.130	0.078	0.001	0.000	0.000	0.761

	Employment	Trend		
Estimate	-0.02	-0.0034		
P Value	0.034	0.004		

		Hours (1,000)	Tickets (10,000)	
Estimate		-0.1131	-0.148	
P Value		0.049	0.000	

Goodness of Fit – R Squared

Goodness of Fit – R Squared

General Marginal Effects

$$\frac{\partial E(\mu|x_j)}{\partial x_i} = \mu \cdot \beta_j$$

1,000 deployment hours: **52** less severe collisions

10,000 issued tickets: 68 less severe collisions

Overall Collision Reduction per Month:

$$\frac{Hours}{1000} * ME_{Hour} + \frac{Tickets}{10000} * ME_{Tickets} = \mathbf{164}$$

45% of them are due to the deployment hours 55% of them are due to the issued tickets

Conclusions

Conclusions

- □ The significant negative sign of enforcement variables indicates that mobile photo enforcement led to severe collision reductions.
- □ The marginal effects of 1,000 deployment hours and 10,000 issued speed tickets were 52 and 68 less severe collisions, respectively.

Future Research

- Influences of other deployment variables (e.g., number of enforcement sites, average deployment hours)
- Distance halo effects of enforcement
- Drivers' attitude towards enforcement

Thank You