
Investigating Two Policy Gradient Methods
Under Different Time Discretizations

by

Homayoon Farrahi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Homayoon Farrahi, 2021

Abstract

Continuous-time reinforcement learning tasks commonly use discrete time steps

of fixed cycle times for actions. Choosing a small action-cycle time in such

tasks allows reinforcement learning agents fast reaction and a more tempo-

rally detailed perception of the environment. The learning performance of

both policy gradient and action-value methods, however, may deteriorate as

the cycle time duration is reduced, which necessitates the tuning of the cy-

cle time as a hyper-parameter. Since tuning an additional hyper-parameter

is time-consuming, specifically for real-world robots, existing algorithms can

benefit from having hyper-parameters that are robust to the choice of cycle

time. In this thesis, we aim to study how changing the action-cycle time af-

fects the performance of two prominent policy gradient algorithms PPO and

SAC and investigate the efficacy of their widely-used hyper-parameter values

across different cycle times. We explore how changing some of these hyper-

parameters based on the cycle time can help or hinder the performance of

these algorithms and inquire into and understand the relationship between

them. These relationships are put forward as new hyper-parameters that can

be adjusted based on the cycle time, and their effectiveness is examined and

validated on simulated and real-world robotic tasks. We show that the new

hyper-parameters, unlike the existing ones, can be more robust to different

environments and cycle times and can enable hyper-parameter values tuned

to a cycle time on a specific problem to be transferred to a different cycle time.

ii

Preface

Results from this thesis involving the PPO experiments up to and including

Chapter 6 were presented at the 3rd Robot Learning Workshop at the NeurIPS

2020 conference. The same material was included in a submission to and ac-

cepted at the ICRA 2021 conference, although we later withdrew the paper

since, by the time of acceptance, we had significantly changed our hypotheses.

Parts of this thesis including results from all of the chapters were submitted

to and rejected from the UAI 2021 conference. The same material was sub-

mitted to and is under review at the CoRL 2021 conference. All of the above

submissions were coauthored with my supervisor Prof. Rupam Mahmood.

iii

To my parents

iv

Acknowledgements

I am eternally grateful to my supervisor Prof. Rupam Mahmood for his invalu-

able guidance and regard to training rigorous scientists. He patiently explains

the underlying reason for everything and encourages perseverance and long-

term thinking, all of which I greatly treasure. I appreciate Prof. Richard Sutton

and Prof. Michael Bowling for their thorough examination of this thesis.

I thank the Reinforcement Learning and Artificial Intelligence (RLAI) Lab,

Alberta Machine Intelligence Institute (Amii), and the Canada CIFAR AI

Chairs Program for funding this research. I am thankful to Kindred Inc. for

their generous donation of the UR5 robotic arm and all of the amazing people

in our Robot Lair group for the discussions.

Last but not least, I extend my gratitude to my mother Sara Vaziri, my

father Farrokh Farrahi, and my sister Shiva Farrahi, whose unwavering love

and support made my journey less demanding.

v

Contents

1 Introduction 1

1.1 Reinforcement Learning With Small Action-Cycle Times . . . 2

1.2 Action-Cycle Time in the Real World 3

1.3 Adjusting Hyper-Parameters Based on the Action-Cycle Time 4

1.4 Related Works . 5

1.5 Contributions . 6

2 The Problem Setup 8

2.1 The Markov Decision Process and the Objective 8

2.2 Time Limits in Reinforcement Learning 10

2.3 The Agent-Environment Interaction Loop 12

2.4 The Experiment Setup for Different Action-Cycle Times . . . 13

3 Policy Gradient Methods 17

3.1 Likelihood-Ratio Policy Gradient Methods 17

3.2 The Proximal Policy Optimization (PPO) Algorithm 21

3.3 Reparameterization Policy Gradient Methods 24

3.4 The Soft Actor-Critic (SAC) Algorithm 25

4 Investigating the Baseline PPO Hyper-Parameters at Differ-

ent Cycle Times 30

4.1 The Reacher Task . 30

4.2 Experiments . 32

4.3 Results and Discussion . 34

vi

5 Setting Hyper-Parameters of PPO as a Function of the Action-

Cycle Time 37

5.1 Our Proposed δt-Aware Hyper-Parameters of PPO 37

5.2 Experiments . 39

5.3 Results and Discussion . 40

6 Validating the δt-Aware Hyper-Parameters of PPO 47

6.1 The Double Pendulum Task 47

6.2 Validation on Double Pendulum 48

6.3 The Real-Robot Reacher Task 51

6.4 Validation on Real-Robot Reacher 52

7 Investigating the Discount Factor of SAC at Different Cycle

Times 55

7.1 Experiments . 55

7.2 Results and Discussion . 56

7.3 Scaling Baseline γ as a Function of δt 58

8 Our Proposed δt-Aware Discount Factor of SAC 62

8.1 The δt-Aware Discount Factor 62

8.2 Experiments . 63

8.3 Results and Discussion . 63

9 Validating the δt-Aware Discount Factor of SAC 66

9.1 Validation on Double Pendulum 66

9.2 Validation on Real-Robot Reacher 67

10 Conclusion 73

References 75

vii

List of Tables

4.1 Baseline Hyper-Parameters of PPO on the Reacher and the

Double Pendulum Tasks . 34

4.2 Tuned Hyper-Parameters of PPO on the Reacher Task 35

5.1 Baseline and δt-Aware Hyper-Parameters of PPO on the Reacher

and the Double Pendulum Tasks 39

6.1 Hyper-Parameters of PPO on the Real-Robot Reacher Task . 53

7.1 Tuned γ of SAC on the Reacher Task 57

viii

List of Figures

4.1 The Reacher Task with the robot arm, fingertip, and target . . 31

4.2 Learning curves for different δts with the baseline PPO hyper-

parameters . 34

4.3 Overall average return vs. δt for PPO with different hyper-

parameter configurations . 35

5.1 Learning curves of PPO using the δt-aware hyper-parameters . 41

5.2 Overall average return of PPO using the δt-aware hyper-parameters 42

5.3 Learning curves of PPO comparing the δt-aware hyper-parameters

with ones where γ and λ are always exponentiated 43

5.4 Overall average return of PPO comparing the δt-aware hyper-

parameters with exponentiated γ and λ 44

5.5 Learning curves of PPO comparing the δt-aware hyper-parameters

with ones where γ and λ are kept constant 45

5.6 Overall average return of PPO comparing the δt-aware hyper-

parameters with constant γ and λ 46

6.1 Learning curves of PPO using the baseline hyper-parameters on

the Double Pendulum Task 49

6.2 Learning curves of PPO comparing the baseline and δt-aware

hyper-parameters on the Double Pendulum Task 50

6.3 Overall average return of PPO for different δts on the Double

Pendulum Task . 50

6.4 The Real-Robot Reacher Task with the robot arm, the fingertip,

and the target . 51

ix

6.5 Learning curves of PPO on the Real-Robot Reacher Task using

hyper-parameters of Table 6.1 54

6.6 Learning curves of PPO on the Real-Robot Reacher Task using

hyper-parameters of Table 5.1 54

7.1 Learning curves for different δts with the baseline SAC hyper-

parameters . 57

7.2 Overall average return vs. δt for SAC with different choices of γ 58

7.3 Learning curves of SAC for a sweep of γ values 59

7.4 Overall average return vs. a sweep of γ values for SAC 60

8.1 Learning curves of SAC comparing the baseline with the tuned

and scaled γ . 64

8.2 Learning curves of SAC comparing the baseline with the tuned γ 65

8.3 Overall average return of the two δt-aware hypotheses compared

with the baseline γ for SAC 65

9.1 Learning curves of SAC using the baseline γ on the Double

Pendulum Task . 68

9.2 Learning curves of SAC comparing the baseline with the tuned

and scaled γ on the Double Pendulum Task 68

9.3 Learning curves of SAC comparing the baseline with the tuned

γ on the Double Pendulum Task 69

9.4 Overall average return of the two δt-aware hypotheses for γ of

SAC compared with the baseline γ on the Double Pendulum Task 69

9.5 Learning curves of SAC on the Real-Robot Reacher Task for

the sweep of γ values at δt0 = 40 ms 71

9.6 Learning curves of SAC on the Real-Robot Reacher Task at

δt = 120 ms . 72

9.7 Overall average return of SAC comparing the baseline γ with

our two δt-aware hypotheses on the Real-Robot Reacher Task 72

x

List of Algorithms

2.1 Agent-environment interaction loop 13

2.2 Agent-environment interaction loop for different δts 14

3.1 One-step actor-critic Initialize and Learn functions 20

3.2 PPO Initialize and Learn functions 22

3.3 SAC Initialize and Learn functions 29

xi

Chapter 1

Introduction

Reinforcement learning algorithms have made remarkable strides in solving

complex problems and have shown exceptional ability in learning complicated

behaviors that are hard to design with conventional engineering approaches.

These advances have been demonstrated in part on a wide range of continuous-

time control tasks.

The continuous time in these tasks is usually discretized into time steps

of equal duration called the action-cycle time δt, which refers to the time

elapsed in the environment between two consecutive actions of an agent. This

cycle time has been mostly considered as part of the environment, and the

effects of its variation on the performance of popular recent algorithms have

not been rigorously studied. Smaller δts have proved to be detrimental to the

performance of different reinforcement learning (RL) algorithms, although they

can potentially make RL agents more agile in action and keener in observation.

The cycle time thus needs to be tuned and might have different optimal values

for different tasks and environments. Tuning δt combined with other algorithm

hyper-parameters can be costly and time-consuming on real-world robots due

to the inherent real-time experience collection.

In this thesis, we explore the effects of changing the cycle time on the

performance of two RL algorithms and provide recommendations for adapting

their hyper-parameters based on the cycle time to make them more robust.

We validate these recommendations on simulated and real-world robotic tasks.

1

1.1 Reinforcement Learning With Small Action-
Cycle Times

Real-world robotic control tasks can benefit considerably from small cycle

times, allowing fast interaction between the agent and the environment. Choos-

ing a smaller δt entails taking actions more frequently and having faster reac-

tions to changes in the environment, which, with a proper learning algorithm,

may potentially improve the performance of reinforcement learning agents in

many tasks and might even be crucial for others.

Even if a task does not require fast reactions, an agent may still benefit

from a small δt by observing the environment more frequently, allowing it to

observe important changes it might have otherwise missed with a large δt.

The increased number of interactions with the environment, if paired with

a capable algorithm, may also speed up learning by providing the agent the

opportunity to elicit more information about the environment in less time.

Unfortunately, learning with existing action-value and policy gradient meth-

ods may be hindered by using a small cycle time. Previous works have brought

to light the inadequacy of some RL methods as δt gets smaller and pro-

posed new algorithms that are more suited to smaller δts and continuous

time. For example, Baird (1994) illustrated that values of different actions

in the same state at small δts get closer to each other, making learning the

action-value function more sensitive to noise and function approximation er-

ror. Baird (1994) noted the collapse of the action-value function to the state

value function in continuous time and provided a new algorithm, Advantage

Updating, that learned the advantage function and the value function instead.

Their approach was shown to be effective when applied to a continuous-time

differential game by Harmon et al. (1995), and was later extended to deep

Q-learning methods by Tallec et al. (2019), who provided recommendations

for adjusting the algorithm parameters based on δt and showed the robustness

of their algorithm—Deep Advantage Updating—to different δts.

Policy gradient methods are also susceptible to degraded performance as

δt gets smaller. The variance of likelihood-ratio policy gradient estimates can

2

explode as δt goes toward 0 as shown in an example by Munos (2006). They

formulated a model-based policy gradient estimate using the gradient of the

state with respect to the policy parameters assuming, however, that the system

dynamics and the gradient of the reward function with respect to the state is

known to the agent. These assumptions make their approach hard to apply to

many practical tasks.

Although a small δt can technically provide benefits, in practice, it is dif-

ficult to learn with small cycle times as the aforementioned challenges inhibit

the ability of RL algorithms to learn at small δts.

1.2 Action-Cycle Time in the Real World

Finding a cycle time that provides the right balance between task perfor-

mance and learnability entails a search over several values of δt, which is

time-consuming and costly for real-world robots, especially when combined

with other hyper-parameters of learning algorithms. If learnability was not an

issue, δt could be set to slightly more than the time it takes for an agent to

calculate an action, which for deep RL methods involves performing a forward

pass through a neural network.

Mahmood et al. (2018a) investigated the effect of using different values of

δt on the learning performance of a 2-dimensional reaching task on a real-world

robotic arm, and showed a δt in the middle of their chosen range to perform

better than the smallest or the largest ones. Dulac-Arnold et al. (2020) showed

that increasing δt hurts task performance when using fixed hyper-parameters.

The same can be true when reducing δt with fixed hyper-parameter values as

we will show later, corroborating the finding by Mahmood et al. (2018a) that

a middle value of δt can perform better than the smallest or the largest ones.

The optimal cycle time might be different for different algorithms, tasks

and robots, and the smallest δt afforded by the hardware is seldom the best,

necessitating the tuning of δt along with other algorithm hyper-parameters.

Although the cost of tuning one additional δt hyper-parameter can be manage-

able in simulated environments, real-world robots can only collect experience

3

in real-time, which makes the tuning time-consuming, potentially more costly

due to wear and tear, and thus impractical.

This work aims to study the effect of changing δt and other hyper-parameters

on the performance of two famed algorithms. The algorithms are Proximal Pol-

icy Optimization (PPO), a popular on-policy policy gradient algorithm based

on likelihood-ratio gradient estimation (Schulman et al. 2017), and Soft Actor

Critic (SAC), a flourishing off-policy actor critic algorithm using the gradient

of a reparameterized action-value estimate (Haarnoja et al. 2018a).

Although these algorithms have been applied successfully to real-world

robotic tasks, the robustness of their performance and their hyper-parameters

to different δts has been mostly overlooked. For instance, PPO has been used

to solve the rubik’s cube on a robotic hand (Akkaya et al. 2019), and PPO

and SAC have been applied to a locomotion task on a quadruped robot (Tan

et al. 2018, Haarnoja et al. 2018c). In these works, the action-cycle time has

been kept fixed for all experiments.

1.3 Adjusting Hyper-Parameters Based on the
Action-Cycle Time

Understanding how the cycle time affects learning and knowing its relationship

to other hyper-parameters may lead to hyper-parameters that are more robust

to different δts. For instance, using a small δt means that a sample batch of the

same size will be collected in less time, possibly containing less information,

and that future rewards will be discounted more heavily for the same dis-

count factor and duration in real-time (Doya 2000). Having a set of guidelines

and heuristics for adjusting the values of different algorithm hyper-parameters

upon changing δt can enable the transfer of hyper-parameter values already

tuned to one δt to a different δt on the same problem. Such guidelines may

also potentially help reduce tuning cost, and lead to better task performance.

In this thesis, we demonstrate the ineffectiveness of the baseline hyper-

parameter values of PPO and SAC when learning at δts other than the de-

fault of the simulated environment. These baseline values are provided by the

4

original works introducing the algorithms, which are tuned for a set of tasks

with default δts and widely-used in many other works (e.g., Ramstedt & Pal

2019, Fujimoto et al. 2018). We also refer to any such hyper-parameter values

tuned to a particular δt as baseline values in this work. We then propose a set

of modifications, based on δt, to these hyper-parameters to improve upon the

performance of the baseline values. Our results highlight the lack of robust-

ness of the baseline hyper-parameter values to different environments in both

algorithms. We validate our proposed set of modifications on a simulated and

a real-world robotic task.

1.4 Related Works

There are other works that are related to the action-cycle time and continuous-

time reinforcement learning. The continuous-time version of the Bellman equa-

tion, Hamilton-Jacobi-Bellman (HJB) equation, has been used to derive RL

algorithms for the continuous-time case (Kim & Yang 2020). Munos and

Bourgine (1998) derived a value function update rule from the HJB equa-

tion and proposed a model-based RL algorithm. Doya (1996) derived the

continuous-time TD error and used it to develop methods for learning the value

function and to extend the actor-critic method to the continuous-time case.

They extended this work in Doya (2000) and showed the robustness of their

methods across different cycle times and simulated environments. Lee and

Sutton (2021) developed the fundamental theory for applying policy iteration

methods to continuous-time systems and provided case studies in discounted

RL and optimal control contexts.

The time it takes for an agent to output an action after an observation—the

action delay—has been investigated in simulated environments (Firoiu et al.

2018, Chen et al. 2021) and is of particular importance in real-world robotics

applications since, unlike simulated environments, real-world environments do

not halt their progress as the agent calculates an action (Mahmood et al.

2018a, Chen et al. 2021).

Travnik et al. (2018) showed the adverse effects of large action delays on

5

task performance and minimized this delay by reordering algorithmic steps.

Dulac-Arnold et al. (2020) observed deteriorating task performance with in-

creasing action and observation delay. Ramstedt and Pal (2019) introduced

the Real-Time Markov Decision Process and Real-Time Actor-Critic. In their

framework, however, δt should ideally be set equal to the time for a forward

pass of the policy, which could vary greatly for different policy architectures.

In this work, we focus on the cycle time issues and assume that the chosen δts

always fit the forward pass for action calculations.

Reinforcement learning in continuous-time has been further studied in the

context of optimal control of dynamical systems (Vamvoudakis & Lewis 2010,

Bhasin et al. 2013, Modares & Lewis 2014), game theory (Johnson et al. 2011,

Li et al. 2014), and deep neural networks (Zambrano et al. 2015, Xiao et

al. 2020, Du et al. 2020). Deep reinforcement learning methods have made

exceptional strides in simulated environments (Mnih et al. 2015, Berner et al.

2019) and have been successfully applied to real-world robotic tasks (Tan et

al. 2018, Haarnoja et al. 2018c, Akkaya et al. 2019). However, the robustness

of these methods and their hyper-parameters to different cycle times has been

mostly ignored, which is the subject of our focus in this study.

1.5 Contributions

The contributions of this work can be summarized in four main categories:

• We demonstrate that the baseline hyper-parameter values of PPO and

SAC are not robust to different δts. We show that the performance

of these algorithms changes significantly across different δts when other

hyper-parameters are kept constant at their baseline values. This is

especially problematic for real-world robotic tasks, as it entails tuning

all algorithm hyper-parameters every time a new δt is experimented with

on a given task for which the baseline values performed well.

• We propose novel approaches for adapting the hyper-parameters of PPO

and SAC based on δt and show that our proposed modifications make

6

these hyper-parameters more robust to different δts than the baseline

values on the original simulated task.

• We validate our recommendations on held-out simulated and real-world

robotic tasks that were not used in the investigations for devising the

recommendations. These new hyper-parameters can perform better than

the baseline values when δt changes on both tasks. The improved ro-

bustness of these hyper-parameters to different δts is important in the

real-world task, where experience collection is expensive, as it allows for

hyper-parameter values that have been tuned to a particular δt to be

transferred to a different δt on the same task.

• We conduct these experiments on existing tasks modified carefully to

accommodate and compare fairly across different δts, which can be used

for benchmarking the impact of δt on new algorithms in the future.

We open-source our implementation of these tasks and experiments to

facilitate further studies on the action-cycle time. A video of the exper-

iments on the real-world robot can be seen at https://www.youtube.

com/watch?v=tmo5fWGRPtk. The code for all experiments is available at

https://github.com/homayoonfarrahi/cycle-time-study.

7

https://www.youtube.com/watch?v=tmo5fWGRPtk
https://www.youtube.com/watch?v=tmo5fWGRPtk
https://github.com/homayoonfarrahi/cycle-time-study

Chapter 2

The Problem Setup

This chapter presents the problem setup and its implementation that we use

for all of our experiments. We investigate the robustness of algorithm hyper-

parameters to different time discretizations by formulating the problem as an

undiscounted episodic Markov decision process (MDP) with time limits. We

describe the discounted MDP since it is a generalization of the undiscounted

MDP, and the discounted MDP is the setup that our solution methods use.

We note that our undiscounted problem formulation can be retrieved from

the discounted MDP by setting the discount factor equal to one. Next, the

issue of time limits in reinforcement learning tasks and potential solutions to

it are explained. We then discuss how the agent-environment interaction is

implemented and how it is modified to support different action-cycle time δts.

2.1 The Markov Decision Process and the Ob-
jective

We use the undiscounted episodic reinforcement learning framework as de-

scribed in Sutton and Barto (2018). Although our problem setup is undis-

counted, we describe it for the discounted MDP and set the discount factor

equal to one. The problem is formulated as a Markov decision process in which

the agent and the environment interact at discrete non-negative integer time

steps t starting from 0. All possible non-terminal and terminal states that the

agent receives are represented by the sets S and Ω respectively with S∩Ω = ∅.

All possible actions that the agent can take are represented by the set A.

8

The agent interacts with the environment through a sequence of episodes

by starting a new episode after the previous one is terminated. Each episode

comprises a series of interactions from the starting time step t = 0 to the

terminal time step t = T and begins with the start state S0 ∈ S sampled from

the start state density d0(s).

In the following time steps t, the agent receives the current state of the

environment St ∈ S and uses a probability density π, called a policy, to select

an action At ∼ π(·|St) with At ∈ A and apply it to the environment. In the

next time step t+1, the environment proceeds to the next state St+1 ∈ S ∪Ω

and generates a scalar reward signal Rt+1 ∈ R based on the probability density

St+1, Rt+1 ∼ p(·, ·|St, At), which defines the dynamics of the environment. The

newly generated next state and reward are given to the agent, and the cycle

repeats until a terminal reward RT is received and a terminal state ST ∈ Ω is

reached at the terminal time step T . The terminal time step T is a random

variable and can vary from one episode to another. The sequence below shows

the order of states, actions, and rewards with their time steps for a single

episode from start to finish:

S0, A0, R1, S1, A1, R2, . . . , St, At, Rt+1, St+1, . . . , ST−1, AT−1, RT , ST .

In this framework, the return for time step t is denoted by Gt and is defined

as the discounted sum of all future rewards until the end of the episode

Gt
.
= Rt+1 + γRt+2 + · · ·+ γT−t−1RT =

T−t−1∑︂
k=0

γkRt+k+1

with γ ∈ [0, 1] being the discount factor that is used to discount the value

of future rewards to obtain their present value. The value of a state s under

policy π is the expected return from that state with the policy π followed from

that state onward

υπ(s)
.
= Eπ [Gt|St = s] = Eπ

[︄
T−t−1∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓ St = s

]︄
. (2.1)

When the policy π is parameterized by θ, the goal of the agent is to change

the parameters θ to maximize the expected value of the initial state, which is
9

called the performance measure Jγ(θ) and defined as

Jγ(θ)
.
=

∫︂
s

d0(s) υπθ
(s). (2.2)

In our problem formulation, the discount factor γ = 1, and we seek to maximize

the expected undiscounted episodic return J1(θ).

2.2 Time Limits in Reinforcement Learning

Many reinforcement learning tasks have a fixed maximum number of time

steps, called a time limit, upon reaching which the current episode ends and

the next one starts by resetting the environment according to the start state

distribution. Time limits are often used to impose episodes on tasks that are

truly continuing in nature. Time limits together with robust resets can also

help recover agents from a lengthy unproductive trajectory and diversify the

learning experience. Although both simulated and real-world robotic tasks

that we use for our investigations have time limits, we did not address the

potential issues that they may cause with reinforcement learning algorithms.

For completeness, we describe these issues and potential solutions to them in

this section.

Some reinforcement learning tasks are sound without using time limits, but

can lead to faster learning with them included. For instance, in the original

Mountain Car task (Singh & Sutton 1996), stochastic policies can eventually

reach the goal and terminate the episode without using time limits. Nonethe-

less, time limits of 10,000 steps are used to expedite learning. In this particular

task, as an agent learns to reach the goal efficiently, episodes are less often ter-

minated from reaching the time limit. On the other hand, for a pole-balancing

task where the goal of the agent is to keep a pole upright on a moving cart,

episodes can get longer and longer as the agent learns. In this scenario, time

limits can be used to end the episodes and are encountered more often as the

learning progresses.

When a time limit is imposed on a task, should the modified task be con-

sidered an episodic or a continuing one? If it is considered an episodic task,

10

the state at the time limit should be treated as a terminal state. Moreover, the

optimal action in the same environmental state might be different depending

on the amount of time remaining in the episode. However, for the original

environment without the time limit, this information about time was not in-

cluded in the state. This means that the states of the original environment will

no longer have the Markov property if used for the modified task with time

limits. Although effective learned behavior has been demonstrated on many

tasks with time limits, the non-Markovian state in these tasks may prevent

agents from learning the optimal policy. For example, in a time-limited task

where a one-legged robot has to learn to run forward as far as possible, using

the non-Markovian states the agent can learn to run forward up until the end

of the episode. Yet, if the agent has access to the time information, it can learn

the optimal policy, which involves diving forward and possibly crash landing

near the time limit to travel further and obtain a higher return.

If a task with time limits is considered episodic, the agent should be able

to predict the arrival of the terminal state. This can be achieved by including

the history of past observations in the state. Alternatively, the state can be

augmented to include information about the passage of time in the episode by

including the time step in the state in the simplest case. An agent that has

access to this knowledge can learn to favor actions that lead to more short-

term rewards as it approaches the time limit. Without the time information,

the agent cannot discern between similar states that occur closer to or further

from the time limit and has to learn to compromise.

On the other hand, if time-limited tasks are considered continuing, the

states that the agent is in upon reaching the time limit should not be treated

as terminal states. That is, the agent should learn to behave as if the episode

would have continued beyond the time limit. In addition, it is unclear how

the discount factor of a continuing problem can be chosen and how the per-

formance should be measured on such a task. With time limits, typically the

undiscounted truncated return is reported as the performance measure.

For the states reached at the time limit not to be treated as terminal states,

one can bootstrap from them using their state values. This is in contrast to

11

terminal states, which are not bootstrapped from since their state values are

considered zero. It is not clear what solution algorithms using this technique

arrive at, as it bootstraps from states that the agent does not visit in the next

time step. Additionally, the issues of the discount factor and the performance

measure remain unaddressed for continuing problems, which can perhaps be

tackled using the average reward setting of reinforcement learning. Some of

the above issues and potential solutions were discussed by Pardo et al. (2018).

2.3 The Agent-Environment Interaction Loop

In this section, we describe the agent-environment interaction algorithmically

by separating the specific details of the learning algorithms from their com-

mon parts. This separation allows us to have a common agent-environment

interaction loop for the two algorithms that we experiment on, and to show

later in this chapter how it is modified to support different cycle times without

changing the details of the specific algorithm. Here, we describe the common

part, which outlines the interaction loop between the agent and the environ-

ment and when the learning updates happen. The second part is described in

the next chapter and explains the specific learning update of an algorithm in

more detail.

The parameter Ψ represents the set of all parameters and hyper-parameters

for a specific algorithm. Its constituents are defined by the Initialize function

that is defined separately for each algorithm. This encapsulation simplifies the

discription of this general agent-environment interaction loop since algorithm-

specific parameters are defined where they are used.

The interaction loop uses a buffer to store the experience of the agent.

At each time step, the most recent interaction between the agent and the

environment is stored as an experience sample (Si, Ai, Ri+1, S
′
i+1, Ti+1) with

Ti+1
.
= 1 if S ′

i+1 is a terminal state and 0 otherwise. If the buffer has reached

its full capacity of b samples, the new interaction will overwrite the oldest one

in the buffer.

Algorithm 2.1 lists the agent-environment interaction loop. All parameters

12

Algorithm 2.1: Agent-environment interaction loop
Ψ

.
= Initialize()

Retrieve from Ψ: learning period U , batch size b, parameterized policy
πθ(a|s)

Initialize Buffer B with capacity b
Initialize S0 ∼ d0(·)
for environment step i = 0, 1, 2, ... do

Calculate action Ai ∼ πθ(·|Si)
Apply Ai and observe Ri+1, S

′
i+1

Ti+1
.
= 1S′

i+1 is terminal

Store transaction in buffer Bi =
(︁
Si, Ai, Ri+1, S

′
i+1, Ti+1

)︁
if i+ 1 mod U = 0 then

Ψ
.
= Learn(B,Ψ)

if Ti+1 = 1 then
Sample Si+1 ∼ d0(·)

else
Si+1

.
= S ′

i+1

end

are first initialized by the algorithm-specific Initialize function. The agent

repeatedly selects and applies an action based on the current state, observes

the reward and the next state, and stores the transaction in the buffer. If the

agent is at the end of a learning period U , it calls the algorithm-specific Learn

function to update its parameters.

2.4 The Experiment Setup for Different Action-
Cycle Times

We set up our experiments in a manner that allows the agent and the en-

vironment to interact with different cycle time δts. There are at least two

approaches for achieving this problem setup. The first is to use the common

agent-environment interaction loop of Algorithm 2.1 and change the δt of an

environment between different runs. In this case, the rewards of the envi-

ronment need to be scaled by δt to ensure that the returns are comparable

between different δts. If we take this approach, setting the δt of a simulated

environment will entail changing the time interval of the underlying physics

engine, which may cause inconsistencies between different δts. For instance, if

13

Algorithm 2.2: Agent-environment interaction loop for different δts
Ψ

.
= Initialize()

Retrieve from Ψ: action-cycle time δt, environment time step δtenv,
learning period U , batch size b, parameterized policy πθ(a|s)

Initialize Buffer B with capacity b
Initialize S0 ∼ d0(·)
j
.
= 0 // episode step

k
.
= 0 // agent step

for environment step i = 0, 1, 2, ... do
if j mod δt/δtenv = 0 then

S̃k
.
= Si

R̃k+1
.
= 0

Calculate action Ãk ∼ πθ(·|Si)
Apply Ãk and observe Ri+1, S

′
i+1

R̃k+1
.
= R̃k+1 +Ri+1

Ti+1
.
= 1S′

i+1 is terminal

if j + 1 mod δt/δtenv = 0 or Ti+1 = 1 then
Store transaction in buffer Bk =

(︂
S̃k, Ãk, R̃k+1, S

′
i+1, Ti+1

)︂
if k + 1 mod U = 0 then

Ψ
.
= Learn(B,Ψ)

k
.
= k + 1

j
.
= j + 1

if Ti+1 = 1 then
Sample Si+1 ∼ d0(·)
j
.
= 0

else
Si+1

.
= S ′

i+1

end

the physics engine takes a step of length δt = 16 ms, the resulting transition

might be different from taking two steps of lengths δt = 8 ms.

A second approach for setting up experiments with different δts, and the

one that we use for all of our experiments, is to run the environment at a fixed

environment time step of δtenv and simulate other δts as integer multiples of

δtenv. We implement this setup by modifying the common agent-environment

interaction to run the environment at δtenv, and making the agent interact

with the environment every multiple environment steps. For this implemen-

tation, the rewards of the environment do not need to be scaled by δt, but

are accumulated between two consecutive agent interactions. Compared to

14

changing the environment time step for each δt, our approach of keeping it

constant is beneficial since it dispenses with the inconsistencies that can arise

from running the physics engine at different time intervals. The environment

changes in the same way if two agents with two different δts provide the same

sequence of actions. Algorithm 2.2 lists the common agent-environment inter-

action loop that is modified to support experiments with different δts. This

experiment setup is not specific to a particular learning algorithm, which can

be plugged into Algorithm 2.2 by defining the Initialize and Learn functions.

We use three different indices to implement this: i, j, and k. The i index

behaves similarly to the original algorithm and is incremented every environ-

ment time step of δtenv. The j index is incremented with the same frequency

as i, but is reset to 0 at the start of each episode. Its purpose is to ensure a

new episode always begins with a new action. The k index is incremented at

the lower frequency of our desired cycle time δt with which the agent oper-

ates. In addition, the S̃, Ã, and R̃ variables are always indexed using k and

respectively represent the state, action, and the reward at the lower frequency

cycle time of δt.

Once every δt milliseconds, a new action Ãk is selected based on the cur-

rent state S̃k
.
= Si and is repeatedly applied to the environment until the next

interaction. The action is repeated because in our environments the actions

set the speeds or torques of joints, values of which remain fixed until the next

action is applied. The variable R̃k+1 accumulates all of the observed rewards

Ri+1 for this period without discounting since our problem setup is undis-

counted. At the end of the period, or if the environment reaches a terminal

state, the experience sample
(︂
S̃k, Ãk, R̃k+1, S

′
i+1, Ti+1

)︂
is stored in the buffer

with S̃k and S ′
i+1 as the current and the next state of the sample respectively.

A learning update is then made in the same way as the original algorithm if

it is time to do so.

We defined our problem setup as a Markov decision process in which the

goal is to maximize the expected undiscounted episodic return. We discussed

how time limits can affect and should be treated in episodic and continuing

reinforcement learning tasks differently, although our tasks were not modified

15

to take time limits into account. We then presented the agent-environment

interaction loop that is common between the two algorithms that we study and

modified it to support running experiments with different δts. Next chapter

describes the solution methods.

16

Chapter 3

Policy Gradient Methods

We describe the algorithms that we experiment with and their implementations

in this chapter. We discuss the likelihood-ratio and reparameterization policy

gradient theorems and show how the Proximal Policy Optimization (PPO)

and the Soft Actor-Critic (SAC) algorithms can be derived from them. We

describe the implementation of these algorithms by specifying their Initialize

and Learn functions that can be plugged into the general agent-environment

interaction loop from Section 2.4.

3.1 Likelihood-Ratio Policy Gradient Methods

Instead of defining a policy based on directly maximizing value and action-

value estimates, policy gradient methods use parameterized distributions to

represent the probability of taking an action a in a state s. As discussed

by Sutton and Barto (2018), policy gradient methods have three advantages

over the former value-based methods: the policy might be a simpler function

to approximate, can simultaneously be optimal and allow selection of actions

with arbitrary probabilities, and can become deterministic in the limit.

Although our problem formulation is undiscounted (γ = 1), our solution

methods use discounting with γ ∈ [0, 1]. We defined the value function in

(2.1). The action-value function qπθ
(s, a) represents the expected discounted

episodic return when the agent is in state s, takes action a, and thereafter

17

follows policy πθ:

qπθ
(s, a)

.
= Eπθ

[︄
T−t−1∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓ St = s, At = a

]︄
.

The value function at state s can be written in terms of the action-value

function. It is equal to the average of different action values in state s weighted

by the probability of taking each action:

υπθ
=

∫︂
a

πθ(a|s)qπθ
(s, a) da.

The policy πθ(a|s) is optimized by changing its parameters θ to maximize

the performance measure Jγ(θ) defined in (2.2). The performance measure

can be written in terms of the action-value function as

Jγ(θ)
.
=

∫︂
s

d0(s)υπθ
(s) ds

=

∫︂
s

d0(s)

∫︂
a

πθ(a|s)qπθ
(s, a) da ds. (3.1)

The performance measure Jγ(θ) is often optimized using gradient ascent.

One approach to do so is to derive the gradient of Jγ(θ) with respect to the

parameters θ from (3.1):

∇Jγ(θ) =

∫︂
s

d0(s)

∫︂
a

(︂
∇πθ(a|s)qπθ

(s, a) + πθ(a|s)∇qπθ
(s, a)

)︂
da ds,

which after repeated expanding and unrolling of the term ∇qπθ
(s, a) leads

to the policy gradient theorem proven by Marbach and Tsitsiklis (2001) and

independently by Sutton et al. (2000)

∇Jγ(θ) ∝
∫︂
s

dγ,πθ(s)

∫︂
a

qπθ
(s, a)∇πθ(a|s) da ds,

dγ,πθ(s)
.
=

∫︂
x

∞∑︂
k=0

γkd0(x)p(x → s, k, πθ) dx

with p(x → s, k, πθ) representing the probability of going from state x to state

s in k steps under policy πθ, and dγ,πθ(s) as the discounted on-policy state

distribution, or the distribution with which states are visited when following

policy πθ, appropriately discounted by γ through time.

18

For an agent that follows the policy πθ(a|s), states are visited and actions

are taken according to this policy, and hence the policy gradient theorem can

be written in its equivalent expected form under policy πθ as

∇Jγ(θ) = Edπθ

[︃
γt

∫︂
a

πθ(a|St)qπθ
(St, a)

∇πθ(a|St)

πθ(a|St)
da

]︃
= Edπθ ,πθ

[︃
γtqπθ

(St, At)
∇πθ(At|St)

πθ(At|St)

]︃
= Edπθ ,πθ

[︁
γtGt∇ log πθ(At|St)

]︁
, (3.2)

dπθ(s)
.
=

∫︂
x

∞∑︂
k=0

d0(x)p(x → s, k, πθ) dx,

where Gt =
∑︁T−t−1

k=0 γkRt+k+1 is the return from time step t. Notice that

the expectation now assumes that the states are visited according to the

undiscounted on-policy state distribution dπθ , and the discounting term γt

has moved from dγ,πθ into the expectation. The γtGt∇ log πθ(At|St) term is

referred to as the likelihood-ratio policy gradient estimate. It can be calculated

for every time step and used to update the parameters θ in the direction of

the gradient to maximize Jγ(θ), which leads to the REINFORCE algorithm

by Williams (1987, 1992). The sample gradient can also be arrived at by

differentiating the following sample surrogate objective with respect to θ:

Lθ
.
= −γtGt log πθ(At|St).

The variance of the above sample surrogate objective can be reduced by

subtracting from Gt a baseline that does not depend on actions and therefore

adds no bias. A common choice for this baseline is the parameterized value

estimate υ̂w(s), which can be learned in tandem with the policy by minimiz-

ing the semi-gradient TD(0) (Sutton & Barto 2018) objective Lw below. In

addition, the return Gt in the policy objective can be replaced by the one-step

return Gt:t+1
.
= Rt+1 + γυ̂w(S

′
t+1), which has lower variance and results in

19

Algorithm 3.1: One-step actor-critic Initialize and Learn functions
Function Initialize():

Ψ
.
= { learning period U , batch size b, discount factor γ,

parameterized policy πθ(a|s), parameterized value estimate
υ̂w(s), current discount I, policy learning rate ηθ, value estimate
learning rate ηw}

Denote network parameters by Ψ.θ, Ψ.w
Initialize parameters Ψ.θ, Ψ.w
I

.
= 1

return Ψ

Function Learn(B, Ψ):
Retrieve the only transaction in the buffer St, At, Rt+1, S

′
t+1, Tt+1

θ
.
= Ψ.θ ; w .

= Ψ.w
w

.
= w

δt
.
= Rt+1 + (1− Tt+1)γυ̂w(S

′
t+1)− υ̂w(St)

θ
.
= θ + ηθIδt∇θ log πθ(At|St)

w
.
= w + ηwIδt∇wυ̂w(St)

if Ti+1 = 1 then I
.
= 1

else I
.
= γI

Ψ.θ
.
= θ ; Ψ.w

.
= w

return Ψ

faster learning. The new objectives Lθ and Lw can be written as

Lθ
.
= −γt

(︂
Gt:t+1 − υ̂w(St)

)︂
log πθ(At|St)

= −γt
(︂
Rt+1 + γυ̂w(S

′
t+1)− υ̂w(St)

)︂
log πθ(At|St)

= −γtδt log πθ(At|St)

Lw
.
=

1

2
γt
(︂
Rt+1 + γυ̂w(S

′
t+1)− υ̂w(St)

)︂2
,

and together they create a one-step actor-critic method. The symbol δt is

known as the TD error. The value estimate parameters w are equal to w,

but are denoted as such since they do not take part in the calculation of the

gradient with respect to w, hence the name semi-gradient. Taking the gradient

of these objectives leads to the update rules below with learning rates ηθ > 0

and ηw > 0.

θt+1
.
= θt + ηθγtδt∇θ log πθ(At|St)

wt+1
.
= wt + ηwγtδt∇wυ̂w(St)

20

Algorithm 3.1 uses these objectives and describes the Initialize and Learn

functions of this actor-critic algorithm that can be plugged into the general

agent-environment interaction loop in Algorithm 2.1. This algorithm performs

an update at every time step using only the most recent experience sample,

which means b = U = 1. The (1−Tt+1) term ensures that the estimated value

of terminal states is considered zero.

3.2 The Proximal Policy Optimization (PPO)
Algorithm

The Proximal Policy Optimization algorithm was developed by Schulman et

al. (2017) and significantly outperformed many other policy gradient methods

at the time of its introduction. The simplicity and robustness of PPO has led

to its widespread adoption in many real-world robotic tasks (Mahmood et al.

2018b, Tan et al. 2018, Akkaya et al. 2019). In our implementation of PPO,

we wait until the episode is over to do the lengthy Learn operation.

In PPO, the batch size b is equal to the learning period U . This means

that between each two consecutive learning updates, all experience samples in

the buffer are replaced by b new ones, such that each learning update only uses

the latest b agent-environment interactions. This buffer that is filled anew for

each learning update is also referred to as a batch of data.

PPO uses the likelihood-ratio policy gradient estimate. Its objective can

be derived from the gradient estimate of REINFORCE from (3.2) by replacing

the return Gt with the λ-return Gλ
t

.
= λT−t−1Gt + (1 − λ)

∑︁T−t−1
n=1 λn−1Gt:t+n

using the n-step return Gt:t+n
.
= γnυ̂w(St+n) +

∑︁n
j=1 γ

j−1Rt+j, subtracting

from it a value estimate baseline υ̂w(s), and dropping the discounting term γt,

although discounting is still used in the calculation of Gλ
t . The value estimate

parameters w are equal to w, but do not contribute to the calculation of

gradient with respect to w. The dropping of the discount factor γt makes the

gradient estimate biased and is prevalent in many policy gradient algorithms as

discussed by Nota and Thomas (2020). They proved that this biased estimate

is not the gradient of any objective. Nonetheless, we drop the γt term to be

21

Algorithm 3.2: PPO Initialize and Learn functions
Function Initialize():

Ψ
.
= { learning period U , number of epochs N , batch size b,

mini-batch size m, discount factor γ, trace-decay parameter λ,
clipping parameter ϵ, parameterized policy πθ(a|s), parameterized
value estimate υ̂w(s), learning rate η }

Denote network parameters by Ψ.θ, Ψ.w
Initialize parameters Ψ.θ, Ψ.w
return Ψ

Function Learn(B, Ψ):
θ

.
= Ψ.θ ; w .

= Ψ.w
w

.
= w

for t = 0, 1, 2, ..., b do
Retrieve transaction from buffer St, At, Rt+1, S

′
t+1, Tt+1

T
.
= min {j | j ∈ N ∧ j > t ∧ Tj = 1}

Gλ
t
.
= λT−t−1Gt + (1− λ)

∑︁T−t−1
n=1 λn−1Gt:t+n,

where Gt:t+n
.
= γnυ̂w(St+n) +

∑︁n
j=1 γ

j−1Rt+j

ĥt
.
= Gλ

t − υ̂w(St) // advantage estimate
end
h̃

.
= normalize(ĥ)

D
.
=
(︂
(St, At, h̃t, G

λ
t)
)︂b
t=0

θold
.
= θ

for epoch e = 1, 2, ..., N do
D̃

.
= shuffle(D)

Slice D̃ into ⌈ b
m
⌉ mini-batches

for each mini-batch M do
θ

.
= θ − η 1

m

∑︁
(Sk,Ak,h̃k)∈M ∇θLθ,k

using (3.3), where
Lθ,k

.
= −min

(︂
ρk(θ)h̃k, ρ

clip
k (θ)h̃k

)︂
,

ρk(θ)
.
= πθ(Ak|Sk)

πθold
(Ak|Sk)

, and

ρclipk (θ)
.
= clip(ρk(θ), 1− ϵ, 1 + ϵ)

w
.
= w + η 1

m

∑︁
(Sk,G

λ
k)∈M

2
(︁
Gλ

k − υ̂w(Sk)
)︁
∇wυ̂w(Sk)

end
end
Ψ.θ

.
= θ ; Ψ.w

.
= w

return Ψ

consistent with the original implementation of PPO.

Since the policy parameters θ are updated multiple times for each batch of

22

data, the original parameters that were used to collect the batch are reserved

in θold, which, following similar steps to the ones for (3.2), yields the sample

gradient estimate (Gλ
t − υ̂w(St))

∇πθ(At|St)
πθold

(At|St)
in the expected form with sample

surrogate objective −ρt(θ)ĥt, where the likelihood ratio ρt(θ)
.
= πθ(At|St)

πθold
(At|St)

,

and the advantage estimate ĥt
.
= (Gλ

t − υ̂w(St)). The normalized advantage

estimates h̃t with zero mean and unit standard deviation are used instead of

ĥt in the algorithm.

After the above changes, PPO modifies its sample surrogate objective to

Lθ,t
.
= −min

(︂
ρt(θ)h̃t, ρ

clip
t (θ)h̃t

)︂
,

ρclipt (θ)
.
= clip(ρt(θ), 1− ϵ, 1 + ϵ),

Lw,t
.
=
(︁
Gλ

t − υ̂w(St)
)︁2

with ϵ as a hyper-parameter and uses the semi-gradient sample objective Lw,t

for the value estimate. The gradient of policy and value estimate sample

objectives are derived below:

∇θLθ,t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇θπθ(At|St)

πθold
(At|St)

h̃t,
if ρt(θ)h̃t ≤ ρclipt (θ)h̃t

or
(︂
ρt(θ)h̃t > ρclipt (θ)h̃t and 1− ϵ ≤ ρt(θ) ≤ 1 + ϵ

)︂
0, otherwise

(3.3)

∇wLw,t = −2
(︁
Gλ

t − υ̂w(St)
)︁
∇wυ̂w(St). (3.4)

The original paper explains the intuition behind the policy objective Lθ,t in

more detail. In short, the min and the clip operators in Lθ,t seem to allow the

policy to get worse with respect to its objective unlimitedly, but only allow it

to improve up to a certain threshold determined by ϵ. Perhaps this asymmetry

in the treatment of favorable and unfavorable changes to the policy makes the

agent explore for longer and helps avoid local minima in the policy space.

The Learn function of the PPO algorithm is shown in Algorithm 3.2. It

begins by calculating the λ-return Gλ
t and the advantage estimate ĥt for all

b experience samples in the batch. The alternative recursive definition of ĥt

23

based on the TD error can be used to calculate these values for all samples

efficiently with a O(b) time complexity. The advantage estimates are normal-

ized to have zero mean and unit standard deviation. All samples in the batch

are then augmented by their normalized advantage estimates and λ-returns

and constitute a dataset D of such samples with size b.

The PPO algorithm then minimizes its objectives Lθ,t and Lw,t by perform-

ing stochastic gradient descent (SGD) updates with mini-batches of size m for

multiple epochs N on the dataset D. The PPO hyper-parameters N = 10 and

ϵ = 0.2 remained fixed across all experiments. We used the Adam optimizer

(Kingma & Ba 2014) with the same learning rate of 0.0003 for both objectives.

Our PPO implementation does not account for the issue of time limits that

was explained in Section 2.2. The states do not include any information about

the amount of time remaining in the episode and are thus partially observable

and non-Markovian (Pardo et al. 2018). This may limit the applicability of

PPO to our RL problem formulation, which assumed that states have the

Markov property. It may impact the performance that the agent achieves in

our experiments and is a limitation of our study.

3.3 Reparameterization Policy Gradient Meth-
ods

An alternative approach for calculating the gradient of the performance mea-

sure Jγ(θ) was introduced by Lan and Mahmood (2021). It begins by repa-

rameterizing the actions into a deterministic function f(s, ϵ,θ) that is differ-

entiable with respect to the policy parameters θ. The function receives the

state s, a sample ϵ from a fixed distribution p(ϵ), and the policy parameters θ

as arguments. For instance, actions of the policy πθ(a|s) = N (µθ, σθ
2) can be

reparameterized as

f(s, ϵ,θ)
.
= µθ(s) + ϵ σθ(s), p(ϵ) = N (0, 1).

In this approach, the actions in the performance measure in (3.1) are repa-

24

rameterized, and the gradient of Jγ(θ) is derived next:

Jγ(θ)
.
=

∫︂
s

d0(s)

∫︂
a

πθ(a|s)qπθ
(s, a) da ds

=

∫︂
s

d0(s)

∫︂
ϵ

p(ϵ)qπθ
(s, f(s, ϵ,θ)) dϵ ds

∇θJ
γ(θ) =

∫︂
s

d0(s)

∫︂
ϵ

p(ϵ)
(︂
∇θf(s, ϵ,θ)∇aqπθ

(s, a)|a=f(s,ϵ,θ)

+∇θqπθ
(s, a)|a=f(s,ϵ,θ)

)︂
dϵ ds,

where a = f(s, ϵ,θ). The ∇θqπθ
(s, a) term is again repeatedly expanded and

unrolled, giving rise to the reparameterization policy gradient theorem (Lan

& Mahmood 2021)

∇θJ
γ(θ) =

∫︂
s

dγ,πθ(s)

∫︂
ϵ

p(ϵ)∇θf(s, ϵ,θ)∇aqπθ
(s, a)|a=f(s,ϵ,θ) dϵ ds.

If an agent follows policy πθ(a|s), this gradient can be written in the ex-

pected form as

∇θJ
γ(θ) = Edπθ ,πθ

[︂
γt∇θf(St, ϵt,θ)∇aqπθ

(St, a)|a=f(St,ϵt,θ)

]︂
(3.5)

with γt∇θf(St, ϵt,θ)∇aqπθ
(St, a)|a=f(St,ϵt,θ) referred to as the reparameteriza-

tion policy gradient estimate. Similar to (3.2), the expection is now under the

undiscounted on-policy state distribution dπθ , and the γt term has moved into

the expectation. Assuming that the action-value estimate is parameterized

by w1, the sample surrogate objective Lθ
.
= −γtq̂w1

(St, f(St, ϵt,θ)) can be

minimized instead.

3.4 The Soft Actor-Critic (SAC) Algorithm

The Soft Actor-Critic algorithm was developed by Haarnoja et al. (2018a).

It is an off-policy actor-critic method that updates the policy toward the ex-

ponential of the action-value function, formulated as the minimization of KL

divergence between the two. Later on, Lan and Mahmood (2021) provided an

alternative understanding and derivation of the policy update by introducing

the reparameterization policy gradient theorem. The robustness and sample

25

efficiency of SAC make it particularly appealing for real-world tasks, where

experience is collected in real-time and at a premium (Haarnoja et al. 2018c).

We can arrive at the sample surrogate objective of SAC from that of the

reparameterization policy gradient estimate in (3.5) by adding to it an entropy

regularization term, dropping the discounting term γt, and using two action-

value estimates with parameters w1 and w2 as proposed by Fujimoto et al.

(2018) to eliminate the positive bias discussed by van Hasselt (2010):

Lθ,t
.
= α log πθ(f(St, ϵt,θ)|St)−min

(︂
q̂w1

(St, f(St, ϵt,θ)), q̂w2
(St, f(St, ϵt,θ))

)︂
.

We drop the γt term to be consistent with the original SAC paper and ac-

knowledge that, as explained by Nota and Thomas (2020), dropping γt makes

this a biased estimate. For both parameters of the action-value estimates

w1 and w2, exponentially moving averages w1 and w2 are maintained as the

targets to stabilize training (Mnih et al. 2015). The entropy term is also sub-

tracted from the action-value estimate, which leads to the entropy regularized

value function

V (S ′
t+1)

.
= min

(︂
q̂w1

(S ′
t+1, Ãt+1), q̂w2

(S ′
t+1, Ãt+1)

)︂
− α log πθ(Ãt+1|S ′

t+1)

that is used for updating the action-value estimate using Ãt+1 ∼ πθ(·|S ′
t+1).

The sample objectives for action-value estimates and the temperature param-

eter α > 0 are then defined as:

Lw1,t
.
=

1

2

(︂
q̂w1

(St, At)−
(︁
Rt+1 + (1− Tt+1)γV (S ′

t+1)
)︁)︂2

,

Lw2,t
.
=

1

2

(︂
q̂w2

(St, At)−
(︁
Rt+1 + (1− Tt+1)γV (S ′

t+1)
)︁)︂2

,

Lα,t
.
= −α log πθ(f(St, ϵt,θ)|St)− αH

with H .
= −|A| as the desired minimum expected entropy. Gradients of all

sample objectives are derived below:

∇θLθ,t =α∇θ log πθ(a|St)|a=f(St,ϵt,θ)

+∇θf(St, ϵt,θ)
(︂
α∇a log πθ(a|St)|a=f(St,ϵt,θ)

−∇aq̂wmin
(St, a)|a=f(St,ϵt,θ)

)︂
, where (3.6)

wmin
.
= argmin

w∈{w1,w2}
q̂w(St, f(St, ϵt,θ)),

26

∇wi
Lwi,t =

(︂
q̂wi

(St, At)−
(︁
Rt+1 + (1− Tt+1)γV (S ′

t+1)
)︁)︂

∇wi
q̂wi

(St, At)

for i ∈ {1, 2}, (3.7)

∇αLα,t =− log πθ(f(St, ϵt,θ)|St)−H. (3.8)

The agent-environment interaction loop of SAC is similar to that of PPO

presented in Algorithm 2.1. However, the learning period U = 1 in SAC results

in a learning update at every interaction, and the batch size b = 1,000,000

is much larger than a typical batch size in PPO. The Learn operation uses

and updates θ for its policy, α > 0 as its temperature parameter, and the

parameters w1, w2, w1, and w2 for its action-value estimates.

The Learn function of SAC is listed in Algorithm 3.3. It contains a series

of g stochastic gradient descent (SGD) updates. Each iteration starts with

sampling a mini-batch M of size m uniformly randomly from the buffer B.

The objectives are then calculated and minimized by taking a single gradient

step for that mini-batch. The sample objective Lw1,t+Lw2,t optimizes the pa-

rameters of the action-value estimates, and Lθ,t and Lα,t respectively optimize

the policy parameters and the temperature parameter. The hyper-parameters

m = 256, g = 1, and τ = 0.005 remained constant for all of our experiments.

We used the Adam optimizer (Kingma & Ba 2014) for all objectives with

learning rates set to 0.0003.

Our SAC implementation handles the issue of time limits discussed in Sec-

tion 2.2 by bootstrapping from states in which the episode ends due to reach-

ing the time limit. It differentiates between terminal states and non-terminal

states that end episodes at the time limit. Only the values of terminal states

are considered zero and not bootstrapped from. However, this solution was

meant for continuing problems that have to maximize the expected return over

an indefinite period (Pardo et al. 2018). The goal of our problem formulation

was to maximize the expected undiscounted episodic return. This is a limita-

tion of our study and might affect our results since the time limit issue is not

correctly addressed for our specific problem formulation.

We explained how the likelihood-ratio and reparameterization policy gra-

dient theorems can be derived from the discounted performance measure. The

27

objectives of PPO and SAC algorithms were then derived from the likelihood-

ratio and reparameterization gradient estimates respectively. Using these ob-

jectives, we detailed the Initialize and Learn functions of both PPO and SAC

that can be plugged into and form a complete algorithm with the general

agent-environment interaction loop from Section 2.4. Next chapter describes

the Reacher Task, on which we examine the robustness of baseline hyper-

parameter values to different δts.

28

Algorithm 3.3: SAC Initialize and Learn functions
Function Initialize():

Ψ
.
= { learning period U , batch size b, mini-batch size m, gradient

steps g, discount factor γ, temperature parameter α, target
smoothing coefficient τ , parameterized policy πθ(a|s), policy
mean µθ(s), policy standard deviation σθ(s), parameterized
action-value estimates q̂w1

(s, a), q̂w2
(s, a), q̂w1

(s, a), q̂w2
(s, a),

policy learning rate ηθ, action-value estimate learning rate ηw,
temperature learning rate ηα }

Denote network parameters by Ψ.θ, Ψ.w1, Ψ.w2, Ψ.w1, Ψ.w2, Ψ.α
Initialize parameters Ψ.θ, Ψ.w1, and Ψ.w2

Ψ.w1
.
= Ψ.w1 ; Ψ.w2

.
= Ψ.w2 ; Ψ.α

.
= 1

return Ψ

Function Learn(B, Ψ):
(θ,w1,w2,w1,w2, α)

.
= Ψ. (θ,w1,w2,w1,w2, α)

for each gradient step from 1 to g do
Sample a mini-batch M of size m uniformly randomly from B
w1

.
= w1 − ηw 1

m

∑︁
(Sk,Ak,Rk+1,S

′
k+1,Tk+1)∈M ∇w1Lw1,k

w2
.
= w2 − ηw 1

m

∑︁
(Sk,Ak,Rk+1,S

′
k+1,Tk+1)∈M ∇w2Lw2,k

using (3.7), where

Lw1,k
.
= 1

2

(︂
q̂w1

(Sk, Ak)−
(︁
Rk+1 + (1− Tk+1)γV (S ′

k+1)
)︁)︂2

,

Lw2,k
.
= 1

2

(︂
q̂w2

(Sk, Ak)−
(︁
Rk+1 + (1− Tk+1)γV (S ′

k+1)
)︁)︂2

,

V (S ′
k+1)

.
=min

(︂
q̂w1

(S ′
k+1, Ãk+1), q̂w2

(S ′
k+1, Ãk+1)

)︂
− α log πθ(Ãk+1|S ′

k+1),

and Ãk+1 ∼ πθ(·|S ′
k+1)

.
= N

(︁
µθ(S

′
k+1), σθ(S

′
k+1)

2)︁
θ

.
= θ − ηθ 1

m

∑︁
(Sk,Ak,Rk+1,S

′
k+1,Tk+1)∈M ∇θLθ,k

using (3.6), where
Lθ,k

.
=α log πθ(f(Sk, ϵk,θ)|Sk)

−min
(︂
q̂w1

(Sk, f(Sk, ϵk,θ)), q̂w2
(Sk, f(Sk, ϵk,θ))

)︂
,

f(Sk, ϵk,θ)
.
= µθ(Sk) + ϵk σθ(Sk), // reparameterization

and ϵk ∼ N (0, 1)
α

.
= α− ηα 1

m

∑︁
(Sk,Ak,Rk+1,S

′
k+1,Tk+1)∈M ∇αLα,k

using (3.8), where
Lα,k

.
= −α log πθ(f(Sk, ϵk,θ)|Sk)− αH,

and H .
= −|A|

w1
.
= τw1 + (1− τ)w1

w2
.
= τw2 + (1− τ)w2

end
Ψ. (θ,w1,w2,w1,w2, α)

.
= (θ,w1,w2,w1,w2, α)

return Ψ

29

Chapter 4

Investigating the Baseline PPO
Hyper-Parameters at Different
Cycle Times

In this chapter, we study the effect of changing the action-cycle time on the

performance of the popular Proximal Policy Optimization (PPO) algorithm

using its baseline hyper-parameter values. Algorithm hyper-parameters may

need to be tuned every time the action-cycle time δt changes in a given task.

However, the cost of hyper-parameter tuning can be prohibitive for real-world

robots. Our experiments here aim to answer two questions: Are the baseline

hyper-parameters of PPO robust to different cycle times? If not, can changing

these hyper-parameters for each δt make the algorithm more robust to different

δts? We start by describing the task we experiment on and investigate the

robustness of the baseline hyper-parameter values of PPO to different δts.

4.1 The Reacher Task

For our experiments, we used the simulated continuous control robotic task

known as ReacherBulletEnv-v0 from the PyBullet physics engine and task

suite (Coumans & Bai 2016). This environment comprises a robotic arm with

two rotary joints and two equally-sized links that can move freely in a two-

dimensional plane. The base joint of the arm is anchored at the centre of the

plane and is connected to the elbow joint via the first link. The elbow joint is

also connected to the fingertip of the arm through the second link. To prevent

30

Figure 4.1: The Reacher Task with the robot arm, the fingertip, and the target.
The goal is to move the base and elbow joints to get the fingertip as close as
possible to the target.

the two links from colliding, the elbow joint can only move in the limited range

of [−3, 3] radians.

All episodes last for 2.4 seconds. At the start of each episode, the joints are

positioned uniformly randomly in their allowable range and a target is gener-

ated in a square area slightly larger than the area reachable by the fingertip.

The goal of this task is to move the fingertip to be as close as possible to

the target. The observation vector consists of the target position, the vector

from the fingertip to the target and the angular positions and velocities of the

two joints. The action vector specifies the torque values that are applied to

the two joints. In each time step, the task provides three reward components:

the change in distance to the target to encourage movement of the fingertip

toward the target, the electricity cost to encourage efficient movement, and

the stuck joint cost to discourage the elbow joint from getting stuck at either

of its limits.

31

We slightly modify this environment to address two important issues. In

the original environment, the angular position of the base joint is calculated

relative to its minimum and maximum limits and mapped to the range [−1, 1].

The sine and cosine of this relative position are then included in the observa-

tion vector. Since the position of the base joint is defined as unlimited, the

minimum and maximum values are by default set to 1 and 0 respectively. Tak-

ing the sine and cosine of the relative position that has been calculated with

respect to those limits results in similar observation vectors for positions that

are in fact π radians apart. We changed the observation vector to include the

sine and cosine of the absolute angular position instead of the relative ones.

The second issue is related to the third component of the reward. The

stuck joint cost in the original environment penalizes the agent if the elbow

joint is in the vicinity of its limits. Due to the behavior of the physics engine,

the elbow joint can go slightly beyond its limits and their vicinities and thus

miss the condition for including the mentioned cost in the reward. We mod-

ified the condition for the stuck joint cost to include the vicinities of and all

positions beyond the limits. These modifications improved the performance of

PPO with baseline hyper-parameter values significantly. We will open-source

the implementation of the task, which can be easily plugged in with existing

codebases for experiments.

4.2 Experiments

In this section, we investigate the robustness of baseline hyper-parameter val-

ues to different δts for the PPO algorithm. These baseline values can vary

for different tasks and environments and can be arrived at in different ways.

For instance, they can be tuned to maximize performance on a specific task,

adopted from other similar tasks on which they have performed well, or sim-

ply set to values recommended by prior works. For our PPO experiments in

simulated environments, we use the baseline hyper-parameter values of Table

4.1, which are similar to the recommended hyper-parameters from Schulman

et al. (2017) for their Mujoco experiments.

32

We modify the Reacher Task described in 4.1 by changing its environment

time step from the default 16.5 ms to a constant 2 ms for all experiments

and implementing different action-cycle time δts by making the agent interact

with the environment at multiples of 2 ms. To run an experiment with δt =

8 ms, for instance, the agent interacts with the environment every fourth

environment step, as described in the previous section, by taking the most

recent observation as input and outputting an action, which is repeatedly

applied to the environment until the next interaction. The reward for each

action is a summation over all individual rewards received every environment

step of 2 ms.

Each episode still lasts 2.4 simulation seconds for all δts. The environment

has three reward components as mentioned earlier: the change in distance

to the target, the electricity cost, and the stuck joint cost. The last two are

scaled according to the environment time step to keep their weighting relative

to the first component comparable to the original environment with 16.5 ms

environment time step.

The architecture of the agent comprises a neural network of two hidden

layers, each with 64 units and tanh activations, producing the mean µ, and

state-independent parameters for the σ of a normal distribution N (µ, σ2) from

which the actions are sampled. The value estimate is parameterized by another

neural network configured similarly to that which produces µ. The Adam

optimizer (Kingma & Ba 2014) is used with a learning rate of 0.0003.

To study the robustness of algorithm hyper-parameters to different δts, we

ran PPO with the baseline hyper-parameters of Table 4.1 using various δts

from 4 to 64 ms and stored the undiscounted episodic returns. The learning

curve for each δt is given in Figure 4.2. We further performed a grid search

with five different values of the batch size from 500 to 8000 and mini-batch

size from 12 to 200 to see if any improvements could at all be made to the

learning performance of different δts. The overall average return for each set

of hyper-parameters was calculated by averaging the return over the entire

learning period and 30 independent runs. The best-performing tuned hyper-

parameters for each δt were then used to perform another set of independent

33

0 2 4 6 8 10
Environment Time Steps (at 2 ms) ×106

20

10

0

10

Return
 averaged

 over
 30 runs

PPO on the Reacher Task

t (ms)
4
8
16
32
64

Figure 4.2: Learning curves for different δts with the baseline hyper-
parameters. Smaller δts have worse asymptotic performance while larger δts
learn more slowly.

runs to avoid maximization bias, and the results were plotted in Figure 4.3.

Both plots show results that use undiscounted returns and are averaged over

30 independent runs each lasting 10 million environment steps. The shaded

area represents the standard error.

baseline valuehyper-parameters
b 2000
m 50
γ 0.99
λ 0.95

Table 4.1: Baseline Hyper-Parameters of PPO on the Reacher and the Double
Pendulum Tasks.

4.3 Results and Discussion

Our experimental results indicate that the baseline hyper-parameters can lead

to suboptimal performance when changing the cycle time, and that perfor-

mance can be recovered, at least partially, by using a different set of hyper-

parameters. Figure 4.2 shows that the asymptotic performance declines when
34

10 20 30 40 50 60
Action Cycle Time t (ms)

2

0

2

4

6

8

10

12

14

Return
 averaged

 over entire
 learning

 period and
 30 runs

PPO on the Reacher Task
baseline hyper-parameters
tuned hyper-parameters

Figure 4.3: Overall average return vs. δt for different hyper-parameter config-
urations. Tuned hyper-parameters can improve the learning performance for
the majority of δt values.

using small δts and that large δts hurt the learning speed. The former may

be because batches are collected more quickly, lacking enough information for

useful updates. The latter might be a result of fewer and infrequent updates.

We show in Figure 4.3 that tuning hyper-parameters for each δt can lead to

increased learning performance. The tuned batch size and mini-batch size

values are different from the baseline values and shown in Table 4.2. The per-

formance for the tuned hyper-parameters exhibits a general downward trend

as δt is increased, which could hint at the superior performance of smaller δts

on this task.

tuned δt (ms)
hyper-parameters 4 8 16 32 64

b 8000 8000 4000 2000 1000
m 50 25 12 12 12

Table 4.2: Tuned Hyper-Parameters of PPO on the Reacher Task.

We have answered the two questions formed in the beginning of the chapter.

We showed that the baseline hyper-parameter values of PPO are not robust to

different δts and changing the hyper-parameter values for each δt can perform

35

better than the baseline values. Hence, algorithm hyper-parameters may need

to be tuned every time the δt of a task is changed. This demonstrates the

importance of having guidelines for adjusting different hyper-parameters based

on δt to enable hyper-parameters tuned to a specific δt to be transferred to a

different δt on the same task.

36

Chapter 5

Setting Hyper-Parameters of PPO
as a Function of the Action-Cycle
Time

This chapter introduces our proposed new hyper-parameters for the Proximal

Policy Optimization (PPO) algorithm that adapt to different action-cycle time

δts. The baseline hyper-parameter values of PPO are not robust to different

δts as we demonstrated in the previous chapter. Although the baseline hyper-

parameter values impaired the performance of PPO when δt changed, tuning

them partially regained the lost performance. Accordingly, every time a new

δt is tried on a real-world robotic task, algorithm hyper-parameters should be

laboriously tuned. We aim to avoid this inconvenience by providing guidelines

for adjusting the hyper-parameters based on δt as it changes and hypothesize

that they can perform better than or as well as the baseline hyper-parameter

values. In the following, we describe these guidelines and study their effective-

ness compared with the baselines.

5.1 Our Proposed δt-Aware Hyper-Parameters
of PPO

Changing the cycle time may affect the relationship between time, and the

hyper-parameters batch size b and mini-batch size m, which could suggest

the need for scaling them based on δt. As δt decreases, each fixed-size batch

or mini-batch of samples corresponds to less amount of real-time experience,

37

possibly reducing the extent of useful information that is available in the batch

or the mini-batch.

To address this, we make the real-time experience content consistent among

different δts by scaling the baseline b and m inversely proportionally to δt,

shown in (5.1) as bδt and mδt. The scaled bδt and mδt represent the batch

size and mini-batch size used when δt is the action-cycle time (in ms). For

instance, when δt is reduced from the baseline δt0 = 16 ms to 8 ms, a batch

size b8 double the size of the baseline b16 is used: b8 = 2b16. This keeps the

batch time δt · bδt, the time it takes to collect a batch, and the amount of

available information consistent across different δts.

The cycle time may influence the choice of the discount factor γ and the

trace-decay parameter λ as well since it changes the rate at which rewards and

n-step returns are discounted through time (Doya 2000, Tallec et al. 2019).

When using a small δt, rewards are discounted more heavily for the same γ and

λ, as more experience samples are collected in a fixed time interval compared

to larger δts.

Based on the above intuition discussed in previous works (Baird 1994,

Doya 2000), we exponentiated γ and λ to the δt/δt0 power with baseline

action-cycle time δt0. However, our experiments revealed this strategy to be

detrimental to the performance of smaller δts. We conjecture that with this

strategy, as δt gets smaller, an increasing number of samples are included in

the calculation of the likelihood-ratio policy gradient estimate, possibly leading

to its increased variance (Munos 2006) and hindered performance. Hence, we

only exponentiate γ and λ to the δt/δt0 power for δts larger than δt0. This

can be achieved by setting γδt and λδt to be the minimum of the baseline and

the scaled one as shown in (5.1). Based on the mentioned modifications, we

present the new δt-aware hyper-parameters bδt, mδt, γδt and λδt, which adapt

to different δts according to:

bδt
.
=

δt0
δt

bδt0 , mδt
.
=

δt0
δt

mδt0 ,

γδt
.
= min

(︂
γδt0 , γ

δt/δt0
δt0

)︂
, λδt

.
= min

(︂
λδt0 , λ

δt/δt0
δt0

)︂
, (5.1)

where δt0 is the baseline δt.
38

5.2 Experiments

We evaluated the δt-aware hyper-parameters of Table 5.1 (δt0 = 16 ms) by

running PPO on the same Reacher Task from the previous section using dif-

ferent batch times (batch size × δt) ranging from 1 to 128 seconds. The cycle

times used were similar to the previous chapter, and each run continued for

10 million environment steps. Figure 5.1 depicts the average learning curves

from 30 independent runs for different batch times. To better understand how

changing the batch time affected the performance, we calculated the overall

average return by averaging the return over the entire learning period and the

30 runs and plotted it against the batch times in Figure 5.2.

hyper-parameters valuebaseline δt-aware
b b16 2000
m m16 50
γ γ16 0.99
λ λ16 0.95

Table 5.1: Baseline and δt-Aware Hyper-Parameters of PPO on the Reacher
and the Double Pendulum Tasks.

The same experiment was repeated with bδt and mδt from (5.1), but using

γδt = γ
δt/δt0
δt0

and λδt = λ
δt/δt0
δt0

unrestrictedly instead, and the learning curves

were compared with the δt-aware ones in Figure 5.3. Once again, the average

of each learning curve, or the overall average return, was drawn for different

batch times in Figure 5.4. To compare the above results with the baseline γ

and λ, we repeated the same experiment using (5.1) but kept γδt = γ16 = 0.99

and λδt = λ16 = 0.95 constant across all runs. The corresponding learning

curves and their overall average return summary were compared with the δt-

aware ones in Figures 5.5 and 5.6 respectively. All results are averaged over

30 independent runs and use undiscounted returns. The shaded region in all

figures shows the standard error.

39

5.3 Results and Discussion

The learning curves of Figure 5.1 show great disparity between different δts

for the two smallest batch times. This disparity subsides as the batch time

increases and comes back for the larger batch times, albeit less severely. The

asymptotic performance consistently improves with increasing batch times,

achieving values close to the maximum from the 32 second batch time onward.

This improvement may be attributed to the increasing batch time since it can

reduce the variance in the updates of the algorithm by having more samples

in a batch. The largest δt = 64 ms does not attain the peak performance ob-

tained by other δts possibly hinting at the advantage of smaller δt in achieving

superior performance. Larger δts seem to suffer from lower learning speeds

with the largest batch time, which might be due to smaller δts’s having more

experience samples available in each batch.

Figure 5.2 aggregates the learning curves of Figure 5.1. It illustrates that

the δt-aware hyper-parameters make the performance of small δts better than

or equal to that of large δts at larger batch times and thus showcases the

benefit of small δts over larger ones in this task with our δt-aware hyper-

parameters. Our δt-aware suggestion of keeping the batch time constant when

changing δts is supported by the fact that the curves for different δts are

aligned together with respect to the batch time. Choosing a constant batch

time of 64 seconds can lead to near-best performance for all δts. Performance

can rapidly deteriorate if the batch time is reduced to lower than 24 seconds.

Keeping the batch size constant at 2000 equates to insufficient batch times

for the smaller δts and thus particularly hurts their performance. The circles

with dashed borders show the performance of baseline hyper-parameters. The

δt-aware hyper-parameters of Table 5.1 are an improvement over the baseline

values as shown by the solid-bordered circles at the batch time of 32 seconds.

In the second set of experiments, the discount factor and the trace-decay

parameter were changed from above to γδt = γ
δt/δt0
δt0

and λδt = λ
δt/δt0
δt0

(scaled).

In Figure 5.3, only the δt = 4 and δt = 8 ms learning curves are changed

compared to Figure 5.1 and therefore plotted. This is expected since the

40

20

0

20

Return
 averaged

 over
 30 runs

batch size × t = 1 2 4

20

0

20

Return
 averaged

 over
 30 runs

8 12 16

20

0

20

Return
 averaged

 over
 30 runs

24 32 64

0 5 10

Environment Time
 Steps (at 2 ms)

×106

20

0

20

Return
 averaged

 over
 30 runs

128

PPO on the Reacher Task

t (ms)
4
8
16
32
64

Figure 5.1: Learning curves using the δt-aware hyper-parameters. Performance
improves with increasing batch times for all δts.

41

0 20 40 60 80 100 120
Batch Time = Batch Size × t (seconds)

15

10

5

0

5

10

15

Return
 averaged

 over entire
 learning

 period and
 30 runs

PPO on the Reacher Task

t = 4 ms
t = 8 ms
t = 16 ms
t = 32 ms
t = 64 ms

baseline
t-aware

best batch time

Figure 5.2: Overall average return using the δt-aware hyper-parameters. Small
δts are better than or equal to large δts at larger batch times. The δt-aware
hyper-parameters at 32-second batch time perform better than the baselines.

hyper-parameters have the same value for the other three δts because of the

minimum function in (5.1). The scaled δt = 4 and δt = 8 ms learning curves

still show similar traits to the δt-aware ones. Their asymptotic performance

is improved with increasing batch time. For larger batch times, however, the

scaled δt = 4 and δt = 8 ms consistently perform worse than the δt-aware.

Figure 5.4 summarizes Figure 5.3 wherein just the δt = 4 and δt = 8

ms curves are drawn to compare the δt-aware and scaled γ and λ. It shows

that exponentiating γ and λ to the δt/δt0 power for all δts leads to reduced

performance for smaller δts at larger batch times compared to our δt-aware

hyper-parameters. We suspect that using a smaller δt increases the variance

of the updates (Munos 2006), which is possibly alleviated in δt-aware γ and λ

by discounting faster through time.

For the third set of experiments, we experimented with using (5.1), but

keeping γ16 and λ16 constant across all δts (constant). As expected, only the

learning curves of δt = 32 and δt = 64 ms are drawn in Figure 5.5 since

the other three δts have the same hyper-parameter values and are similar to

Figure 5.1. The asymptotic performance of constant γ and λ still improves

42

20

0

20

Return
 averaged

 over
 30 runs

batch size × t = 1 2 4

20

0

20

Return
 averaged

 over
 30 runs

8 12 16

20

0

20

Return
 averaged

 over
 30 runs

24 32 64

0 5 10

Environment Time
 Steps (at 2 ms)

×106

20

0

20

Return
 averaged

 over
 30 runs

128

PPO on the Reacher Task

t = 4 ms, t-aware ,
t = 8 ms, t-aware ,
t = 4 ms, scaled ,
t = 8 ms, scaled ,

Figure 5.3: Learning curves comparing the δt-aware hyper-parameters with
ones where the discount factor γ and trace-decay parameter λ are always
exponentiated to the δt/δt0 power (scaled). Only the δt = 4 ms and δt = 8
ms curves are plotted since the rest are similar to Figure 5.1.

43

0 20 40 60 80 100 120
Batch Time = Batch Size × t (seconds)

15

10

5

0

5

10

15

Return
 averaged

 over entire
 learning

 period and
 30 runs

PPO on the Reacher Task

t = 4 ms, t-aware ,
t = 8 ms, t-aware ,
t = 4 ms, scaled ,
t = 8 ms, scaled ,

best batch time

Figure 5.4: Overall average return of δt-aware hyper-parameters compared
with ones where γ and λ are always exponentiated to the δt/δt0 power (scaled).

with increasing batch time, and the learning speed is worse than the δt-aware

at the largest batch time. Although, the performance of δt = 32 and δt = 64

ms with constant γ and λ is diminished for the same batch time when compared

with the δt-aware ones.

The learning curves of Figure 5.5 are summarized in Figure 5.6, and δt = 32

and δt = 64 ms perform worse compared with our δt-aware hyper-parameters.

Keeping the discount factor and the trace-decay parameter constant for larger

δts results in these hyper-parameters attenuating more slowly in real-time.

This might increase the variance of the updates since more real-time experience

is included in their calculation, and might have been avoided in the δt-aware

ones by keeping the mentioned real-time experience constant for the updates.

We presented the δt-aware hyper-parameters of PPO that can adapt their

values to different δts and empirically demonstrated that they can perform

better than or equal to the baseline hyper-parameters. Overall, our results

indicate that the performance of different δts show similar sensitivity to the

batch time or amount of real-time experience in each batch, warranting our

recommendation for keeping batch time constant as δt changes. Smaller δts

perform better if γ and λ decay faster than the baseline through time. Larger

44

20

0

20

Return
 averaged

 over
 30 runs

batch size × t = 1 2 4

20

0

20

Return
 averaged

 over
 30 runs

8 12 16

20

0

20

Return
 averaged

 over
 30 runs

24 32 64

0 5 10

Environment Time
 Steps (at 2 ms)

×106

20

0

20

Return
 averaged

 over
 30 runs

128

PPO on the Reacher Task

t = 32 ms, t-aware ,
t = 64 ms, t-aware ,
t = 32 ms, constant ,
t = 64 ms, constant ,

Figure 5.5: Learning curves comparing the δt-aware hyper-parameters with
ones where the discount factor γδt = γ16 = 0.99 and trace-decay parameter
λδt = λ16 = 0.95 are constant in all runs (constant). Only the δt = 32 ms and
δt = 64 ms curves are plotted since the rest are similar to Figure 5.1.

45

0 20 40 60 80 100 120
Batch Time = Batch Size × t (seconds)

15

10

5

0

5

10

15

Return
 averaged

 over entire
 learning

 period and
 30 runs

PPO on the Reacher Task

t = 32 ms, t-aware ,
t = 64 ms, t-aware ,
t = 32 ms, constant ,
t = 64 ms, constant ,

best batch time

Figure 5.6: Overall average return of δt-aware hyper-parameters compared
with ones with constant γδt = γ16 = 0.99 and λδt = λ16 = 0.95 in all runs.

δts perform worse if γ and λ decay slower than the baseline through time.

The δt-aware γ and λ take these observations into account. We validate the

δt-aware hyper-parameters on two previously unseen tasks in the next chapter.

46

Chapter 6

Validating the δt-Aware
Hyper-Parameters of PPO

In this chapter, we validate our proposed δt-aware hyper-parameters for the

Proximal Policy Optimization (PPO) algorithm on two previously unseen

tasks. The δt-aware hyper-parameters are advantageous compared to the

baselines on the original Reacher Task as demonstrated earlier. However,

the robustness and applicability of these δt-aware hyper-parameters to differ-

ent environments and particularly real-world tasks remains a question that

we explore here. We describe the two simulated and real-world robotic tasks,

on which we then compare the performance of the δt-aware hyper-parameters

with the baseline values.

6.1 The Double Pendulum Task

The simulated PyBullet task InvertedDoublePendulumBulletEnv-v0 is a con-

tinuous control robotic task akin to two-dimensional pole balancing. The robot

consists of two links, two non-actuated free-moving rotary joints, and a slider

joint that can move within a limited range along a horizontal axis. The first

rotary joint connects the slider joint to the first link, which is in turn connected

to the second link through the second rotary joint. The fingertip resides on

the other side of the second link.

Episodes of this task last for a maximum of 16 seconds. At the beginning

of each episode, the two links (the pole) are set to a random almost upright

47

position just as gravity starts to pull them down. The episode can be termi-

nated early if the fingertip falls below a certain height. The goal then is to

move the slider joint to keep the two links as upright as possible. The observa-

tion vector includes the positions and velocities of all three joints in addition

to the horizontal position of the fingertip. The one-dimensional action sets

the torque of the slider joint. At each time step, the agent is rewarded with

a constant value and penalized proportionally to the distance of the fingertip

from the upright and horizontally centred position.

6.2 Validation on Double Pendulum

We validated the δt-aware hyper-parameters of PPO on the Double Pendulum

Task from the previous section. We reduced the environment time step of this

PyBullet environment from 16.5 ms to a constant 4 ms and simulated other

δts as integer multiples of 4 ms. Episodes of this environment still lasted a

maximum of 16 simulation seconds for all δts. All results were averaged over

30 independent runs and use undiscounted returns. Shaded regions indicate

standard errors.

We ran two sets of experiments with PPO. For the first set, we kept the

baseline hyper-parameters of Table 5.1 (b = 2000) constant across δts, and

for the second set, we used the δt-aware hyper-parameters of Table 5.1 with

δt0 = 16 ms (b16 = 2000). All runs continued for 10 million environment steps,

and the learning curves for these two sets using the baseline and δt-aware

hyper-parameters were plotted in Figures 6.1 and 6.2 respectively. We further

calculated the average return over the full learning period for each learning

curve with results shown in Figure 6.3 for both sets of experiments.

The learning curves of Figure 6.1 demonstrate that the baseline hyper-

parameters of PPO lead to diminished asymptotic performance as δt decreases.

For smaller δts, each fixed-size batch corresponds to less amount of real-time

experience, which might not be enough to make useful updates. In contrast,

larger δts seem to suffer from slower learning speeds with the baseline hyper-

parameters. As δt increases, it takes more time to collect each batch. This

48

0 2 4 6 8 10
Environment Time Steps (at 4 ms) ×106

0

2000

4000

6000

8000

10000

Return
 averaged

 over
 30 runs

PPO on the Double Pendulum Task
t (ms)

4
8
16
32
64

Figure 6.1: Learning curves using the baseline hyper-parameters on the Double
Pendulum Task. Different δts vary greatly in asymptotic performance and
learning speed.

results in fewer updates being made per real-time and possibly slower learning.

The δt-aware hyper-parameters improve the asymptotic performance of smaller

δts and slightly reduce that of larger δts compared with the baseline values as

shown in Figure 6.2. The learning speeds of all δts are also more comparable

with the δt-aware hyper-parameters as opposed to the baseline ones.

Figure 6.3 summarizes the previous two figures by showing the return aver-

aged over the entire learning period and the 30 runs against δt for both baseline

and δt-aware hyper-parameters. The δt-aware hyper-parameters provide a sig-

nificant improvement over the baseline values and make the performance of

the algorithm more robust to different δts. These hyper-parameters attempt

to make the asymptotic performance and the learning speed of different δts

similar to each other as evident by the corresponding learning curves. The

baseline and the δt-aware hyper-parameters have equivalent values at δt = 16

ms and thus exhibit the same performance for this particular δt.

49

0 2 4 6 8 10
Environment Time Steps (at 4 ms) ×106

0

2000

4000

6000

8000

10000

Return
 averaged

 over
 30 runs

PPO on the Double Pendulum Task

t = 4 ms
t = 8 ms
t = 32 ms
t = 64 ms
t-aware

baseline

Figure 6.2: Learning curves comparing the baseline and δt-aware hyper-
parameters on the Double Pendulum Task. With the δt-aware hyper-
parameters, different δts are more similar in asymptotic performance and
learning speed.

10 20 30 40 50 60
Action Cycle Time t (ms)

2000

3000

4000

5000

6000

7000

Return
 averaged

 over entire
 learning

 period and
 30 runs

PPO on the Double Pendulum Task

b = 2000, baselines
b16 = 2000, t-aware

Figure 6.3: Overall average return for different δts on a simulated validation
task. The δt-aware hyper-parameters make the performance more robust to
different choices of δt compared with the baselines.

50

Figure 6.4: The Real-Robot Reacher Task with the robot arm, the fingertip,
and the target. The goal is to move the base and elbow joints to get the
fingertip as close as possible to the target.

6.3 The Real-Robot Reacher Task

Our real-world robotic validation task is UR-Reacher-2 developed by Mah-

mood et al. (2018b). It is embodied via a robot arm that has two rotary joints

and two links. The base joint is fixed to a horizontal table and connected to

the elbow joint through the first link. The second link connects the elbow joint

to the fingertip. We have slightly modified the task so that the arm can move

freely in a two-dimensional plane above the table as long it does not collide

with itself or the table. In the original environment, the fingertip was confined

to a small rectangular area, which caused unnecessary scripted position cor-

rections. This environment is depicted in Figure 6.4 with the robot arm and

its fingertip.

Each episode lasts for 4 seconds, at the start of which the arm is reset to

a fixed default position, and a target is generated uniformly randomly in a
51

rectangular area above the table. The goal is to move the arm so that the

fingertip is as close to the target as possible. The observation vector consists

of the angular position and velocity of the two joints, the vector from the

fingertip to the target, and the previous action. The action vector sets the

velocities of the two joints. The agent is negatively rewarded proportionally

to the distance of the fingertip to the target and positively rewarded according

to the position of the fingertip in a Gaussian function centred on the target.

6.4 Validation on Real-Robot Reacher

We validated the δt-aware hyper-parameters of PPO on the Real-Robot Reacher

Task described in the previous section. We set the environment time step to

10 ms and ran three sets of experiments using PPO, one with δt0 = 40 ms

as the benchmark, and two with δt = 10 ms to compare the baseline hyper-

parameters of Table 6.1 (b = 400), kept constant across δts, to the δt-aware

hyper-parameters that adapt to δt = 10 ms using b10 = δt0
10

· bδt0 = 40
10

· 400 =

1600. All episodes were still 4 seconds long for all δts. Each run lasted for

600,000 environment steps or 100 real-time minutes, and the learning curves,

averaged over five runs, were plotted in Figure 6.5. We performed similar

experiments using baseline and δt-aware hyper-parameter values of Table 5.1

(b = 2000) with the results shown in Figure 6.6. All results use undiscounted

returns. Shaded regions represent the standard error.

Figure 6.5 shows that the δt-aware hyper-parameters of PPO on the real-

world robotic task recover the asymptotic performance that is lost by using

the baseline hyper-parameters with a small δt. Using the baseline hyper-

parameters at δt = 10 ms significantly impairs both the learning speed and

the asymptotic performance compared to δt0 = 40 ms, possibly because each

batch corresponds to less amount of real-time experience. The δt-aware hyper-

parameters at δt = 10 ms can achieve an asymptotic performance similar to

or slightly better than the baselines at δt0 = 40 ms. The learning speed of the

δt-aware hyper-parameters at δt = 10 ms is slightly worse than the baselines

at δt0 = 40 ms, which could hint at the increasing difficulty of solving tasks

52

with smaller δts.

When using the hyper-parameter values of Table 5.1 (b = 2000), the perfor-

mances of δt = 10 ms and δt0 = 40 ms are comparable when using the baseline

hyper-parameters as illustrated in Figure 6.6. This is likely due to the fact

that a batch size of 2000 is already large enough for the algorithm to make

useful learning updates at δt = 10 ms. The δt-aware hyper-parameters can

still attain an asymptotic performance similar to the baseline values, though

with slightly lower learning speed. In any case, the benefit of the δt-aware

hyper-parameters is more pronounced for the hyper-parameter values of Table

6.1, which are more likely to be chosen as the baseline values since they learn

faster in Figure 6.5.

hyper-parameters valuebaseline δt-aware
b b40 400
m m40 10
γ γ40 0.99
λ λ40 0.95

Table 6.1: Hyper-Parameters of PPO on the Real-Robot Reacher Task.

The experiments of this chapter validated the δt-aware hyper-parameters

of PPO on a simulated and a real-world robotic task. On both tasks, the

δt-aware hyper-parameters performed better than or as well as the baseline

values. The results are particularly encouraging for the real-world task since

hyper-parameter values that have been tuned for a specific δt on a task may be

transferred to different δts on the same task, possibly avoiding the laborious

and costly tuning of hyper-parameters each time δt is changed.

53

0 100000 200000 300000 400000 500000 600000
Environment Time Steps (at 10 ms)

100

0

100

200

300

400

Return
 averaged

 over
 5 runs

PPO on the Real-Robot Reacher Task

t = 10 ms, b = 400, baselines
t = 40 ms, b = 400, baselines
t = 10 ms, b10 = 1600, t-aware

Figure 6.5: Learning curves of PPO on the Real-Robot Reacher Task com-
paring the δt-aware hyper-parameters of Table 6.1 with the baseline ones.
Asymptotic performance is recovered by the δt-aware hyper-parameters for
the smaller δt.

0 100000 200000 300000 400000 500000 600000
Environment Time Steps (at 10 ms)

100

0

100

200

300

400

Return
 averaged

 over
 5 runs

PPO on the Real-Robot Reacher Task

t = 10 ms, b = 2000, baselines
t = 40 ms, b = 2000, baselines
t = 10 ms, b10 = 8000, t-aware

Figure 6.6: Learning curves of PPO on the Real-Robot Reacher Task compar-
ing the δt-aware and baseline hyper-parameters of Table 5.1. Performance of
δt = 10 ms and δt0 = 40 ms are comparable using the baseline values.

54

Chapter 7

Investigating the Discount Factor
of SAC at Different Cycle Times

This chapter investigates the robustness of the baseline hyper-parameter val-

ues of the Soft Actor-Critic (SAC) algorithm to different action-cycle time δts

and examines the sensitivity of performance to different values of the discount

factor γ. If the baseline values are not robust to different δts, the algorithm

hyper-parameters need to undergo costly and time-consuming tuning every

time δt changes in a task. Our goal here is to find out whether the baseline

hyper-parameter values of SAC hinder its performance for different δts, and if

yes, whether adjusting γ based on δt can make the performance of SAC better

than or equal to that of the baseline γ. We examine the robustness of the

baseline hyper-parameter values of SAC to different δts and perform an ex-

haustive sweep over the discount factor γ to better understand its relationship

with the action-cycle time.

7.1 Experiments

In this section, we examine how changing δt influences the performance of SAC

and how scaling the discount factor γ based on δt can affect the performance for

different δts. We started by investigating the robustness of the baseline hyper-

parameters of SAC to different cycle times. Both the policy and the action-

value estimates were parameterized using neural networks with two hidden

layers of size 256 with ReLU activations. The hidden layers of the policy

55

parameters were shared between mean µ and standard deviation σ of the

normal distribution N (µ, σ2) that was used to draw the actions. We used the

Adam optimizer with a learning rate of 0.0003.

On the Reacher Task described in Section 4.1, we learned policies at dif-

ferent δts using the SAC algorithm with automatic entropy adjustment and

the hyper-parameter values given by Haarnoja et al. (2018b) as our baseline.

All runs lasted for 500,000 environment steps of 2 ms each, and all other ex-

perimental details were kept as in the previous sections. Figure 7.1 shows the

resulting learning curves for each δt, averaged over 30 independent runs.

We explained previously how changing δt can cause the rewards to be

discounted faster or slower through time if γ is kept constant. As such, we

continued by studying the effect of scaling and tuning the discount factor

γ on performance. We scaled the discount factor for each δt according to

γδt = γ
δt/16
16 with baseline γ16 = 0.99 to ensure consistent discounting of the

rewards through time regardless of δt (Doya 2000, Tallec et al. 2019). The

resulting returns were then averaged over the entire learning period and 30 runs

and plotted in Figure 7.2. Similar curves were drawn for two additional sets

of experiments. One where a baseline γ = 0.99 stayed constant across all δts,

and another where the best γδt was found by searching over 12 different values

from 0.2763 to 1.0 for each δt individually and rerun to avoid maximization

bias. All results use undiscounted returns. The shaded region in all plots

shows the standard error.

7.2 Results and Discussion

As evident in Figure 7.1, the smaller cycle times δt = 4 and δt = 8 ms

undergo sharp drops in performance just as the agent starts using the learned

policy, although they are able to recover and match other δts swiftly. The

larger δt = 64 ms sustains a slower rate of learning throughout and never

quite exceeds the learned performance of any other δt. Larger δts obtain lower

average returns at the start of learning when the agent acts according to a

random policy. This could be due to an increased electricity cost from larger

56

0 100000 200000 300000 400000 500000
Environment Time Steps (at 2 ms)

50

40

30

20

10

0

10

Return
 averaged

 over
 30 runs

SAC on the Reacher Task

t (ms)
4
8
16
32
64

Figure 7.1: Learning curves for different δts with the baseline SAC hyper-
parameters. Smaller δts suffer a sharp decline in the beginning, and the largest
δt learns more slowly.

joint velocities, as the joints receive the same torque for longer durations at

larger δts.

Figure 7.2 shows that exponentiating the baseline γ to the δt/16 power

surprisingly makes SAC more sensitive to δt, as it boosts the performance of

larger δts and hinders that of smaller ones. Tuning γ, however, can markedly

improve the results of all δts. The tuned γ values are different from the baseline

γ = 0.99 and shown in Table 7.1. We have demonstrated that the baseline

hyper-parameter values of SAC may not be robust to different δts and simply

scaling γ may not guarantee an improvement for all δts.

tuned δt (ms)
hyper-parameter 4 8 16 32 64

γ 0.961 0.923 0.851 0.851 0.851

Table 7.1: Tuned γ of SAC on the Reacher Task.

57

10 20 30 40 50 60
Action Cycle Time t (ms)

4

2

0

2

4

6

8

10

12

Return
 averaged

 over entire
 learning

 period and
 30 runs

SAC on the Reacher Task

= 0.99, baseline
t = 0.99 t/16, scaled
t, tuned

Figure 7.2: Overall average return vs. δt for different choices of γ. Scaling γ
based on δt makes the performance more sensitive to δt. Performance can be
thoroughly improved by tuning γ for each δt separately.

7.3 Scaling Baseline γ as a Function of δt

Since tuning γ significantly outperformed the baseline γ and its scaled variant,

we performed a comprehensive experiment to better understand the relation-

ship between γ and δt. We ran SAC with an extensive range of γ values from

approximately 0.276 to 1.0 and plotted the learning curves averaged over 30

independent runs for each γ in Figure 7.3. Shaded regions indicate standard

errors. All results use undiscounted returns, and other details were unchanged

from the previous section.

The figure shows that, as γ is increased, the asymptotic performance for

all δts marches upward, flourishes at intermediate values of γ, and thereafter

proceeds to lapse into mediocrity. The magnitude of the rise and fall is more

pronounced for smaller δts for which the asymptotic performance appears more

sensitive to the value of γ. The learning speed seems to improve for larger δts

and decline for smaller δts as γ is increased. The smaller δts start to endure a

steep fall and rise of performance from the baseline γ = 0.99 onward.

To inspect the relationship between γ and δt more easily, from the corre-

sponding learning curves we calculated the overall average return of each γ

58

20

0

20

Return
 averaged

 over
 30 runs

discount = 0.2763 0.5256 0.7250

20

0

20

Return
 averaged

 over
 30 runs

0.8515 0.9227 0.9606

20

0

20

Return
 averaged

 over
 30 runs

0.9801 0.9900 0.9950

0.0 0.2 0.4

Environment Time
 Steps (at 2 ms)

×106

20

0

20

Return
 averaged

 over
 30 runs

0.9975

0.0 0.2 0.4

Environment Time
 Steps (at 2 ms)

×106

0.9987

0.0 0.2 0.4

Environment Time
 Steps (at 2 ms)

×106

1.0000

SAC on the Reacher Task

t (ms)
4
8
16
32
64

Figure 7.3: Learning curves of SAC for a sweep of γ values. Intermediate
values of γ obtain better asymptotic performance and learning speed.

59

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Discount Factor

10

5

0

5

10

Return
 averaged

 over entire
 learning

 period and
 30 runs

SAC on the Reacher Task

t = 4 ms
t = 8 ms
t = 16 ms
t = 32 ms
t = 64 ms
t = 0.99 t/16

Figure 7.4: Overall average return for a sweep of γ values. Peak performance
is achieved at intermediate values of γ. Curves are stretched horizontally for
increasing δt, suggesting the need for scaling γ based on δt.

by averaging the return over the entire learning period and the 30 runs. Fig-

ure 7.4 depicts the results. The best performance at δt = 16 ms is reached

with γ ≈ 0.851, which is appreciably far from the baseline value of 0.99. The

performance of all δts peak at different intermediate values of γ and steadily

decline for both increasing and decreasing γs (except for the curious jump of

δt = 4 ms at the smallest γ). The location of these peaks might be different

for other tasks with some tasks obtaining the maximum performance with γs

larger than the baseline 0.99. In this task, the baseline γ = 0.99 is larger than

the best, and scaling it according to δt hurts the performance of smaller δts

(shown with circle marks in Figure 7.4). If the best γ was larger than the

baseline instead, scaling it would have helped smaller δts. This conflict points

to the insufficiency of merely scaling γ for adapting it to different δts. In addi-

tion, as δt gets larger, the curves are consistently stretched horizontally, which

hints at the need for scaling γ based on δt to make the curves more aligned.

We demonstrated in this chapter that the baseline hyper-parameter values

of SAC might not be robust to different δts and simply scaling γ according

to δt may not improve the robustness across all δts. Our exhaustive sweep

60

of γ values revealed that, for all δts, the peak performance on this task was

produced by a value of γ around which the performance was less sensitive to

changes in γ, and that the sensitivity of performance to γ is increased as the

cycle time δt is reduced.

61

Chapter 8

Our Proposed δt-Aware Discount
Factor of SAC

We propose our approach for choosing the discount factor of the Soft Actor-

Critic (SAC) algorithm in this chapter. The baseline discount factor γ of SAC

is not robust to different δts and tuning it can improve the performance for all

δts as shown previously. We hypothesize that the performance of our δt-aware

γδt is superior to that of the baseline γ at all δts. We describe two δt-aware

discount factors and compare them to the baseline γ on the Reacher Task.

8.1 The δt-Aware Discount Factor

For all δts, performance of SAC is less sensitive to the discount factor around

γ values that produce peak performance as revealed by the exhaustive sweep

of γ values in the previous chapter. In addition, the performance becomes

increasingly sensitive to γ as δt is decreased. Based on these observations,

we propose two hypotheses for adapting γ to different δts. In the first, γ is

initially tuned to find the best value at a baseline δt0 and subsequently scaled

based on δt. In the second, the tuned γ is kept constant for other δts. These

two hypotheses are respectively expressed more formally as the new δt-aware

62

discount factor γδt for SAC as

γδt,1
.
=

(︄
argmax

γδt0

G0̂

)︄δt/δt0

(8.1)

γδt,2
.
=

(︄
argmax

γδt0

G0̂

)︄
, (8.2)

with δt0 as the baseline cycle time and G0̂ as the estimate of the undiscounted

episodic return obtained as a sample average over the entire learning process.

8.2 Experiments

We tested the two hypotheses for the δt-aware γδt on the same Reacher Task

with the baseline δt0 = 16 ms, for which γ16 ≈ 0.851 obtained the best per-

formance. The best performing γ16 ≈ 0.851 was raised to the δt/δt0 power for

all δts in the first set of runs (tuned & scaled) and was kept constant in the

second set (tuned). Both sets were independent of the runs used to determine

the best γ16 to avoid maximization bias. The learning curves for these two

hypotheses were plotted against the baseline γ = 0.99 in Figures 8.1 and 8.2

respectively. All results are averaged over 30 independent runs. To make the

comparison easier, we once again calculated the average return over the entire

learning period and the 30 runs for each learning curve with the results dis-

played in Figure 8.3. All results use undiscounted returns. Shaded regions of

all plots show the standard errors.

8.3 Results and Discussion

The learning curves of both of these hypotheses in Figures 8.1 and 8.2 show

significant improvement over those of the baseline γ = 0.99. Both γδt,1 and γδt,2

avoid the sharp drops that δt = 4 and δt = 8 ms experienced with the base-

line γ. In addition, they both learn noticeably faster and achieve marginally

better asymptotic performance. The learning curves of γδt,1 and γδt,2 bear an

unremarkable resemblance to one another. The only minute difference when

using γδt,2 seems to be a slightly improved asymptotic performance for δt = 64

63

0 100000 200000 300000 400000 500000
Environment Time Steps (at 2 ms)

20

15

10

5

0

5

10

15

20

Return
 averaged

 over
 30 runs

SAC on the Reacher Task

t = 4 ms
t = 8 ms
t = 16 ms
t = 32 ms
t = 64 ms
t, 1 = 0.851 t/16, tuned & scaled
= 0.99, baseline

Figure 8.1: Learning curves of SAC comparing the baseline with the tuned
and scaled γδt,1 = 0.851δt/16. All δts learn faster and avoid the sharp drops of
smaller δts with the baseline γ.

ms and a slightly reduced one for δt = 4 ms. Looking at the summaries in

Figure 8.3, we see that both of these hypotheses attain performance signifi-

cantly superior to that of the baseline γ = 0.99. The general downward trend

of performance with increasing δt could hint at the benefit of small δts over

large ones on this task.

The empirical results of this chapter indicate that both hypotheses for the

δt-aware discount factor of SAC perform noticeably better than the baseline

γ on the Reacher Task. It is thus clear that tuning γ at a baseline δt0 is a

crucial step in adapting it to different δts. The additional scaling of the tuned

γδt,2 based on δt benefits the performance of smaller δts and hurts that of the

larger ones. Next, we validate the δt-aware discount factor on the two held-out

tasks described previously.

64

0 100000 200000 300000 400000 500000
Environment Time Steps (at 2 ms)

20

15

10

5

0

5

10

15

20

Return
 averaged

 over
 30 runs

SAC on the Reacher Task

t = 4 ms
t = 8 ms
t = 16 ms
t = 32 ms
t = 64 ms
t, 2 = 0.851, tuned
= 0.99, baseline

Figure 8.2: Learning curves of SAC comparing the baseline with the tuned
γδt,2 = 0.851. All δts learn faster and avoid the sharp drops of smaller δts with
the baseline γ.

10 20 30 40 50 60
Action Cycle Time t (ms)

2

4

6

8

10

12

Return
 averaged

 over entire
 learning

 period and
 30 runs

SAC on the Reacher Task

= 0.99, baseline
t, 1 = 0.851 t/16, tuned & scaled
t, 2 = 0.851, tuned

Figure 8.3: Overall average return of the two hypotheses compared with the
baseline γ. Both hypotheses offer notable performance gains over the baseline,
and scaling γ according to δt favors smaller δts.

65

Chapter 9

Validating the δt-Aware Discount
Factor of SAC

In this chapter, we validate our proposed δt-aware discount factor of Soft

Actor-Critic (SAC) on two previously unseen tasks. The δt-aware γδt results

in significant performance improvements over the baseline γ when δt changes

in the original Reacher Task. We ask ourselves whether the δt-aware γδt and its

improvements extend beyond the Reacher Task to other environments and real-

world tasks. As such, we validate the two δt-aware hypotheses by comparing

them with the baseline γ on the held-out simulated and real-world robotic

tasks described previously in Chapter 6.

9.1 Validation on Double Pendulum

We investigated the validity of the δt-aware discount factor γδt of SAC by

testing both hypotheses on the Double Pendulum Task from Section 6.1 and

comparing them with the baseline γ = 0.99. Peak performance at δt0 = 16 ms

was achieved with γ = 0.9987, which was both held constant across and scaled

based on different δts in two sets of experiments independent of the ones for

determining the peak to avoid maximization bias. All results were averaged

over 30 independent runs, each of which lasted for one million environment

steps. The learning curves for the baseline γ = 0.99 were plotted in Figure 9.1,

and Figures 9.2 and 9.3 compare those of the baseline γ with the δt-aware dis-

count factors γδt,1 and γδt,2 respectively. These three figures were summarized

66

by calculating the average return over entire learning period and the 30 runs of

each learning curve and depicting them in Figure 9.4 for comparison. Shaded

regions represent standard errors. All results use undiscounted returns, and

other experimental details were similar to Section 6.2.

With the baseline γ = 0.99 in Figure 9.1, larger δts only experience a minor

reduction in learning speed and a slight increase in asymptotic performance

over the baseline δt0 = 16 ms. The baseline γ = 0.99 particularly impairs the

learning speed of smaller cycle times δt = 4 and δt = 8 ms to the extent that

they do not reach their asymptote in the same time allotment as other δts. The

disappointing performance of the smaller δts in this environment contrasts the

outcomes from the previous environment shown in Figure 8.3 for the baseline

γ = 0.99. The baseline value of γ in the SAC algorithm, therefore, may not be

robust to different environments at different δts, further supporting the need

for our proposed δt-aware γδt.

Both γδt,1 and γδt,2 profoundly revive the performance of smaller δts as seen

in Figures 9.2 and 9.3. The learning speed of the baseline δt0 = 16 ms is slightly

enhanced. Larger δts were not plotted since no major change was observed for

them from the baseline γ. The learning curves of both hypotheses γδt,1 and

γδt,2 are especially similar to each other with no major discernible difference,

except maybe for the tenuous rise in the learning speed of δt = 4 ms with γδt,1.

Figure 9.4 validates the δt-aware discount factor γδt of SAC, as the requisite

tuning of γ done by γδt,2 at a baseline δt0 retrieves the majority of the lost

performance at smaller δts with only marginal refinement resulting from the

subsequent scaling done by γδt,1 based on δt.

9.2 Validation on Real-Robot Reacher

We validated the δt-aware discount factor of SAC on the Real-Robot Reacher

Task from Section 6.3. The environment time step was set to 40 ms to ensure

the learning updates of canonical implementations of SAC take no longer than

a cycle time, and a γ ≈ 0.9227 produced peak performance at the baseline

δt0 = 40 ms. Three sets of experiments at δt = 120 ms were then performed to

67

0.0 0.2 0.4 0.6 0.8 1.0
Environment Time Steps (at 4 ms) ×106

0

2000

4000

6000

8000

10000

Return
 averaged

 over
 30 runs

SAC on the Double Pendulum Task
t (ms)

4
8
16
32
64

Figure 9.1: Learning curves of SAC using the baseline γ. Learning speed of
smaller δts is significantly impaired, and they seemingly could not reach their
asymptote in the time given.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Time Steps (at 4 ms) ×106

0

2000

4000

6000

8000

10000

Return
 averaged

 over
 30 runs

SAC on the Double Pendulum Task

t = 4 ms
t = 8 ms
t = 16 ms
t, 1 = 0.9987 t/16, tuned & scaled
= 0.99, baseline

Figure 9.2: Learning curves of SAC comparing the baseline with the tuned
and scaled γδt,1 = 0.9987δt/16. Performance of smaller δts is recovered using
the tuned and scaled γδt,1. Larger δts were not drawn since no major change
was observed compared to the baseline γ.

68

0.0 0.2 0.4 0.6 0.8 1.0
Environment Time Steps (at 4 ms) ×106

0

2000

4000

6000

8000

10000

Return
 averaged

 over
 30 runs

SAC on the Double Pendulum Task

t = 4 ms
t = 8 ms
t = 16 ms
t, 2 = 0.9987, tuned
= 0.99, baseline

Figure 9.3: Learning curves of SAC comparing the baseline with the tuned
γδt,2 = 0.9987. Performance of smaller δts is recovered. Larger δts were not
drawn since no major change was observed compared to the baseline γ.

10 20 30 40 50 60
Action Cycle Time t (ms)

2000

3000

4000

5000

6000

7000

Return
 averaged

 over entire
 learning

 period and
 30 runs

SAC on the Double Pendulum Task

= 0.99, baseline
t, 1 = 0.9987 t/16, tuned & scaled
t, 2 = 0.9987, tuned

Figure 9.4: Overall average return of the two hypotheses for setting γ of SAC
compared with the baseline γ. The γδt,2 tuned for the baseline δt0 fully re-
gains the performance of smaller δts. Additional scaling (γδt,1) causes only a
marginal refinement.

69

examine the utility of our δt-aware γδt by using the baseline γ = 0.99, the tuned

γδt,2 ≈ 0.9227, and the tuned and scaled γδt,1 ≈ 0.9227120/40 = 0.786 each for

10 independent runs. The runs for the best-performing γ at δt0 = 40 ms were

unfortunately not repeated, and some maximization bias might be present

when comparing its performance to other γs and δts. Other experimental

details were unchanged from Section 6.4. The learning curves for the δt0 = 40

and δt = 120 ms runs were drawn in Figures 9.5 and 9.6 respectively. Figure

9.7 shows the returns averaged over the 10 runs and first 50,000 environment

steps or 33 real-time minutes for each set of experiments. All results use

undiscounted returns. Shaded regions show standard errors.

In our SAC implementation, the learning updates happened between choos-

ing an action and applying it to the environment. Although performing the

updates after applying the action would have been preferable, this issue is

orthogonal to our studies. Firstly, we used the same implementation for all

of our experiments. Secondly, the place of learning updates is unimportant in

simulated environments since the environment is paused between consecutive

steps. Thirdly, each learning update took about 10 to 15 ms in the Real-Robot

Reacher Task which is considerably lower than the baseline δt0 = 40 ms.

Figure 9.5 shows that different values of γ perform roughly similarly at

δt0 = 40 ms, except for a small decrease in learning speed and asymptotic

performance for γ = 0.725. The learning curves of Figure 9.6 reveal the

asymptotic performance as the only source of difference between the three

different γ values at δt = 120 ms. This signifies the importance of choosing

the optimal γ for each δt since a suboptimal γ might not perform as well as

an optimal one even after extended learning.

These learning curves can be compared more readily in Figure 9.7. The

baseline γ = 0.99 reduces the performance when δt is changed from 40 to

120 ms. Using the tuned γδt,2 ≈ 0.9227 provides a modest recovery, and

the additional scaling based on δt regains a performance almost similar to

the peak at δt0 = 40 ms. The results once again indicate that tuning γ for

a baseline δt0 is an essential step in adapting γ to different δts. The high

performance achieved at δt = 120 ms with an atypical γδt,1 ≈ 0.9227120/40 =

70

0 10000 20000 30000 40000 50000
Environment Time Steps (at 40 ms)

100

0

100

200

300

400

Return
 averaged

 over
 10 runs

SAC on the Real-Robot Reacher Task

t = 40 ms, = 0.995
t = 40 ms, = 0.99
t = 40 ms, = 0.9606
t = 40 ms, = 0.9227
t = 40 ms, = 0.8515
t = 40 ms, = 0.725

Figure 9.5: Learning curves of SAC on the Real-Robot Reacher Task for the
sweep of γ values at δt0 = 40 ms. The smallest γ = 0.725 performs slightly
worse than other γs. Other γs are roughly similar in learning speed and
asymptotic performance.

0.786 demonstrates the necessity of having guidelines such as our δt-aware γδt

to avoid the poor performance of the baseline γ = 0.99 when changing δt.

Overall, the δt-aware discount factor of SAC performs significantly better

than the baseline γ on both simulated and real-world held-out tasks. The

discount factor γ should be tuned to a specific δt for it to perform well when

transferred to a different δt on the same task. Scaling the best-performing γ

with respect to δt may improve the performance of smaller δts marginally. The

δt-aware discount factor may reduce the need for costly and time-consuming

hyper-parameter tuning in the real world when the δt of a task changes.

71

0 10000 20000 30000 40000 50000
Environment Time Steps (at 40 ms)

100

0

100

200

300

400

Return
 averaged

 over
 10 runs

SAC on the Real-Robot Reacher Task

t = 120 ms, = 0.99, baseline

t = 120 ms, 120, 1 = 0.9227120/40, tuned & scaled
t = 120 ms, 120, 2 = 0.9227, tuned

Figure 9.6: Learning curves of SAC on the Real-Robot Reacher Task for δt =
120 ms. The asymptotic performance of the baseline γ = 0.99 cannot reach
that of the atypical δt-aware γδt,1 ≈ 0.786 even after extended learning.

0.75 0.80 0.85 0.90 0.95 1.00
Discount Factor

220

230

240

250

260

270

280

Return
 averaged
 over entire

 learning
 period and

 10 runs

SAC on the Real-Robot Reacher Task

t = 40 ms
t = 120 ms, = 0.99, baseline

t = 120 ms, 120, 1 = 0.9227120/40, tuned & scaled
t = 120 ms, 120, 2 = 0.9227, tuned

Figure 9.7: Overall average return of SAC comparing the baseline γ with
our two hypotheses on the Real-Robot Reacher Task. Tuning γδt,2 for the
baseline δt0 and scaling it based on δt to get γδt,1 almost fully recovers the
poor performance of the baseline γ on the changed δt.

72

Chapter 10

Conclusion

Our study of different time discretizations and their effects on two different

policy gradient algorithms comes to an end in this chapter. Algorithm hyper-

parameters may need to be tuned when the action-cycle time δt changes in

a given task. This tuning can be time-consuming and costly for real-world

robots, given their slow real-time rate of experience collection and proneness

to wear and tear and breakdown. Having hyper-parameters that are robust to

different δts can allow hyper-parameter values tuned to a particular δt to be

transferred to different δts on the same task.

In this thesis, we focused on the hyper-parameter values of the two popu-

lar policy gradient algorithms Proximal Policy Optimization and Soft Actor-

Critic. We demonstrated that the baseline hyper-parameter values of these

algorithms may not be robust to different δts and took a step toward im-

proving their robustness. For both PPO and SAC, we investigated the re-

lationship between some of their hyper-parameters and their performance at

different δts on the Reacher Task. Based on the observed relationships, we

presented our δt-aware hyper-parameters that adjust based on δt and empir-

ically showed that they make the performance robust to different δts. The

δt-aware hyper-parameters adapt four different hyper-parameters in PPO and

only the discount factor in SAC.

The PPO algorithm collects a new batch of data with size b for each iter-

ation of updates. Changing δt affects how quickly or slowly in real-time this

batch is collected and how much real-time information it represents. It appears

73

that PPO requires a minimum amount of real-time information in each batch

to perform well. In addition, the mini-batch size m determines the number

of gradient steps taken for each batch, and reducing δt means that the same

number of gradient steps have to be taken in less time, potentially making

smaller δts more compute-intensive. Reducing δt results in the discount factor

γ and the trace-decay parameter λ decaying faster in real-time, which seems

to be desirable for smaller δts in PPO. For SAC, the range of well-performing

values for the discount factor γ appears to get narrower as δt is decreased, and

performance seems less sensitive to the discount factor around γ values that

produce peak performance.

We validated the δt-aware hyper-parameters on the two held-out tasks

Double Pendulum and Real-Robot Reacher. These hyper-parameters are more

robust to different δts on these tasks and can enable the transfer of hyper-

parameter values tuned to a specific δt on these tasks to a different δt.

Comparing the results of different environments together reveals that the

baseline hyper-parameter values of PPO and SAC may not be robust to dif-

ferent environments at δts other than the baseline δt for which the hyper-

parameters are tuned. This shows a second weakness of the baseline values

in addition to their lack of robustness to different δts in a single environment.

Overall, our extensive experiments amounted to 75 real-time hours or 10 mil-

lion time steps of real-world robot learning, 20,000 simulation hours or 7 billion

time steps of simulation with PPO, and 1000 simulation hours or 350 million

time steps of simulation with SAC.

We introduced three different tasks that were modified to support different

δts and explained how the agent-environment interaction loop of any algorithm

can be altered to enable a fair comparison of performance among different δts.

We make our implementations publicly available to facilitate further studies

on δt, perhaps on future algorithms and more environments. We hope that

our contributions pave the way for future studies to consider δt as a tunable

hyper-parameter and experiment with different values of δt.

74

References

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron,
A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak,
N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., Zhang, L.
(2019). Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.0
7113.

Baird, L. C. (1994). Reinforcement learning in continuous time: Advantage
updating. In Proceedings of 1994 IEEE International Conference on Neural
Networks.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P. P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S.,
Olsson, C., Pachocki, J., Petrov, M., Pinto, H. P. O., Raiman, J., Salimans,
T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski,
F., Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning.
arXiv preprint arXiv:1912.06680.

Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K. G., Lewis, F.
L., Dixon, W. E. (2013). A novel actor–critic–identifier architecture for ap-
proximate optimal control of uncertain nonlinear systems. Automatica 49
(1):82–92.

Chen, B., Xu, M., Li, L., Zhao, D. (2021). Delay-aware model-based reinforce-
ment learning for continuous control. Neurocomputing 450 :119–128.

Coumans, E., Bai, Y. (2016). PyBullet, a python module for physics simula-
tion for games, robotics and machine learning. URL http://pybullet.org

Doya, K. (1996). Temporal difference learning in continuous time and space.
In Advances in Neural Information Processing Systems.

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural
Computation 12 (1):219–245.

Du, J., Futoma, J., Doshi-Velez, F. (2020). Model-based reinforcement learn-
ing for semi-Markov decision processes with neural ODEs. In Advances in
Neural Information Processing Systems.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal,
S., Hester, T. (2021). Challenges of real-world reinforcement learning: Def-
initions, benchmarks and analysis. Machine Learning. Advance online pub-
lication. https://doi.org/10.1007/s10994-021-05961-4.

75

http://pybullet.org
https://doi.org/10.1007/s10994-021-05961-4

Firoiu, V., Ju, T., Tenenbaum, J. (2018). At human speed: Deep reinforce-
ment learning with action delay. arXiv preprint arXiv:1810.07286.

Fujimoto, S., Hoof, H., Meger, D. (2018). Addressing function approxima-
tion error in actor-critic methods. In International Conference on Machine
Learning.

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. (2018a). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In International Conference on Machine Learning.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar,
V., Zhu, H., Gupta, A., Abbeel, P., Levine, S. (2018b). Soft actor-critic
algorithms and applications. arXiv preprint arXiv:1812.05905.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S. (2018c). Learn-
ing to walk via deep reinforcement learning. In Robotics: Science and Sys-
tems XV.

Harmon, M. E., Baird, L. C., Klopf, A. H. (1995). Advantage updating ap-
plied to a differential game. In Advances in Neural Information Processing
Systems.

Johnson, M., Bhasin, S., Dixon, W. E. (2011). Nonlinear two-player zero-sum
game approximate solution using a policy iteration algorithm. In 2011 50th
IEEE Conference on Decision and Control and European Control Confer-
ence.

Kim, J., Yang, I. (2020). Hamilton-Jacobi-Bellman equations for Q-learning
in continuous time. In Proceedings of the 2nd Conference on Learning for
Dynamics and Control.

Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations.

Lan, Q., Mahmood, A. R. (2021). Model-free policy learning with reward gra-
dients. arXiv preprint arXiv:2103.05147.

Lee, J., Sutton, R. S. (2021). Policy iterations for reinforcement learning
problems in continuous time and space—fundamental theory and methods.
Automatica 126, Article 109421.

Li, H., Liu, D., Wang, D. (2014). Integral reinforcement learning for linear
continuous-time zero-sum games with completely unknown dynamics. IEEE
Transactions on Automation Science and Engineering 11 (3):706–714.

Mahmood, A. R., Korenkevych, D., Komer, B. J., Bergstra, J. (2018a). Setting
up a reinforcement learning task with a real-world robot. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems.

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J. (2018b).
Benchmarking reinforcement learning algorithms on real-world robots. In
Proceedings of the 2nd Annual Conference on Robot Learning.

76

Marbach, P., Tsitsiklis, J. N. (2001). Simulation-based optimization of Markov
reward processes. IEEE Transactions on Automatic Control 46 (2):191–209.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M.
G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S., Hassabis, D. (2015). Human-level control through deep rein-
forcement learning. Nature 518 (7540):529–533.

Modares, H., Lewis, F. L. (2014). Linear quadratic tracking control of partially-
unknown continuous-time systems using reinforcement learning. IEEE Trans-
actions on Automatic Control 59 (11):3051–3056.

Munos, R. (2006). Policy gradient in continuous time. Journal of Machine
Learning Research 7 (27):771–791.

Munos, R., Bourgine, P. (1998). Reinforcement learning for continuous stochas-
tic control problems. In Advances in Neural Information Processing Systems.

Nota, C., Thomas, P. S. (2020). Is the policy gradient a gradient? In Pro-
ceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems.

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P. (2018). Time limits in
reinforcement learning. In Proceedings of the 35th International Conference
on Machine Learning.

Ramstedt, S., Pal, C. (2019). Real-time reinforcement learning. In Advances
in Neural Information Processing Systems.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Singh, S. P., Sutton, R. S. (1996). Reinforcement learning with replacing eli-
gibility traces. Machine learning 22 (1-3):123–158.

Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction.
MIT Press.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y. (2000). Policy
gradient methods for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems.

Tallec, C., Blier, L., Ollivier, Y. (2019). Making deep Q-learning methods
robust to time discretization. In Proceedings of the 36th International Con-
ference on Machine Learning.

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S.,
Vanhoucke, V. (2018). Sim-to-real: Learning agile locomotion for quadruped
robots. arXiv preprint arXiv:1804.10332.

Travnik, J. B., Mathewson, K. W., Sutton, R. S., Pilarski, P. M. (2018). Re-
active reinforcement learning in asynchronous environments. Frontiers in
Robotics and AI 5 :79.

77

Vamvoudakis, K. G., Lewis, F. L. (2010). Online actor–critic algorithm to
solve the continuous-time infinite horizon optimal control problem. Auto-
matica 46 (5):878–888.

van Hasselt, H. (2010). Double Q-learning. In Advances in Neural Informa-
tion Processing Systems.

Williams, R. J. (1987). Reinforcement-learning connectionist systems. Tech-
nical Report NU-CCS-87-3. College of Computer Science, Northeastern Uni-
versity, Boston.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8 (3-4):229–256.

Xiao, T., Jang, E., Kalashnikov, D., Levine, S., Ibarz, J., Hausman, K., Her-
zog, A. (2020). Thinking while moving: Deep reinforcement learning with
concurrent control. In 8th International Conference on Learning Represen-
tations.

Zambrano, D., Roelfsema, P. R., Bohte, S. M. (2015). Continuous-time on-
policy neural reinforcement learning of working memory tasks. In 2015 In-
ternational Joint Conference on Neural Networks.

78

	Introduction
	Reinforcement Learning With Small Action-Cycle Times
	Action-Cycle Time in the Real World
	Adjusting Hyper-Parameters Based on the Action-Cycle Time
	Related Works
	Contributions

	The Problem Setup
	The Markov Decision Process and the Objective
	Time Limits in Reinforcement Learning
	The Agent-Environment Interaction Loop
	The Experiment Setup for Different Action-Cycle Times

	Policy Gradient Methods
	Likelihood-Ratio Policy Gradient Methods
	The Proximal Policy Optimization (PPO) Algorithm
	Reparameterization Policy Gradient Methods
	The Soft Actor-Critic (SAC) Algorithm

	Investigating the Baseline PPO Hyper-Parameters at Different Cycle Times
	The Reacher Task
	Experiments
	Results and Discussion

	Setting Hyper-Parameters of PPO as a Function of the Action-Cycle Time
	Our Proposed dt-Aware Hyper-Parameters of PPO
	Experiments
	Results and Discussion

	Validating the dt-Aware Hyper-Parameters of PPO
	The Double Pendulum Task
	Validation on Double Pendulum
	The Real-Robot Reacher Task
	Validation on Real-Robot Reacher

	Investigating the Discount Factor of SAC at Different Cycle Times
	Experiments
	Results and Discussion
	Scaling Baseline gamma as a Function of dt

	Our Proposed dt-Aware Discount Factor of SAC
	The dt-Aware Discount Factor
	Experiments
	Results and Discussion

	Validating the dt-Aware Discount Factor of SAC
	Validation on Double Pendulum
	Validation on Real-Robot Reacher

	Conclusion
	References

