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Abstract 

The digital learning and assessment movement has contributed to an explosion of 

structured and unstructured learner data (e.g., learner problem-solving product and 

process data). This calls for new developments in large-scale learning outcome 

modeling to optimally address the variety, volume, uncertainty, and velocity of big data 

in education. Existing learning outcome modeling techniques, such as psychometric 

measurement models and Bayesian models, typically require structured product data 

and fail to account for process data. Moreover, most of them are incapable of learning 

associations between items and latent skills. Leveraging the advantages of collaborative 

filtering (CF) used in recommender systems, this study proposes three novel deep 

learning-based CF approaches — SDCF, LogCF, and LogSDCF — to model both 

product and process data for enhanced learning outcome modeling. The three models 

are also capable of discovering item-skill associations from the data without expert 

information. Specifically, SDCF is developed to model product data sequentially by 

predicting learners’ next item responses based on their history of item responses; 

LogCF is proposed to model both product and process data to predict learners’ missing 

or future item responses when item responses are not in a sequential form; LogSDCF is 

devised to model both product and process data to predict learners’ future item 

responses based on their response history when items are presented in a sequential 

form. To evaluate the effectiveness of the proposed approaches, the three models were 

compared with conventional learning outcome modeling approaches using both 

simulated and real-world datasets. Results showed that all three approaches achieved 

higher prediction accuracy of learners’ future or missing item responses than their 

baselines. Moreover, the proposed approaches were found to be promising in 

discovering item-skill associations without expert input.  
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Chapter 1 Introduction 

The rising tide of big data in the 21st century catalyzes extensive developments and 

changes in a wide range of fields (e.g., marketing, business, and health). Despite the effective 

use of big data in other sectors, explorations of big data in education are still relatively rare 

and mostly rudimentary (Macfadyen et al., 2014). To date, advanced by the rapid evolution in 

information and communication technologies, the integration of big data and adaptive 

learning systems has given rise to a growing movement of personalized learning in a variety 

of education sectors (e.g., K-12 education, Roberts-Mahoney et al., 2016; higher education, 

Kong & Song, 2015; online courses, Daniel et al., 2015). Notably, the advances in digital 

learning (e.g., mobilization of learning technologies) hold the promise that learners all over 

the world will have easy and affordable access to personalized learning experience in the near 

future.  

In a personalized learning environment, customized learning plans are typically 

created for learners based on what they know, what they lack, and how they learn best. 

Obviously, the success of personalized learning relies heavily on the availability of and 

access to a big amount of data on individuals’ learning behaviors. Specifically, through 

mining learner data and modeling learning behaviors, personalized learning systems are 

capable of continuously monitoring and assessing individuals’ learning progress based on 

their interactions with learning resources (e.g., learning materials and assessment questions). 

Consequently, learners can be informed of their strengths and weaknesses and provided with 

timely feedback and remediation. Therefore, it is desirable that novel approaches can be 

developed to better elicit, evaluate, and collect individuals’ learning behaviors. Nowadays, 

computer-based assessment (CBA) for learning has been increasingly used to evaluate 

learners’ learning outcomes and provide customized feedback across a wide range of learning 

contexts (Shute & Rahimi, 2017). The popularity and effectiveness of CBAs in personalized 
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learning are attributable to their capacities to evaluate higher-level learner competencies and 

their flexibility in assessment administration. Moreover, from the data perspective, compared 

with standardized paper-pencil assessments, CBAs can elicit and collect much more 

information about how learners perform on and solve each learning task. This enables 

education practitioners to better evaluate and validate an assessment, and to provide learners 

with finer-grained feedback. Therefore, in this dissertation, the methodological developments 

are situated in the context of CBA for learning.   

Learning Outcome Modeling for Digital Learning 

Accurate evaluation of learning outcomes plays a pivotal role in an effective CBA. In 

this regard, several learning outcome modeling techniques were developed for earlier CBAs 

(e.g., intelligent tutoring systems, Psotka et al., 1988; computerized adaptive testing, van der 

Linden & Glas, 2000) in both domains of educational data mining and psychometrics. Some 

representative approaches include Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 

1994), Item Response Theory (IRT; Lord, 1952), and Cognitive Diagnosis Models (CDM; 

Tatsuoka, 1990). Earlier learning outcome modeling approaches, however, are not designed 

to effectively utilize educational big data in the digital era. For example, BKT and some 

psychometric models such as cognitive diagnosis typically require extensive human efforts to 

pre-define learning rules (e.g., which items/learning opportunities measure which skills), and 

they are of limited scalability and efficacy in handling great amounts of learners and items, 

let alone a larger number of missing responses. 

In recent years, leveraging machine learning advances, a growing body of research in 

educational data mining developed numerous novel approaches with high scalability and 

predictive capacity for learning outcome modeling, which greatly benefit the large-scale 

application of CBAs (e.g., Baker & Yacef, 2009; Bergner et al., 2012; Cheng et al., 2019; 

Lan et al., 2014). Most of these approaches were proposed for two purposes: learning 



DEEP COLLABORATIVE FILTERING AND PROCESS DATA  

 
3 

analytics and content analytics (Lan et al., 2014). Learning analytics refers to “the 

measurement, collection, analysis and reporting of data about learners and their contexts, for 

purposes of understanding and optimising learning and the environments in which it occurs” 

(Long et al.,  2011). Content analytics, however, focuses more on methodologies. It was 

defined as “automated methods for examining, evaluating, indexing, filtering, 

recommending, and visualizing different forms of digital learning content” (Kovanović et al., 

2017). In terms of learning analytics, the learning outcome modeling approaches aim to 

estimate or infer the degree to which learners master the knowledge or latent skills, which is 

called learner modeling in the literature; in terms of content analytics, a growing number of 

learning outcome modeling approaches focus on optimizing the organization of learning 

content, such as learning materials, assessment tasks and hints, for improved learning 

outcomes. Notably, the two purposes can be approached within a single modeling framework 

(e.g., Lan et al., 2014).  

For content analytics, an imperative issue to address in both communities of 

educational data mining and psychometrics is domain modeling (i.e., discovering item-skill 

associations). Extensive efforts in the literature were devoted to developing models that learn 

from scratch or that refine item-skill associations in comparison with expert-specified ones. 

For example, in psychometrics, CDMs require careful consideration of item-skill 

associations, or the Q-matrix, by domain experts, given that a mis-specified Q-matrix often 

results in poor model-data fit and, consequently, in undermined model classification accuracy 

(Hansen et al., 2016; Liu et al., 2016). Therefore, an increasing number of approaches were 

developed to refine or estimate Q-matrices without strong involvement of human knowledge 

for cognitive diagnosis in psychometrics (e.g., Chiu, 2013; Liu et al., 2012). In educational 

data mining, estimating or refining item-skill associations is particularly important in recent 

years. Approaches for discovering item-skill associations in educational data mining typically 
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rely on advances of machine learning techniques (e.g., Chaplot et al., 2018; Desmarais, 2012; 

Desmarais & Naceur, 2013; Lindsey et al., 2014; Sun et al., 2014). Compared with 

psychometric approaches, machine learning-based approaches are more capable of handling 

unstructured and incomplete item response data and modeling great amounts of items and 

learners in large-scale settings. 

Collaborative Filtering for Learning Outcome Modeling 

Among numerous machine learning advances, the approach of collaborative filtering 

(CF) is suitable to both learner modeling and domain modeling under the condition of 

incomplete item response matrices. CF is a pivotal method for recommender systems (Linden 

et al., 2003; Sarwar et al., 2001) that is used to recommend new items (e.g., movies, books, 

shopping items) to users based on their histories of item clicks or item ratings (Su & 

Khoshgoftaar, 2009).  

Concretely, CF approaches often assume that item-user interactions are affected by a 

set of latent factors. They use present item-user interactions to estimate the latent factors, 

which are in turn used to make probabilistic predictions on future interactions. This idea of 

CF for recommender systems applies to learning outcome modeling. In digital learning, it is 

desirable to recommend learners tailored learning materials and associated assessment items 

within the zone of their proximal development (Campione et al., 1984). Typically, 

recommendations of learning materials and assessment items are based on learners’ learning 

profiles. Learners’ past learning performance measured by the CBA is analogous to users’ 

past preferences or taste information in CF, and the unassigned questions or assessment tasks 

for learners are analogous to the new items to be recommended in recommender systems. In 

this sense, CF approaches should be applicable to learning outcome modeling in terms of 

predicting future or unseen item responses.  
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A commonly used type of model-based CF is matrix factorization, which is 

popularized by the Netflix Prize1. For an incomplete user-item interaction matrix with 

missing information, matrix factorization decomposes it into the product of two or more 

lower-dimensionality matrices, with a rank as the number of latent factors. As such, with 

some model constraints, entries of the lower dimensionality matrices might resemble user- 

and item-factor associations, which are analogous to the learner- and item-skill associations 

in learning analytics and content analytics. In this sense, how CF, especially matrix 

factorization, works for prediction conforms with the purpose of learner modeling and 

domain modeling. With learner data, learner- and item-skill associations estimated by CF 

quantify the degree to which learners acquire and items measure the latent skills. However, 

conventional CF approaches such as matrix factorization are limited in capturing a high 

degree of complexity of learner-item interactions because probabilistic predictions by CF are 

often based on linear combinations (e.g., inner-products) of learner- and item-skill 

associations. Therefore, in recent years, to capture the complexity of learner-item 

interactions, some work proposed to incorporate deep learning architectures into CF to 

improve the model intricacy or exploit the auxiliary information for modeling (e.g., Elkahky 

et al., 2015; He et al., 2017; van den Oord et al., 2013; Wang et al., 2015; Zhang et al., 2016). 

Potential of Process Data Modeling 

In the digital learning context, learner data can take the forms of both product data 

and process data. Product data refers to learners’ final work products in learning such as 

responses to assessment questions. Process data, or log file data, records the information 

regarding how learners produce the final work products, which are typically stored as log file 

entries (Rupp et al., 2012). In recent years, how to successfully use process data to profile 

and facilitate learning is an emerging research topic in both the domains of educational data 

 
1 https://www.netflixprize.com/ 
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mining and psychometric measurement. Process data, unlike explicit product data, reveal a 

wealth of information regarding learners’ interactions with the system, which can be used to 

uncover their learning or problem-solving processes. However, learning outcome modeling 

with process data has not been well addressed by conventional models in educational data 

mining (e.g., BKT) or psychometric measurement (e.g., IRT and cognitive diagnostic 

models). Nevertheless, some pioneering studies demonstrated that learner process data can be 

successfully used to reveal learners’ problem-solving strategies (Greiff et al., 2015), evaluate 

learners’ latent skills (Liu et al., 2018), and predict learners’ learning outcomes (Chen et al., 

2019). Although these approaches were mostly not generic and their applications were often 

of a small scale, they have cast light on the potential of process data modeling for interpreting 

and predicting learning outcomes. 

Terminology 

Prior to outlining the research objective, the key terms used in the dissertation are 

defined. 

Learner. A learner refers to a person who is involved in and interacts with the digital 

learning system, such as students who use an intelligent tutoring system or a learning system, 

examinees who participate in educational assessments, or respondents who take a 

psychological scale or questionnaire.  

Item. An item refers to the object learners interact with in the digital learning system. 

In should be noted that items can be defined at different levels. For example, for a 

mathematics test of multiple-choice questions, each question constitutes an item. However, 

for a complex simulated problem, learners might take a set of problem-solving steps to 

provide a final solution. If each of the problem-solving steps can be scored, each step should 

be considered as an item. Moreover, another related term used in educational data mining is 

“transaction”, which refers to learners’ interactions with the system in each problem-solving 
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step. In this case, transactions can be considered as actions for attempting a step, indicative of 

their problem-solving processes. 

Skill. The skill refers to what the assessment measures, which is typically 

unobservable. In the educational data mining community, a skill is often called  

a “knowledge component”, whereas in the psychometrics community, it might refer to 

dimensions or attributes of a higher-order concept. 

Learner modeling. Learner modeling is a critical feature of digital learning systems. 

It refers to “inferring, from the learner’s problem-solving actions and answers, what is likely 

well understood or mastered, and what is not, from only a few observations, and to move on 

in the curriculum at the right pace for that specific learner” (Desmarais & Baker, 2012). In 

the literature, learner modelling often has the same meaning as student modeling, skill 

modeling, or knowledge modeling.  

Domain modeling. Domain modeling refers to “the assignment of individual items to 

skills and the modeling of relations among skills” (Pelánek, 2017). The dissertation focuses 

on the first component of domain modeling, which models item-skill associations that can be 

represented as both categorical and continuous values. For example, item-skill associations 

can be of two classes, “yes” or “no”, which indicate whether a skill is measured by an item; 

they can also be real-valued, which indicates the degree to which an item measures a skill. In 

the former case, item-skill associations have the same meaning as those in the Q-matrix in 

psychometrics. 

Learning outcome modeling. In the dissertation, learning outcome modeling denotes 

a general term encompassing both learner modeling and domain modeling. More specifically, 

it refers to making probabilistic predictions of learners’ item responses as well as discovering 

item-skill associations based on the learner performance data. The “learning outcome” 
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includes both learners’ explicit work products such as item responses and their in-process 

problem-solving actions and time information logged by the system. 

Research Objective 

As summarized in the previous sections, there are two types of learner performance 

data associated with digital learning: product data and process data. A vast majority of 

existing methods in educational data mining and psychometrics were developed to exploit 

product data for learning outcome modeling, and much fewer methods account for process 

data. The overarching objective of this dissertation is to investigate how to enhance learning 

outcome modeling with the presence of process data based on the deep CF framework. A 

graphical intuition is presented in Figure 1 to illustrate the problem of learning outcome 

modeling in the dissertation. The graph shows that several learners have correct or incorrect 

responses on a number of items, which constitutes an item response matrix (i.e., the product 

data). Moreover, for each observed item response, there are a set of problem-solving actions 

and associated time durations, which constitute the process data. The product and the process 

data serve as the input for learning outcome modeling. For each learner, learning outcome 

modeling estimates his or her probabilities of getting new items (in)correct (the part of new 

items shown by the dotted rectangle), which are the output of the model.  
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Figure 1  

Schematic Illustration of Learning Outcome Modeling 

 

Note. Black squares indicate correct responses, grey squares indicate incorrect responses, and 

empty boxes indicate unknown responses to be estimated. The latent factors estimated by CF 

are indicated by circles of different colors. All content within dotted rectangles is not directly 

observable through the item response matrix. 

In addition to predicting new item responses, the model also estimates latent 

representations of learners and items. With appropriate model regularization, they can be 

used to indicate the associations between learners and skills, and items and skills, which 

represent the degree to which learners master the skills and items measure the skills, 

respectively. Despite the graph depicting the input and output of the model, a well-designed 

model architecture is needed to make the model learnable and predictable.  
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Moreover, the item response matrix includes temporal information regarding the 

sequence of item responses. Addressing the temporal dependencies between item responses 

in learning outcome modeling takes advantage of more information on learning progress, and 

it might contribute to a more predictive model. Given the above considerations, the 

dissertation proposes three approaches to address the aforementioned research objective: 1) a 

CF-based sequential modeling framework solely based on learners’ product data, 2) a CF-

based framework based on both product and process data, and 3) a CF-based framework 

integrating the first two approaches. More details regarding each approach will be provided 

in the following chapters.  

Dissertation Organization 

The rest of the dissertation is organized as follows.  

Chapter 2 first reviews the context of learning outcome modeling in terms of 

computer-based assessment for learning. Subsequently, it reviews a wide range of existing 

models and approaches for learning outcome modeling. Moreover, the pioneering work on 

process data analysis in education is also covered in Chapter 2. Based on the identified 

research gaps, Chapter 2 ends with research questions and corresponding approaches. 

Chapter 3 focuses on the first research problem and elaborates the technical details of 

the proposed approach, SDCF. It first introduces the preliminaries on sequential modeling, 

especially for BKT and DKT. Next, it formulates the research problem followed by the 

general framework of SDCF with details on model architecture, prediction, and model 

learning. Then it presents experiments based on both simulated and real-world datasets to 

validate the prediction capacity of SDCF. The section on experiments covers dataset 

description, training set-up, hyperparameter tuning, and baseline models. Finally, the results 

of SDCF are presented in Chapter 3. 
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Chapter 4 addresses the second research problem and demonstrates the development 

of LogCF. It starts with an introduction to the preliminary of matrix factorization, followed 

by problem formulation and details on the general framework (e.g., model architecture, 

prediction, and model learning). Next, the chapter presents experiments with two different 

types of real-world datasets. Dataset description, training set-up, hyperparameter tuning, and 

baseline models are presented in detail. Finally, the chapter presents the experimental results 

of the model. 

Chapter 5 focuses on the third research problem and demonstrates the development of 

LogSDCF. Similar to the previous two chapters, it presents details on problem formulation, 

the general framework, experiments with a real-world dataset, and results. 

In Chapter 6, a general discussion on limitations, contributions, implications, and 

future directions of the proposed approaches is presented.  
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Chapter 2 Related Work 

This chapter starts with a brief introduction to the context of learning outcome 

modeling in the digital era, computer-based learning and assessments, with an emphasis on 

the importance of learning outcome modeling for personalized learning and formative 

assessments and the potential of process data analysis. Subsequently, the chapter presents a 

comprehensive survey of existing mainstream approaches for learning outcome modeling in a 

variety of fields, followed by an overview section summarizing these approaches. Then, a 

brief review of pioneering work on process data analysis is presented to reveal the potential 

of process data for learning outcome modeling. Finally, the chapter ends with research 

problems based on the gaps in previous work and proposes corresponding approaches. 

Computer-Based Assessment for Learning 

Benefits of Computer-Based Assessments for Formative Evaluation 

Assessment is a fundamental element of teaching and learning. It is an important way 

to collect learner information and measure learners’ performance and understanding with 

respect to learning goals. Generally, we distinguish two types of assessments: summative 

assessments (i.e., assessments of learning) and formative assessments (i.e., assessments for 

learning; Black & Wiliam, 2009). The former refers to evaluating individuals’ learning 

outcomes at the end of a teaching and learning unit in contrast to an established standard or 

benchmark. The latter refers to ongoing evaluations of learners’ progress with prescriptive 

feedback for improving teaching and learning. Summative and formative assessments are 

developed to address different educational purposes. For example, traditional school learning 

is often evaluated with standards‐based summative assessments for accountability purposes 

(e.g., final or midterm exams, standardized tests for admissions, and standardized 

assessments for informing educational policy). The results of summative assessments can be 

used to inform learners if they have achieved educational goals, to make comparison between 
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different populations, to promote the accountability at different educational levels, and to 

inform educational policy (Shute & Rahimi, 2017). However, in learner-centered scenarios, 

formative assessments are used frequently as a supportive approach. With formative 

assessments, instructors can evaluate individuals’ learning progress in a timely manner while 

learners receive individualized instruction and feedback to improve their learning outcomes. 

Compared with summative assessments, formative assessments demonstrate greater potential 

in supporting learning and they are successfully used for different audiences across various 

content domains and educational sectors (e.g., Davies & Ecclestone, 2008; Gikandi et al., 

2011; Meek et al., 2017; Shute et al., 2008; Tsai et al., 2015). Moreover, it was found that 

learners, especially struggling learners, instructed with formative assessments are more likely 

to increase their academic performance than those instructed with standard pedagogical 

approaches (e.g., Carrillo-de-la-Pena et al., 2009; Kleitman & Costa, 2014; López-Pastor et 

al., 2013; Pastor, 2011). In summary, formative assessment, or assessment for learning, is 

playing an increasingly important role in education given its advantages in supporting 

learning. 

Among different applications of formative assessments, CBA for learning is 

extensively used nowadays. CBA for learning can be traced back to the early 1960s, when 

computers started to play a role in a variety of sectors. According to the review by Shute and 

Rahimi (2017), in the past (from the early 1960s to the late 1990s), CBA for learning only 

played a supplementary role in assisting instruction in classrooms. For example, 

computerized testing was used as a supplementary learning tool (Cartwright & Derevensky, 

1975). More recently, CBA for learning started to be used to address more complicated 

competencies, such as problem-solving skills (e.g., Baker & Mayer, 1999). Nowadays, the 

explosive ICT developments in recent years are changing learning from instructor-centered to 

learner-centered and have given rise to the emerging use of new pedagogical approaches, 
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such as project-based learning (Bell, 2010), game-based learning (Kiili, 2005) and more 

recently, personalized learning (Shute et al., 2016). Inevitably, benefiting from ICT advances, 

CBA for learning is also transforming a variety of educational processes (e.g., Chatzopoulou 

& Economides, 2010; Joosten-ten Brinke et al., 2007; Peat & Franklin, 2002; Terzis & 

Economides, 2011). Incorporated with new technologies, CBAs can be designed to 

approximate real-life problem-solving environments with more integrative and interactive 

tasks (e.g., Azevedo et al., 2010; Blanchard et al., 2012), a desired feature of assessment for 

the 21st century (Shute & Becker 2010). Consequently, more complex and multidimensional 

learner competencies such as creativity, critical thinking, and problem-solving skills can be 

evaluated with CBAs in the digital age (e.g., Greiff et al., 2014; Pásztor et al., 2015; Rosen & 

Tager, 2014). In addition to the capacities of CBAs to measure high-level and complex skills, 

compared to conventional fixed-form assessments, CBAs can be scheduled and delivered to 

students in a more flexible and adaptive way. For example, in the recent work by Bulut et al. 

(2020), an intelligent recommender system was developed to determine the optimal time 

when a student need to be tested, which is capable of reducing redundant test administrations 

without impeding upon accurate evaluation of learning progress. To sum up, from both 

angles of skill evaluation and test administration, CBA for learning bears great potential for 

effective formative assessments. 
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An Example CBA Task on Problem Solving 

Figure 2  

Screenshot of a Problem-Solving Item on Climate Control in PISA 2012 

 

A good example of CBA task is the problem-solving question of the Programme for 

International Student Assessment (PISA) in 2012, which is a large-scale international 

assessment program evaluating 15-year-old students’ literacy in mathematics, reading and 

mathematics as well as their problem-solving competencies (Organisation for Economic Co-

operation and Development, 2014). Figure 2 presents the interface of a sample question on 

climate control. The question asked students to figure out what each air conditioner control is 

used for (control temperature or control humidity). When solving the question, students 

adjusted different control values and checked the changes in temperature and humidity so that 

they were able to map each control to temperature or humidity. Students could play around 

with the controls multiple times before they gave the final answer. Contrast to standardized 

test questions, this question was designed to approximate real-life scenarios and students 
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could interact with the task. Moreover, students’ actions and time durations for solving the 

problem are logged by the system, which can be used to uncover their problem-solving 

processes. For example, a good strategy for solving this problem is changing values of a 

control while keeping other controls constant. Whether students used this strategy or not 

cannot be directly observed through the product data (i.e., correctly solving the problem or 

not) but can be informed by their problem-solving action sequences.  

Digital Game-Based Assessments and Evidence-Centered Design 

Digital game-based assessment (DGBA) is a dominant family of CBA for learning, 

which attracts increasing interest from researchers and practitioners in education in recent 

years (Hwang & Wu, 2012). DGBAs are considered as stealth assessments given that 

learners’ skills are evaluated unobtrusively and non-disruptively through their interactions 

with the game engine (Shute et al., 2009). The evidence-centered design (ECD) model is 

typically used as the conceptual underpinning for building a DGBA (e.g., DiCerbo, 2014; 

Plass et al., 2013; Rowe et al., 2015). Specifically, the conceptual assessment framework of 

an ECD includes three strongly related models which are the competency model, the task 

model and the evidence model (Mislevy et al., 2003).  

The competency model, or the student model, defines what we intend to measure in 

the assessment such as skills and knowledge components. Notably, the variables in the 

competency model are latent, which cannot be directly observed but are inferred based on 

learners’ observable performance indicators in the assessment (Mislevy et al., 2004).  

The task model indicates how specific assessment tasks are designed based on which 

inferences on learners’ levels of the targeted skills can be made. Specifically, tasks in a 

DGBA specify the concrete goals that learners are expected to achieve as they are 

progressing through the assessment. Tasks are largely different from the questions or items in 

conventional educational assessments because they are more complex, unstructured and 
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interactive. For example, for a standardized test on mathematics, all items are presented to 

learners in the same way and learners’ responses to the items are typically predictable (e.g., 

correct/incorrect). However, for tasks in a DGBA, the same interface and game features 

might be presented to learners, but learners typically evolve the tasks into different paths or 

states during the gameplay, which constitute dynamic task model variables. That said, 

learners’ actions and states in the assessment are hard to be predicted and modelled by 

standardized learning outcome modeling techniques.  

The evidence model refers to how the assessment measures what it is designed to 

measure, which is a bridge between theory and data. More specifically, the evidence model is 

a mapping of learners’ learning evidence from their interactions with the game engine to the 

targeted skills, which can be developed based on two phases: evidence identification and 

evidence accumulation. The evidence identification phase is the data reduction process which 

extracts appropriate observables from the performance data, while the evidence accumulation 

phase is the process of making inferences about learners’ proficiencies of the latent skills 

based on the identified evidence. As mentioned earlier, learner performance data are recorded 

as both the product data and the process data in digital learning environments. The process 

data involves rich information on learners’ unstructured observables such as mouse clicks 

and timestamps. Therefore, the evidence identification process is imperative for designing an 

effective DGBA given the limited interpretability of process data. 

In summary, DGBAs use evidence extracted from learners’ interactions with the 

game engine, which are explicitly elicited by the assessment tasks, to make inferences on 

their acquisition of the targeted skills. DGBAs have been successfully applied to a wide range 

of educational domains (e.g., language, Yukselturk et al., 2018; mathematics, Kiili & 

Ketamo, 2017; history, Kazanidis et al., 2018; computer science, Mathrani et al., 2016; 

geography, Gaydos, 2016). The success of DGBAs is due to its great potential for increasing 
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learners’ interest, enjoyment, and motivation in learning (Erhel & Jamet 2013; Jackson & 

McNamara, 2013) as well as for helping individuals realize their learning goals (Divjak & 

Tomić, 2011) and improve their learning outcomes (Hsiao & Chen, 2016). 

Intelligent Tutoring Systems 

Another popular application of CBA for learning is an intelligent tutoring system 

(ITS), which is a computer system that diagnoses learners’ cognitive states for individualized 

instruction and learning. ITSs have been widely used as an effective pedagogical approach 

since their inception in 1970 (Carbonell, 1970). According to the definition by Ma et al. 

(2014), an ITS involves two fundamental components: tutoring functions and student 

modeling functions. Tutoring functions are characterized by the learning and assessment 

content provided by the system and learners’ interactions with the system. For example, in an 

ITS, the system provides learners with learning materials, assessment questions or tasks, and 

feedback or hints. Learners interact with the system by providing their problem-solving 

actions and answers. Student modeling functions involve the process of making inferences 

about learners’ cognitive states based on learners’ interactions with the system. For example, 

an ITS continuously estimates and updates a learner’s skill mastery or understanding levels 

on the targeted skills measured by the system. Moreover, in an ITS, tutoring functions and 

student modeling functions work collaboratively. Tutoring functions enable student modeling 

functions to make inferences, which are in turn used to inform and adapt tutoring functions. 

For example, based on a learner’s problem-solving actions and answer on a question, the 

system re-estimates his or her mastery level of the skill required by the question. If the 

system considers that the learner has improved the skill, advanced learning materials and 

harder assessment questions might be delivered to the learner in the next unit. Another well-

accepted conceptualization of ITS includes four key components (Sottilare et al., 2013): a 

user interface model communicating information between learners and the system; a domain 
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model or cognitive model representing the knowledge, concepts, rules, and strategies of the 

domain to be learned by learners; a student model tracing learners’ cognitive states based on 

their interactions with the system; and a tutoring model determining tutoring strategies and 

actions (e.g., offering a hint given an incorrect answer). Regardless of different 

conceptualizations, the core element of an ITS is the student model because it distinguishes 

ITSs from other CBAs for learning (Ma et al., 2014). 

General Issues to Address  

Irrespective of the content areas and the design features of CBAs, making accurate 

inferences about learners’ cognitive states, or learner modeling, should be of high priority. 

For example, for the assessment of problem-solving skills in PISA 2012, it is desired to 

estimate each student’s latent ability level on the problem-solving skill measured by the 

tasks. Generally, for CBAs with multiple independent assessment questions measuring a 

single latent skill, learners’ cognitive states are inferred by modeling all question answers or 

item responses simultaneously (e.g., IRT models). However, for ITSs or other similar CBAs, 

it is required to trace learners’ cognitive states based on the performance data. That being 

said, learners’ history problem-solving attempts or item responses would affect their current 

or future problem-solving success because their cognitive states continuously change across 

multiple learning opportunities. In this regard, a sequential modeling technique (e.g., BKT) is 

required to monitor learners’ cognitive states at each time point. For both sequential 

modeling and non-sequential modeling, from the methodological perspective, because 

inferences are made based on elicited learning outcomes by the system, a model is deemed 

effective for estimating learners’ cognitive states if it is capable of accurately predicting or 

recovering item responses. For example, an effective sequential modeling technique should 

accurately predict a learner’s present and future item responses given his or her previous item 
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responses; an effective non-sequential modeling technique should result in nonsignificant 

differences between observed item responses and model-predicted item responses.  

In addition to learner modeling, learning outcome modeling is also used to make 

inferences on item-skill associations (i.e., domain modeling). Contrast to the mature 

methodological developments for learner modeling, approaches for domain modeling in the 

context of CBAs for learning are relatively underdeveloped. For most CBAs, domain experts 

play a role in specifying the skills, knowledge components and production rules for the 

assessment. As such, item-skill associations are pre-specified in most CBAs. However, as 

mentioned earlier, human judgements are not always guaranteed to result in precise item-skill 

associations, and it is costly and less feasible to rely purely on human efforts given a great 

number of assessment items. This is a call for more data-driving approaches developed to 

account for item-skill associations in the context of CBAs for learning.  

Finally, the chapter emphasizes that for CBA for learning, irrespective of the content 

areas and design features, the “computer-based” nature enables that both learners’ work 

products and problem-solving activities can be recorded and accessed by the system. 

Learners’ work products on assessment tasks are often evaluated and quantified against 

objective criteria such as binary or polytomous scoring. The product data is used as the input 

for the majority of learning outcome modeling techniques. For example, IRT models estimate 

learners’ latent ability levels based on the product data with binary or polytomous scores on 

each assessment item. However, the process data is mostly implicit and unstructured. 

Therefore, it is difficult to develop a generic approach for handling the process data produced 

by different CBAs. Process data analysis was often conducted in an exploratory manner to 

derive learners’ problem-solving patterns or strategies (Abele, 2018; Greiff et al., 2015; 

Greiff et al., 2016; Molnár & Csapó, 2018; Stadler et al., 2019), which vary significantly 

across different CBAs. In recent years, some studies have demonstrated the potential of 
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analyzing process data based on conventional psychometric or statistical models (Chen et al., 

2019; Liu et al., 2018; Shu et al., 2017). More details of these studies are reviewed in the 

following sections. 

To sum up, CBA for learning is a popular type of formative assessments in education, 

which is capable of making deeper and finer-grained evaluation of learner performance as 

well as making inferences on more complex skills. Learner modeling is the core of CBA for 

learning, but the modeling techniques vary across different CBAs given their unique 

assessment purposes and design features. Moreover, regardless of CBA types, learner data is 

typically exploited solely in the form of explicit product data rather than process data. 

Developing generic approaches for analyzing process data in the context of CBA for learning 

is still in its infancy. 

The following sections review a wide range of approaches for learner and domain 

modeling. Generally, these approaches can be categorized as psychometric measurement 

models, Bayesian networks, BKT, additive factors models, deep learning-based approaches, 

and collaborative filtering approaches. Moreover, the chapter provides an overview of some 

pioneering work on process data analysis.  

Psychometric Measurement for Learning Outcome Modeling 

Learning outcome modeling is an everlasting topic in the fields of educational 

measurement and psychometrics. Educational measurement is a discipline focusing on the 

use of methodologies for assigning scores obtained from educational assessments to students, 

based on which inferences about the abilities, knowledge, and skills of students can be made. 

In terms of analytic approaches, educational measurement overlaps psychometrics, a 

discipline focusing on the theory and methodologies of psychological measurement. The 

dissertation therefore uses the term “psychometric measurement” to indicate the 

commonalities between the two disciplines. Essentially, an analytical approach in 
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psychometric measurement is a type of learner modeling techniques estimating learners’ 

latent ability levels or presence/absence of latent skills based on test scores. However, the 

majority of psychometric measurement approaches are theory-driven, which is a distinctive 

feature in comparison with data-driven approaches in computing science. In the following, 

the chapter briefly introduces the most basic modeling techniques in psychometric 

measurement. These techniques were developed based on three psychometric measurement 

theories: classical test theory (CTT), IRT, and CDM.  

Classical Test Theory 

CTT was the dominant approach prior to IRT and yet it is still used widely in practice 

due to its simplicity and interpretability. A key assumption of CTT is that a learner’s 

observed test score 𝑋 is equal to the sum of the learner’s innate true score 𝑇 and the 

measurement error 𝐸 (Spearman, 1904): 

 𝑋 = 𝑇 + 𝐸. (1) 

For example, if a learner has actually mastered 50% of the knowledge required by a test and 

50% is the learner’s true score, the learner might have an observed test score between 45% to 

55% because there is 5% discrepancy from the true score due to errors of measurement. The 

errors of measurement 𝐸 are assumed to follow a normal distribution with a mean of zero, 

which indicates that the average score of the distribution of observed test scores for a learner 

who takes a test an infinite number of times would be equal to that test-taker’s true score. 

Based on a set of CTT assumptions (Kline, 2005), descriptive statistics of items such as mean 

and standard deviation, item difficulty levels and item discrimination indices can be derived 

to examine the quality of the assessment instrument. In CTT, a learner’s cognitive state is 

typically calculated as the total score of the test. That said, multiple test items are assumed to 

measure a single latent skill, and the sum of learners’ scores on each item indicates their 

proficiency levels on the skill. Regarding item-skill associations, CTT uses item 



DEEP COLLABORATIVE FILTERING AND PROCESS DATA  

 
23 

discrimination indices to indicate the associations between items and the latent skill. Item 

discrimination refers to the degree to which an item is capable of differentiating learners with 

high proficiency levels on the targeted skill from learners with low proficiency levels on the 

targeted skill, which is used as the hallmark of a good test item in practice. The point biserial 

correlation 𝜌 between dichotomous item scores of an item and the continuous total test scores 

is used as an item discrimination index in CTT, which is given by: 

 𝜌 =
(𝜇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − 𝜇𝑋)

𝜎𝑋

√𝑝 (1 − 𝑝)⁄ , (2) 

where 𝜇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 indicates the mean of the learners’ total test scores who get the item correct, 

𝜇𝑋 and 𝜎𝑋 denotes the mean and standard deviation of all learners’ total test scores 

respectively, and 𝑝 refers to the item difficulty which is the percentage of learners who get 

the item correct. Item discrimination is within a range between 0 and 1 and expected to be as 

large as possible given that higher discrimination levels indicate stronger affinity of an item 

to the latent skill. 

Despite its simplicity, CTT has several disadvantages. The item parameters and 

learner ability estimates approximated by CTT are greatly dependent on the test items and the 

examinee group. That said, the difficulty and discrimination of items are likely to be different 

given different groups of learners tested by the items, and the learners’ estimated ability 

levels are likely to vary if they are tested with different sets of items measuring the same 

latent skill. Moreover, the measurement error in CTT is the same for all learners given that 

they are estimated at the test level. 

Item Response Theory 

Compared with CTT, IRT demonstrates several advantages. In IRT, item parameters 

are invariant to the examinee groups and learner ability levels are invariant to the test items. 

In addition, the measurement error in IRT is estimated for different learner ability levels, 

which implies that the extent to which each test item precisely measures each learner’s latent 
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ability can be informed by IRT. Also, IRT assumes that only one dominant skill is allowed to 

be measured in a test and the probability of a learner answering an item correctly is 

independent from his or her odds of success on other items (Reise et al., 2005).  

IRT models are a type of latent variable models which estimate learners’ probabilities 

of answering an item correctly through a set of item and learner parameters. Specifically, 

item parameters in IRT are item difficulty, item discrimination, and item guessing, and the 

learner parameter indicates a learner’s proficiency level on the targeted skill. Different IRT 

models assume different degrees of item parameterization. For example, the Rasch model 

(Rasch, 1960) is the most parsimonious IRT model where items are only parameterized with 

item difficulty. By Rasch model, learner 𝑖’s probability of correctly answering item 𝑗 is given 

by: 

 𝑃(𝑅𝑖𝑗 = 1|𝜃𝑖) =  
1

1 +  𝑒−(𝜃𝑖−𝑏𝑗)
, (3) 

where 𝑅𝑖𝑗 = 1 indicates that learner 𝑖 gets a score of 1 on item 𝑗, 𝜃𝑖 denotes learner 𝑖’s 

proficiency level on the latent skill, and 𝑏𝑗 refers to the difficulty of item 𝑗. Compared with 

the Rasch model, the two-parameter logistic (2PL) model additionally parameterizes item 

discrimination. By the 2PL model, learner 𝑖’s probability of correctly answering item 𝑗 is 

given by: 

 𝑃(𝑅𝑖𝑗 = 1|𝜃𝑖) =  
1

1 +  𝑒−𝑎𝑗(𝜃𝑖−𝑏𝑗)
, (4) 

where 𝑅𝑖𝑗 = 1 indicates that learner 𝑖 gets a score of 1 on item 𝑗, 𝜃𝑖 denotes learner 𝑖’s 

proficiency level on the latent skill, 𝑏𝑗 refers to the difficulty of item 𝑗, and 𝑎𝑗 refers to the 

discrimination of item 𝑗. Compared with the 2PL model, the three-parameter logistic (3PL) 

model additionally parameterizes item guessing. Similarly, given the 3PL model, learner 𝑖’s 

probability of correctly answering item 𝑗 can be formulated as: 
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 𝑃(𝑅𝑖𝑗 = 1|𝜃𝑖) = 𝑐𝑗 +  
1 − 𝑐𝑗

1 +  𝑒−𝑎𝑗(𝜃𝑖−𝑏𝑗)
, (5) 

where 𝑐𝑗 denotes the guessing parameter of item 𝑗 and the other parameters are the same as 

the 2PL model. For IRT models, the item discrimination parameter can be used to indicate 

the item-skill associations. Higher item discrimination level implies stronger affinity of the 

item to the latent skill, and as a result, the item is more capable of differentiating high-

performing learners from low-performing learners. Given the formulation of IRT models, it 

can be seen that the item-learner interaction is modelled by the linear combination of learner 

ability, item difficulty, item discrimination and item guessing, which is then non-linearly 

converted to a predicted probability of correct item response ranging from 0 to 1 through a 

sigmoid transformation.  

The above IRT models are all assumed to be unidimensional. However, in reality, the 

majority of educational assessments are designed to evaluate multiple skills or knowledge 

components, and traditional IRT models fail to deal with multidimensional data. More 

recently, the approach of multidimensional item response modeling (MIRT) was proposed to 

address multiple latent skills of multidimensional data (Reckase, 1997; Yao & Boughton, 

2007). Compared with conventional IRT models, the MIRT approach allows items to 

measure different skills which enables a finer-grained analysis of learner data. In MIRT, 

different item difficulties and learner abilities are estimated for multiple latent skills. For 

example, given the multidimensional 3PL model, learner 𝑖’s probability of correctly 

answering item 𝑗 can be formulated as: 

 𝑃(𝑅𝑖𝑗 = 1|�⃗�𝑖) = 𝑐𝑗 +  
1 − 𝑐𝑗

1 + 𝑒−�⃗⃗�𝑗⨀�⃗⃗⃗�𝑖
𝑇

+𝑏𝑗

, (6) 

where 𝑏𝑗 and 𝑐𝑗 denote item difficulty and item guessing of item 𝑗 respectively, which are 

scalar parameters. �⃗�𝑖 is a vector parameter indicating learner 𝑖’s proficiency levels on 

multiple latent skills, and �⃗�𝑗 is a vector parameter indicating item 𝑗’s discrimination levels on 
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multiple latent skills. As such, given a vector of item discrimination, the MIRT approach is 

capable of providing each item with item-skill associations for multiple skills, and given a 

vector of learner ability, each learner can be estimated with multiple proficiency levels on 

multiple latent skills. However, given that MIRT models bear greater complexity, they have 

not been widely used in the digital learning environments (Desmarais & Baker, 2012). 

Table 1  

A Sample Q-Matrix with Five Items and Three Skills 

 Skill 1 Skill 2 Skill 3 

Item 1 0 1 0 

Item 2 0 0 1 

Item 3 1 0 0 

Item 4 1 1 1 

Item 5 1 0 1 

 

Cognitive Diagnosis 

Cognitive diagnosis is an approach for profiling learners with information on mastery 

or non-mastery of multiple skills (Rupp et al., 2010). CDMs calculate the probability of a 

correct response based on learners’ mastery profile of the skills that are measured by an item 

(e.g., Henson et al., 2009; Tatsuoka, 1983). Given the mastery profile of the required skills, 

learners can be evaluated with fine-grained diagnostic information, which in turn supports 

targeted interventions for learning. Similar to MIRT, CDMs also address multiple latent 

skills. However, unlike MIRT, CDMs requires a pre-specified mapping of items to skills, 

which is called the Q-matrix, for item parameterization and model estimation. In a Q-matrix, 

the columns and rows represent the required skills and the test items respectively with matrix 

entries of 0s or 1s indicating the mapping of one item to one skill. Table 1 presents a sample 

Q-matrix which involves five items and three skills. It can be seen that item 1 only requires 

skill 2, whereas item 5 requires both skills 1 and 3. Moreover, the entries of Q-matrix can be 

polytomous (e.g., 0, 1, and 2), indicating the degree to which an item measures a skill (von 
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Davier, 2005). In this sense, the Q-matrix naturally represents the item-skill associations for 

learning outcome modeling.  

Over the past several decades, a great number of CDMs have been proposed in the 

psychometric measurement literature. Despite a variety of modeling techniques designed for 

various purposes, the majority of CDMs can be characterized by several general modeling 

frameworks. With the general modeling frameworks, other specific CDMs can be derived 

through statistical constraints on model parameters. Therefore, given the limit of the space, 

the dissertation describes CDMs by a brief introduction to a general modeling framework, the 

log-linear cognitive diagnosis model (LCDM; Henson et al., 2009). However, the general 

modeling frameworks are saturated models developed at the sacrifice of model simplicity, 

which might not be optimal for practice. Given LCDM, learner 𝑖’s probability of correctly 

answering item 𝑗 can be formulated as: 

 𝑃(𝑅𝑖𝑗 = 1|�⃗�𝑖) =
1

1 + 𝑒−(λ𝑗,0+λ⃗⃗⃗𝑗
′𝐡(�⃗⃗�𝑖,�⃗⃗�𝑗))

, (7) 

where �⃗�𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝐾)  denotes the skill mastery profile of learner 𝑖 on 𝐾 latent skills, λ𝑗,0 

represents the intercept parameter of item 𝑗, �⃗�𝑗 = (𝑞𝑗1, … , 𝑞𝑗𝐾) indicates the Q-matrix entries 

for item 𝑗, and 𝐡 is a mapping function that linearly combines �⃗�𝑖 and �⃗�𝑗: 

 λ⃗⃗𝑗
′𝐡(�⃗�𝑖, �⃗�𝑗) = ∑ λ𝑗,1,(𝑘)𝛼𝑖𝑘𝑞𝑗𝑘

𝐾

𝑘=1

+ ∑ ∑ λ𝑗,2,(𝑘,𝑘′)𝛼𝑖𝑘𝛼𝑖𝑘′𝑞𝑗𝑘𝑞𝑗𝑘′

𝑘′>𝑘

𝐾−1

𝑘=1

+ ⋯ . (8) 

For item 𝑗 and a total 𝐾 latent skills, the probability of a correct response is affected 

by the main effect of each skill and the interaction effects between skills. As such, in the 

equation, λ𝑗,1,(𝑘) indicates the main effect of skill 𝑘, and λ𝑗,2,(𝑘,𝑘′) refers to the two-way 

interaction effect between skills 𝑘 and 𝑘′. Moreover, because item 𝑗 might not require and 

learner 𝑖 might not master all the 𝐾 latent skills, the terms 𝛼𝑖𝑘𝑞𝑗𝑘 and 𝛼𝑖𝑘𝛼𝑖𝑘′𝑞𝑗𝑘𝑞𝑗𝑘′, which 

are the product between the skill mastery profile of learner 𝑖 and the Q-matrix entries for item 
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𝑗, are used to control which main and interaction effects would be present for the learner-item 

interaction between learner 𝑖 and item 𝑗. The LCDM accounts for all possible effects of the 

presence or absence of skills on item responses, which involves a great number of model 

parameters to be estimated. In addition, for a real-world educational assessment, its required 

skills might not pose all main and interaction effects on learners’ item response. Therefore, 

more parsimonious models are typically desired in practice. Given LCDM, removing all main 

and lower-order interaction effects and only retaining the highest-order interaction effect 

result in the deterministic inputs noisy and gate model (DINA; Haertel, 1989; Junker & 

Sijtsma, 2001), and removing all interaction effects and retaining the main effects lead to the 

compensatory re-parameterized unified model (C-RUM; Hartz, 2002), which are 

parsimonious models with much fewer model parameters. Contrast to LCDM and its variants, 

another type of CDMs uses a statistical pattern recognition approach to diagnose learners’ 

skill mastery profiles. The most well-known models are the rule space model (Tatsuoka, 

1983) and the attribute hierarchy model (Leighton et al., 2004).  

Applications and Challenges of Psychometric Measurement Models 

Psychometric measurement models, especially IRT models, are used in a variety of 

application domains. For example, in the large-scale international assessment programs for 

evaluating students’ academic achievement such as PISA (Organisation for Economic Co-

operation and Development, 2014), the trends in international mathematics and science study 

(TIMSS; Mullis et al., 2016), and the progress in international reading literacy study (PIRLS; 

Mullis et al., 2017), IRT models are used to derive the final achievement scores and scale 

composite scores for the purposes of increasing the accuracy of the measurement and 

reducing the sampling bias. Moreover, because both computer-based and paper-based 

assessment formats might be used in these programs, IRT models can be used to examine the 

measurement invariance given different assessment modes (Organisation for Economic Co-
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operation and Development, 2015). In addition to large-scale assessments, the potential and 

effectiveness of IRT models in practice are well revealed in a variety of application sectors 

such as clinical psychology (Reise & Waller, 2009), medical education (De Champlain, 

2010), computing science (Martínez-Plumed et al., 2016), and management (Carroll et al., 

2016). Compared with IRT models, most cognitive diagnosis research is simulation-based 

and mature applications of cognitive diagnosis in practice are relatively fewer. The major 

challenge for cognitive diagnosis in practice is that an accurate Q-matrix is hard to be pre-

specified. Despite content experts’ knowledge, flaws in pre-specified Q-matrices would 

significantly undermine the diagnosis performance (Hansen et al., 2016; Liu et al., 2016). 

However, the potential of cognitive diagnosis for a finer-grained analysis of education and 

psychology data has been examined in the application fields such as clinical psychology (de 

la Torre et al., 2018; Templin & Henson, 2006) and language testing (Jang, 2009).  

Regarding the psychometric measurement analysis of learner performance data of 

CBAs, de Klerk et al. (2015) presented a comprehensive review of 31 articles on the topic. 

According to their review, the majority of CBAs measure mathematics and science concepts 

(e.g., Kerr & Chung, 2012; Quellmalz et al., 2013) and a few of them measure complex skills 

such as 21st century skills (Shute & Ventura, 2013), problem-solving skills (Shute et al., 

2009), and causal reasoning (Shute, 2011). In addition, all of the CBAs they reviewed 

modeled learners’ product data and 50% of them modeled learners’ process data or the 

combination of process data and product data. Regarding the analytical approaches, both 

exploratory techniques and confirmatory techniques were employed to analyze the learner 

performance data of CBAs. The exploratory techniques were used to identify the patterns in 

the performance data and investigate how the patterns are related to the latent skills measured 

by the assessment (e.g., Gobert et al., 2012; Halverson & Owen, 2014). These analyses were 

mostly based on educational data mining techniques, such as cluster analysis. It should be 
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noted that exploratory analyses of performance data for identifying learning patterns are 

greatly dependent on specific learning contexts, assessment design features and learner 

characteristics, which are typically not generalizable across different CBAs. The 

confirmatory techniques were used to model performance data for making probabilistic 

inferences on learners’ proficiency levels of the latent skills (e.g., Klinkenberg et al., 2011; 

Quellmalz, et al., 2012). Despite the fact that identifying learning patterns from performance 

data is a mainstream research topic in the area, given its purposes and scope, the dissertation 

only focuses on the confirmatory learning outcome modeling which makes probabilistic 

statements on learners’ latent skills. 

According to de Klerk et al. (2015), the confirmatory techniques used to analyze CBA 

performance data mainly involve confirmatory factor analysis, CTT and IRT models, and 

Bayesian networks. Although the review by de Klerk et al. (2015) contended that the 

Bayesian network is the most frequently used “psychometric model” for CBAs, using the 

typical taxologies of models in education measurement (Brennan, 2006) and data mining 

(Tan et al., 2016), the chapter discusses Bayesian networks for learning outcome modeling in 

the next section. 

Regarding the purposes of psychometric measurement analysis of CBA data, in 

general, CTT and IRT models were mainly used to estimate learner ability and examine the 

psychometric quality of assessment items. In a CBA designed for architect registration 

examination, CTT and IRT models were used for automated scoring of complex responses 

constructed by examinees (Braun et al., 2006). In a CBA designed for students to practice 

arithmetic, an IRT model was used to adaptively estimate learners’ latent ability levels and 

items’ difficulty levels based on both the product data and the response time, which 

contributed to improved measurement precision and reliability and stronger validity 

(Klinkenberg et al., 2011). In their CBA for science inquiry, Quellmalz et al. (2010) analyzed 
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learner performance data with an IRT model to examine the dimensionality and technical 

quality of the items. In another CBA for learning about ecosystems, force, and motion, a 

MIRT model was used to examine the dimensionality and technical quality of the items 

(Quellmalz et al., 2012). In summary, despite some studies accounting for partial information 

provided by the process data (e.g., Klinkenberg et al., 2011), it is evident that conventional 

psychometric measurement models could not be used to fully address the complexity of 

process data for learning outcome modeling. 

Moreover, as mentioned previously, psychometric measurement models require 

strong theoretical assumptions regarding how skills are measured by items. Particularly, CTT 

and IRT models assume a single skill to be measured, which is largely infeasible for fine-

grained cognitive diagnosis and multiple skill modeling. However, for cognitive diagnosis 

models, they typically require an accurate Q-matrix prespecified by domain experts, which 

inevitably brings flaws and limits the scalability for modeling. Furthermore, given the strong 

theoretical assumptions, domain modeling is typically infeasible given the standard forms of 

psychometric models. 

Bayesian Networks  

Bayesian networks were widely used to make probabilistic inferences based on the 

learner performance data of CBAs (de Klerk et al., 2015). Bayesian networks are a type of 

probabilistic graphic models, which graphically represent a joint distribution of a set of 

random variables (Koller & Friedman, 2009). Essentially, building a Bayesian network 

requires the specification of a directed acyclic graph and a table of probability distributions 

for each variable, or called node, in the graph. Figure 3 presents an example Bayesian 

network with three nodes. In the network, each node represents a random variable and 

directional edge represents the dependency or the causal relationship between two random 

variables. The two bottom nodes of squares represent two assessment items indicating 
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learners’ item responses (i.e., correct/incorrect) and the top node of oval represents the latent 

skill measured by the two items (i.e., mastery/non-mastery). As such, the example network 

depicts that learners’ probabilities of giving correct or incorrect responses to item 1 and item 

2 are dependent on their probabilities of having the latent skill mastered or not. To know the 

joint distribution of the network, it is required to define the distribution of the latent skill and 

the conditional distributions for item 1 and item 2. Mathematically, the joint distribution of 

the three nodes shown in the example network is given by 

 𝑃(𝑠𝑘𝑖𝑙𝑙, 𝑖𝑡𝑒𝑚 1, 𝑖𝑡𝑒𝑚 2) = 𝑃(𝑖𝑡𝑒𝑚 1|𝑠𝑘𝑖𝑙𝑙)𝑃(𝑖𝑡𝑒𝑚 2|𝑠𝑘𝑖𝑙𝑙)𝑃(𝑠𝑘𝑖𝑙𝑙), (9) 

where 𝑃(𝑖𝑡𝑒𝑚 1|𝑠𝑘𝑖𝑙𝑙)𝑃(𝑖𝑡𝑒𝑚 2|𝑠𝑘𝑖𝑙𝑙) = 𝑃(𝑖𝑡𝑒𝑚 1, 𝑖𝑡𝑒𝑚 2|𝑠𝑘𝑖𝑙𝑙) given that item 1 and 

item 2 are conditionally independent from each other. Practically, making inferences about 

learners’ mastery levels on the latent skill given the information of their item responses to 

item 1 and item 2 can be characterized as the process of finding 𝑃(𝑠𝑘𝑖𝑙𝑙|𝑖𝑡𝑒𝑚 1, 𝑖𝑡𝑒𝑚 2); 

predicting learners’ item responses to item 1 or item 2 can be represented as the process of 

finding 𝑃(𝑖𝑡𝑒𝑚 1|𝑠𝑘𝑖𝑙𝑙) or 𝑃(𝑖𝑡𝑒𝑚 2|𝑠𝑘𝑖𝑙𝑙). Estimating the conditional probabilities 

mentioned above can be formularized as a maximum likelihood estimation problem as other 

statistical learning models (Heckerman et al., 1995). More concretely, for the network shown 

in Figure 3, the parameters to be estimated include two conditional probabilities for the two 

possible values of item 1 (i.e., correct and incorrect), two conditional probabilities for the two 

possible values of item 2 (i.e., correct and incorrect), and two probabilities for the latent skills 

(i.e., mastery and non-mastery). The problem of estimating all the above parameters Θ given 

a dataset 𝐷 can be formulated as  

 ΘML = arg max{𝐿(Θ ∶ 𝐷)}. (10) 

Heckerman et al. (1995) provide more details regarding the parameter estimation for 

Bayesian networks. 
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Figure 3  

An Example Bayesian Network with Two Items and One Latent Skill 

 

For the majority of CBAs, multiple learning opportunities are designed for learners to 

practice the latent skills. Bayesian networks, however, cannot address the temporal 

dependencies between the multiple learning opportunities presented through a CBA. For 

events occurring over a period, dynamic Bayesian networks (DBNs) can be used to account 

for the temporal dependencies between multiple timesteps in making inferences on the 

conditional probabilities of random variables. Essentially, DBN is an extended version of 

Bayesian networks with time information. Figure 4 presents an example DBN with one latent 

skill and one observable item across a total of 𝑇 learning opportunities. Each learning 

opportunity represents one timestep. The 𝑇 timesteps are connected by the temporal 

relationships of the latent skill between one timestep and its subsequent timestep. It should be 

noted that, without the temporal connection, the nodes and edges for each timestep constitute 

a simple Bayesian network, and the DBN can be considered as 𝑇 connected copies of the 

simple Bayesian network. By modeling the temporal dependencies between timesteps, the 

state of the latent skill changes over time can be inferred. This feature of DBN is especially 

useful for CBAs because individuals’ learning progress can be tracked by analyzing their 

item responses with DBN. Given the DBN shown in Figure 4, the state of the latent skill at a 

certain timestep (i.e., mastery/non-mastery) is dependent on both the state of the latent skill at 

the previous timestep and the current state of the item (i.e., correct/incorrect). Therefore, the 

joint distribution of the latent skill 𝑆𝑘𝑖𝑙𝑙 = {𝑆𝑘𝑖𝑙𝑙0, 𝑆𝑘𝑖𝑙𝑙1, … 𝑆𝑘𝑖𝑙𝑙𝑇−1} and the item 𝑡𝑒𝑚 =

{𝐼𝑡𝑒𝑚0, 𝐼𝑡𝑒𝑚1, … 𝐼𝑡𝑒𝑚𝑇−1}  over 𝑇 timesteps is given by  

Skill 

Item 1 Item 2 
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 𝑃(𝑆𝑘𝑖𝑙𝑙, 𝐼𝑡𝑒𝑚) = ∏ 𝑃(𝑆𝑘𝑖𝑙𝑙𝑡|𝑆𝑘𝑖𝑙𝑙𝑡−1)

𝑇−1

𝑡=1

∏ 𝑃(𝐼𝑡𝑒𝑚𝑡|𝑆𝑘𝑖𝑙𝑙𝑡)

𝑇−1

𝑡=0

𝑃(𝑆𝑘𝑖𝑙𝑙0), (11) 

where 𝑃(𝑆𝑘𝑖𝑙𝑙0) is the prior distribution of the skill, 𝑃(𝐼𝑡𝑒𝑚𝑡|𝑆𝑘𝑖𝑙𝑙𝑡) indicates the 

observation distribution of the item dependent on the skill at timestep 𝑡, and 

𝑃(𝑆𝑘𝑖𝑙𝑙𝑡|𝑆𝑘𝑖𝑙𝑙𝑡−1) refers to the state transition distribution presenting how the state of the 

latent skill at timestep 𝑡 is affected by its state at the previous timestep 𝑡 − 1. Given the 

above formulation, the problem of estimating how the state of the latent skill changes over 

time can be solved by finding the conditional probabilities 𝑃(𝑆𝑘𝑖𝑙𝑙|𝐼𝑡𝑒𝑚), where 𝑆𝑘𝑖𝑙𝑙 =

{𝑆𝑘𝑖𝑙𝑙0, 𝑆𝑘𝑖𝑙𝑙1, … 𝑆𝑘𝑖𝑙𝑙𝑇−1} and 𝐼𝑡𝑒𝑚 = {𝐼𝑡𝑒𝑚0, 𝐼𝑡𝑒𝑚1, … 𝐼𝑡𝑒𝑚𝑇−1}. It should be noted the 

DBN is established based on the Markov assumption, which states that the conditional 

probability of the latent skill at timestep 𝑡 is only dependent on the state of the latent skill at 

timestep 𝑡 − 1; the states of the latent skill at timesteps prior to 𝑡 − 1 are of no influence 

(Koller & Friedman, 2009).  

Figure 4  

An Example Dynamic Bayesian Network with One Item and One Latent Skill 

 

Regarding domain modeling, standard Bayesian networks and DBNs fail to 

automatically estimate the item-skill associations because a correspondence between each 

item and the skill it measures is required to be pre-specified to construct the graphical model. 

Therefore, similar to psychometric measurement models, domain expertise is required for 

Bayesian networks and DBNs. 

Bayesian networks or DBNs showed great potential for learning outcome modeling in 

the literature because of their strong flexibility, high expressiveness, and sound computations 

𝑆𝑘𝑖𝑙𝑙0 

𝐼𝑡𝑒𝑚0 

𝑆𝑘𝑖𝑙𝑙1 

𝐼𝑡𝑒𝑚1 

𝑆𝑘𝑖𝑙𝑙2 

𝐼𝑡𝑒𝑚2 

𝑆𝑘𝑖𝑙𝑙𝑇−1 

𝐼𝑡𝑒𝑚𝑇−1 

… 
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(Desmarais & Baker, 2012). For example, Bayesian networks have been used to model the 

performance data of CBAs on computer networking skills (Levy & Mislevy, 2004; Levy, 

2013; Rupp et al., 2012; West et al., 2012), dental practice (Mislevy et al., 2002), systems 

thinking (Mislevy et al., 2014; Shute et al., 2010), creative problem solving (Shute et al., 

2009), causal reasoning (Shute, 2011) and 21st century skills (Shute & Ventura, 2013). For 

the CBAs with multiple learning opportunities, DBNs have been used to address the temporal 

dependencies and model the performance data for CBAs on air combat (Poropudas & 

Virtanen, 2007), weather phenomenon (Cui et al., 2019), mathematics (Levy, 2014), and 

Navy damage control operations (Iseli et al., 2010; Koenig et al., 2010). Bayesian networks 

and DBNs were successfully applied in various CBAs in a wide range of application 

domains. However, the applications of Bayesian networks and DBNs in these studies did not 

address well learners’ process data for learning outcome modeling, although the analyses 

were conducted in the context of CBAs. This is most likely due to Bayesian networks 

requiring their input data to be structured for defining the conditional probabilities of all 

possible variable values. However, learners’ actions and time durations during gameplay are 

typically unstructured and no generalizable data pre-processing techniques are available to 

reorganize the process data. Hence, Bayesian networks are still limited in dealing with the 

performance data produced by CBAs. 

Moreover, in pursuit of strong flexibility, Bayesian networks are used subject to the 

curse of dimensionality. That is, a Bayesian network might involve a great number of latent 

variables, which results in complex computation of the conditional probabilities. To address 

this, Bayesian networks can be constructed with simplifying assumptions or in a data-driven 

way that handles the observable variables only and reduces the network complexity 

(Desmarais & Baker, 2012).  
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Bayesian Knowledge Tracing  

BKT (Corbett & Anderson, 1994) is a learning outcome modeling approach 

extensively used in the community of educational data mining, especially for tracking 

learners’ changes of cognitive states over time in intelligent tutoring systems. Essentially, 

BKT is a constrained and simplified version of DBN, where the number of conditional 

probabilities is reduced for modeling. 

Figure 5  

Graphical Representation of Bayesian Knowledge Tracing 

 

Concretely, given the DBN case shown in Figure 4, the item has either correct or 

incorrect state, whereas the skill has either a mastery or a non-mastery state. As such, the 

horizontal directional edges represent the transition probability from non-mastery to mastery 

of the skill, denoted as 𝑝(𝑇), and the transition probability from mastery to non-mastery of 

the skill, denoted as 𝑝(𝐹). The transition probability, 𝑝(𝑇), indicates the learning of the skill 

and the transition probability, 𝑝(𝐹), indicates the forgetting of the skill. The vertical 

directional edges represent the emission probability of incorrectly answering the item given a 

mastery of the skill, denoted as 𝑝(𝑆), and the emission probability of correctly answering the 

item given non-mastery of the skill, denoted as 𝑝(𝐺). The emission probability 𝑝(𝑆) is the 

slip probability and the emission probability 𝑝(𝐺) is the guess probability. Moreover, the 

DBN requires a definition of the prior probability of mastering the skill, which is denoted by 

𝑝(𝐿0). These conditional probabilities can be used to calculate the conditional probabilities of 

Non- 

mastery 
 

 

 

 

Mastery 

Incorrect Correct 
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mastery or non-mastery of the skill given correct or incorrect responses, which are in turn 

used to infer the probabilities of mastery or non-mastery of the skill at each timestep.  

BKT is a special case of the DBN described above, where the transition probability 

𝑝(𝐹) is fixed as 0, indicating an assumption that learners will never forget the learned skill. 

The model parameters of BKT are graphically represented in Figure 5. Despite two ovals and 

two squares shown in Figure 5, they represent the two states of the skill and the item, rather 

than two skills and two items. Given the above definitions of model parameters, BKT 

estimates the conditional probabilities of mastering the skill given either correct or incorrect 

responses at the timestep 𝑡 as: 

 

𝑝(𝐿𝑡|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
𝑝(𝐿𝑡−1)[1 − 𝑝(𝑆)]

𝑝(𝐿𝑡−1)[1 − 𝑝(𝑆)] + 𝑝(𝐺)[1 − 𝑝(𝐿𝑡−1)]
 

𝑝(𝐿𝑡|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =
𝑝(𝐿𝑡−1)𝑝(𝑆)

𝑝(𝐿𝑡−1)𝑝(𝑆) + [1 − 𝑝(𝐺)][1 − 𝑝(𝐿𝑡−1)]
. 

(12) 

Having the two conditional probabilities, BKT proceeds to estimate the probability of 

mastering the skill at timestep 𝑡 given a learner’s correct or incorrect response as: 

 𝑝(𝐿𝑡) = 𝑝(𝐿𝑡|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) + [1 − 𝑝(𝐿𝑡|𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)]𝑝(𝑇). (13) 

It should be noted that each latent skill should be estimated and updated by a different BKT 

model, indicating that different skills must work independently in influencing learners’ item 

response in BKT. However, in DBN, skills can be interconnected by content knowledge for 

constructing the graphic model. That said, compared with BKT, DBN allows for relationships 

between skills, which contributes to stronger representation of the complexity of the learner 

performance data. However, given a limited sample size and relatively simple relationships 

between skills, the performance in inferring learners’ cognitive states between DBN and BKT 

was found to be trivial in some applications (e.g., Cui et al., 2019).  

Consistent with DBN, standard BKT cannot be used to directly model item-skill 

associations because the items for each skill are required to be known for the estimation of 
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conditional probabilities. Nevertheless, Lindsey et al. (2014) showed the potential of BKT for 

discovering item-skill associations by developing a BKT-based generative probabilistic 

model with experts’ knowledge as a prior. 

Additive Factors Model 

Additive Factors Model (AFM; Cen et al., 2005; Cen et al., 2006) is a statistical 

model proposed in the community of educational data mining for modeling learners’ 

probabilities of correctly answering items. Similar to IRT models, AFM estimates learners’ 

cognitive states for a given skill, which are converted to probabilistic predictions of item 

responses by a logistic function (i.e., the sigmoid transformation). However, unlike IRT 

models, AFM can be considered as an alternative to BKT for sequential modeling of learners’ 

changes of cognitive states over time. Concretely, the AFM models learner 𝑖’s probability of 

correctly answering item 𝑗 as: 

 𝑃(𝑅𝑖𝑗 = 1|𝜃𝑖) =  
1

1 + 𝑒−(𝜃𝑖+ ∑ 𝛽𝑘𝑞𝑗𝑘
𝐾
𝑘=1 + ∑ 𝛾𝑘𝑞𝑗𝑘𝑡𝑖𝑘

𝐾
𝑘=1 )

, (14) 

 where 𝜃𝑖 indicates learner 𝑖’s latent ability level, 𝛽𝑘 indicates the easiness of the skill 𝑘 ∈

 {1, … , 𝐾}, 𝛾𝑘 denotes the learning rate of the skill 𝑘, 𝑞𝑗𝑘 indicates whether skill 𝑘 is 

measured by item 𝑗, 𝑡𝑖𝑘 denotes the total number of learning opportunities learner 𝑖 has 

previously accessed for practicing skill 𝑘, and 𝐾 is the number of latent skills measured by 

the assessment.  

Given the above formulation, it can be seen that, because AFM accounts for multiple 

learning opportunities (i.e., 𝑡𝑖𝑘), learners’ progress of learning the latent skills can be tracked 

with AFM, which is a major difference from other logistic function-based models. Moreover, 

a pre-specified mapping of items to skills (i.e., 𝑞𝑗𝑘) is required for constructing AFM, 

indicating that AFM cannot be used for domain modeling which learns item-skill associations 

from scratch. More recently, a dynamic and deep variant of AFM, dAFM, was proposed to 
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address the domain modeling issue of AFM (Pardos & Dadu, 2018). Compared with AFM, 

the dAFM models learners’ changes of cognitive states over time by the following two 

changes: the mapping of items to skills (i.e., 𝑞𝑗𝑘) is adjustable rather than fixed in dAFM and 

the counts of learning opportunities for practicing skills are dynamically updated rather than 

fixed as the mapping of items to skills changes in learning the data. To achieve this, a 

recurrent neural network layer is used as a learning opportunity counter in dAFM. 

Essentially, dAFM was developed based on a deep learning framework. More details on deep 

learning and recurrent neural networks would be given in the following sections. 

Deep Learning for Learning Outcome Modeling  

In recent years, deep learning has received a great deal of attention for its predictive 

capacity in a wide range of applications domains (e.g., biology and medicine, Ching et al., 

2018; medical imaging, Suzuki, 2017; speech recognition, Amodei et al., 2016; image 

recognition, Ciregan et al., 2012; learning analytics and educational data mining, Coelho & 

Silveira, 2017). Deep learning can be defined as “a class of machine learning techniques that 

exploit many layers of non-linear information processing for supervised or unsupervised 

feature extraction and transformation, and for pattern analysis and classification” (Deng & 

Yu, 2014). As a subfield of machine learning, deep learning automatically makes predictions 

or decisions based on learning labelled or unlabelled sample data. In terms of learning 

outcome modeling, a deep learning-based model is often developed to predict learners’ item 

responses for each item. Therefore, the output of the deep learning model should be item 

responses, such as correct or incorrect scores. However, the input for the deep learning model 

can be various. For example, given a simple item response matrix without any other 

information, a deep learning model can simply learn the identifications of each item and each 

learner as input. Given the availability of more information regarding the items and the 

learners (e.g., item text, learner background information), a deep learning model can learn the 
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additional information as input. In case that process data is available, a deep learning model 

can learn individuals’ action sequences and time durations as input. In deep learning, how the 

input is integrated, analyzed, and learned for outputting the final predictions is determined by 

the deep learning architecture.  

In a nutshell, deep learning is essentially an extension of artificial neural networks 

with multiple hidden layers. There are a variety of deep learning architectures developed for 

different application domains. In the following, the chapter briefly covers the two most 

fundamental architectures of deep learning, which are closely pertinent to the topic of 

learning outcome modeling and the proposed models in the dissertation: deep neural 

networks and recurrent neural networks. The former is typically used to capture the 

complexity of the input data and the latter is typically used to model the temporal 

dependencies between multiple timesteps of the input data. The two architectures of deep 

learning align well with the purposes of this dissertation, given that sequential modeling and 

process data learning are incorporated in the proposed approaches. 

Deep Neural Networks  

Deep neural networks are extensions of feedforward neural networks, or multilayer 

perceptron (Goodfellow et al., 2016), which are the basis for deep learning. The feedforward 

neural network is analogous to the biological neural network in the human brain controlling 

how the information is processed. Figure 6 presents a graphical representation of an example 

feedforward neural network. This network has one input layer of three nodes, one hidden 

layer of three nodes, and one output layer of two nodes. In the network, the basic components 

of a neural network are nodes, which receive inputs from the previous nodes and produce 

outputs for the following nodes. There are three types of nodes: the input nodes, the hidden 

nodes, and the output nodes. The input nodes receive the input data while each node 

represents a feature. For example, if the example neural network learns individuals’ GPA, 
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motivation, and gender as inputs for predicting their responses to one item, the three input 

nodes represent the three features of GPA, motivation and gender. The output nodes represent 

the final predictions. The hidden nodes work as the bridge connecting the input and the 

output nodes, with information transferred in between. Between the nodes, there are 

directional edges, which connect the nodes with different strengths. Statistically, these 

directional edges are different weights indicating the relative connection strength between 

nodes. 

Figure 6  

Graphical Representation of an Example Feedforward Neural Network  

 

Given the above, a feedforward neural network can be considered as a stacked 

multilayer regression, because each node looks like a predictor or an outcome variable of 

regression analysis and the weights act as the regression coefficient. However, neural 

networks largely differ from linear regression due to the use of largely non-linear activation 

functions. The activation function is generally a non-linear mapping of one variable to 

another variable, which non-linearly transforms the linear combination of inputs. For 

example, as shown in Figure 6, the three inputs are first combined by the nine weights in the 
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same manner as linear regression, and then the three combined inputs are non-linearly 

transformed by an activation function, which produce the three hidden nodes. Likewise, the 

two output nodes are obtained through the non-linear transformation of the linear 

combination of the three hidden nodes using an activation function. There is a variety of 

activation functions. The Sigmoid function, or the logistic function, which transforms a real-

valued variable to a variable ranging from 0 to 1, is widely used in deep learning models. 

This feature of Sigmoid activation is especially handy for the task of learning outcome 

modeling because the model is expected to make probabilistic predictions of learners’ item 

responses. In addition to machine learning models, as mentioned earlier, the majority of 

psychometric measurement models use the Sigmoid activation to transfer the linear 

combination of model parameters to predicted probabilities of item responses. In this sense, 

due to the complexity of model structure and the flexibility of activation functions, deep 

learning-based models have the potential of representing other machine learning and 

statistical learning models (see the Chapter 2 of the book by Aggarwal [2018]). 

The deep neural network can be considered as a feedforward neural network with 

more than one hidden layer. Mathematically, given a deep neural network, the output nodes 𝐘 

can be predicted by the non-linear transformation of the combination of input nodes 𝐗 as: 

 𝐘 =   𝑓𝐻(𝐖𝐻
𝑇𝑓𝐻−1(… 𝑓2(𝐖2

𝑇𝑓1(𝐖1
𝑇𝐗)) … )), (15) 

where 𝐖1 to 𝐖𝐻 indicate the weights for the 𝐻 neural network layers, and 𝑓1 to 𝑓𝐻 denote the 

activation function for each layer. The predictive capacity and the model complexity are 

controlled by the number of hidden layers and the number of hidden nodes in each layer, both 

of which are hyperparameters to be tuned for a deep neural network. For a simple 

classification problem, according to the recommendations by Goodfellow et al. (2016, p. 192) 

and Lippmann (1987), one or two hidden layers is sufficient for a neural network. However, 

to capture the complexity of training data, a deep neural network typically uses more than 
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one hidden layer. Regarding how to determine the optimal numbers of hidden layers and the 

hidden nodes for each hidden layer, for a simple model structure and a small training sample 

size, a k-fold cross-validation technique can be possibly used to optimize the model. 

However, in practice, given the complexity of model architecture and the large sample size, 

the k-fold cross-validation is infeasible and there are no rules of thumb for determining the 

two hyperparameters. Alternatively, it is suggested to configure the numbers of hidden layers 

and the hidden nodes by trial and error until satisfactory prediction accuracy is met 

(Goodfellow et al., 2016). 

A major concern for constructing and training a deep neural network is how to 

prevent overfitting, which occurs when the model performs well on the training dataset but 

shows poor prediction performance on an external test dataset (e.g., test or validation 

datasets). The training dataset is used to optimize the model hyperparameters and learn the 

model weights, while the test dataset is used to evaluate the predictive capacity of the model, 

which is not allowed to be seen by the model in training. In deep learning, there are two 

categories of approaches to prevent or reduce overfitting: training the model with larger 

samples and reducing the model complexity. For the former approach, it is intuitive that a 

greater sample size means a greater coverage of the data variance. With larger samples, the 

model can learn a wider range of features and is more likely to account for the characteristics 

of the test samples, which contribute to satisfactory prediction performance on the test 

dataset. For the latter approach, there are two major ways to reduce the model complexity: 

“changing the number of adaptive parameters in the network” and “the use of regularization 

which involves the addition of a penalty term to the error function” (Bishop, 1995, p. 332). 

To put it simply, “changing the number of adaptive parameters in the network” means we can 

control the model structure stability by optimizing the numbers of hidden layers and hidden 

nodes for each layer. For the use of regularization, it means we can control the model 
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complexity by keeping the model weights small. Small weights indicate that model prediction 

would not change substantially given a big variance of input data, which contributes to 

satisfactory prediction performance on the test dataset. A widely used regularization method 

is weight decay, which makes the weights of less useful nodes as close as possible to zero, 

and the weights of influential nodes as small as possible. As such, only the influential nodes 

take effect in prediction for reducing overfitting. In addition to weight decay, regularization 

methods also include activity regularization, dropout, early stopping, and weight constraint, 

which serve the same purpose of penalizing the weights (see Goodfellow et al., 2016). The 

weights of a deep neural network can be learned through back propagation with optimizers 

based on gradient descent, such as RMSprop (Tieleman & Hinton, 2012), Adam (Kingma & 

Ba, 2014), and Adagrad (Duchi et al., 2011). 

Recurrent Neural Networks  

Recurrent neural networks (RNNs) are essentially neural networks with the capacity 

to model temporal information. That said, unlike the input data for deep neural networks, the 

input data fed into RNNs additionally involves a temporal dimension. For example, in the 

context of leaning outcome modeling, for the same skill and associated item, learners might 

take multiple learning opportunities to practice the skill. Therefore, learners’ item responses 

are in a temporal form with an item response for each learning opportunity. Moreover, the 

item responses of earlier learning opportunities should affect those of later learning 

opportunities. In this case, RNNs can be used to model the temporal dependencies in the data. 
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Figure 7  

Graphical Representation of Recurrent Neural Networks with Unrolled Form 

 

Figure 7 graphically presents the structure of an RNN and its unrolled form for each 

timestep. The RNN involves an input feature with 𝑇 timesteps and outputs the prediction with 

𝑇 timesteps as well. Given multiple timesteps, the RNN allows information transmitted from 

one timestep to its subsequent timestep. When unrolled, the RNN looks like multiple copies 

of a conventional neural network with information passing from one network to a successor. 

In the RNN, the output of one timestep would be fed into its subsequent timestep as the input. 

This property of RNN enables that how the information at each timestep depends on each 

other can be learned. For example, if we want to predict the last word in the sentence “people 

have breakfast in the morning”, each word can be modelled at one timestep in a sequential 

order in RNNs. In this case, the last word “morning” can be predicted by its very recent 

context information. However, if predicting “morning” needs sentences from much further 

back, which means the gap between relevant information for prediction and the place where it 

is needed is very large, RNNs fail to learn the model with faraway context information. This 

is due to RNN multiplying gradients or weights multiple times as it models dependencies 

between timesteps separated by many other timesteps, which leads to either vanishing or 

exploding gradients during backpropagation and in turn makes weights of early features 

unlearnable. Bengio et al. (1994) provides more details regarding this problem.  
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Fortunately, the long short-term memory (LSTM) networks, first introduced by 

Hochreiter and Schmidhuber (1997), can be used to address the long-term dependency 

problem due to vanishing or exploding gradients mentioned above. LSTM networks are 

widely used because they are tremendously powerful on a wide range of practical problems. 

In an LSTM network, a standard neural network layer is substituted by the LSTM cell blocks 

including four interacting layers. Figure 8 presents a diagram for an LSTM cell showing how 

LSTM works internally learning the feature information at the current timestep along with the 

output information produced by the last timestep. In the diagram, the lines transmit 

information from one timestep to another. Circles indicate pointwise operations like addition 

and multiplication. The four bottom rectangles indicate the four learned neural network 

layers. A line merging indicates concatenating vectors and a line forking indicates that a 

vector and its copy go for different directions. The top dashed horizontal line denotes the 

internal state of an LSTM network cell, which is the key idea behind LSTM networks. The 

cell state includes some linear interactions and conveys information changed or added by 

gates. The gate is a mechanism regulating and operating information from the current inputs 

and the outputs of the last timestep. The three gates of the LSTM network are constructed by 

a neural network layer with Sigmoid activation and a pointwise multiplication operation (see 

the rectangles with 𝜎 and an arrow directing to the multiplication signs in the diagram). From 

left to right in the diagram, the first gate is the forget gate, which determines what 

information of the previous cell state 𝑆𝑡−1 should be remembered (the forget gate controls the 

output close to 1) and what should be forgotten (the forget gate controls the output close to 

0). Specifically, the forget gate 𝑓𝑡 is given by: 

 𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑊𝑓𝑥𝑡 + 𝑏𝑓), (16) 

 



DEEP COLLABORATIVE FILTERING AND PROCESS DATA  

 
47 

where 𝑊𝑓 are the weights for the concatenation of the outputs of the last timestep ℎ𝑡−1 and 

the current features 𝑥𝑡; 𝑏𝑓 denotes the bias; and 𝜎 indicates the Sigmoid activation. The forget 

gate enables information forgotten or remembered by 𝑓𝑡 ∗ 𝑆𝑡−1. The next step in the LSTM 

cell is to determine what information from ℎ𝑡−1 and 𝑥𝑡 should be added to the cell state. This 

operation involves two components, the candidate values to be added to the cell state 

produced by ℎ𝑡−1 and 𝑥𝑡 with tanh activation, and the input gate controlling which values 

should be added. Similar to the forget gate, the input gate 𝑖𝑡 is given by: 

 𝑖𝑡 = 𝜎(𝑊𝑖ℎ𝑡−1 + 𝑊𝑖𝑥𝑡 + 𝑏𝑖). (17) 

The candidate value vector 𝑔𝑡 generated by the tanh layer can be expressed as: 

 𝑔𝑡 = tanh(𝑊𝑔ℎ𝑡−1 + 𝑊𝑔𝑥𝑡 + 𝑏𝑔). (18) 

As such, the new information added to the cell state is obtained by 𝑖𝑡 ∗ 𝑔𝑡. Now we can 

update the old cell state 𝑆𝑡−1 to the new cell state 𝑆𝑡 by forgetting or remembering 

information in 𝑆𝑡−1 and storing new information from the inputs, which can be expressed as: 

 𝑆𝑡 = 𝑓𝑡 ∗ 𝑆𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡. (19) 

The last step is to determine what to output from the LSTM cell. The outputs from the LSTM 

cell are based on the cell state, regulated by the output gate. First, a tanh function is used to 

change the range of the cell state values as between −1 and 1. Then again, a Sigmoid 

function is applied for the output gate to generate the weights for controlling which values to 

output. The output gate can be expressed as: 

 𝑂𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑊𝑜𝑥𝑡 + 𝑏𝑜). (20) 

and the final outputs are expressed as: 

 ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝑆𝑡). (21) 

From what introduced above, the three gates contribute to the flexibility of LSTM networks 

by controlling the information of inputs, the information to be remembered or forgotten in the 

internal cell state, and the information of outputs. It is also worth noting that the vanishing or 
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exploding gradient problem is mitigated in LSTM networks because the partial derivatives of 

cell states involve no fast decaying factors. This can be seen from the equation of obtaining 

𝑆𝑡, where its gradients drop the term of 𝑖𝑡 ∗ 𝑔𝑡 and only keep the term of 𝑓𝑡. The multiple 

multiplications of 𝑓𝑡 however, unlike multiplying the gradients of RNNs, would not vanish or 

explode rapidly. 

Figure 8  

Graphical Representation of an LSTM Cell 

 

Like deep neural networks, in practice, a deep learning model might involve multiple 

LSTM networks for capturing a greater degree of temporal complexity in the data. The 

number of LSTM layers and the number of the LSTM output dimensions (similar to the 

number of nodes for deep neural networks) are hyperparameters to be tuned for an LSTM-

based model.  

Deep Knowledge Tracing  

In the context of educational data mining, a representative deep learning-based 

approach for learning outcome modeling is Deep Knowledge Tracing (DKT; Piech et al., 

2015). Given a sequence of learners’ item responses for multiple skills, in essence, DKT 

predicts a specific item response through learning the temporal dependencies between item 

responses prior to the current one based on RNNs. Figure 9 demonstrates a graphical 
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representation of DKT. In the diagram, the multiple opportunities of applying each skill are 

connected with an RNN for learning their temporal dependencies. The input data for the DKT 

framework is the information regarding which skills a learner accessed and what the 

outcomes of answering their associated items were (i.e., correct or incorrect). It should be 

noted that DKT also works at the item level. That said, the inputs for DKT can also be the 

items and associated responses. If modeling at the skill level, DKT does not recognize the 

differences between items measuring the same skill. In DKT, each item can be considered as 

a learning opportunity for practicing its associated skill. For example, for the first item 

response in the diagram, it shows that the learner practiced skill 2 and had a correct answer 

on an item measuring skill 2. Subsequently, the learner proceeded to practice skill 1 and 

answered an item measuring skill 1 correctly. Then the learner practiced skill N but 

incorrectly answered its associated item. The outputs of DKT are the predicted probabilities 

of correctly answering the items for each skill. For example, at the first timestep, the learner’s 

item response for skill 2 is fed into DKT to produce his or her probabilities of getting items 

correct for each skill. Because at the second timestep the learner practiced skill 1, the first 

element of the vector of predicted probabilities can be used to infer his or her success 

likelihood of getting an item for skill 1 correct. In addition, for domain modeling, standard 

DKT can be used to model the relationships among skills or item-skill associations depending 

on skill- or item-level modeling. 

After DKT was proposed, in recent years, several studies have examined the 

performance of DKT and extended the DKT framework for more complex learning outcome 

modeling problems. For example, Xiong et al. (2016) re-examined the performance of DKT 

with performance factors analysis and BKT as baselines on multiple datasets and found that 

DKT outperformed the baselines. Moreover, DKT was adapted to model open-ended item 

responses such as programming exercises (Wang et al., 2017), revised by introducing 
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regularized loss function to enhance the prediction consistency (Yeung & Yeung, 2018), and 

integrated with psychometric models such as IRT to improve its interpretability (Yeung, 

2019).  

Figure 9  

Graphical Representation of Deep Knowledge Tracing 

 

Other Deep Learning Approaches for Learning Outcome Modeling  

In addition to DKT, in recent years, deep learning architectures are often incorporated 

in other approaches for learning outcome modeling. For example, as mentioned in the section 

“Additive Factors Model”, the LSTM network can be incorporated with AFM to dynamically 

model learners’ item responses for refining or learning from scratch the expert-specified 

item-skill associations (Pardos & Dadu, 2018). Moreover, based on deep learning 

architectures, the item-skill associations can be derived without learning learner product data. 

For example, Chaplot et al. (2018) proposed a framework named Cognitive Representation 

Learner to automatically extract the skills required by each item through learning the 

representations of item text or item content based on convolutional neural networks or RNNs. 

As stated by the authors, their framework is capable of discovering item-skill associations 
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without any learner product data, which is especially beneficial for items in ill-structured 

domains where data and human knowledge are both not available.  

Contrast to learning outcome modeling without product data, another stream of 

research focused on how to exploit a variety of auxiliary information along with product data 

for enhanced learning outcome modeling. For example, based on the IRT framework, Cheng 

et al. (2019) proposed that item content and item-associated latent skills can be learned by 

deep neural networks and LSTM networks to automatically generate item difficulties, item 

discriminations and learners’ latent ability levels. These learned item and learner parameters 

are then used to produce the predicted probabilities of correct item responses. Their 

framework was found to outperform conventional IRT models because more information is 

exploited for estimating the model parameters. Moreover, Su et al. (2018) developed a 

sequential modeling framework based on the LSTM network for predicting learners’ item 

responses based on their history item responses. Particularly, their framework integrates a 

representation learning architecture for exploiting the item content associated with each item 

response, which contributes to higher predictive capacity in comparison with conventional 

approaches such as IRT, BKT, and DKT. Furthermore, deep learning techniques showed 

potential of detecting learners’ affective states for learner modeling. Contrast to traditional 

affective detection approaches leveraging physical and physiological sensors, Botelho et al. 

(2017) developed a novel sensor-free affect detector based on multiple RNN variants to 

automatically recognize learners’ affective states from their interactions with the system for 

learner modeling, which demonstrated higher prediction performance than conventional 

machine learning-based approaches. 

Collaborative Filtering for Learning Outcome Modeling  

As mentioned in the introduction, CF is a promising approach for learning outcome 

modeling examined by an increasing number of studies in recent years (e.g., Almutairi et al., 
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2017; Desmarais & Naceur, 2013; Durand et al., 2015; Lan et al., 2014; Matsuda et al., 

2015). CF is originally used for recommender systems, but its idea has been extended to 

address issues in other domains such as disease diagnosis (Shen et al., 2017), online learning 

(Wang & Yang, 2012), and social media analysis (Starbird et al., 2012). CF makes 

recommendations for a user on new items based on the fundamental assumption that if two 

users have similar behaviors on items (e.g., similar item responses, buying or watching 

decisions), their behaviors on other items are also similar (Goldberg et al., 2001). The CF 

approaches deal with a dataset to make recommendations in the following form: there are a 

set of items and a list of users, and each user has a value on partly or all of the items. 

Represented as a user by item matrix, the dataset looks like a sparse matrix (i.e., a matrix 

with many missing entries). Those missing entries are the values to be predicted by the CF 

approaches. It should be noted that the values can be both explicit and implicit. Explicit 

values refer to quantified item responses such as ratings ranging from 1 to 5 or scores of 0 

and 1. Implicit values refer to unquantified item responses such as actions of buying an item, 

watching a movie, or clicking an item.  

According to the review by Su and Khoshgoftaar (2009), there are three categories of 

CF approaches: memory-based CF, model-based CF, and hybrid recommenders. The 

memory-based CF approach makes recommendations through computing the similarity 

between users or items. For example, given the user-based top-N recommendation algorithm, 

a user’s predicted rating on an item is simply the aggregated ratings on the item provided by 

some other users who are most similar to the user in the dataset. Likewise, given the item-

based top-N recommendation algorithm, an item’s predicted rating by a user is simply the 

aggregated ratings by the user on some other items which are most similar to the item in the 

dataset. The key idea of memory-based CF approaches is to quantify the similarity between 

users and items, which can be calculated by a variety of measures (see Su & Khoshgoftaar, 
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2009). Memory-based CF approaches are easy to implement, but suffers disadvantages such 

as depending on human ratings, not working well for sparse data, cold-start problems, and 

limited scalability (Wang et al., 2014; Zhang et al., 2020). The model-based CF approaches 

can be used to address these disadvantages as they are developed based on a variety of data 

mining and machine learning models such as Bayesian networks, matrix factorization, 

clustering algorithms, and regression models (Aggarwal, 2016; Mehta & Rana, 2017). 

Compared with the memory-based CF approaches, the model-based CF approaches are more 

complex for computation, but they are more scalable, more capable of dealing with sparse 

data, and more accurate in prediction. The hybrid recommenders are combinations of CF 

approaches and content-based recommenders (Dong et al., 2017; Kumar & Fan, 2015; Zhang 

et al., 2017). The content-based recommenders make recommendations based on the analysis 

of a variety of contextual information and item content but are not scalable and suffer the 

cold-start problem. As such, the hybrid recommenders integrate the advantages of CF 

approaches and the use of contextual information for elevated prediction accuracy. 

In the next section, a widely used model-based CF approach, matrix factorization, is 

introduced, given its great popularity in recommenders systems. In the following, “users” will 

be replaced by “learners” when describing the technical details because of the context of the 

current research topic. 

Matrix Factorization 

Matrix factorization is exceptionally effective for building recommender systems 

(Koren et al., 2009). In essence, matrix factorization deals with a sparse high dimensionality 

learner-item matrix with missing responses by introducing a set of latent factors for 

dimensionality reduction. The association between latent factors and learners and the 

association between latent factors and items are two lower-dimensionality matrices factorized 

from a complete or incomplete learner-item matrix. Mathematically, through matrix 
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factorization, an item response matrix 𝑅 ∈ ℝ𝑚×𝑛 of 𝑚 learners and 𝑛 items can be 

decomposed into two low-rank matrices 𝑈 ∈ ℝ𝑚×𝑘 and 𝑉 ∈ ℝ𝑛×𝑘: 

 𝑅 ≈ 𝑈𝑉𝑇. (22) 

The former is a learner-by-factor matrix representing the learner-skill associations and the 

latter is an item by factor matrix representing the item-skill associations. The dimension 𝑘 

indicates that there is a total of 𝑘 latent factors modeled by matrix factorization. 

 In the matrix 𝑈, the 𝑖th row 𝑢𝑖⃗⃗⃗⃗  indicates the associations between a learner and the 𝑘 

latent factors; in the matrix 𝑉, the 𝑗th row 𝑣𝑗⃗⃗⃗ ⃗ indicates the associations between an item and 

the 𝑘 latent factors. Therefore, an entry of the item response matrix, 𝑟𝑖𝑗, can be approximately 

recovered by the dot product of the learner factor 𝑢𝑖⃗⃗⃗⃗  and the item factor 𝑣𝑗⃗⃗⃗ ⃗: 

 𝑟𝑖𝑗 ≈ ui⃗⃗⃗ ⃗ ⋅𝑣𝑗⃗⃗⃗ ⃗. (23) 

Estimating the lower dimensionality matrices in matrix factorization can be also formulated 

as a maximum likelihood estimation problem like most machine learning models. That is, we 

seek two lower-dimensionality matrices 𝑈 and 𝑉 that minimize the differences between the 

original item response matrix entries and the predicted item response matrix entries given by 

equation 23. The gradient descent algorithms can be used for optimization to solve the 

problem. Similar to other machine learning or deep learning models, as mentioned in the 

section of deep neural networks, the regularization technique can be used to decay large 

latent factor values to prevent or reduce overfitting in matrix factorization. For example, the 

𝐿2 regularization technique can be applied to the matrices 𝑈 and 𝑉, which changes the 

problem as minimizing the following objective function:  

 arg min
𝑈,𝑉

𝐽 =
1

2
‖𝑅 − 𝑈𝑉𝑇‖2 +

𝜆

2
‖𝑈‖𝐹

2 +
𝜆

2
‖𝑉‖𝐹

2 , (24) 

where 𝜆 denotes the regularization weight controlling the degree to which the latent factor 

values are decayed, and ‖•‖𝐹
2  represents the Frobenius norm.  



DEEP COLLABORATIVE FILTERING AND PROCESS DATA  

 
55 

The above formulation of matrix factorization stands for its most basic form, which is 

not typically used in practice. This is due to that given no model constraints, the solution of 

lower dimensionality matrices 𝑈 and 𝑉 are hard to be fixed, which leads to an ill-posed 

problem. Therefore, various model constraints per application domain are typically imposed 

on matrix factorization to enhance prediction performance and interpretability. Some 

representative model constraints for matrix factorization are non-negativity, orthogonality, 

and sparseness of model weights (e.g., Ding et al., 2006; Hoyer, 2004; Lee & Seung, 2001). 

For example, the 𝐿1 regularization technique is typically used to encourage the matrix 

sparseness. However, regardless of model constraints, the matrix factorization-based 

approaches are generally developed to stably estimate meaningful lower dimensionality 

representations of users/learners and items in terms of how they are connected with a limited 

number of latent factors. 

Moreover, in this dissertation, the matrix factorization approach, in addition to being 

popular, is mainly described for the purpose of demonstrating how the CF approaches make 

inferences about item responses based on learning the lower dimensionality representations 

of learners and items. How learner and item latent representations contribute to the predicted 

probabilities of item responses is not necessarily modeled by the matrix multiplication. For 

example, the interaction between the two representations can also be learned through deep 

neural networks. More details about other relevant work will be given in the next section. 

Collaborative Filtering-Based Approaches for Learning Outcome Modeling 

Overall, the application of CF in education is still in its infancy. In the past ten years, 

a growing number of studies are advancing the field by proposing a variety of CF-based 

approaches for analyzing learner data. Particularly, since matrix factorization can represent 

items with latent factors, the majority of these approaches were developed with a focus on 

learning from scratch or refining item-skill associations based on learner data. For example, 
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several studies (e.g., Desmarais, 2012; Desmarais & Naceur, 2013; Durand et al., 2015; 

Matsuda et al., 2015; Sun et al., 2014) used the CF framework to evaluate expert-specified Q-

matrices or automatically generate data-driven Q-matrices. In their work on evaluating the 

predictive capacity of expert-specified Q-matrices, Durand et al. (2015) proposed an 

evaluation method based on cross validation and found that their approach was capable of 

efficiently and quickly evaluating expert-specified Q-matrices without complex computation 

of multiple model parameters as in sophisticated CDMs. Desmarais (2012) examined the 

potential of non-negative matrix factorization for recovering the Q-matrix and found that it is 

a highly effective approach for deriving the Q-matrix given the assumption of skill 

independence, but it is less effective if the values of learner, item and skill parameters vary a 

lot in the data. Desmarais and Naceur (2013) compared the performance between the expert-

specified Q-matrix and the data-drive Q-matrix by matrix factorization and found that they 

shared similar patterns between item-skill mappings, but the matrix factorization approach 

lightly outperformed the expert-specified Q-matrix. Similarly, Sun et al. (2014) found that 

their proposed approach based on the Boolean matrix factorization could successfully recover 

the original Q-matrix from learner data. In the context of large-scale online courses, 

compared with the expert-specified Q-matrix, the approach developed by Matsuda et al. 

(2015) based on the matrix factorization framework was found to be faster, more predictive, 

and more scalable for discovering item-skill associations.  

To sum up, the previous work on learning the Q-matrix from learner data generally 

show that CF approaches, especially matrix factorization, could be successfully used for 

domain modeling and they had the potential of outperforming the expert knowledge in some 

contexts (e.g., Desmarais & Naceur, 2013; Matsuda et al., 2015). However, researchers also 

indicated that matrix factorization-based approaches such as alternating least square, non-

negative matrix factorization, and Boolean matrix factorization still showed limited capacities 
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to learn the expert-specified Q-matrix from scratch (Desmarais, 2011; Desmarais and Naceur, 

2013), and they could be more effectively used to refine expert-specified Q-matrices.  

The above studies mainly focused on learning the Q-matrix from the learner data in 

comparison with the original expert-specified Q-matrix. Studies also strived to learn item-

skill associations from scratch leveraging the idea of matrix factorization. A representative 

work is the sparse factor analysis algorithm proposed by Lan et al. (2014), which is capable 

of learning item- and learner-skill associations and item difficulties from binary-valued item 

responses without any auxiliary information. Their approach showed strong predictive 

capacity and interpretability. Moreover, another stream of research emphasized the 

usefulness of contextual information in learning outcome modeling. For example, based on 

matrix factorization and tensor factorization under the CF framework, Almutairi et al. (2017) 

proposed three methods to model students’ grade data and found that the time when a learner 

was graded was helpful for improving the prediction performance. Similarly, Sahebi et al. 

(2016) used learners’ interactions with the learning resources to model their learning progress 

based on the tensor factorization approach and found that their approach was significantly 

more predictive of learner performance than BKT and another tensor factorization approach. 

In addition, the sequential modeling approach based on tensor factorization proposed by 

Thai-Nghe et al. (2012) was successfully used to predict learners’ future item responses 

based on learning history item responses.  

Deep Learning-Based Collaborative Filtering 

In recent years, informed by the deep learning advances, more and more studies have 

focused on incorporating the CF framework with deep learning architectures to improve 

model predictive capacity. Despite not being proposed specific to learning outcome 

modeling, these deep learning-based CF approaches are very promising in learner modeling 

and domain modeling. Most of the deep learning-based CF approaches utilize a deep neural 
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network architecture to learn more complex or non-linear interactions between learner and 

item representations for prediction. For example, in the “two-stream neural network 

architecture for matrix completion” proposed by Nguyen et al. (2018), rows and columns of a 

user-item matrix, which represent user and item vectors, are separately fed into multiple 

neural network layers to learn more effective item and learner representations, which can be 

extended to new users and new items. In the deep CF framework proposed by Li et al. 

(2015), the item and user representations are learned through marginalized denoising stacked 

auto-encoders based on additional sources of information on users and items, which are in 

turn incorporated into the matrix factorization framework for prediction. In the neural CF 

framework developed by He et al. (2017), solely based on the user-item rating matrix, the 

concatenation of user and item representations (user and item embeddings) is fed into 

multiple neural network layers to learn the non-linear interactions between users and items, 

which are incorporated into a generalizable matrix factorization framework for prediction. 

These CF approaches based on deep learning architectures generally outperformed other 

state-or-art methods in terms of prediction performance. 

In summary, compared with other types of CF approaches, deep learning-based CF 

approaches are more capable of capturing the complexity of interactions between learners 

and items in affecting item responses. This means that the model predictive capacity benefits 

from the finer-grained representations learned by deep learning as more information can be 

extracted to know about learners and items for prediction. Moreover, deep learning 

architectures are exceptionally effective for learning additional information about learners 

and items, such as learners’ background information, item content, and potentially, the 

process data associated with item responses. Leveraging the representation of these additional 

information, the CF approaches can be improved in terms of two aspects. First, they can 

predict missing responses with higher accuracy because the system knows items and learners 
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better. Second, with respect to learner modeling and domain modeling, the learner and item 

representations can be refined as well through learning additional information. For example, 

item-skill associations can be more accurately estimated through learning learners’ actions 

and time durations for answering each item. Methodologically, adding more information in 

model learning can be considered as a regularization technique which makes the weights of 

item-skill associations more stable, interpretable, and generalizable. This is a desirable 

feature for learner modeling and domain modeling. Unfortunately, very few, if any at all, 

established deep learning-based CF approaches were developed specifically for learning 

outcome modeling and process data learning. Investigations of deep learning-based CF 

approaches for learning outcome modeling are acutely needed. 

Process Data Analysis for Learning Outcome Modeling 

The previous sections presented a comprehensive survey of existing mainstream 

approaches for learning outcome modeling. Despite a methodological lens, the introduction 

to the approaches emphasizes the importance of exploiting all the available information about 

learners and items in addition to explicit item responses for learning outcome modeling. In 

this section, the chapter reviews some pioneering work revealing the potential of process data 

for learning outcome modeling. 

As mentioned, there exist a number of case studies showing how to analyze process 

data to inform learning in the settings of CBA. For instance, Greiff et al. (2015) analyzed the 

process data of one question on complex problem solving in PISA 2012 for identifying 

learners’ problem-solving strategies. They extracted a set of frequency-related and time-

related features from the process data and examined how these features predicted learners’ 

problem-solving success. Notably, they identified a dominant strategy for solving the 

question. However, their analyses were conducted in an exploratory fashion with only one 

item, which is not scalable and extendable in other settings. With the data of an item from the 
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same assessment, Liu et al. (2018) proposed to use a modified multilevel mixture IRT model 

to analyze learners’ process data, which identified different latent classes of problem-solving 

strategies and estimated learners’ abilities at both the process and item levels. Their approach 

was also examined with the data of one item and showed limited generalizability. The PISA 

dataset was also analyzed by the event history analysis model proposed by Chen et al. (2019). 

Their approach was developed to model the problem-solving process with the aim of 

predicting both the remaining time a learner needs for completing the item and the final 

problem-solving outcomes (success or failure). However, their approach suffers the limitation 

of single-item analysis as well, which cannot be well extended to multiple-item analysis. 

Similarly, Shu et al. (2017) proposed a Markov-IRT model to extract features from learners’ 

problem-solving processes as evidence for psychometric measurement. However, the Markov 

property assumed by their approach limits the temporal dependencies in problem solving 

between two consecutive actions.  

More recently, Tang et al. (2019) proposed a more generalizable approach for 

extracting informative features from learners’ action sequences in solving a problem based on 

the sequence-to-sequence autoencoder. The learned latent features are indicative of how 

learners attempt a problem, which can be used for subsequent statistical or machine learning 

analysis. Essentially, their approach is representation learning of action sequences. However, 

it cannot deal with multiple items simultaneously and fails to model the time information. 

Moreover, in terms of learning outcome modeling or other predictive analyses, a 

sophisticated model is still needed to connect representation learning of action sequences 

with other model architectures. 

In summary, the existing approaches for process data analysis were mainly developed 

and examined in specific contexts with a single item. Moreover, they heavily rely on the 

assumptions of statistical or psychometric models and require human-specified rules, which 
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limits their scalability and generalizability. In terms of learning outcome modeling, none of 

these approaches is capable of modeling item responses with process data at a large scale 

across multiple items.  

An Overview of Approaches for Learning Outcome Modeling 

Table 2 presents a summary of the mainstream approaches for learning outcome 

modeling used in both communities of psychometric measurement and educational data 

mining. In general, psychometric measurement models such as IRT and cognitive diagnosis 

models require strong assumptions about how latent skills affect item responses. Moreover, 

they are limited in dealing with highly unstructured data which is most accessible in the 

context of digital learning. The Bayesian family approaches require complex computation of 

great amounts of conditional probabilities given multiple items and skills, which is 

challenging for computational resources. Moreover, constructing Bayesian networks requires 

human knowledge on the links between variables. Although the DKT approach is very 

promising, how it can be used to tackle unstructured process data in addition to structured 

item responses is still under-investigated. The AFM approach requires pre-specification of 

item-skill associations and it models the data at the skill level. In general, deep learning 

approaches with a well-designed model architecture and well-tuned model hyperparameters 

are very effective in learning outcome modeling, shown by their higher prediction capacities, 

stronger generalizability, and higher scalability than conventional approaches. Particularly, 

this chapter emphasizes the potential of deep CF approaches for learner and domain modeling 

because learner and item differences can be strongly represented by latent factors. Finally, 

this chapter reviews the existing work on process data analysis and advocates its potential for 

enhanced learning outcome modeling. 

To sum up, the major gaps in the literature on learning outcome modeling are: 
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• Most sequential modeling techniques for tracing skill mastery and predicting item 

responses model the product data at the skill level and fail to address the 

differences between items.  

• The vast majority of existing learning outcome modeling approaches fail to 

account for the process data. 

• The existing approaches for process data analysis are not generic and scalable. 

The dissertation strives to bridge the aforementioned gaps leveraging the promising 

features of CF approaches and deep learning architectures. The CF framework is used to 

account for learner and item differences at a fine-grained level, and the deep learning 

framework is used to capture the complexity of both product data and process data. 

Therefore, the dissertation proposes three generic modeling frameworks incorporating deep 

learning-based CF with process data learning to improve the accuracy of learner modeling as 

well as to discover item-skill associations from scratch. 
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Table 2  

A Summary Table of Key Approaches for Learning Outcome Modeling 

Approach  Temporal 

Modeling 

Input 

Data 

Learner 

Modeling 

Domain 

Modeling 

Multiple 

Skills 

Multiple 

Items 

Major Challenges 

CTT No Product Yes No No Yes Item and learner dependent; untestable assumptions; high 

measurement error; limited use in the context of CBAs 

IRT  No Product Yes No No Yes Unidimensionality; strong assumptions; requires structured 

and complete data; no temporal modeling 

Cognitive 

Diagnosis 

No Product Yes No Yes Yes Hard to specify accurate Q-matrices; strong assumptions; 

requires structured and complete data; no temporal modeling 

Bayesian 

Network 

No Product Yes No Yes Yes High demands on computational resources; requires expert 

knowledge on model construction; no temporal modeling 

DBN Yes Product Yes No Yes Yes High demands on computational resources; requires expert 

knowledge on model construction 

BKT Yes Product Yes No No Yes Only models one skill; skill-level modeling without item 

parameters 

AFM Yes Product Yes No Yes Yes Hard to specify accurate Q-matrices; skill-level modeling 

without item parameters 

DKT Yes Product Yes Yes Yes Yes Deals with structured item responses only 

Deep 

Learning 

Yes Product 

Process 

Yes  Yes Yes Yes Requires sophisticated design of model architecture; requires 

large amounts of data; requires large amounts of 

computational resources 

Matrix 

Factorization 

Yes Product Yes Yes Yes Yes Limited in recovering item-skill associations; limited 

interpretability of model weights 

Deep 

Learning-

Based CF 

Yes Product 

Process 

Yes Yes Yes Yes Requires sophisticated design of model architecture; requires 

large amounts of data; requires large amounts of 

computational resources 

Process Data 

Analysis 

No Process No No No No Exploratory; mainly works for one item; limited 

generalizability and scalability 

Note. The approaches summarized in the table mostly refer to their standard forms. Their variants might have different features with respect to 

the indicators in the table. Domain modeling refers to estimating or refining item-skill associations.  
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Research Problems 

Specifically, the dissertation approaches the research objective by addressing the 

following three specific research problems: 

1. Sequential modeling of product data (i.e., item responses). As mentioned 

previously, approaches for learning outcome modeling can be categorized as 

sequential modeling and non-sequential modeling. For non-sequential modeling (e.g., 

standard IRT models), item responses are assumed to be conditionally independent 

from each other, which means learners’ history item responses have no influence on 

their current and future ones. In addition, learners’ mastery levels of latent skills are 

assumed to be constant throughout the assessment. However, for sequential modeling 

(e.g., BKT and DKT), the temporal dependencies between history item responses are 

modelled, which are assumed to affect learners’ current and future item responses. In 

addition to predicting learner future item responses, sequential modeling of item 

responses in this work also discovers item-skill associations without expert 

information.  

2. Learning outcome modeling with process data. The dissertation also addresses how 

to improve learning outcome modeling by exploiting process data. As mentioned, the 

process data carries more information regarding how learners attempt a problem, 

which can be used to improve the model prediction accuracy and the interpretability 

of item- and learner-skill associations.  

3. Sequential modeling of product and process data. Informed by the first two 

research problems, the third research problem is to sequentially model both product 

data and process data. More specifically, for this research problem, the dissertation 

aims to improve the accuracy of predicting future item responses and discover item-
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skill associations from the scratch by modeling learners’ history item response 

sequences along with associated actions and time durations. 

Proposed Approaches 

The dissertation proposes three models to address the three research problems, which 

are all based on the CF framework. 

Figure 10  

Simplified Diagram of SDCF

 

1. SDCF: Sequential Deep Collaborative Filtering Model. The SDCF model adopts 

the LSTM network for sequentially modeling of history item responses. For each item 

response within a learner’s item response sequence, the probability of the individual correctly 

solving the current item is predicted by all the prior item responses. As such, compared with 

earlier item responses, the later item responses can be modelled with more information. 

Figure 10 presents a simplified diagram of SDCF (more details are given in Chapter 3). It can 

be seen that predicting response on item 9 requires the response sequence from item 1 to item 

8, while predicting response on item 3 only requires responses on items 1 and 2. The 

temporal dependencies between present item responses are modelled by the LSTM network 

with the attention mechanism. Moreover, the model also discovers the item clusters in terms 
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of their associations with latent skills. In summary, SDCF is a sequential modeling technique 

built based on the LSTM network and the CF framework. 

Figure 11  

Simplified Diagram of LogCF 

 

 

2. LogCF: Deep Collaborative Filtering with Process Data. To address the second 

research problem, LogCF is developed for learning outcome modeling of learning process 

data (see Figure 11). LogCF models item responses at the entry level, which means no 

temporal dependencies between item responses are involved. Specifically, for the prediction 

of a learner’s item response on an item, the model learns the learner’s representation (i.e., 

learner-skill associations) and the item’s representation (i.e., item-skill associations) as 

intermediate inputs. Moreover, the model also learns the representations of the learner’s 

actions and time durations associated with the item response, which are used as another set of 

intermediate inputs. These intermediate inputs are then used for the final prediction. In 

LogCF, the representations of raw data work and the final prediction are processed through 

deep learning techniques, such as embedding, LSTM networks, and multiple neural network 

layers (more details are given in Chapter 4). 
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3. LogSDCF: Sequential Deep Collaborative Filtering with Process Data. 

Informed by SDCF and LogCF, LogSDCF is developed to account for both temporal 

dependencies between item responses and process data (see Figure 12). As such, for each 

item response, the model learns the representations of the learner, the item, the actions, and 

the time durations. These representations are integrated and modelled with the LSTM 

network with the attention mechanism for learning the temporal dependencies. The prediction 

of an item response is based on all its prior item responses and associated actions and time 

durations. Compared with SDCF, LogSDCF is supposed to result in improved prediction 

accuracy since additional information of process data is used. 

Figure 12  

Simplified Diagram of LogSDCF 
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Chapter 3 SDCF: Sequential Deep Collaborative Filtering Model  

The purpose of this chapter is to address the first research problem by proposing a 

CF-based general framework predicting learners’ future item responses based on their history 

item responses. Given the nature of sequential modeling, the model proposed in this chapter, 

SDCF, adopts the LSTM network to address the issue of learning temporal information of 

item responses. To capture higher complexity of learner-item interactions, SDCF integrates 

learner and item latent representations through a deep neural network architecture for 

prediction. Moreover, to discover how items are associated with each other in terms of latent 

skills, SDCF adopts the self-attention mechanism to learn the relevance of different items 

from scratch. 

The following sections start with the problem formulation, followed by an 

introduction to the SDCF architecture. 

Problem Formulation 

Suppose that a hypothetical assessment with 𝑛 items measures 𝑘 latent skills and 𝑚 

independent learners take the assessment. Each learner’s item responding process can be 

denoted as 𝐑𝑖 = {(𝐦𝑖 , 𝐧1
𝑖 , 𝑅1

𝑖 ), (𝐦𝑖 , 𝐧2
𝑖 , 𝑅2

𝑖 ), … , (𝐦𝑖 , 𝐧𝑇
𝑖 , 𝑅𝑇

𝑖 )}, where 𝐦𝑖 denotes the 

identification of the learner, 𝐧𝑡
𝑖  denotes the item 𝐧𝑡 responded by learner 𝐦𝑖 at the 𝑡th 

timestep, and 𝑅𝑡
𝑖 denotes the corresponding item response result (correct/incorrect). If learner 

𝐦𝑖 correctly solves item 𝐧𝑡, 𝑅𝑡
𝑖 = 1, otherwise 𝑅𝑡

𝑖 = 0. Learners and items are denoted by 

𝐦𝑖 and 𝐧𝑡 instead of their subscripts 𝑖 and 𝑡 because learners and items can be characterized 

with various information. In SDCF, 𝐦𝑖 and 𝐧𝑡 are simply learner and item identifications, 

which are embedded as learner and item latent representations. However, 𝐦𝑖 and 𝐧𝑡 can be 

extended to indicate other learner and item features such as learners’ background profiles and 

item texts, if a sophisticated model is devised. Having the item responding process 𝐑𝑖 of each 

learner across the first 𝑇 item response opportunities, our goal is to learn a model ℳ which is 
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capable of predicting �̂�𝑇+1
𝑖  on the next item 𝐧𝑇+1

𝑖  at the timestep 𝑇 + 1. In the meantime, the 

model is capable of discovering item-skill associations based on the relevance between items. 

The proposed model SDCF is analogous to the knowledge tracing models such as 

BKT and DKT, serving the purpose of predicting future item responses based on modeling 

learner history item responses. The major difference of SDCF from them is that it is an item-

level modeling technique accounting for the differences between items and the differences 

between learners. However, BKT and DKT label each item as its associated skill, requiring 

pre-specification of item-skill associations. In other words, they are not capable of utilizing 

item-level information. 

Modeling Process of SDCF 

Figure 13 presents the graphical representation of SDCF with its two main 

architectural components: an architecture for modeling the history of item responses and an 

architecture for predicting future item responses.  
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Figure 13  

Graphical Representation of SDCF

 

Item and Learner Embedding  

Given the raw data fed into the model, which is each learner’s item responding 

process 𝐑𝑖 = {(𝐦𝑖, 𝐧1
𝑖 , 𝑅1

𝑖 ), (𝐦𝑖 , 𝐧2
𝑖 , 𝑅2

𝑖 ), … (𝐦𝑖, 𝐧𝑇
𝑖 , 𝑅𝑇

𝑖 )}, the modeling process of SDCF 

first learns latent representations of learners and items based on their identifications 𝐦𝑖 and 

𝐧𝑡. Because learner and item identifications are categorical variables, the model first converts 

them to sparse binary vectors by one-hot encoding. For instance, for a dataset with 100 

unique learners, each learner can be represented as a 100-dimensional vector. In each vector, 

of the 100 dimensions, in one-hot encoding, only one dimension is valued at 1 and all other 

dimensions are valued at 0, which indicates the unique representation of one learner. 
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Likewise, each item can also be represented as a sparse vector. However, one-hot encoding is 

too sparse for learning, the model thus converts the sparse item and learner vectors to dense 

vectors with a dimension of the number of latent factors. For example, given 100 latent 

factors, each item and each learner can be represented as a 100-dimensional vector with each 

dimension indicating one latent factor. As such, given 𝑘 latent skills, the model stacks an 

embedding layer on the input layer of learner and item identifications to project them onto a 

𝑘-dimensional dense vector, which produces the learner latent representation 𝐔 =

[𝐮1, … , 𝐮𝑚] and the item latent representation 𝐕 = [𝐯1, … , 𝐯𝑛]. Compared with one-hot 

encoding, embedding largely reduces the dimensions of item and learner representations and 

makes them more compact.  

Concatenation of Embeddings and Item Responses 

After item and learner embedding, the next step of the modeling process of SDCF is 

to concatenate the three types of inputs — the item embeddings 𝐯𝑗, the learner embeddings 

𝐮𝑖, and the item responses 𝑅𝑡
𝑖 — for sequential modeling. The model first concatenates 

learner and item embeddings. Since both learner and item embeddings have 𝑘 dimensions, 

after concatenation, the 𝑘-dimensional item and learner embeddings are combined as a 2𝑘-

dimensional embedding vector, 𝐞𝑖𝑗. Subsequently, the model combines the concatenated 

embedding vector 𝐞𝑖𝑗 with the item response 𝑅𝑡
𝑖 at timestep 𝑡. Because a correct and an 

incorrect item response reflect different states of learners’ item responding process, their 

different effects in modeling need to be accounted for. The model, therefore, extends the item 

response 𝑅𝑡
𝑖 to a feature vector 𝟎 = (0,0, … ,0) with the same 2𝑘 dimensions of the 

concatenated embedding vector 𝐞𝑖𝑗, which is then concatenated with 𝐞𝑖𝑗 to produce a final 

concatenated vector 𝐞𝑖𝑗
𝑡  as: 
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 𝐞𝑖𝑗
𝑡 = {

[𝐞𝑖𝑗⨁𝟎]   if 𝑅𝑡
𝑖 = 1 

[𝟎⨁𝐞𝑖𝑗]   if 𝑅𝑡
𝑖 = 0

, (25) 

where ⨁ denotes the concatenation operator. 

Deep LSTM Network Architecture for Sequential Learning 

 After the concatenation of embedding vectors and item responses, the model feeds 

the concatenated input 𝐞𝑖𝑗
𝑡  into a deep learning architecture of multiple LSTM network layers 

for learning the temporal dependencies between item responses. Within an LSTM network 

layer, each item responding input 𝐞𝑖𝑗
𝑡  at the 𝑡th timestep has a hidden state ℎ𝑡, which is 

recurrently updated with the previous hidden state ℎ𝑡−1: 

 

𝑓𝑡 =  𝜎(𝑊𝑓[ℎ𝑡−1, 𝐞𝑖𝑗
𝑡 ] +  𝑏𝑓), 

𝑖𝑡 =  𝜎(𝑊𝑖[ℎ𝑡−1, 𝐞𝑖𝑗
𝑡 ] +  𝑏𝑖), 

𝐶𝑡 =  𝑓𝑡 ⋅  𝐶𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝐶[ℎ𝑡−1, 𝐞𝑖𝑗
𝑡 ] + 𝑏𝐶),  

𝑜𝑡 =  𝜎(𝑊𝑜[ℎ𝑡−1, 𝐞𝑖𝑗
𝑡 ] +  𝑏𝑜), 

ℎ𝑡 =  𝑜𝑡 ⋅ tanh(𝐶𝑡), 

(26) 

where 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 indicate the forget gate, the input gate, and the output gate of an LSTM 

cell respectively, 𝐶𝑡 denotes the hidden state at the 𝑡th timestep, 𝜎 denotes the Sigmoid 

activation function and tanh denotes the hyperbolic tangent activation function. In addition, 

the weights and bias of the forget gate, the input gate and the output gate are represented by 

𝑊𝑓 and 𝑏𝑓, 𝑊𝑖 and 𝑏𝑖, and 𝑊𝑜 and 𝑏𝑜 respectively. As mentioned, the three gates control the 

information inputted by the cell, the information remembered or forgotten in the cell state, 

and the information outputted by the cell, which makes the LSTM network very flexible and 

successful in modeling temporal dependencies. 

Equation 26 only depicts the modeling process within one LSTM network layer. Two 

or more LSTM network layers can be stacked in the same model to deal with greater data 

complexity. Given multiple LSTM network layers, the output sequence of the last layer 𝐒 =



DEEP COLLABORATIVE FILTERING AND PROCESS DATA  

 
73 

{𝑠1
𝑖 , 𝑠2

𝑖 , … , 𝑠𝑇
𝑖 } can be considered sequential learner-item interaction over the past 𝑇 timesteps, 

which are recurrently updated in the item responding process. The number of LSTM network 

layers and the number of hidden nodes (i.e., output dimension) for each LSTM network layer 

are two hyperparameters to be tuned in training. 

To predict the next item response based on learner-item interaction over the past 𝑇 

timesteps, the output 𝑠𝑇
𝑖  produced by the deep LSTM network architecture is then 

concatenated with the embedding vector of the next item at timestep 𝑇 + 1, 𝐯𝒋
𝑻+𝟏, and fed 

into a deep neural network architecture with multiple layers. Formally, it can be stated as: 

 𝐷𝑇+1
𝑖  = 𝑓𝐻(𝐖𝐻

𝑇𝑓𝐻−1(… 𝑓2(𝐖2
𝑇𝑓1(𝐖1

𝑇 [
𝑠𝑇

𝑖

𝐯𝒋
𝑻+𝟏])) … )), (27) 

where 𝐖1 to 𝐖𝐻 indicate the neural network weights for the 𝐻 neural network layers, and 𝑓1 

to 𝑓𝐻 represent the activation function applied in each neural network layer. The output of the 

deep neural network architecture, 𝐷𝑇+1
𝑖 , indicates the learned interaction between the current 

item for prediction and the past item responding process. The number of neural network 

layers and the number of nodes for each layer are two hyperparameters to be tuned in 

training.  

Self-Attention Mechanism 

 In addition to LSTM networks, SDCF also uses a self-attention layer (Vaswani et al., 

2017) to further model the relevance of the current item for prediction with the past solved 

items. An attention layer involves three inputs: query, key, and value, which are all vectors. 

For a query and its corresponding keys, the attention layer uses a compatibility function to 

compute attention weights, which represent the relevance of the query with different keys. 

The attention layer then uses the attention weights to calculate a weighted sum of the values, 

which is the layer output. In this study, the query refers to item embeddings of the next item 

for prediction, and both key and value refer to each learner’s previous item responses  𝐞𝑖𝑗
𝑡 . As 
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such, for each item for prediction, SDCF computes its attentions weights connecting to each 

of its previous solved items, indicating the relevance of the current item with previous items.  

The particular attention used in this study is the scaled dot-product attention (Vaswani 

et al., 2017). Given the query, key, and value matrices of dimension 𝑘 (denoted as 𝐒, 𝐒, and 𝐕 

respectively), the scaled dot-product attention output is calculated as: 

 Attention(𝐕, 𝐒, 𝐒) =  softmax(𝐕𝐒𝑇/√𝑘)𝐒, (28) 

where softmax(𝐕𝐒𝑇/√𝑘) indicates the attention weights. It should be noted that when 

predicting the item response at timestep 𝑇 + 1, only the learner-item interaction over the 

previous 𝑇 timesteps should be considered. As such, for any query at timestep 𝑡, keys at 

timesteps later than 𝑡 should be omitted for computing the weights.  

According to Vaswani et al. (2017), to impose non-linearity on the weighted attention 

output, a neural network architecture consisting of one feedforward layer and one layer with 

ReLU activation is applied to each timestep separately on top of the attention layer. Formally, 

the output of the neural network architecture is calculated as: 

 F = max(0, 𝑥𝑊1 + 𝑏1) 𝑊2 + 𝑏2, (29) 

where 𝑊1, 𝑊2, 𝑏1, and 𝑏2 are learnable parameters of the neural network layers. 

In addition, a residual connection (He et al., 2016) followed by layer normalization 

(Ba et al., 2016) is applied to both the attention layer and the two-layer neural network 

architecture. Specifically, a residual connection adds the input and the output of each layer as 

the final output, so the importance of lower-layer features could be better captured for 

prediction.  

Prediction 

The prediction module of SDCF is shown by the right-hand part of the graphical 

representation in Figure 13. Specifically, the output of the deep LSTM network architecture 
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D is concatenated with the output of the attention mechanism F, and they are fed into a neural 

network layer of output dimension one with Sigmoid activation for prediction:   

 �̂�𝑇+1
𝑖  = Sigmoid (𝐖𝑇 [

D

F
]). (30) 

SDCF Learning 

The following model parameters are to be updated in training: the embedding weights 

for items and learners, the weights of the deep LSTM network architecture for sequential 

learning, the weights of the attention mechanism, and the weights of the final neural network 

layer for prediction. The objective function for learning the model weights can be obtained by 

taking the negative logarithm of the likelihood of the observed sequence of learner item 

responding process, which is the binary cross-entropy loss: 

 𝐽 =  − ∑ 𝑅𝑡
𝑖𝑇

𝑡=1 log�̂�𝑡
𝑖 + (1 − 𝑅𝑡

𝑖)log (1 − �̂�𝑡
𝑖), (31) 

where �̂�𝑡
𝑖 denotes the predicted probabilities of correct item responses at the 𝑡th timestep. The 

model weights are recursively updated to minimize the objective function. The optimization 

method of Adaptive Moment Estimation (Adam; Kingma & Ba, 2014) is selected to 

determine how to update the model weights in training. Adam is an exponentially powerful 

and popular optimizer in deep learning, given its feature of individualizing learning rates for 

different model parameters. 

Experimental Setup 

In the following sections, extensive experiments are conducted to evaluate the 

effectiveness of SDCF with a simulated dataset and a real-world dataset. The experiments 

address the following specific research questions. 

• Does SDCF show higher predictive capacity than DKT? 

• Does using learners’ fewer history item responses for training lead to lower 

prediction performance for SDCF? 

• How interpretable are the item-skill associations estimated by SDCF? 
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Dataset Description 

The synthetic datasets were obtained by simulating 4000 virtual learners’ item 

responses on 30 items measuring one of three latent skills. All students answer the same 

sequence of 30 items, but the order of items varies by student. The probability of a learner 

getting an item correct given his or her latent skill level was modelled using the Rasch model 

(see Equation 3). Specifically, each of the three skills was measured by 10 items, and items 

measuring the same skill were of different difficulties, randomly sampled from a normal 

distribution with a standard deviation of 1 and a mean of 0. Each learner has a latent ability 

level on each of the three skills, which were randomly sampled from a normal distribution 

with a standard deviation of 1 and a mean of 0. Moreover, learners’ skill levels were set to 

slightly increase by 0.1 each time they are tested on items of the same skill. The simulation 

performed ten times, resulting in ten different synthetic datasets. The models were trained 

and tested without seeing the mapping of items to skills.  

The real-world dataset — “Lab study 2012 (cleanedLogs)” under the project 

“Fractions Lab Experiment 2012” led by Vincent Aleven — is a web-based tutoring dataset 

obtained from the PSLC DataShop2 (Koedinger et al., 2010). The dataset is of 74 learners, 

14,959 problem-solving steps, and 37,889 transactions. Regarding the number of latent skills, 

there is a total of six latent skill models specifying different numbers of latent skills. The 

model labelled “KC (DefaultFewer_corrected)” was selected for DKT training. In the web-

based tutoring system, learners attempted to solve mathematical problems on fractions. 

Particularly, learners might be assigned with different sets of problems with different 

problem content, implying that the item sequences for each learner are not identical. To solve 

a problem, learners needed to take a set of problem-solving steps, each of which was 

considered as an independent item in this study. In the log data, each step (i.e., item) is 

 
2 https://pslcdatashop.web.cmu.edu/ 
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associated with a set of transactions, indicating learners’ problem-solving actions interacting 

with the system. Moreover, in the log data, each action is associated with a time variable, 

indicating how long a learner took for each action. It is required to preprocess the dataset 

prior to training the model. First, all transactions produced by the tutor system rather than the 

learner, and all transactions without time information are removed. Second, steps with an 

outcome of “hint” are treated as intermediate actions for solving corresponding items. Third, 

because the system used the same labels for actions of the same categories, actions are 

combined with associated selections by learners to improve their differentiability. Finally, 

because the dataset has a limited number of samples (i.e., 74 learners) and most samples have 

an item sequence of more than 200 items, the 74 item sequences are split into multiple 

subsequences with a fixed length of 20. As a result, there are 866 item sequences used for 

training and testing the model. After data pre-processing, the final dataset includes 32 unique 

items and 15 unique skills, and approximately 73% of item responses are correct.  

SDCF Training Setting 

Hyperparameter tuning is conducted as follows. For item and learner embedding 

weights, a hyperparameter search was conducted on the following four candidate 

regularization weights: 0, 0.001, 0.01, and 0.1. Larger regularization weights lead to sparser 

embedding weights (i.e., item- and learner-skill associations). Regularization weights of 0 

and 0.001 were selected for the real-world and synthetic datasets respectively. In addition, 

prior to each neural network layer, a dropout layer with a dropout rate of 0.2 (selected from 

candidate rates of 0, 0.2, and 0.5) was used to prevent overfitting for both datasets (Srivastava 

et al., 2014). The deep LSTM network architecture contained one layer with an output 

dimension of five; the deep neural network architecture for prediction contained one layer 

with an output dimension of three. Moreover, latent dimensions of 100 and 300 were selected 

for embedding item and learner IDs for the real-world and synthetic datasets respectively. 
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Regarding the learning rate for Adam, a hyperparameter search was conducted on the 

following four candidate learning rates: 0.0001, 0.001, 0.01, and 0.1. Specifically, 0.0001 and 

0.001 were selected for the real-world and synthetic datasets, respectively. Regarding batch 

sizes, a hyperparameter search was conducted on the following values: 8, 32, 64, 128, and 

256. The model was trained with batch sizes of 256 and 8 for the real-world and synthetic 

datasets respectively. SDCF (as well as LogCF and LogSDCF) was programmed and 

implemented with the deep learning library keras (Chollet, 2015) in Python (Python Software 

Foundation, 2019).  

Baseline 

To evaluate its effectiveness and predictive capacity, SDCF was compared with DKT. 

The latter learns individuals’ sequential item responses as inputs for predicting probabilities 

of correct item responses based on RNNs (Piech et al., 2015), which was introduced in 

Chapter 2. DKT was used as a baseline in the majority of educational mining papers. As a 

sequential modeling technique, it was found to outperform conventional models such as BKT 

and AFM (e.g., Xiong et al., 2016). In this study, for the real-world dataset, using item IDs 

for DKT training resulted in slightly worse prediction performance than using skill IDs, so 

DKT was learned using skill IDs with a learning rate of 0.001 and a hidden node size of 100 

for the LSTM layer. For the synthetic dataset, DKT was learned using item IDs with the same 

learning rate and hidden node size as for the real-world dataset. 

In addition to DKT, this study also compares SDCF with its two variants, SDCF-

Attention and SDCF-LSTM, which are two sub-architectures of SDCF (see Figure 13). 

Specifically, in SDCF, the output of the attention mechanism is concatenated with the output 

of the LSTM architecture for the final prediction. SDCF-Attention and SDCF-LSTM, 

however, use the outputs of the two sub-architectures separately for the final prediction. 
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Evaluation 

To address the research questions, the prediction performance of SDCF was evaluated 

under the condition of different training/test partition rates. Specifically, for each learner item 

response sequence, the first 30%, 50%, and 70% of item responses were used for training and 

the remaining ones were used for testing.  

The predictive capacities of each model were evaluated from both the regression and 

classification perspectives. Accuracy (ACC) and the Area Under the Receiver Operating 

Characteristic (ROC) Curve (AUC; Ling et al., 2003) were used as the classification 

evaluation metrics. The ACC is simply calculated as the percentage of samples that are 

correctly predicted. As the model yields predicted probabilities of correct responses ranging 

from 0 to 1, the ACC is typically calculated based on a cut-off value of 0.5 for classifying an 

item response as correct or incorrect. In contrast to the ACC, the AUC is calculated without 

specifying any cut-off values. As its name suggests, it is calculated as the area under the plot 

of sensitivity rates against the false-positive rates. The sensitivity rates and the false-positive 

rates are calculated at a wide range of possible cut-off values, which makes AUC insensitive 

to class imbalance (i.e., many correct responses but few incorrect responses or versa vice). 

Moreover, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) were 

used as the regression evaluation metrics (Willmott et al., 2005). Specifically, with respect to 

this study, if the model predicts that the probability of learner 𝑖 correctly answering item 𝑗 is 

𝑃𝑖𝑗 with a ground truth 𝑅𝑖𝑗 and a total of 𝑁 predictions, MAE is calculated as 

 MAE =  
∑ |𝑃𝑖𝑗 − 𝑅𝑖𝑗|𝑖,𝑗

𝑁
, (32) 

and RMSE is calculated as 

 RMSE =  √
∑ (𝑃𝑖𝑗 − 𝑅𝑖𝑗)2

𝑖,𝑗

𝑁
. (33) 
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Experimental Results  

Main Prediction Results  

Tables 3 and 4 show the testing performance of each model given different 

training/test partition ratios for the “Lab study 2012” dataset and the synthetic dataset 

respectively. Generally, for both datasets, SDCF outperforms DKT on all evaluation metrics, 

except for the higher RMSE of SDCF when the training ratio is 0.5 or 0.3 for the synthetic 

dataset. Moreover, using more history items for training improves the prediction accuracy of 

SDCF for the real-world dataset, shown by higher ACC and AUC rates and lower MAE and 

RMSE rates for higher training ratios. However, for the synthetic dataset, the differences in 

prediction performance between different training/test partition ratios are less substantial, and 

only using the first 30% items for training could result in satisfying prediction performance.  

Table 3  

Model Prediction Performance of SDCF for the Real-World Dataset 

Model ACC AUC MAE RMSE 

Training ratio: 0.7 

DKT 0.7037 0.7157 0.3786 0.4339 

SDCF 0.7143 0.7347 0.3583 0.4298 

SDCF-Attention 0.7141 0.7352 0.3582 0.4300 

SDCF-LSTM 0.7106 0.7230 0.3907 0.4337 

Training ratio: 0.5 

DKT 0.6890 0.6974 0.3739 0.4422 

SDCF 0.7076 0.7266 0.3587 0.4342 

SDCF-Attention 0.7070 0.7263 0.3589 0.4346 

SDCF-LSTM 0.7076 0.7149 0.3799 0.4356 

Training ratio: 0.3 

DKT 0.6672 0.6439 0.3764 0.4748 

SDCF 0.7065 0.7182 0.3595 0.4382 

SDCF-Attention 0.7044 0.7183 0.3602 0.4387 

SDCF-LSTM 0.7065 0.6945 0.3548 0.4473 

Note. ACC = Accuracy; AUC = Area under the ROC Curve; MAE = Mean Absolute Error; 

RMSE = Root Mean Square Error. 

 



DEEP COLLABORATIVE FILTERING AND PROCESS DATA  

 
81 

Table 4  

Model Prediction Performance of SDCF for the Synthetic Dataset 

Model ACC AUC MAE RMSE 

Training ratio: 0.7 

DKT 0.8279 0.9226 0.2290 0.3413 

SDCF 0.8592 0.9473 0.1483 0.3389 

SDCF-Attention 0.8574 0.9483 0.1507 0.3400 

SDCF-LSTM 0.7616 0.8680 0.3204 0.3986 

Training ratio: 0.5 

DKT 0.8589 0.9426 0.1912 0.3097 

SDCF 0.8741 0.9531 0.1331 0.3210 

SDCF-Attention 0.8782 0.9536 0.1287 0.3160 

SDCF-LSTM 0.7664 0.8643 0.3079 0.3941 

Training ratio: 0.3 

DKT 0.8491 0.9299 0.1930 0.3247 

SDCF 0.8544 0.9368 0.1526 0.3482 

SDCF-Attention 0.8574 0.9369 0.1500 0.3436 

SDCF-LSTM 0.7478 0.8434 0.3056 0.4051 

Note. ACC = Accuracy; AUC = Area under the ROC Curve; MAE = Mean Absolute Error; 

RMSE = Root Mean Square Error. 

 

Regarding the comparison between SDCF and its two variants, it is evident that 

SDCF slightly outperforms its LSTM and attention sub-architectures in terms of prediction 

performance for the real-world dataset. However, for the synthetic dataset, SDCF-Attention 

slightly outperforms SDCF in terms of prediction performance when the training ratio is 

small. This suggests that SDCF is a flexible modeling framework weighing its two sub-

architectures differentially in training for datasets of different characteristics. 

Item-Skill Associations Discovered by SDCF  

This study follows the approach proposed by Pandey and Karypis (2019) to 

demonstrate the interpretability of SDCF. Specifically, for each of a learner’s item responses 

(i.e., the query), SDCF estimates its attention weights connecting to each of its previous item 

responses (i.e., the keys), indicating the relevance of the current item with the previous items. 

As such, the relevance weight for each item pair (i.e., [query item, key item]) can be 

calculated as the sum of its attention weights across all learners. For each query item, its 

relevance weights are then normalized so that they all sum to one. The relevance weights of 
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each item indicate the strengths of its connections to other items. Given the relevance 

weights, items measuring the same skills can be discovered by identifying which items have 

the strongest connections to each item. 

Figure 14  

Heatmap of Item Relevance Weights Estimated by SDCF for the Synthetic Data 

 

For example, for the synthetic dataset, learners provide responses to 30 items in 

different orders. In the synthetic assessment, items 1 to 10, items 11 to 20, and items 21 to 30 

measure the hidden skills 1, 2, and 3 respectively. For each of the 30 items, its relevance 

weights for the other 29 items can be calculated as the normalized sum of attention weights 

across 4000 learners. Figure 14 presents the heatmap of relevance weights for all item pairs. 

In general, it can be seen that the relevance weights between items measuring the same skill 
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are much stronger than those between items measuring different skills. Using the relevance 

weights, the top two items of the strongest weights are then connected to each query item. 

According to Figure 15, SDCF achieves a perfect clustering of items measuring the same 

skills.  

Figure 15  

Graph Depicting the Clustering of Items Measuring the Same Skills by SDCF 

 

Note. Items 1 to 10, items 11 to 20, and items 21 to 30 measure the hidden skills 1, 2, and 3 

respectively. 

 

Figure 16 presents the heatmap of item relevance weights for the real-world dataset. 

In general, compared with the heatmap for the synthetic dataset, the heatmap for the real-

world dataset suggests a less clear-cut clustering of items. However, it is still evident that 

items 10 to 21 constitute a major cluster given their stronger relevance weights between each 

other. Table 5 presents the item and skill names for the real-world dataset. It can be seen that 

items 10 to 21 measure the same skill labelled “equivDragFract”, and their associations were 
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correctly discovered by SDCF. For the original skills measured by only one or two items, the 

model could not accurately identify their differences. However, this finding was not 

surprising since skills measured by one or two items could not be adequately exercised by 

learners and the learned relevance weights were inevitably affected by more randomness. 

Moreover, it should be noted that the “true” item-skill associations for this dataset are not 

known, so researchers proposed multiple skill models for this dataset. Therefore, skill labels 

in Table 5 are not necessarily the ground truth. In general, the capacity of SDCF to discover 

item-skill associations is to some extent justified given that the major skill measured by most 

items was successfully identified. 

Figure 16  

Heatmap of Item Relevance Weights Estimated by SDCF for the Real Data 

 
Note. The item name and skill name for each item ID are presented in Table 5. 
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Table 5  

Item and Skill Names for the Real-World Data 

 ID Item Name Skill Name 

1 combo1 UpdateComboBox equivFractEquivalent 

2 combo1_3 UpdateComboBox compFract 

3 combo2 UpdateComboBox relationEquivMultiplySameNumber 

4 combo2_1 UpdateComboBox compSectSize 

5 combo2_2 UpdateComboBox compNumSect 

6 combo2_3 UpdateComboBox compFract 

7 combo3 UpdateComboBox relationEquivConserveAmount 

8 combo4 UpdateComboBox relationEquivSameAmount 

9 combo5 UpdateComboBox relationEquivDiffNumbers 

10 dragTarget1 WasJustHitByA Circle equivDragFract 

11 dragTarget1 WasJustHitByA NL equivDragFract 

12 dragTarget1 WasJustHitByA Rect equivDragFract 

13 dragTarget2 WasJustHitByA Circle equivDragFract 

14 dragTarget2 WasJustHitByA NL equivDragFract 

15 dragTarget2 WasJustHitByA Rect equivDragFract 

16 dragTarget3 WasJustHitByA Circle equivDragFract 

17 dragTarget3 WasJustHitByA NL equivDragFract 

18 dragTarget3 WasJustHitByA Rect equivDragFract 

19 dragTarget4 WasJustHitByA Circle equivDragFract 

20 dragTarget4 WasJustHitByA NL equivDragFract 

21 dragTarget4 WasJustHitByA Rect equivDragFract 

22 fract1_denom1 UpdateTextArea relationCompTotalSectNumber 

23 fract1_denomMultiply1 UpdateTextArea equivMultiplyDenom 

24 fract1_numMultiply1 UpdateTextArea equivMultiplyNum 

25 fract2_denom1 UpdateTextArea relationCompTotalSectNumber 

26 fract2_num1 UpdateTextArea numSectZeroDot 

27 fract3_denom UpdateTextArea equivNameDenomFract 

28 fract3_denomMultiply1 UpdateTextArea equivMultiplyDenom 

29 fract3_num UpdateTextArea equivNameNumFract 

30 fract3_numMultiply1 UpdateTextArea equivMultiplyNum 

31 fract4_denom UpdateTextArea equivNameDenomFract 

32 fract4_num UpdateTextArea equivNameNumFract 
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Chapter 4 LogCF: Deep Collaborative Filtering with Process Data3 

The goal of this chapter is to approach the second research problem by proposing a 

CF-based general framework of learning outcome modeling with process data. The proposed 

approach for learning outcome modeling with process data, LogCF, attempts to integrate a 

deep learning-based CF architecture for learning learner- and item-skill associations and a 

deep learning architecture for learning process data, for the purpose of enhanced prediction 

accuracy and interpretability. The following sections start with the problem formulation, 

followed by the introduction of a general LogCF framework, and the technical details of the 

deep learning architectures for learning learner- and item-skill associations and process data. 

Problem Formulation 

Suppose the assessment data involves 𝑚 learners and 𝑛 items, measuring 𝑘 latent 

skills, which constitute an item response matrix 𝐑 = {𝑅𝑖𝑗|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. In the 

matrix, 𝑅𝑖𝑗 = 〈𝐦𝑖 , 𝐧𝑗 , 𝑟𝑖𝑗〉 indicates that the learner 𝐦𝑖 gives a response 𝑟𝑖𝑗 on the item 𝐧𝑗. 

Moreover, for each learner-item interaction 𝑅𝑖𝑗, they have an associated problem-solving 

process 𝐿𝑖𝑗 = 〈𝐦𝑖 , 𝐧𝑗 , 𝑙𝑖𝑗〉, indicating that the learner 𝐦𝑖 answers the item 𝐧𝑗 with a problem-

solving process 𝑙𝑖𝑗. The problem-solving processes 𝐿𝑖𝑗 constitute a process data matrix 𝐋 =

{𝐿𝑖𝑗|1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. Learners and items are denoted by 𝐦𝑖 and 𝐧𝑗 instead of their 

subscripts 𝑖 and 𝑗 because learners and items can be characterized with various information. 

In LogCF, 𝐦𝑖 and 𝐧𝑗 are simply learner and item identifications, but they can be extended to 

other learner and item features. 

Having the item response matrix 𝐑 and the process data matrix 𝐋, our goal is to learn 

a model ℳ which is capable of discovering learner-skill associations 𝐔 = [𝐮1, … , 𝐮𝑚] and 

 
3 This chapter was published by the author. See “LogCF: Deep collaborative filtering with process 

data for enhanced learning outcome modeling”, F. Chen and Y. Cui, 2020, Journal of Educational 

Data Mining, 12, pp. 66–99. https://doi.org/10.5281/zenodo.4399685 
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item-skill associations 𝐕 = [𝐯1, … , 𝐯𝑛] for the prediction of item responses. The 

interpretations of 𝐔 and 𝐕 are the same as those introduced in the last chapter. Moreover, the 

item response matrix 𝐑 and the process data matrix 𝐋 are not necessarily complete. This is 

because a learner might be assigned with a small portion of items in the item pool and 

correspondingly, an item might be only witnessed by some of all learners. In the case of 𝐑 

and 𝐋 with missing entries, the model can simply make predictions of the missing responses 

𝑅𝑖𝑗 based on the learned 𝐔 and 𝐕. 

Specifically, given a binary-valued item response 𝑅𝑖𝑗 ∈ {0,1} which means that the 

learner 𝐦𝑖 provided a correct response indicated by 1 or an incorrect response indicated by 0 

on the item  𝐧𝑗, the model predicts 𝑅𝑖𝑗 by: 

 𝑍𝑖𝑗 = 𝐡𝑇 [
𝜙CF

𝜙Log
] , 𝑅𝑖𝑗~𝐵𝑒𝑟(𝜎(𝑍𝑖𝑗)). (34) 

In the above equation, 𝐵𝑒𝑟(𝑧) denotes a Bernoulli distribution with a success probability 𝑧 

followed by the learners’ correct responses. Also, 𝜎(𝑧) denotes a logistic function converting 

a real value 𝑧 to a success probability ranging from 0 to 1, which is given by: 

 𝜎(𝑧) =
1

1 + 𝑒−𝑧
. (35) 

Moreover, 𝑍𝑖𝑗 indicates the output produced by a neural network layer that learns the 

concatenation of the output produced by the deep CF architecture, 𝜙CF, and the output 

produced by the deep learning architecture for learning actions and time durations, 𝜙Log. 

Moreover, 𝐡 denotes the neural network weights for outputting 𝑍𝑖𝑗. More details regarding 

how to learn 𝜙CF and 𝜙Log are presented in the general framework of LogCF (Figure 13) and 

will be discussed in the next section. Briefly, 𝜙CF is outputted by a deep neural network 

architecture which learns the concatenation of 𝐔 and 𝐕 as the input. As mentioned, 𝐔 and 𝐕 

indicate the learned individual and item representations, respectively, based on learner and 
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item identifications produced by CF. Also, 𝜙Log is outputted by a deep neural network 

architecture which learns the concatenation of action and time representations as the input. 

The action and time representations are produced by deep neural network architectures of 

multiple LSTM network layers learning the raw action and time sequences as the input.  

Having the above definition, we can formularize the problem of learning LogCF, 

especially estimating 𝐔 and 𝐕, as a maximum likelihood problem which maximizes the 

likelihood of the observed item response matrix 𝐑, 

 𝑝(𝑅𝑖𝑗|𝐮𝑖 , 𝐯𝑗) =  𝜎(𝑍𝑖𝑗)𝑅𝑖𝑗(1 − 𝜎(𝑍𝑖𝑗))1−𝑅𝑖𝑗, (36) 

which is given by: 

 maximize
𝐔,𝐕

∑ log 𝑝(𝑅𝑖𝑗|𝐮𝑖, 𝐯𝑗)𝑖,𝑗 . (37) 

General Framework 

Figure 17 presents the general framework of LogCF, which is of two sub-

architectures, a deep CF architecture for learning item- and learner-skill associations 

(outputting 𝜙CF) and a deep learning architecture for learning the process data (outputting 

𝜙Log).  

Deep Collaborative Filtering 

How learners interact with items in terms of their affinities with the latent skills is 

learned by a deep neural network architecture adapted from the neural CF framework (He et 

al., 2017). In Figure 17, despite the item response matrix shown as the initial inputs, learner 

and item identifications are used as the raw inputs for the deep CF architecture, which are 

embedded as learner- and item-skill associations — 𝐮𝑖 and 𝐯𝑗 — respectively. The technical 

details of embedding layers are the same as those introduced in the last chapter. Above the 

embedding layers of items and learners, the model uses a flatten layer to reshape the outputs 

of the embedding layers so that they can be fed into the following deep neural network 

architecture as inputs. 
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Figure 17  

General Framework of LogCF 

 

The deep neural network architecture on top of the embedding layers is used to 

further capture the complexity of how learner representations interact with item 

representations in affecting item responses. This is where LogCF significantly differs from 

conventional matrix factorization approaches, which simply model the learner-item 

interaction as the product of 𝐮𝑖 and the item-skill association 𝐯𝑗. The deep neural network 

architecture of LogCF is capable of learning non-linear interactions between learner and item 

representations. Concretely, the model first concatenates learner and item representations. 

Then the concatenated factor is fed into multiple neural network layers for outputting 𝜙CF, 

which is the final representation of learner-item interactions. Formally, the above deep neural 

network architecture with CF can be formulated as: 
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 𝜙CF = 𝑓𝐻(𝐖𝐻
𝑇𝑓𝐻−1(… 𝑓2(𝐖2

𝑇𝑓1(𝐖1
𝑇 [

𝐔𝑇𝐦𝑖

𝐕𝑇𝐧𝑗
])) … )), (38) 

where 𝐔 and 𝐕 denote learner- and item-skill associations respectively, 𝐖1 to 𝐖𝐻 indicate 

the neural network weights for the 𝐻 neural network layers, and 𝑓1 to 𝑓𝐻 represent the 

activation function applied in each neural network layer. Given the above formulation, the 

number of neural network layers and the number of nodes within each layer are not fixed. 

Instead, they are two hyper-parameters to be tuned in training. 

Deep Learning of the Problem-Solving Process 

The right part of the general framework demonstrates a deep learning architecture of 

multiple LSTM network layers for learning the process data, which shares similarities with 

the deep neural network architecture introduced above. The reason why LSTM network 

layers rather than neural network layers are used in process data learning is that learners’ 

actions and time durations are logged as sequential data by the system.  

The inputs for the process data learning architecture are learners’ raw action and time 

sequences. Given the action sequence 𝑎𝑖𝑗 = {𝑒1, 𝑒2, … 𝑒𝑄} indicating that learner 𝐦𝑖 has 𝑄 

action steps on item 𝐧𝑗, the model first converts each action 𝑒𝑞 in 𝑎𝑖𝑗 to a dense vector of 𝑑0 

dimensions through an embedding layer on actions, which is then fed into an LSTM network 

layer for learning the time-series dependencies between actions (see Equation 26 and 

description on LSTM in Chapter 3 for more details). As shown in the general framework, the 

model allows for multiple LSTM layers to better capture the temporal dependencies between 

actions and time durations in sequences. The multiple LSTM layers finally output learned 

representations of actions and time durations, which are denoted as 𝐴𝑖𝑗 and 𝑇𝑖𝑗 respectively. 

Subsequently, the model concatenates 𝐴𝑖𝑗 and 𝑇𝑖𝑗 and feeds them into a deep neural 

network architecture for learning the interactions between actions and time durations. This 

deep neural network architecture finally outputs the representation of the whole problem-

solving process 𝜙Log, which is given by: 
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 𝜙Log = 𝑓𝐻(𝐖𝐻
𝑇𝑓𝐻−1(… 𝑓2(𝐖2

𝑇𝑓1(𝐖1
𝑇 [

𝐴𝑖𝑗

𝑇𝑖𝑗
])) … )), (39) 

where the mathematical notations are interpreted as in Equation 35.  

Prediction 

The prediction module of LogCF is shown by the topmost layer in the general 

framework. Specifically, for predicting item responses, the model concatenates the outputs 

produced by the deep CF architecture and the deep learning architecture of process data, 𝜙CF 

and 𝜙Log, which are then fed into a neural network layer with one-dimensional output. For 

producing the probabilities of correctly answering items, the one-dimensional output is 

converted to a value ranging from 0 to 1 with the Sigmoid activation.  

Variants of LogCF 

The above sections focus on the general framework of LogCF. However, to better 

evaluate the capacity of LogCF to discover item-skill associations and predict item responses, 

the dissertation proposes three variants of LogCF sharing the same topology shown in Figure 

17. The LogCF variants mainly differ in how they initialize the weights of the deep CF 

architecture. The three LogCF variants can be categorized as variants with or without expert 

information. Variants with expert information are as follows. 

expert-Q. This variant makes item-skill associations fixed as the ones pre-specified 

by experts, and all the other model weights are adjustable and learnable. In other words, 

given this variant, the model relies, entirely, on expert-specified item-skill associations for 

prediction. 

 expert-Q-init. This variant initializes item-skill associations with the expert-

specified ones. However, item-skill associations in this variant can still be adjusted and 

learned in training.  

Variant without expert information is random-int. 
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random-init. In this variant, all the model weights are initialized with a uniform 

distribution ranging in ( √−6/(𝑁𝑖 + 𝑁𝑜), √6/(𝑁𝑖 + 𝑁𝑜)) where 𝑁𝑖 and 𝑁𝑜 represent the 

input size and the output size of different embedding layers, neural network layers, and 

LSTM network layers (Glorot & Bengio, 2010). 

The same pre-training of the model weights in the deep learning architecture for 

learning process data applies to all three variants of LogCF. That said, the deep learning 

architecture for learning process data is first trained and learned as a separate and standalone 

model for learning outcome modeling. Thereafter, for each of the three variants, the model 

initializes the weights of the deep learning architecture for learning process data with the 

ones learned by pre-training. 

LogCF Learning 

The following model parameters are to be updated in training: the embedding weights 

for items, learners and actions, the weights of the two architectures of multiple LSTM 

network layers for learning the temporal dependencies between actions and time durations, 

the weights of the two deep neural network architectures for learning the representations of 

learner-item interactions and action-time interactions, and the weights of the topmost neural 

network layer for prediction. The objective function and the optimization method for learning 

the model weights are the same as those used for SDCF in Chapter 3.  

A Hypothetical Example 

To further clarify how LogCF works for learning outcome modeling, a hypothetical 

example is presented in Figure 18. The example is a computer-based assessment evaluating 

learners’ problem-solving competency. Suppose there are only five learners and three 

assessment items, a 5 × 3 item response matrix is presented at the top right of Figure 18. 

Specifically, learners 1 and 2 correctly answered one item, learners 3 correctly answered two 

items, learner 4 got all items correct, and learner 5 got all items wrong. The goal of LogCF is 
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to predict the five learners’ probabilities of getting the three items correct, which constitute a 

predicted item response matrix produced by LogCF (the top middle matrix in the Figure). 

Figure 18  

A Hypothetical Example of LogCF 

 

Aside from predicted probabilities of item responses, the model also estimates item- 

and learner-skill associations (see the bottom left of Figure 18) for the purposes of learner 

and domain modeling. Given the example, the learner-skill associations for learners 3 and 4 

are stronger than those for the other learners, indicating that learners 3 and 4 have higher 

problem-solving proficiency. Likewise, item 2 has a stronger association with the latent skill 

than the other two items, indicating that it measures the latent skill more closely. These item- 
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and learner-skill associations are directly learned from the identifications of the five learners 

and the three items through embedding layers, which are then processed by a deep neural 

network architecture for outputting 𝜙CF. In addition, for each learner-item interaction, there 

is a sequence of problem-solving actions and a sequence of time durations associated with 

each action logged by the system (see the bottom right of Figure 18). The action and time 

sequences are then processed by deep learning architectures of multiple neural and LSTM 

network layers for outputting 𝜙Log. Then, 𝜙CF and 𝜙Log (see the middle of Figure 18) are 

concatenated and processed by a neural network layer for producing the predicted 

probabilities of correct item responses. 

Experiments 

In the following sections, extensive experiments are conducted to evaluate the 

effectiveness of LogCF with two distinctive datasets of unique characteristics. The 

experiments address the following five specific research questions. 

• Does LogCF show higher predictive capacity than the baselines? 

• Does expert information on item-skill associations contribute to higher prediction 

performance for LogCF than learning item-skill associations from scratch? 

• Does the number of latent skills affect the prediction performance of LogCF? 

• Does LogCF show good prediction performance at different levels of missing 

responses or different percentages of learner fist item responses going for 

training? 

• Can we interpret the estimated learner- and item-skill associations by LogCF in 

the context of computer-based assessment? 

To address the research questions, the prediction performance of LogCF is evaluated 

under the condition of different training/test partition rates. Moreover, the two datasets are 

analyzed for different research questions. The educational data mining dataset is used to 
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investigate the effects of the number of latent skills on prediction performance and 

demonstrate how well LogCF is capable of retrieving or refining item-skill associations 

specified by experts. The educational assessment dataset is mainly used to demonstrate the 

interpretability of learner- and item-skill associations compared with the model parameters of 

IRT models.  

Dataset Description 

The first dataset was introduced in Chapter 3 and it was used to evaluate SDCF, 

whereas the second dataset was introduced in Chapter 2 and was obtained from PISA 2012 

(https://www.oecd.org/pisa). In 2012, PISA assessed the mathematics literacy of 

approximately 470,000 students from 65 countries and economies (Organisation for 

Economic Co-operation and Development, 2014). Moreover, it also evaluated students' 

creative problem-solving competency. An example problem-solving assessment question was 

introduced in the section “A Computer-Based Assessment Example on Problem Solving” of 

Chapter 2. The data of problem-solving assessment includes both students’ question scores 

and the process data on problem solving. The process data is publicly available at 

https://www.dropbox.com/s/b8kb4jmqnha6jom/CPRO_logdata_released.zip?dl=0. Given that 

students were assigned with different subsets of assessment items, given the requirement of a 

large sample size for deep learning, the data of four items is a subset from the publicly 

available datasets (10,070 students). Although the problem-solving assessment included a 

few different items, not all the items were suitable for process data learning because the 

information on correct item responses might be stored in the process data. According to the 

PISA 2012 context framework, the four items measure a single competency—complex 

problem solving. Moreover, when solving the problems, students could not use any explicit 

hints and provide a solution with multiple attempts. According to the scoring rubric, a 

solution would be given a credit of 2 when it was fully correct, a partial credit of 1 when it 

https://www.oecd.org/pisa
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showed some correct actions but was not fully correct, and a credit of 0 when it did not show 

any correct actions and was fully incorrect. Students’ scores are recoded so that a correct 

response is valued at 1 and a partial or incorrect response is valued at 0. Moreover, students’ 

action events (e.g., drawing lines between controls and humidity/temperature) and 

corresponding event types (e.g., the type of “Diagram”) are concatenated as actions. The time 

durations are calculated as the difference between two consecutive timestamps. In addition, 

all the actions showing how learners gave final solutions on solving an item were blinded 

because they were directly associated with item scores. 

The two datasets differ in several aspects. First, compared with the PISA 2012 dataset 

which is a structured standardized assessment dataset, the “Lab study 2012” dataset is much 

more unstructured. Second, compared with the PISA 2012 dataset, the “Lab study 2012” 

dataset has much fewer learners but much more items. Third, the competencies measured by 

the two assessments are largely different, and the “Lab study 2012” items on fractions are 

much more straightforward than PISA 2012 items on complex problem solving. Therefore, it 

is reasonable to posit that the process data might be less useful for improving prediction for 

the “Lab study 2012” assessment than for the PISA 2012 assessment. Finally, compared with 

the PISA 2012 dataset measuring only one latent skill, the “Lab study 2012” dataset has 

many more latent skills.  

LogCF Training Setting 

The following hyperparameters of LogCF were tuned in our experiments. First, we 

conducted a hyperparameter search on three candidate regularization weights for item and 

learner embedding layers (i.e., item- and learner-skill associations), 0, 0.001, and 0.1, and 

selected 0.001 for the “Lab study 2012” dataset and 0 for the PISA 2012 dataset. In our 

experiments, if large regularization weights were imposed on item and learner embeddings, 

the estimated item- and learner-skill associations would be too concentrated around 0. This is 
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especially not desired for the interpretability of learner-skill associations because learners 

could not be differentiated very well in terms of latent ability levels. Therefore, we chose 

small regularization weights. Second, dropout layers (Srivastava et al., 2014) were applied 

prior to each neural network layer to prevent overfitting. Among candidate values of 0, 0.2, 

and 0.5, the dropout rate was finalized as 0.2 for the “Lab study 2012” dataset and 0 for the 

PISA 2012 dataset. The output dimension for the embedding layer for actions was searched 

across 8, 16, 32, and 50, and 16 and 50 were used for the “Lab study 2012” and PISA 2012 

datasets respectively. Regarding the depth and nodes of the neural network and LSTM layers 

in LogCF, for the “Lab study 2012” dataset, we applied the same four-layer architecture (i.e., 

H = 4) to both the deep CF and process data learning parts, with node sizes of 64, 32, 16, and 

8; for the PISA 2012 dataset, we applied the same two-layer architecture (i.e., H = 2) to both 

the deep CF and process data learning parts, with node sizes of 16 and 8. Moreover, we 

conducted a hyperparameter search on three candidate learning rates, 0.001, 0.01, and 0.1, 

and used 0.001 for LogCF. In addition, the batch size is set as 64 and the number of epochs is 

set as 60 for training. Early stopping was applied to prevent overfitting.  

With respect to preprocessing the actions and time durations, the maximum action and 

time sequence lengths for each item were set as 54 and 161 for the “Lab study 2012” and 

PISA 2012 datasets respectively, given that the items with the most actions have lengths of 

54 and 161 for the two datasets. Items with fewer actions were padded with zeros. In 

addition, time durations were scaled with min-max normalization such that they were in a 

range between zero and one.  

Regarding the number of latent skills, it should be noted that the three variants of 

LogCF based on the expert-specified item-skill associations have a fixed number of latent 

skills and the latent skill dimensions can be tuned for the two variants of LogCF with random 

initialization.  
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Baselines 

To evaluate the effectiveness and predictive capacities of LogCF, LogCF is compared 

with the following models.   

NeuralCF. The first baseline approach is the deep neural network architecture with 

CF, called NeuralCF, shown in Figure 17. NeuralCF, unlike LogCF, makes the final 

prediction solely based on the output of the deep neural network architecture as its output is 

not concatenated with the process data learning output but directly fed into the prediction 

module. As a sub-architecture of LogCF, NeuralCF has the same three variants as LogCF 

does. In addition, given that NeuralCF is obtained by dropping the process data learning 

architecture of LogCF, it is reasonable to posit that LogCF outperforms NeuralCF because it 

includes much more learner information for training.  

Log. The Log method is the process data learning architecture shown in Figure 17. 

The output of the last neural network layer is directly fed into the prediction module without 

concatenating with the output of the deep learning-based CF architecture. It should be noted 

that removing the deep learning-based CF architecture of LogCF results in Log. 

DKT. It was used as a baseline in Chapter 3 and was introduced in Chapter 2.  

Given the differences between the two datasets, the above baselines apply to the “Lab 

study 2012” dataset only. For the PISA 2012 dataset, because it has a limited number of 

items and is unidimensional, its predictive capacities and interpretability are evaluated in 

comparison with three IRT models, the Rasch model, the 2PL model, and the 3PL model, 

which were introduced in Chapter 2. Notably, by using IRT models, the item-skill 

associations estimated by LogCF can be interpreted against both item difficulty and item 

discrimination estimated by IRT models. Because IRT models are psychometric models 

which are strongly interpretable and used widely in education, the comparison shed light on 

the potential of deep learning in the psychometric analysis. 
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Table 6  

Model Performance for the “Lab Study 2012” Dataset 

Training Model Variant ACC AUC MAE RMSE 

90% LogCF expert-Q 

expert-Q-init 

random-init 

0.7645 

0.7552 

0.7614 

0.7706 

0.7628 

0.7680 

0.3458 

0.3376 

0.3445 

0.3995 

0.4012 

0.4007 

NeuralCF expert-Q 

expert-Q-init 

random-init 

0.7485 

0.7497 

0.7485 

0.7353 

0.7278 

0.7281 

0.3536 

0.3488 

0.3474 

0.4088 

0.4093 

0.4088 

Log N/A 0.7580 0.7060 0.3710 0.4150 

DKT N/A 0.7389 0.7595 0.3355 0.4083 

80% LogCF expert-Q 

expert-Q-init 

random-init 

0.7596 

0.7562 

0.7596 

0.7575 

0.7525 

0.7525 

0.3355 

0.3299 

0.3365 

0.4014 

0.4024 

0.4035 

NeuralCF expert-Q 

expert-Q-init 

random-init 

0.7414 

0.7401 

0.7303 

0.7094 

0.7099 

0.7074 

0.3546 

0.3495 

0.3540 

0.4148 

0.4150 

0.4164 

Log N/A 0.7540 0.7148 0.3620 0.4143 

DKT N/A 0.7537 0.7599 0.3290 0.4016 

70% LogCF expert-Q 

expert-Q-init 

random-init 

0.7483 

0.7468 

0.7462 

0.7523 

0.7517 

0.7561 

0.3375 

0.3322 

0.3336 

0.4072 

0.4075 

0.4063 

NeuralCF expert-Q 

expert-Q-init 

random-init 

0.7337 

0.7322 

0.7322 

0.7036 

0.7038 

0.7000 

0.3611 

0.3532 

0.3539 

0.4207 

0.4207 

0.4218 

Log N/A 0.7437 0.7147 0.3638 0.4183 

DKT N/A 0.7410 0.7614 0.3352 0.4073 

60% LogCF expert-Q 

expert-Q-init 

random-init 

0.7494 

0.7449 

0.7515 

0.7479 

0.7498 

0.7470 

0.3349 

0.3302 

0.3244 

0.4084 

0.4081 

0.4093 

NeuralCF expert-Q 

expert-Q-init 

random-init 

0.7337 

0.7277 

0.7301 

0.7016 

0.6987 

0.7057 

0.3585 

0.3517 

0.3496 

0.4214 

0.4223 

0.4206 

Log N/A 0.7423 0.7039 0.3590 0.4207 

DKT N/A 0.7383 0.7522 0.3374 0.4111 

Note. DKT = Deep Knowledge Tracing; LogCF refers to the full model proposed in this 

study; NeuralCF refers to the the deep learning-based CF architecture of LogCF; Log refers 

to the deep learning architecture of LogCF for learning the process data. ACC = Accuracy; 

AUC = Area under the ROC Curve; MAE = Mean Absolute Error; RMSE = Root Mean 

Square Error. 

 

Evaluation 

LogCF is evaluated with different training/test partition ratios. Specifically, for each 

variant of LogCF, 40%, 30%, 20%, and 10% of all item response entries are used as the test 

dataset and the remaining entries are used as the training dataset. Moreover, 20% of the 
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training item response entries are used as the validation dataset in training. The data is 

partitioned at the entry level, implying that each training or test sample is one independent 

item response associated with its actions and time information. In addition to data partition at 

the entry level, to further evaluate the effectiveness of LogCF, the “Lab study 2012” dataset 

is also partitioned sequentially as the way used for evaluating SDCF. The evaluation metrics 

are the same as the ones used in Chapter 3. 

Experimental Results  

Main Prediction Results  

Table 6 shows the testing performance of each model for the “Lab study 2012” 

dataset in terms of each evaluation metric given different training/test partition ratios (at the 

entry level). Generally, regardless of training/test partition ratios, variants of LogCF show 

slightly higher ACC and AUC rates and slightly lower MAE and RMSE rates than the 

majority of baselines, indicating that LogCF slightly outperforms other models in terms of 

predictive power.  

Figure 19  

Model Performance of LogCF for Sequential Training/Test Partition 
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More concretely, it can be seen that using more samples for training slightly improves 

the prediction performance of LogCF since ACC and AUC rates are slightly higher and MAE 

and RMSE rates are slightly lower when 90% and 80% item responses go for training. 

However, the differences between training/test partition ratios are trivial for LogCF.  

Regarding the model performance given different levels of learners’ first item 

responses going for training, Figure 19 shows that for all variants of LogCF, more first item 

responses going for training results in higher ACC and AUC rates and lower MAE and 

RMSE rates. This indicates that LogCF is more likely to successfully predict learners’ future 

item responses when more learning history is available for training. However, even if very 

few history item responses are available (e.g., 10%), LogCF variants still show acceptable 

predictive capacity, which might be due to the contribution of learners’ problem-solving 

processes. Compared with the training/test partition at the entry level, the prediction 

performance of LogCF, especially for AUC, is deteriorated when data is split sequentially. 

This is however an unsurprising finding given that the class weights for training and test 

datasets might be largely different in this case. 
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Figure 20  

Model Performance of LogCF for the PISA Dataset 

 

Figure 20 shows the model performance for the PISA 2012 dataset with respect to 

each evaluation metric at different levels of missing responses. It can be seen that, compared 

with the IRT models, LogCF performs the best under all the experimental conditions. 

Concretely, in terms of ACC and AUC, LogCF has an approximate ACC rate ranging from 

0.83 to 0.85 and an approximate AUC rate ranging from 0.91 to 0.93 across different levels 

of missing responses. Generally, the IRT models have medium but much lower ACC and 

AUC rates than LogCF. Moreover, the three IRT models do not show significant differences 

in prediction. Regarding the regression metrics, compared with the IRT models, LogCF 

shows much lower MAE and RMSE rates at each level of missing responses. 

With respect to the comparison between LogCF and NeuralCF, as expected, given 

both datasets, LogCF variants outperform NeuralCF under various experimental conditions. 

This indicates that the process data learning architecture of LogCF significantly contributes 

to prediction. Particularly, the difference in prediction performance between LogCF and 
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NeuralCF is larger for the PISA 2012 dataset than that for the “Lab study 2012” dataset. This 

implies that learners’ actions and time durations contribute more to their problem-solving 

successes for the PISA 2012 dataset than is the case for the “Lab study 2012” dataset. As we 

mentioned earlier, the PISA 2012 study evaluated learners’ competencies on complex 

problem solving, while “Lab study 2012” tested learners’ knowledge of fractions. This 

explains why the process data is more influential for the PISA 2012 study than that for “Lab 

study 2012”. 

Notably, the comparison between LogCF and Log indicates that the prediction 

performance of Log was as good as that of LogCF for the PISA 2012 dataset (the higher 

performance of LogCF was negligible). However, for the Lab study 2012 dataset, the 

performance of Log, especially AUC, was much worse than that of LogCF. Therefore, 

although Log learns a lot from data, adding the deep learning-based CF architecture is still of 

value, because it is capable of improving the prediction performance and estimating item- 

and learner-skill associations. 

In general, according to the experimental results of the two datasets, from both the 

classification and regression perspectives, LogCF demonstrates a substantially higher 

prediction performance than the baselines. Moreover, its prediction performance would not 

be greatly affected by the missing response rates, indicating the robustness of LogCF. 

Performance of Learning or Refining Item-Skill Associations 

In general, variants incorporating expert-specified item-skill associations show 

negligibly better prediction performance than the variant without expert information given 

that expert-Q and expert-Q-init show the highest prediction performance more frequently. 

This implies that, unfortunately, item-skill associations learned by LogCF from scratch are 

not superior to the original Q-matrix defined by experts. However, given their similar 

prediction results, it is safe to conclude that item-skill associations learned by LogCF are not 
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worse than the original expert-specified ones. Particularly, it can be seen that when fewer 

item responses go for training, the variant of expert-Q is slightly less competitive than other 

variants of LogCF. 

Table 7  

Model Performance of LogCF for Different Numbers of Latent Skills 

Training Metric 5 skills 10 skills 17 skills 19 skills 21 skills 38 skills 

90% ACC 0.7608 0.7565 0.7398 0.7614 0.7515 0.7602 

 AUC 0.7772 0.7712 0.7605 0.7680 0.7593 0.7641 

 MAE 0.3413 0.3361 0.3437 0.3445 0.3414 0.3339 

 RMSE 0.3981 0.3987 0.4033 0.4007 0.4016 0.3992 

70% ACC 0.7398 0.7411 0.7396 0.7462 0.7390 0.7261 

 AUC 0.7551 0.7554 0.7451 0.7561 0.7417 0.7015 

 MAE 0.3517 0.3380 0.3369 0.3336 0.3383 0.3513 

 RMSE 0.4095 0.4067 0.4101 0.4063 0.4108 0.4224 

Note. ACC = Accuracy; AUC = Area under the ROC Curve; MAE = Mean Absolute Error; 

RMSE = Root Mean Square Error. 

 

Effects of the Number of Latent Skills  

To answer the third research question, the LogCF variants without expert information 

were further evaluated with different latent skill dimensions. Table 7 presents the testing 

performance of random-init and FT-random for the “Lab study 2012” dataset given different 

numbers of latent skills at the missing response levels of 70% and 90%. Overall, the effect of 

the number of latent skills on the predictive power of LogCF is not significant, given that the 

model performance remains stable with the increase of latent skill dimensions. 

Interpretability of LogCF 

The interpretability of a model is especially beneficial to educational practitioners. In 

this study, LogCF is developed based on CF which estimates latent factors of learners and 

items. Specifically, in LogCF, the learner-skill association can be interpreted as learners’ 

mastery levels of the targeted skills, which can be used to diagnose learners’ learning 

outcomes; the item-skill association can be interpreted as the degree to which items measure 

the targeted skills, which can be used to organize learning and evaluation materials. In 
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psychometric measurement models, a parallel concept of the learner-skill association is 

learners’ latent ability levels, and parallel concepts of the item-skill association are item 

difficulty and item discrimination. Item difficulty corresponds to the point of the learner 

ability scale at which a learner of the same ability has a 50% chance of correctly answering 

the item, and item discrimination corresponds to the capability of an item to differentiate 

learners by their abilities. As shown in equations 13 to 15, the linear combination of learner 

ability, item difficulty, and item discrimination with a sigmoid transformation models a 

learner’s probability of correctly answering an item. Given that learner ability and item 

difficulty are on the same scale in IRT models, whether a learner is able to get an item correct 

is affected by both item discrimination and the difference between their ability and the item 

difficulty (i.e., the product of two). However, LogCF, models a single item parameter, which 

therefore can be considered similar to the product of item difficulty and item discrimination. 

A high item-skill association indicates that the item is strongly related to the targeted skill 

and a strong mastery of the targeted skill is required to answer it correctly. 

Table 8  

Item-Skill Associations and Item Parameters Estimated by LogCF and Baselines  

Item LogCF NeuralCF 
Rasch 2PL 3PL 

𝑑𝑗 𝑎𝑗 𝑑𝑗 𝑎𝑗 𝑑𝑗 

1 -0.07 -0.02 -0.17 1.53 -0.18 2.49 0.87 

2 -1.06 -1.2 -2.23 1.84 -2.5 1.67 2.38 

3 1.42 1.51 2.23 1.59 2.32 1.72 2.41 

4 0.59 0.65 1.4 1.1 1.26 1.11 1.26 

Note. d and a refers to item intercept and item discrimination respectively. 

Item-Skill Association. Given the above theoretical clarification, this study further 

compared the item-skill associations estimated by LogCF with the item parameters estimated 

by the baselines under the condition of 30% missing responses as an example for illustrating 

the interpretability of LogCF. As shown in Table 8, LogCF suggests that items 1 and 2 have 

negative item-skill associations, and items 2 and 3 have positive item-skill associations. For 
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the IRT models, both the item discrimination 𝑎𝑗 and the item intercept 𝑑𝑗 = −𝑎𝑗 × 𝑏𝑗 are 

presented in Table 8 (given a 30% missing rate). Item intercept can be considered as a 

combination of item discrimination and item difficulty. Generally, the IRT models suggest 

that items 1, 2, and 3 have higher item discriminations than item 4. In terms of the item 

intercept, items 1 and 2 have negative values, and items 3 and 4 have positive values. The 

pattern of IRT item intercepts is similar to that of item-skill associations estimated by LogCF. 

To further visualize how item-skill associations resemble item intercepts, a line chart is 

presented to show the pattern of item parameters of each method in Figure 21. It can be seen 

that the line of item-skill associations of LogCF follows a similar shape to the lines of item 

intercepts of the three IRT models. In addition, the item-skill associations of LogCF are 

highly correlated with the item intercepts of 2PL/3PL with a correlation coefficient of 0.96, 

indicating that they share almost the same interpretation. 

In addition to the comparison of item parameters across methods, this study also 

referred to the PISA 2012 assessment framework and results (OECD, 2014a) for more 

evidence validating the results. According to the PISA 2012 assessment framework, the four 

items involved in the analyses map onto different proficiency levels of complex problem 

solving at a scale ranging from below level 1 to level 6. Concretely, item 2 maps onto the 

second-highest level, level 5, which requires a high proficiency level of complex problem 

solving; item 1 maps onto level 3, which requires a medium proficiency level of complex 

problem solving; and items 4 and 3 map onto level 1 and below level 1 respectively, which 

require a relatively lower proficiency level of complex problem solving. However, the above 

mapping of items to the theoretical proficiency levels does not necessarily suggest that items 

1 and 2 measure the latent construct more strongly than items 3 and 4 do (i.e., items 1 and 2 

have higher item discriminations than items 3 and 4). Instead, the mapping aligns with the 

item difficulty or the item easiness rather than the item discrimination. According to the 
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theoretical framework, high-level items (items 1 and 2) are supposed to be more difficult than 

low-level items (items 3 and 4). This theoretical reasoning is validated by the IRT results 

given that the item difficulties of items 1 and 2 are much higher than those of items 3 and 4 

(although item difficulties were not presented in the Table, they can be calculated as the 

negative values of item intercepts divided by item discriminations). However, it should be 

noted that the item-skill association estimated by LogCF is more of a parallel concept to item 

intercept, which is the negative product of item discrimination and item difficulty. In other 

words, item-skill associations estimated by LogCF incorporate both the information of how 

strongly an item measures the latent construct and how difficult the item is. According to 

Table 8, item difficulties have higher variance across the four items than item 

discriminations, which means that item difficulties are more influential for determining item-

skill associations for the PISA 2012 items used in this study. In this sense, the mapping of 

these four items to the proficiency levels aligns with the magnitudes of item-skill associations 

estimated by LogCF, which further validates the interpretability of LogCF. 

Admittedly, item-skill associations estimated by LogCF cannot be interpreted in the 

completely same way as item difficulties and item discriminations because the process data 

learning of LogCF also brings information to the estimation of item-skill associations. In this 

sense, item-skill associations might also incorporate additional information on learners’ 

problem-solving processes. However, the process data learning of LogCF can be considered 

as a regularization technique for training. As Figure 21 suggests, item-skill associations 

estimated by NeuralCF (without process data learning) are much less interpretable because 

they cannot be solved with a unique solution by NeuralCF. Therefore, estimating item-skill 

associations with NeuralCF is more of an ill-posed problem. As such, adding process data 

learning in LogCF regularizes the weights of item-skill associations as they provide more 

information in training. 
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Figure 21  

A plot of Item-Skill Associations and Item Intercepts for LogCF and Baselines 

 

Note. Lower values indicate higher proficiency levels required by items. 

Learner-Skill Association. Learner-skill associations can be interpreted as learners’ 

proficiency levels on the targeted skill. Given that the IRT models also provide learners’ la- 

tent trait levels, this study calculated the correlation coefficients of learner parameters 

between LogCF and the baselines, which are presented in Table 9 (given a missing rate of 

30%). It can be seen that the learner-skill associations estimated by LogCF are highly 

correlated with those estimated by the CF-based methods and IRT models, which implies that 

the ranking of learners by LogCF is not very different from the ranking by the other methods. 

Table 9  

Correlation Coefficients of Learner Parameters between LogCF and Baselines  

 LogCF NeuralCF Rasch 2PL 

NeuralCF 0.99    

Rasch 0.74 0.73   

2PL 0.73 0.72 0.99  

3PL 0.73 0.72 0.99 1.00 
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Chapter 5 LogSDCF: Sequential Deep Collaborative Filtering with Process Data 

The goal of this chapter is to approach the third research problem by integrating the 

first two proposed models. The proposed model, LogSDCF, is used for sequentially modeling 

both product and process data. In general, LogSDCF is a variant of SDCF with an additional 

architecture for process data learning. The following sections start with the problem 

formulation, followed by the introduction to a general framework of LogSDCF and its 

technical details. Given that LogSDCF is a hybrid of LogCF and SDCF, to save space, some 

duplicate technical details are omitted in this chapter. 

Problem Formulation 

The problem formulation for LogSDCF is similar to that for SDCF, with the 

distinction that learner process data is used as auxiliary inputs. Formally, suppose that a 

hypothetical assessment of 𝑛 items measures 𝑘 latent skills, and there are 𝑚 independent 

learners who take the assessment. Each learner’s item responding process can be denoted as 

𝐑𝑖 = {(𝐦𝑖, 𝐧1
𝑖 , 𝑅1

𝑖 , 𝐿1
𝑖 ), (𝐦𝑖, 𝐧2

𝑖 , 𝑅2
𝑖 , 𝐿2

𝑖 ), … , (𝐦𝑖, 𝐧𝑇
𝑖 , 𝑅𝑇

𝑖 , 𝐿𝑇
𝑖 )}, where 𝐦𝑖 denotes the 

identification of the learner, 𝐧𝑡
𝑖  denotes the item 𝐧𝑡 responded by learner 𝐦𝑖 at the 𝑡th 

timestep, 𝑅𝑡
𝑖 denotes the corresponding item response result (correct/incorrect), and 𝐿𝑡

𝑖 =

{𝒂𝑡
𝑖 , 𝒕𝑡

𝑖 } denotes the problem-solving process associated with 𝑅𝑡
𝑖, which includes both action 

sequence 𝒂𝑡
𝑖  and time sequence 𝒕𝑡

𝑖 . If learner 𝐦𝑖 correctly solves item 𝐧𝑡, 𝑅𝑡
𝑖 = 1, otherwise 

𝑅𝑡
𝑖 = 0. In LogSDCF, learner and item identifications, 𝐦𝑖 and 𝐧𝑡, are embedded as learner 

and item latent representations. 

Having the item responding process 𝐑𝑖 of each learner across the first 𝑇 item response 

opportunities, our goal is to learn a model ℳ which is capable of predicting �̂�𝑇+1
𝑖  on the next 

item 𝐧𝑇+1
𝑖  at the timestep 𝑇 + 1. In the meantime, the model is capable of discovering item-

skill associations based on the relevance between items. 
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Modeling Process of LogSDCF 

Figure 22 presents the graphical representation of LogSDCF, which is of two sub-

architectures: an architecture for modeling item responses, and the other for predicting future 

item responses. Compared to SDCF shown in Figure 13, LogSDCF mainly differs in that the 

inputs fed into LSTM networks for sequential modeling additionally include the learned 

representations of process data (i.e., actions and time) 𝜙𝑡
𝑖 , which are produced by the process 

data learning architecture of LogCF (see Figure 17). When process data are available and 

process data learning is desirable, LogSDCF rather than SDCF should be used for sequential 

learning outcome modeling. 

Figure 22  

Graphical Representation of LogSDCF 
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Item and Learner Embedding  

Item and learning embedding in LogSDCF is identical to that of SDCF (see Chapter 

3).  

Deep Learning of Problem-Solving Process 

Figure 23  

Architecture for the Learning Process Data in LogSDCF 

 

In addition to learner and item embeddings, the process data needs to be processed 

and learned for sequential modeling in LogSDCF, which borrows the deep learning 

architecture of LogCF (see Figure 23 and Chapter 4 for more details). At the 𝑡th timestep, 

learner 𝐦𝑖 responding item 𝐧𝑡
𝑖  produces a sequence of problem-solving actions 𝒂𝑡

𝑖 =

{𝑒1, 𝑒2, … 𝑒𝑄} and a sequence of action-associated time durations 𝒕𝑡
𝑖  = {𝑡1, 𝑡2, … 𝑡𝑄}, where 𝑒𝑞 

and 𝑡𝑞 indicate the 𝑞th problem-solving step and associated time duration. Given that 𝒂𝑡
𝑖  is a 

vector with categorical values, the model converts each action 𝑒𝑞 to a dense vector of 𝑑0 

dimensions through embedding, which is then fed into an LSTM network layer for learning 
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the time-series dependencies between actions (see Equation 26). Similar to LogCF, 

LogSDCF allows for multiple LSTM layers to better capture the temporal dependencies 

between actions and time durations in sequences, which finally output learned representations 

of actions and time durations. Subsequently, the model concatenates learned representations 

of actions and time durations and feeds them into a deep neural network architecture for 

learning the interactions between actions and time durations (see Equation 36), producing a 

final learned representation of process data at the 𝑡th timestep 𝜙𝑡
𝑖 . 

Concatenation of Embeddings and Item Responses 

Like SDCF, in LogSDCF, the item embedding 𝐯𝑗, the learner embedding 𝐮𝑖, the 

process data representation 𝜙𝑡
𝑖 , and the item responses 𝑅𝑡

𝑖 need to be concatenated as inputs 

for sequential modeling. The model first concatenates learner and item embeddings and the 

process data representation. Since both learner and item embeddings have 𝑘 dimensions and 

suppose action embedding has 𝑑𝑎 dimensions, after concatenation, the three embeddings are 

combined as a (2𝑘 + 𝑑𝑎)-dimensional embedding vector, 𝐞𝑖𝑗. Subsequently, the model 

combines the concatenated vector 𝐞𝑖𝑗 with the item response 𝑅𝑡
𝑖 at timestep 𝑡 with the 

approach shown in Equation 25. 

For LogSDCF, the deep LSTM network architecture for learning the temporal 

dependencies between history problem-solving activities and the prediction architecture for 

predicting the probabilities of getting the next item correct or incorrect are the same as those 

of SDCF. 

LogSDCF Learning 

The following model parameters are to be updated in training: the embedding weights 

for items, learners, and actions, the weights of the deep LSTM network architecture for 

sequential learning, and the weights of the deep neural network architecture for prediction. 
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The objective function and the optimization method for learning the model weights are the 

same as those used for SDCF in Chapter 3. 

Experimental Setup 

In the following sections, experiments are conducted to evaluate the effectiveness of 

LogSDCF with a real-world dataset. The experiments address the following specific research 

questions. 

• Does LogSDCF show higher predictive capacity than DKT? 

• Does LogSDCF show good prediction performance at different percentages of 

learner fist item responses going for training? 

• How interpretable are the item-skill associations estimated by LogSDCF? 

Dataset Description 

The real-world dataset used for evaluating LogSDCF is the same as that used for 

evaluating SDCF, preprocessed with the same procedure. However, unlike SDCF, LogSDCF 

additionally deals with learners’ action and time sequences for solving each item in training 

and testing. The maximum action and time sequence length is fixed at six as more than 90% 

of items were solved with six or fewer actions.  

LogSDCF Training Setting 

Hyperparameter tuning is conducted as follows. For item, learner, and action 

embedding weights, a hyperparameter search was conducted on the following four candidate 

regularization weights: 0, 0.001, 0.01, and 0.1. Of these, 0.001 was selected as the finalized 

regularization weight. In addition, prior to each neural network layer, a dropout layer with a 

dropout rate of 0.5 (selected from candidate rates of 0, 0.2, and 0.5) was used to prevent 

overfitting. The deep LSTM network architecture contained one layer with an output 

dimension of five; the deep neural network architecture for prediction contained one layer 

with an output dimension of two. Moreover, a latent dimension of 120 was selected for 
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embedding items, learners, and actions. Regarding the learning rate for Adam, a 

hyperparameter search was conducted on the following four candidate learning rates: 0.0001, 

0.001, 0.01, and 0.1, with 0.0001 being selected as the finalized rate. Regarding batch sizes, a 

hyperparameter search was conducted on the following values: 5, 32, 64, 128, 256, and the 

model was finally trained for 150 epochs with a batch size of 256. 

Baseline 

As in the previous two chapters, LogSDCF is compared with DKT to evaluate its 

effectiveness and predictive capacities. Similar to the study for SDCF, this study compares 

LogSDCF with its two variants, LogSDCF-Attention and LogSDCF-LSTM, which are two 

sub-architecture of LogSDCF. 

Evaluation 

The training/test partition rates and evaluation metrics for evaluating LogSDCF are 

the same as the ones used for SDCF.  

Experimental Results  

Main Prediction Results  

Table 10 shows the testing performance of each model across different training/test 

partition ratios. Generally, disregarding the training/test partition ratios, LogSDCF 

demonstrates higher ACC and AUC rates and lower MAE and RMSE rates than DKT and 

SDCF. Moreover, using more history items for training slightly improves the prediction 

accuracy of LogSDCF, shown by slightly higher ACC and AUC rates and slightly lower 

MAE and RMSE rates. 

Regarding the comparison between LogSDCF and its two variants, it is evident that 

LogSDCF has a similar or higher prediction performance than its two variants. However, the 

attention sub-architecture slightly outperforms the LSTM sub-architecture.  
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Table 10  

Model Prediction Performance of LogSDCF for the Real-World Dataset 

Model ACC AUC MAE RMSE 

Training ratio: 0.7 

DKT 0.7037 0.7157 0.3786 0.4339 

SDCF 0.7143 0.7347 0.3583 0.4298 

LogSDCF 0.7225 0.7400 0.3580 0.4254 

LogSDCF-Attention 0.7219 0.7395 0.3583 0.4258 

LogSDCF-LSTM 0.6909 0.6928 0.4065 0.4419 

Training ratio: 0.5 

DKT 0.6890 0.6974 0.3739 0.4422 

SDCF 0.7076 0.7266 0.3587 0.4342 

LogSDCF 0.7160 0.7323 0.3578 0.4300 

LogSDCF-Attention 0.7160 0.7309 0.3589 0.4305 

LogSDCF-LSTM 0.6904 0.6946 0.4028 0.4408 

Training ratio: 0.3 

DKT 0.6672 0.6439 0.3764 0.4748 

SDCF 0.7065 0.7182 0.3595 0.4382 

LogSDCF 0.7126 0.7259 0.3616 0.4330 

LogSDCF-Attention 0.7118 0.7261 0.3617 0.4335 

LogSDCF-LSTM 0.6847 0.6882 0.4093 0.4453 

Note. ACC = Accuracy; AUC = Area under the ROC Curve; MAE = Mean Absolute Error; 

RMSE = Root Mean Square Error. Values in bold represent the metric of the optimum model 

of the ones compared. 

 

Item-Skill Associations Discovered by LogSDCF  

LogSDCF discovers item-skill associations in the same way as SDCF did. It is 

evident that items 10 to 21 constitute a major cluster given their stronger relevance weights 

between each other. According to Table 5 in Chapter 3, items 10 to 21 measure the same skill 

labelled “equivDragFract”. Therefore, their associations were correctly discovered by SDCF. 

For the original skills measured by only one or two items, similar to SDCF, LogSDCF could 

not accurately identify their differences. As discussed earlier, this might be due to skills 

measured by one or two items being not adequately exercised by learners, which resulted in 

more randomness for calculating the relevance weights. In addition, the “true” item-skill 

associations for this dataset are unknown so the clustering of skills by LogSDCF cannot be 

fully validated. In general, similar to SDCF, the capacity of LogSDCF to discover item-skill 
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associations is to some extent justified given that the major skill measured by most items was 

successfully identified. 

Figure 24  

Heatmap of Item Relevance Weights Estimated by LogSDCF  

 
Note. The item and skill names are presented in Table 5. 
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Chapter 6 Discussion4 

In this work, based on deep learning and CF, I developed three models for learning 

outcome modeling with a specific focus on process data learning. Particularly, in addition to 

predicting learner performance, the three generic models were capable of discovering item-

skill associations without expert input. In practice, SDCF is suitable for the scenario where 

only product data is available and item responses are in a sequential form; LogCF is suitable 

for the scenario where both product and process data are available and item responses are not 

in a sequential form, and LogSDCF is suitable for the scenario where both product and 

process data are available and item responses are in a sequential form. Moreover, it is worth 

noting that the proposed models, especially LogCF, are not only techniques for educational 

data mining, but also have the potential for psychometric analysis given their interpretability.  

In practice, successful applications of the proposed approaches require the following 

assumptions to be met. First, enough data for model training is needed. To make the models 

more effective and generalizable, they are expected to see a large variety of learners and 

items during training. Only thus can the models perform well on unseen learners and items. 

Second, model parameters need to be well tuned in training. An overfitting model usually 

performs inadequately on the testing data, and an under-fitting model suffers from high bias 

in training and does not generalize well on other data as well. Third, assessment items are 

expected to be well designed. Although the estimated item-skill associations by the proposed 

approaches can be used to partially inform the quality of the assessment design (e.g., items 

without connections to any skills or skills measured by very few items indicates possible 

design issues), a large number of low-quality items might result in unreliable models for 

learning evaluation. That said, the majority of assessment items are supposed to strongly 

 
4 Part of this chapter was published by the author. See “LogCF: Deep collaborative filtering with 

process data for enhanced learning outcome modeling”, F. Chen and Y. Cui, 2020, Journal of 

Educational Data Mining, 12, pp. 66–99. https://doi.org/10.5281/zenodo.4399685 
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measure the learning topics and accurately differentiate learners of different skill levels. 

Finally, the models should be applied in an appropriate context. For example, the models 

should be used with a diagnostic purpose for promoting learning rather than with a 

summative purpose for comparing learning outcomes with standards or benchmarks. 

Moreover, in the context where learners’ problem-solving actions are treated as their final 

explicit learning outcomes, the models should not be used because, in this case, learning 

outcomes are used as both targets and features in training. For example, if an item is scored 

by directly comparing learners’ action sequences against the pre-specified correct action 

sequence, the model would always achieve a perfect prediction, which is useless in reality. It 

should be noted that violations of the above-mentioned assumptions are problematic in 

applying the proposed approaches to analyze real-world assessment data. 

Next, the implications, limitations, and future directions of the proposed approaches 

will be discussed.  

Theoretical Implications 

Theoretically, LogCF demonstrates the potential of deep CF for recovering 

psychometric measurement models as a special case with model regularizations. Although 

the dissertation does not focus on how to fully recover IRT models from deep CF with 

process data learning as did in previous studies (e.g., Bergner et al., 2012), the interpretability 

of estimated item-skill associations evidenced by the comparison with IRT model parameters 

supports that deep CF can recover features of psychometric models. Admittedly, item-skill 

associations estimated by the proposed models do not share the same interpretation as item 

difficulties and item discriminations by IRT given that their estimations are also affected by 

process data learning and thus might reflect some information about learner problem-solving 

processes. Although the learned representations of process data cannot be explicitly 

interpreted, process data learning of the proposed models should be considered as a 
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regularization technique because it brings much more extra information for model training. 

Therefore, learning deep CF models is much less likely to be an ill-posed problem.  

Regarding SDCF and LogSDCF, essentially, they are analogous to ensemble learning 

techniques which aggregate the advantages of many different algorithms for improved 

prediction performance. Specifically, the effectiveness of SDCF and LogSDCF relies on both 

recurrent neural networks and the attention mechanism. Attentive models have been 

successfully applied in the areas of machine translation and knowledge tracing (Vaswani et 

al., 2017; Pandey & Karypis, 2019) and they showed higher prediction accuracy than 

conventional deep learning approaches. This work differs from previous work on attentive 

modeling in that LSTM networks are integrated with the attentive model for improved 

prediction performance. This can be validated by the findings that SDCF and LogSDCF 

outperformed their LSTM or attention sub-architectures. In summary, this work demonstrates 

the potential of ensemble learning for enhanced learning outcome modeling. 

Practical Implications 

Significance of Process Data Learning 

LogCF and LogSDCF are both generic systems for modeling and predicting learning 

outcomes based on deep CF with process data learning. To demonstrate the usefulness of 

LogCF and LogSDCF, I compared the effectiveness in missing response prediction between 

them and conventional data mining and psychometric models using data sets from an 

international large-scale complex problem-solving assessment and a web-tutoring system. 

The experimental results with the real-world datasets validated the effectiveness and 

interpretability of LogCF and LogSDCF.  

As mentioned earlier, despite the existing machine learning-based approaches, this 

work argues the importance of incorporating learner process data in learning outcome 

modeling. As the results suggest, the variants of LogCF outperform NeuralCF (i.e., the model 
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without process data learning) and LogSDCF outperforms SDCF, indicating that process data 

learning helps refine and improve training and prediction. For example, by modeling 

learners’ problem-solving processes, LogCF and LogSDCF might be more capable of 

differentiating a correct response produced by a learner with a full understanding of the latent 

skills, partial understanding of the latent skills, or guessing, which improves the accuracy of 

the learner-skill and item-skill association estimation. This feature of LogCF and LogSDCF 

is especially beneficial for personalized learning. For example, in intelligent tutoring systems, 

it is often the case that feedback or a hint is given when learners give incorrect responses 

while solving a problem (Psotka et al., 1988). However, the same incorrect responses might 

be associated with very different underlying problem-solving processes, which affect the 

diagnosis of learners’ mastery of latent skills. In this sense, the proposed models are more 

efficient and accurate for cognitive diagnosis by exploiting the process data.  

Significance of Item-Skill Association Discovery 

All three models are capable of learning item-skill associations from scratch without 

expert input. Specifically, it was found that item-skill associations discovered by LogCF were 

not worse than the expert-specified ones. The comparison between the three variants of 

LogCF suggests that LogCF performed well regardless of whether the expert-specified item-

skill associations are available or not. Regarding SDCF and LogSDCF, they were both 

capable of detecting the major item clusters in terms of item-skill associations. Particularly, 

given the synthetic data, item-skill associations discovered by SDCF were almost the same as 

the ground truth. The capacities of the proposed approaches to discover item-skill 

associations were particularly promising for large-scale assessments. In the scenarios where 

numerous items are automatically generated by machine for computer-based assessments, 

using the proposed approaches, experts’ efforts in specifying which items map onto which 

skills might be minimized given that item-skill associations can be automatically learned by 
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each model. Consequently, the development of large-scale assessments will be much more 

cost-effective.  

Generalizability for Extensive Applications 

The proposed approaches were developed to promote learning as a formative 

assessment tool but not evaluating learning as a summative assessment tool. The proposed 

approaches have great potential for a wide range of applications across different domains. 

Although LogCF, SDCF, and LogSDCF were evaluated from perspectives of educational 

data mining and psychometric measurement, they are generic and flexible frameworks that 

can be applied in various educational or even non-educational settings. For example, in the 

area of digital game-based assessments, evidence modeling is an ongoing research topic and 

a variety of approaches have been proposed to connect performance indicators to targeted 

skills in previous studies (de Klerk et al., 2015). However, the majority of previous studies 

mainly focused on learners’ explicit performance indicators, and using learners’ process data 

from digital game-based assessments in evidence modeling is an emerging trend (Min et al., 

2019). The proposed approaches could be used for evidence modeling with learners’ process 

data in digital game-based assessments. Moreover, in the context of online education (e.g., 

massive open online courses), it is crucial to recommend tailored learning tasks or learning 

content to learners. The proposed approaches are capable of modeling learners’ performance 

using past learning opportunities to predict their performance in the future, which facilitates 

individualized learning path recommendations with their estimated mastery levels of latent 

skills and learning outcomes. However, it should be noted that experimental studies might be 

needed to validate the advantages of machine-recommended learning paths over conventional 

pre-planned learning paths for improved learning outcomes. 
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Limitations and Future Directions 

Although the proposed approaches do not see any action sequences from the test 

sample in training, in the test stage, actions and durations on new items are needed for 

predicting unseen responses, which could be a limitation in practice. However, the models 

could still have important practical applications in the following circumstances. First, in the 

psychometric analysis of educational assessment data, typically we are interested in 

examining item quality and estimating learner abilities instead of predicting unseen item 

responses. In that case, LogCF could be used to evaluate items and learners as a 

“psychometric measurement model” exploiting process data for modeling. Second, in the 

circumstance that predictions of future item responses are desirable, the models could be used 

with some modifications. For example, in the setting of massive open online courses, if we 

consider a course as an item, the process data involves actions and associated time duration 

over a long period (i.e., from registering the course to finishing the course). In that case, with 

partial process data, the models could detect at-risk students who would drop or fail the 

course at a very early stage, which is beneficial for early intervention. Moreover, even in 

conventional web tutoring settings, the models could still predict unseen and future item 

responses only based on the deep learning-based CF architecture without process data 

learning.  

Although process data can be used for enhanced learning outcome modeling, the 

process data learning of LogCF and LogSDCF is not very informative for deciphering how 

learners attempt problems. The process data analytics for characterizing learning behaviors 

was not conducted in this work mainly because the proposed approaches do not model 

actions and time durations separately for each item but embed them to latent representations 

simultaneously. In addition, some items might share the same actions (e.g., for the PISA 2012 

dataset, the actions of starting or ending an item were the same across some items), which 
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might confound the unique contribution of actions to item responses. Nevertheless, some 

recent studies focus on analyzing action sequences. For example, a recent study proposed to 

use sequence-to-sequence autoencoders to extract informative latent variables from learners’ 

action sequences in solving a problem (Tang et al., 2019). Their study has demonstrated the 

possibility of using process data to decipher how learners attempt a problem. Instead, as 

mentioned earlier, the process data learning proposed in this work is more of a regularization 

technique for enhanced learner modeling.  

This work used two different approaches to discover item-skill associations. For 

LogCF, the learned latent representations embedded from item IDs were directly used to 

indicate the strength of item-skill associations. However, the estimated item-skill associations 

were not in a binary or categorical scale which might not be well accepted by educational 

practitioners. Moreover, its interpretability was elucidated in reference to IRT item 

parameters, which may not very intuitive for those who are not familiar with psychometric 

models. For SDCF and LogSDCF, attention weights were used to calculate the relevance 

weights between items, and item clusters were used to indicate the item-skill mapping. In this 

way, latent skills were not parametrized in modeling. Therefore, the item-skill associations 

might be discovered with more randomness. 

In addition, the proposed approaches were developed for binary item responses only. 

In many educational settings, non-binary scoring is used more often. How to adapt the 

proposed approaches for non-binary scores should be investigated in the future.  

Furthermore, like some recommendation system algorithms, the proposed approaches 

bear a cold-start problem for new learners and users. This issue, however, can be addressed 

by embedding learners and items with auxiliary information. For example, learners’ learning 

styles and demographic information can be incorporated in learner embedding, and item texts 
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can be incorporated in item embedding. As such, features of new learners and new items can 

be directly learned and evaluated by the model, which mitigates the cold-start problem.  

Lastly, it should be noted that the proposed approaches cannot be used to completely 

replace human raters. Although the three models showed satisfactory prediction performance, 

their effectiveness still suffers from a variety of random factors such as low item quality and 

small samples for training which result in inevitable prediction errors. In addition, it is 

undoubtful that human raters such as teachers are more likely to have a more in-depth 

understanding of student learning, and therefore they are more likely to provide better-

tailored learning interventions for improved learning outcomes.  

Effective learning is shaped by numerous contextual factors such as learners’ task and 

cognitive conditions (e.g., learning resources, interest, and motivation), cognitive processes 

and products (e.g., behaviors and performance in learning tasks), and internal or external 

feedback and standards (Winne, 2005). As such, in terms of future work, this work also 

stresses the importance of multi-modal learning for enhanced learning outcome modeling. 

For example, how to model the data from non-conventional modalities, such as video, audio, 

sensors, eye-trackers, and wearables, within a generic framework is worth future 

investigations. Moreover, how to extract interpretable learning strategies or psychological 

traits from multi-modal data in the context of large-scale assessments is another interesting 

topic in this area.  
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