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ABSTRACT

A theory is developed to describe the topographic de-phasing and amplitude
modulation of Rossby wave triads. The model equations are derived via a formal
asymptotic expansion in which the topographic gradients have the same assumed
small order of magnitude as the non-linear advective interaction terms in the
quasi-geostrophic potential vorticity equation. For piecewise linear topographic
configurations the perturbed steady-state interaction equations may be solved
exactly. The theory developed in this thesis demonstrates that, in the presence
of topographic forcing, the nonlinear triad interactions induces a permanent zonal
wave number mismatch in the sense that the wave resonance conditions are no
longer completely satisfied. The size of this mismatch is dependent on the initial
amplitudes, wavelengths and frequencies of the individual Rossby wave packets
and the ragnitude of the topographic slope. The permanent zonal wave number
mismatch thxt is created will mean that even after the Rossby wave packets have
traversed a i:onogiaphic feature of finite horizontal extent, the energy exchange
between the wae- ackets is no longer maximized. This process is examined in

this thesis for diffcrs:nt topographic configurations.
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CHAPTER 1
INTRODUCTION

The north-south undulations of the upper flows, known as ridges and troughs,
constitute the planetary or long waves which typically have a meridional ampli-
tude ranging from 45 to 90 degrees cf latitude, and have a vertical wave length
of roughly the depth of the troposphere. The planetary waves ure known as
Rossby waves after C.G. Rossby who first discussed their origin in a barotropic
atmosphere (Rossby, 1939). Rossby waves owe their existence to the meridonal
gradient in the radially-outward component of the planetary angular frequency
vector which acts as a restoring force when fluid parcels are meridionally dis-
placed from their mean position (Rossby, 1939).

Time averaged maps of the atmosphere at various pressure levels, where
the averaging time is many years, show certain characteristic features such as
well defined treighs and ridges. These features must be of a stationary nature,
otherwise they would be lost in the averaging process. These maps are often
used to represent the stationary flow of the atmosphere. Synoptic experience
has shown that the atmosphere has other structural entities which are of shorter
duration, but which are also quasi-stationary in nature, and have a timespan
exceeding that of a travelling disturbance.

Many of these quasi-stationary disturbances are seasonally dependent, such
as the monsoon circulation. These structures can be seen on time-averaged maps
for the month or season in which they occur, because they are more closely
associated with a season than the general circulation in an annual sense.

On still a shorter time scale, it is observed that the atmosphere, from time
to time, creates features which have a typical structure, and exist for a certain
period in essentially an unchanged form.

Perhaps one of the most interesting and noticeable short-term features is
the formation of “blocks”. In the Northern Hemisphere, atmospheric blocking

is a large-amplitude synoptic-scale phenomenon embedded in the westerlies, that
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diminishes or retards the predomiantely zonal flow in a limited sector of the
hemisphere. The westerlies are split into two distinct meridional flows, one head-

ing southward and the other northward, thus the predominately zonal flow is

“blocked”.

An extensive climatology of blocking was carried out by Rex (1950), who
provided a detailed description of blocking from a synoptic point of view, as well
as an analysis of the climatological aspects of blocking. The definition of blocking

provided by Rex (1950) is that blocking must exhibit the following characteristics:

1. The basic current in the upper atmosphere must be split into two streams.

2. Each stream must transport an appreciable mass.

3. The double stream system must extend over 45 degrees of latitude.

4. A sharp transition from zonal to meridional flow must exist in the region of
the split.

5. The pattern must persist with recognizable continuity for at least ten days.

Austin (1980) provided a less stringent definition of the blocking phenomenon.
A distinction between the synoptician’s point of view and that of the theoretical
meteorologists is made. The first view is that blocking is a spatially isolated phe-
nomenon consisting of a stationary high pressure cell, cold in the stratosphere
and warm in the troposphere, persisting in a region where westerly winds are
normally found. The persistence requirement is substantially longer than three
days. Austin (1980) also stated that blocking is any stationary wave of large
amplitude, meaning that blocking is also seen as a global phenomenon.

A split in the two streams is not made part of the definition, but it is
nevertheless mentioned that it occurs particularly in cases where the high pressure
cell is at sixty degrees north, and is located to the north of a low pressure cell
at forty degrees north. Both these definitions recognize the connection between
the split of the two streams upstream and the location of the high pressure cell

downstream.



3

On the basis of these definitions, statistical analyses of blocking have led
to three preferred geographical areas where blocking frequently occurs in the
northern hemisphere: over the eastern North Atlantic, extending to the southeast
of Greenland; over the northern Soviet Union, extending northeast to the Arctic
Ocean; over the north Pacific, extending to south of the Aleutians (Austin, 1908;
Rex, 1950; Dole and Gordon, 1983). Blocking in the southern hemisphere is less
well documented, but it is not infrequent (Trenberth and Mo, 1985). Van Loon
(1956) found that sometimes two or three “blocks” may occur simultaneously
in the southern hemisphere. By contrast double or triple “blocks” are rare and
short lived in the northern hemisphere. A review of blocking in the northern
hemisphere is given by Knox (1982).

The effects of blocking on the regional weather are quite dramatic. For ex-
ample, Atlantic blocking strongly affects the weather in Europe. Below the high
pressure ridge, the precipitation is below normal, while above normal precipi-
tation is observed over the east-central Atlantic, and over the two belts over
Scandinavia and the Mediterranean under the jet streams.

In 1959 a blocking high formed in late January and persisted into late fall,
with only a few short interruptions. Central Europe suffered a severe drought in
vhat summer. In the fall of 1960 a blocking high persisted over northern Europe.
Rainfail along the west coast of Norway was less than half of the normal amount,
and many costal stations had the driest autumn on record (Chang, 1972).

In January 1977 the extremely cold winter in the continental interior, and
unusually warm temperatures on the west coast of North America, were due to
a persister:t high pressure ridge over Alaska (Miyakoda et al., 1983).

Blocking can occur in two distinct patterns. The first is a ridge pattern
wii.ch diverts the mean westerlies northward. The second pattern is a dipole
block which takes the form of a meridionally aligned vortex pair with the anti-
cyclone north of the cyclone.

The reascns for the development and maintenance of blocking patterns has

been debated for over 50 years, and a satisfactory theoretical explanation is still
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missing. A good theory must describe the features in the definitions put forth
by Rex (1950) and Austin (1980), i.e., the splitting of the two streams upstream
of the high, the persistence of the pattern, the preference for certain localities in
the Atlantic and Pacific, and the strong seasonal dependence.

Many theories have been proposed to explain the formation and persistence
of “blocks”. The connection between quasi-stationary blocking ridges, and the
forcing due to the earth’s topography and surface thermal contrasts, and whether
blocking is a regional or global phenomenon, has yet to be understood.

A review of present blocking theories is given by Benzi et al. (1986). Re-
gional theories have centered around work by McWilliams (1980) who suggested
that atmospheric blocks could be produced by internal dynamics alone, due to a
balance between nonlinear and dispersive effects.

Warn and Brasnett (1983) showed that for baroclinic waves in a shear
flow interacting with topography, the quasi-geostrophic potential vorticity equa-
tion can be reduced to a non-homogeneous Korteweg-deVries equation, and that
Rossby solitons could be simultaneously amplified and stalled by topography, a
process they interpret as a transition to a regional blocking configuration.

Pierrehumbert and Malguzzi (1984) showed that a high amplitude equilib-
rium state could be maintained by a local nonlinear resonance phenomenor.. Syn-
optic observations supporting the regional theory of blocking has been provided
by Dole and Gordon (1983).

On a global scale, much interest has been generated by the work of
Charney and DeVore (1979) and Hart (1979), which suggested that for given
forcing parameters, multiple steady states of the zonal mean wind and plane-
tary wave amplitude were possible, due to orographically induced instability in
the barotropic model. Charney and DeVore’s (1979) results were obtained by
menns of barotropic quasi-geostrophic nonlinear spectral models truncated to a
few harmonics to allow analytical treatment. Other work has illustrated simi-
lar possibilities in baroclinic models (e.g. Pedlosky, 1981; Charney and Strauss,
1980).
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In these models, one stable steady state corresponds to a relatively strong
zonal flow, while another corresponds to a weak zonal flow, and a wave pattern
characteristic of blockinig. Charney and DeVore (1979) identified an equilibrium
solution, one with a large amplitude perturbation of the zonal flow, which is
locked near resonance by the nonlinearity with a blocking configuration. Blocking
may be considered as the product of rescnant forcing and nonlinearity.

Tung and Lindzen (1979) suggested that linear resonance in response to to-
pographic forcing is responsible for rapid growth of long planetary waves observed
both in blocking and with stratospheric warmings. In the case of a zonal wind
having realistic vertical shear, Tung and Lindzen (1979) focused on the vertical
profiles of the zonal wind and the resonant wave amplitude at equilibrium, but
no resonant growth rates were calculated.

Nonlinear mechanisms have zlso been used to try to explain blc.%ing. Per-
haps the first was proposed by Rossby (1950) who recognized that blocking action
follows the split of the jet stream in time, and suggested that blocking can be
explained at least partly by comparing it with a hydraulic jump. He derived
some criteria for the ouset of blocking.

Rossby’s theory was found to be far from satisfactory by (Benzi et al., 1986;
Egger, 1978), because the stationary character of the flow in a blocking high
mak-s it unlikely that the violent, turbulent motion in a hydraulic jump can
serve as an analogue for the blocking high. More recently Egger (1978, 1979)
presented numerical experiments in which block-like patterns are obtained as a
result of nonlinear interactions (triad resonance) between orographically forced
standing waves (with wave numbers different from the linearly resonant values),
and free slowly moving waves. Many of Egger’s (1978) arguments are highly
heuristic since he neglected to account for the nonlinear interaction of members
of the triad with other modes, and how the development of one member of the
triad will influence the other members.

An extension of the Charney and DeVore (1979) idea to a barotropic model

including wave-wave interaction by Benzi et al. (1986), shows that the presence
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of the wave-wave interaction causes the orographically forced wave amplitude
resonance in Charney and DeVore’s (1979) model to become a “folded” resonance
in which, for a given value of the zonal wind, more than one stable planetary
scale wave amplitude is possible. It appears probable that a block as a nonlinear
yet global phenomenon perhaps depends on a wave-wave interaction, rather than
interaction between waves and the zonal current.

The nonlinear interactions between Rossby waves, by which the velocity ficld
of one wave advects the vorticity field of another, and leads to a nonlinear cou-
pling and energy transfer between the waves, are of interest for at least two

reasons (Longuet-Higgins and Gill, 1967):

1. With Rossby waves in the atmosphere, and possibly the ocean, the ratio of
the particle velocity to the phase velocity (which is an index of the nonlin-
earity) may be appreciable.

9. Resonant interactions between planetary waves take place at the second order

and not only at third order, as in surface gravity waves.

Therefore the interactions are of dynamically greater importance.

Longuet-Higgins and Gill (1967) determined the geometrical conditions for
two waves to form a resonant triplet with a given third wave. They also showed
conservation of energy and enstrophy for a resonant triad in the absence of any
forcing. In addition they showed solutions to the amplitude equations in the
absence of forcing. It was also noted by Longuet-Higgins and Gill that if the
waves are truly discrete, then due to the vanishing of the coupling coefficient,
the triad resonance mechanism cannot be responsible for exciting zonal flows,
and that the zonal flow merely acts as a catalyst for energy exchange between
the other two members of the triad.

Newell (1969) showed that it is possible for wases neighboring the resonant
waves to excite zonal flows on a longer time scale. It was also shown that a single
Rossby wave packet can exchange energy with the zonal flow in the presence of

a weak shear.
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Loesch (Part 1: 1974) considered resonant interactions between a marginally
unstable wave and a pair of baroclinic waves in a quasi-geostrophic, inviscid, two
layer model on the beta plane. It was shown that, when the vertical shear slightly
exceeds the minimum critical value required for instability, the finite amplitude
state exhibits a long period oscillation of the amplitudes of the three waves
which form the resonant triad. Energy is continuously being exchanged between
the wave field and the mean field, and among triad members.

In Loesch (Part 2: 1974) an examination of the energy exchange between
the triad in Loesch (Part 1), for different values of the internal rotational Froude
number was examined. Pedlosky (1970, 1979) and Drazin (1970) investigated the
weakly finite amplitude evolution of slowly growing modes in a baroclinic model.
They concentrated on the evolution of a particular unstable linear eigenmode, as
it is circumscribed by weak non-linear effects.

Meacham (1988) demonstrated another type of a weakly nonlinear model in
which there appears a different version of the baroclinic instability mechanism.
His model investigated the evolution of a triad of neutral Rossby waves of weak
amplitude in a vertically sheared flow. He showed that nonlinear interactions
between the waves produced slight phase shifts that enabled the modified waves
to generate non-zero heat fluxes, and so exchange energy with the mean flow.
He further showed that there exists some triads for which the net effect of the
heat fluxes is an extraction of energy from the mean flow by the triad. As a
consequence the triad grows. In general this growth is faster than exponential.

Investigations of triad resonance have so far dealt only with the study of
wave-wave and wave-mean-flow interaction. The study of triad resonance under
the influence of some type of forcing, eg., thermal or topographic, has yet to be
investigated. It is clear from previous studies listed above, that there may be
some interesting differences between resonant triads under the influence of forcing
and their counterparts, which are not under the influence of forcing. A simple
environment in which to observe the dynamics of resonant triads is a barotropic

model.
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The principal objective of this thesis is to examine the effects of topogra-
phy on resonantly interacting Rossby wave triads in a barotropic model. The
topography is assumed to be the same small order of magnitude as the nonlinear
Jacobian terms in the quasi-geostrophic potential vorticity equation.

The outline of this thesis is as follows: In Chapter 2, we review the deriva-
tion of the quasi-geostrophic potential vorticity equation for a barotropic, ho-
mogeneous, incompressible atmosphere on a beta plane, including friction and
topography. We then proceed to develop the equations which will describe the
evolution of the wave amplitudes, and finally we convert those equations to stan-
dard form.

In Chapter 3, we show that in the absence of friction, the equations gov-
erning the evolution of the amplitudes conserve both energy and enstrophy. In
addition we show that in the absence of friction, the equations conserve three
other quantities which are expressed by the Manley-Rowe relations. In Chapter
4, we present solutions to the equations which describe the evolution of the wave
triads. We begin by looking at the “pump-wave approximation” which describes
the situation in which one of the three wave packets in the triad has an initially
large amplitude relative to the other two. We then give a brief discussion and
show how the general initial value problem may be treated by the method of
inverse scattering. Finally, we show how solutions to the steady state problem
may be solved in terms of Jacobi elliptic functions. In Chapter 5 we derive wave
numbers which form a resonant triad, and for piecewise linear topegraphic con-
figurations, we illustrate the full analytical solution. In Chapter 6 the thesis is

summarized and conclusions are presented.



CHAPTER 2.
DERIVATION OF THE GOVERNING EQUATIONS

2.1 Derivation of the Quasigeostrophic Potential Vorticity Equation

To focus attention on the resonant interaction problem, we reduce the model
of the atmosphere to a simple form. In fact we assume that it can be modelled as
a barotropic incompressible fluid on an infinite 3-plane, in the presence of Ekman
dissipation and bottom topography. Therefore, the governing non-dimensional
equations of motion are the shallow water equations given in the form (Pedlosky,

1987)

£
Ro[u, + uuy + vuy + wu,] — (14 Rofy)v = =P + Eu"’ (2.1.1a)
E
Ro[ve + uvg +vvy + wv.] + (14 RoBy)u = —Py + 5 Ve (2.1.1b)
2 §*E
8*Ro[wy + uw; +vwy + ww;] = —P; + —2—wn, (2.1.1¢)
Uz + vy +w; =0, (2.1.1d)

while the boundary conditions on the tropopause are
kinematic w = RoFn; + un: + vny)
at z =14 RyFn(z,y,t) (2.1.1¢)
dynramic P =75

and the boundary conditions on the earths surface are
w = Ro[unp, +vnp,] + Rowg at z = Rong(z,y) (2.1.11)

where wg is the nondimensional vertical velocity associated with an Ekman

boundary layer. The topography is assumed to be O(Ry) Pedlosky (1987).
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Nondimensional (unprimed) variables are introduced as follows

(z,9) = (=",¥)/L, }
2=2/D,
(w,0) = (u', 0T,
w = (L/Dyw'{T,
t = (U/L)Y, L (2.1.2)
n=n'/No where No = L%E,
p'(z',y', 2", t") = —pg(z' = H) + (fULp)p(z,y, 2,1),
75(2,) = ReDH(z', 1),
welz,y,t) = (RoL/DU)wg(z',y',t').

We demand that the scales L, U, Ny characterize the magnitudes of length, ve-
locity and free surface elevation respectively. Several nondimensional parameters

are introduced, viz:
Ry =U/fL, the Rossby number, )
E =2v/fD?, the Ekman number,
B = pB'L?/U, the planetary vorticity factor, L (2.1.3)

F = f?L?/gD, the external rotational Froude number,

8 = D/L, the aspect ratio.

)
Equations (2.1.1a) , (2.1.1b) and (2.1.1c) are the zonal, meridional and vertical
nondimensional momentum equations respectively; (2.1.1d) is the nondimensional
continuity equation. Subscripts t,z,y,z denote partial derivatives. The param-
eters f,v,g, are respectively the Coriolis parameter, the eddy viscosity and the
acceleration due to gravity. 7 is the departure of the free surface from it’s level,
rest height, and np is the measure of bottom variation which produces a scale
departure RoD, the depth of the resting fluid, from the constant value D (see
Fig. 1 for geometry of the flow). The parameters Ro,E and § are assumed to
be small with respect to unity while 8 and F are taken to be O(1). As long as
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Ro > O(E%/?), an asymptotic expansion of the dependent variables in powers of
R, is appropriate (Pedlosky, 1987)

u~u® + Rou™ + ..., )

v ~v® + Rov® 4 ...,

w~ Row® + ...,

n ~17(0) '*‘ROU(I) + ...,

P~P® L RePD ..,

wE~w(g)+.... )

From this it follows, after substitution of (2.1.4) into (2.1.1), that to O(1)

v = PO, (2.1.5a)
u® = —PO), (2.1.5b)
PO =0, (2.1.5¢)
u® +0l® =0 (2.1.5d)

with the O(1) Taylor expanded boundary conditions
PO — ,7(0)
(2.1.6)
0
w® = Fp{® + 4©@5© 44O

at z =1, and

w® = u@ng, +vOng, + v (2.1.7)

at z = 0. It follows from the hydrostatic relation and the dynamic boundary

condition on the tropopause that
p©® =7© (2.1.8)

everywhere in the atmosphere. Since n(® is independent of z the geostrophic
relations will imply that u(®) and v(©® are independent of height. Any solution

which satifies (2.1.5a) and (2.1.5b) also satisfies the momentum equation (2.1.5d),
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therefore the O(1) approximation simply does not contain enough information to
complete the dynamical determination of the motion. This situation is referred
to as geostrophic degeneracy. It is clear that the resolution of this difficulty will
require the consideration of higher-order dynamics. To O(Rp) the momentum

and continuity eqations are

ul® 4+ u®y® 4 v(°)u(y°) — oM — Byp@ = —pV) (2.1.9a)
o® +u@p® 4 v @O 4w 4 fyu® = P, (2.1.98)
uld + '051) +w® =0. (2.1.9¢)

We do not need to examine the O(Rg) boundary conditions. Differentiaiing
(2.1.92) and (2.1.9b) with respect to y and z respectively, and subtracting yields

the vorticity equation

¢ 4 u@¢O 4 OO 4 fo® = () + V), (2.1.10)
where
¢O = p® — y O (2.1.11)

Substitution of the geostrophic relations and the O(Rp) continuity equation gives
[0 — n{"8; + 0", ][An + By] = v, (2.1.12)

where A is the horizontal Laplace operator defined by A = 92/822+9°/dy®. We
now integrate (2.1.12) with respect to z from z = 0 to z = 1 recalling that n{®

is independent of z
[0 = 7{78: + nPD3,1[A7 + By] = w(z,y,1,8) ~ 0V (2,4,0,8).  (2.1.13)
Substituting the 0(1) boundary conditions on w(® yields

[0 — 708, + 78, )An® — Fy® + By + ng] = —w®. (2.1.13)



Pedlosky (1987) has shown that
2
w® = ——An®. (2.1.15)

Using (2.1.15), the vorticity equation (2.1.14) may be written as

[8¢ + %28y — ¥, 0:)[A% — Fp + By + nB] = —rAY, (2.1.10)
where we have defined
¥ =19,
El/2 (2.1.17)
r= T

The parameter r measures the strength of the Ekman pumping on the lower
boundaries. Viscous effects at the interface have, for the sake of simplicity in
presentation only, been ignored and would only affect the quantative details of
the subsequent results (Pedlosky, 1987).
The terms in (2.1.16) are defined as follows (Pedlosky, 1987)
A, geos rophic relative vorticity
F1, gravitationally induced or (free surface) relative vorticity

By, planetary vorticity

nB, vortex tube stretching due to topography.

In order to focus attention on weakly nonlinear dynamics we set

P = ey,
nB = €NB, (2.1.18)
r =€r,

where ¢ is a nondimensional wave amplitude parameter which will form the cor-
rect inverse space time scaling for resonant interactions and ¢ satisfies 0 < e < 1.

We substitute (2.1.18) into (2.1.16) and rewrite (2.1.16) in its final form as

(A — 1)y + 9z = —€J (4, A%) — eJ($,78) — eTAY. (2.1.10)



In (2.1.19) we choose the scaling length L, otherwise free to be the Rossby
deformation radius (R,) for the layer of depth D, so that F' = 1. The Rossby
radius of deformation is the distance over which the gravitational tendéncy to
render the free surface flat is balanced by the tendency of the Coriolis acceleration
to deform the surface. Typical synoptic scales for L might be 1000 km thus giving
time scales t = -Rl:ﬂ, of approximately 1 day. With this scaling U = BR? thus

g =1



2.2 Derivation of the Amplitude Equations

In this section we take (2.1.19) and derive equations which describe the

evolution of the amplitudes of a resona::t triad. We begin by setting

zr
nB = 5—1/ y(z")dz', (2.2.1)
0

and substituting into (2.1.19).

The governing equation simplifies to

(A =Dy + b, = —eJ (P, AY) +ey(ex)py —er Ay, 2.2.2)

We define slow time and space variables as:

T=c¢t }
X =e¢x.

The introduction of (2.2.3) permits us to restrict our discussion to the slow time

—
SV
o
L]

and length scales over which the amplitude of the wave field gradually changes
and the topograp... is large scale, i.e., the topography changes slowly in spa-
tial variables (Pedlosky, 1987), consistently with the magnitude of the nonlinear
terms.

According to multiple-scale theory (Bender and Orszag, 1978), the fast and
slow variables can be formally treated as independent variables. Thus the stream

function is explicitly written in the form
b =¥(z,u,4 X, T). (2.2.4)

Derivatives are given by the usual chain rule
8, = 0, + €0,
8: = 0; +¢0x,
Oy = 0y.

—_
o
o
o

S
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In terms o “hese variables, the governing equation (2.2.2) can be written in the

form

QY =—eJ(, Ad) — eLpr — 26tz x
+ e - ebx + ey (X W, — erdyp + O(£?). (2.2.6)

Where @ is the operator
Q= (A-1)0; + 0. (2.2.7)

Since ¢ is a small parameter we niav assume an expansion of the dependent
variable % of the form
Y =9 pep® g (2.2.8)

The O(1) problem which results from inserting (2.2.8) into (2.2.6) is the linear

equation

Qv =0. (2.2.9)

Following (Benny and Newell, 1967; Pedlosky, 1987; Bender and Orszay, 1978) we
may begin by considering as our basic solution to (2.2.9) a linear superposition

of three wave packets of the form

3
PO =) " A;(X, T)exp(i6;) + c.c., (2.2.10)

j=1
where the amplitudes A; are slowly varying functions of position and time and
; = kjz + £jy —wjt, and (c.c.) denotes complex conjugate. Substitution of

(2.2.10) into (2.2.9) yields the local dispersion relation given by
wi(k? + 0% + 1) = —k;, (2.2.11)

where j is cycled over (1,2,3). Longuet-Higgins and Gill (1967) investigated the
interaction of these discrete waves and noted that because of the existence of

resonance conditions, energy can be transferred from one component to another.
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In order for resonance to occur the three waves must satisfy (without loss of

generality)
8, + 6, +6; =0, (2.2.12)

so that there must exist classes of triads such that

kl + kz + k3 = 0,
i+ +83=0, (2.2.13)
wi(k1,£1) +wa(ks, £2) + wa(ks,€3) =0
are satisfied simultaneously.
The existence of such triads was first pointed out by Kenyon (1964) and

later, in greater detail by Longuet-Higgins and Gill (1967). The O(e) problem
which results from inserting (2.2.8) into (2.2.6) is:

QU = - IO, Ap®) ~ Ay + 8 — 260
_ "/Jg?) + 7(X)1,b§0) —rAPO, (2.2.14)

which may be solved using the putative solution 2.2.10). The problem for M

is
3
Qw(l) = Z[(kf + €§ + 1)Ajr + (—2kjw; — 1)Ajx + 1A;0v(X) + A,-r(k? + @?)]e:cp(i()j)
i=1

3 3
+3° N AnAnlz (K % Ko)( & - Ko ~ Ko - Kp)lezp(—ifn ~ 10m)
n=1m=1

+ nonresonant terms + c.c. (2.2.15)

where K, = (kn,f,) and (j,m,n) is cycled over (1,2,3). The asterisk (*) has
been usea (o denote the complex conjugate. A complete derivation of (2.2.15) is

given in Appendix 1.
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We may further simplify (2.2.15) by writing it as

3

) _ 2, 2 . o, Ailiy(X)
QY'Y = JZ:;(ICJ +€J +1) [(3; + cJaX)AJ + (k? +E§ 1)
AjT(k? +€:Jz-)

CEVESY) M

3 3
+ Z Z A:A:n[z ) (—Igm X _I—{-n)(i{-m ) _I_{.m - L{-n ) Kn)]emp(_ien — 10m)
n=1m=1
+ c.c. + nonresonant terms, (2.2.16)

where

k-2 —1
o B[Ok = el 3 T
¢j = Ow;/0k; (k? +€§ TE

is the group velocity of the jth- wave (Pedlosky, 1987). We note that (2.2.18)

(2.2.17)

tells us that two waves of either the same wave length (K% = I{%) or parallel
wave vectors (K, x K, = 0) will not interact, for their interaction coefficient is
zero. The first case corresponds to a situation where the vorticity of the sum
of the pair is a constant multiple of the sum of their stream functions, so that
the Jacobian of the two wave fields ideutically vanishes, while the second situa-
tion corresponds to parallel motion in a single direction, for which the nonlinear
advection term in (2.2.14) is also zero (Pedlosky, 1987).

We shall ignore the nonresonant terms because as we shall show in Chapter 3,
the energy transfer between the nonresonant terms is so feeble and slow compared
to the resonant exchange that, to the lowest order, the resonant interaction is
energy preserving.

In order to preclude the appearance of secular terms in the solution for P

(Bender and Orszag, 1978) we require that

- . A% zZry(X)Al T(kf + €§)A1 59
(aT + Clax)Al = B]A2A3 k% +e¥ T1 k% +e% +1 ’ (.......18(1)
0y (X)As (K + B)As
E2+6E+1  k2+6+1°
#(X)As _ r(k} + E2) s
H+8+1 B+E+1

(aT + Czax)Az = —BzA;AI -

(2.2.18b)

(aT + C3ax)A3 = —B:;A:A; - (22180)



where

]

B, = z- (K, X K3) (K, - Ky — K - Ky)
(k2 + €2 +1)
K, -

B _ 2 (K x KKy Ky~ K, - K,)
2 (k2 + 2 +1) :
B; = z- (K x Ko)&K, - Ky — Ky - Ky)

(k2 +6+1) ’

are the interaction coefficients. It is important to realize that because of the
resonance conditions (2.2.12) 8; = -0, — 6, whenever n and m are different
from j and each other. It is this property that gives rise to the appearance of

the nonlinear wave-wave interaction terms in (2.2.18).



2.3 Conversion of the Amplitude Equations to Standard Form

The equations of the resonant triad (2.2.18) may be rewritten in the form

DiA; = ~BLASAL — ipmy(X)Ar — 014, (2.3.1q)
Dy A = --ByAjAT — tpay(X)Az — 0242, (2.3.1b)
D3Az = —B3 AT Aj — tpu3y(X)As — 0343, (2.3.1¢)
h
where N ¢ \
HEEreyr
and o= r(k? +£§) ? (2.3.2)
I N AN
k2402 +1
D; =0r+2;0x. |
If we set

0y(X,T) = Ay(X, T)espli / i‘“’?f:’fld)c],‘

o

az(X,T) = As(X, T)ezpli / i‘i‘gf—)d)c], (2.3.3)

a3(X,T) = As(X, T)ezpli / -@-'Z—(E-)-dX],‘
3

and substitute into (2.3.1), we get the following equations of the resonant triad

in standard form

Diay = ~Brajaespli [ uoy(X)dX] - oran, (23.4a)
Dza; = —Bzazajezpli / poy(X)dX] — o202, (2.3.4b)
D3az = —-B;;a‘{a;e:cp[i/yo'y(X)dX] - o303, (2.3.4¢)

where

po = pfcr + pafca + pafcs. (2.3.8)



CHAPTER 3
CONSERVATION THEOREMS

3.1 Conservation of Energy

If we ignore friction, we may show that the energy of the resonant triad is
conserved even though energy is transferred between the waves. We start with
the full dynamical equation (2.2.2), with the friction terms set to zero, which

may be written as

Ay =P+ ¥ + 5¢zA¢y - E'pyAd):: - 57(5$)1/)y =0. (3-1-1)

Multiplying (3.1.1) by %, and adding

Or(hz¥z) + Ou(Pyby)

to the left and right sides, and rearranging terms gives

0u(1/2 ()7 + 1/2 (%y)° + 1/297)
= 0y (Yibre + 1/2 Y — e9ppy AY)
+ 0y (Vye + e AP —1/2 ey(ez)P?). (3.1.3)

If we integrate (3.13) over a large area the right hand side becomes an integral
along the boundary, which increases like the linear dimension L. The left hand
side, however, increases like L? (Longuet-Higgins and Gill). If the amplitude of

¥ is bounded it follows that

//(1/2 ($z)? +1/2 (¥y)* +1/2 1®)dzdy = constant. (3.1.4)

The first two terms in (3.1.4) represent the kinetic energy density, and the third
term represents the potential energy, both in nondimensional form.
It is evident that for a plane-wave type solution, (2.2.10) the average densi-

ties of kinetic and potential energy are equal to

(k% +£2)A%

4 ' '
2 (3.1.5)
4

22



respectively.

For short planetary waves, ((k? +€2)!/2 > 1) (3.1.5) telis us that kinetic
energy exceeds potential energy whereas for long planetary waves the potential
energy exceeds kinetic energy.

Using (3.1.5), the wave energy for cach member of the resonant triad is

A?
E; = (K} + €6 +1)=1, (3.1.6)

where j is cycled over (1,2,3).
The equations of the resonant triad (2.2.18), with the friction terms set to

zero, may be written as

Dy(k2 + € + 1)A; = —B(K,, K, )(K3 — K3)A3A3 — itiy(X) A, (3.1.7a)
Da(k2 + €3 + 1)A2 = —B(Ky, K, )(K3 — KD)A3A] — ilay(X) A2, (3.1.7D)
Dy(k2 + €3 + 1)As = —B(K,, E,) (K3 — K3)Aj 45 — ibsy(X) 43, (3.1.7¢)

where

Dj = (Or + ¢;0x),
B(Km K,) =z (Km x Ky), (3.1.8)
and K, = (kn,s).
Multiplying (3.1.7) with A}, A3, A3 respectively gives
Dy (k2 + € + 1)|A1|* = — B(Kq, K3)(K; — K3)ATA3 45
— B(K,, K3)(K3 ~ K3)A14245
— (X)il1 A1 A} +v(X)il1 A1 4], (3.1.9a)
Da(k3 + & +1)| A2* = — B(K, K, )(K3 ~ K1)ATA3 43
— B(K3, K1 )(K3 - K})A1A2 4,
— (X )ila Az A} + (X)il2 A2 A3, (3.1.06)
Da(k2 + €3 + 1) As|* = — B(K,, K,)(K1 ~ K3)ATA3 A3
— B(K,, K, (K3 — K3)A1 4243
— 1(X)ils Az A3 + 1(X)ils Az A3, (3.1.9¢)



If the conditions for resonance (2.2.12) are met, it follows that
Z-K_2XK3=Z'K_3X_K1=Z-K1XE_2=(1, (3.1.10(1)

where d is a constant. A proof of (3.1.10a) is given in Appendix 2. Using (3.1.6)
and (3.1.10a) and adding the three equations (3.1.9) together yields

DE, + DE; + DE; = — dA} Aj A3(K3 — K3 + K5 — K§ + K] — I3)
— dA1 A2 Ay(K — K3 + K} — K + K3 - K3).
(3.1.100)
Simplifying (3.1.10b) we get
DlEl + D2E2 + D3E3 = 0, . (3111)

so that the energy of the triad is preserved. The waves in this approximation
only exchange energy among themselves, a remarkable result, for as we suggested
in (2.2), some energy must be passed on to the non-resonant terms, but (3.1.11)
shows that the transfer of energy to the non-resonant terms is so slow compared
to the resonant exchange that to the lowest order the triad is energy preserving.

If we write (3.1.9) as

D1E1 = —BlA:A;A; - B]A1A2A3, (3.1.12(1)
D2E2 = —BzA;A;A; - BgAlAgA;;, (311217)
D3Es = —B3 A} A3 A} — B3 A1 A2 As. (3.1.12¢)

We add equations (3.1.12) to give

DyE; + DyE; + D3E3 = — [By + Bz + B3]ATAZ A3
— By + By + B A1 ArAg (3.1.13).

It is easily seen from (3.1.13) that energy conservation implies that two of the
B;’s are of one sign and the other is of a different sign. Craik (1985) has shown
that if two of the B;’s are of one sign and the other is of a different sign, the

solution to the general initial value problem exists and is unique and bounded.
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3.2. Conservation of Enstrophy

The average of half the square of the potential vorticity is called the potential
enstrophy (Pedlosky, 1987). To show that the total enstrophy of the resonant

triad is preserved, we start with (3.1.1) which we write as
(A — ) = By (A, + B) + By(eh Db +ex(e)), (3:2.1)

from which it follows from arguments given in (3.1) that

//(A:/) - ¢v)2da:dy = constant, (3.2.2)

which expresses the conservation of the total potential enstrophy. It is easily
seen that for a plane-wave type solution, (2.2.10) the potential enstrophy for
each member of the triad is

3\

(k2 + & +1)2i1i =V;
J J 2 n

which equals ) (3.2.3)

(K3 + €5 + 1)E;. )

If we multiply (3.1.11) by (li:J2 +€'§ + 1) respectively and add the three equations
we get

D\WV1 + D,V + D3V3 = 0. (3.2.4)

Thus the total wave enstrophy of the triad is also preserved.



3.3 The Manley-Rowe Relations

In addition to conservation of energy and enstrophy, three other conserved
quantities are expressed by the Manley-Rowe relations (Craik, 1985). We begin
with equations (2.3.4), and set the friction terms to zero. We multiply each

equation by of,a3,a respectively. This yields

Di|ay|? = —Bilajaja] + a1azas], (3.3.ia)
Ds|az|? = ~Bslajejof + ayazas), (3.3.1b)
D3|a3|2 = —Bg[a;a;ag + (110[20{3]. (33]c)

Multiplying (3.3.1a) by (—Bz), and (3.3.1b) by (B:) and adding the two equations
yields

D231|02I2 - D1B2 |a1 ‘2 = 0. (33}‘)

Following the same type of procedure employed in the derivation of (3.3.%:

readily reveals the relations
D3B1|Q3|2 h DlB3|01|2 = 0, (3321))
D3Bz|a3|2 - D2B3 |a2|2 =0. (3320)

We now integrate (3.3.2), and assume each a; — 0 as X goes to too which gives

us
or [ (Bilaal? - Boloa )X =0, (3.3.30)
or / (Bylas|? - Balou[?)dX =0, (3.3.3b)
or / (Bz|as|? — Bslon|?)dX =0. (3.3.3¢)

When the a;’s depend on the two variables X, T, (3.3.3) readily reveals that the

Manley-Rowe relations may be written in the following form

o0

/ (Bi|az|? — Ba|e1|*)dX = constant, (3.3.4a)
)
o0

/ (By|as|? — B3leg[*)dX = constant, (3.3.4b)
—o0
(o o]

/ (Bslas|® - Bs|az|?)dX = constant. (3.3.4c)
-00



CHAPTER 4
SOLUTIONS TO THE AMPLITUDE EQUATIONS

4.1 The Pump-Wave Approximation

There is no known solution to the general initial value problem (2.3.4) for
general v(X). We may however, make some simplifying assumptions which al-
low us to demonstrate the behavior of the resonant triad when it is forced by
topography.

The first such assumption we will look at is the “pump-wave approximation”.
This describes the situation in which one of the three wave packets in the triad
has an initially large amplitude relative to the other two. For this configuration,
it can be assumed thet the large amplitude wave packet ajz, remains relatively
constant in comparison to a;(X,T) and az(X,T). Consequently, the dynamics
of a;(X,T) and az(X,T) is linear (Swaters 1988). This approximation inevitably
breaks down if the amplitudes of the three waves become comparable, unless the
“pump-wave”, a3, is artifically maintained at constant amplitude.

If we take equation (2.3.4) and consider the wave a3z to be of much greater
amplitude than waves a; and a,, and if a3 is regarded as constant in the region

of space and interval of time of interest, we may write the dynamics of (2.34) as
(BT + Czax -+ 0'2)31 = BlBg|a30|2a1 + (ng[Jo‘)’(X) - 02)’51, (411)

(aT + ¢ 0x + 0’1)32 = BlB2|a30|2a2 + (iclpo’y(X) — 01 )32 (4.1.2)

Where
a3 = constant pump wave amplitude

(aT+ClaX+O'1)al =31, (413)
(3’[‘ + c20x + 02)as = Zg.
We may write (4.1.1) and (4.1.3a) in the following form

ur+ Aux = B(X)y, (4.1.4)

27
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where

- -0!1 )
u= bl ] )
A=L3 g], ! (4.1.5)
B = [ —09 1
LBlela3|2 iCZpo‘y(X) - 20’2 ) )

We can develop asymptotic solutions to equations of the form (4.1.4) using lin-
ear geometrical acoustics (Seymour and Mortell, 1974). We note that a similar
expression can be derived for a; and bs.

Another “pump-wave” solution can be developed if we consider the topog-
raphy to be a linear function of X and set the friction terms to zero. We once
again take equations (2.3.4) and consider the wave a3 to be constant in the re-
gion of space and interval of time of interest. The dynamics may be written

as

(Or + c10x )y = —Bjajazgezp[iy X], (4.1.6a)

(8r + c20x )z = —Byagyafezp(ivX], (4.1.6b)

where

a}, = constant pump wave amplitude,
(4.1.7)

7 = slope of topography times po.
Following Riemann, Bers, and Kaup (1977) we may transform away the expo-

nential dephasing terms by absorbing the appropriate phase factors into the am-

plitudes.
By setting
ay(X,T) = 8y(X, T)exp[if15(X — & T)], (4.1.8a)
aa(X,T) = as(X, T)ezplibo7(X — c2T)], (4.1.8b)
where . c
&=_Qfﬁ’
. ¢ (4.1.9)
0, = ——2

1 —-Cg,
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we may transform (4.1.6) to

(aT + Clax)al = -—B;&;a;o, (4110&)

(aT + Cgax)ag = —Bga;ago. (4.1.10b)

Following Craik and Adam (1978) and Swaters (1988), we may combine (4.1.10)

into an equation of the form
[02 — 82 + sgn(B1B,)]&; =0, (4.1.11)
where ¢ = 1,2, and where the real variables 7 and x are given respectively by

T = |ago||B1 B2 |'/?T, (4.1.12a)

X = 2|a30||B132|1/2[X - (Cz + C3)T/2]/(Cg - C3). (4.1.12b)

When sgn(B;Bz) = 1, (4.1.11) is a Klein-Gordon equation and the initial value
problem can be solved by Fourier integrals (Whitham, 1974). If sgn(B,B;) = -1,
(4.1.11) is the telegraph equation and the initial value problem may be solved
by Riemann’s method (Craik and Adam, 1978).



4.2 Solutions Using the Method of Inverse Scattering

In this section we investigate solutions to the inital value problem (2.3.4)
using the method of inverse scattering. We begin by taking the equations of
the resonant triad (2.3.4) and setting the friction and topography terms to zero.

This yields the following system of equations

Dlal = —Bla;a;, (421(1)
Doy = —Bza;()t;, (4.2.1b)
D3a; = —Bzajo;. (4.2.1¢)

Solutions to (4.2.1) may be obtained by the method of inverse scattering. The
equations (4.2.1) are usually converted to standard form by scaling the three
¢,y so that the interaction coefficients have values of 1. A complete review
and further details of the inverse scattering problem may be found, for example,
in Kaup, Riemann and Bers (1978), Ablowitz and Segur (1981) or Craik (1085).

If we consider the topography to be a quadratic function of X, we may write

equations (2.3.4) in the following way

Dyoy = —Bjajaderpliv X2, (4.2.2a)
Dyap = —BjaalexpliyX?), (4.2.2b)
Djas = —Bsajajexpliy X, (4.2.2¢)

where ¥ is now

7 = constant times yo.

Once again we follow Riemann, Bers and Kaup (1977), and trausform away the
exponential dephasing terms by absorbing the sj-propriate phase factors into the
amplitudes.
By setting
a1(X,T) = a1 (X, T)explify¥(X — aT)?, (4.2.3a)
wz(X,T) = @z(X, T)explib7(X — e T)?, (4.2.30)
a3(X,T) = @3(X, T)explifs7(X — e2T)Y, (4.2.3¢)



where , )
61 = —9 (1,2, 3), )

6, = —6'(2,3,1),
8, = —0'(3,1,2),

C;Ck
(¢; —ci)(ei —ck)’ )

6'(s,7,k) =

we may transiorm (4.2.2) to the following system

-~ Lot Tad J
D,a, = —-Byasa;z,
~ Pl DAl
Dia; = —Brazajg,
-~ Eongd Tant |
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(4.2.5a)
(4.2.5b)
(4.2.5¢)

Solutions to (4.2.5) are obtained by the method of inverse scattering (Riemann,

Bers and Kaup, 1977).
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4.3. The Steady State Solution in the Absence of Topography and Fric-

tion

In many practical situations, equations (2.3.4) can be approximated by re-
taining either the space or time dependence (Hsiek and Mysak, 1980). If we
retain only the spatial dependence, and set the topography and friction terms to

zero, equations (2.3.4) may be written as

a1x = —Bjpasas, (4.3.1a)
azx = —Bjgaza], (4.3.1b)
asx = —Bjpaia], (4.3.1¢)

where B;-o = Bj/cj; j = 1,2,3. There are well known solutions to (4.3.1) and
they may be written in terms of Jacobi elliptic functions (Bretherton, 1964).
Recall from Chapter 3 that we showed energy conservation implies that two
of the B;’s in (4.3.1) are of one sign and the other is of a different sign. Without
loss of generality we may assume Bj,, By, are of one sign and Bj, of a different
sign, and that at X =0, ay(0) = a0 > 0; a2(0) = azo > 0; and a3(0) =0. The

solutions to (4.3.1) can be written

a1(X) = ayodn(7X|m), (4.3.2a)
a2(X) = azen(dX|m), (4.3.2¢)
a3(X) = azo(—Bho/Bho) 2sn(GX|M), (4.3.2¢)

where

@ = ayo(—B3By),
m = (Bio/Béo)(am/am)z 0<m<1,

and dn, cn, and sn are the Jacobi elliptic functions in the notation of Abramowitz

and Stegun (1965).
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If M = 1 the Jacobi elliptic functions reduce to hyperbolic functions, and for
7 > 1 Abramowitz and Stegun (1965) give the following transformatiion
dn(3X|R) = en(R?eX|AY),
cn(GX|R) = dn(R /28 X |mY), (4.3.3)
sn(GX|M) = sn(@m/?6X|m~)ym™/2,
Assuming 0 < 7 < 1, the spatial scale, i.e. wave length of the energy transfer is

given by Abramowitz and Stegun (1965) to be
X4 =2K(m)/7, (4.3.4)

where K() is the complete elliptic integral of the first kind.

The solutions (4.3.2) describe the following situation. During the interval
0 < X < 1/2X4, the third wave extracts energy from the first two waves, and
during the last half of the cycle, the third wave transfers energy back to the first

two waves until the conditions at X = 0 are once again reached (Swaters, 198S).
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4.4 The Steady State Solution in the Presence of Linear Topography

As we have shown in section 4.3, analytic solutions to the stcaly state prob-
lem in the absence of topography and friction, can be obtained in terms of
Jacobian elliptic functions. In this section we retain the topography, and assume
that it is a linear function of X. Analytic solutions to this problem can be
given in terms of an elliptic function. We may model many different topographic
configurations as piecewise linear functions. For example we may model ridges,
plateaus and mountains.

It is convenient to express the dynamics by means of an equation which
formally corresponds to the motion of a particle in a non-linear potential. In
this description, the coordinate giving the position of the particle is proportional
to the deviation of the squared values of the wave amplitudes from their initial
values.

The influence of topography and of arbitrary initial values for the interacting
waves, is included in the expression for the potential, which is in general a third
order polynomial in the squared amplitudes. The initial values of the amplitudes
will determine the roots of the potential, which determines the strength of the
interaction of the three waves.

We start with (2.3.4) and set the friction and the temporal derivative to

zero. We may now write the system of equations (2.3.4) in the form

a1 x = Bma;a;exp[—ih(X)], (441(/)
asx = Byoajzajerp[—ih(X))], (4.4.1h)
asx = Bysatajexp[—ih(X)], (4.4.1¢)
where Bjo = —Bj/c; and h(X) is a continuous linear function of X, and the

slope of h(X) is given by —po€, where T is the slope of the topography. To
obtain solutions to (4.4.1) we follow Craik (1985) and Weiland and Wilhelmsson
(1977).



To this end we write
bj = |lajl, @®;= phase qj,
so that
a; = bjei‘pf Jj=123.
If we substitute (4.4.2) into the system (4.4.1) we obtain

bix + iby®1x = Birobebsexp[—i(h(X) + &1 + $2 + ®3)),
box + iby®yx = Bogbsbiexp[—i(h(X) + @1 + @2 + 23)),
bsx + iba®3x = Bjobibaezp[—i(R(X) + &1 + @2 + &3))].
Taking the real and imaginary parts of (4.4.3) yields
bix = Bjobzb3 cos @,
by P, x = —Byobrbs sin P,
bax = Bagbsb, cos @,
by ®yx = —Bgob3by sin @,
b3 x = B3gby by cos d.
b3®3x = —B3obibasin @,
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(4.4.2)

(4.4.3a)
(4.4.3b)
(4.4.3¢)

(4.4.40)
(4.4.4b)
(4.4.4c)
(4.4.4d)
(4.4.4¢)
(4.4.4f)

where ® = h(X) + ®; + ®; + &3. We now multiply equations (4.4.4b), (4.4.4d)

and (4.4.4f) by b;,b, and b3 respectively to obtain
®1x = —Big/bib1b2bs sin @,
®yx = —Bj/b2bybybysin ®,
®3x = —Bag /bibybyby sin &.
From (4.4.4) and (4.4.5) we now obtain the following real system
bix = Byobabs cos @,
byx = Bgobsb; cos P,
bsx = B3pbbs cos P,

~ B B B )
®x = —poC— blbzba( b;O + bio + b:;()) sin .
1 2 3

(4.4.54)
(4.4.5b)
(4.4.5¢)

(4.4.6a)
(4.4.6b)
(4.4.6¢)
(4.4.6d)
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Applying the following renormalizations (Weiland and Wilhelmsson, 1977)
by — (leoBaol—llzbl,

by — (|BsoBio| ™ /202, (4.4.7)
bz — (leBzoI—I/zbs,

to (4.4.6) yields the following system

bix = s1bab3 cos @, (4.4.8a)
box = sybab; cos @, (4.4.8b)
byx = s3b1by cos @, (4.4.8¢)
By = —p0€ — b1babs (Z—% + %g- + %3-) sin @, (4.4.8d)

where s; = sgn(Bjo), 1 = 1,2,3.
The Manley-Rowe relations (3.3.4) are satisfied by (4.4.8). They may be

integrated with respect to X and written as

51 [6(X) = B2(0)] = s2[B3(X) — B3(0)]
= so[B3(X) - B(0)] = F(X). (4.4.9)

A further constant of motion for equations (4.4.8) is
I'= b1b2b3 sin® — 1/2(-—/103)31113, ] = 1,2, 3. (4410)

A proof of (4.4.10) is given in Appendix 3. Without loss of generality, we may
choose sz = s3 = 1 and introduce s = s;.

With the use of (4.4.9) we define
JX) = s[BH(X) — B(O)] = [F3(X) - (0] § =23 (4.4.11)

Considering equation (4.4.b) we may write

—
b2y = 2b1bybs cos ® = £24/b763b3(1 - sin? @) (4.4.12)
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where + indicates the sign of cos ®.

We proceed further by introducing (4.4.11) and (4.4.10) into (4.4.12) obtain-

ing

xP(X) = £2,/[s7 + B(O)][FT + BONF + BB(0)] - {T + (—uod/2)[7 + BO))2.
(4.4.15)
Equation (4.4.13) is a separable differential equation in the variable y(.X).
taking the square of (4.4.13), we may write

1/2(0x (X)) + m(X) =0, (4.4.14)
where

(X) = 2{=s7° - [850) + s83(0) + sb3(0) — 2L

( #oC

— [b3(0)b3(0) + b3(0)53(0) + sb3(0)b5(0) — I'(—p0¢) — b5(0)}y
— b2(0)b2(0)b2(0) + I'2 + I'(—uoC)?b3(0) + L—%—‘@ibg(o)}. (4.4.15)

Equation (4.4.14) is analogous to equations whick describe the motion in a poten-
tial 7(X). Only the range of X for which 7(X) <0 has a physical significance,
and 0x7(X) = 0 when n(X) =0. If we consider the case where I' = (—uoc) =0,
the roots of m(X) =0, are X = —sb?(0), X = —b3(0) and X = —b3(0). Therefore
the character of m(X) is strongly dependent on the sign s.

For the case s = —1 all three roots will remain real and we will, in general,
have an oscillating solution with X varying between the two largest roots of
m(X) = 0. If s = 1, Weiland and Wilhelmsson (1977) have shown that an
explosively unstable solution is possible. The influence of (—p¢) is similar for
both cases. From the form of m(X), we find that for large values of |(—uoC)l
and s = —1, the two largest roots will approach each other and the interaction
effectively disappears. For the case s = 1 and large |(—po€)|, it is possible to

delay or eliminate the instability.
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A comprehensive review of equations of the form (4.4.14), is given by Craik
(1985) and Weiland and Wilhelmsson (1977). To obtain analytical solutions for
the b;’s, we write (4.4.14) as

¥(X)
X—-c=:!:1/\/§/0 \/% (4.4.16)

which is an elliptic integral and c is a constant of integration. From Chapter 3 we
know that the equations of the resonant triad are energy conserving. Thercfore
s = —1, otherwise an instability could develop.

Since s = —1, n(X) has three roots 31,92, and 73 which are all real. We

assurne that 71,7, and T3 satisfy §i1 > 92 > 3 and write (4.4.16) in the form

1 9 a5
X—c=%— T—— A (4.4.17)
VaJo G- 0)F-52)F - 1)
Since the roots are always real the solution for §(X) may be written
§(X) = (B2 — §1)sn? (G — o)/2(X = ¢) + 61K) + 51, (4.4.18)

where K = VUi — 92/%1 — Y5 is the modulus of the elliptic function, and 6 =
sn~! [(%) I:’] From the relations (4.4.11) the final solution for the bj’s
1~Yy2

may be written as

by(X) = 1/53(0) — 9(X) (4.4.19a)
b2(X) = 1/B2(0) + H(X), (4.4.19b)
ba(X) = 1/B3(0) + H(X). (4.4.19¢)

The spatial scale of the interaction is given by

2n
Xi= / (1 — K sin® u')"tdu', (4.4.20)
0
Cases where two or more roots of m(X) are equal, are simple but require separate
treatment.
When I' = —uc = 0, and two or more wave amplitudes are initially equal, a

review of solutions to this problem is given by Craik (1985).



CHAPTER 5
RESULTS OF THE THEORY

5.1. Calculation of Wave Numbers.

Chapter 4 provides us with several methods by which to examine the equa-
tions of the resonant triad. The “pump-wave” solutions are too cumbersome and
cannot be easily interpreted. Solutions by the method of inverse scattering are
very complex to obtain. The solution presented in section 4.4 is both direct and
tractab’e, and in addition it clearly illustrates the behavior of the triad in re-
sponse to topographic forcing. It is for these reasons that we will investigate the
solution to the resonant triad presented in section 4.4. In order to apply this
solution, we must first calculate wave numbers which will form a .esonant triad,
specifically equations (2.2.13) must be satisfied. Such wave numbers if found,
form a very restricted set of all possible interactions, distinguished by the ef-
ficiency of their mutual interaction. The analytical search for such triads is a
very complicated algebraic problem. Longuet-Higgins and Gill (1967) have inves-
tigated this problem in great detail and have presented equations, from which it
is possible to calculate wave numbers, which form a resonant triad.

There are special cases that have been noted by Longuet-Higgins and Gill
(1967) and Kenyon (1964), in which the resonance mechanism of two discrete
waves producing a third, could not be responsible for producing time or space
independent zonal flows. One component of the zonal flow could be thought of
as the wave (k3,%3) = (0,—2¢;). The natural frequency response of this is zero
from (2.2.11). Waves that resonantly interact with this are (k;,¢;) = (k1,6)
and (kq,2) = (—k1,¢1). Since the moduli of these two waves are equal, by
(2.2.18), B; = 0, the wave (k3,f3s) acts as a catalyst for interaction between
(k1,¢;) and (kg,€2), but does not gain or loose energy itself at our time or
length scales. Newell (1969) has shown that at later time scales, through the

action of resonating sidebands, it is possible for zonal flows to be excited.
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We will consider only those triads in which each wave participates in the
energy exchange process, i.e., Bjo #0, B; #0, j =1,2,3. By doing this we are
assured that we are looking at wave-wave interactions. In order to calculate wave
numbers which form a resonant triad, a Fortran program has been developed,
which uses equations presented by Longuet-Higgins and Gill (1967) to calculate
the wave numbers. The program is listed in Appendix 4. In Tables 1 and 2, we
show examples of wave numbers which combine to form resonant triads. Also
shown in these figures, are the frequencies (w;), group velocities (c;), interaction

coefficients (Bjo), and topography terms (uo), of the resonant triads.
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k; ¢; wj cj B; 40
Wave Wave | Frequency | Group | Interaction | Topography
Number | Number Velocity | Coefficient Term
1/ -0.26854 | -0.48782 | 0.20498 | -0.67928 0.01431 -0.01607
21 0.32139 | 0.38302 | -0.25712 | -0.66778 | -0.01914 -0.01607
3| -0.5285 | 0.10479 0.5213 | -0.98098 0.00326 -0.01607
1]-1.15315 | -2.16826 | 0.16401 | -0.08843 5.87361 -1.68543
2] 1.28558 { 1.53209 | -0.25712 | -0.06778 | -16.89236 -1.68543
3|-0.13242 | 0.63617 | 0.09311 | -0.68577 2.12563 -1.68543
1]-1.76358 | -3.34540 | 0.11525 | -0.03879 | 31.82619 -4.40504
2] 1.92836 | 2.29813 | -0.19284 | -0.02563 | -123.31445 -4.40504
3|-0.16478 | 1.04727 | 0.07758 | -0.45879 | 13.04867 -4.40504
1]-2.37148 | -4.51559 { 0.08779 | -0.02160 | 103.10274 -7.53879
2| 2.57115 | 3.06418 | -0.15124 | -0.01307 | -466.45774 -7.53879
3|-0.19967 | 1.45141 | 0.06346 | -0.30976 | 44.63003 -7.53879
1]-2.97705 | -5.67938 | 0.07068 | -0.01375 | 254.60241 -10.73504
21 3.21394 | 3.83022 | -0.12361 | -0.00790 | -1255.25322 | -10.73504
3|-0.23689 | 1.84916 | 0.05293 | -0.21784 | 113.25631 -10.73504
1] -3.58111 | -6.83903 | 0.05910 | -0.00952 | 531.20343 -13.89420
2| 3.85673 | 4.59627 | -0.10424 | -0.00530 | -2757.18031 | -13.89420
3| -0.27561 | 2.24276 0.4514 | -0.15970 | 239.96739 -13.89420

Table 1. Table of wave numbers, frequencies, group velocities, interaction

coefficients, and topography terms which form a resonant triad.



kj ¢ wj ¢j B; fo
Wave Wave | Frequency | Group | Interaction | Topography
Number | Number Velocity | Coefficient Term

1| 0.34639 | 1.82546 | -0.07780 | -0.21250 | 0.56476 -5.70041

2| 1.04199 | -1.07901 | -0.32061 | -0.10211 | 6.63514 -5.70041
3| -1.38838 | -0.74645 | 0.39841 | 0.03050 | 25.74176 -5.70041
1| 0.57185 | 3.03432 | -0.05429 | -0.08904 | 4.07423 4.00201

2| 1.73665 | -1.79835 | -0.23954 | -0.02317 | 100.35639 4.00201

3] -2.30849 | -1.23597 | 0.29382 | 0.04538 | 58.00397 4.00201

1] 0.79806 | 4.24429 | -0.04061 | -0.04759 | 15.29165 14.97147
2| 2.43130 | -2.51769 | -0.18349 | -0.00813 | 599.72834 14.97147
31-3.22036 | -1.72661 | 0.22411 | 0.03105 | 176.36581 14.97147
1] 1.02466 | 5.45485 | -0.03222 | -0.02937 | 41.35611 29.92395
21 3.12596 | -3.23703 | -0.14710 | -0.00378 | 2195.93733 | 29.92395
3| -4.15062 | -2.21782 | 0.17932 | 0.02111 | 440.03626 29.92395
1| 1.25146 | 6.66569 | -0.02663 | -0.01986 | 91.78771 47.69247
2| 3.82062 | -3.95637 | -0.12226 | -0.00211 | 5979.47382 | 47.69247
3| -5.07208 | -2.70933 | 0.14889 | 0.01498 | 938.61857 47.69247
1] 1.36490 | 7.27119 | -0.02449 | -0.01674 | 125.76708 57.27179
2| 4.16795 | -4.31604 | -0.11265 | -0.00165 | 9133.49351 | 57.27179
31| -5.53285 | -2.95515 | 0.13714 | 0.01283 | 1310.25321 | 57.27179

Table 2. Table of wave numbers,

frequencies, group velocities, interaction

coefficients, and topography terms which form a resonant triad.




We have shown in (3.3.13) that for the initial value problem, at least one of
the interaction coefficients (B;) is of a sign different than the other two. Table
2 shows that when we divide the B;’s by the group velocity (c;) of the wave,
it is possible to have all the interaction coeflicients for the steady state solution
(Bjg) of the same sign.

Chapter 4.4 tells us that having all the Bjg’s of one sign may lead to explo-
sively unstable solutions for the amplitudes. In fact this would seem to suggest
that the waves are always stable in time znd may become unstable in space,
depending on whether the group velocities of the waves are all of one sign, or
one is of a sign which is different from the other two. Therefore, in order for
the possibility of unstable solutions for the amplitudes to exist, at least one of
the ¢;’s must be of the sign which is different than the other two.

From Chapter 3, we know that since the initial value problem always con-
serves energy in time and space, explosive instability in space cannot occur. The
reason we do not get explosive instability in space is that the steady state so-
lution is no longer valid. The solution is fully time dependent, since the group
velocities are not of the same sign. Only for a brief time do the waves interact.
As time increases the wave envelopes rapidly separate. The shi it period of time
the waves interact is unlikely to give rise to an explosive instability. If we were
to allow explosive instability, we would break our inivial scaling demands, hence
the theory would break down. In our investigation the resonant triad we shall

use is given by



(k1 1) = (~1.0808487, 1.3533314), )
(ka,€2) = (1.00,1.7320508),
(ks,£3) = (0.0807487, —0.3787194),

w = 0.2702194,

wy = —0.200,

ws = —0.702194,

¢ = —0.1039928,

¢y = —0.1200,

(5.1.1)
¢3 = —0.8597425,
Byo = —4.800329,
By = 2.46288,

By = 0.524778,
po = 0.750126,
p1 /ey = 3.253817,

H2 /62 = 2.8867513,

pa/cs = 0.3830634. )
L. triad given in (5.5.1) has wave numbers (kj,¢;) which are small, therefore
we are looking at the wave-wave interaction between long planetary waves. The
group velocities (c;,cz,c3) are all negative, therefore the energy of the waves
propagates to the west. Waves for which k% < £%2 +1 will propagate to the west.
We also note that the group velocities are all of the same magnitude, therefore
the wave packets do not separate quickly in space, and the waves will intcract for
a long distance. If the relation between energy and enstrophy (3.2.3) is exploited,

not only must

3
Z E; = constant = Ey, (5.1.2)
i=1
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but also
3

Z(kf +€%)E; = constant = K2E,, (5.1.3)

=1
hence, as Pedlosky (1987) has shor  as the amplitudes change they must do so
in a way that preserves the radi cation of the three waves, 1.e.,

,_ T+ B)E(X)
° Y Ei(X)

is a constant of the motion. Thus it is impossible, for one wave to lose energy to

(5.1.4)

two other waves, both of which have larger wave numbers. If energy is transmit-
ted to larger wave numbers by nonlinear effects, energy must also be transmitted
to a lower wave number in order to preserve both energy and enstrophy. For
our triad, for example, k% + €2 ~ 3.0, k3 + £3 ~ 4.0, and k% 4+ (% =~ 0.15. The
conservation statements (5.1.4) may be written (Pedlosky, 1987)

E E E
1X 2X _ 3X (5.1.5)

10 -R+8) BB -E+8) H+&)-(B+4)

Since (k2 + £2) < (k% +€3) < (k§ +€3). Then if Eix <0, both E;x and Ezx

must be positive.
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5.2 Rossby Wave Triad over Piecewise Linear Topographic Configura-
tions

In this section we use the solution derived in 4.4 to illustrate the effects of
topographic forcing on Rossby wave triads.

Figure 2 shows the profile of the topographic configurations we will consider.
The topographic configuration is the type we call piecewise linear, i.e. it is
continuous, but not continuously differentiable and the equations which describe

the topography in Fig. 2 are

R(X)=0, X > Xo, X < X2 1

! HO(X XO)

WX) = gy X1 <X <Xl (5.2.1)
Ho(X — Xa2)

, —————————‘

W(X) = gy Xa < X <Ko,

where Ho/(X1 — Xo), Ho/(X1 — X2) are the slopes of the topography (i) and
h(X) = :—’-’;—i& In Fig. 2 we have divided the topography into four regions,
to obtain a continuous solution. The conditions at the end points of b;(.Y') and
®;(X) of one region must be the initial conditions of the next region. We specify
the conditions at X =0.

We now take the solution (4.4.16) and write it as

[SV)
o

X' w0 dg 5.
= f/ ,/—'w'(x' (5.2.2)

XI=X,X>X0,X<X2

We now set

X'=X-Xo, Xi <X <Xp (5.2.3)
X'=X-X,, Xu<X <X,

In order for the solutions to be continuous, we get the following constants of

integration
Region I, ¢=0

Region II, ¢=0

—_
(W11
o
NN

~—

Region III , ¢= X1 - X,
Region IV, c¢= Xo.
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The final solution for each region proceeds as presented in section 4.4. The spa-
tial dependence of the phase @ is given from the relation (4.4.10) once we know
the variation in space of the amplitudes. The derivatives of the ®;’s (; = 1,2,3)
are given by equations (4.4.5) ouce the variations in space of the amplitudes
are known. Unfortunately we do not have an analytical solution to the ®;’s
(j = 1,2,3). Therefore we employ a numerical integrating routine to solve for
the ®;’s.

A Fortran program has been developed which calculates the complete solu-
tion, and the program is listed in Appendix 4.

It is possible to choose an infinite number of combinations for the initial am-
plitudes. Equation 4.4.15 tells us that our choice of the initial amplitudes deter-
mines the roots of 7(X), hence the modulus of the elliptic function is dependent
upon our choice of the initial amplitudes. The spatial scale of the interaction is
given by (4.4.20). It follows from (4.4.20) that if we choose initial amplitudes
such that K = 1 the spatial scale of interaction will be infinite, and if we choose
R =0 the elliptic function degenerates into a circular function with the spatial
scale of interaction, being 27. Our choice of the initial amplitudes determines
the spatial scals of interaction which must be between 27 and infinity.

With the use of (4.4.2), (4.4.7) and (2.3.3) we write the following equation
for A;(X)

A;(X) = bj(X)ezpli(®;(X) — uj/e;h (X)))- (5.2.5)

We now substitute (5.2.3) into (2.2.10) to give

3
O (z,y, 2) :Z bi{eX)ezpli(kz + by —wt + B;(e.N) - a5 /cih' (eX))) (5.2.6)
j=1 2

+ c.c.

where the amplitudes b;(eX) are slowly varying functions of X and the phase is
given by the terms in the exponential.
We begin all of the solutions by assuming thai the waves are fully resonant

and exchanging energy with maximum efficiency. This requires all of the initial
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phases ®; (j = 1,2,3) to be 0. Equations (4.4.6) show that when & = 0, the
energy exchange between the members of the triad is maximized.

We also start our solutions in a region where there is initially no topographic
forcing present. This requires that initially I' = —p€ = 0. When we have both
—uy¢ =0 and I' = 0, the minimum value of two of the squared amplitudes will
be zero as can be seen from (4.2.13). Then the nhase derivative (4.4.8d) will
be undetermined. For thi- situation Craik (1985) and Weiland and Wilhemsson

(1977) state that in I'™it, we may consider & to remain zero for all X.
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5.3. Solutions to the Rossby Wave Triad over Piecewise Symmetric Lin-

ear Topographic Configuraticiis

In this section we examine the effects ¢f piecewise symmetric linear topo-
graphic configurations on the Rossby wave triad. The geometry of the piccewise

linear topographic configuration is given in Figure 2. We set

Xo = 10,
X2 = 30.

We choose our amplitudes in such a way that we can examine waves with a long
interaction length, medium interaction length, and a short interaction length, i.e.
we choose initia! amplitudes in such a way that E~1 K =~05and ' 0.
Figures 3-6 show waves with a long interaction length (f\' =~ 1) and the initial
amplitudes are

bl (0) = 10,
b2(0) = 0.0433,

—_
(1]
[}
[SM)

~

b3(0) = 0.02.

Figures 7-9 show waves with a medium interaction length (IA{ ~ 0.5) and the

initial amplitudes are

by(0) = 1.0,
b5(0) = 0.05, (5.3.3)

Finally figures 10-12 show waves with a short interaction length (I? = 0) and the

initial amplitudes are

b1(0) = 1.0,
b2(0) = 3.024, (5.3.4)
b3(0) = 4.0.

We begin by looking at the case in which Hp is 0. This corresponds to the

situation where ' = —uo¢ = 0 and the ®;’s (j = 1,2,3) are zero. The waves



51

are exchanging energy with maximum efficiency as they propagate through space.
This particular case is illustrated for the initial amplitudes (5.3.2), (5.3.3) and
(5.3.4) by Fig. 3, Fig. 7 and Fig. 10, respectively, by plots of the amplitudes
(bj’s). Wave 1, wave 2 and wave 3 are denoted by a thick curve, dashed curve
and a dotted curve respectively. We note in these figures that the energy flow
among members of the triad, in the absense of topography, pulsates with X, and
that the direction of the energy flow is reversible. The wave with the interaction
coefficient which has a sign opposite to the other two, in our case wave 1, will
always vary in the opposite direction to the other two, and in this way the wave
energy will oscillate between the niembers of the triad.

The energy flows first, say, to waves 2 and 3 and then reverses direction
when the initial instaoility of wave 1 is halted by nonlinear effects (Pedlosky,
1987). The pulsation is perpetual with each member of the triad receiving and
then returning energy to the others.

We now turn our attention to the case where Hy # 0. By choosing Hy = 10
we introduce a slope of 1. The waves start out exchanging energy with maximum
efficiency as in the previous example, but when the triad reaches Xy, it encounters
the topography. At Xy, I’ and —py,¢ are no longer zero and we know from (4.4.13)
that the roots of 7(X) will begin to approach each other so that the interaction
effectively begins to disappear.

The case where Hy = 10 is illustrated by plots of the initial amplitudes given
by (5.3.2), (5.3.3) and (5.3.4) in Figures 4A, 8A and 11A respectively. We note
in the plots that between Xy and X,, the area where the topography is present,
the interaction and exchange of energy between tiie waves is much less than when
the waves were initially resonant. Once the waves propagate past X», i.e. they
are in a region of no topography, —ue¢ = 0 but, I' # 0. The influence of T
is similar to that of the topography (—uo€). A non-zero I' causes the roots to
approach each other, but the interaction is not as small as when the topography
is present. We can see this in the above Figures, if we look at the triad in the

area which is less than X;. The exchange of energy is greater than when the
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waves were propagating over topography, but not as great as when the waves
were initially exchunging energy witih maximum efficiency i.e. X > X,.

Figure 5A illustrates the effect of Hy == 30, on the %i.itial amplitudes given
by (5.3.2). Figures 6A, 9A and 12A illustrate the effect of Ho = 50 on the
amplitudes given by (5.3.2), (5.3.3) and (5.3.4) respectively. Thus, it is shown
by these Figures that as the slope of the topography increases, the roots of m(.X')
approach each other and once Hy is large enough, the interaction will effectively
disappear no matter what the initial amplitudes may .

If we examine plots of ® versus X, the reason topography impedes the flow
of energy may be seen. For the initial amplitudes given by (5.3.2), (5.3.3) and
(5.3.4), the plots for Ho = 10 of ® versus X are given by Figures 4B, 8B, and
11B respectively. Initially the phase (®) is zero and the waves are exchanging
energy with maximum efficiency. As the triad encounters topography at X,
the topography begins to dephase the waves, and the waves are no longer fully
resonant. The phase oscillates as the triad propagates over the topography. Once
we leave the region of topography at X2, —uoC is zero, however T' # 0.

In this region,we know by equation (4.4.10) that sin® does not change sign,
thus ® must oscillate in such a way that sin® is always of the same sign. We see
this type of oscillation in the above Figures. As we increase Ho to 30, for initial
amplitudes given by (5.3.2), Fig. 5B shows that ® behaves in the same way. If
we further increase Hy to 50 for initial amplitudes given by (5.3.2), (5.3.3) and
(5.3.4), the behavior of & versus X is shown by the Figures 6B, 9B and 12B
respectively. The behaviour of @ is analogous to that when Ho = 10.

To examine the cause of the de-phasing of the triad, we begin by looking at
the equations of the individual waves given by (5.2.6). Neglecting the complex

conjugates, we write tie equations as

O = by (ez)ezpli(krz + hy —wit + ®1(ex) — p1/crh’(ex))],  (5.3.5a)
,‘(,0) = by(ez)ezpli(k2z + Ly — wat + P2(ex) — pa/c2h'(ex))],  (5.3.5h)

O = by(ex)ezpli(ksz + by — wst + B3(€x) — pa/cah’(ez))}.  (5.3.5¢)
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We rewrite equations (5.3.5) in the following way

b1 = by (ex)ezpli®i(z, Y, 1)), (5.3.6a)
ba = ba(ez)ezpli®2(z, v, b)), (5.3.6b)
Y3 = bs(ez)e:rp[iag(:r,y,t)]. (5.3.6¢)

From (5.3.6) we may write

%=,
0 (5.3.7)
EJ = @jy,u)j = @jg.
For the sake of simplicity we denote the term ®;(X) —u; Jc;h'(X) to be phase2.

We now look at the zonal wave number 'IEj, in the following way

By = 81z = ky +€0x[®1(X) — pa/erh' (X)), (5.3.80)
By = Bgp = ky + £0x[®2(X) — p2/ 2k’ (X)), (5.3.5b)
s = Bap = kg + £9x[®3(X) — pa/csh' (X)) (5.3.8¢)

Equations (5.3.8) present us with an interesting r_sult. The sign of the derivative
of phase2 tells us whether the zonal wave number 73,- is getting smaller or larger,

and hence tells us whether the zonal wave length
Aj = 2n/|k;| (5.3.9)

is getting longer or shorter. In the absence of topography k; = Ej.
The conditions for resonance (2.2.13) state that the sum of the zonal wave
numbers k; must be zero. The effect of the topography in equations (5.3.8) is

to cause the sum of the zonal wave numbers to be
ki + k4 k3= ko (5.3.10)

where ko # 0. Thus, the topography causes a zonal wave number mismatch.
The conditions for resonance are no longer met and the waves are slightly de-
phaseed. This is what causes the exchange of energy, when the waves propagate

ovsy topography, to become smaller.
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From equations (5.3.8), we know the magnitude of € and the slope of the
topography, play a large part in determining the magnitude of the wave number
mismatch. The greater the slope of the topography, the larger the wave number
mismatch. Hence, the less the interaction between the waves. This result was
illustrated previcusly when we showed the effects of increasing the slope of the
topography on the amplitudes.

When Hy = 10, for initial amplitudes {5.3.2), (5.% '), and (5.3.4), Figures
4C, 8C, and 11C show plots of the phase2 derivative versus X7 respec’:wely. Once
again wave 1, wave 2 and wave 3 are denoted by a thick curve, dasnc.. - e
and a dotted curve respectively. The effect of ti.e topography on the zonal wave

number k;, for X; < X < Xy is

1 = —1.0807487 + €|0x[®1(X) — /1 k' (X)),
%2 = 1.00 — £|0x [®2(X) — ua/c2k' (X)), (5.3.11)
1 = 0.0807487 + €|0x [®3(X) — p3/cak'(X)],

and for X < X < X

k1 = —1.0807487 — ¢|0x[®1(X) — 1 /crh'(X)]I,
T2 = 1.00 +¢|0x[®2(X) — pz/c2k' (X))}, (5.3.12)
Ta = 0.0807487 — €|0x [®3(X) — pa/csk'(X)]]-

Thus, as the triad begins to propagate over the topography between X; < X <
Xo, (5.3.11) indicates that zonal wave numbers %, and %, are decreasing, hence
by (5.3.9), the zonal wave lengths are increasing. However the zonal wave number
ks is increasing, hence by (5.3.9) the zonal wave length is decreasing and once
X2 < X < X; (5.3.12) shows the opposite is true for all three waves.

Once the waves are in the region where X < X,, there is a very small zonal
wave number mismatch, and the triad is very close to being fully resonant. This
is indicated by t=e large spikes in the phase2 derivatives. Once we are in this
region

phase2 = ®;(X). (5.3.13)
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When the triad is very near resonance the minimum value of two of the squared
amplitudes will be near zero, hence equations (4.4.5) show the spikes in the
phase2 derivative occur when one of the squared amplitudes is nearly equal to
zero.

When Hy = 30 and the initial amplitudes are given by (5.3.1), Figure 5C
shows the triad behaves as above. Similarly for Hy = 50 and initial amplitudes
(5.3.2), (5.3.3) and (5.3.4), Figures 6C, 9C and 12C respectively show the triad
behaves as above also.

We now proceed to examine the effects of the topography on the individual
waves. To do this we take the real part of equations (5.3.5) and ignore the fast

phase variation which gives

1 = by (X)cos(P1(X) — pr/erh' (X)), (5.3.14a)
P2 = by(X)cos(P2(X) — pa/c2h'(X)), (5.3.14b)
1#3 = b3(X)COS(¢2(X) - ﬂg/C3h'(X)). (53146)

We show plots of ®;(X) — p;/c;h'(X) in Figures 4D, 5D, 6D, 8D, 9D, 11D and
12D to check the performance of the numerical routine used to integrate the
derivatives of the ®;’s for the initial amplitudes given by /5.3.2), (5.3.3) and
(5.3.4) and different values of H,.

For initial amplitudes (5.3.2), (5.3.3) and (5.3.4), Figures 4E, 5E, GE, 8E,
9E, 11E and 12E show plots of equations (5.3.14) for different values of H,.
Once again wave 1, wave 2 and wave 3 are denoted by a thick curve, dashed
curve and dotted curve respectively. The edfects of the topography on waves 1
and 2 is dramatic, however, the effect of the topography on wave 3 is not as
noticeable. The reason we see rapid oscillations from waves 1 and 2 and not
wave 3 is that the magnitude of uj/c; (j = 1,2), is much greater than u3/cs.
Once the waves propagate over the topography into the region where X < X,
the rapid oscillations of waves 1 and 2 ceases. The waves still remain de-phased
downstream of the topography as the Figures indicate, although the de-phasing

is not as severe as when the waves were propagating over the topography.
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5.4. Solutions to the Ros»by Wave Triad over non Symmetric Piecewise

Linear Topographic Configurations.

In this section we examine the effect of topographic configurations which are
non-symmetric on the Rossby wave triad. The first case we shall examine is one
which is similar to that in section 5.3. The geometry of this configuration may
be visualized through Figure 2. We set

Xo =10
X1 =20

? (5.4.1)
X2 =25

Hy =10
The second case we examine has equations of the form

K(X)=0, X > Xo, X < Xi.
Ho(X - Xo)
(X1 = Xo)

(5.4.2)

K(X) = LX< X < X,

One can easily picture topography of this form by examining Figure 2. We set

Xo =10 ]
X1 =20 ). (5.4.3)
Ho = 10 J

In both cases we choose initial amplitudes given by (5.3.2). Plots of the first
case are given by Figure 13 and of the second case by Figure 14.

We may see by examining these plots that the effect of the topography on
the triad is analogous fo that in the symmetric case which was discussed in
section 5.3. Therefore we shall not present a long review of these cases, but

refer the reader to section 5.3
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CHAPTER 6
CONCLUSIONS

We have derived an analytical asymptotic theory which describes the prop-
agation of a Rossby wave triad under the influence of Ekman friction and finite-
amplitude, but slowly-varying topographic gradients, which we have assumed to
have the same small order of magnitude as the non-linear Jacobian terms in
the quasi-geostrophic potential vorticity equation. For piecewise continuous lin-
ear topographic configurations, in the absense of friction, we have shown that
the perturbed interaction equations may be solved exactly for the steady state
problem.

We began by formulating the problem in terms of the shallow-water equa-
tions which included topographic and Ekman friction terms. In order to highlight
the essential features of the triad interaction, we restricted the waves to prop-
agate in an inviscid, homogeneous, hydrostatic and incompressible atmosphere.
To determine analytically, the evolution of the triad as it propagated over to-
pography, we examined the steady state solution in the absense of friction. Our

principal conclusions are as follows:

1) In the absence of topographic forcing, the wave with the interaction coef-
ficient which has a sign opposite to the other two, will always vary in the
opposite direction to the other two, and in this way the wave energy will

oscillate between the modes. This oscillation shows reversible behavior.

2) In the presence of topography, the waves behave as in 1, except the strength
of the interaction is less, due to a de-phasing of the waves as they propagate
over the topography. This de-phasing is still present after the waves have
propagated over the topography, but the magnitude of the de-phasing is less.

3) The de-phasing is caused by a zonal wave number mismatch which is in-
duced by the topography. The size of the zonal wave number mismatch and

hence :he magnitude of the de-phasing of the waves, is dependent on ¢ and
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the slope of the topography.
The zonal wave number mismatch causes the conditions for resonance to
cease to be fulfilled, thus the exchange of energy between the waves is di-

minished.

4) Different configurations of piecewise linear topography have analogous effects

on the triad.

There are several areas in which the theory developed in this thesis may
be improved. We have only presented a theory which represents the evolution
in space for a stationary situation, and for this representation, we have limited
ourselves to piecewise linear topographic configurations.

In a general description, however, the variation in both time and space must
be considered, as well as general topographic configurations. Perhar.s asymptotic
solutions to the initial value problem with general topography can be solved by
the inverse scattering method or another analytical approach. Analysis of our
model or the initial value problem with the inclusion of some type of friction
would provide a better deszription of the problem.

Eventually the non-linear cffects will cause other waves to rise out of the
background of imperceptible waves and share the energy of the initial waves. A
look at third or fourth order terms and the effect of friction and topography
would provide us with information on the flow of energy between the triad and
other neighboring waves. Benny and Newell (1968) have shown, in the absense
of topography and friction, that it is possible in the particular case when one
of the members of the triad is the zonal flow, for neighboring waves to cause
energy to be lost or gained by the zonal flow on longer time scales. The effects
of topography and friction in this type of model would provide a description
of the flow of energy between the triad and other neighboring waves. Finally,
the most realistic situation would be to study a two-layer model of baroclinic
instability. Meacham (1988) and Loesch (1974) have both studied this problem,

however neither has attempted to examine how topographic forcing, as applied in
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our model would affect their models. Meacham (1988) looked at instability and
explosive growth of the triad in his model. Perhaps topographic forcing as we
have defined it could cause the instability to be delayed or eliminated, because
the exchange of erergy between the waves may be inhibited by the topography
as in our model.

Although the instability has been discussed in terms of a baroclinic model,
there is no reason why instabilities cannot occur in cases of barotropic shear flow,
and this type of model may be more tractable.

It would also be of interest to study the effects of thermal forcing on both

the barotropic and baroclinic models.
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Appendix 1: Derivation of Equation (2.2.15)

Substitution of (2.2.10) into (2.2.14) produces the following —J(°, Ay®) will

produce terms like (for A;)
A3 ATkaly(—k3 — €3)exp(~i(6; + 6)) \
+ A3 A3 ksla(—k2 — 62)exp(—~i(8 + 63))

— A3 ASkaly(—k2 — £2)exp(~i(6, + 63))

-~

(A.1.a)
+ A ASkola(—k2 — 22)exp(—i(62 + 63))

+ cc. 4+ nonresonant terms,

which with the use of (2.2.13) maybe written
A3 A5 tp(ibh)z - (K, x K3) (K2 — K2) +2.c. + nonresonant terms .  (.4.1.h)

Similar terms are derived for A, and A4j;

AR = Ajr(—k? - 2)exp(ib;) + c.c., |
¥y = Ajrezp(i6;) + c.c.,
zbg?) = Axkjw;exp(26;) + c.c., (A1)
Yiox = Ajxezp(ib)) + c.c., o
V(X" = Ajiljezp(i8.)1(X) + c.c.,
rAY® = r4;(~k% — )ezp(if;) + c.c. |

The terms (A.1.b) and (A.l.c) are combined to form (2.2.15).
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Appendix 2: Proof of (3.1.10a)

We begin with equation (3.1.10a)
2 KyxKy=z-Kyx K, =z2-K, xKy=d
If we take the first two terms of (3.1.10a)
z- Ko XxKy—2- K3 x K, =0 (A.2.0)

and expand, we get
k2€3 - k3£2 - k3£1 + k1€3 =0. (.—121))

Simplifying (A.2.b) gives
O3(ky + ko) — ka2 (€2 + 6) = 0. (A.2.¢)
If the conditions for resonance (2.2.13) are met, then (A.2.c) can be written
—C3ks + k343 = 0. (4.2.d)

Similar arguments apply to the other combinations of (k;,¢;).
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Appendix 3: Proof of (4.4.10)

We begin by taking the X derivative of (4.4.10) and we write it as follows
FX =blxb2b3 sin @ + ngbabl sin ® + ngbxbz sin @
+ ®xb1bobs cos® — sy (—peC)byx  for j =1.
Substituting (4.4.8) into the above equation yields
516262 sin @ cos @ + s2b2b% sin ® cos ¢ + s3b3b2 sin ® cos ®
~ S S2 5 .
+ bybybs cos ® [(—yoc) — bybybs (-b—;_ + 5+ %;) sin 'b]
1 2 3
- (—uoa)sfbl bgb;; cosd = 0.

Since the derivative of T with respect to X equals to 0, T" is a constant of the

motion. = -ailar arguments apply for j = 2, 3.
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APPENCIX 4; FORTRAN PROGRAM USED TO PLOT THE SOLUTION
DERIVED IN SECTION 4.4 AND CHAPTER S
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THIS PROGRAM CALCULATES THE SOLUTION TO THE ROSSBY WAVE
TRIAD OVER PIECEWISE LINEAR TOPOGRAPHY. THE FULL ANALYTICAL
SOLUTION BEING DERIVED IN SECTION 4.4.

PROGRAM TRIAD

VARIABLES ARE AS FOLLOWS:

A1, A2 ,A3... are the amplitudes.

A11,A21.431... are the amplitudes times cos(phij).

A111,A249,AZ11... are the amplitudes times cos(phese2).

B1,82,83... are the interactfon coefficients.

SN,CN,DN... a2re Jacobti elliptic functions.

SN2... has the value of 5% squared.

MU, MU2,MU3... are topogiraphy terms.

GAMMA... {s the constant of motion GAMMA.

ROOT(3)... holds the roots of pi(x) in desending order.

K... is the modulus of the ellpitic function used in THETA
calculation.

COMPIN... holds the values of the complete elliptic integral.

THETA1,THETA... {s the initial calculation and final calculation

of THETA respectively.

KAPA2 ,PHI2.PHINT... are values we must input to calculate a
resonant triad.
M{,M2,M3,M10,M20,M30... are used to hold amplitude values
for use elsewhere in the program.
K1,K2,K3... are K wavenumbers 1,2,3 respectively.
L1,L2,L3... are L wavewumbers 1,2,3 respectively.
FIRST... is the lower 1imit of integration the numerical
routine Uses to calculate the PHI's.

X... has the value of the distance.
X1,X2,X3,J4... are used to hold values of the distance for use

elsewhere in the program.
PH1,PH2,PH3... are values of the phases.
PH10,PH20,PH30... hold values of the phases for use elsewhere

in the program.

PH1X,PH2X ,PH3IX... are the derivatives of PHI{,PHI2,PHI3.
PH21,PH22,PH23... hold values of phase2.
PH21X,PH22X,PH23X... hold values of phase2 derivatives.
SP... ts sin(PHI).
P... is PHI calculated from GAMMA.
RISE,RUN... divide to give the slope of the topography.
Y... holds the tncrement the amplitudes have changed.

Hi... s the slope of the topography.

H...-1 times the slope of the topography times the topography
term (sw0).

Ut.U... are the initfal calculation and final argument for

the SN calculation respectively.
The rest of the variables are used as counters or to hold
error messages.

114



University of Alberta

(e NeNe]

[sNeNeNeNe]

aaon (s N eNe] [eNe Nyl

aOo0n

COMMON /COM1/ H.GAMMA.ROOT(S).K.COMPIN.THETA,MIO.M20.M30.

8&81,B82,83

INTEGER EFF,EFF1,EFF2,EFF3,EFF4, IRULE

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DQUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

EXTERNAL F1,F2,F3

PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

A1,A2,A3,81,82,B3

GAMMA , PHI ,H,MUO,ROOT K, THETA 1, THETA, U1
U1,Y,SN,CN,DN, SN2, M1 M2 M3 X, NN, P
COMPIN,KAPA2,PHI2,PHINT RISE,RUN
M10.M20.M30,K1.K2.K3.L1.L2.L3.MU1.MU2.MU3.X1
ERRABS ,ERRREL ,FIRST,ERREST

PH1 ,PH2,PH3,U4
A11,A111,PH10,PH20,PH30,PH2 1X, PH22X . PH23X
A21,A211,PHIX,PH2X,PH3X,SP,PH21, PH22,PH23
A31,A311,X2,X3,X4

SET VALUES FOR SHORT NUMERICAL ROUTINE TO CALCULATE PHASES

ERRABS=0.00
ERRREL=0.000100

IRULE=2

CALCULATE VALUES FOR INTERACTION COEFFICIENTS AND TOPOGRAPHY
TERMS FROM WAVENUMBERS OF RESONANT TRIAD, WE MUST INPUT KAPA2

PHI2,PHINT. SEE LONGUET-HIGGINS AND GILL PAPER FOR MORE INFORMATION.

KAPA2=2 DO

PHI2=260.D0

PHINT=-140.D0

CALL WAVNUM(KAPA2,PHI2,PHINT ,MUO,K1.K2.K3,
&L1,L2,L3.MUT, MU2,MUI, EFF4)

IF (EFF4 .EQ. 1)

B1=-1.,D0*B1

GO TO 99

INPUT INITIAL AMPLITUDES

A1=2727
A2=2727
A3=?727?

PERFORM RENORMALIZATIONS

A1=A1+(1.00/(DSORT(B2*83)))
A2=A2*(1.D0/(DSQRT(B3*B1)))
A3=A3*(1.00/(DSQRT(B1*82)))

STORE AMPLITUDES FOR USE IN SOLUTIONS

M10=A1
M20=4A2
M30=A3

RE-RENORMALIZE THE AMPLITUDES

A1=A1*(DSQRT(B2*B3))
A2=22+(DSQRT(B3*B1))
A3=A3*(DSQRT(B1+B82))

Af1=A1
A21=A2
A31=A3
At11=A1
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A211=A2
A311=43

WRITE OQUT INITIAL CONDITIONS

J1=0.D0
X=Jt

WRITE(3,.60)X,A1,A2,A3
WRITE(4,60)X,A11,A21,431
WRITE(7,60)X.,A111,A2%1,4311

INITIALLY THE WAVES ARE EXCHANGING ENERGY WITH MAXIMUM EFFICIENCY

PH1=0.00

PH2=0.D0

PH3=0.D0

PHI=0.D0

PH21=0.00

PH22=0.00

PH23=0.D0

PH21X=0.00

PH22X=0.D0

PH23X=0.D0
WRITE(66,60)X,PH21,PH22,PH23
WRITE(67.60)X,PH21X,PH22X, PH23X
WRITE(18,250)X, PHI

FORMAT(F7.3,1X,F*1.8)
iNITIALLY WE ARE IN A REGION OF NO TOPOGRAPHY (RISE=0)

RUN=27?7?

RISE=?72?

H1=RISE/RUN
H=-1.D0*(RISE/RUN) *MUO

CALCULATE THE INITIAL CONSTANT OF MOTION
GAMMA=M10*M20*M30*DSIN(PHI)-0.5D0*H*M20**2
CALCULATE DERIVAT!VES OF PHI

PH1X=0 .00

PH2X=0.DO

PH3X=0.DO

CALCULATE THE ROOTS OF THE CUBIC
CALL CUBRT(EFF)

IF (EFF .EQ. t) THEN

WRITE(6.5)

FORMAT( * YOU HAVE COMPLEX ROOTS’)

GO TO 89

ENDIF

CALCULATE THE MODULUS OF THE ELLIPTIC FUNCTION
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K=DSQRT((ROOY{(1)-R0O0OT(2))/(ROOT(1)-RO0T(3)))

C
c CALCULATE COMPLETE ELLIPTIC INTEGRAL
c
COMPIN=DELIK1(K,EFF3)
IF (EFF3 .EQ. O)THEN
WRITE(6, 1O)EFFJ
10 FORMAT(‘ PROBLEM WITH COMPLETE ELLIP. INTG.')
GO TO 99
ENDIF
C
c CALCULATE SN-1
c
THETA 1=DASIN(DSQRT(ROOT(1)/(ROGT(1)-ROCT(2))))
THETA=DELLIF(K,THETAt,EFF1)
IF (EFF!  .EQ. 1 .OR. EFF1 _EQ. 2) THEN
WRITE(6, 1S)EFF 1
15 FORMAT(’ ERROR CALCULATING THETA',1X, 'VALUE OF EFF1 IS’,1X,12)
GO TO 99
ENDIF
c
c CALCULATE COMPLETE SOLUTION
c
WRITE(1.60)X.PH1.PH2, PH3
WRITE(2,60)X.PHIX,PH2X , PH3X
DO 20 1=1,100
J1=d1+1.00
X1=(-1.D0)*(J1/10.00)
X=X1
FIRST=0.D0
U1=(DSORT(RODOT(1)-ROOT(3)))*(X1)+THETA
c
c MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION
C

25 IF (Ut .GT. COMPIN)THEN
Ut = U1-2 .DO*COMPIN
GO TO 25
ENDIF
IF (Ut .LT. O.DO)THEN
Ut = -1.00*Ut

GO TO 25
ENDIF
c
c CALCULATE SN SQUARED
c
CALL DJCBYF(Ut ,K,SN,CN,DN,EFF2,NN)
IF (EFF2 .EQ. t .QOR. EFF2 .EQ. 2) THEN
WRITE(6,30)EFF2
30 FORMAT(’ ERROR CALC. SN’,i1X.'VALUE OF EFF2 IS’.1X,I2)
GO TO 89
ENDIF
SN22SN*SN

CALCULATE v
Y=(ROOT(2)-RO0OT(1))*SN2+ROOT( 1)
CALCULATE AMPLITUDES AND PHASE DERIVATIVES. THE M°S HOLD VALUES

OF THE AMPLITUDES USED TO CALC. ROOTS FOR NEXT TOPOGRAPHY ANO TO
CALCULATE THE PHASE (PHI).

OO0 OO0
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A1=DSQRT(M10**2-Y)
A2=DSQRT(M20**2+Y)
A3=DSQRT(M30**2+Y)

Mi=A1

M2=A2

M3=A3

P=DASIN( (GAMMA+0.5D0*H*M2+*2) /(M1*M2+43) )
SP=(GAMMA+0.SDO*H*M2*+2) /(M1 *M2*M3)
WRITE(18,250)X.P
PHIX=(M1*M2*M3*SP)/(M1**2)
PH2X=(~-1_DO*M{*M2*M _*SP)/(M2*+2)
PHIX=(~1.DO*M1*M2*M32SP)/(M3**2)
WRITE(2,60)X,PHIX,PH2X ., PH3X

RE-RENORMALIZE THE AMPLITUDES
A1=A1*(DSQRT(B2*83))

A2=A2*(DSQORT(B3*B1))
A3=A3*{DSQRT(B1*B2))

CALCULATE PHASES AND WAVES TIMES SLOW PHASE VARIATIONS

CALL DQDAG(F1,FIRST,X1,ERRABS,ERRREL , IRULE,PH1, ERREST)
CALL DQDAG(F2,FIRST,X1,ERRABS,ERRREL , IRULE,.PH2, ERREST)
CALL OQDAG(F3,FIRST,X1,ERRABS,ERRREL , IRULE,PH3,ERREST)

WRITE(1.60)X,PH1.PH2,PH3
A11=A1*DCOS(PH1)
A21=A2+DCOS(PH2)
A31=A3*DCOS(PH3)
A111sA{*DCOS(PHI-H1*MU1*X)
A2113A2*DCOS(PH2-H1*MU2*X)
A311=A3+*DCOS(PHI-HI*MU3*X)
PH2{uPHI-Hi*MU1{*X
PH22=PH2~H{*MU2+X
PH23=PH3~H{*MU3*X

PH2 IX=PHIX~-H1*MU 1
PH22X=PH2X-H1*MU2
PH23X=PH3X-H1*MU3
WRITE(66,60)X,PH21,PH22,PH23
WRITE(67.60)X,PH21X,PH22X . PH23X

WRITE QUT RESULTS

WRITE(3.60)X,A1,A2,A3
WRITE(4,60)X,A11,A21,A31
WRITE(7,60)X,A111,A211,A311

CONTINUE

M10=M1

M20x=M2

M30=M3

PH10=PH1

PH20=PH2

PH30=PH3

WE NOW ARE IN A REGION OF TOPOGRAPHY (RISE=?)
RUN=227?

RISE=?77277
Hi=-1.00*(RISE/RUN)
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H=(RISE/RUN)*MUO

CALCULATE THE NEW CONSTANT OF MOTION
GAMMA=M10*M20*M30*DSIN(P)-0.5D0*H*M20**2
CALCULATE THE ROOTS OF THE NEW CUBIC

CALL CUBRT(EFF)

IF (EFF .EQ. 1) THEN
WRITE(6.5)

GO TO s9

ENDIF

CALCULATE THE MODULUS OF THE ELLIPTIC FUNCTION
K=DSOQRT((ROOT( 1)-RO0T(2))/(ROOT(1)-ROOT(3)))
CALCULATE COMPLETE ELLIPTIC INTEGRAL

COMPIN=DELIK1{K EFF3)
1f (EFF3 .EQ. O)THEN
WRITE(6, 1O)EFF3

GO TO 99

ENDIF

CALCULATE SN-1

THETA1=DASIN(DSQRT(RQOT( 1)/(R0OAT( 1)-ROOT(2))))
THETA=DELLIF(K,THETA1 EFF 1)

IF (EFFY .EQ. 1 .OR. EFF1 .EQ. 2) THEN
WRITE(G.1S)EFF 1

GO TO 99

ENDIF

CALCULATE COMPLETE SOLUTION

X2=X
J1=0.D00
DO 35 I=%,100
J1=Jd1+41.D0
Xt=(-1.00)*(J1/10.00) -
XaX24+X1
FIRST=0.D0O

U1=(DSQRT(ROOT( 1) -RO0T(3)))*(X1)+THETA
MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION

IF (Ut .GT. COMPIN)THEN
Ut = Ut-2.00*COMPIN
GO TO 26

ENDIF

IF (U1 .LT. O.DO)THEN
Ut = -1.00*U¢

GO TO 26

ENDIF

CALCULATE SN SQUARED AND Y

CALL DUCBYF(U1,K.SN,CN.DN,EFF2,NN)
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IF (EFF2 .EQ. 1 .OR. EFF2 .EQ. 2) THEN
WRITE(6,30)EFF2

GO TO 99

ENDIF

SN2=SN*SN
Y=(ROOT(2)-ROOT(1))*SN2+R00OT(1)

CALCULATE AMPLITUDES AND PHASE DERIVATIVES

A1=DSQRT(Mi0**2-Y)
A2=DSQRT(M20**2+Y)
A3=DSQRT(M30**2+Y)

Mi=A1

M2=A2

M3=A3

P=DASIN( (GAMMA+0Q ., SDO*H*M2+%2)/(M{*M2*M3))
SP=(GAMMA+0 . SDO*H*M2%+2)/(M1*M2*M3)
WRITE( 18,250}X,P
PHIX=(M{1*M2*MI*SP) /(M1*+2)
PH2X=(~-1{.DO*Mi*M2*M3*SP)/(M2++2)
PH3X=(-1.D0*M1*M2*M3*SP)/(M3*+2)
WRITE(Z,60)X,PH1X,PH2X, PH3X

RE-RENCRMALIZE THE AMPLITUDES

A1=A{*(DSQRT(B2*B3))
A2=A2+(DSQRT(B3*B1))
A3=A3*(DSQRT(B1*B2))

CALCULATE PHASES AND WAVES TIMES SLOwW SHASE VARIATIONS

CiLL CGDAG(F1,FIRST.X1,ERRABS.ERRREL . IRULE,PH! . ERREST)
CALL DQDAG(F2,FIRST,X1.ERRABS.ERRREL, IRULE,PH2, ERREST)
CALL DQODAG(F3,FIRST.X1,ERRABS,ERRREL, IRULE,PH3,ERREST)
PHi=PHI+PH10

PH2=PH24PH20

PHI=PH3I+PH3O

WRITE (1,60)X,PH1,PH2.PH3

A11=A1*DCOS(PH1)

A21=A2*DCOS(PH2)

A31=A3°0C0OS(PH3)

At11=A1*DCOS(PHI-HI*MU1*X1)

A211=A24DCOS (PH2-H1*MU2*X 1)
A311=A3*DCOS(PH3-H1*MU3*X 1)

PH21=PHI-H1*MU1*X 1

PH22=PH2-H1*MUZ*X 1

PH23=PH3-H1*MU3*X 1

PH2 1IX=PH1X~H1*MU 1

PH22X=PH2X~H 1*MU2

PH23X=PH3X~H1*MU3

WRITE(66,60)X,PH21,PH22,PH23
WRITE(67,60)X,PH21X, PH22X . PH23X

WRITE OUT RESULTS

WRITE(3.60)X,A1,A2,A3
WRITE(4.60)X,A17,A21,A31
WRITE(7.60)X,A111,A2¢1,A311
CONTINUE
M10=M1
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M20=M2
M30=143
PH10=PH1
PH20=PH2
PH30=PH3

WE NOW ARE IN ANOTHER REGION OF TOPOGRAPHY (RISE=?)

RUN=22727
RISE=2777?

H1=RISE/RUN

H=(-1.D0) *(RISE/RUN) *MUO

CALCULATE THE NEW CONSTANT OF MOTION
GAMMA=M10*M20*M30*DSIN(P)~0.5D0*H*M20*+*2
CALCULATE THE ROOTS OF THE NEW CUBIC

CALL CUBRT(EFF)

IF (EFF .€Q. 1) THEN
WRITE(6.5)

GO TO 99

ENDIF

CALCULATE THE MODULUS OF THE ELLIPTIC FUNCTION
K=DSQRT((ROOT( 1)~ROOT(2))/(ROOT(1)-RO0T(3)))
CALCULATE COMPLETE ELLIPTIC INTEGRAL

COMPIN=DELIK1(K,EFF3)
IF (EFF3 .EQ. O)THEN
WRITE(6, 1C)EFF3

GO TO 99

ENDIF

CALCULATE SN-1

THETA 1=DASIN(DSQRT(ROOT(1)/(ROOT(1)-ROQT(2))))
THETA=DELLIF(K,THETA1,EFF1)

IF (EFF1 .EQ. 1 .OR. EFF! _EQ. 2) THEM
WRITE(6,1S)EFF1

GO TO 99

ENDIF

CALCULATE COMPLETE SOLUTION

X3=X
J1=0.D0

00 40 1=1, 100

J1=J1+1.00

X1=(-1.00)*(u1/10.D0)

X=X3+X1

J4=(10.D0+X1)

FIRST=0.DO
U1=(DSQRT(ROOT(1)-ROOT(3)))*(X1)+THETA

MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION
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IF (U1 .GT. COMPIN)THEN
Ui = U1-2.DO*COMPIN

GO TO 27

ENDIF

IF (Ut .LT. O.DO)THEN
Ut = -1.00*Ut

GO TO 27

ENDIF

CALCULATE SN SQUARED AND Y

CALL DJCBYF(U1.,K,SN,CN,DN.EFF2.NN)

IF (EFF2 .EQ. 1 .OR. EFF2 .EQ. 2) THEN
WRITE(6,30)EFF2

GO TO 99

ENDIF

SN2=SN*SN
¥=(ROOT(2)~ROOT( 1)) *SN2+ROOT( 1)

CALCULATE AMPLITUDES AND PHASE DERIVATIVES

A1=DSORT(M10%*2-v)
A2=DSQRT(M20**2+Y)
A3=DSORT(M30**2+Y)

M1=A1

M2=A2

M3=A3

P=DASIN((GAMMA+0.5D0*K*M2*%2) /(M1"M2*M3)}
SP=(GAMMA+O.SDO*H*M2**2) /(M 1*M2*N3 )
WRITE( 18,250)X,P
PHIX=(M1*M2YM3+SP) /(M1 **2)
PH2X=(~-1.D0*M1°M2*M3*SP)/(M2++%2)
PH3X=(-1.DO*M1*M2%M3+SP)/(M3*=2)
WRITE(2.60)X.PHIX,PH2X, PH3X

RE-RENGRMALIZE THE AMPLITUDES

A1=A1*(DSQRT(B2+83))
A2=A2*(DSQRT(B3*B1))
A3=A3*(DSQRT(B81*82))

CALCULATE PHASES AND WAVES TIMES SLOW PHASE VARIATIONS

CALL OODAG(Fi.FIRST.x1.ERRABS.ERRREL.IRULE.PH!.ERREST)
CALL DODAG(F2.FIRST.X1.ERRABS.ERRREL.IRULE.PH2.ERREST)
CALL DODAG(F3.FIRST.X1.ERRABS.ERRREL.IRULE.PHS.ERREST)
PHi{=PH1+PH10

PH2=PH2+PH20

PH3=PH3+PH30

WRITE(1,60)X,PH1, PH2,PH3

A11=A1*DCOS(PH1)

A21=2A2+DCOS(PH2)

A31=A3*DCOS (PH3)

A111=A1*DCOS(PH1-HI*MU12Y4q)
A211=A2*0COS(PH2-H1*MU2*J4)
A311=A3*DCOS(PH3-H1*MU3*J4)

PH2 1=PH1-H1*MU 1 *y3

PH22=PH2-H1*MU2* ¢4

PH23=PH3-H1*MU3 *J4

PH2 1X=PH1X-H1*MU1
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PH22X=PH2X~H 1 *MU2
PH23X=PH3X~-H1*MU3
WRITE(66.60)X,PH21,PH22,PH23
WRITE(67.60)X ,PH21X, PH22X, PH23X

WRITE OUT RESULTS

WRITE(3.60)X.A1,A2,A3
WRITE(4.60)X . At1,A21,.A31
WRITE(7.60)X.A111,A211, A311
CONTINUE

M10=M1

M20=M2

M30=M3

PH10=PH1

PH20=PH2

PH30=PH3

COUNT =0.DO

WE NOW ARE IN A REGION OF NO TOPOGRAPHY {RISE=0)

RUN=?7227
RISE=227?

H1=RISE/RUN
H=-1.00*(RISE/RUN)*MUO

CALCULATE THE NEW CONSTANT OF MOTION
GAMMA=M{0*M20*M30*0SIN(P)-0.5D00*H*M20**2
CALCULATE THE ROOTS OF THE NEW CUBIC

CALL CUBRT(EFF)

IF (EFF .EQ. 1) THEN
WRITE(6.5)

GO T0 99

ENDIF

CALCULATE THE MODULUS OF THE ELLIPTIC FUNCTION
K=DSQRT((ROOT( 1)-ROOT(2))/(ROOT(1)-ROOT(3)))
CALCULATE COMPLETE ELLIPTIC INTEGRAL

COMPIN=DELIK{(K,EFF3)
IF (EFF3 .EQ. O)THEN
WRITE(6, 1Q)EFF3

GO 7O 99

ENDIF

CALCULATE SN-1

THETA1=DASIN(DSQRT(ROOT(1)/(ROOT(1)-ROOT(2)})))
THETA=DELLIF(K, THETA1 . EFF1)

IF (EFF1 .EQ. 1 .OR. EFF1 .EQ. 2) THEN
WRITE(6,15)EFF {

GO TO 99

ENDIF

CALCULATE COMPLETE SOLUTION
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X4=X
J1=0.00
D0 45 I[=1,200
Ji=Ji1+1.00
X1=(~1.00)*(J1/10.D00)
X=X4+X 1
FIRST=0.D0O

Ut=(DSQRT(ROOT(1)-ROOT(3)))*(X1)+THETA
MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION

IF (U1 .GT. COMPIN)THEN
Ut = U1-2.D0*COMPIN

GO TO 28

ENDIF

IF (U1 .LT. O.DO)THEN
Ut = -1.00%U¢

GO 70 28

ENDIF

TALCULATE SN SQUARED AND Y

CALL DJCBYF(U1,K,SN,.CN,DN,EFF2.NN)

IF (EFF2 .EQ. 1 .OR. EFF2 .EQ. 2) THEN
WRITE(6,30)EFF2

GO TO 99

ENDIF

SN2=SN*SN
Y=(ROOT{2)-ROOT( 1)} *SN2+ROCT(1)

CALCULATE AMPLITUDES AND PHASE DERIVAYVIVES

A1=DSQRT(M10**2-Y)
A2=DSQRT(M20#**2+Y)
A3=DSQRT(M30*%*2+Y)

Mi=A{

M2=A2

M3=A3

P=DASIN( (GAMMA+0O.5DO*H*M2+*2)/(M1*M2+M3))
SP=(GAMMA+O .SDO*H*M2+42) /(M1+M2+M3)

WRITE(t8,250)X,.P

PHIX=(M{*M2*M3*SP) /(M1*«2)
PH2X=(<1.DO*M1*M2*MI*SP) /(M2+*2)

PHIX=(~ 1.DO*M1*M2*M3*SP) /(M3%*2)
WRITE(6,60)X,GAMMA,P,SP

WRITE(2,60)X,PHIX,PH2X, PH3X

RE-RENORMALIZE THE AMPLITUDES

A1=A1*(DSORT(B2+B3))
A2=A2+(DSQRT(B3*81))
A3=A3*(DSQRT(B1*82))

CALCULATE PHASES AND WAVES TIMES SLOW PHASE V/..1AYIONS

CALL DQDAG(F1,FIRST,X1,ERRABS,ERRREL, IRULE,PH1, ERREST)
CALL DQDAG(F2.FIRST.X1.ERRABS.ERRREL.IRULE.PH2.ERREST)
CALL DQDAG(F3,FIRST,X1,ERRABS,ERRREL , IRULE,PH3,ERREST)
PHi=PH{+PH10O
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PH2=PH2+PH20
PH3=PH3+PHI0
WRITE(1,50)X,PH1,PH2,PH3
At1=A1+DCOS(PH1)
A21=A2*DCOS(PH2)
A31=A3*DCOS(PHI)
A111=A1*DCOS(PHI-H1*MU1*X)
A211=A2*DCOS(PH2-H1*MU2*X)
A3112A3*DCOS(PH3-H1*MU3*X)
PH21=PH1-Ht*MU1*X
PH22=PH2-H1*MU2*X
PH23=PH3~-H1*MU3*X
PH21X=PHIX-H1*MU{

PH22X=PH2X-H 1*MU2

PH23X=PH3xX-H 1*MU3
WRITE(66,60)X,PH21,PH22,PH23
WRITE(67,60)X,PH21X,PH22X, PH23X

WRITE QUT RESULTS

WRITE(3,60)X,A1,A2,A3
WRITE(4.60)X,A11,A21,A31
WRITE(7,60)X A111,A211,A311
CONTINUE

M10=M1

M20=M2

M30=M3

PH10=PH 1

PH20=PH2

PH30=PH3

FORMAT(F7.3,3(1X,.F14.8))

sSTOP
END

SUBROUTINE WAVNUM(KAPA2,PHI2, PHINT MUO.K1 K2 .K3,
&L1,L2,L3,MU1,MU2,MU3, EFF4)

FIND A WAVE TRIPLET BASED ON LONGUET-HIGGINS AND GILL
PAPER (1967). USE THE WAVE TRIPLET TO CALCULATE
INTERACTION COEFFICIENTS AND TOPOGRAPHY TERMS.

INTEGER EFF4

COMMON /COM1/ H,GAMMA ,ROOT(3) ,K.COMPIN, THETA ,M10,M20,M30,
8B81,82,83

DOUBLE PRECISION PI,KAPAO,KAPA2 .KO.K1,.K2,K3,L0,L1,L2,L3,A2
& ,ALPHA ,PHIPM, PHINT ,PHI2,B8,A,A1,C1,C2,C3.81,B2,83,W1, W2, W3,
&NUO,MU1,MU2,MU3 WO ,H,GAMMA ,RODOT ,K,COMPIN, THETA . M10.M20,M30

NOTE: PHI2 CANNOT BE EQUAL TO -+(90) DEGREES.

Pl= DACOS(-1.00)

CONVERT PHI2 AND PHINT TO RADIANS

PHI2 = (PI*PHI2)/180.00
PHINT = (PI*PHINT)/180.00

CALCULATE PLRAMETERS

125
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PHIPM = PHINT - PHI2

A = (-1.DO)‘((2.DO+2.DO‘KAPA2“2)‘DTAN(PHI2))

A1 = 2.00 + KAPAQ+*s2

A2 = A/A1

ALPHA = (0.SDO)*DATAN(A2)

B = 4.DO*(Z.DO*KAPA2“2)‘DCOS(2.DO‘(PHIPM-ALPHA))/DCOS(Z.DO'AL

&PHA)

KAPAO = DSORT(-B+DSQRT(B“2+3.DO‘(KAPA2“¢*4.00‘KAPA2“2)))

CALCULATE WAVENUMBERS

KO = KAPAO*DCOS(PHINT)
LO = KAPAO*DSIN(PHINT)
K2 = KAPA2*DCOS(PHI2)
L2 = KAPA2*DSIN(PHI2)
K1 = (-0.5D0*K2) + (0.5D00%K0)
L1 = (-0.5D00+L2) + (0.5D00*L0)
K3 = (-0.5D0*K2) -~ (0.500*K0)
L3 = (-0.5D0+L2) - (0.500L0)

CALCULATE GROUP VELOCITY GF EACH WAVE
C1=(K1"2-L1“2-1.DO)/((K!"2+L1“2+i.DO)"2)
c2=(K2--2-L2"2~1.Do)/((Kz'-2+L2t~2+1.Do)--z)
ca-(Ka--z-La--z-t.00)/((K3*°2+L3~*2+1.oo)--z)

CALCULATE FREQUENCY OF EACH WAVE
Wis-K1/(K1+%2+L 1¢+241_D0)
W2=-K2/(K2**2+L2%*2+1 DO)
W3=-K3/(K3**2+L.3*+2+1.D0)

CALCULATE INTERACTION COEFFICIEMY OF EACH WAVE

81-((K2'L3-K3‘L2)‘(K2“2*L2"2-K3“2-L3"2))/(Ki"2+L1'°2+

&1.00)

82=((Ka-L1-K1-L3)t(K3~'2+L3"2-K1'*2—L1"2))/(Kz'-2+L2"2+

&1.00) -

83=((K|‘L2-K2‘L1)‘(Ki“2+L1“2-K2“2-L2“2))/(K3“2*L3“2+

&1.00)

B1 » (-1.D0)*B1
B2 (-1.00)+82
B3 = (~1.D00)*B3
B1 = Bt/C1
82 = 82/C2
B3 = B3/C3

CALCULATE TOPOGRAPHY TERMS

MUT=L1/((K1**2+ 1*2241 DO)*C1)
MU2=L2/((K2+*2+L2%*2+1.D0)*C2)
MUI=L3/((KI**24L2*24+1,.00) *C3)
MUO=MU 1 +MU2+MU3

DO SOME CHECKING TO INSURE WE HAVE A GOOD TRIAD
EFF4=0

WRITE(6, 11)KI1.L1,W1 B1,MUO, MU
FORMAT(6(2X,F10.7))
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WRITE(6.21)K2.L2,W2,B2,MU0.MU2

FORMAT(6(2X ,F10.7))
WRITE(6,31)K3,L3,wW3,83,MU0.MU3
FORMAT(6(2X,.£10.7))

IF(B1 .GE. 0.DO)THEN

WRITE(6.20)

FORMAT( ‘Bt IS GREATER THAN OR EQUAL TO ZERO’')
EFF4=1

RETURN

ENDIF

{F(B2 .LE. 0.D00 .OR. B3 .LE. O.DO)THEN

EFF4=1

WRITE(6,30)

FORMAT( ‘82 OR B3 IS LESS THAN OR EQUAL TO ZERO')
RETURN

ENDIF

RETURN

END

SUBROUTINE CUBRT(EFF)
A SUBROUTINE TO CALCULATE CUBERODTS

COMMON /COM1/ H,GAMMA ,ROOT(3),K,COMPIN, THETA,M10,M20,M30,

&81,82,83

INTEGER EFF
DOUBLE PRECISION A,B8,P,Q,R.TEST M, THET,PI.S,H,GAMMA, ROOT K
DOUBLE PRECISIUON COMPIN,THETA,M10,M20,M30.81,82,B3

$=-1.00

Vi=M10**2
v2=M207**2
V3=M30*+*2

CALCULATE P,Q,R COEFFICIENTS FROM CUBIC IN THESIS

P=-1.00*(V1+S*V3+S*V2-(H*v2/4.D0))
=-1.00*(VIi*V3I+Vi2V2+S=, T *V3-GAMMA*H-(H**2/2.00)*V2)
R=GAMMA*#2-V1*V2*V3+GAMMA*H*V2+(H**2/4.00) *Vv2es3

BEGIN PROCESS OF CALCULAT®MG ROOTS

PI = DACOS(-1.00)
A = (3.00%Q - P**2)/3.D0
B = (2.00*P**3 - 9.00*P*0Q + 27.D0*R)/27.00
TEST = {B**2)/4.D0 + (A**3)/27.00
IF (TEST .GT. 0.D0) THEN
EFF=4
RETURN
ENDIF
M = 2.00 * DSOQRT((-A)/3.00)
THET = (DACOS((3.00*B)/(A*M)))/3.00
ROOT(1) = M*DCOS(THET) - pP/3
ROOT(2) = M*DCOS(THET + 2.00*PI/3.00) - P/3
ROOT{(3) = M*DCOS(THET + 4.00¢PI/3.D0) - P/3
CALL SORT
RETURN
END
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SUBROUTINE SORT
A SUBROUTINE TO SGRT ROOTS IN DESCENDING ORDER

COMMON /COM1/ H.GAMMA.ROOT(S).K.COMPIN.THETA_MiO.M20.M30.
&81,82,83
DOQUBLE PRECISION TEMP,H, GAMMA, ROOT KK, COMPIN. THETA
DOUBLE PRECISION B1,B2,B3,M10,M20,M30
INTEGER INDEX,COUNT
LOGICAL SORTED
COUNT = 3
SORTED = _FALSE.
IF (SORTED) GO TO 39
SORTED = .TRUE.
DO 34 INDEX=1,COUNT-1
IF {ROOT(INDEX) .LT. ROOT (INDEX+1)) THEN
TEMP = ROOT(INDEX)
ROOT(INDEX) = ROOT(INDEX+1)
ROOT(INDEX+1) = TEMP
SORTED = .FALSE.
ENDIF
CONTINUE
GO TO 32
CONT INUE
RETURN
END

DOUBLE PRECISION FUNCTION F1(X)
A FUNCTION TO BE NUMERICALLY INTEGRATED TO CALCULATE PHI 1

COMMON /cOM1/ H.GAMMA.ROOT(G),K.COMPIN.THETA.MiO.M20.M30.
&81,82,83

DOUBLE PRECISION X,U!.Y,SN,DN.CN.SN2.A1,A2.A3.NN,°HASE
DOUBLE PRECISION H.GAMMA.ROOT.K.COMPIN.THETA.M?O.Mzo.MGO
COUBLE PRECISION B81,82,83,SINP

INTEGER EFF2

Ul-(DSORT(ROOT(1)-ROOT(3)))‘(X)*THETA

MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION

IF (U1 .GT. COMPIN)THEN
Ul = U1-2.00*COMPIN
GO TO 29

ENDIF

IF (U1 .LT. O.DO)THEN
U1 = -1.00%U1

GO YO 29

ENDIF

CALCULATE SN SQUARED

CALL OJCBYF(Ui.K.SN.CN.DN,EFFZ'NN)
IF (EFF2 .EQ. 1 .OR. EFF2 -€Q. 2) THEN
WRITE(6,.30)EFF2
FORMAT(’ ERROR CALC. SN IN F1'.1X, 'VALUE OF EFF2 IS’ ,1X,12)
ENDIF
SN2=SN*SN

128
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CALCULATE v

Y=(RO0T(2)-RO0T(1))‘SN2#ROOT(1)

CALCULATE AMPLITUDES AND PHASE. THE M’S HOLD VALUES OF THE
AMPLITUDES USED TG CALC. ROGTS FOR NEXT TOPOGRAPHY AND TO

CALCULATE THE PHASE

41=DSQRT(M10**2-Y)
A2=DSQRT(M20=*2+Y)

A3=DSQRT(M30%**2+Y)
SINP=(GAMMA+0.SDO*H*A2%+2) /(A 1%A2°A3)

F1=(A1*A2*A3=SINP)/(A1%**2)

RETURN
END

DOUBLE PRECISION FUNCTION F2(X)

A FUNCTION TO BE NUMERICALLY INTEGRATED TO CALCULATE PHIZ2

COMMON /caM1/ H.GAMMA.RODT(3).K.COMPIN.THETA.MiO.M20.M30.

&81.82,83
OOUBLE PRECISION X,U1,Y,SN,DN,CN,SN2,A1,A2,A3,PHASE NN
DOUBLE PRECISION H,GAMMA,ROOT,K,COMPIN,THETA,M10,M20,M30
DOUBLE PRECISION B1.B2.83.SINP
INTEGER EFF2
U1=(DSQRT(ROOT( 1)-ROOT(3)))*(X)+THETA

MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION

IF (U1 .GT. COMPIN)THEN
Ut = U1-2.00*COMPIN

GO TO 31

ENDIF

IF (U1 .LT. 0.DO)THEN
Ut = -1.DO*U1

GO TO 3t

ENDIF

CALCULATE SN SQUARED
CALL DJCBYF(U1,K,SN,CN,DN,EFF2,NN)

IF (EFF2 .EQ. 1 .OR. EFF2 .EQ. 2) THEN
WRITE(6.30)EFF2

FORMAT(‘ ERROR CALC. SN IN F2‘,1X, ‘VALUE OF EFF2°IS’,1X,12)

ENDIF
SN2=SN*SN

CALCULATE Y
¥=(ROOT(2)-ROOT(1))*SN2+ROOT( 1)

CALCULATE AMPLITUDES AND PHASE. THE M’S HOLD VALUES OF THE
AMPLITUDES USED TO CALC. ROOTS FOR NEXT TOPOGRAPHY AND TO

CALCULATE THE PHASE

A1=DSQRT(M10*=2-Y)
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A2=DSQRT(M20**2+Y)
A3=DSQRT(M30%*2+Y)
SINP'(GAMMA+O.SDO‘H‘AZ“Z)/(A1'A2‘A3)

F2-(-1.DO'A1‘A2‘A3‘SINP)/(A2"2)
RETURN
END
DOUBLE PRECISION FUNCTION F3(x)
A FUNCTION TO BE NUMERICALLY INTEGRATED TO CALCULATE PHI3
COMMGN /COM1/ H.GAMMA.ROOT(Q),K.COMPXN.THETA.MiO.M20.M30.

&81,82,83
OOUBLE PRECISION X.Ui.Y.SN.DN.CN.SN2.A1.A2.A3,PHASE.NN

- DOUBLE PRECISION H.GAMMA.ROOT.K.COMPIN.THETA.MlO.M20.M3O

DOUBLE PRECISION B1.,82,823,SINP
INTEGER EFF2
Ui*(DSORT(ROOT(1)-RO0T(3)))‘(X)#THETA

MAKE SURE THE ARGUMENT IS IN RANGE FOR SN CALCULATION

IF (U1 .GT. COMPIN)THEN
Ut = U1-2.00*COMPIN
GO To 32

ENDIF

IF (U1 .LT. 0.DO)THEN
Ut = -1 po*ut

GO To 32

ENDIF

CALCULATE SN SQUARED

CALL DdCBYF(Ui.K.SN.CN.DN.EFFz.NN)
IF (EFF2 .EQ. 1 .OR. EFF2 .EQ. 2) THEN

WRITE(6,30)EFF2

FORMAT(’ ERROR CALC. SN IN F3’.1X,'VALUE OF EFF2 IS’ .1X,12)
ENDIF

SN2=SN*SN

CALCULATE v
Y-(ROOT(2)-RO0T(1))‘SN2*ROOT(1)

CALCULATE AMPLITUDES AND PHASE. THE M‘S HOLD VALUES OF THE
AMPLITUDES USED TO CALC. ROOTS FOR NEXT TOPOGRAPHY AND TQ
CALCULATE THE PHASE

A 1=DSQRT(M10*+2-Y)
A2=DSQRT(M20%+2+Y)

AJ=DSQRT(M30*+2+Y)
SINP-(GAM"A*O.500‘H‘A2“2)/(Al'A2‘A3)

F3'('1.DO‘A!‘A2‘A3‘SINP)/(A3“2)
RETURN
END
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