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Abstract

A variety of CASE (Computer-Aided Software Engineering) methodologies and tools are
presently used in development of computer software systems. A customizable CASE envi-
ronment (also called CASE shell) is necessary to ensure effective yet flexible support of the
various methods used in different development phases.

This thesis focuses on the graphical method modeling problem in Metaview, which is a
CASE shell system that is capable of defining a variety of software development methods
and generating automatically CASE environments from these definitions. The main goal
of this research is to develop in Metaview an efficient and effective approach for defining
the graphical representations of any comrhornly used CASE method. There are two major
contributions from c')ur research. Firstly, different approaches to graphical method defini-
tion are investigated and critiqued. Secondly, an interactive, graphical modeling tool is pro-
posed and prototyped in order to provide intuitive and effective support for defining graph-

ical CASE environments in Metaview.
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Chapter 1

Introduction

Software systems are continuously growing larger in scale and complexity due to the rapid
advancement of computer technology and the increasing demands of the computer uscrs.
Since the “software crisis” in the 1970s [Pre92], production and maintenance of computer
software systems have become such complex and tedious tasks that they are no longer man-
ageable by primarily manual means. Assistance through automated software development
tools or Computer-Aided Software Engineering (CASE) [GH89] is playing an increasingly
important role in the software industry. CASE, as defined in [BCM*94], “is the usc of
computer-based support in the software development process.” In other words, it is a sct
of automated or semi-automated software development methods, techniques, and pracesses
that are supported by computer programs called CASE tools.

To maximize the power and utility of these tools, a CASE environment, or Software De-
velopment Environment (SDE) [DEF*87, BEM92], is desired so that a team of software de-
velopers may work on a variety of CASE tools in a common environment [FW9Y0, Zar90).
Ideally, within such an environment, the tools are able to share project data and techniques to
provide the software developers with complete support over the system development cycle.
In reality, however, many existing CASE environments cannot achieve this goal because
they suffer from excessive rigidity. Typically, they can only weakly support the users’ com-
monly adopted methods and are unable to support any new, emerging methods [MRT*93].

‘Therefore, the need for customizable CASE environments (also called CASE shells) is grow-

1



ing in today’s software industry [LMR*92].

The most important feature of these CASE shells is their capability of modeling various
software development methods. These methods have to be captured by a meta-model in
some specific representational form that is typically stored in a repository such as a special
database. The modeled knowledge of these methods can therefore be used to customize the
tools within the CASE shell and support the entire, or at least a portion of, the software life
cycle. Not surprisingly, modeling of a software development methodology! is not an easy
task — it requires not only the definition of the methods’ concepts and rules, but also the
modeling of their representational notations. The latter usually involves the use of graphics
since most of the modern methods use diagrammatical techniques, such as diagrams, charts,
and tables, to present their conceptual ideas and objects. Although virtually all the existing
CASE shells are successful in the conceptual modeling of methods, not all seriously address
issues in representational modeling.

In this thesis, we investigate the graphical definition of software development methods

in Mctaview? [Fin94d). Our objectives are to:

I. review different approaches to graphical method modeling in Metaview;

2. propose a textual description language for defining the graphical representations of

the methods, and analyze the benefits and drawbacks of this language;

3. propose and prototype an interactive, graphical tool that is used as a front-end inter-

face for graphical modeling in Metaview;

4. examine the requirements and the limitations of the prototype tool and suggest pos-

sible future research directions.

Section 1.1 discusses the motivation for this thesis research in greater detail. Section 1.2

outlines the remaining chapters of the thesis.

!'We use the term “methodology” in this thesis as “the abstract description of a class of methods” as defined

by Zhuang in {Zhu94].
2Metaview is a research prototype CASE shell that is currently being developed by the Software Engineer-

ing Research Laboratory at the University of Alberta



1.1 Motivation

CASE tools and methodologies are used extensively in today’s software industry. They are
expected to be helpful in facilitating the control and coordination of the project resources,
reducing substantially the costs of software development, and improving the overall quality
of software products {CR88, McC89]. However, many CASE users and researchers (e.g.,
[JIL*93, tHNV+92, LST+91]) point out that many of the existing CASE environments sup-
port only a limited set of methods that are not easily customizable nor extensible to satisty
the users’ needs. As a result, many potential users are discouraged from introducing CASE
technologies to their organizations.

In order to achieve a truly fiexible, customizable and adaptable CASE environment, we
need a CASE shell which is able to capture and adapt to a variety of existing software de-
velopment methodologies as well as methods that emerge in the future. More importantly,
a CASE shell allows customization of the captured methods to satisfy the special needs of
the users. There are several research prototypes and even commercial versions of CASE
shells already available in the industry — Metaview [STM88, DST89, Fin94d], MetaEdit
[LST+91], and Socrates [tHVW91] are some examples, and they are discussed in greater
details in chapter 2 of the thesis.

To model completely any software development method, two aspects have to be consid-

ered:

o Conceptual knowledge

This includes the modeling concepts provided and the constraint rules governing the
use of a method [tHNV*92]. The modeling concepts specify what kinds of system
information can be captured and manipulated while the modeling rules specify how

the modeling is to be done.

o Representational knowledge

This includes the external notations used to represent the modeling concepts and the

rules on how they are presented. Although the representations used by a method can



be in any form such as textual reports, program codes, charts, matrices, tables, and
so forth, many modern software development methodologies, especially the system

specification methods, use graphics to depict the concepts of the model.

Unfortunately, many existing CASE shells focus only on the conceptual modeling and
overlook the importance of the representational modeling. The modeling of the graphical

representations is a critical and challenging problem in the meia-CASE® research area be-

€ausc:

1. Most of the software specification methods and many modern CASE methodologies
arc based heavily on graphical notations (e.g., icons, lines, and symbols) and tech-
niques (e.g., diagrams, charts, and directed graphs) to represent their modeling con-
cepts. Some well-known examples of these methods are Data Flow Diagraming [You89],
Structure Chart [MM835], and Booch’s Object-Oriented Method [Boo91]. Therefore

it is important to ensure that a CASE stiell is capable of modeling the graphical knowl-

cdge of any method.

2. There is no well-established principles for graphical modeling [KS94]. In most ex-
isting CASE shells, the entity-relationship (ER) model [Che76, Che83], with certain
extensions, is used as the (meta-)data model for the modeling of concepts. This form
of model has been shown through experience to be powerful and flexible enough to
model a large variety of software development methodologies. However, no such
“commonly-accepted” model has been found for graphical modeling. In many cases,
the graphical representations are defined simply by “hard-coding” or using some in-
comprehensible script languages. Thus it is challenging to investigate an efficient and

effective approach for this modeling purpose.

The current Metaview system has a meta-model called Graphical Extension (GE) [Fin93c],

which is an extension to the conceptual EARA [Fin94b) meta-model, for defining graphical

3Meta-CASE refers to the systems and technologies that use a meta-system [DST89] approach to generate
customizable CASE environments. CASE shell is a kind of meta-CASE systems.



representations of the software development methods. The system, however, docs not have
any languages or interfaces based on the GE model, and therefore the graphical knowledge
is hand-coded in the specification database. In order to improve Metaview's methodology
engineering [HO93] capability, we need to investigate an effective approach to define the

graphical part of a method. There are a number of questions that are considered in this in-

vestigation:

e What kinds of information do we need to capture in order to model the representa-

tional part of a method?

e What are the requirements of an efficient and effective approach to the definition of

the graphic knowledge?

e What types of interfaces or tools do we need for the graphical modeling in Metaview?

These issues form the major focuses of this thesis research, and they are discussed in the

following chapters.

1.2 Outline of the Thesis

The thesis is organized as follows. Chapter 2 presents an overvicw of the modern CASE

technologies and the state-of-the-art CASE shells and their characteristics. The second half

of the chapter focuses mainly on the Metaview system. The architecture, the meta-model,
and the present state of the system are briefly discussed. In chapter 3, the GE language for
modeling graphical elements of the methods is presented. The chapter concludes with the
observations of our experience on the usability of the language, followed by a summary
of its benefits and limitations. Chapter 4 presents our proposal for GE Dcfiner — an in-
teractive, graphical tool for the representational definition. The design of the tool and its
requirements are discussed. Based on this design, a prototype tool is implemented. Key
aspects of this implementation are described in chapter 5. The chapter not only presents

the system structure of GE Definer and its functionality but also reports on the observations



of using the tool and the limitations and problems encountered. In addition, the ideas and
implementation feasibility of graphical tools for browsing a CASE environment’s elements
and for defining graphical constraints are introduced at the end of the chapter. Finally, the

thesis concludes in chapter 6 with a summary of the major contributions of this research,

followed by suggestions of future research in this area.



Chapter 2

Background

In this chapter, an overview of the current state of the CASE and Meta-CASE technologics
is presented. This overview provides more motivation for the thesis rescarch. In addition, a
brief introduction to the Metaview system is presented to ensure that adequate background
knowledge is provided for the discussions in the rest of the thesis. Section 2.1 presents
a general review of today’s graphic-oriented CASE technologies. Scction 2.2 discusses
some state-of-the-art CASE shells in the industry and their common objectives. In Sec-

tion 2.3, the history and goals, the system architecture, the meta-model, and the present state

of Metaview are introduced.

2.1 Graphic-Oriented CASE Review

In the 1970’s and early 1980’s, CASE tools and their supported methodologics were mostly
text-oriented. They were primarily used in the implementation phasc of the software life
cycle for system coding and testing. Some examples of these tools are compilers, program
editors, debuggers, and test-case generators. However, in the late 1980’s, the trend in CASE
technologies turned to more graphic-oriented interfaces that use pictures to describe the ar-

tifacts of a software system. This change is attributed to two main factors:

¢ Human Factors



Experimental findings (e.g., [PVU77]) support the claim that [McA88] “people often
seem to be able to work more effectively with information when it is presented graph-
ically than when it is in strictly textual form.” Therefore graphical CASE tools can
help the software developers to communicate the specifications and other concepts of

the systems precisely and efficiently, and as a result, their productivity improves.

e Advanced Computer Graphics Technologies

Thanks to the modern computer hardware technologies, virtually all computer sys-
tems can support high-quality graphical display and interactive user interfaces. Com-
plex, yet user-friendly graphical techniques such as computer-generated diagrams,
animations, multi-mediaand hypertext are used extensively in today’s CASE tools. In
addition, advanced, high-bandwidth computer networks also contribute to the success
and popularity of the graphical CASE support in today’s multi-user, multi-platform,

and multi-site software production environments.

Graphical CASE methodologies currently support all phases of the system development
cycle. Table 2.1 presents some examples of the CASE methodologies and tools used in each
development phase. In particular, system analysis and design are the two phases in the soft-
ware life cycle that use many different kinds of diagrammatical techniques and notations
[FK92] to model the software specifications.

In summary, popularity of the graphic-oriented CASE technologies is continuously grow-
ing, and many new graphical methods are expected to emerge in the industry. Therefore a
successful CASE shell must have a powerful meta-model as well as a well-defined approach
for graphical modeling to support the large variety of existing and emerging software de-

velopment methodologies.

2.2 CASE Shells and Meta-CASE Systems

In most organizations, a suite of CASE tools are used within a single working environment

called software development environment (SDE). A SDE provides the standards and the



Software Development Phases Graphic-oriented CASE

Project Planning and Management | Gantt (Timeline) Charts [Pre92],

Pert Charts [Con94]

System Analysis and Design Structured Methodologies:

Data Flow Diagrams,

Structure Charts,

Decision Trees and Tables [MMB85], etc.
Object-Oriented Methodologies:
OMT [R+91],

Booch’s Method,

Shlaer-Mellor’s Method [SM91], etc.
Implementation Integrated programming environments
with graphical interfaces (e.g., [Orv92]),
GUI toolkits [Ped92] and builders,
Visual programming [Cha90]

Testing Graphical simulations

Documentation WYSIWYG document editors,
Hypertext help-message compiler
Re-engineering / Maintenance Rigi [MK88, MTO192],

Ensemble [CTI93],

REFINE [BKM90]

Table 2.1: Examples of Graphical CASE Methodologies/Tools Used in Various Software
Development Phases
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framework for tool integration [Was90, Zar90] in order to ensure a broader and more effec-
tive support during the system development process. More detailed discussions on various
categories and models of SDEs can be found in [DEF*87, KP91].

Unfortunately, many existing SDEs suffer from the problem mentioned in the previous
chapter — they are not easily customizable to the users’ adopted methods nor extensible to
any new methodologies. This problem limits the success of CASE in many organizations.
In order to solve this problem, we need CASE shells and Meta-CASE systems.

CASE shells are customizable software engineering environments which accept the def-
initions of a variety of system development methods and provides flexible environments to
support unlimited number of these methods. Existing CASE shells can be classified accord-
ing to the degree of their flexibility and the way they (meta-)model the method specfica-
tions. Forexample, P. Marttiin et al. suggested several classification schemes in [MRT*93],

and one of them is based on the customization approaches used by the CASE shells. They

arc categorized into three classes:

e database oriented — the CASE shells of this class use a higher-level language (meta-
language) to define the knowledge of any CASE environment and store it in an en-
vironment specification database. The tools within the CASE shells can then be cus-
tomized to a particular methodology according to its modeling concepts as well as the

representational notations captured in the database.

Examples: MetaPlex [CN89], SOCRATES [tHVW91, tHNV*92, BW], and Metaview.

e interface oriented — the CASE shells which adopt this approach are built with generic
routines that can be easily customized to support a specific environment by associ-
ating the rules and notations used. The CASE shells in this class are supposed to
work with the meta-CASE-modeling systems (and in many cases, the meta-modeling
mechanisms are built-in with the CASE shells) so that the former can use the output

(method knowledge) of the latter as the basis of tool customization.

Examples: RAMATIC [BBD+89] is a representative of this class, and MetaEdit is an

example of the meta-CASE systems that can be used to model method knowledge and



generate output to customize the interface-oriented CASE shell like RAMATIC!.

e extension kit — this approach is more limited because it cannot modify the entire en-

vironment but only extend the functionality of the existing tools.

Example: Index Technology’s Customizer’ ™ [ITCa], which is used to extend the

CASE tool Excelerator™ [ITCb].

In this thesis research, we focus mainly on the class of CASE shells that has built-in
method-modeling support because it is a more general approach to customization of CASE
environments. Throughout the rest of the thesis, we refer this class of CASE shells as meta-
CASE systems because of their capability of meta-modeling a variety of software engincer-
ing methodologies. Some examples of the meta-CASE systems are SOCRATES, ECLIPSE,

MetaEdit, and our Metaview system. In the rest of this section, the first three example sys-

for method modeling, and in particular, graphic knowledge modeling. In the next section,

Metaview system is described in a more detailed marner.

SOCRATES

SOCRATES is a meta-CASE system developed at the Software Engineering Rescarch Cen-
tre (SERC) in the Netherlands. The objectives of the system are to capture the knowledge
of any software development method’s modeling concepts (the way of modeling) and of its
process (the way of working) [tHVWO1]. The idea of its sccond objective is interesting and
challenging because many other meta-CASE systems concentrate only on the modeling of
a method’s modeling concepts and notations. The architecture of SOCRATES is mainly di-
vided into two levels — on the meta-level, the meta-analyst models the process knowledge
and the product knowledge of a method into the reta-model base using a sct of meta-model
editors. On the application level, the user (e.g., system analyst) is supported by the CASE
shell which is customized to his/her desired environment based on the knowledge stored in

the database.

1Rossi et al. described how MetaEdit is used to customize RAMATIC in [RGS*92].

11
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Both conceptual and graphical definitions of a method are supported in SOCRATES.
The meta-models used for the former are called Object Structures, which basically consist
of three kinds of concepts — Object types, relationship types, and roles. The object types
model the major concepts of a method; the relationship types define the inter-relationships
between the object types; and the roles specify the participations of the object types in a rela-
tionship type. In short, this meta-model is similar to Chen’s ER model [Che76]. Moreover,
graphical definitions are also supported by a meta-model called Graphic Structures. There
are two main constructs of the Graphical Structures: graphic object types and handle types.
The graphic object types define a variety of notational conventions used in the methodolo-
gies. The handle types specify a set of reference points that are used for attachment of the
graphic object instances. The Graphical Structures associated with differeat sets of parame-
ters define the appearance and properties of the graphical notations. SOCRATES also has a
formal graphical constraint language which specify the rules of the graphical representation
of models.

In summary, SOCRATES has the wel!-defined, formal meta-models for both conceptual
and graphical modeling. However, we feel that these meta-models are too largé-grained.
For example, its graphic meta-model only has the generic graphic object type to define all
sorts of different methods’ notations, comparing to four graphical types provided in Metaview’s

graphical meta-model.

ECLIPSE

ECLIPSE [BWS87] is a meta-CASE environment developed at the University of Strath-
clyde, Scotland, and the University of Lancaster, England. The system supports various
diagraming methods that can be represented as directed graphs. Due to this assumption, its
meta-model is fairly simple and focuses only on the methods’ representational concepts. In
other words, the meta-modeling language provides constructs only for graphical definitions.
Since ECLIPSE assumes all CASE diagrams are represented as directed graphs, the two ba-
sic types of entity supported by the meta-model are node and link. The methods’ models and

rules (called assertions) are defined using description language. The graphical symbols are



defined by a graphical tool called the SHAPES editor. All of the defined representational
knowledge is then fed into a generic diagraming tool called the Design editor by which the
user can draw diagrams supported by the specific method.

The major problem of ECLIPSE is its lack of a rich conceptual meta-model. In addi-
tion, its simple graphical modeling language limits its support for most modern, complex
software development methods. Most current methods require tools that not only support
simple drawing techniques, but can also represent the underlying modeling concepts needed

to capture the specifications of a system.

MetaEdit

MetaEdit is a graphical meta-CASE environment under development in the MetaPHOR
project at the University of Jyviskyld [LKK*94]. Comparced to SOCRATES and ECLIPSE,

it is a more complete and successful meta-CASE systcm becausc:

1. MetaEdit uses amore powerful conceptual data-model called OPRR (Object-Property-

Role-Relationship) model [Wel92]. This meta-model was more recently extended to
include the concept of a graph and renamed to GOPRR?. This extension supports not
only the graphical diagrams and symbols but also matrices and hypertext. Neverthe-
less, the extended model enforces the concept of representation independence such

that conceptual modeling and representational modeling are scparated.

2. It has a richer set of tools to support not only the application level but also the meta
level. For examples, MetaEdit+ provides graphical editors — Concept editor and

Symbol editor — for meta-modeling the methods’ concepts and representations re-
spectively.
3. It uses the graphical meta-modeling techniques to ease the definition process of the

methodologies, to eliminate the time and efforts required for Icarning any complex

meta-modeling languages, and to provide a clear visualization of the modeled method

knowledge and its notations.

2Gince the extension of the meta-model, the system has been changed its name to MetaFEdit+



4. Tt uses not only the GUISs to display the method models on the computer screens but
also a set of textual specification languages to publish the modeling and the repre-
sentational concepts of any defined method. The output is in human readable format

such that the model can be validated and reviewed by the method engineers and any

interested readers.

5. It is able to gencrate report codes of method’s definitions from the method specifica-

tion base and use the information to tailor its own set of CASE tools or to customize

other third-parties’ CASE shells.

6. It alrcady has a commercial version released in the market working on the PC envi-

ronments.

We are most interested in MetaEdit’s graphical meta-modeling techniques because it is
the ultimate goal of our research in Metaview system. Since the general architecture and
the approaches used by MetaEdit are quite similar to those of our Metaview system (see the

next section), we have used MetaEdit system as a valuable source of reference during our

research.

2.3 Overview of Metaview System

Metaview |Fin94d, STM88, DST89] is a meta-CASE system currently being developed
by the Software Engineering Research Laboratory at the University of Alberta. Similar to
the other meta-CASE systems’, its goal is to provide the software developers with a cus-
tomizable SDE support by capturing the concepts and notations of many CASE environ-
ments/racthodologies in a repository and configuring its own set of generic tools to support
the modeled methods. In other words, Metaview is also a CASE shell that provides the in-

frastructures and mechanisms to produce customizable CASE environment based on any

defined software development methodology.
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2.3.1 Metaview Architecture

The architecture of Metaview is partitioned into three levels, as shown in Figure 1. They

are the Meta Level, the Environment Level, and the User Level.

e Meta Level
The Metaview system developers define the EARA/GE meta-model (to be described
in Section 2.3.2), the Metaview Software Library, the Metaview Tools Library, and
the Tool Components Library. The Metaview’s Software Library is different from
the Tools Library as the former consists of tools for the system users® (e.g., environ-
ment editors, compilers, and database management utility software) while the latter
contains the generic, customizable tools for the CASE users. The Tool Componcents
Library is a collection of reusable object class definitions and modules. They are used
for construction of new tools and communications among them. In summary, this

Meta Level is the fundamental platform of the whole Mctaview system.

o Environment Level
The SDEs and their supported methodologies are defined at this level with the assis-
tance of the software built at the Meta Level. Two major activities at the Environ-
ment Level are method modeling and system configuring. The method modeling task
in Metaview is accomplished by a set of tools and modeling languages that model the
four aspects of any software development method (SDM) based on the EARA/GE
data-model. These four parts of an SDM are the conceptual model, the conceptual
constraints, the graphical representations, and the graphical constraints. They arc
discussed in greater details in the following sections. In particular, the GE language
and the graphical tool, GE Definer, proposed in this thesis are tools designed for the
method modeling process. They are used as an interface between the method definer
and the Metaview system to capture effectively the method’s graphic knowledge. The

system configuring process is done by setting up the Metaview's Database Engine to

3The system users, in this context, are the Metaview developers and method engineers, who use the
Metaview software to build an customized SDE.
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Figure 1: System architecture of Metaview
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support a particular SDE based on the knowledge of the modeled SDM and that of

the software process. Table 2.2 summarizes the tools that have been built and being

used at the present version of Metaview.

Types of Tools Available Tools | References
Definition Languages EDL/GE [GLM94] and also see Chapter 3
ECL [Fin94c, Fin94f]
Method Definers/Editors | OGIPS [Mac91]
GE Definer see Chapter 5
Compilers EDL Compiler | [GM93]
| SDM Repositories Database Engine | [Fin93b]

Table 2.2: A Summary of Tools Used at the Environment Level

e User Level
The end-users of Metaview, such as system analysts and developers, are supported
by the configured SDEs generated at the Environment Level for usc at this level. The
SDEs consist of the generic CASE tools and the knowledge of the specific SDMs de-
fined in the upper levels. At the present stage, Metaview only has one tool available
for this User Level which is called MGED (Metaview Graphical Editor) [Fin93d].
It is a graphical editor for software specifications that supports any modeled SDM
through the communications with the Metaview’s Project Daemon [Fin94e] and stores
the specification information in the database (also called software repository) for re-
port and reuse purposes. The Project Daemon is a server program that provides the
Metaview tools with a uniform interface to the Database Engine for concurrent access
of system information. It is expected that in future a variety of tools will be imple-

mented for this level so that the Metaview’s end-users will benefit from a better CASIEE

support over their software development process.

For more detailed description on the Metaview architecture, the reader may refer to [Fin94d].



2.3.2 The EARA/GE Meta-Model

The fundamental platform of Metaview is based on the meta-modeling data-model called
EARA/GE (Entity-Aggregate-Relationship-Attribute with Graphical Extension) originally
proposed by McAllister in his PhD. thesis [McA88]. Since then the model has been refined
and extended to satisfy the requirements of the Metaview system and the whole variety of
SDMs. The current versions of EARA and GE are described in [Fin94b] and [Fin93c] re-
spectively. In this section, we briefly introduce the EARA model and then concentrate on
the discussion of the GE graphic model. The interested reader should refer to the above-
mentioned references for more details of these meta-models.

The EARA meta-model is based on the Entity-Relationship data-model [Che76] but is

cxtended with features such as aggregation and classification. The major elements of EARA

18

are Entitytype, Relationship type, Aggregate type, and their associated properties (Artributes).

Entities are real-world (conceptual) objects of a system that can be modeled and spec-
ificd by an SDM. Some examples of the typical entities of a software system are modules,
data, variables, events, states, and so forth.

Relationships are the associations between entities and aggregations. In any system,
cach object has relationship(s) with one another, and informationis transferred through these
links. For instance, a module (entity) of a system invoking another can be represented as a
relationship between them. Each relationship has a number of roles which determine the
functions played by the participants of that relationship.

Aggregales are composite objects that represent a heterogeneous collection of entities
and relationships. Aggregation is a special form of relationship necessary for modeling to-
day’s SDMs which must deal with complex system objects that can be viewed as subsys-
tems. Therefore, the addition of the aggregation feature significantly increases the modeling
power of the original ER model in SDM modeling.

Most existing SDMs have object types for modeling similar but different classes of sys-
tem objects. Thus during the method modeling, it is convenient to define a common class
(supertype) for the similar object types (subtypes) such that commo: attributes of the super-

type can be inherited to its subtypes. Both EARA and GE models supports such specializa-
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Figure 2: Mappings between EARA and GE objects

tion hierarchies for object types by classification.

The GE model is an extension to the EARA model — while the EARA model defines the
conceptual elements of an SDM, the GE model specifies their representational counterparts.
The current version of GE model supports only two-dimensional, non-animated graphics. It
is because most existing diagrammatical methods originate from “pencil-and-paper™ meth-
ods and thus rarely use three-dimensional or animated graphics. The conncctions between
the conceptual and the graphical definitions are achieved by introducing three graphical ob-
ject types — Icon types, Edge types, and Diagram types — which define the graphical rep-
resentations of their corresponding Entity, Relationship, and Aggregate types, respectively.

Figure 2 illustrates the EARA and GE elements and the mappings between them.
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Icons represent graphically entities of a system. They are displayed on computer screen
as rectangular arcas, filled with pictures and labels. Fictures represent the graphical symbols
used by an object type in a specific method, and labels represent the text that displays the
values of the associated attributes. Each icon is an independent graphical objects that can
be created and manipulated by the user. In addition, each icon that participates in an edge
(relationship) should have a special defined component called a handle. Handles are sets
of regions (though they may be as small as a point) on an icon where a particular edge can
touch. The definition of the handles is important because many SDMs, for example SADT
[MM87], attach meanings to different positions of the join points of an icon. Not every point
of the icon can be nsed for any edge. In addition, as an EARA entity can decompose to an
aggregate, an icon can also explode to a diagram. This feature is necessary because many
modern SDMs support system modeling in different levels such that an object in one level
may represcnt a subsystem in a lower level. Therefore, if an entity is represented by a child
aggregate, its corresponding icon can explode to a diagram that represents the aggregate.

Edges represent relationships that have entities as participants. They are displayed as the
edge patterns with a set of links (represented by lines) and nodes (represented by points) sim-
ilar to those of undirected graphs. The nodes represent the roles of the relationship types and
form the connection points of the links. The links represent a visual connections between
nodes and may associate with arbitrary number of pictures and labels.

Finally, a diagram represents an aggregate. Each diagram is composed of icons and
edges that represents a system or subsystem description. A diagram may also have any num-
ber of pictures and labels. Diagrams are displayed on a computer screen as a window that
can be manipulated by the user.

Figure 3 illustrates some sample instances of these GE object types and their associated
EARA types using a DFD example.

In addition to these three GE object types, a picture type is used to define the geometri-
cal pattern that is the pictorial basis for an icon, edge, or diagram. Any picture pattern used
in the graphical object types is constructed by a selection of six pre-defined picture primi-

tives: point, line, arc, circle, box, and text. For most existing SDMs, this set of primitives
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is adequate to build the graphical notations required.

Furthermore, virtually every graphical element type used in GE has its own set of proper-
ties defined. These graphical properties determine the representational characteristics, such
as dimensions, color, and other visual effects, of that element. In addition, the model al-
lows any number of new properties to be added to any GE eleraents and thus increases the

flexibility and extensibility of the graphical support in Metaview.

2.3.3 The Environment Constraints

Constraints of both the conceptual and the graphical definitions of a method ensure the cor-
rect use of the model and the appropriate diagrammatical layout of its representations. These
constraints are described as a set of predicates defined by the method engineer according to
the characteristics of the modeled SDM. They are stored in the Database Engine with the
method’s specifications.

The conceptual constraints provide two kinds of checking: completeness and consis-
tency. Completeness checking reports the missing parts of any partially defined model, and
consistency checking ensures a consistent model — that is, objects within the model have
to be consistent with one another and satisfy all pre-defined conditions. In a similar man-
ner, graphical constraints guard the graphical consistency of the objects. They are mainly
the diagraming rules applied by the SDM to ensure the resulting model representations look
“as expected”. For many SDMs, constraints are added to define a set of guidelines for pro-
ducing more readable and better structured diagrams. -

Presently, Metaview has two different versions of ECL (Environment Constraint Lan-
guage) [McA88, Gad93] for defining conceptual constraints. A new version has been de-
signed [Fin94f, Fin94c] and is being implemented which supports graphical constraints.
Furthermore, in this thesis, we also investigate the feasibility of implementing a graphical
tool for graphical constraints definition.

Finally, further details on SDE modeling in Metaview can be found in the references
[Fin93a] and [Fin94a]. The former presents some environment modeling guidelines, and the

latter describes an example of the complete definition of Data Flow Diagram environment



using Metaview.
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Chapter 3

Proposal of GE Language

Method modeling is performed in Metaview at the Environment Level as described in Sec-
tior 2.3.1. To model completely a method, the method definer has to define the four main
parts of the method. They are the conceptual model and constraints, and the graphical rep-
resentations and constraints. Support for the definition of these “method parts” is devel-
oped at the Meta Level and provided to the method environment definer. For example, the
EARA meta-model and its graphical extension (GE), as described in Section 2.3.2, were
developed to capture the knowledge of the method model concepts and their graphical rep-
resentations. However, in the previous version of Metaview, there was very limited support
for the method modeling process — only two description languages, EDL and ECL, were
developed for defining the conceptual environments and constraints. In particular, there was
no tool support for the graphical modeling. The graphical definitions of a method must be
hand-coded directly in the Metaview’s method specification database [Fin93b]. To solve
this problem, this thesis research first started with a proposal of a new description language,
called “GE language”, to define the graphical representations' used in a method.

Section 3.1 discusses the objectives and requirements of the proposed GE language.
Section 3.2 presents some examples of the GE definitions to illustrates how the GE lan-

guage models various representational notations of a method. Section 3.3 summarizes the

T As mentioned in Section 2.3.3, the graphical constraints are to be defined by a new version of ECL
|Fin94c| which is currently being implemented.
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benefits and limitations of the GE language based on our experience with the language, and

several recommendations are presented.

3.1 The New Graphical Definition Language
Our motivation of designing a new graphical definition language was to:

o produce a simple solution to the problem of limited graphical method modeling sup-

port in Metaview;

e make observations on the results of this solution and examine the potential require-

ments and problems of the graphical modeling task;

The preliminary design idea of the language originated from a graphical extension of the
original EDL language proposed by McAllister in his thesis [McA88). However, we made
substantial changes and improvements over his proposed language when we designed the
new GE language. Because Metaview’s graphical extension model has been modificd and
improved since McAllister’s work, the language McAllister proposed is no longer compat-
ible with the current Metaview system. Furthermore, the syntax of his language was not as
declarative and readable as we desired. For example, the representation parts of a graphical
type are defined using “geometric procedures” which are like the lower-level function calls
used in common procedural programming languages.

The following section discusses the objectives of the GE language. Scction 3.1.2 bricfly

describes the syntax of the language.

3.1.1 Objectives

To provide adequate support for the definition of graphical method elements, there are five

major objectives that the GE language must fulfill:

e Readable Definitions

The GE language must be easy to understand because the method definer must use it



to write the definitions of a graphical method environment without assistance of any
tool support. Moreover, the language should use high-level language constructs, for
example “English-like” keywords and statements, to ensure that the resulting defini-
tions are easily readable. The readability of the GE definitions is important because
these definitions may be published and reviewed by many interested parties, including

people who may not be familiar with GE language and Metaview.

Complete Definition Support

The language should provide complete graphical definition capability such that it can

define every graphical element supported by the GE meta-model.

Graphical Inheritance Hierarchies

Because many diagraming methods have some graphical object types that are similar
to one another, it is more efficient to “factor out” the common components and prop-
erties of these graphical types and build a supertype object to hold the common defi-
nitions. Other object types can therefore defined as subtypes of this supertype object

and inherit its definitions. GE language should support such inheritance hierarchies.

Consistent with EDL

The design of GE language should be consistent with the EDL language. For exam-
ple, the GE language should use the same, or at least similar, syntactic rules and con-
ventions as EDL. Because the method definer has to use both languages to define a
complete (i.e., both conceptual and graphical) method model, it is easier to learn and
use the new GE language if it is consistent with EDL. Therefore, GE language should

be designed as an extension to the EDL language.

Independent Graphical Definitions

Although both GE and EDL languages should be similar in their syntax and structures,
it is important to enforce the independence of their definitions. In other words, the
graphical definitions described in GE language should be “self-contained”. This ap-
proach has an advantage of making the definitions more flexible because the method

definer would be allowed to modify the graphical definitions of a method without
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affecting the conceptual counterparts. This can help the definer concentrate on the
graphical modeling of a method without worrying about what is defined in the con-
ceptual part. Another advantage is that the independence of graphical object defini-
tion allows separate inheritance hierarchies for graphical elements and thus enhances

modularity of the GE definitions.

However, on the other hand, a graphical definition can never be completely scparated
from its conceptual counterpart because every graphical object type must represent
a corresponding conceptual types in a method environment. Therefore, the GE lan-
guage should allow mappings between conceptual and graphical objects, while pre-

serving the independence of their definitions.

3.1.2 Syntax

In order to fulfill the objectives described in the previous section, the syntax and constructs
of GE language were carefully designed. First of all, the syntax of the language is simple.
For example, the definition of a graphical object type is declared as a single “type™ state-
ment. A statement is composed of a number of clauses that define the components of that
object type. A clause can be further broken down into several subclauses that define var-
jous information and properties of a graphical component. In short, the syntax of the GE
language is well-structured because the definition of a graphical type is built up by picces
of information in different levels of details.

Moreover, each GE statement is constructed by a sequence of “keyword-information”
pairs. That is, each piece of information defined is preceded by a pre-defined keyword to
identify its meaning. For example, to define the radius of acircle primitive, astring “RADIUS "
(r is the radius value) is used. The keywords used in GE (and EDL too) are ali meaning-
ful English words or phrases. Hence, due to the simple, structured syntax as well as the
meaningful keywords, the definitions described in GE language are readable and casily un-
derstandable.

To maintain the consistency with EDL, GE language uses the same syntactic rules and

conventions as EDL’s. For examples, both languages are case-sensitive and they both use
P guag y



a semicolon *” to terminate a type statement. In addition, they also share some commonly

used keywords.

The GE language supports mapping between a graphical object type and a conceptual
counterpart by means of type naming, that is, the definitions of both types are linked by
using the same, unique type name.

The GE language completely supports all the graphical types and elements defined in

the GE model. The language consists of:

e Four kinds of graphical type statements — three of them define the graphical ob-
ject types: DIAGRAM.TYPE, ICON_TYPE, and EDGE_TYPE. The fourth one is the

PICTURE.TYPE statement which defines a geometrical pattern using the selection

of picture primitives.
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o Sixkinds of picture primitive clauses — these clauses are POINT, LINE, ARC, CIRCLE,

BOX, and TEXT. They are used only in the PICTURE.TYPE statements to construct

picture patterns.

e Five kinds of graphical component clauses — these clauses define the graphical com-

ponents attached to a graphical object type. These components are PICTURES, LABELS,

HANDLES, NODES, and LINKS.

In addition, since the EDL contains language constructs to support subtyping, the GE
language uses the same constructs to build the inheritance hierarchies of graphical types.
For examples, the keyword “GENERIC” is used to declare an object type as a supertype,
and “IS_A" to specify a parent by which the type is inherited.

In conclusion, the syntax and other constructs of the GE language are designed to fulfill
the expecled objectives. The formal syntax of GE language is sumnmarized in Appendix A.
For more detailed information about the syntax of EDL and GE languages, the interested

reader should refer to [GLM94]. Some exampies of GE definitions will be described in the

next section.



3.2 Examples of GE Definitions

The examples in this section are cited from the definitions of the Data Flow Diagraming
(DFD) method. The complete EDL and GE definitions of this method are presented in Ap-
pendix B. A more detailed description on how the complete DFD method (including the
constraints) is defined using EDL/GE and ECL can be found in [Fin94a].

To demonstrate all kinds of statements and clauses in GE language, three different kinds

of object types in the DFD method are selected:

Diagram Type — “any_level”

Any diagram used in the DFD method is represented by a diagram type any.level. This
diagram type has a corresponding aggregate type defined in EDL with the same type name.

A definition of this diagram type in the GE language might be:

DIAGRAM_TYPE any_level
PROPERTIES (x_size = 595, y_size = 770);

The first line specifies the kind of this GE type and the type name. The second line
is a clause that defines some graphical properties of this diagram type. In this example,
the two properties defined are the horizontal and vertical dimensions of the diagram. This
DIZRAM.TYPE definition does not contain other clauses because the diagrams used in

DF. are represented by plain, rectangular windows on the screen without any pictures or

labels.

Icon Type — “process”

The process icon type graphically represents the process entity type defined in the con-

ceptual definitions of the method. The GE definitions of this icon type are:

13; /* the default font height */
80; /* process icon width */

CONSTANT FontH
CONSTANT ProcW
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CONSTANT ProcH 8*FontH+2; /* process icon height */
CONSTANT ProcR = 18; /* the radius of the corner rounding
for the process picture */

PICTURE_TYPE process_pic
BOX FROM (0, 0) TO (ProcW, ProcH) RADIUS ProcR

LINE FROM (0, 2*FontH+1) TO (ProcW, 2*FontH+1);

ICON_TYPE process
LABELS (id_number AT (ProcW/2, FontH+1l)
PROPERTIES (x_size = 55, y_size = 2*FontH),
name AT (ProcW/2, 4*FontH+2)
PROPERTIES (x_size = ProcW-1, y_size = 4*FontH),

form AT (ProcW/2, 7*FontH+2)
PROPERTIES (x_size = ProcW-1, y_size = 2*FontH))

PICTURES (process_pic)
PROPERTIES (x_size = ProcW+l, y_size = ProcH+l)

HANDLES (flow.*
AT ((ProcR .. ProcW-ProcR, ProcR .. ProcH-ProcR)));

The definitions consist of an ICON_TYPE statement, a PICTURE_TYPE statement, and
a few CONSTANT statements which define the symbolic constants used in the other two
statements. Figure 4 shows the graphical structure of this defined icon type.

The PICTURE_TYPE statement defines the picture pattern as shown in the figure. It
consists of two picture primitives — a box defined with the coordinates of its two diagonal
corners and the radius of the rounded-corners, and a line defined by the coordinates of its
two ends.

The ICON_TYPE statement defines the icon’s graphical properties (i.e., its dimensions)
and its associated components — labels, pictures, and handles. The LABELS clause defines
three labels to be displayed at the specified coordinates to show the values of the attributes
id_number, name, and £orm, which are defined in the corresponding entity type. Each
of these labels has its own properties defined in a PROPERTIES subclause.

The PICTURES clause specifies that the picture pattern process_pic, defined in the
PICTURE_TYPE statement, is used in this icon type. The location and crientation of a pic-

ture pattern can also be specified, optionally, in this clause. But in this example, they are
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Figure 4: The Graphical Representation of the Icon Type “process”

not specified because the picture pattern is placed at the default location (i.c., the origin of

the icon type) and in default orientation (i.e., the picture paticrn is not rotated) within the

icon.

Finally, the HANDLES clause defines a rectangular region within this icon where any

role (“*” in GE language means all) of the edge type £1ow can touch.

Edge type — “£1low”

The edge type £1low graphically represents its corresponding relationship type. Figure 5
shows this edge pattern. The definition of this edge type consists of a PICTURE.TYPE

s.atement and an EDGE_TYPE statement:

PICTURE_TYPE arrowhead
LINE FROM (0, 0) TO (-15, -5)
LINE FROM (0, 0) TO (-15, 5);
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EDGE_TYPE flow
NODES (source AT (0, 0),
data AT (100, 20),
destination AT (200, 0))
LINKS (FROM source TO destination
LABELS (frequency AT (100, -20))
PICTURES (arrowhead AT destination));

The picture pattern defined in the PICTURE_TYPE statement is a simple “arrowhead”
pattern that is used by the link of the edge. The edge type has three nodes that are defined
in the NODES clause. The nodes represent the roles defined in the £1ow relationship type,
and each of this node has a specific location?.

The LINKS clause defines a visible line pattern that connects the two nodes® source

and destination. The arrowhead picture and a label are also attached to the link, as

defined in its subclauses.

(100,-20)
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data

Figure 5: The Graphical Representation of the Edge Type “flow”

It is important to note that the locations defined in an edge type are not absolute locations. When the
modeled method is finally used to model a system specification at the User Level in Metaview, the edge paitern
can be scaled. The locations specified merely “provides some guidelines as to how a ‘good looking’ edge
instance can be formed” [Fin93c].

3tis important to note that the locations used in a link can be specified using the node names rather than the
coordinates. This feature can ensure that the link always connects with the nodes, even when they are moved.



3.3 Conclusions

In this research, a graphical definition language — the GE Language, was designed to fulfill
the proposed objectives. The language has been used to define successfully various SDMs
in Metaview; for example, the Data Flow Diagraming method, Ward and Mellor’s Method-
ology for real-time systems development [GFS*94], and Zhuang's Object-Oriented Mod-
eling [Zhu94]. Some observations of the benefits and limitations of the GE language arc
discussed in the next section. Section 3.3.2 presents our recommendations which are based

on the observed results from the use of the graphical definition language.

3.3.1 Observations

From our experience on the use of GE language, the observed benefits and limitations to

graphical method modeling in Metaview are summarized as follows:

Benefits

o A Simple Approach to Graphical Modeling
The GE language provides a simple approach to the definition of graphical method
environments. The language was designed as an extension to EDL and its syntactic
structures and conventions are simple, consistent and well-structured. It is casy for

the method definer to learn and use the new language.

o Support of All Graphical Definitions
The GE language supports completely the GE meta-model. The language containg
various kinds of statements and clauses that can be used to define all kinds of graphical
object types and their associated components and propertics. Thus the GE language
is a sufficient language for the method definer to understand and usc in order to model

the graphical representations of a method.

o Publication of the Graphical Definitions

Since the GE language is a textual, declarative language, its definitions can be pub-
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lished for verification and review purposes. Furthermore, the language’s simple syn-
tax and meaningful keywords ensure the readability and understandability of the GE
definitions. Therefore, interested parties, even those who are not familiar with the GE

language, can study and understand the graphical definitions of a method.

Limitations

e Tedious Definition of Graphical Elements
A major problem is that the GE language is not able to provide the user with visual-
ization of the defined graphical elements and properties. For example, our experience
indicates that the definition of picture patterns using GE language is awkward. The
method definer is required to specify the coordinates and other information (e.g., ra-
dius) of every picture primitive used in a picture pattern. There is no way to examine
the “look” of the defined picture until the definition is compiled and later used in the
graphical editor MGED. In short, based on our experience, the use of a textual lan-

guage is a tedious way of defining the graphical representations a method.

o Lack of Interactive Support
The only existing tool support for GE language is the EDL/GE compiler, and there is

no support available during the process of graphical modeling. Our observations in-
dicate that novice users find difficulty in learning and using the GE language because

there is no interactive assistance, such as a help facility and real-time error checking,

for the tedious modeling task.

3.3.2 Recommendations

Based on the observed limitations of the GE language, we realized the need for interactive
support in defining the graphical aspects of a method environment. An interactive, graphical
tool that makes the graphical modeling task easier and more intuitive is required and is pro-
posed in the next chapter. By “intuitive”, we mean that the proposed graphical tool should

reduce the tedium of the graphical modeling process. Moreover, the tool should provide the
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method definer with interactive modeling support such as immediate visual feedback in a
graphical form, real-time validations, on-line assistance, and dialogs for user inputs.

On the other hand, GE language still has some unique benefits that are important to
the Metaview system. For example, it makes publication of the graphical definitions of a
method possible. We recommend that the GE language should be used in Metaview as an in-
termediate representation for a method’s graphical specifications. This representation form
should be accessible by the existing (and future) tools and used for transferring graphical

method information between these tools.
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Chapter 4
An Interactive, Graphical Modeling Tool

As indicated from our observations in using the GE language, we need an interactive, graph-
ical tool to provide a more efficient and effective way for graphical modeling in Metaview.
In this chapter, we discuss various design issues of such a modeling tool. Section 4.1 presents
the objectives of the tool. Section 4.2 discusses two possible approaches that were consid-
ered in the implementation of the tool and justifies our final decision — building the tool

from scratch. Section 4.3 presents the design proposal for the tool. Finally, Section 4.4

presents the conclusion of this chapter.

4.1 Objectives

The main motivation for the proposal of the graphical modeling tool is to provide the method
definer with an intuitive and effective mechanism to define the graphical representations of

a software development method. The objectives of this tool are summarized as follows:

o An efficient and effective approach to graphical method modeling
The proposed tool eases the task of graphical modeling because it is more intuitive
to define graphical objects graphically as opposed to using a textual description. For
example, elements such as picture patterns, and properties such as picture placement
and colors, are easiest to define and display graphically on the computer screen be-

cause the user is provided with instant visual feedback on what s/he defines. The vi-
36
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sual feedback is extremely helpful in minimizing errors and reducing the time wasted

in “trials and errors” analysis during the method modeling process.

Moreover, the graphical tool also allows real-time interactions with the user. The use
of interactive dialogs, menus, and toolboxes ensures the user inputs to be handled
promptly and the visual feedback to be provided immediately. The interactive ap-
proach to method modeling provides the method definer with a better user support
such as on-line, context-sensitive help facility and real-time validation for defined

method environment.

In summary, the “what you see is what you get” working environment offered by the
tool not only improves the overall productivity of the method definer but also ensures

the quality of the products (i.e., the method's graphical definitions).

o A graphical browsing facility for methods’ representational definitions
The tool works not only as an editor but also as a browser for the graphical elements of
a method. It supports both creation of new graphical object types as well as access to
the existing ones. The method definer can use the graphical modeling tool to review

the graphical object types of a previously defined method environment.

o Generation of compatible and reusable methods’ graphical specifications
The tool produces the graphical definitions of a method that are usable by the Metaview
system and understandable by the method engineers. Therefore, the tool-generated
specifications of the graphical elements must be compatible with the current conligu-
ration of Metaview and usable by the other software within the system. On the other
hand, the specifications must also be presented in human readable format so that they

can be published for verification and review.

4.2 Potential Implementation Approaches

Based on a clear identification of the major objectives of the proposed tool, we consid-

ered two general approaches to the system development — extending an existing tool called
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OGIPS or building a new tool from scratch. Section 4.2.1 discusses the limitations of the

first approach, and Section 4.2.2 explains why we selected the second approach.

4.2.1 Extending OGIPS

One possible approach was to extend an existing graphical tool developed for Metaview
called OGIPS. OGIPS (Object-oriented Generator for Interactive Picture Specifications)
[Mac91] was designed and built by MacKenzie at the University of Saskatchewan. It is a
graphical tool for defining the picture patterns used by the graphical notations in 2 method.
Since the tool is basically a simple picture drawing program, it must be extended to sup-
port the definition of other graphical elements and properties in order to fulfill our objec-
tives. However, we recognized a number of limitations on the usability and extendibility

of OGIPS. The major problems that make this extension approach unfavorable are summa-

rized as follows:

1. OGIPS'’ user interface is not easily extendible. Since the tool was originally designed
for defining only picture patterns, all the command buttons on its toolbar are used
for picture editing functions, and more critically, the interface does not make use of
menus. Therefore we found it difficult to modify the tool’s interface, without re-writing

most of its GUI codes, to adapt to a new set of graphical modeling functions.

2. OGIPS was improperly designed and has conflicts with its own operational platform
— X Window System [Ped92]. Moreover, OGIPS was implemented using only the
X library routines instead of any GUI toolkits such as Motif [You90]. As a result,

its interface cannot be easily enhanced. Thus fixing all these problems requires an

extensive re-design of the program.

3. OGIPS’ output is no longer compatible with the current version of Metaview. The
original goal of OG. ~ was to generate binary codes that, after being compiled and
executed, displayed the defined pictures on the computer screen. Unfortunately, such

binary programs are no longer useful because the way that Metaview stores and dis-

plays graphical symbols was changed.



4.2.2 Building a “Brand-new” Tool

Another approach to the development of the proposed graphical tool is to start from scratch.
Although this approach requires a iot of time and effort, it is a more efficient and effective
solution than extending OGIPS. In particular, the objectives of a tool that models all graphi-
cal elements of a method are quite different from those of a picture drawing tool like OGIPS.
It is evident from the unsatisfaction characteristics of OGIPS cited in the previous section,
extending OGIPS would require a complete re-design of the program. Therefore, we de-
cided to prototype a “brand-new” tool that satisfy all of these design requirements for an

effective graphical extension definition tool.

4.3 Design of the Tool

In this section, we present the design issues of the proposed graphical modeling tool. Scc-
tion 4.3.1 discusses the design requirements of the tool according to the objectives described
in Section 4.1. The architecture of the tool and the detailed design of each module arc dis-
cussed in Section 4.3.2. Furthermore, the section also explains how the proposed tool works

within the Metaview system environment.

4.3.1 Design Requirements

To ensure that the proposed tool can achieve the general objectives described in Scction 4.1,
we constructed a list of requirements to be followed throughout the design and the imple-
mentation phases. These requ'irements are grouped according to the major objectives of the

tool and are described in the rest of this section.

User-friendliness

A good design of the tool’s user interface is important because the main goal of the proposed
tool is to provide a more intuitive way to define the graphical representations of a method.

A well-designed GUI can certainly ease such a tedious modeling task. To produce a tool
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that is user-friendly yet powerful enough for graphical modeling, we need to make use of
modern GUI technologies such as WIMP!.

The GUI is expected to be implemented on a window environment (e.g., X Window Sys-
tem) such that multiple windows can be used to present different types of model information
simultaneously. For example, while the main application window is used to edit a graph-
ical object type, a separate window can be used as a toolbox that contains the buttons and
controls for various editing functions. The concept of such “toolboxes” is important in our
design because they can be used for defining different kinds of GE object types. Each tool-
box is a “floating” dialog window on the computer screen, and the user can use the “tools”
provided to define every element of a particular graphical type. An advantage of using the
toolbox is that it provides the user with a complete view of what parts and properties of an
object type can be defined. This feature is particularly helpful for novice users who are not
sure what GE type components are definable. Moreover, other GUI features like pull-down
menus, status bars, pop-up dialogs, and “point-and-click” mouse actions all improve the
user-friendliness of the tool.

Another design issue that affects the usability of the tool is how much control the tool im-
poses on the method definer. In particular, it is important to decide whether the tool should
allow the user to have the freedom to work with either a restricted or arbitrary number of
graphical objects. In our prototype development it was decided that the tool should allow
the user to work with a single graphical object type at a time (though each object type may
have many associated components and properties). Therefore, if the user wants to edit an
object type other than the current one, s/he has to save the current object type, quit the cur-
rent “definer toolbox”, and select the toolbox for the other object type. This approach re-
moves the confusion caused by dealing with more than one GE type at a time and guides
the user to complete the definition process. The latter benefit is desirable because modeling
a complete graphical object type often requires definition of many sub-components, and it
is not unusual for even an experienced method definer to miss some of them. On the other

hand, a potential limitation of this approach is that it reduces the tool’s flexibility which may

YThis acronym stands for Windows, Icons, Menus, and Pointing devices.
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be preferable to some expert users. However, so far our experience on method modeling in
Metaview indicates that even a method modeling expert normally works with one object
type at a time. Hence this “single-object working environment” approach was viewed as

more user-friendly than the alternative approach of dealing with multiple objects.

Real-time Interactions

In order to provide the user with the benefits of real-time interactions, the tool should offer:

o Immediate Visual feedback
Whenever the user defines or modifies a graphical element, the tool should update that
object definition and provide immediate visual feedback. Such feedback includes re-
displaying the changed graphical object and updating the corresponding information
shown on the toolbox and the main status bar. This allows the user to see the cffects

of what s/he did and spot any mistakes immediately.

o Real-time error checking
Sometimes the user may not notice a mistake s/he makes by simply looking at the
screen. In those cases, it is important for the tool to detect these errors and warn the
method definer. Therefore, whenever the user makes any changes, the tool should
validate those changes to make sure they are valid and consistent. In casc of problems,
warning messages can be displayed to the user by pop-up dialogs. This feature not

only ensures the correctness of the definitions but also makes the modeling process

more efficient.

o Interactive dialogs
Different kinds of dialogs are used to help the user interact with the tool. Inputs from
the user and output from the tool itself can be handled through these dialogs to provide
real-time feedback to the user. For example, in many cases, the user can input textual
data, such as the name of a graphical object type, through a data entry dialog. The
dialog provides a selection of valid entries for that data item permitting the user to

choose from a list instead of typing in the data manually. This approach can reduce
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significantly the chances of making errors such as mistypes and invalid data. On the
other hand, the tool can also communicate with the user using the dialogs in real-time.
For example, when the user performs an invalid action, the tool warns the user and

suggests an alternative action through a pop-up message dialog.

o On-line help
The tool keeps track of the current state of the definition process and provides on-
line, context-sensitive help dialogs upon the user’s request. The help messages ex-
plain specific features of the tool and give useful hints to guide the user through the
modeling process. We expect that, in future, the help facility can be improved to a tu-
torial style that offers “step-by-step” assistance for the user to complete the definition
of a graphical object type. An example of such a facility in a commercia! product is

the “wizard” feature in the latest version of Microsoft Excel7?2,

Information Browsing and Presentation

Our proposed tool is used not only as a definer assistant for methods’ representations but also
as a browser for the defined graphical types. No such graphical browsing tool exists in the
present version of Metaview. This feature supports the improvement and customization of
pre-defined methods in Metaview by assisting the user in reviewing the graphical definitions
of method environments.

To present the definitions of the graphical types in browsing mode, we make use of a
canvas and a toolbox. The canvas is the main drawing area that shows the appearance of
the graphical elements and their placement within the object type. The toolbox, on the othe.
hand, displays other information about the object type. For example, it can show the object
type’s name, its supertype’s name, and its properties’ values. Furthermore, the toolbox can
inform the user of which and how many the object type components are defined and of which

are yet undefined.

To allow lcading of the pre-defined graphical representations, the tool must have access

*Microsoft Excel™™ is the product of Microsoft Corporation.
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to their definitions. Since most of the existirg graphical methods in Metaview are defined in
GE language, our proposed tool must be able to read the GE definitions as input and display

the graphical types on the screen.

Compatibility with Metaview

To ensure compatibility with the current Metaview system, the design of the tool is based on
the GE meta-model and the GE language. Everything that can be defined using the proposed
tool is supported by the GE model and can be alternatively defined in the GE language. This
requirement guarantees that our tool can always support existing GE dcfinitions, and always
generate GE definitions for its defined graphical representations. The GE language is the
universal graphic definition language that is expected to be supported by all, present and
future, Metaview tools.

While the GE language is used as an external representation for the graphical notations
of a method, we also need an internal counterpart that can be used by the tool to store tem-
porarily the graphic definitions. This common, internal data structure, called the Metaview
Symbol Table [Fin95), consists of classes of data objects and associated functions to store
and manipulate the definitions of the graphical object types.

In addition, our proposed tool also has the same “look and feel” as the other existing
Metaview tool — MGED. Both have similar Motif-style GUIs [OSF92]. Futurc graphical
tools of Metaview should also have their user interfaces built according to the same style.

Finally, we must also be concerned about the extendibility of the tool. In future, the tool

will be:

e improved to provide more advanced graphical modeling/editing features to support

more complex graphical representations used in emerging methods.

e modified to adapt to possible changes or enhancemerits to the current GE model that
improve its modeling power. For example, the capability of defining new graphical

types and properties may be required.
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Hence we need to consider carefully the tool’s architectural and implementational de-
sign to make sure itis easily modifyable. The design process begins by using classical func-
tional decomposition to break down the tool’s structure into many small and maintainable
modules. Each of these modules are responsible for a particular task. For instance, the GE
component definer module of the tool is divided further into a number of sub-modules that
define components, such as label, picture, handle, etc. This modular design not only makes

the program easier to maintain but also provides more flexibility for adding new features in

future.

4.3.2 Detailed Design

We briefly introduce how the proposed graphical modeling tool works within the Metaview

system environment and then discuss the program architecture and some detailed design

issues of each module.

Working within Metaview Environment

The proposed tool is to be used by the method define: for the method modeling process at
the Environment Level as described in Section 2.3.1. Figure 6 depicts how this tool works
with the method definer and the Metaview system.

The current design of our tool does not include details of the Picture-Type Definer mod-
ule. It is because the module is basically a simple picture drawing program, with many of
capabilities available in OGIPS, as previously described in Section 4.2.1. In this thesis, our
goal is to focus on a prototype graphical tool that defines the GE object types with their
various components and properties. Because the output of OGIPS is not usable for current
Metaview system and OGIPS has some inherent design problems with its a Picture-Type
Definer module must be added to a future version of our tool. At present, the picture types
(which represent the geometrical patterns used in the GE types) are hand-coded in the GE
language.

The method definer models new graphical types or edits existing ones using the tool

based on her/his knowledge of a method’s graphical model. The modeling task is done
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Figure 6: How the graphical modeling tool works within Metaview

45



graphically through interactions between the user and the tool. In order to “load” a pre-
defined method environment, the tool invokes the EDL/GE Parser®, which reads the defini-
tions of the selected environment and returns the information through the Metaview Symbol
Table. With this approach, the modeling tool will also work with other Metaview tools in
the future. One of these tools is the Object Browser; the design of which will be discussed
in Section 5.3.

When the graphic definitions are completed and validated, the tool generates the output
specifications in GE language. The GE definitions are then reviewed by the method definer
and other interested readers, compiled by the EDL/GE Compiler and stored in the database

engine, or reused by the tool itself for future modification.

Program Architecture and Design

The architecture of the tool consists of five main modules as shown by the decomposition
diagram [MM85] in Figure 7. The functionality and the detailed design of the main modules
arc introduced in the rest of this section. In addition, for each module, a decomposition

diagram is presented to illustrate the module’s internal structure.

Graphical
ModelingTool

Main Dialogs Definers Graphics I/0

Figure 7: Program decomposition (highest-level)

e MAIN (see Figure 8)

This module consists of the main program and other library routines used throughout

3The EDL/GE Parser is currently being developed by Dr. P. Findeisen as part of the EDL/GE Compiler
implementation project.
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the program. There are generally two types of libraries defined in the tool — core li-
brary and GUI library. The core library consists of the commonly used functions and
procedures that can be shared by the different modules of the tool. The GUI library
contains the common subroutines that are useful for creating and configuring the in-
terface components. These subroutines mainly make use of the X and Motif library

functions to manipulate the GUI widgets and events [You90].

Main

[ |

GUI Global Data Library
Setup Structures Routines
Initialization
. Intertace . .
Intertace Components (__m’c ('.l "
Layout Sectup Library L.ibrarvy

Figure 8: Decomposition of the MAIN module

Moreover, the MAIN module is also responsible for setting up the tool's main inter-
face and initializing the global data structures. The main interface is basically a win-
dow that consists of a menu bar (for executing commands), a status bar (for showing
information of the current graphical type), and a canvas arca (for displaying and ma-
nipulating the graphical elements). The global data structures consist of a number of
variables used by the tool and two types of data structures. The first one stores the
information about the current environment such as its filename and a reference to the
environment object’s definition in the Symbol Table. The other data structure holds
the information of the current graphical type such as its name, kind (Diagram, Icon,

or Edge), filename, and a reference to the GE object type’s definition in the Symbol

Table.



e DIALOGS (see Figure 9)

This module consists of sub-modules that handle different types of dialogs that con-

stitute the major communication facilities between the user and the tool. The types of
dialogs supported are:

File I/0 — contains the file selection dialogs created using the Motif’s convenience
functions [You90]. The dialog shows the directory of the file system and helps the
user to select the desired file.

Selection — consists of various kinds of data selection dialogs through which the user
can input a data item by selecting a value from a list of choices.

Warning — is a generic message dialog that is used to display different kinds of warn-
ing messages generated by the tool. The dialog uses different icons and heading titles

to represent various kinds of messages such as warnings, errors, advice, etc.

Help — is a message dialog that can display pre-defined help messages based on the
current context of the tool.

Miscellaneous — contains all the other special-purpose dialogs for specific interac-

tions between the user and the tool.

Dialogs

File /O Selection Warning Help Misc

Figure 9: Decomposition of the DIALOGS module

e DEFINERS (sce Figure 10)

This module manages the “toolboxes” for defining the graphical elements and prop-



erties ,and therefore forms the core part of the tool. The definer toolboxes are divided
into two general groups. The first group is the GE Types Definer which consists of
toolboxes to define the GE object types (Diagram, Icon, and Edge Types) and their
representational properties. The other group is the GE Components Definer which

defines various types of GE components such as pictures, labels, and handles, etc.

GE Components
Definer

GE Types
Definer

Node
Definer

Handle Link
Definer Definer

e e uE S,

Icon Type Diagram Type Edge Type Propentics Labe}
Definer Definer Definer Definer Definer

Picture
Definer

Figure 10: Decomposition of the DEFINERS module

Each of these toolboxes is implemented as a “fioating” dialog that can be moved by
the user around the screen at his/her convenience, The dialog contains a group of con-
trols (“tools”), which usually include push buttons, toggle buttons, text-cntry boxes,

sliders, etc., for defining the properties of a particular GE element.

In addition to its defining capability, the toolbox is also used to browse through a list
of graphical types®. This is necessary because sometimes the user needs to sclect one

of the existing GE types for modification, and there must be some way for the user

4In this context, a graphical type is referred to any type of GE elements — it may be a GE object type of
an environment or a GE component type of an object type.
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to search through the selection and pick the choice. Hence the toolbox is designed to
support such a browsing/selecting facility. Each definer module is able to retrieve a
group of GE elements and display the information on each element on the toolbox.
The user can choose whether to select the current type or examine the next type by
pressing the toolbox’s buttons. In the browsing mode, all the controls on the toolbox
are disabled so that the user can never acci:" utally change the definitions of the types.
Once the user selects a type, the toolbox changes back to the defining mode to permit

the definer to modify the chosen GE type.

GRAPHICS (see Figure 11)

This module contains sub-modules that manage the main canvas, display the graphi-
cal objects on screen, and perform graphic editing functions. The Canvas Manager is
responsible for setting up the canvas and handling its events. Moreover, it also sup-
ports scrolling of the canvas. This feature is needed because it is unreasonable to limit
the sizes of the objects being defined by the physical size of the window. Therefore
the canvas has two scrollbars which control the horizontal and vertical scrollings re-
spectively. To prevent loss of orientation, the x and y axes (represented as two straight

lines) are always updated anc refreshed whenever the canvas is scrolled.

Moreover, the GRAPHICS module also has the Display Module that takes care of all

the display functions for the GE elements. The module can display any type of GE

element by traversing its data structure and showing every defined graphical compo-

nents within the type. The picture patterns are handled by the Pictures Display sub-

module. It invokes some general presentation routines for doing picture rotation and

coordinates mapping, and Motif’s convenience functions for displaying the geomet-

rical primitives on screen.

Finally, the Graphic Editing Module supports various graphic manipulation techniques
such as rubber-banding and drag-and-drop methods. More advanced graphic tech-

niques can be added in future to support more complex editing tasks.
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Figure 11: Decomposition of the GRAPHICS module

e I/0 (see Figure 12)
This module is responsible for handling all inputs and outputs of the tool. In partic-
ular, there are two types of /O — Environment 1/0 and Object File 1/0. The Envi-
ronment I/O uses the definitions in GE language to represent a group of completely-
defined graphical object types. In other words, these GE definitions form the specifi-
cations of a method's graphical environment. The Environment I/O is supported by
two sub-modules: GE Parser and GE Generator. The GE Parser is developed as part
of the EDL/GE Compiler and is not covered in the scope of our discussion here® On
the other hand, the GE Generator is implemented as a system of sub-modules such

that each generates GE definitions of a particular kind of GE types or components.

The Object File /O module maintains a special file that stores temporarily the spec-
ifications of object types. These object types may be partially defined and need fu-
ture modification. The reason why a special file format is needed is that the EDL/GE

Parser does not accept incomplete or inconsistent GE definitions. Therefore it was

5For more information on the GE Parser and the EDL/GE Compiler, the reader may contact Dr. Piotr Find-
eisen (Department of Computing Science, University of Alberta) who is responsible for the project.
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Figure 12: Decomposition of the I/O module

necessary to design a new file format, and implement both a generator to save the
specifications of these temporary types and a parser to read them. These two mod-

ules are again composed of many smaller sub-modules that support specifications of

each kind of GE elements.

4.4 Conclusions

In summary, to make graphical method modeling in Metaview more efficient and effective,
a graphical tool for defining the method’s GE object types is definitely needed. The major

objectives of such graphical modeling tool are identified and summarized as follows:

e The graphical modeling tool provides the method definer with an effective and intu-

itive support for defining interactively the graphical representations of any method;

e The tool supports both definition as well as browsing of graphical elements in a method,;



o The tool generates graphical definitions that are usable by the Metaview system and

understandable by the users.

Based on these objectives, we produced the design requirements for such a graphical
modeling tool. Furthermore, the detailed design of the proposed tool was also produced
and used in the implementation of a prototype called “GE Definer”. This prototype version
of GE Definer successfully fulfills most of the design requirements described in this chap-
ter. In Chapter 5, we will discuss this prototype graphical modeling tool regarding to its

implementation and functional issues.
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Chapter S
The Prototype Interface — GE Definer

In this chapter, we describe the prototype version of our proposed graphical modeling tool.
At the present stage, although more enhancements and extensions are still expected, the pro-
totype successfully fulfills most of the objectives and requirements discussed in the previous
chapter. The current version of the tool is called “GE Definer” because its main purpose is
to define the GE object types of any SDM’s graphical representations. To ensure our design
matches the product requirements, we produced quickly a prototype interface using Visual
BASICTM! before spending significant effort on the actual implementation. This early pro-
totype demonstrated our design ideas for the proposed tool, and the functionality and layout
of its user interface. We used our observations on this prototype to refine the original design
and finally implement the tool.

Section 5.1 presents an overview of GE Definer that covers several implementational is-
sues and a general discussion on how the tool works. Section 5.2 concludes the discussion
of GE Definer with a summary of the observations obtained during the implementation and
the use of the prototype. It also discusses the contributions and limitations of GE Definer
with respect to graphical method modeling in Metaview. Finally, some future extensions
to GE Definer and research directions for better graphical modeling support are suggested.

In Section 5.3, we presents the proposal of “Object Browser”. We discuss the motivation

!Visual BASIC [Orv92] is an application development environment produced by Microsoft Corporation.
It runs under Microsoft WindowsT#
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of designing this browser, the tool’s design and implementation requirements, and its con-
tributions to the method modeling process in Metaview. Finally, Section 5.4 examines the
implementation feasibility of a graphical tool for defining graphical constraints. Initially, we
expected that the graphical constraints were like the graphical representations that could be
defined intuitively and effectively by a graphical tool. From our investigation, however, we
realize that most graphical constraints are too complex to be expressed clearly and precisely

using a graphical language.

5.1 Overview of the Prototype

GE Definer is a prototype version of our proposed graphical modeling tool, which runs on
Sun workstations under UNIX and X Window System. The tool’s functional core is imple-
mented using C++ programming language [Str87) and its GUI part uses OSF/Motif toolkit.
It also makes use of some library modules of Metaview such as the EDL/GE Parser and the
Syrabol Table.

The program structure of GE Definer is composed of anumber of modules. Each of these
modules is invoked to perform a specific function with respect to the graphical modeling
process. The system description of GE Definer is depicted by the structure chart? shown in
Figure 13. In the rest of this section, a general description on how GE Definer operates is
presented.

To start defining the graphical representations of an SDM, an environment needs to be
opened. An environment is a collection of all the concepmal and graphical definitions of
the object types used in an SDM. Opening an eavironment in GE Definer requires either
creating a new environment object or loading a pre-defined one from an Environment File.
The Environment File consists of the method specifications in EDL/GE language. Figure 14
shows the procedures required for opening an environment.

We recommend that, before using GE Definer, the method definer should first prepare an

2The structure charts presented in this section are produced using MGED, the graphical editor for
Metaview, which is customized to support the structure chart diagraming method.
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Figure 13: Structure chart for GE Definer

environment with the conceptual definitions and the specifications of the picture patterns.
The environment is loaded to GE Definer and parsed by the EDL/GE Parser module. The
method definer can tiiereir = use the existin corceptual types and picture patterns to model
the graphical representatiess. The user cari also choost: -0 tart with A “brand-new” environ-
ment. GE Definer generates a new environinent by creatir:g a new obyject of the environment
class and initializes it with a title and description given by the user.

Once an environment is opened, it becomes the current environment, and GE Definer
displuys its information on the status bar. At this stage, the user can open a new or existing
GE obiect type for definition or modification.

A GE object type can be opened in three ways. Figure 15 shows the structure chart for
this process. The user may choose to create and define a new graphical object type by spec-
ifying the kind of GE type s/he wants. GE Definer then creates a new object type® of the

specified kind and assign to it a set of standard properties initialized with their default val-

In this section, the terms “object type” and “GE type” are used interchangeably. They both mean a graph-
ical object type of a modeled method.
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Figure 14: Structure chart for “Open Eﬂviroﬂmcnl" process

ues.

If the user wants to modify a pre-defined object typ¢* \/n€ heeds to cither load an Object
File or select a GE type from the current environment, d%eﬂding on where the desired ob-
ject type exists. An Object File, as described in Chaptey A is aspecial file ysed internally by
GE Detimer to store the specifications of a GE object {)/p \, To gpen an Qbject file, the user
specifies its filename using a file selection dialog. The pﬂ Nef Module then reads the file and
stores the object type’s specifications into the GE type ﬂh\igct definition.

If the desired GE type already exists in the current “\yironment, GE Definer traverses
the environment’s ata structure and produces a list of Sa1id choices S0 that the user can
select the desired object type from the list.

Once a GE type object is opened, it becomes the o Ment object type and is ready to be
d~fined or modified.

Defining a GE type involves three major processes A ¢howp in Figure 16. First of all,

GE Definer displays a “definer” toolbox. The toolbox 1% \onstrycted acCording to the kind
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Figure 15: Structure chart for “Open Object Type” process

of the current object type. It consists of controls (“tools”) for defining the components and
properties of the GE type. Furthermore, it also displays the information of the current object
type. Once the toolbox is built and displayed on the screen, GE Definer invokes the graphics
display module to display the object type. This module traverses the entire structure of the
GE type and calls various sub-modules to draw the “appearance” of the defined graphical
components (such as pictures and labels) and displays the associated graphical properties

(such as object sizes).

Once the “definer” is set up, the user can define two aspects of the current GE type:

e Properties
The graphical properties of the GE type represent the rules and attributes that control
the appearance of the types’ instances, which are eventually used in the actual system
modeling. For example, a pair of common graphical properties for diagram and icon

types arc x.size and y_size, which specify the horizcntal and vertical dimensions
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Figure 16: Structure chart for “Define Object Type” process

of the object type. The graphical properties are usually defined using some graphic
techniques such as rubber-bardiz:g and drag-and-drop. For instance, the size prop-
erties mentioned above are defined by dragging a “rubber-band” box on the screen
to a desired size. However, there are certain types of properties that are not graphi-
cally definable. In those cases, GE Definer provides the user with other input methods

involving use of selection dialogs, text-input boxes, etc.

s Components
A set of graphical components is normally associated with each GE type. The types
of components allowed depends on the object type being defined — a diagram type
definer defines picture and label components; an icon type definer defines these two

components plus handles; an edge type definer defines node and link components,



and the link definer defines pictures and labels. Each of these component definers
also define the component’s own set of properties. When a component is defined, the
object type definer also invokes a validation procedure to detect any errors and/or any
missing parts. If problems are detected, error and/or warning messages are generated
and displayed in a pop-up dialog window. The user has the choice of returning to that

component definer and fixing the problems or ignoring the warnings.

Finally, when the user completes the definition of the object type with all of its compo-
nents, GE Definer validates it, and in case of problems, warning messages are displayed.

The specifications of the current object type can be saved in two ways as depicted in Fig-
ure 13. The first approach allows the user to save the specifications in an Object File. This
approach is appropriate for either a partially completed object type which requires further
definition, or for a completed object type that is designed as a library object type for future
reusc. In either case, the object type can be saved any time during the definition process.

The sccond appr ach allows the user to store the current GE type by appending it to the
current environment. This process, however, requires that the object type itself is completed
and validated, and does not produce any conflicts with the current environment. Once the
object type is added to the current environment, the user can save the environment in order
to store the definitions of that object type. The process that saves an environment involves
generation of GE definitions. The GE definitions, which are described in the EDL/GE lan-
guage, are generated by the GE Generator module. The module traverses the data structure
of the current environment object, generates the GE definitions based on the stored specifi-
cations, and saves them into a specified Environment File.

In order to demonstrate how an actual graphical method modeling task is performed
using GE Definer, a system “walk-through” of the tool is presented in Appendix C. The
“walk-through” uses a real scenario of defining the “process” icon type of the Data Flow
Diagraming method [MMB83, Fin94a] to illustrate various features and functionality of GE
Definer. Several screen dumps of the tool captured during the definition process are also

presented to give the reader a thorough understanding of how GE Definer looks and works.
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5.2 Conclusions

The present prototype version of GE Definer successfully accomplishes all the main objec-
tives and design requirements described in Chapter 4. In short, the tool provides the method
definer with an intuitive, graphical interface for defining interactively various graphical ob-
ject types used in an SDM. Based on our past experience in modeling modern SDMs, such
tool support greatly eases the method modeling task in Metaview. Complex graphical nota-
tions are typically used to represent model concepts and these graphical representations are
easy to define graphically in the GE Definer.

In the following section, we discuss some important observations gaincd from the proto-
type version of GE Definer. These observations include the problems we have encountered

during the implementation of GE Definer as well as an assessment of the usability and func-

tionality of the prototype. Section 5.2.2 summarizes the contributions and the limitations of

the current prototype in regard to graphical method modeling in Mctaview. The section also

suggests some future enhancements to GE Definer and proposes two research directions for

improving tool support in graphical modeling.

5.2.1 Observations

During the implementation of GE Definer, we have encountered certain problems. We dis-
cuss three of them in this section because they are the important and more intcresting oncs.
Two of these problems have already been solved in the current prototype version, but the
other one requires further investigation. In the second half of this section, we discuss the
results of GE Definer with respect to its usability and functionality. Several problems of the

current prototype are also identified and described.

Problems Encountered

o No unique identifier for each graphical element
Since every GE object type may have an arbitrary number of components of a certain

type (such as pictures and labels), GE Definer must allow the user to specify which

61



particular one of these components s/he wants to modified. Unfortunately, not every
component type has a unique key to identify different component instances. Label is
an example of such component types. Althoughalabel component of a GE object type
may be identified by the name of the attribute that it represents, this is not always a
unique identifier because the same attribute can be represented by more than one label
within a graphical object type.

In order to solve the problem, we added a browsing mode to the component “definers”.
With the browsing feature, the “definer” does not require the user to specify exactly
which component object s/he wants to modify. Instead, the toolbox displays the def-
inition of each existing component object one by one. When the user sees her/his de-
sired one, s/he clicks on a button to select that object. Therefore, even though there is
no way to identify uniquely a component object, GE Definer allows the user to browse

through all the existing objects and select a desired one.

Difficulty in reusing code of other Metaview tools

The implementation of GE Definer uses some common modules, such as the EDL/GE
Parser and the Symbol Table, and also reuses code of some existing Metaview tools.
However, we found that these modules and code have quite different coding and doc-
umentation styles. As a result, we needed to spend more time and effort to understand

these different pieces of code before we could successfully reuse them.

In order to avoid such problem occur again in future tools’ implementation, we de-
signed some simple coding and documentaticn standards and applied them to GE De-
finer and other Metaview tools that were being developed (e.g., the Symbol Table).

These standards will be constantly enhanced and extended to facilitate extensive code

reuse ior future Metaview tools.

Problem of building the GUI code in GE Definer
The GUI of GE Definer has certain interface components that are used frcquently in
the tool and are very similar in nature. For example, the toolboxes of various GE

types’ “definers” are very similar in their structures and functionality, and they are
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implemented using the same types of GUI components.

However, during the implementation of the prototype, we found that our original de-
sign of the GUI did not allow effective reuse of the defined interface components. In
the prototype the GUI of GE Definer was built using traditional functional decompo-
sition approach. If the various types of GUI components were implemented as object
classes using object-oriented techniques, it appears that customization and reuse of
these GUI objects would be much easier. Hence we expect that one of the future en-

hancements for GE Definer is to re-build its GUI using an object-oriented approach.

Usability and Functionality of the Prototype

Based on our observations on the usability and functionality of GE Definer, the prototype
tool successfully provides an intuitive way for defining a method’s graphical representa-
tions. The major benefit from GE Definer is its real-time, visual feedback. This feature
makes the too! easy to use and thus reduces significantly the time and effort spent by the
method definer in the modeling process. Its use of interactive dialogs and real-time valida-
tions also minimize errors made by the user.

On the contrary, we also identified several problems of the current prototype version.

These observed problems are summarized as follows:

o No definer for picture types
Presently, GE Definer does not have a facility for defining picture patterns. A tool for
this purpose, called OGIPS, was already developed for the Metaview system, and we
do not want our thesis research to overlap significantly with what had been done be-
fore. However, since the output of OGIPS is no longer usable by the current Metaview
system (as described in Section 4.2.1), the picture types of a method must be hand-
coded in GE language before GE Definer can use them to define the graphical repre-
sentations of that method. Therefoi: there is still a need for extending GE Definer to

include the capability of defining picture patterns.

o On-line help facility not available yet



In the current pretotype version, the on-line help facility is not yet fully implemented.
It is not a problem at this stage because the present users of GE Definer are mainly
Metaview experts who have extensive knowledge on graphical method modeling us-
ing the system. However, in future, GE Definer will be used by other novice users,

such as students and possibly industrial users, and at that time, the on-line help facility

will be extremely important.

No use of colors

The current version of GE Definer does not support colors. This limitation makes
the display of the graphical object type a little confusing because all the elements of
the object type are displayed in black and white. It would be easier for the user to

distinguish different graphical components if they were displayed in different colors.

Difficulty in fine-tuning some graphical properties

Although current prototype of GE Definer eases the definition of most graphical ele-
ments, it does not provide adequate support for defining some graphical properties in
high precision. For example, GE Definer lets the user define the size of a label com-
ponent by dragging a rubber-band box on the screen. This method sounds intuitive
and efficient, but it does not easily produce an exact result meeting specific dimen-

sions requirements. In other words, GE Definer lacks the support for “fine-tuning”

some graphical properties.

Lack of support for defining symbolic constants and expressions

The graphical properties’ values of an object type can depend on the values of other
graphical types’. For example, it is common to define the location of an object type
relative to the location of another. Thus, when the graphical definitions are hand-
coded in the GE language, the method definer always defines a set of symbolic con-
stants to hold the common values and uses them in the expressions to specify the val-
ues of certain properties. This approach is desirable because it makes the definitions
easier to modify and more readable. Although GE Definer is capable of loadirg and

using the pre-defined symbolic constants, the current prototype version does not sup-
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port creation of new constants.

5.2.2 Summary of Results and Recommendations

In this section, we summarize the contributions and limitations of the current prototype of
GE Definer with respect to graphical method modeling in Metaview. Recommendations are

proposed to solve some of the existing problems and limitations.

Contributions

The present version of GE Definer has two major contributions to the modeling of graphical

representations of an SDM in Metaview:

o A graphical tool support for method modeling
GE Definer supports a graphical approach to define the graphical elements of a method.
The success of GE Definer confirms that the graphical representations of a method is
easy to define graphically, and much easier than previously tried textual approaches.
This graphical tool can reduce the tedious method modeling task in Metaview and
assist the method definer to produce a more reliable, error-free method model in less

time and effort.

o Generating graphical definitions in reusable form
GE Definer generates definitions that can be stored and reused by other tools of Metaview.
Furthermore, these definitions are presented in a human readable format so that they

can be reviewed by the method definer and other interested partics.

Limitations

Although GE Definer successfully provides automated and graphical support for defining
almost all the graphical aspects of a method, its present version has limitations that make the
tool incomplete in respect to the entire graphical modeling process required by Metaview.

The two major limitations are:



o Incomplete support for graphical method modeling

The current version of GE Definer, however, does not support definition of picture

patterns nor graphical constraints.

e Inadequate browsing facility for method definitions

Presently, GE Definer supports browsing on only the definitions and the “look™ of
the pre-defined GE types. It does not support other “views™ of its defined graphical
environment. Two examples of these possible views are the classes hierarchy of a

specific graphical object type and the definitions of a graphical type in GE language.

To solve some of the existing problems and limitations, the following recommendations
are proposed. These recommendations are divided into two groups — suggestions of en-

hancements and extensions to the current prototype and other proposed research directions.

Suggested enhancements and extensions to GE Definer

The enhancements and extensions that can make the current GE Definer a more powerful

and user-friendly graphical modeling tool are:

e [/mplement “Picture-Type Definer”
The defirer of picture type should be implemented as a “definer” toolbox, similar to
the ones existing in GE Definer, with buttons and controls for defining and editing the
six types of geometrical primitives defined in the GE meta-model. The implementa-

tion of this definer may also reuse some of the graphic editing modules developed in

OGIPS.

o Re-build the GUI using Object-Oriented (O-0) Design

o Add on-line assistance facility
The current help facility should be extended so that it not only explains the features
of the tools but also suggests modeling “tips” and/or “guidelines” to the user. Such

assistance facility can guide the inexperienced user through the modeling process in a
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“step-by-step” approach. This feature is very much like the “wizard” program avail-

able in many commercial software systems.
e Use color codings

e Add “fine-tuning” controls
There are at least two approaches to support fine-tuning in high precision. The first
approach is to use a text input dialog to allow direct data input from the user. This
approach is straight-forward and supports any level of precisions, but it may not be
convenient to the user because it requires the usc of keyboard. The second approach
is to provide a “value adjuster” so that the user can click on the adjuster to increment

or decrement a property’s value in a specific interval.

o Support the creation of symbolic constants
Symbolic constants are useful not only for defining the property values of a sct of GE

types, but also for generating more readable and concise GE definitions.

Research Directions

To provide a better and more complete tool support for graphical method modeling, there
must be other tools to complement GE Definer. As described in Scction 5.2.2, facilitics are
needed for browsing the definitions of a method environment in various views and for defin-
ing the graphical constraints of a method. The proposals of these two tools are important
yet challenging in our Metaview system and require more investigations.

In tFe res. of this chapter, investigations of these two proposals are described. A pro-
posed ¢! < Alled “Object Browser” was designed for providing the environment browsing
facility to the user. This tool is expected to complement GE Definer to support the graphi-
cal modeling task in Metaview. Implementation feasibility of a graphical tool for defining
graphical constraints was also investigated. Some limitations of this approach arc discussed

at the end of this chapter.
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5.3 Object Browser — The Design Proposal

During our research on graphical method modeling in Metaview, we identified the need for
not only a graphical modeling tool but also an interactive method environment browser.
Such a browser is expected to be capable of displayiny the definitions of any modeled method
in various types of “views” — each representing a particular aspect about a method envi-
ronment. For example, one view may be a list of all conceptual and graphical object types
defined in an environment, and another may be the class hierarchy of a specific icon type.
This proposed graphical browser is very useful for method modeling in our Metaview sys-
tem, and it can certainly complement our graphical modeling tool, GE Definer.

In Section 5.3.1, we discuss the motivaticn of the Object Browser proposal and the ex-
pected contributions of the browser to method modeling in Metaview. Section 5.3.2 and
Secction 5.3.3 summarizes the non-functional and functional requirements of Object Browser.
Finally, Section 5.3.4 concludes the proposal of Object Browser and summarizes our con-
tributions. In addition, the current state of the prototype version is describrd, and a recom-

mendation on its future implementation is provided.

5.3.1 Motivation

The: Object Browser is a Metaview tool that displays various kinds of information about the
object types defined in an environment. In current version of Metaview, there are no such
tools available, and the only way that a method definer can examine the defined object types
is to read the textual EDL/GE definitions. This approach has drawbacks because: the reader
must have knowledge about EDL/GE language in order to understand the environment’s
definitions. In addition, some aspects of an object type are not easily recognized by simply
Jooking at the textual definitions — for example, its graphical representation, its participa-
tion in a relationship type with other object types, and its role in the types hierarchy.
Hence we need an interactive, and preferably graphical, tool that can present the def-
initions of an object type (or of a set of object types) to the users. More importantly, the

information of the object types can be presented in different views according to different



users’ demands. Foi example, two users can examine the same object type from two com-
pletely different views — one reviews the EDL/GE definitions of the object type, while the

other looks at its graphical representation on the screen.

5.3.2 Non-Functional Requirements

There are several non-functional requirements that we need to consider when designing Ob-

ject Browser:

o User-friendliness
Since the target users of the tool are not necessarily experienced users of Metaview,
Object Browser should be user-friendly in the sense that it makes good usc of WIMPs
and GUIs to ensure ease of user interactions. More importantly, the tool should dis-
play the information of the object types in various views in a ncatly formatted and

easily understandable manner. The tool should also provide the users with an exten-

sive on-line help facility.

e Compatibility
Because Object Browser is part of the Metaview system and is used normally with
other tools, it should be as much compatible as possible with the current state of the
system. The design of the tool should follow our system’s presentation and imple-
mentation standards. For examples, Object Browser’s user interface should offer the
same “look and feel” as the other Metaview tools’, and its implementation of the tool
should use the same programming languages and coding standards. In addition, it

should support the common data structures, rezsitories, and file formats used in the

current Metaview system.

o Interoperability

The Object Browser will often be used together with other Metaview tools, and there-
fore there is a requirement that these tools work cooperatively. This objective requires
a well-designed interface within Object Browser so that it can communicate with the

other tools efficiently and effectively.
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e Implementation Environment

Object Browser should be implemented using C++ and Motif toolkit because the tool
uses the common data structure for environment representation (Symbol 7+ .¢) which
is implemented using C++ classes. Moreover, since all the current graphical tools
available in Metaview use Motif to build their GUISs, the interface of the proposed
browser should be implemented using the same toolkit in order to maintain a consis-
tent “look and feel” with the other tools. In addition, the implementation of the GUI
could also reuse some modules of the GE Definer. The tool runs under UNIX and

X Window System on Sun workstations, which are the operation platforms for the

current Metaview system.

5.3.3 Functional Requirements

In general, for the Object Brow: et to be a useful tool in Metaview, it must present different
views of an environment according to the user’s choice. The following functional require-

ments are necessary to achieve this general objective.

Input/Output

Object Browser must display the definitions of an object type, a set of object types, or all
object types within an environment. To create a browser display, it has to retrieve the en-
vironment definitions from some sources. The two possible sources arc the Syisbol Table
data structure and the EDL/GE definitions. In the former case, Object Browser can obtain
the definitions of an environment or of a set of object types from another tool using the com-
mon data structare. For example, the method definer who is modeling a method using GE
Definer may want to invoke Object Browser to review the clisses hierarchy of the defined
graphical object types. In this situation, Object Browser can request a copy of the data struc-
ture generated by GE Definer and display the specific type hierarchy on the screea. This
approach is often used for the incomplete definitions of an environment or object type.
The second source, EDL/GE definitions, can be parsed by the EIDL/GE Parser which is

invoked by Object Browser. The environment definitions are stored in the Metaview Sym-
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bol Table data structure used by the b vser so that it can retrieve specific information upon
user’s request. This approach is typically used for completely defined environments.
Object Browser can generate output that can be displayed or sent to other tools. These

two output methods will be discussed at the end of this section.

User Interfuce

The user interface of Object Browser should lock very similar to that of GE Definer. The
GUIS of both tools are organized in three major parts as described below. Figure 17 shows

the preliminary design of the GUI, prototyped using Visual BASIC.
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Figure 17: The prototype GUI layout of Object Browser

e Menu Bar — It provides menus of commands to tic user. The FILE menu consists of

commands dealing with general input and output. The VIEW menu contains options
to change the views of the inforination to be displayed. The OPTIONS menu contains
other commands te configure the tool. Finally, the HELP menu consists of different

options tc activate an on-line help dialog.
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e Status Panel — It displays the useful inie: mation for the current view. For examples,
it shows the current environment’s title, the kind of the current object type, the object

type’s name, and the selected view type.

o Display Area — This is the area where the information is displayed. In most cases,
the display is graphical: for example, the graphical representation of an object type,
the tree diagram of an abject types’ hierarchy, etc. Sometimes, however, the display

zan he textual, for cxample a table showing the names of all object types defined in

the current environment.

Objcct Browser also has a title bar which displays not only its title but a!so the name of

the tool that invokes the browser. This information reminds the user in which tool s/he is

currently working.

Finally, Object Browser can also pop up dialog windows to show other, supplementary
information. For cxample, when the user clicks on the object type displayed on the Main
Display Area, a pop-up dialog presents its EDL/GE definition. Such pop-up dialogs allow

the user to examine different types of information (views) of the same object simultaneously.

Information Presentations

Object Browser presents the information of the environment definition in various views.
Some of these views express the reiz. i ships among a set of object types within an envi-

ronment, while others describe the detailed definition of an object type or a component of

that object type.

These views are represented graphically if possible. Some of the supported views are

listed as follows:

e Lists of all conceptual (EARA) object types and/or graphical (GE) object types de-

fined in an environment;
¢ Classification hierarchy of a specific object type;

e Aggregation hierarchy;

72



e Conceptual definition of an object type in table form (e.g., its type name, supertype

name, attributes, etc.);

e Graphical representation and properties of a GE type (e.g., display of its picturc pat-

tern, locations of labels, etc.);

e EDL/GE Definitions of an environment or of an individual object type:

Object Browser should be able to display multiple views simultancously.

Communications

73

One of the most important features of Object Browser is its communication capability with

other tools in Metaview. This capability is useful for invoking Object Browser by another
tool, for example GE Definer, and for transferring data back to the “calling™ tool. For ex-
ample, when a user opens a graphical object type in GE Definer, s/he can invoke Object
Browser to show the object type’s conceptual definition providing it exists. Another exam-
ple occurs when the user needs to create a new definition (e.g., specify a type namc) in GE
Definer, s/he can call Object Browser and select a type name from it, and the name will be
returned to GE Definer. It s»mmary, a transparent communication capability is essential

for the Object Browser to provide effective support for many of the other Metaview tools.

There are at least two approaches to implementing the communication mechanism. If

Object Browser is implemented as an independent program, the communications between
the browser and other tools can be handled using UNIX’s sockets and command-linc argu-
ments [Hor86]. The sockets are interprocess communication channels that can be set up by
the calling tool and Object Browser itself to transfer data in both directions. The commanei-
line arguments can also be used to specify inputs, such as the filename of an environment
file and the desired view type, to Object Browser. This input method is particularly uscful
when Object Browser is executed independently by the uscr.

The second approach is to share a common environment data structure (Symbol Ta-

ble) between Chject Browser and the other tool. Although this approach is a much sim-



pler method, it can be used only if Object Browser is implemented as a library module and

included in other tool’s source code.

5.3.4 Conclusions

In summary, Object Browser is expected to offer significant contributions in two aspects of

method modeling in Metaview:

I. It presents, graphically and interactively, object definition information for defined en-
vironments in different views. The various views of environ;::ent information helps

the method definer to examine and verify different parts of the method specifications.

2. It provides interactive interface support when using other method modeling tools in
Metaview. In other words, the browser complement other tools, for example GE De-

finer, to make the method modeling task more efficient and effective.

A prototype version of Object Browser is being implemented. However, only the main
interface part of the tool has been built so far. '

At the present stage, Object Browser is implemented as a common module so that other
tools, for example GE Definer, can include it as part of their programs. This approach cer-
tainly simplifies the communication mechanism between the tools: Moreover, since the
tools share the same data structure, the information retrieved by both Object Browser and
the calling tool is guaranteed to be consistent and up-to-date. However, we recommend that
further investigation should be done on the feasibility of building Object Broxvsef as a stand-
alone tool. One of the advantages of this approach is that the user will be able to execute
Object Browser by itself. Another advantage is that the design of the tool will be more in-

dependent and flexible so that it can be extended or modified in future.
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5.4 Investigation on a Graphical Constraint Definer

When we first proposed the idea of the graphical interface for modeling the graphical object
types of a method, we also considered a similai graphical tool for defining the method’s
graphical constraints. There are basically two reasons that motivate an investigation of this

approach to graphical constraint definition:

e The graphical representations and the graphical constraints of an SDM are the two
aspects that form the complete graphical definitions of the method. These two aspects
are closely related in the sense that the grapitical representations model the notations
used by a method and the graphical constraints define how these notations are used
and presented. Thus it is desirable to provide the method definer with similar tool

support tu define these two aspects.

e Since both graphical representations and graphical constraints deal with graphic knowl-
edge, our initial assumption was that both types of information could be defined more

efficiently and effectively using a graphical tool.

After a more detailed investigation, we realized that most graphical constraints of the
modern SDMs are too complex to be defined clearly and precisely using a graphical teol.
Furthermore, even some very simple constraints — for example, that control the relative
placement of a graphical type within a diagram — still cannot be unambiguously defincd by
a graphical tool because of its difficulty for associating precise semantics to the constraints,
In general, a graphical tool cannot provide the conciseness and precision that a logical for-
mula does, when defining a graphical constraint.

In this section, we discuss the potential limitations for defining graphical constraints
graphically and illustrate our arguments using some examples based on the Data Flow Di-
agraming method. The conclusions of our investigation and suggestions for two future re-

search directions are then presented.



5.4.1 I.imitations for Defining Graphical Constraints Graphically

The graphical constraints define precisely the rules that a specific method has to follow when
presenting their model concepts. There are basically two major characteristics of these con-
straints. First, the graphical constraints of an SDM are extremely diverse in complexity and
scope. Second, each of these constraints must have a precise and unambiguous semantics.

In the rest of this section, we discuss our investigation of these characteristics and analyze

the potential limitations of a graphical tool in this regard.

Diversity

The graphical constraints used vary greatly from method to method; even the constraints
used in the same method may be very different in complexity and scope among themselves.
For cxample, a representational constraint may be as simple as a mathematical formula that
determines the placement of an icon within a diagram, but may also be as complex as a log-
ical rule that defines a set of cases (conditions) in which an icon can be used. Furthermore,
the scope of the constraints may also vary greatly ranging from an individual graphical type
to all object types within an environment.

Unfortunately, there are no accepted models or rules for defining all the different types
of representational constraints of a diagraming method. Some rules that sound common
and reasonable in one method may not make sense in another. Consider examples of two
structured methods: Structure Chart and Data Flow Diagraming (DFD): The Structure Chart
mcthod controls the layout of a diagram such that the icons representing sub-modules have
to be positioned below the icons representing modules in a upper level [MMB85]. The DFD
method does not impose such explicit rules on its diagram layout®.

One of the most important characteristics of a successful constraint defining interface
is its flexibility, The interface has to be flexible enough to support a wide variety of rules
including user-defined ones. The new version of ECL (Environment Constraint Language)

in Metaview, also called ECL III [Fin94c], is a flexible language to describe the graphical

4 Although rules can be added to ensure a better readability of a DFD diagram, for example moving all the
terminators towards the boundaries of the diagram, th2y are not part of the method.
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constraints. The language has arich set of language constructs for building logical rules and
predicates; for examples, it supports universal and existential quantifiers [GN38] to deal
with different scopes of constraints. It also provides arithmetical functions to handle rules
that involve mathematical formulae and calculations.

It is difficult for a graphical tool to offer such a level of flexibility. It is not easy to extend
a graphical tool dynamically to support a set of user-defined rules, because such extensions
require new support of not only the “oncepts of the rules but also the graphical techniques to
define those rules. Therefore, the tool must support a large class of graphical constraints to
assist the method definer in cre..iing her/his constraint rules that are appropriate for a given
method. This approach leads to the efficiency problem — there is no efficient way yet to
classify and support all the possible graphical constraints by a graphical tool because there
are so many various types of constraints. Hence, it is impossible for a tool to capture all

the possible semantics of the graphical constraints and allow the uscr to assign semantics to

her/his defined constraint without ambiguity. In the following subsection, the problem of

ambiguous semantics is discussed in greater detail.

Precise Semantics

The graphical constraints must be defined precisely and unambiguously, because they define
the manner in which the model concepts are represented diagrammatically. In general, the

representational constraints can be classified into two categorics:
o rules that specify the relationships between graphical objesi tygses withn @ ditigrany;
o rules that define the “look™ of a set of graphical types in thic £ any

In the former case, they are not intuitively definable by a graphicst teol hecause they
deal with the concepts behind the method’s representations. An exampic® cusrztraint of this
category for the DFD method is that each data eiement may be used onl; once in an edge

(data flow). The definition of this constraint in ECL IIl is shown as follows:

5This example and the one discussed below are cited from [Fin94a].
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CONSTRAINT no_multiple_use_of_data (GRAPHICAL diag : any_level)

ALL flowO FROM {flow @ diag}
ALL flowl FROM {flow @ diag : *->data == flowO->data}

SATISFY flowl == flow0

OTHERWISE
message {"Warning..."};

Although reader, who is not familiar with the ECL language, may not be able to un-
derstand the defined rule at first glance, this constraint definition is certainly a concise arnd
unambiguous way to specify the above-mentioned example. On the contrary, rules of this
type are not cffectively nor intuitively definable using a graphical interface.

The second category of graphical constraints, those responsible for defining the presen-
tation of the graphical objects in a diagram, ensure that the resulting model representations
look “as expected”. An inherent limitation of a graphical tool is its inability to define, or
present, semantics in the form of logical relationship (i.e., characteristic functions). That is,
when a graphical tool displays graphical symbols on the computer scieen, the tool does not
give the user a clear meaning on how the presentations of these objects relate and affect one
another.

A further example of a graphical constraint in the DFD methe.: i< that the icon of the
data element passed by a data flow must be located “near” the corresponding edge, where
the meaning of the adjective “near” represents a reasonable distance between the icon and
the edge. This constraint is defined in ECL III as follows:

CONSTRAINT data_close_to_the_edge (GRAPHICAL diag : any_ievel)

ALL f FROM {flow @ diag}
WHERE d = f->data,

xpos = _origin(d) + _width(d} /2,

ypos = _top(d) + _height{d)/2
SATISFY _edge_distanre(f, xpos, ypos) <= 50
OTHERWISE

message ("Warning...");

This constraint definition specifies that the shortest distance (returned by the function
-edge.distance) between the center of the icon representing the data element and its
corresponding edge has to be less than or equal to 50 pixels (this number is arbitrarily cho-

sen); otherwise & varning message is printed.



To define this rule graphically, the user would likely select the tivo involved graphical
object types and arrange them on the screen i1t attempt to define such a placement constraint
between them. However, the problem is that it is difficult to define graphically the precise
semantics for a general constraint such as “nearness” in this example — the tool may inter-
pret this constraint in various ways. Some alternative interpretations are: the “data™ icon
must be away from the “flow” edge no less than 50 pixels? The icon must be above/below
the edge? The icon must be on the left/right side of the edge? The icon must always maintain
the same distances from the two ends of the edge?

To provide an ability to define precisely general graphical constraints in a graphical man-
ner, the tool must provide an extensive set of logical predicates such that the user could pre-
cisely define what the various notions of “nearness” mean. Because graphical constraints
of modern SDMs are extremely diverse, so far there does not appear to be an cflicient and

effective way to classify and support them in a graphical tool.

5.4.2 Conclusions

In summary, our preliminary investigation of the feaxibility of a graphical tool for defining
graphical constraints indicates that it is difficult for such a tool to define concisely and pre-
cisely the graphical constraints. The major problem is the limitation of a graphical tool in
supporting the two characteristics of the graphical constraints of modern SDMs: diversity
and precise semantics. A graphical tool can provide a concise way to present and define
the appearance of graphical symbols but not the constraints among them. We belicve that
a description language supporting logic formulae and predicates, for example ECL 1, can
do abetter job than a graphical tool because the language produccs effectively more concise
and accurate constraint definitions. More examples of definition of graphical constraints in
ECL III can be founded in [Fin94a, Zhu94].

On the other hand, we agree that novice users may find it difficult to definc or review
the graphical constraint definitions using ECL. It is because the grammar of the language
is quite complicated and requires the new user to spend some time to hc familiar with it.

Since our fundamental goal of this thesis research is to proposc inti*:..::%-*, and preferably
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graphical, toof support for the method modeling process in Metaview, we here suggest two

possible future research directions:

1. Interactive Editor for ECL

Even though a graphical tool may not help effectively the method definer to define
graphical constraints, an interactive editor for ECL should be helpful in reducing sig-
nificantly the time and effort spent by the user, especially novice user who is not fa-
miliar with the language.

Our preliminary idea is that the editor has a GUI that provides interactive dialogs
through which the user can enter logic formulae that define the graphical constraints.
These dialogs should take care of the grammar of ECL language and require the user
to input only the predicates and the formulae. Furthermore, the editor should also'pro-
vide on-line help facility to guide the user to complete the definition of the constraints.
We recommend that such ECL editor should be designed to work cooperatively with

GE Definer in order to provide a complete tool support for graphical method modeling

in Metaview.

2. Further Investigation on Graphical Constraint Definer
Although our investigation realized the limitations of a graphical tool for defining
graphical constraints, further investigation on this topic is still challenging and promis-
ing. As reported in the previous section, the major problem in the imple \€l-‘on of
such a constraint definer is that there is a huge variety of graphical co.~ars{%" . used
in modern SDMs. We do not as yet have any efficient and effec .ive medel or classifi-
cation scheme to support these different kinds of constraints. Thvs, more research is
recommended in this area, and hopefully some day, a graphical (ool can be built which

can defir» any Kind of representational constraint in a concise and precise manner.



Chapter 6

Conclusions and Future Research

Method modeling is a common and important feature of many CASE shells, because it cap-
tures the necessary knowledge about a software development method in order to generate a
customized CASE environment. Software development method modeling is a challenging
task, especially when today’s methods adopt complex models and represent their modeling
concepts using a large variety of graphical notations and techniques. A deficiency in method
modeling in most meta-CASE or CASE shell systems is the lack of an efficient and effective
approach for defining a method’s graphical representations. This thesis research focuses on
addressing this deficiency.

The otjectives of this research were to:

o design a textual description language for defining the graphical representations of a

mefhod;

investigate a graphical approach to graphical method modeling;

e propose and prototype a graphical tool to support the graphical method modeling task;

identify the requirements and limitations of the graphical modeling tool and recom-

mend directions of future research in this ared.

Section 6.1 summarizes the results of this research and discusses its major contributions.

Section 6.2 suggests future research directions.
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6.1 Conclusions

The results of this research are concluded in the following two sections which summarize

the major contributions and discuss the limitations of the prototype graphical modeling tool.

6.1.1 Achicvements and Contributions

Our research successfully fulfilled the thesis objectives with the following achievements:

o Designed GE language

To provide basic support for the definition of a graphical m-{j»4 model, a textual
description language, called GE language, was designed i .age is used in
Metaview as a medium to store and transfer the graphical - accificiiticns of a method

between tools and to publish the definitions for verification and review purposes.

e Investigated Graphical Approach to Graphical Method Definition
To ease the tedious graphical method modeling task, a graphical approach to graphi-
cal method modeling was proposed. Investigation of the approach identified various

requirements and problems that were used as a basis for the design of a graphizal tool.

o Prototyped GE Definer
A prototype of ¢’ - -raphical modeling tool, GE Definer, was constructed. The tool
provides intui"---. . “fective support for defining the graphical elements used in
a method. My -+ “tantly, the results :3f the prototype activity identified a num-
ber of benefits and 1....itations of the cur. .- ... ~proach. Based on this analysis several

avenues for future research are identified.

The achievements of this thesis research resulted in a number of significant contributions
with respect to both the study of the graphical method modeling problem and our Metaview
meta-CASE system. Our investigation of the graphical approach to the graphical modeling
problem identified several requirements and benefits of the interactive, graphical modeling
tool, including the need for user-friendly interfaces, visual feedback, real-time interactions,

and information browsing. Initial observations of our work indicate that this graphical tool
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approach can reduce significantly the time and effort spent, and also minimize errors made
by the method definer in the method modeling task.

The GE language and the GE Definer implemented in this research greatly extends the
method modeling capability of Mctaview. Nevertheless, their current capei»lite>s are lim-
ited and not without problems and, as a result, a number of future research directions for

Metaview are suggested. These suggestions will be discussed at the end of this chapter.

6.1.2 Limitations

Although our research objectives are achieved, the current prototype has limitations that

should be investigated further. The two major !imitations are summarized as follows:

e Incomplete Graphical Modeling Support
The present version of GE Definer provides intuitive support for defining various graph-
ical types of a method environment; however, it is still not a complete tool for graph-
ical method modeling in Metaview. In particular, it lacks support of the definition
of picture patterns and graphical constraints. The prototype version also has minor

problems as identified in 5.2.1 that require further enhancements and extensior: ..

e Inadequate Browsing Facility
GE Definer supports browsing on only the definitions and the “look™ of the defined
graphical types. Such a browsing capability is too limited because it does not provide
the method definer with multiple views of the method environment definitions. An
ideul browsing facility should allow the user to review the conceptual definitions of

object types during the graphical modeling process.

6.2 Suggestions of Future Research

Several promising and challenging areas of future research and development related to CASE

environment definitions in Metaview include:
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o Enhancements to GE Definer
As mentioned in Section 6.1.2, the present prototype version of GE Definer requires
enhancements and extensions to provide mechanism for defining picture patterns and

other features, such as on-line assistance and color codings.

o Implementation of Object Browser
More work is required to complete the existing design and prototype of the Object
Browser. In the future, further effort should be spent to extend the tool's design. One
potential extension, as described in Section 5.3.4, is to cnhance Object Browser's GUl

and communication facility so that it can operate as a stand-alone tool.

e Tool Support for Defining Graphical Constraints
Our investigation, as discussed in Section 5.4, identified the potential problems of us-
ing a graphical approach to the definition of graphical constraints. Nevertheless, ad-
ditional tool support for defining graphical constraints is desired for Metaview users
because the constraint definition language, ECL 11, albeit powerful, is not casy to
learn and use. Therefore, we suggest that an interactive editor of ECL language be
implemented as an interim solution to the problem. In long term, further rescarch on

the graphical tool support should be completed.

e Conditional Representations

In some diagraming methods, such as [Boo91], the represcntations of the object types
may change according to their property values. Forexample, the picture patterns used
by an object type may vary slightly to reflect value changes of its propertics. To sup-
port such conditional representations for the graphical object types, conditional prop-
erties must be supported by the underlying meta-model. In fact, this feature has al-
ready been proposed in Metaview as one of the future extensions to the GE meta-
model.

If this feature is to be supported, however, our graphical modeling tool must be cx-

tended accordingly. For example, to allow input of conditional propertics for the GE

types, GE Definer should provide an interactive dialog to capture the “conditional for-



mulac”. These formulae may be as simple as “/F-THEN-ELSE” conditions but may
also be as complex as compound logical formulae. Thus, supporting these conditionai

formulac requires further investigations and extensions to GE Definer.

e Supporting other kinds of representations
Although a majority of modern software development methods uses graphs and dia-
grams to represent the methods’ model concepts, there are still many commonly used
methods that adopt other kinds of representation techniques, such as tables’, matrices?,
charts®, and more recently, multimedia and hypertext [LKK*94]. Thus, in order to
support a larger variety of graphical methods, it is important to extend Metaview’s
graphical modeling capability. Future research should be done on extensions to not

only the GE meta-model but also the graphical tool support.

s A Graphical Interface for Conceptual Modeling in Metaview
Due to our success in using a graphical approach to the definition of graphical repre-
scntations, we are encouraged to investigate the feasibility of applying this approach
to conceptual modeling. Some existing CASE shells, such as MetaEdit [LKK*94],
have graphical interfaces to define the model concepts of a method. The MetaEdit’s
approach {LST*+91, Ros95] represents its meta-model’s conceptual types in various
graphical symbols and uses a graphical interface to manipulate these symbols to build

graphically the model of a method.

Because Metaview’s conceptual meta-model, EARA, is an extension of the Entity-
Relationship (ER) data-model [Che76], it is feasible that the method concepts mod-
cled by EARA meta-model can be represented using some “ER-like” diagraming no-
tations and techniques. To achieve this, further research is required to investigate how
EARA's aggregation and classification features can be modeled graphically. In short,
a graphical tool support for conceptual modeling is desirable in Metaview because it

is consistent and more convenient to have similar tools support both conceptual and

le.g.. decision tables {MM85].
:“’c.g.. Andersen Consulting's Method/1 [AAC87].
Y¢.g., Gantt (Timeline) Charts [Pre92).
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Appendix A

Summary of GE Language Syntax

The formal syntax of GE language is summarized in this appendix. The syntax is described

in augmented BNF, which is briefly introduced in Section A.1. Section A.2 summarizes the

symbols used in GE Janguage.

A.1 Augmented BNF

Augmented BNF includes the following constructs {the first two are part of extended BNF

and the third is a new construct):

[z ] means zero or one instance of z is required;

{z} means zero or more instances of z are required. This construct may be enhanced by
the use of a subscript to specify a minimum value and/or a superscript to specify a

maximum value. For example, { z }$ means that there must be between one and six

instances of z;

< a|..|n isused to provide a simple and efficient means for specifying a set of order-
independent options. Every item within the <> still follows the extended BNF spec-
ification. A simple example is the statement < A | B | C . It means that there is
one instance of each A, B and C but the order in which they appear doesn’t matter.

Thus the valid instantiations of this statement are as follows:
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ABC ACB
BAC BCA
CAB CBA

Adding the extended BNF options of square brackets to form the statement < [A] |
[B] | [C] > increases the complexity of specifying the valid options as there may be

zero or one of A, B and C. Thus now there are 16 valid instantiations. They are:

nil

A B C
AB BA CA
AC BC CB
ABC BAC CAB

ACB BCA CBA



A.2 Symbols Used in GE Language

A number of symbols are used in the GE language as either operators or separators. To
avoid confusion, cach of these symbols is assigned a unique name, and they are used in
the formal specification of the language in the next section. Table A.3 summarizes these

symbols and their associated names.

Name Symbol
ASTERISK *
BAR |
COLON :
COMMA ,
DD .
DQUOTE "
EQUAL
LB

LP
PERIOD .
QUOTE ’
RB
RP
SEMI ;

—~— 1

N et

Table A.3: Symbols used in GE language



A.3 Formal Syntax of GE Language

Graphical Properties

<properties_clause>
<property>
<property_name>
<property_valie>

| Picture Primitives

<point_primitive>

<line_primitive>

<arc_primitive>

<circle_primitive>

<box_primitive>

<text_primitive>

PROPERTIES LP { <property> { COMMA <property>} | RP
<property name> EQUAL <property . value>

<identifier>
<identifier>
POINT < AT <coordinates>
| [<propertics_clause>
-
LINE < FROM <coordinates>»
|  TO <coordinates>
| [<properties_.clause>-]
-
ARC ~ CENTER «<coordinates?-
| <radius_clause>
|  START <angle>
| SPAN <angle>
| [<properties.clause>|
-
CIRCLE < CENTER <coordinates>
| RADIUS <radius>
| [<propertics_clause>|
-
BOX ~ FROM <coordinates>
|  TO <coordinates>
| [<radius_clausc:-]
| [<propertics.clause:>]
>.
TEXT < AT <coordinates>

| [<propertics.clause> ]



<angle>
<radius_clause>
<radius>
<coordinates>
<location>

<integer between 0 and 360>

= RADIUS <radius> | RADIUSES <radius> COMMA <radius>

s se e

Picture Type

<picture_type_def>
<picture_dcf_body>

<picture_type_spec>

<picture_primitives>

Picture Component

<pictures_clause>

<picture_spec>

Label Comporent

<labels_clause>

<label_spec>

<integer>
LP <integer> COMMA <integer> RP
<coordinates> | <identifier>

PICTURE.TYPE <identifier> <picture_def_body>

<picture_type.spec> <picture_primitives>

~< [GENERIC]

| [IS_A <identifier>]
.
< {<point_primitive>}

{<line_primitive>}
{<arc_primitive>}
{<circle_primitive>}
{<box_primitive>}
{<text_primitive>}

PICTURES LP [ <picture_spec> {COMMA <picture_spec>} ] RP
<identifier> < AT <location>

| ROTATED <angle>
|  [<properties_clause>]

LABELS LP [ <label_spec> {COMMA <label_spec>} ] RP

<identifier> < AT <location>
| [<properties_clause>]



Diagram Type
<diagram_type_def> = DIAGRAM_TYPE <identifier> <diagram_def_body> SEMI
<diagram_def_body>  := <diagram_spec> <diagram.components>
<diagram.spec> n= < [GENERIC]
| [IS-A <identifier>]
>
<diagram_components> = =< [<properties_clause>]
| [<pictures_clause>]
| [<labels_clause>]
>—
Handle Component
<handles_clause> ::= HANDLES LP [ <handle_spec>> { COMMA <handle_speez-} | RP
<handle_spec> = <relationship_-name> PERIOD <role_name>
AT LP <range> {COMMA <range>} RP
[« properties_clause>]
<relationship.name> = ASTERISK | <identifier>
<role_name> := ASTERISK | <identifier>
<range> := LP <x_range> COMMA <y_range> RP
<x.range> = <integer> | <integer> DD <intcger:>
<y.range> = <integer> | <integer> DD <integer>
Icon Type
<icon_type_def> = ICON_TYPE <identifier> <icon_def_body> SEMI

<icon_def_body> <icon_spec> <icon_components>

< [GENERIC]
| [IS_A <identifier>]

<icon_spec>



<icon_components>

Node Component

<nodes_clause>

<node_spec>

Link Component

<links_clause>
<link_spee>

<link Jocation>

<link_components>

Edge Type

<edge_type_def>
<edge.def_body>

<edge_spec>

1vi

}-

< [<properties_clause>]
|  [<pictures_clause>]
| [<labels_clause>]
| [<handles_clause>]

-

NODES LP [ <node_spec> { COMMA <node_spec>} ] RP

<identifier> AT <location> [<properties_clause>]

LINKS LP [ <link.spec> {COMMA <link_spec>} ] RP

<link Jocation> [<link_components>]

~ FROM <location>
| TO <location>
.
< [<pictures_clause>]
|  [<labels_clause>]
|  [<properties_clause>]
.

EDGE_TYPE <identifier> <edge_def_body> SEMI
<edge_spec> <edge_components>

< [GENERIC]
| [IS-A <identifier>]
—



vl

<edge.components> n=o< [<properties_clause>>)
| [<nodes_clause>]
| [<links_clause>]



Appendix B

An Example of EDL/GE Definitions —

Data Flow Diagramming

This appendix presents the environment definitions of the Data Flow Diagraming method
in EDL/GE language. The definitions are composed of two parts — Conceptual Definitions
and Graphical Definitions. The former defines the model concepts of the method, and the

latter models their associated graphical representations.

B.1 EDL/GE Definitions of DFD

ENVIRONMENT TITLE "Data Flow Diagrams";

/***'A;*
***x%%  Conceptual Definitions
*****/
VALUE_TYPE
times_per_unit =
RECORD (
quantity : integer,
unit : (second, minute, hour, day, week, month, year)

)i

ENTITY_TYPE

103



universal GENERIC
ATTRIBUTES (description : text);

ENTITY_TYPE
terminator IS_A universal;

ENTITY TYPE
data_store IS_A universal
ATTRIBUTES (id_number : string,
form : string);

ENTITY TYPE
data_element IS_A universal;

ENTITY TYPE
process IS_A universal
ATTRIBUTES (id_number : string,
form : string)
BECOMES process_explosion
CONNECTIONS flow;

AGGREGATE_TYPE
any_level GENERIC
COMPONENTS *
ATTRIBUTES (description : text);

AGGREGATE_TYPE
context_diagram IS_A any level;

AGGREGATE_TYPE
process_explosion IS_75: any level;

RELATIONSHIP_TYPE
flow
ROLES (source, data, destination)
PARTICIPANTS
(process, data_element,
process | terminator | data_store)
(terminator | data_store, data_element,
ATTRIBUTES (frequency : times_per_unit);

/*****

process)
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* ook k ok ok Graphical Definitions

*****/

CONSTANT FontH = 13; /* the default font height */
CONSTANT ProcW = 80; /* process icon width */

CONSTANT ProcH = 8*FontH+2; /* process icon height */
CONSTANT ProcR = 18; /* the radius of the corner rounding

for the proness picture */

PICTURE_TYPE process_pic
BOX FROM (0, 0) TO (ProcW, ProcH) RADIUS ProcR

LINE FROM (0, 2*FontH+1l) TO (ProcW, 2*FontH+1l);

ICON_TYPE process
LABELS (id_number AT (ProcW/2, FontH+1)
PROPERTIES (x_size = 55, y_size = 2*FontH),
name AT (ProcW/2, 4*FontH+2)
PROPERTIES (x_size = ProcW-1, y_size = 4*FontH),
form AT (ProcW/2, 7*FontH+2)

PROPERTIES (x_size = ProcW-1, y_size = 2*FontH))

PICTURES (process_pic)

PROPERTIES (x_size = ProcW+l, y_size = ProcH+1)

HANDLES (flow.* :

AT ((ProcR .. ProcW-ProcR, ProcR .. ProcH-ProcR)));

CONSTANT DStorW = 120; /* data store icon width */
CONSTANT DStorH = 3*FontH+2; /* data store icon height */
CONSTANT DStorP = 31; /* position of the vertical

bar within data store icon */

PICTURE_TYPE data_store_pic
LINE FROM (0, 0) TO (0, DStorH)
LINE FROM (0, DStorH) TO (DStorW, DStorH)
LINE FROM (0, 0) TO (DStoxW, 0)
LINE FROM (DStorP, 0) TO (DStorP, DStorH)
TEXT "Form: " AT (DStorP+2, 2*FontH+1);

ICON_TYPE data_store
PROPERTIES (x_size = DStorW+l, y_size = DStorH+1l)
LABELS (id_number AT (DStorP/2, DStorH/2)
PROPERTIES (x_size = DStorP-2,
y_size = 3*FontH),
name AT (DStorP+1+ (DStorW-DStorF) /2, FontH+1)



PROPERTIES (x_size DStorW-DStorp,
y_size = 2*FontH),
form AT (91, 5*FontH/2+1)
PROPERTIES (x_size = 89, y_size = FontH))
PICTURES (data_store_pic);

CONSTANT DataW = 70; /* data element icon width */
CONSTANT DataH 2*FontH; /* data element icon height */

ICON_TYPE data_element
LABELS (name AT (DataW/2, FontH)
PROPERTIES (x_size = DataW-1, y_size = 2*FontH))
PROPERTIES (x_size = DataW+l, y_size = DataH+1l);

/* square size for terminator picture */

CONSTANT TermP = 6*FontH+2;

/* offset size for the shadow square */
CONSTANT TermD = 4;

/* the total size of icon side */
CONSTANT TermS = TermP+TermD;

PICTURE_TYPE terminator_pic
BOX FRCM (0, 0) TO (TermP, TermP)
LINE FROM (TermP, TermD) TO (TermS, TermD)
LINE FROM (TermS, TermD) TO (TermS, TermS)
LINE FROM (TermS, TermS) TO (TermD, TermS)
LINE FROM (TermD, TermS) TO (TermD, TermP);

ICON_TYPE terminator
LABELS (name AT (TermP/2, TermP/2)
PROPERTIES (xX_size = TermP-1, y_size = 6*FontH))
PROPERTIES (x_size = TermS+1l, y_size = TermS+l);

PICTURE_TYPE arrowhead
LINE FROM (0, 0) TO (~15, -5)
LINE FROM (0, 0) TO (-15, 5);

EDGE_TYPE flow
NODES (source AT (0, 0),
data AT (100, 20),
destination AT (200, 0))
LINKS (FROM source TO destination
LABELS (freguency AT (100, -20))
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PICTURES (arrowhead AT destination));

DIAGRAM _TYPE any_level
PROPERTIES (x_size = 595, y_size = 770);



Appendix C

System Walk-Through of GE Definer

In this appendix, we presents a system “walk-through” of GE Definer using a real-case sce-
nario of defining the “process” icon type of the Data Flow Diagraming (DFD) method as an
example to illustrate various features and functionaiity of the tool. There are two reasons
why we chose this example scenario to describe GE Definer. Since DFD method is a very
popular and well-known graphical SDM, we assume that most rcaders arc already familiar
with it and thus able to follow the “walk-through”. The sccond reason is that the sclected
scenario can show several different features of GE Definer because the “process™ icon type

is a relatively complex object type.

C.1 A scenaric of using GE Definer

The example scenario assumes that an existing environment has been created with the del-
initions of several picture types.

When the method definer! starts up GE Definer, the main window, consisting of a menu
bar, a status bar, and a canvas arez, appears on the screen. The canvas has two scrolibars
that can be used to scroll the canvas in two dimensions. There are two dashed lines on the

canvas to represent the x and y axes of the drawing area. The user can select an command

1 Throughout this section, we use the terms “method definer” and “user” interchangeably to refer to the
user of GE Definer involved in this example scenario.
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from the HELP menu to display the information about the current version of GE Definer, as

shown in Figure 18.

VLTS FURE NS 4 SULER R AR L 50 R BRI L TR L Sl (]
file Ewirorment Object Tools Help

Ervirorment m Object: ™m Type?

E

j1iHivizi® information i

............ 3 GE Definer &
: Version 1.0 {July 1395}
Developed by Plus Lo, Softuare Enginering Lab, University of Albsrta

GE Definer {5 en interactive, graphical modeling tool for defiming graphical obyect
tupes of any CASE method (environment),

This version of GE Definer is uritten in Cee and XI1 Hot:f.

e

R Rk T P IR DD

Figure 18: Starting GE Definer

Because there is already an existing environment defined with picture patterns’ specifi-
cations, the method definer first loads this environment to GE Definer. S/he selects the Open
command from the Environment menu, and a file selection dialog pops up as shown in
Figure 19. The user can therefore select the Environment File by either clicking on the di-
rectory and file selection windows or entering directly the filename. When s/he specifies the
filename and clicks on the OK button, GE Definer invokes the GE Parser module to read the
file and stores the definitions of the environment in an environment object which is a data
structure defined in the Symbol Table. At this moment, this environment object becomes
the current environment in GE Definer. Its title is displayed on the status bar.

The method definer can now start defining the new object type, “process”, by select-

ing the command New under the cascading Object menu. The command pops up another
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Figure 19: Loading Environment File in GE Definer

menu with a list of the three GE types: DIAGRAM Type, ICON Type, and EDGE Type.
Because “process” is an icon type (which represents the corresponding entity type in DFED),
the user chooses the ICON Type command. At this time, a pop-up toolbox appears on the
screen. This toolbox is the “GE Object Type Definer”, and in this case, it is customized for
defining icon type (called “Icon Type Definer”). Since this toolbox is implemented as a di-
alog window, the user can move it around the screen as sthe wants at any time during the
definition process. Figure 20 shows this “Icon Type Definer”.

The definer contains a number of buttons and controls to define various propertics and
components of this new icon type. The user can define the name of this GE type by clicking
oi the Type Name button. A dialog box pops up and the uscr can input the name through
the dialog. This dialog box also provides a selection window where a list of valid type namcs
are shown. These valid choices are collected from the data structures that hold the concep-

tual definitions ¢ the current environment.
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Figure 20: Creating new icon type in GE Definer

Similarly, the method definer can define the name of the supertype by clicking on the
corresponding button and enter the name through the pop-up dialog. The supertype is the
parent of the current object type, and all its components and properties are inherited by the
current type. However, because the “process” icorn type does not have a parent, the super-
type is undefined. Furthermore, the user can click on the “radio” buttons to define if this icon
type is generic or not. If an object type is defined as generic, it can be used as a supertype
of another object type. Because the “process” icon type is not used as a supertype of any
other icon types, and any object type by default is non-generic, the user does not need to do
anything with these radio buttons. At this point, the user has already defined the standard
information for the icon type. S/he can now proceed to define the various components and
properties for this object type.

The method definer may first want to attach a picture pattern to this icon type. On the

toolbox, there is a selection window next to the PICTURE button. This window is used to
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show all the picture components that are already defined for this GE type. To modify an ex-
isting picture component, the user can click on any one of the components’ names and then
press the PICTURE button. On the otzer hand, to define a new component, s/he can click
on a special entry <<NEW>> on the selection window. The same procedure also applies to
other component types. In this example scenario, because there are no picturc components
defined yet for the “process™ type, the selection window shows only an entry <<NEW>>.
The message printed right below the button shows the current count of the components de-
fined.

When the user clicks on the PICTURE button, the “Picture Definer™ tooibox pop ups
(see Figure 21). S/he first specifies which picture pattern to be used by clicking on the
PICTURE TYPE button. A selection dialog appears, which shows the names of the pre-
defined picture types. The user can select the desired picture type from the list. Itis impor-
tant to note that the selection of choices provided by GE Definer is used only as suggestions
and is never mandatory. This is because, in some cases, the user may want to specify a
choice that is not yet defined in the current environment. For example, the user may want
to specify a new picture type as a picture component of the current icon type before that pic-
ture type is defined. GE Definer is flexible in allowing the definition of incomplete object
types.

When the user has specified a picture type, the picture pattern is displayed on the screen
at the default location — the origin of the icon type. The location can be changed by press-
ing the Location button and specifying a new location on the canvas arca. Morcover,
the toolbox provides a slidebar as well as a text input box for the user Lo rotate the picture
pattern within the icon type. In our example, since the picture used in the “process™ icon
type does not requires changes of its default location (i.e., the origin of the picture pattern
locates at the origin of the icon type) nor its default orientation (i.c., the paitern is rotated by
zero degrees). At this point, since the user has completed the definition of the picture com-
ponent, s/he can click on the Done button to close the “Picture Definer”. GE Definer then
validates the definitions of this picture component for any invalid or missing information.

Because the picture component is completely and correctly defined, no warning messages is
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Figure 21: Defining picture component in GE Definer

displayed. GE Definer closes this “Picture Definer” and brings up the “Icon Type Definer™
again.

The next component that the method definer needs to define is the label component.
Three labels are needed for the “process” icon type in order to show the values of the at-
tributes 1d_number, name, and form, which are parts of the conceptual definitions of the
corresponding entity type. To define a label component, the user basically follows a similar
procedure as described above on defining a picture component.

In order to illustrate the browsing feature offered by the “definer” toolbox, we consider
a situation that the method definer has defined the label components but the name label was
placed at an inappropriate location. In this case, the user selects an entry of the defined labels
from the selection window next to the Label button and clicks on the button. GE Definer
then pops up the “Label Definer” in its browsing mode. During this mode, the toolbox dis-

plays the specifications of each defined label one by one, but disables all its controls in order
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to prevent the user from changing accidentally that label’s definitions. The method definer
can click on the Next button to see the definitions of another label, or click on the Select
button to switch the “definer” to its defining mode and modify the definitions of that label

component. Figure 22 shows the “Label Definer” in browsing mode.

Object Tools Help

Reference DFD - test

e M "ﬁl_“_‘_” "M]I "ﬂ’i—ll .:

Figure 22: Browsing the label component in GE Definer

Finally, the handle component for the “process” icon type is also defined by the method
definer using a similar approach. In order to demonstrate how GE Definer ecmploys warn-
ing messages, we consider a scenario that the method definer has defined everything hut
the size of the “process” icon type, and s/he does not notice that this part is missing. When
the method definer closes the “Icon Type Definer”, GE Definer validates the definitions of
the icon type and detects this missing property. Hence a warning dialog is displaycd on the
screen, as shown in Figure 23. The warning dialog reports that there arc a total of two warn-
ings generated. It is because an object type’s size is defined by two independent propertics

— x_size and y_size. The warning window displays each warning, one by one, with its
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kind, severity, and explanation. The user can then react in one of the three possible ways:
go back and fix the problem, read the next warning message, or skip all the warnings. In

order to define properly the “process” icon type, the method definer should go back to the

“definer” and define the size of the type.
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Figure 23: Warning display in GE Definer

After all the graphical components and properties are properly defined, the definition
of the “process” icon type is complete. To store this icon type in the current environment,
the method definer executes the command “Add to Environment”under the Object
menu. Before the icon type can be appended to the environment, GE Definer must validate
this type again with respect to the environment. This validation process is different from
the onc done by the “GE Type Definer” because it ensures not only that the definitions of
the object type itself are complete and valid, but also that the definitions are consistent with
those of other object types in the environment. In other words, an environment does not ac-

cept any new object type that causes conflicts with the existing definition. Once GE Definer
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has successfully validated and attached the “process™ icon type to the current DFD environ-
ment, the method definer can execute the Save command in the Environment menu and
save the environment, in the form of EDL/GE definitions, back into the original Environ-
ment File (or a new file). The output of this Environment File is presented in Section C.2.
We recommend that the interested reader to compare the output generated by GE Detiner
with the definitions produced manually as shown in Appendix B. The tool-gencrated output
uses indentations, proper line breaks, and pre-defined comments in order to make the defi-
nitions as readable as those produced manually. However, a noticeable difference between
the definitions produced in these two ways is that the output generated by the GE Definer
does not use symbolic constants. This is because the current version of GE Delincer is not
capable of defining new constant values. However, the tool is able to preserve (e constant
values used in an object type if these constants are previously defined in the Environment
File. The capability of defining symbolic constants will be one of the future extensions to
GE Definer.

In summary, GE Definer allows the method definer to build the graphical environment of
amethod in an incremental way. That is, s/he does not have to define the whole environment
at once; instead, new graphical object types can be defined and added to the environment at

any time in order to make the environment more complete.



C.2 Environment File Generated by GE Definer

ENVIRONMENT_TITLE "Reference DFD - test";

/*
This environment is generated by GE Definer.
*/

//:::::::::::::::::::::://
// GRAPHICAL DEFINITIONS START HERE:
e /1

PICTURE_TYPE process_pic
BOX FROM (0, 0) TO (80, 106) RADIUS 18

LINE FROM (0, 27) TO (80, 27)

t

PICTURE_TYPE arrowhead
LINE FROM (-15, -5) TO (0, 0)
LINE FROM (-15, 5) TO (0, 0)

ICON_TYPE process
PROPERTIES ( x_size=81, y_size=107 )
PICTURES ( process_pic AT (0, 0) ROTATED 0 )
LABELS ( id_number AT (40, 14)
PROPERTIES ( x_size=55, y_size=26 ),
name AT (40, 54)
PROPERTIES ( x_size=78, y_size=53 ),
form AT (40, 93)
PROPERTIES ( X_size=78, y_size=26 ) )
HANDLES ( flow.* AT ( (15..65,20..86) ) )
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