
University of Alberta

Gradient Temporal-Difference Learning Algorithms

by

Hamid Reza Maei

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c� Hamid Reza Maei
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis
is converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

Richard S. Sutton, Computing Science, University of Alberta

Csaba Szepesvári, Computing Science, University of Alberta

Dale Schuurmans, Computing Science, University of Alberta

Marek Reformat, Electrical and Computer Engineering, University of Alberta

Geoffrey J. Gordon, Machine Learning Department, Carnegie Mellon University

Abstract

We present a new family of gradient temporal-difference (TD) learning methods with func-

tion approximation whose complexity, both in terms of memory and per-time-step com-

putation, scales linearly with the number of learning parameters. TD methods are pow-

erful prediction techniques, and with function approximation form a core part of modern

reinforcement learning (RL). However, the most popular TD methods, such as TD(λ), Q-

learning and Sarsa, may become unstable and diverge when combined with function ap-

proximation. In particular, convergence cannot be guaranteed for these methods when they

are used with off-policy training. Off-policy training—training on data from one policy in

order to learn the value of another—is useful in dealing with the exploration-exploitation

tradeoff. As function approximation is needed for large-scale applications, this stability

problem is a key impediment to extending TD methods to real-world large-scale problems.

The new family of TD algorithms, also called gradient-TD methods, are based on stochas-

tic gradient-descent in a Bellman error objective function. We provide convergence proofs

for general settings, including off-policy learning with unrestricted features, and nonlin-

ear function approximation. Gradient-TD algorithms are on-line, incremental, and extend

conventional TD methods to off-policy learning while retaining a convergence guarantee

and only doubling computational requirements. Our empirical results suggest that many

members of the gradient-TD algorithms may be slower than conventional TD on the sub-

set of training cases in which conventional TD methods are sound. Our latest gradient-TD

algorithms are “hybrid” in that they become equivalent to conventional TD—in terms of

asymptotic rate of convergence—in on-policy problems.

Acknowledgements
This PhD thesis is developed through collaboration with several great scientists. First, I
would like to thank Richard S. Sutton and Csaba Szepesvári, who have made significant
contributions in this work. Rich is a deep thinker and is one of the founders of reinforce-
ment learning (RL). Rich was not only my PhD supervisor, but he was also a mentor. He has
been very kind and supportive during all these years. We spent enormous amounts of time
together to build a robust temporal-difference (TD) learning algorithm that is scalable to
large-scale applications and is convergent under off-policy setting. We tried a lot of differ-
ent ideas; many of them failed. Through this trial and error procedure, I was able to grasp a
lot of deep concepts in RL, particularly in TD learning. And, finally we developed gradient
TD algorithms. Csaba also helped us a lot and played a major role in improving our theo-
retical results. Csaba is a world-class scientist and is one of the pioneers in theoretical RL.
He was extremely kind, and helped me a lot in every aspect that I can think of. We had a lot
of interesting meetings together. Most of the times, first, we made an espresso, which made
me to follow the math easier! I feel very lucky to have him as one of my major collaborators.

I wish to express my gratitude to Doina Precup and Shalabh Bhatnagar, who also con-
tributed to this work in various ways and provided some great insights. I wish to thank
my examining committee for reading the manuscript and their comments. I would like also
to thank Dale Schuurmans and Geoffrey J. Gordon. Dale and Geoff gave me detailed and
insightful comments on the manuscript. I would like to thank the RLAI lab members. Par-
ticularly, I wish to thank Eric Wiewiora, Istvan Szita, Ashique Mahmood (Rupam), Patrick
Pilarski, Joel Veness, and David Silver. Patrick and Rupam also provided some detailed
comments on this manuscript. Thanks to David Silver for providing Computer Go results
on gradient-TD methods.

Finally, I would like to express my special loving thanks to my wife, Farzaneh Foroodi
Nejad, whose love and support was always with me during my graduate studies. She was
one of the main reasons that I chose to come to University of Alberta and join to RLAI
group, which has been a great and fruitful experience. Without her kind support and caring,
I was not able to complete this work on time. My deepest thanks also go to my parents for
their love and support.

Financial support for this work, mainly, has been provided by Alberta Innovates Graduate
Student Scholarship (formerly iCore).

Contents

1 Introduction 1

1.1 Related works . 2

1.2 Contributions . 4

2 Background 7

2.1 The reinforcement learning problem . 7

2.2 The problem formulation . 8

2.3 Temporal-difference learning . 9

2.3.1 Temporal-difference learning for prediction 10

2.3.2 Temporal-difference learning for control 10

2.4 TD learning with eligibility traces . 11

2.5 Temporal-Difference learning with function approximation 13

2.6 Derivation of TD(0) with function approximation 15

2.7 The stability problem of linear/nonlinear TD(0) 16

2.8 Residual gradient method . 20

2.9 Conclusion . 21

3 Objective Function for Temporal-Difference Learning 22

3.1 Several potential objective functions . 22

3.2 Which objective function to choose? . 25

3.3 Conclusion . 28

4 Off-Policy Formulation of Temporal-Difference Learning 29

4.1 Sub-sampling and i.i.d. formulation of TD learning 29

4.2 Importance-weighting formulation . 30

4.3 Conclusion . 32

5 Gradient Temporal-Difference Learning with Linear Function Approximation
33

5.1 Derivation of the GTD algorithm . 34

5.2 Derivation of the GTD2 and TDC algorithms 36

5.3 Convergence Analysis . 39

5.3.1 Convergence analysis for GTD . 41

5.3.2 Convergence analysis for GTD2 43

5.3.3 Convergence analysis for TDC . 44

5.3.4 Convergence remarks for TDC with importance-weighting scenario 48

5.4 Empirical results . 48

5.5 Conclusion . 51

6 Nonlinear Gradient Temporal-Difference Learning 53

6.1 Nonlinear TD learning . 53

6.2 Objective function for nonlinear function approximation 55

6.3 Derivation of nonlinear GTD2/TDC . 57

6.4 Convergence Analysis . 60

6.5 Empirical results . 62

6.6 Conclusions . 64

7 Extension to Eligibility Traces 66

7.1 Problem formulation and objectives . 67

7.2 Forward-view objective function . 69

7.3 Backward-view objective function . 71

7.4 Derivation of the GTD(λ) algorithm . 72

7.5 Conclusion . 74

8 GQ(λ): A Gradient-TD Algorithm for General Prediction 75

8.1 Problem formulation and objectives . 75

8.2 The GQ(λ) algorithm . 77

8.3 Derivation of GQ(λ) . 78

8.3.1 Forward-view objective function based on importance sampling . . 78

8.3.2 Backward-view objective function 80

8.3.3 Stochastic gradient-descent derivation 82

8.4 Greedy-GQ(λ): The extension of GQ(λ) to control 84

8.4.1 Empirical results . 85

8.5 Conclusion . 86

9 General Value Functions 87

9.1 GVFs: The framework . 87

9.2 GQ(λ) for GVFs . 89

9.3 General state-value functions . 91

9.4 Option conditional predictions with GQ(λ) 92

9.5 Representing knowledge with GVFs . 93

9.6 Conclusion . 93

10 Perspectives and Prospects 94

10.1 Future Research Directions . 95

10.2 Closing remarks . 98

References 100

A Derivation of GQ(λ) for GVFs and Varying Eligibility Traces 104

A.1 Forward-view objective function based on importance sampling 104

A.1.1 Backward-view objective function 106

A.1.2 Stochastic gradient-descent derivation 107

B Derivation of GTD(λ) for General State-Value Functions and Varying Eligibil-
ity Traces 110

B.1 Backward-view objective function . 111

B.2 Derivation of the GTD(λ) algorithm . 111

C Hybrid Gradient-TD Methods 113

List of Figures

1.1 Status of conventional TD methods in terms of stability. 6

1.2 Algorithmic contributions. 6

2.1 The agent and environment interaction in reinforcement learning. 8

2.2 The space of methods. The small (black) blobs represent actions while the
large blobs represent states. The squares represent the absorbing states (or
terminal states). 12

2.3 Geometric relationships between the approximate value functions, the the
effect of Bellman and projection operators on value functions. 15

2.4 The Baird’s 7-star MDP. 17

2.5 The learning parameters in Baird’s counterexample diverge to infinity. . . . 18

2.6 Spiral counterexample. 19

3.1 The value function geometry. 24

3.2 The A-split example. 26

5.1 Empirical results on the four small problems. 50

5.2 The 9x9 Computer Go results with linear function approximation. 51

5.3 Learning curves on Baird’s off-policy counterexample. 51

6.1 The geometry of the MSPBE objective for nonlinear function approxima-
tion. 56

6.2 Empirical evaluation results for spiral counterexample. 63

6.3 Empirical evaluation on 9x9 Computer Go with nonlinear function approx-
imation. 64

8.1 Empirical illustration for Baird’s counterexample. The graph shows that
Greedy-GQ converges to the true solution, while Q-learning diverges. . . . 85

Chapter 1

Introduction

Temporal-difference (TD) methods are central and powerful techniques in solving rein-
forcement learning (RL) problems (Sutton and Barto, 1998). TD learning—in contrast to
Monte-Carlo— has the ability to learn from incomplete sequence of events without waiting
for the final outcome. This key property allows moment-by-moment (real-time) predic-
tions. For example, consider playing chess. In order to learn and make predictions, the
player does not need to wait until the game ends. Instead, the player updates her predic-
tions about the outcome after each move. TD learning is a bootstrapping method; that is,
the current prediction is updated based on the next prediction. If the difference between
the two predictions are positive, then it increases the prediction of winning for situations
similar to the current situation.

In many problems of interest, however, the number of situations—states— is very large.
For example, in games such as Backgammon, Chess, and 19 × 19 computer Go, there are
roughly 1028, 1047 and 10170 states, respectively. Clearly, it is not practical to compute the
value of each state individually (this problem is also related to the curse-of-dimensionality).
To solve this problem we need to abandon the idea of computing value functions exactly and
instead use approximation techniques. This procedure is known as function approximation.

Function approximation, as a generalization technique, allows us to approximate the value
of unseen states from observed data. More specifically, the states are mapped to feature
vectors that have many fewer components than the number of states. To estimate the ap-
proximate value of each state, function approximation combines (e.g. linearly) the state’s
feature vector with a parameter vector of the same size.

However, many popular TD algorithms, including TD(λ), Q-learning and Sarsa, when com-
bined with function approximation, can become unstable and diverge—their learning pa-
rameters will go to infinity (Baird, 1995; Tsitsiklis and Van Roy, 1997). The only con-
vergence guarantee that has been reported for TD(λ) with linear function approximation
is restricted to the case where states are sampled according to the policy being evaluated;

1

that is, (state) trajectory following. This training scenario is called on-policy learning (Sut-
ton 1988; Tsitsiklis and Van Roy, 97; Tadić, 2001). Nevertheless, there exists a number of
counterexamples for which TD(λ) with linear function approximation may diverge under
off-policy training (Baird, 1995; Sutton and Barto, 1998).

Off-policy learning refers to learning about one way of behaving, called the target policy,
from data generated by another way of selecting actions, called the behavior policy. The
target policy is often a deterministic policy that approximates the optimal policy. Con-
versely, the behavior policy is often stochastic, exploring all possible actions in each state
as part of finding the optimal policy. Freeing the behavior policy from the target policy
allows a greater variety of exploration strategies to be used. It also enables learning from
training data generated by unrelated controllers, including manual human control, and from
previously collected data. A third reason for interest in off-policy learning is that it per-
mits learning about multiple target policies (e.g., optimal policies for multiple sub-goals)
from a single stream of data generated by a single behavior policy, in other words, parallel
learning.

The stability problem of popular TD methods with function approximation indicates that
there is a severe problem with the way table-lookup TD methods are combined with func-
tion approximation. Particularly, this stability problem arises when we seek the follow-
ing four desirable algorithmic features: (1) TD learning, (2) function approximation, (3)
off-policy learning, (4) linear complexity both in terms of memory and per-time-step com-
putation. Finding a temporal-difference algorithm that is effective on large applications
with function approximation has been one of the important open problems in reinforcement
learning for more than a decade.

The stability problem is not specific to reinforcement learning. Classical dynamic program-
ming methods such as value and policy iteration are also off-policy methods and also may
diverge when they are used in conjunction with linear or non-linear function approximation.

1.1 Related works

Several approaches to the stability problem in reinforcement learning have been proposed,
but none have been satisfactory in many ways, such as high variance, inferior solution, or
high complexity in terms of memory and per-time-step computation.

One idea for retaining all four desirable features is to use cumulative products of target-to-
behavior-policy likelihood ratios to re-weight TD updates. In principle it uses importance
sampling idea over the whole data trajectory (not just on a given sample). In other words,

2

at any given time t, the TD update is re-weighted by cumulative products of importance
sampling ratios (likelihood ratios) up to time t, so that its expected value is in the same
direction as on-policy update according to the target policy (Precup et al., 2000; 2001).
Convergence can sometimes then be assured by existing results on the convergence of on-
policy methods (Tsitsiklis and Van Roy 97; Tadić 2001). However, the importance sampling
weights are cumulative products of many target-to-behavior-policy likelihood ratios, and
consequently they, and the corresponding updates, may be of very high variance.

The use of “recognizers” to construct the target policy directly from the behavior policy
(Precup et al., 2006) is one strategy for limiting the variance; another is careful choice of
the target policies (Precup et al., 2001). However, it remains the case that for all of such
methods to date there are always choices of problem, behavior policy, and target policy for
which the variance is infinite, and thus for which there is no guarantee of convergence.

The residual gradient (RG) method (Baird, 1995) has also been proposed as a way of ob-
taining all four desirable features. The RG algorithm has a convergence guarantee, however,
it has two major problems.

The first problem with RG method is that it requires two independent samples for the next
state given the current state. This is known as double-sampling. If the model of the en-
vironment is known, then two independent samples can be generated from the model. To
overcome the double-sampling problem—for the case where the model of the environment
is not known or computationally is expensive to learn— Baird (1995) recommended using
only one sample for the next state. This method can be viewed as gradient-descent in the
expected squared TD-error. It converges stably to a solution, that minimizes mean-squared
TD-error given an arbitrary differentiable function approximation. However, this solution
has always been found to be inferior to the TD solution (see Sec. 3.2).

The second problem that seems to be fundamental is that, for the case of function ap-
proximation, sometimes the solution obtained from RG method is not reliable even if the
algorithm has access to two independent samples. I will discuss about this in Sec. 3.2.

Gordon (1995) and others have questioned the need for linear function approximation. He
has proposed replacing linear function approximation with a more restricted class of ap-
proximation, known as averagers, that never extrapolate outside the range of the observed
data and thus cannot diverge (see also Szepesvari & Smart, 2004). Rightly or wrongly, aver-
agers have been seen as being too constraining and have not been used on large applications
involving online learning. Linear methods, on the other hand, have been widely used (e.g.
Baxter, Tridgell & Weaver, 1998; Schaeffer, Hlynka & Jussila, 2001).

The need for linear complexity has also been questioned. Second-order methods for lin-

3

ear approximations, such as LSTD (Bradtke and Barto, 1996; Boyan, 2002) and LSPI
(Lagoudakis and Parr, 2003), can be effective on moderately sized problems. If the num-
ber of features in the linear approximation is d, then these methods require memory and
per-time-step computation in the order d2. Newer incremental methods such as iLSTD
(Geramifard et al., 2006) have reduced the per-time-complexity to O(kd), where k is a
moderately chosen natural number, but iLSTD still has complexity of O(d2) in memory.
Sparsification methods may reduce the complexity further, they do not help in the general
case, and may apply to O(d) methods as well to further reduce their complexity.

Linear function approximation is most powerful when very large numbers of features are
used, perhaps millions of features (e.g., as in Silver et al., 2007). In such cases, methods
with O(d) complexity are required.

The stability problem of TD methods in conjunction with nonlinear function approxima-
tion is more severe than with linear function approximation, as conventional TD methods
with nonlinear function approximation may diverge even for the case of on-policy learning
(Tsitsiklis and Van Roy, 1997). There has been little work on addressing this stability prob-
lem, and proposed methods either are restricted to particular conditions or only partially
solve the problem. For example, the Bridge algorithm by Papavassiliou and Russell (1999)
uses a variant of TD learning and is convergent with nonlinear function approximation.
However, it is a complex algorithm with high computational complexity, which hampers its
practicality and also it does not have all of our four desirable algorithmic features.

1.2 Contributions

In this thesis, I present a new family of TD algorithms based on gradient-descent. These
algorithms are the first TD methods that have all of the four desirable algorithms features
while retaining a convergence guarantee.

Our new algorithms are based on gradient-descent in a Bellman-error objective function
and as a result we call them gradient-TD methods. Gradient-TD algorithms can be seen
as an alternative conventional TD methods, such as TD(λ), Sarsa and Q-learning (Watkins,
1989). A distinctive feature that distinguishes gradient-TD methods from conventional TD
algorithms is the use of a second set of weights (auxiliary weights) in their main update
rule.

In addition, we make the following extensions:

• We extend our gradient-TD algorithms to include eligibility traces. Particularly, we

4

let the eligibility trace parameter, λ, be an arbitrary function of state.

• We extend our gradient-TD algorithms to include general policy termination proba-
bility. This extension makes our algorithms suitable for learning general value func-
tions (GVFs).

The result of the above extensions is introducing two novel gradient-TD algorithms: GTD(λ)
and GQ(λ). These extensions bring us closer to the ultimate goal of this work—the de-
velopment of a general prediction learning algorithm suitable for learning experientially
grounded knowledge of the world.

Although GQ(λ) is developed for the prediction domain, it can be extended to the control
domain. Thus, we introduce Greedy-GQ(λ), and also Greedy-GQ for the case of λ=0, in
which the target policy is greedy with respect to the current estimate of the value function.
Greedy-GQ can be seen as Q-learning with a gradient correction term. In this thesis, how-
ever, we do not present convergence proof for Greedy-GQ(λ), because the proof is not in a
ready state. However, to get a flavour of the convergence proof, we refer the reader to Maei
et al. (2010).

Some of our empirical results suggest that gradient-TD method maybe slower than con-
ventional TD methods on problems on which conventional TD methods are sound (that is,
on-policy learning problems).

Our latest gradient-TD algorithms, called hybrid gradient-TD methods, potentially can im-
prove the rate of convergence. They are “hybrid” in that they become equivalent to (and
thus just as fast as) conventional TD in on-policy cases in terms of asymptotic rate of con-
vergence. We briefly mention these hybrid algorithms in Appendix C.

Figure 1.1 gives a general picture of the problem of TD methods with function approxi-
mation, and Figure 1.2 summarizes the new gradient-TD algorithms that we present in this
thesis. The figures show that TD methods are robust only with exact tabular representations.
When combined with function approximation they may diverge, and their convergence can
be guaranteed only for a narrow class of problems, such as on-policy learning, along with a
narrow class of function approximations, such as linear function approximation.

All of our algorithms are based on gradient descent, and are provably convergent.

5

RL
problem

Tabular
TD(λ)

Prediction

On-Policy Off-Policy

Stable

Linear
TD(λ)

Nonlinear
TD(λ)

Stable Non-
stable

Tabular
TD(λ)

Linear
TD(λ)

Nonlinear
TD(λ)

Non-
stable

Non-
stable

Tabular
Sarsa(λ)

Control

On-Policy Off-Policy

Stable

Linear
Sarsa(λ)

Nonlinear
Sarsa(λ)

Stable
(chatter)

Non-
stable

Tabular
Q-learning

Linear
Q-learning

Nonlinear
Q-learning

Non-
stable

Non-
stableStable Stable

ApproximationExact ApproximationExact ApproximationExact ApproximationExact

Figure 1.1: Status of conventional TD methods with tabular representation and function approxima-
tion, in terms of stability. For stability analysis of linear Sarsa (λ) as well as its chattering behavior
see Gordon (2000).

TD Prediction
+

Function approximation (FA)

The new algorithms

TD(λ)
GTD, GTD2, TDC

GTD(λ)
GQ(λ)

Conventional algorithm

Sounds only with

linear FA
+

on-policy learning

Converge under general settings:

both linear and nonlinear FA
+

both on-policy and off-policy learning

Off-policy TD Control
+

Linear Function approximation

Q-learning Greey-GQ

Can diverge Has stability guarantee

The new algorithmConventional algorithm

+ hybrid linearTD version

Figure 1.2: Algorithmic contributions.

6

Chapter 2

Background

TD learning is central in reinforcement learning due to its bootstrapping and prediction abil-
ity. As such, TD learning has been used for prediction problems, such as policy evaluation,
in reinforcement learning. In addition, TD methods have been extended to problems that
involve finding a good policy to achieve a goal (Sutton and Barto, 1998; Szepesvári, 2010).

In this chapter, I give an overview of the most popular and classical temporal-difference
(TD) learning methods, such as TD(λ), Q-learning and Sarsa. I will show that popular TD
methods, which are based on gradient-descent, are not true gradient-descent methods, and
as such the condition under which they converge is very narrow.

2.1 The reinforcement learning problem

The problem of reinforcement learning (RL) refers to the problem of learning by interaction
with an environment to accomplish a goal. The environment is everything that learner
interacts with. The learner, also called agent, makes a decision by taking an action at every
time-step according to a policy, and the environment emits a scalar reward for every action.
The ultimate goal of RL agent is to take sequence of actions that maximize the received
rewards in the long run.

In the standard RL framework there are two distinct problems: 1) Policy evaluation or
prediction, which refers to evaluating the consequences of following a fixed policy, and
2) Control, which refers to finding an optimal (or near optimal) policy that maximizes the
expected future reward. For some of the practical applications of RL methods, we refer the
reader to Tesauro (1992), Crites & Barto (1995), Marbach et al. (1997), and Peters et al.
(2005).

7

Environment

Agent

action: At

state: St

Rt+1

St+1

reward: Rt

Figure 2.1: The agent and environment interaction in conventional reinforcement learning setting.
The t index indicates time-step.

2.2 The problem formulation

To formulate the reinforcement learning problem, we consider the standard RL framework
in which a learning agent interacts with an environment consisting of a finite Markov de-
cision process (MDP). At each of a sequence of discrete time-steps, t = 0, 1, 2, . . ., the
environment is in a state St ∈ S, the agent chooses an action At ∈ A, and then the envi-
ronment emits a reward Rt+1 ∈ R, after which the agent find itself in a next state St+1 ∈ S
(see Figure 2.1). The state and action sets are finite. State transitions are stochastic and
dependent on the immediately preceding state and action and rewards are stochastic and
dependent on the preceding state and action, and on the next state.

We mentioned that the goal of RL agent is to maximize received rewards in the long run, but
how can we formulate long run reward? A standard approach is the value function based
approach. The state-value function of a policy, π : S → A, is defined as:

V π(s) = E
� ∞�

t=0

γtRt+1|S0 = s, π

�
. (2.1)

where γ ∈ [0, 1) is the discount rate and E[.] denotes expectation over random samples,
which are generated by following policy π. In this thesis, random variables (e.g. state,
action and reward) are denoted by capital letters.

Let P π denote state-state transition probability matrix and V π ∈ R|S| be value function
vector, whose sth element is V π(s). It is well known that V π ∈ R|S| satisfies the following

8

Bellman equation:

V π = Rπ + γP πV π

def= T πV π, (2.2)

where Rπ is the vector with components E[Rt+1|St = s], and T π is known as the Bellman

operator.

Analogously, we can define the action-values, Qπ(s, a), which evaluates the value of taking
action a from state s:

Qπ(s, a) = E
� ∞�

t=0

γtRt+1|S0 = s, A0 = a, π

�
. (2.3)

So far we have formulated the problem of policy evaluation or prediction. However, solving
a reinforcement learning problem roughly means finding an optimal policy that achieves lots
of rewards in the long run. An optimal policy is a policy that its value function is at least
better or equal than the value function of other policies. The value function of an optimal
policy is called the optimal value function. The optimal state-value function, denoted V ∗,
is defined as:

V ∗(s) def= max
π

V π(s), ∀s ∈ S,

and the optimal action-value function, denoted Q∗ is

Q∗(s, a) def= max
π

Qπ(s, a), ∀s ∈ S,∀a ∈ A.

In the next section, we review some of the most popular temporal-difference (TD) learning
algorithms, also known as classical TD methods. One of the key property of classical TD
methods is their ability to learn from every single fragment of experience without waiting
for the final outcome.

2.3 Temporal-difference learning

TD learning is a key idea for prediction and plays central role in reinforcement learning
(Sutton, 1988; Sutton and Barto, 1998). It uses the bootstrapping ideas developed in dy-
namic programming as well as Monte Carlo ideas. Classical TD methods such as TD(λ),
Sarsa, and Q-learning are simple, sample-based, online, and incremental algorithms and as
such are popular in the RL community.

9

The next two subsections give an overview of TD learning methods for the prediction (pol-
icy evaluation) and control problems.

2.3.1 Temporal-difference learning for prediction

TD learning can be used for evaluating the value of a fixed policy, π. This is known as
prediction or policy evaluation. TD methods use each fragment of experience to update the
value of state St, Vt(St), at time t. This would allow moment-to-moment prediction. This
is different than dynamic programming (DP) approach in the sense that the value of each
state, in DP approach, are updated by sweeping over next states. In the next paragraph, we
present the simplest TD method.

The tabular TD(0) algorithm for estimating V π: The simplest TD method, known as
tabular TD(0), estimates the value of each individual state; e.g. St, according to the follow-
ing update:

Vt+1(St) = Vt(St) + αt [Rt+1 + γVt(St+1)− Vt(St)] ,

= Vt(St) + αtδt, (2.4)

where
δt = Rt+1 + γVt(St+1)− Vt(St), (2.5)

is one-step TD error, or in short TD error, and αt is a deterministic positive step-size pa-
rameter, which is typically small, or for the purpose of convergence analysis is assumed to
satisfy the Robbins-Monro conditions:

�∞
t=0 αt = ∞,

�∞
t=0 α2

t < ∞. Tabular TD(0) is
guaranteed to converge to V π under standard conditions.

2.3.2 Temporal-difference learning for control

TD learning also can be used for finding an optimal policy. The problem of finding an
optimal policy is known as control problem. One way to find an optimal policy is through
value function based approach. That is, we can find the optimal policy through its value.
Two popular TD methods have been suggested for this problem (see Sutton and Barto,
1988):

Sarsa: On-policy TD control The update for Sarsa the algorithm is similar to TD(0) in
the sense that instead of state values, Sarsa updates action-values (also called Q-functions)

10

according to

Qt+1(St, At) = Qt(St, At) + αt [Rt+1 + γQt(St+1, At+1)−Qt(St, At)] .

One natural choice for choosing policy π, which generates actions is �-greedy policy due to
exploration-exploitation trade-off. The theorems, which have been used for the convergence
of TD(0), also can be used for the convergence of Sarsa.

Q-learning: Off-policy TD control One of the breakthrough algorithms in RL is Q-
learning. Q-learning also is one of the most popular algorithms among TD methods be-
cause: (1) It is simple, (2) It can find optimal action-values under off-policy training. The
action-value update is according to

Qt+1(St, At) = Qt(St, At) + αt

�
Rt+1 + γ max

a
Qt(St+1, a)−Qt(St, At)

�
.

Q-learning is off-policy because the agent learns about a policy that differs from the policy
it is following. That is, at time t the agent is in state St and takes action, At, according to the
policy π, and the environment takes the agent to state St+1. The agent, however, updates its
action-values by learning about the value of a greedy action, and not the value of executed
actions.

The Q-learning algorithm that I described in this section is in its tabular form; that is, the
action-value function is computed for each state-action pair. Tabular Q-learning is guar-
anteed to converge to optimal action-values if states are visited infinitely (Sutton & Barto,
1998).

2.4 TD learning with eligibility traces

Classical TD methods that we talked about in previous sections, only use one-step back-up
to update the value function. However, it is possible to look further ahead. Eligibility traces,
allow us to look further ahead through their mechanistic backward-view updates. Several
important properties of eligibility traces are as follows:

• They bridge the temporal gaps in cause and effect when experience is processed at a
temporally fine resolution.

• They make classical TD methods more like efficient incremental Monte-Carlo al-
gorithms. For example, in TD(λ), λ ∈ [0, 1] refers to eligibility function and is

11

equivalent to Monte-Carlo methods when λ = 1.

• They are particularly of interest when reward is delayed by many steps, thus, by
adjusting λ function we may get faster and efficient learning.

Here, et(s) is called eligibility trace for state s at time t, and for tabular representation is
defined as

et(s) =

�
γλet−1(s) if s �= St;
1 + γλet−1(s) if s = St,

TD(λ), Sarsa(λ) and Q(λ) are classical TD algorithms with eligibility traces. For example,
TD(λ) update is as follows:

Vt+1(s) = Vt(s) + αtδtet(s), ∀s ∈ S. (2.6)

Similar updates exist for Sarsa(λ) and Q(λ). For the detailed description of these algorithms
we refer the reader to Sutton & Barto (1998).

Figure 2.2, illustrates various methods used for value function estimation. As we can see,
TD learning has an interesting property, which allows it to learn from a single transition,
while Monte-Carlo method needs to wait until it observes the outcome, and then it updates.
Each method, has its own advantage, and thus, TD(λ) has been developed to bridge the gap
between the two methods.

Dynamic Programming Exhaustive Search

Temporal-Difference Learning Monte-Carlo

Deep BackupsShallow Backups

Bootstrapping parameter, λ Full Backups

Sample Backups

 λ=1λ=0

Figure 2.2: The space of methods. The small (black) blobs represent actions while the large blobs
represent states. The squares represent the absorbing states (or terminal states).

12

2.5 Temporal-Difference learning with function approximation

The TD(0) algorithm (2.4), can be combined with parametrized value function Vθ, θ ∈ Rd.
The value function can be either linear or nonlinear and differentiable function (such as
neural networks) with respect to the parameter vector, θ. The resulting algorithm has the
following update rule:

θt+1 = θt + αtδt(θt)∇Vθt(St), (2.7)

where
δt(θt) = Rt+1 + γVθt(St+1)− Vθt(St), (2.8)

and ∇Vθ(s) ∈ Rd denotes the gradient of Vθ with respect to θ at s. We call this algo-
rithm linear/nonlinear TD(0). Also, the TD(0)-solution (or TD(0)-fixpoint), θ, (if it exists),
satisfies:

E[δt(θ)∇Vθ(St)] = 0. (2.9)

Note, for simplicity we adopt the following notation for TD error:

δt ≡ δt(θt).

Sutton’s TD(λ) with linear function approximation (Sutton, 1988) is one of the simplest
form of TD learning with function approximation and, since its development, has played
central role in modern reinforcement learning. To start, first we overview the simplest form
of TD(λ) with linear function approximation, and we call it linear TD(0). In the beginning,
let’s limit ourselves to on-policy training data. In Chapter 4, we show how to extend TD
ideas to off-policy learning.

The linear TD(0) algorithm, starts with an arbitrary parameter vector, θ0. Upon observing
the tth transition from state St to St+1 (on-policy transitions), which follows with feature-
vector observation (φt, Rt+1, φt+1), where φt ≡ φ(St), the learning parameter vector is
updated according to

θt+1 = θt + αtδtφt, (2.10)

where δt = Rt+1 + γθ�t φt+1− θ�t φt is TD-error with linear function approximation. If the
discount factor γ is zero, the problem becomes supervised learning and linear TD(0) update
rule becomes the conventional least-mean-square (LMS) rule in supervised learning. Thus,
the key feature that distinguishes reinforcement learning from supervised learning is the
existence of bootstrapping term, θ�t φt+1, in the update rule (2.10). This will allow the
algorithm to guess about future outcome without waiting for it—allows it to learn from

13

single fragment of experience without waiting for the final outcome. Also, this is the key
difference between TD learning and conventional Monte-Carlo methods (which are based
on supervised learning ideas). Thus, TD methods have the ability to learn from single
transitions without waiting for the final outcome; they do this by guessing from a guess!
We will see how this key idea allows TD to learn from off-policy data.

It is well known that the linear TD(0) algorithm is convergent under on-policy training
(Tsitsiklis and Van Roy,1997; Tadić, 2001). From the theory of stochastic methods, the
convergence point of linear TD(0), is a parameter vector, say θ, that satisfies

0 = E[δt(θ)φt] = b−Aθ, (2.11)

where
δt(θ) = Rt+1 + γθ�φt+1 − θ�φt, (2.12)

A = E
�
φt(φt − γφt+1)�

�
, b = E[Rt+1φt] , (2.13)

and the expectation is over all random samples. In this thesis, parameter vector θ, which sat-
isfies the above equation, is called TD(0) solution—also this is the value found by LSTD(0).

In general, the TD-solution refers to the fixed-point of the expected TD update (e.g., Eq. 2.11).
But under off-policy training, if this fixed-point exists, it may not be stable. In other words,
if θ does satisfy in Equation (2.11), then the TD(0) algorithm in expectation may cause it to
move away and eventually diverge to infinity.

Equation (2.11), gives us the TD-solution in the parameter space. In the value function
space, the TD-solution, θ, satisfies

Vθ = ΠTVθ, (2.14)

where Vθ = Φθ ∈ R|S|, Φ is the matrix whose rows are the φ(s)� for a given row entry s,
and Π is the projection operator to the linear space. The projection operator, Π, takes any
value function v and projects it to the nearest value function representable by the function
approximator:

Πv = Vθ where θ = arg min
θ
� Vθ − v �2µ,

where µ is state-visitation probability distribution vector whose sth component, µ(s), rep-
resents probability of visiting state s, and

�v�2µ =
�

s

µ(s)v2(s).

14

In a linear architecture, in which Vθ = Φθ , the projection operator is linear and independent
of θ:

Π = Φ(Φ�DΦ)−1Φ�D, (2.15)

where D is a diagonal matrix whose diagonal elements are µ(s). For a geometric picture of
value function with linear structure see Figure 2.3.

T

V!

!

TV!

!TV!

"

TD(0)-fixpoint satisfies V! !TV!=

Figure 2.3: Geometric relationships between the approximate value functions, the the effect of
Bellman and projection operators on value functions.

Unlike linear TD(0), nonlinear TD(0) can diverge under on-policy training (Tsitsiklis and
Van Roy, 1997). Unfortunately, both linear and nonlinear TD(0) can diverge under off-
policy training (Sutton and Barto, 1998; Tsitsiklis and Van Roy, 1997). The purpose of this
thesis is to develop a new family of TD algorithms that are sound under general settings.

In the next section, I show how conventional TD methods, such as TD(0), are derived in
conjunction with function approximation.

2.6 Derivation of TD(0) with function approximation

In this section, I briefly overview the derivation of TD(0) with function approximation. The
purpose of this section it to show how linear/nonlinear TD(0) has been derived to get a better
understanding why it may diverge. Particularly, I will show that linear/nonlinear TD(0) is
not a true gradient-descent method, which (partially) might suggest why TD methods with
function approximation are not robust for general settings.

15

To start, let’s consider the following mean-square-error objective function

MSE(θ) = E
�
(V π(St)− Vθ(St))2

�
.

Following gradient-descent methods, the learning update can be obtained by adjusting the
modifiable parameter θ along the steepest descent direction of the MSE objective function;
that is, θnew − θold ∝ −1

2∇MSE(θ)|θ=θold
, where

−1
2
∇MSE(θold)

= −1
2
∇

�
E

�
(V π(St)− Vθ(St))2

��

|θ=θold

= E
�
(V π(St)− Vθold

(St))∇Vθ(St)|θ=θold

�
. (2.16)

In general, it is not practical to compute the above update term because: 1) The target value,
V π(St), is not known; 2) We do not have access to model of the environment and therefore
can not compute the expectation term.

We can get around the first problem by approximating the target value

V π(s) ≈ E[Rt+1 + γVθ(St+1) | St = s, π] .

This is called bootstrapping step. To get around the second problem we use the theory
of stochastic approximation; that is, at every time-step we conduct direct sampling from
equation (2.16) and update the parameters along (stochastic) direction of

(V π(St)− Vθ(St))∇Vθ(St).

Putting these all together, we get linear/nonlinear TD(0) algorithm:

θt+1 = θt + αtδt∇Vθt(St), (2.17)

where δt is one-step TD error (2.8).

2.7 The stability problem of linear/nonlinear TD(0)

In previous section, we overviewed the derivation of one of the simplest and popular TD
method; that is TD(0), in conjunction with function approximation. In this section, we raise
one of its most outstanding problems, that is, the stability problem.

16

In the next paragraph, we consider one of the well-known counterexamples, which shows
the divergence of linear TD(0) and its approximate dynamic programming counterpart (up-
dating by sweeping over the states instead of sampling).

Baird’s Off-policy Counterexample Consider the 7-star version of the “star” counterex-
ample (Baird, 1995; Sutton and Barto, 1998). The Markov decision process (MDP) is
depicted in Fig. 2.4. The reward is zero in all transitions, thus the true value functions for
any given policy is zero; for all states.

The behavior policy, in this example, chooses the solid line action with probability of 1/7
and the dotted line action with probability of 6/7. The goal is to learn the value of a target
policy that chooses the solid line more often than the probability of 1/7. In this example,
the target policy choose the solid action with probability of 1.

The value functions are approximated linearly in the form of V (i) = 2θ(i) + θ0, for i ∈
{1, ..., 6}, and V (7) = θ(7) + 2θ0. Here, the discount factor is γ = 0.99. The TD-
solution, in this example, is θ(i) = 0, i ∈ {1, ..., 7}, and θ0 = 0. Both TD(0) and DP
(with incremental updates), however, will diverge on this example; that is, their learning
parameters will go to ±∞ as is illustrated in Fig. 2.5.

1 2 3 4 5 6

7

Figure 2.4: The Baird’s 7-star MDP. Every transition in this MDP receives zero reward. Each state,
has two actions, represented by solid line and dotted line. Solid line action only make transition to
state state 7, while dotted line action uniformly make transition to one of states 1-6 with probability
of 1/6.

Now, we turn into the stability issues of TD methods in conjunction with nonlinear function
approximation. Despite linear TD(0), nonlinear TD(0) can become unstable and diverge
even under on-policy training. The spiral counterexample, due to Tsitsiklis and Van Roy
(1997), shows divergence of nonlinear TD(0) under on-policy training.

17

0 20 40 60 80 1000

50

100

150

200

250

300

Pa
ra

m
et

er
,

(i)

Sweeps

(8)

(1)

Figure 2.5: The learning parameters in Baird’s counterexample diverge to infinity. The parameters
are updated according to expected TD(0) update (dynamic programming style).

Spiral Counterexample Consider the Markov chain with 3 states as is shown in the left
panel of Fig. 2.6. All state-state transitions are with probability of 1/2, the reward is always
zero, and the discount factor is γ = 0.9. The parametrized (approximate) value function
has a scalar parameter, θ, and takes the nonlinear spiral form

Vθ(s) =
�
a(s) cos (λ̂θ)− b(s) sin (λ̂θ)

�
e�θ.

The true value function is V = (0, 0, 0)�, which is achieved as θ → −∞. The right
panel of the figure, demonstrates the value functions for each state; each axis corresponds
to value function for a given state. Here, we used V0 = (100,−70,−30)�, a = V0,
b = (23.094,−98.15, 75.056)�, λ̂ = 0.866 and � = 0.05. As is illustrated in Fig. 2.6(c),
the learning parameter θ diverges using nonlinear TD(0). Note, here we have used expected
TD(0) update in the plot to illustrate how θ parameter evolves under TD learning.

Why is TD(0) with linear/nonlinear function approximation sometimes unstable? To ad-
dress this question, first we need to look at the way the algorithm is derived. Unlike su-
pervised learning methods, which use a mean-square-error objective function, in RL the
objective is to estimate value functions that satisfy in Bellman equation. This would be
straightforward to do if we use tabular representation. However, for the case of function ap-
proximation, it is not clear what is the underling equation of approximate value functions.
In other words, it is not straight forward to do function approximation.

TD methods with function approximation are proposed as a way of conducting this approx-

18

1

2 3

!""
#"

"
#"

!""

!""
#"

"
#"

!""
!""

#"

"

#"

!""

$%!&$%'&

$
%(
&

0 1000 2000 30000

5

10

15

Iterations

P
ar

am
et

er

a) b)

c)

Figure 2.6: Spiral counterexample, which shows the divergence of nonlinear TD(0) under on-policy
training. Panel a) shows the MDP problem and panel b) shows how the value functions evolve. Panel
c) shows the learning parameter diverges to infinity. The parameter is updated according to expected
TD(0) update (approximate dynamic programming style).

imation. In previous section, we showed how linear/nonlinear TD(0) originally has been
derived. To do this, we started with the idea of updating the learning parameters along
the gradient-descent direction of the mean-square error objective function, but with an ap-
proximation step , V π(s) ≈ E[Rt+1 + γVθ(St+1) | St = s]. Thus, the resulting algorithm
would not be true stochastic gradient-descent method. As a result, TD(0) with function
approximation may diverge.

A good way to see why linear/nonlinear TD(0) is not a true gradient-descent method is
to show that its update can not be derived by taking gradient of any function (Barnard,
1993). To do this, let’s consider linear TD(0) with the update term, δ(θ)φ, where δ(θ) =
R + γθ�φ� − θ�φ, φ ≡ φ(St), φ� ≡ φ(St+1), where t represents time-step.

Now, let’s assume that there exists a function J(θ) whose gradient is the TD(0) update,
δ(θ)φ; that is, ∇J(θ) = δ(θ)φ. Thus, the jth element of ∇J(θ) is

∂J(θ)
∂θj

= δ(θ)φj .

19

Now, if we take another partial derivative with respect to the ith component, we get

∂2J(θ)
∂θj∂θj

= (γφ�i − φi)φj ,

and consequently we conclude

∂2J(θ)
∂θi∂θj

�= ∂2J(θ)
∂θj∂θi

. (2.18)

This is a contradiction, because the second derivative of a differentiable function is indepen-
dent of the order of derivatives. This derivation, however, shows that the second derivative
of function J is not symmetric with respect to the order of derivative. As such, we conclude
linear TD(0) update is not a gradient of any function!

Note, the point of this analysis is not to show that as a result of the inequality (2.18) lin-
ear TD(0) can diverge, but rather to show that linear TD(0) is not a true gradient-descent
method. In fact, pseudo gradient methods, such as on-policy linear TD(0), can have con-
vergence guarantee.

2.8 Residual gradient method

The residual gradient (RG) method (Baird, 1995) has been proposed as an alternative
method to TD(0) with function approximation. The RG method updates the modifiable
parameter θ along the gradient-descent direction of the following objective function:

J(θ) = �TVθ − Vθ�2µ
= E

�
(E[δt(θ)|St])2

�
, (2.19)

where δt(θ) = Rt+1 + γVθ(St+1)− Vθ(St) is TD error, and

− 1
2
∇J(θ) = E[E[δt(θ) | St] E[∇Vθ(St)− γ∇Vθ(St+1) | St]]

= E[δt(θ)∇Vθ(St)]− γE
�
E[δt(θ)|St] E[∇Vθ(St+1) | St]

�
. (2.20)

Because the RG method is derived based on (true) gradient descent, it has stability guaran-
tees. However, one problem with the RG method is that direct sampling is not straightfor-
ward from the second term of the above equation. That is, given state, St, two independent
samples for the next state are required in order to do unbiased stochastic gradient descent.
This is also known as the RG method double sampling problem. The only case that this

20

would not be an issue is when the system is deterministic or the model of the environment
is known, which is not always the case.

As a result, Baird (1995) recommended using only one sample for the next state yielding
the following variant of the RG method:

∆θt = αtδt(∇Vθt(St)− γ∇Vθt(St+1)), (2.21)

where αt is positive step-size parameter. The RG method with one sample for the next state,
can be viewed as true gradient-descent in expected squared TD error objective function,
E

�
δ2
t (θ)

�
.

A convergence guarantee can be assured for both of the RG algorithms, however, RG solu-
tions have been found to be inferior to the TD solution, as is exemplified in the next chapter
(see also Sutton et al., 2009).

2.9 Conclusion

In this chapter, I gave a background review of some of the most popular TD methods, such
as TD(λ), Q-learning and Sarsa. First, I presented the algorithms in their tabular form and
then combined them with function approximation. I showed linear/nonlinear TD algorithms
are not true gradient descent and as such the condition under which they converge is narrow,
and they can diverge under off-policy training (e.g., Baird, 1995).

In the next section we study several possible objective functions that can be used in RL (as
well as approximate dynamic programming). We will describe the merits of the one that
leads to the TD-solution, and based on this objective function we build all of our future
algorithms.

21

Chapter 3

Objective Function for
Temporal-Difference Learning

An objective function is some function of the modifiable parameter θ that we seek to min-
imize by updating θ. In (stochastic) gradient-descent, the updates to θ are proportional to
the negative (sample) gradient of the objective function with respect to θ. In standard RL,
the objective is to find solution that satisfies Bellman equation. However, in the case of
function approximation, it is not clear how to combine the Bellman equation with value
function approximation.

In this chapter we seek an objective function (for the case of policy evaluation), whose min-
imum value provides a reasonable solution for approximate value functions. We propose
a Bellman-error objective function in which the TD-solution is its optimum solution. We
conclude that in fact this objective function is fairly reliable and thus the rest of our analysis
will be conducted based on it.

3.1 Several potential objective functions

In this section1, first we consider several objective functions that might be useful for ap-
proximate dynamic programming as well as temporal-difference learning methods. Then in
the next section, we study the reliability of each and eventually choose the one that is most
reliable.

1This section is based on the following paper: Sutton, R. S., Maei, H. R, Precup, D., Bhatnagar, S., Silver,
D., Szepesvári, Cs. & Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th International Conference on Machine Learning,
pp. 993–1000. Omnipress.

22

Mean-square-error (MSE) One natural choice for the objective function might be the
mean-squared-error (MSE) between the approximate value function Vθ and the true value
function V π, that is,

MSE(θ) =
�

s

µ(s) (Vθ(s)− V π(s))2

def= � Vθ − V π �2µ,

where Vθ and V π are viewed as vectors with one element for each state, and the norm
� v �2µ =

�
s µ(s)v2(s). The V π is the true value function vector, and under the MDP

condition it satisfies the Bellman equation (2.2).

Mean-square Bellman-error (MSBE): A seemingly natural measure of how closely the
approximation Vθ satisfies the Bellman equation is the mean-square Bellman error:

MSBE(θ) = � Vθ − TVθ �2µ, (3.1)

where T is Bellman operator (for simplicity we have dropped the superscript π from T

operator).

This is the objective function used by the most important prior effort to develop gradient-
descent algorithms (Baird, 1995; Baird, 1999). However, most popular temporal-difference
algorithms, including TD(0) with function approximation, do not converge to the minimum
of the MSBE. To understand this, note that the Bellman operator follows the underlying
state dynamics of the Markov chain, irrespective of the structure of the function approxi-
mator. As a result, TVθ will typically not be representable as Vθ for any θ.

The residual gradient (RG) method, in fact was proposed to find the optimum solution of
this objective function, however, due to some technical issues—e.g., the requirement for
having two independent next-state, given the current state— it has not been practical in a
wide range of real-world applications. Thus, instead, it has been proposed to use only one
sample for the next state, given the current state. However, the solution (called RG solution)
is considered inferior to TD-solution.

Mean-square TD-error (MSTDE): Another choice for objective function would be to
minimize mean-square TD-error (MSTDE); that is,

MSTDE(θ) = E
�
δt(θ)2

�
, (3.2)

23

where δt(θ) = rt+1 +γVθ(St+1)−Vθ(St). The major problem with this objective function
is its inferior results. For example, for the case of tabular representations, in general, its
optimum solution does not satisfy the Bellman equation. The RG solution, is the optimum
solution for the MSTDE objective function.

Mean-square projected Bellman-error (MSPBE): In the previous chapter, I showed
that the TD-solution for linear TD(0) satisfies Vθ = ΠTVθ. Thus, another choice for the
objective function would be to take the mean-square projected Bellman-error (MSPBE)
objective function:

J(θ) = � Vθ −ΠTVθ �2µ . (3.3)

Fig. 3.1 shows the geometric relationship between MSPBE (J(θ)) and MSBE . Although

T

V!

"

TV!

!TV!

!, D
�

J(θ)

� MSB
E(θ)

Figure 3.1: Geometric relationships between the square roots of the two Bellman-error objective
functions. Note, the reason we have considered D as part of the function space is that projected
operator Π is weighted according to D.

many previous works have highlighted the goal of achieving the TD solution (2.14). Our
present work seems to be the first to focus on minimizing MSPBE as an objective function to
be minimized through gradient-descent method. The idea of minimizing MSPBE also was
proposed in Antos, Szepesvári and Munos (2007, p. 100, 2008), which discusses viewing
LSTD solution as minimizing the MSPBE. Further insight into the difference between the
two Bellman-error objective functions can be gained by considering the episodic example
in Fig. 3.2.

24

3.2 Which objective function to choose?

To gain further insight into the difference between our candidate objective functions, let’s
consider the episodic example illustrated in Fig. 3.2, and compare the solutions obtained
from the proposed objective functions.

In the left and middle panels, episodes begin in state A. Then state A makes a transition to B
or to C with probability of 1/2 before proceeding to termination with a reward of 1 or 0 (all
other transitions have zero reward). We consider the tabular representation for the states,
thus, we expect to get the true solution which can be obtained from Bellman equation.

In the right panel, called A-split example, the state A now is split into two states, A1 and
A2 that share the same feature representation; they look the same and must be given the
same approximate value. Thus, the feature vector for both A1 and A2 is φ(A1) = φ(A2) =
(1, 0, 0)�, also we have φ(B) = (0, 1, 0)� and φ(C) = (0, 0, 1)�. Trajectories start in one
of the two A states each with 50% probability, then proceed deterministically either to B
and 1, or to C and 0.

First, we consider the following notation: Let random samples be in the form of triple
(S, R, S�) with corresponding state feature vectors, φ(S) and φ(S�) and R denotes reward
along the transition. TD error for this transition is δ(θ) = R + γθ�φ(S�)− θ�φ(S). Here,
we compare the following four solutions:

• The exact solution obtained from the Bellman equation.

• The TD solution, θ, which satisfies E[δ(θ)φ] = 0, and also minimizes the MSPBE
objective function (3.3).

• The solution, which minimizes the MSBE objective function (2.19):

MSBE(θ) = �TVθ − Vθ�2µ
= E

�
(E[δ(θ)|S])2

�
.

• The RG solution, which minimizes the following objective function:

MSTDE(θ) = E
�
δ(θ)2

�
,

where was introduced in Equation (3.2).

In the left panel, we can see states B and C are given values of 1 and 0 respectively according

25

1

AA

B

C 0

1

A

B

C

0

1A1 B

C 0A2

TD-fixpoint solution Residual-gradient solution With function approximation

1

AA

B

C 0

1

A

B

C

0

1A1 B

C 0A2

TD-fixpoint solution Residual-gradient solution With function approx...

backwards-
bootstrapping
example

• The two ‘A’ states look the
same; they share a single feature
and must be given the same
approximate value

• All transitions are deterministic;
Bellman error = TD error

• Clearly, the right solution is

• But the solution the minimizes
the Bellman error is

V (A1) = V (A2) =
1
2

V (B) = 1, V (C) = 0

V (B) =
3
4
, V (C) =

1
4

C

B

Figure 3.2: In the left and middle panels, episodes begin in state A then transition either to B or to C
with equal probability before proceeding to termination with a reward of 1 or 0 (all other transitions
have zero reward). The vertical positions of the states represent their values according to the TD
solution (left panel) and according to the residual-gradient (RG) solution (middle panel; Baird 1995,
1999). State A, for example, has height midway between 0 and 1 in both solutions, corresponding to
its correct value of 1

2 (because episodes starting in A end half the time with a total reward of 1 and
half the time with a total reward of 0, and γ = 1).

to TD solution, which is the exact solution obtained from the Bellman equation. However,
in the RG solution they are given the values 3

4 and 1
4 . The 1,0 values are correct in that these

states are always followed by these rewards, but they result in large TD errors, of δ = ±1
2 ,

on transitions out of A.

The RG solution has smaller TD errors, of δ = ±1
4 , on all of its transitions, resulting in a

smaller mean-square TD error per episode of 1
4
2 × 2 = 1

8 as compared to 1
2
2 = 1

4 for the
TD solution. That is, the RG solution (with one sample for the next state) splits the TD
error over two transitions to minimize squared TD error overall.

The key difference here is that, from A, the squared TD error tends to be large but the
expected TD error (the Bellman error) tends to be zero (as long as the B and C values are
distributed symmetrically around 1

2).

The TD solution 1,0 is in fact the minimum of MSBE on this problem, and this has led
to the widespread belief that the MSBE solves this problem. However, this is not the case
in general; once function approximation, including unobservable states, is introduced, the
MSBE and MSPBE solutions differ, and the 3

4 ,14 solution may reappear.

An example of this is shown in the right panel of Figure 3.2. From the observable data, this
example looks just like the previous, except now taking multiple samples is no help because
the system is deterministic, and they will all be the same. Now the 3

4 ,14 solution minimizes
not just the squared TD error, but the MSBE as well; only the MSPBE criterion puts the
minimum at the 1, 0 solution.

26

The MSBE objective causes function approximation resources to be expended trying to
reduce the Bellman error associated with A1 and A2, whereas the MSPBE objective takes
into account that their approximated values will ultimately be projected onto the same value
function.

Scherrer (2010) has conducted analysis on the reliability of both the TD-solution and the
RG-solution. He also provides an oblique projection framework that can describe the solu-
tions obtained from the TD(0) algorithm and the RG method, which is limited to one-step
TD methods. However, note that the solution of TD methods with linear/nonlinear function
approximation changes in conjunction with eligibility traces. Thus, selecting a proper value
for bootstrapping parameter, λ, can provide a quality solution using TD(λ).

However, we think, A-split examples provides some insights that tell us there is a fundamen-
tal problem with MSBE objective function when states are invisible—this is also inherent
in the notion of function approximation. It is interesting to note, function approximation is
related to partial observability of states. That is, one reason we do function approximation,
is because the state-space is too large and we can not observe all of them.

The A-split example demonstrates that the MSBE result could be inferior to the TD-solution,
however, this is not the only reason we abandon the MSBE objective function here. One
major issue is double-sampling restriction for its stochastic gradient descent direction. The
second issue is the fact that, in large scale problems, all the states are not visible. Thus, we
use function approximation.

One way to fix this problem (and also the problem with MSBE), for the case of function
approximation, is to condition the expectation term with features and not the actual states.
Thus we define the following feature-based MSBE objective function:

J̃(θ) = E
�
(E[δ(θ)|φ(S)])2

�
.

Now, following the derivations in Section 2.8 (see Eq. 2.20), we get

−1
2
∇Ĵ(θ) = E[δ(θ)∇Vθ(S)]− γE

�
E[δ(θ)|S] E

�
∇Vθ(S�) | φ(S)

��

= E[δ(θ)φ(S)]− γE
�
E[δ(θ)|S] E

�
φ(S�) | φ(S)

��
,

where we have used linear function approximation: Vθ(S) = θ�φ(S). By direct sampling,
we get the following update

27

θ ← θ + α
�
δ(θ)φ(S)− γE[δ(θ)|S]φ(S�)

�
.

Now, because we are using linear function approximation, it makes sense to represent the
value of E[δ(θ)|S] with a measure in the feature space, that is, E[δ(θ)|S] ≈ w(θ)�φ(S). It
turns out that the best linear fit (using mean-square error criteria) yields,

w(θ) = E[φ(S)φ(S)]−1 E[δ(θ)φ(S)] .

As a result, the ultimate update becomes

θ ← θ+α
�
δ(θ)φ(S)− γ

�
w(θ)�φ(S)

�
φ(S�)

�
, w(θ) = E[φ(S)φ(S)]−1 E[δ(θ)φ(S)] .

Interestingly, the direction of the above update is along the stochastic gradient-descent di-
rection in the MSPBE objective, which eventually leads to TD solution (see also Chapter 5,
particularly, the TDC algorithm, for further details).

Finally, we close this discussion of objective functions by giving the following function,
which does not seem to have a ready geometric interpretation, however, its minimum satis-
fies the TD solution. Here we call it the norm of the expected TD update:

NEU(θ) = E[δ(θ)φ]� E[δ(θ)φ] , (3.4)

which results in TD solution.

3.3 Conclusion

In this chapter, we introduced several potential objective functions for TD learning and
showed the pros and cons of each of them. Finally, we noted that the MSPBE objective
function seems to be more reliable than the MSBE objective function. Before deriving
our gradient-TD algorithms based on the MSPBE (and NEU) objective function, first we
formulate the problem of off-policy learning in the next chapter.

28

Chapter 4

Off-Policy Formulation of
Temporal-Difference Learning

One of the key features of TD learning is its ability to learn from incomplete sequences
without waiting for the outcome. This key feature, allows TD methods to learn from single
state-state transitions (smallest fragment of experience). It turns out, we can use this unique
property to do off-policy learning.

In this chapter, we provide an off-policy formulation for temporal-difference learning based
on sub-sampling1 from data generated according to the agent behavior policy, that is, from
trajectories. In reality, however, we would like to use all the data. As such, we show how to
use importance-sampling technique, which allows us to use all of the samples.

4.1 Sub-sampling and i.i.d. formulation of TD learning

In this section, we formulate the off-policy prediction problem for one-step temporal-
difference learning. For simplicity, we consider off-policy data in the form of indepen-
dent, identically distributed (i.i.d.) samples. Our goal is to learn from off-policy data using
conventional TD methods, such as TD(0) with linear function approximation.

We start by considering the standard reinforcement learning framework. In this framework,
the environment and the agent behavior policy, πb , together generate a stream of states,
actions and rewards, S1, A1, R1, S2, A2, R2, . . ., which we can break into causally related
4-tuples, (S1, A1, R1, S�1), (S2, A2, R2, S�2), . . . , where S�t = St+1. The generated data is
called on-policy data and as such forms a trajectory. For some tuples, the action will match

1Some parts of this section, including the sub-sampling and i.i.d. formulation of TD learning are based
on the following paper: Sutton, R. S., Szepesvári, Cs., Maei, H. R. (2009). A convergent O(n) algorithm for
off-policy temporal-difference learning with linear function approximation. Advances in Neural Information

Processing Systems 21. MIT Press.

29

what the target policy (the policy that we are learning about) would do in that state, and
for others it will not. We can discard all of the latter as not relevant to the target policy.
For the former, we can discard the action because it can be determined from the state via
the target policy. With a slight abuse of notation, let Sk denote the kth state in which an
on-policy action was taken, and let Rk and S�k denote the associated reward and next state.
The kth on-policy transition, denoted (Sk, Rk, S�k), is a triple consisting of the starting state
of the transition, the reward on the transition, and the ending state of the transition. The
corresponding data available to the learning algorithm, say for the case of linear function
approximation, is the triple (φk, Rk, φ�k), where φk = φ(Sk) and φ�k = φ(S�k). Now, we
have a bag of data, which looks like a collection of snippets instead of a trajectory. Now we
can consider that this bag of data has a distribution and thus we can remove the indices and
talk about a single tuple of random variables (φ, R, φ�).

In the i.i.d. formulation, the states Sk are generated independently and identically dis-
tributed according to an arbitrary probability distribution, µ (µ is a vector whose sth ele-
ment is µ(s)), which also refers to starting state distribution. From each Sk, a corresponding
S�k is generated according to the on-policy state-transition matrix, P , and a corresponding
Rk is generated according to an arbitrary bounded distribution. The final i.i.d. data se-
quence, from which an approximate value function is to be learned, is then the sequence
(φ(Sk), Rk, φ(S�k)), for k = 1, 2, ... Further, because each sample is i.i.d., we can remove
the indices and talk about a single tuple of random variables (φ, R, φ�).

It is worth to mention that if the bag of data is collected by trajectory following; that is, on-
policy data, then the underlying state distribution, µ, and state-state transition probability
distribution P are linked according to µ�P = µ�. This constraint, is the main reason
behind the convergence of TD methods with linear function approximation. If for any
reason (such as off-policy scenario), µ and P are not linked according to this linear equation,
the convergence can’t be guaranteed.

4.2 Importance-weighting formulation

In the previous section, for the sake of simplicity, we introduced sub-sampling and i.i.d.
formulation of TD learning. However, in reality, we would like to use all of data sequence.
In addition, this would allow us to conduct moment-to-moment (online) predictions without
throwing away some data.

Now, consider that data sequence is generated according to the behavior policy πb : S ×
A → [0, 1]. Let tth sample be in the form of triple (St, Rt+1, St+1). Let the target policy

30

π and behavior policy πb be stochastic. According to sub-sampling formulation we get a
bag of matched samples (possibly infinite) in the form of triples (Sk, Rk, S�k)k≥0, which the
notation was introduced in the previous section.

Now the linear TD(0) will be:

θk+1 = θk + αkδkφk,

where δk = Rk +γθ�k φ�k−θ�k φk. Now let δk(θ) = Rk +γθ�φ�k−θ�φk. The TD solution,
θ, E[δk(θ)φk] = 0.

Now we ask: how can we sample from the expected TD update, E[δk(θ)φk], while the data
is generated according to the agent’s behavior policy. Before answering this question, we
adopt the following notations: Let

δ(θ; s, a, s�) = r(s, a, s�) + γVθ(s�)− Vθ(s). (4.1)

Because S ∼ µ(.) and S� ∼ P π(.|S), we have

E[δk(θ)φk] =
�

s

µ(s)π(a|s)P (s�|s, a)δ(θ; s, a, s�)φ(s)

def= Pπ
µδ(θ)φ, (4.2)

where Pπ
µ is an operator, δ(θ) = R + γVθ(S�)− Vθ(S), and φ = φ(S).

Thus, off-policy TD-solution, θ, satisfies

Pπ
µδ(θ)φ = 0. (4.3)

The following Lemma will help us to find the off-policy TD-solution, as well as off-policy
TD(0) update, in a mechanistic way, without going through sub-sampling scenario.

Lemma 1. (Importance-weighting for off-policy TD) Consider that data (St, Rt+1, St)t≥0

is generated according to a stationary behavior policy πb, and let the stationary target

policy be π. Then from Equation (4.2) we have

Pπ
µδ(θ)φ = E[ρtδt(θ)φt] , (4.4)

where ρt ≡ π(At | St)/πb(At | St), and δt(θ) = Rt+1 + γθ�φt+1 − θ�φt is TD error for

a given sample (St, Rt+1, St+1), φt ≡ φ(St), and φt+1 ≡ φ(St+1).

Proof. Because the two policies are stationary and fixed, thus naturally the expectation term

31

is well defined. Thus, we have

Pπ
µδ(θ)φ

=
�

s,a,s�

µ(s)π(a | s)P (s� | s, a)δ(θ; s, a, s�)φ(s)

=
�

s,a,s�

µ(s)
π(a, | s)
πb(a | s)

πb(a | s)P (s� | s, a)δ(θ; s, a, s�)φ(s)

=
�

s,a,s�

µ(s)πb(a | s)P (s� | s, a)
π(a, | s)
πb(a | s)

δ(θ; s, a, s�)φ(s)

= E[ρtδt(θ)φt] .

Here, P π(s� | s) = π(a | s)P (s� | s, a)— note P (s� | s, a) depends on the environment
and not the agent.

Note, the state distribution, µ, refers to the actual state distribution of data generated ac-
cording to agent’s behavior policy.

From Lemma 1, by a direct sampling, we get the following linear TD(0) algorithm for
off-policy learning:

θt+1 = θt + αtρtδtφt,

where δt ≡ δt(θt). The above update weights the (on-policy) linear TD(0) update by the
likelihood of action taken by target policy (as opposed to behavior policy). Here, we have
assumed that there is always a chance for an action to be taken according to behavior policy;
that is, the importance-weight (likelihood ratio) is bounded.

However, the above off-policy learning algorithm is subject to the possibility of divergence.
In the next chapter, we propose a new gradient TD approach that provides a building block
for developing convergent TD methods for general settings.

4.3 Conclusion

In this chapter we have provided a general formulation for off-policy learning, which is
consistent to off-policy learning methods, such as Q-learning. In this formulation, the tar-
get policy state-state transitions are incorporated into the learning, while state-visitation
distributions are due to the agent’s behavior. In order to use all the data efficiently, we have
also incorporated an importance-weighting technique into the updates.

32

Chapter 5

Gradient Temporal-Difference
Learning with Linear Function
Approximation

This chapter1 provides the core ideas, and theoretical results behind the gradient-TD algo-
rithms for the case of linear function approximation. Here, we explore the development
of true stochastic gradient-descent algorithms for temporal-difference learning with linear
function approximation, building on the work of Baird (1995; 1999).

Particularly, we introduce three new TD algorithms compatible with both linear function
approximation and off-policy training, and whose complexity scales only linearly in the
size of the function approximator. The first algorithm, GTD, estimates the expected update
vector of the TD(0) algorithm and performs stochastic gradient descent on its L2 norm; that
is, norm of the expected TD update, also called NEU (see Chapter 3).

In Section 5.3, we prove that GTD is stable and convergent to the TD-solution under the
usual stochastic approximation conditions and i.i.d. assumption on off-policy data. The sec-
ond and third algorithms, GTD2 and TDC (TD with gradient correction term), are derived
and proved convergent just as GTD was, but use the projected Bellman-error objective func-
tion (see Chapter 3) and converges significantly faster (but still not as fast as conventional
TD).

1This chapter is based on the following papers:

• Sutton, R. S., Szepesvári, Cs., Maei, H. R. (2009). A convergent O(n) algorithm for off-policy
temporal-difference learning with linear function approximation. Advances in Neural Information Pro-

cessing Systems 21. MIT Press.

• Sutton, R. S., Maei, H. R, Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs. & Wiewiora, E. (2009).
Fast gradient-descent methods for temporal-difference learning with linear function approximation. In
Proceedings of the 26th International Conference on Machine Learning, pp. 993–1000. Omnipress.

33

In our experiments on small test problems, the learning rate of these algorithms were com-
pared to TD(0). To get further insights about the performance of these new algorithms on
large-scale problems, David Silver implemented the gradient TD algorithms in a Computer
Go application with a million features (see Sutton, Maei, et al. 2009).

Our empirical results shows TDC’s rate of convergence is, fairly, faster than GTD2 and
GTD, but it can be still slower than TD(0) on the class of on-policy problems, in which
linear TD(0) is sound. All of these new linear algorithms extend linear TD(0) to off-policy
learning with convergence guarantee, while doubling computational requirements.

Our empirical results suggest TDC is the most efficient algorithm among GTD and GTD2.
Thus, in forthcoming chapters, we will build our new algorithms based on TDC.

5.1 Derivation of the GTD algorithm

We next present the idea and gradient-descent derivation leading to the GTD algorithm. As
discussed in previous chapter (see off-policy i.i.d. formulation in Section 4.1), we consider
i.i.d. samples (Sk, Rk, S�k)k≥0, consisting of the starting state of the transition, the reward
on the transition, and the ending state of the transition. For the case of linear function
approximation, the kth corresponds to the triple (φk, Rk, φ�k), where φk = φ(Sk) and φ�k =
φ(S�k).

Note, the starting state distribution is µ, the state-state transition probability is P , and the
vector E[δφ] is expected TD update that can be viewed as an error in the current solution
θ. The vector should be zero, so its norm is a measure of how far we are away from the
TD solution. A distinctive feature of our gradient-descent analysis of temporal-difference
learning is that we use as our objective function the L2 norm of this vector:

NEU(θ) = E[δ(θ)φ]� E[δ(θ)φ] ,

where was introduced in Equation (3.4).

This objective function is quadratic and unimodal; its minimum value of 0 is achieved when

34

E[δφ] = 0. The gradient-descent direction of this objective function is

− 1
2
∇NEU(θ) = −(∇E

�
δ(θ)φ�

�
)E[δ(θ)φ]

= −E
�
∇δ(θ)φ�

�
E[δ(θ)φ]

= −E
�
(γφ� − φ)φ�

�
E[δ(θ)φ]

= E
�
(φ− γφ�)φ�

�
E[δ(θ)φ] . (5.1)

We would like to take a stochastic gradient-descent approach, in which a small change is
made on each sample in such a way that the expected update is the direction opposite to
the gradient. This is straightforward if the gradient can be written as a single expected
value, but here we have a product of two expected values. One cannot sample both of them
because the sample product will be biased by their correlation. However, one could store a
long-term, quasi-stationary estimate of either of the expectations and then sample the other.
The question is, which expectation should be estimated and stored, and which should be
sampled? Both ways seem to lead us to different algorithms.

First let us consider the algorithm obtained by forming and storing a separate estimate of
the first expectation; that is, of the matrix A = E

�
φ(φ− γφ�)�

�
. This matrix is straightfor-

ward to estimate from experience as a simple arithmetic average of all previously observed
sample outer products φ(φ− γφ�)�. Note that A is a stationary statistic in any fixed-policy
policy-evaluation problem; it does not depend on θ and would not need to be re-estimated
if θ were to change. Let Ak be the estimate of A after observing the first k + 1 samples,
(φ0, R0, φ�0), · · · , (φk, Rk, φ�k). Then this algorithm is defined by

Ak =
1
k

k�

i=0

φi
�
φi − γφ�i

��
,

along with the gradient descent rule:

θk+1 = θk + αkAk
� (δkφk) , k ≥ 0,

where θ0 is arbitrary, δk = Rk + γθ�k φ�k − θkφk, and (αk)k≥0 is a series of step-size
parameters, possibly decreasing over time. We do not consider the above algorithm further
here because it requires O(d2) memory and computation per-time-step.

The second path to a stochastic-approximation algorithm for estimating the gradient (5.1)
is to form and store an estimate of the second expectation, the vector E[δφ], and to sample
the first expectation, E

�
φ(φ− γφ�)�

�
. Let uk denote the estimate of E[δφ] after observing

35

the first k samples, with u0 = 0. The GTD algorithm is defined by

θk+1 = θk + αk(φk − γφ�k)φ
�
k uk, (5.2a)

uk+1 = uk + βk(δkφk − uk), (5.2b)

where θ0 is arbitrary, δk is the TD error using θk, and (αk, βk)k≥0 are sequences of positive
step-size parameters, possibly decreasing over time. Notice that if the product is formed
right-to-left, then the entire computation is O(d) per-time-step.

GTD, however, is a slow algorithm compared to TD(0). In other words it is poorly condi-
tioned. Let us consider this scenario: assume we can compute u exactly, that is,

u(θ) = E[δ(θ)φ]

= −Aθ + b,

where A and b are defined in Equation (2.13). Thus, by plugging the exact value of u(θ)
into the θ update, in expectation, the GTD update is driven by matrix A�A. To see this
better, note, from Equation (5.1) we get:

− 1
2
∇NEU(θ) = E

�
φ− γφ�)φ�

�
E[δ(θ)φ] (5.3)

= A�(−Aθ + b). (5.4)

From concepts of numerical analysis, the condition number of A�A is always worse than
A—notice −A is the underlying matrix for the expected TD(0) update. As such, GTD’s
asymptotic rate of convergence is usually much worse than TD(0) on problems where TD(0)
converges.

In the next section, we develop two new algorithms, GTD2 and TDC, based on the mean-
square projected Bellman-error objective function, which empirically are faster than the
GTD algorithm.

5.2 Derivation of the GTD2 and TDC algorithms

In this section we derive two new algorithms, which use mean-square projected Bellman
error as their objective function (see Eq. 3.3). We first establish some relationships between
the vector-matrix quantities and the relevant statistical expectation terms:

36

E[φφ�] =
�

s

µ(s)φ(s)φ(s)� = Φ�DΦ,

where D is a diagonal matrix whose s diagonal element is µ(s),

E[δ(θ)φ] =
�

s

µ(s)φ(s)

�
R(s) + γ

�

s�

Pss�Vθ(s�)− Vθ(s)

�

= Φ�D(TVθ − Vθ),

and note that

Π�DΠ = (Φ(Φ�DΦ)−1Φ�D)�D(Φ(Φ�DΦ)−1Φ�D)

= D�Φ(Φ�DΦ)−1Φ�DΦ(Φ�DΦ)−1Φ�D

= D�Φ(Φ�DΦ)−1Φ�D.

Using these relationships, the projected objective can be written in terms of expectations as

J(θ)

= � Vθ −ΠTVθ �2µ
= � Π(Vθ − TVθ) �2µ
= (Π(Vθ − TVθ))�D(Π(Vθ − TVθ))

= (Vθ − TVθ)�Π�DΠ(Vθ − TVθ)

= (Vθ − TVθ)�D�Φ(Φ�DΦ)−1Φ�D(Vθ − TVθ)

= (Φ�D(TVθ − Vθ))�(Φ�DΦ)−1Φ�D(TVθ − Vθ)

= E[δ(θ)φ]� E[φφ�]−1E[δ(θ)φ] . (5.5)

Just like in the previous section, which we used a second modifiable parameter u ∈ Rd

to form a quasi-stationary estimate of all but one of the expectations in the gradient of the
NEU objective function (thereby avoiding the need for two independent samples), here, we
will use a modifiable parameter w ∈ Rd, which also involves computing the inverse matrix.
Specifically, we use a conventional linear predictor which causes w to estimate

w(θ) = E[φφ�]−1E[δ(θ)φ] , (5.6)

which looks the same as the solution we get from the LMS method in supervised learning
by replacing δ with supervised signals (note w(θ) = E[φφ�]−1

u(θ)). Using this, we can

37

write the negative gradient of the MSPBE objective function as

− 1
2
∇J(θ) = E

�
(φ− γφ�)φ�

�
E[φφ�]−1E[δ(θ)φ]

= E
�
(φ− γφ�)φ�

�
w(θ), (5.7)

which can be directly sampled. The resultant O(d) algorithm is

θk+1 = θk + αk(φk − γφ�k)(φ
�
k wk), (5.8a)

wk+1 = wk + βk(δk − φ�k wk)φk, (5.8b)

which we call GTD2 algorithm. Note, there is no inverse matrix in the (5.8b) update.
We can see that by fixing θk to θ, the w-update leads to LMS solution, that is, w(θ) =
E[φφ�]−1E[δ(θ)φ].

The derivation of our main algorithm, TDC, starts from the same expression for the gradient
and then takes a slightly different route. That is,

−1
2
∇J(θ)

= E
�
(φ− γφ�)φ�

�
E[φφ�]−1E[δ(θ)φ]

=
�
E

�
φφ�

�
− γE

�
φ�φ�

��
E[φφ�]−1E[δ(θ)φ]

= E[δφ]− γE
�
φ�φ�

�
E[φφ�]−1E[δ(θ)φ]

= E[δφ]− γE
�
φ�φ�

�
w(θ), (5.9)

which is then sampled, resulting in the following O(d) algorithm, which we call linear TD
with gradient correction term, or linear TDC for short:

θk+1 = θk + αk

�
δkφk − γφ�k(φ

�
k wk)

�
, (5.10)

where wk is generated by (5.8b) as in GTD2. Note that the update to θk is the sum of two
terms, and that the first term is exactly the same as the update (2.10) of conventional linear
TD. The second term is essentially an adjustment or correction of the TD update so that it
follows the gradient of the MSPBE objective function. If the second parameter vector is
initialized to w0 = 0, and βk is small, then this algorithm will start out making almost the
same updates as conventional linear TD.

The TDC algorithm (5.10), is derived and works on a given bag of sub-samples—in the

38

form of triples (Sk, Rk, S�k) that match with both the behavior and target policy sample
transitions. What if we wanted to use all the data? Notice that data is generated according
to the behavior policy πb, while our objective is to learn about target policy π. For details,
see Section 4.2.

Derivation of Linear TDC for importance-sampling scenario: The objective function
that we would like to minimize is J(θ) = � Vθ −ΠT πVθ �2µ, however, because the data is
generated according to behavior policy πb we use importance-sampling. Using Lemma 1
(in Chapter 4), and Equation (4.2) we get:

J(θ) = �Vθ −ΠT πVθ�2µ
= (Pπ

µδ(θ)φ)�E[φtφt]−1 (Pπ
µδ(θ)φ),

= E[ρtδt(θ)φt]� E[φtφt]−1 E[ρtδt(θ)φt] . (5.11)

Following the linear TDC derivation, we get the following algorithm (linear TDC algorithm
based on importance weighting scenario) :

θt+1 = θt + αtρt

�
δtφt − γφt+1(φ�t wt)

�
, (5.12a)

wt+1 = wt + βt(ρtδt − φ�t wt)φt. (5.12b)

Similarly, importance weighted version of GTD2, will follow as well.

In the next section, we provide convergence analysis for the linear GTD, GTD2 and TDC
algorithms based on sub-sampling and i.i.d. formulation of off-policy learning.

5.3 Convergence Analysis

The purpose of this section is to prove that our new TD algorithms converge to the TD-
solution with probability (for the case of off-policy i.i.d. formulation). All of our algorithms
are in the class of recursive stochastic algorithms; that is, they are in the form of

xk+1 = xk + αk (h(xk) + Mk+1) , (5.13)

where x ∈ Rd, h : Rd → Rd is a differentiable function, (αk)k≥0 denotes positive step-size
sequence and (Mk)k≥0 is a noise sequence.

39

For the convergence proof, we use the ordinary-differential-equation (ODE) approach. This
is a powerful method that allows us to analyze recursive stochastic algorithms by studying
their corresponding ODE equation; in short, it says that equation (5.13) is a noisy discretiza-
tion of

ẋ(t) = h(x(t)),

where ẋ denotes derivative of x w.r.t time t; that is ẋ = dx/dt. Thus, we can study
the algorithm through the convergence behavior of the ODE. To use the ODE approach,
recursive stochastic algorithms must satisfy certain conditions in Theorem 2.2 of Borkar &
Meyn (2000). Before mentioning what this theorem is about, first, we state the required
conditions for the purpose of our proofs.

For the iterate (5.13), consider the following conditions:

(C1) αk, ∀k, and are deterministic.

(C2)
�

k αk = +∞,
�

k α2
k <∞.

(C3) The function h is Lipschitz and h∞(x) = limc→∞ h(cx)/c is well-defined for every
x ∈ Rd.

(C4) The sequence (Mk)k≥0 is a martingale difference sequence w.r.t. increasing family
of σ-fields, Fk

def= σ(x0, M1, . . . ,Mk); that is, E[Mk+1 | Fk] = 0.

(C5) For some constant K > 0, E
�
�Mk+1�2 | Fk

�
≤ K(1 + �xk�2), holds for any k ≥ 0

almost surely.

(C6) The ODE, ẋ = h∞(x), has the origin as its unique globally asymptotically stable
equilibrium.

The analysis plan is as follows: first we provide the ODE Lemma, which is a pre-requisite
for our proof of convergence.

Lemma 2. (The ODE Lemma) Consider the iteration (5.13), and assume that the conditions

(C1)-(C6) holds. Then, as k → ∞, the xk converges with probability one to the unique

globally asymptotically stable equilibrium of the ODE, ẋ(t) = h(x(t)).

Proof. For the proof see the theorem 2.2 of Borkar and Meyn (2000).

40

5.3.1 Convergence analysis for GTD

Here, we provide convergence analysis for GTD. First, let us consider the following as-
sumptions:

(A1) Sk ∼ µ(·), Rk = R(Sk, Ak, S�k) and (Rk, S�k) ∼ P (·, · | Sk, Ak).

(A2) (Sk, Rk, S�k)≥0 is an i.i.d sequence.

(A3) (φk, φ�k)k≥0 is uniformly bounded second moments (unconditional), where φk =
φ(Sk), φ�k = φ(S�k).

(A4) ∃R̂max s.t. Var [Rk|Sk] ≤ R̂max holds almost surely (a.s.).

Consider the following (standard) assumptions on features:

(P1) �φk�∞ < +∞, �φ�k�∞ < +∞, ∀k.

(P2) The matrices C = E
�
φkφ�k

�
and A = E

�
φk(φk − γφ�k)

��
are non-singular and

uniformly bounded. Note that A and b are well-defined because the distribution of
(φk, Rk, φk) does not depend on the sequence index k.

And, the following step-size conditions:

(S1) αk, βk > 0, ∀k, and are deterministic.

(S2)
�

k αk =
�

k βk = +∞,
�

k α2
k <∞, and

�
k β2

k <∞.

Theorem 1 (Convergence of GTD). Consider the GTD iterations (5.2a) and (5.2b) with

step-size conditions (S1)-(S2), and let the step-size sequences αk and βk satisfy βk = ηαk,

η > 0. Assume that (A1)-(A4), (P1)-(P2) holds. Then the parameter vector θk converges

to the TD-solution with probability one.

Proof. We use Lemma 2 for our proof of convergence.

We rewrite the GTD algorithm’s two iterations (eqs. (5.2a)-(5.2b)) as a single iteration in a
combined parameter vector with 2d components, ��k = (v�k , θ�k), where vk = uk/

√
η. We

also define g�k+1 = (Rkφ�k , 0�)— a new reward-related vector with 2d components. Thus,

�k+1 = �k + αk
√

η (Gk+1�k + gk+1) , (5.14)

41

where

Gk+1 =

�
−√ηI φk(γφ�k − φk)�

−(γφ�k − φk)φ�k 0

�
.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-defined as by the assumption
the process (φk, Rk, φ�k)k≥0 is i.i.d. In particular,

G =

�
−√ηI −A

A� 0

�
, g =

�
b

0

�
.

Further, note that the TD solution follows from G� + g = 0, where the w-fixpoint is zero.

Now, we re-write the above iterate in the following form:

�k+1 = �k + αk
√

η(G�k + g + (Gk+1 −G)�k + (gk+1 − g))

= �k + α�k(h(�k) + Mk+1),

where α�k = αk
√

η, h(�) = g + G� and Mk+1 = (Gk+1 − G)�k + gk+1 − g. Let
Fk = σ(�1, M1, . . . , �k−1, Mk) be σ-fields generated by the quantities �i, Mi, i ≤ k,
k ≥ 1. Lemma 2 requires the verification of the following conditions:

(i) The function h is Lipschitz and h∞(�) = limc→∞ h(c�)/c is well-defined for every
� ∈ R2d;

(ii-a) The sequence (Mk,Fk) is a martingale difference sequence, and

(ii-b) for some c0 > 0, E
�
�Mk+1�2 | Fk

�
≤ c0(1 + ��k�2) holds for any initial parameter

vector �1;

(iii) The sequence α�k satisfies,
�∞

k=1 α�k =∞,
�∞

k=1(α
�
k)

2 < +∞;

(iv) The ODE �̇ = h∞(�) has the origin as a globally asymptotically stable equilibrium,
and

(v) The ODE �̇ = h(�) has a unique globally asymptotically stable equilibrium.

Clearly, h(�) is Lipschitz with coefficient �G� and h∞(�) = G�. By construction, (Mk,Fk)
satisfies E[Mk+1|Fk] = 0 and Mk ∈ Fk, i.e., it is a martingale difference sequence. Con-
dition (ii-b) can be shown to hold by a simple application of the triangle inequality and
the boundedness of the second moments of (φk, Rk, φ�k). Condition (iii) is satisfied by our
conditions on the step-size sequences αk, βk.

42

For the last two conditions, we begin by showing that the real-part of all the eigenvalues of
G are negative.

Let λ ∈ C, λ �= 0 be an eigenvalue of G with corresponding normalized eigenvector
x ∈ C2d; that is, �x�2 = x∗x = 1, where x∗ is the complex conjugate of x. Hence x∗Gx =
λ. Let x� = (x�1 , x�2), where x1, x2 ∈ Cd. Using the definition of G, λ = x∗Gx =
−√η�x1�2 − x∗1Ax2 + x∗2A

�x1, where �x1�2 = x∗1x1. Because A is real, A∗ = A�, and
it follows that (x∗1Ax2)∗ = x∗2A

�x1. Thus, Re(λ) = Re(x∗Gx) = −√η�x1�2 ≤ 0. We
are now done if we show that x1 cannot be zero. If x1 = 0, then from λ = x∗Gx we get
λ = 0, however, because, G is non-singular, λ �= 0. Thus, x1 can not be zero.

To show G is non-singular, we can use the determinant rule for partitioned matrices. Ac-
cording to this rule, if A1 ∈ Rd1×d1 , A2 ∈ Rd1×d2 , A3 ∈ Rd2×d1 , A4 ∈ Rd2×d2 then for
U = [A1A2;A3A4] ∈ R(d1+d2)×(d1+d2),det(U) = det(A1) det(A4 − A3A

−1
1 A2). Us-

ing this rule, we get det(G) = det(A�A) = (detA)2 �= 0. This indicates that all the
eigenvalues of G are non-zero.

Finally, for the ODE �̇ = h(�), note that �∗ = −G−1g is the unique asymptotically stable
equilibrium with V̄ (�) = (G� + g)T (G� + g)/2 as its associated strict Lyapunov function.

Also note, h∞(�) = lim
c→∞

h(c�)
c

. Then h∞(�) = G�. For the ODE

�̇ = h∞(�) = G�,

the origin is a globally asymptotically stable equilibrium because all the real-part eigenval-
ues of the G matrix are negative.

The claim now follows.

5.3.2 Convergence analysis for GTD2

Theorem 2 (Convergence of GTD2). Consider the GTD2 iterations (5.8a) and (5.8b). As-

sume that (A1)-(A4), (P1)-(P2), (S1)-(S2), holds, and let the step-size sequences αk and βk

satisfy βk = ηαk, η > 0. Then then parameter vector θk converges to the TD-solution and

uk converges to zero with probability one.

Proof. The proof is very similar to the convergence proof for GTD. Thus, we omit many
overlapping parts. First, we rewrite GTD2’s two iterations (eqs. (5.8a) and (5.8b)) as a
single iteration in a combined parameter vector with 2d components, ��k = (v�k , θ�k), where
vk = wk/

√
η, and a new reward-related vector with 2d components, g�k+1 = (ηrkφ�k , 0�),

43

as follows:
�k+1 = �k + αk (Gk+1�k + gk+1) , (5.15)

where

Gk+1 =

�
−√ηC φk(γφ�k − φk)�

−(γφ�k − φk)φ�k 0

�
.

Let G = E[Gk] and g = E[gk]. Note that G and g are well-defined as by the assumption
the process (φk, Rk, φ�k)k≥0 is stationary. In particular,

G =

�
−√ηC −A

A� 0

�
, g =

�
b

0

�
.

Further, note that TD solution follows from G� + g = 0, where w-fixpoint is zero.

The proof is similar to the convergence proof of GTD, which required verification of con-
ditions in Lemma 2. Thus, similarly, we can verify all the conditions. Here, we only
need to show that all real-part eigenvalues of G are negative. First, we show that G

is non-singular. Using the determinant rule for partitioned matrices, we get det(G) =
det(A�A) = (detA)2 �= 0. This indicates that all the eigenvalues of G are non-zero.

Now, let λ ∈ C, λ �= 0 be an eigenvalue of G with corresponding normalized eigenvector
x ∈ C2n; that is, �x�2 = x∗x = 1, where x∗ is the complex conjugate of x. Hence x∗Gx =
λ. Let x� = (x�1 , x�2), where x1, x2 ∈ Cn. Using the definition of G, λ = x∗Gx =
−√η�x1�2C − x∗1Ax2 + x∗2A

�x1, where �x1�2C = x∗1Cx1. Because A is real, A∗ = A�,
and it follows that (x∗1Ax2)∗ = x∗2A

�x1. Thus, Re(λ) = Re(x∗Gx) = −√η�x1�2C ≤ 0.
We are now done if we show that x1 cannot be zero. If x1 = 0, then from λ = x∗Gx we
get that λ = 0, which contradicts with λ �= 0.

5.3.3 Convergence analysis for TDC

Theorem 3 (Convergence of TDC). Consider the TDC iterations (5.10) and (5.8b), and

w0 = 0. Assume that (A1)-(A4), (P1)-(P2), (S1)-(S2), holds, and let the step-size sequences

αk and βk satisfy βk = ηαk, η > 0. Consider the matrix A and C in (P2). Let

H(A) def=
(A + A�)

2
,

44

and λmin
�
C−1H(A)

�
be the minimum eigenvalue of the matrix C−1H(A). If

η > max{0,−λmin
�
C−1H(A)

�
},

then the learning parameter θk converges to the TD solution with probability one.

Proof. The proof is similar to the convergence proof of GTD/GTD2, which requires verifi-
cation of conditions in Lemma 2. The only subtle difference is verification of the condition
on η.

First, we rewrite the TDC algorithm’s two iterations (eqs. 5.10 and 5.8b) as a single iteration
in a combined parameter vector with 2d components, ��k = (w�k , θ�k), and a new reward-
related vector with 2d components, g�k+1 = (ηRkφ�k , Rkφ�k), as follows:

�k+1 = �k + αk (Gk+1�k + gk+1) , (5.16)

where

Gk+1 =

�
−ηφkφ�k ηφk(γφ�k − φk)�

−γφ�kφ
�
k φk(γφ�k − φk)�

�
.

Let G = E[Gk] and g = E[gk] and F = γE
�
φkφ�

�
k

�
, thus, it can be seen A = C−F . Note

that G and g are well-defined as by the assumption the process (φk, Rk, φ�k)k≥0 is i.i.d. In
particular,

G =

�
−ηC −ηA

−F� −A

�
, g =

�
ηb

b

�
.

Also, note that the TD solution follows from G� + g = 0, where the w-fixpoint is zero.

Because the linear system is similar to what we obtained for the GTD/GTD2 proof of con-
vergence. Here, we only need to verify that all the real-part eigenvalues of matrix G are
negative.

The eigenvalue of matrix G, λ ∈ C, satisfies in the polynomial equation

det(G− λI)

= det

�
−ηC − λI −ηA

−F� −A− λI

�

= det

�
ηCλ,η ηA

C −A� A + λI

�
= 0,

45

where we used det(−X) = (−1)2d det(X) = det(X), X ∈ R2d×2d, and where

Cλ,η = C +
λ

η
I.

Let us assume that Cλ,η is non-singular, then

det(G− λI) = det(ηCλ,η) det
�
A + λI − (C −A�) (ηCλ,η)−1 ηA

�

= η2d det(Cλ,η) det
�
A + λI − (C −A�) C−1

λ,η A
�
,

where we used the determinant rule for block matrices (see GTD’s proof of convergence in
Theorem 1).

Using X(Y + X)−1 = (Y + X − Y)(Y + X)−1 = I − Y (Y + X)−1, we get that
CC−1

λ,η = I − λ
η C−1

λ,η. Thus,

A + λI − (C −A�)C−1
λ,ηA = A + λI − CC−1

λ,ηA + A�C−1
λ,ηA

= λI +
λ

η
C−1

λ,ηA + A�C−1
λ,ηA

= (λA−1Cλ,η + A� +
λ

η
I) C−1

λ,ηA

= A−1(λCλ,η + A(A� +
λ

η
I)) C−1

λ,ηA.

Hence,

det

�
−ηC − λI −ηA

−F� −A− λI

�
= η2d det(λCλ,η + A(A� +

λ

η
I)).

Because an eigenvalue of the matrix G, λ, satisfies det(G − λI) = 0, there must exist a
nonzero vector x ∈ Cd, such that

x∗
�

λCλ,η + A(A� +
λ

η
I)

�
x = 0,

where x∗ is the complex conjugate of vector x (including its transpose), and x∗x = �x�2 >

0. From the above equation, it is easy to get the following quadratic equation in terms of λ,

�x�2λ2 + (ηx∗Cx + x∗Ax)λ + η�Ax�2 = 0,

where �Ax�2 = x∗A�Ax = x∗AA�x. This quadratic equation has two solutions, λ1 and

46

λ2, where 2

λ1λ2 =
η�Ax�2

�x�2
,

and
λ1 + λ2 =

−(ηx∗Cx + x∗Ax)
�x�2

.

Because λ1λ2 is a positive and real number, thus, λ2 = κλ∗1, where κ > 0. Thus, we
have λ1 + λ2 = λ1 + κλ∗1. Let Re(λ) denote the real-part of λ. Thus, Re(λ1 + λ2) =
(1 + κ)Re(λ1) = (1 + 1/κ)Re(λ2). We are done if we show Re(λ1 + λ2) < 0, because
that leads to Re(λ1) < 0 and Re(λ2) < 0. First, let us start from

Re(λ1 + λ2) =
Re (−(ηx∗Cx + x∗Ax))

�x�2

=
−(ηx∗Cx + x∗Ax)− (ηx∗Cx + x∗Ax)∗

2�x�2

=
−

�
2ηx∗Cx + x∗(A + A�)x

�

2�x�2
.

The condition Re(λ1 + λ2) < 0 is equivalent to

2ηx∗Cx + x∗(A + A�)x > 0.

Clearly, the above inequality, holds if

η > max
z �=0, z∈Rd

−z�H(A)z
z�Cz

, H(A) def=
A + A�

2
.

Here, the H(A) and C matrices are symmetric, hence their eigenvalues and eigenvectors
are reals. For any z �= 0, z ∈ Rd, let y = C1/2z. Then when z�Cz = 1, we also have
�y�2 = 1. Therefore, it suffices to have

η > max
�y�2=1

y�
�
−C−1/2H(A)C−1/2

�
y,

which is equivalent to η > −λmin
�
C−1/2H(A)C−1/2

�
. Note, C−1/2H(A)C−1/2 is sym-

metric, so its eigenvalues are all real. Also, because

λmin

�
C−1/2H(A)C−1/2

�
= λmin

�
C−1H(A)

�
,

2The quadratic equation, ax
2 + bx + c = 0 (with a �= 0), has two solutions. The product and the sum of

these two solutions are, x1x2 = c
a and x1 + x2 = −b

a , respectively.

47

then, given η > 0, we conclude

η > max{0,−λmin
�
C−1H(A)

�
},

which suffices to guarantee the stability of matrix G, thus finishing the proof

5.3.4 Convergence remarks for TDC with importance-weighting scenario

It can be shown that the TDC’s iterates (5.12a) and (5.12b) converge with probability one to
the TD solution and zero, respectively, under the standard assumptions in this chapter and
Lemma 6.7 (Bertsekas and Tsitsiklis 1996) and conditions therein. For a through proof, we
need to substitute the Martingale noise with a Markov noise and then use Theorem 17 in
page 239 of Benveniste et al. (1990) (also see Delyon, 1996). The proof is similar to our
proofs of convergence in this chapter.

5.4 Empirical results

To begin to assess the practical utility of the new family of TD algorithms based on gradient-
descent, including TDC, GTD2 and GTD, we compared their empirical learning rate to that
of conventional TD(0) with linear function approximation on four small problems—three
random-walk problems and a Boyan-chain problem. All of these problems were episodic,
undiscounted, and involved only on-policy training with a fixed policy.

The random-walk problems were all based on the standard Markov chain (Sutton and Barto,
1998) with a linear arrangement of five states plus two absorbing terminal states at each
end. Episodes began in the center state of the five, then transitioned randomly with equal
probability to a neighbouring state until a terminal state was reached. The rewards were
zero everywhere except on transition into the right terminal state, upon which the reward
was +1.

We used three versions of this problem, differing only in their feature representations. The
first representation, which we call tabular features, was the familiar table-lookup case in
which, for example, the second state was represented by the vector φ2 = (0, 1, 0, 0, 0)�.
The second representation, which we call inverted features, was chosen to cause exten-
sive inappropriate generalization between states; it represented the second state by φ2 =
(1
2 , 0, 1

2 , 1
2 , 1

2)� (the value 1
2 was chosen to give the feature vectors unit norm). The third

representation, which we called dependent features, used only d = 3 features and was not
sufficient to solve the problem exactly. The feature vectors for the five states, left to right,

48

were φ1 = (1, 0, 0)�, φ2 = (1√
2
, 1√

2
, 0)�, φ3 = (1√

3
, 1√

3
, 1√

3
)�, φ4 = (0, 1√

2
, 1√

2
)�, and

φ5 = (0, 0, 1)�.

The Boyan-chain problem is a standard episodic task for comparing TD-style algorithms
with linear function approximation (see Boyan (2002) for details). We used the version
with 14 states and d = 4 features.

We applied GTD, GTD2, TDC, and TD(0) to these problems with a range of constant values
for their step-size parameters. The parameter α was varied over a wide range of values, in
powers of 2. For the GTD, GTD2, and TDC algorithms, the ratio η = β/α took values
from the set {1

4 , 1
2 , 1, 2} for the random-walk problems; one lower power of two was added

for the Boyan-chain problem. The initial parameter vectors, θ0 and w0, were set to 0 for all
algorithms.

Each algorithm and parameter setting was run for 100-500 episodes depending on the prob-
lem, with the square root of the MSPBE, MSBE, NEU, and MSE (see Section 3) computed
after each episode, then averaged over 100 independent runs. Figure 5.1 summarizes all the
results on the small problems using the MSPBE as the performance measure3. The results
for the other objective functions were similar in all cases and produced the same rankings.
The standard errors are all very small (in the order of 10−2 to 10−3), thus, are not shown.
All the algorithms were similar in terms of their dependence and sensitivity to the step sizes.
Overall, GTD learned the slowest, followed after a significant margin by GTD2, followed
by TDC and TD(0). It is important to note that our step-sizes in these empirical results are
kept constant and as a result the RMSPBE as shown in Figure 5.1 (right sub-panel) will
never go to zero.

To get a measure of how well the new algorithms perform on a larger problem, David Silver
applied them to learning an evaluation function for 9x9 Computer Go. He used a version of
RLGO (Silver et al. 2007) modified to use a purely linear evaluation function. This system
used 969,894 binary features corresponding to all possible shapes in every 3x3, 2x2, and
1x1 region of the board. Using weight sharing to take advantage of location-independent
and location-dependent symmetries, the million features are reduced to a parameter vector
of n = 63,303 components. With this large of a parameter vector, O(d2) methods are not
feasible. To make the problem as straightforward as possible, he sought to learn the value
function for a fixed policy, in this case for the policy that chose randomly among the legal
moves. Experience was generated by self-play, with all rewards zero except upon winning
the game, when the reward was 1.

3In this thesis, I have corrected the results of Figure 3 in Sutton et al. (2009). It turns out some of those
graphs have mislabeling issues, which have been fixed here. Also note, the general conclusions still remain the
same.

49

.00

.05

.10

.15

.20

.03 .06 .12 .25 0.5

!

R
M

S
P

B
E

0 250 500

Random Walk - Inverted features

episodes

GTD

GTD2

TDCTD

GTD

GTD2TDC

TD

.0

.04

.08

.12

.16

.03 .06 .12 .25 0.5

α

R
M

S
P

B
E

0 100 200

Random Walk - Tabular features

episodes

GTD

GTD2

TDC

TD

GTD

GTD2
TDC

TD

.00

.04

.07

.11

.14

.008 .015 .03 .06 .12 .25 0.5

α

R
M

S
P

B
E

0 100 200 300 400

Random Walk - Dependent features

episodes

GTD

GTD2

TDCTD

GTD

GTD2

TDC

TD
0

0.7

1.4

2.1

2.8

.015 .03 .06 .12 .25 0.5 1 2

α

R
M

S
P

B
E

0 50 100

Boyan Chain

episodes

GTD

GTD2

TDC
TD

GTD

GTD2

TDC

TD

Figure 5.1: Empirical results on the four small problems—three versions of the 5-state random walk
plus the 14-state Boyan chain. In each of the four panels, the right sub-panel shows a learning curve
at best parameter values (RMSPBE denotes root of MSPBE objective function), and the left sub-
panel shows a parameter study plotting the average height of the learning curve for each algorithm,
for various η = β/α, as a function of α. TD label shown in the graph represents TD(0) algorithm.

He applied all four algorithms to this problem with a range of step sizes. In each run, θ was
initialized to random values uniformly distributed in [−0.1, 0.1]. The secondary parameter,
w, was initialized to 0. Training then proceeded for 1000 complete games, after which θ

was frozen and another 1000 games run to compute an estimate of an objective function.
The objective functions cannot be exactly computed here because of the size of the problem.

The NEU objective is the most straightforward to estimate simply by averaging the value
of δφ over the 1000 test games and then taking the norm of the resultant vector. It is this
performance measure that he recorded and averaged over 40 runs to produce the data shown
in Figure 5.2 (Sutton, Maei, et al., 2009).

The results are remarkably consistent with what we saw in the small problems. The GTD al-
gorithm was the slowest, followed by GTD2, TDC, and TD, though the differences between
the last three are probably not significant given the coarseness of the parameter sampling
and the standard errors, which were about 0.05 in this experiment (they are omitted from
the graph to reduce clutter).

Finally, Figure 5.3 shows the results for an off-policy learning problem, demonstrating that
the gradient methods converge on Baird’s counterexample for which TD diverges.

50

0

0.2

0.4

0.6

0.8

.000001 .000003 .00001 .00003 .0001 .0003 .001

!

RNEU

TD

GTD2

GTD

TDC

GTD2

TDC

Figure 5.2: Residual error in learning an evaluation function for 9x9 Computer Go, as a function
of algorithm and step-size, in terms of the square root of the norm of the expected TD update (3.4).
The η values used were 1

16 , 1
8 , 1

4 , 1
2 , 1, and 2.

0 10 20 30 40 50

0

20

10

TD

GTD

GTD2

TDC

R
M
S
P
B
E

Sweeps

Figure 5.3: Learning curves on Baird’s off-policy counterexample: TD diverges, whereas the gra-
dient methods converge. This is the 7-state version of the “star” counterexample (Baird 1995), for
which divergence is monotonic. Updating was done synchronously in dynamic-programming-like
sweeps through the state space. For TD, α = 0.1. For the gradient algorithms, α = 0.05 and
η = 10. The initial parameter value was θ0 = (1, 1, 1, 1, 1, 1, 10, 1)�, and γ = 0.99.

5.5 Conclusion

In this chapter, we introduced three new gradient-based temporal-difference learning algo-
rithms. GTD minimizes the NEU objective function while GTD2 and TDC minimize a
more natural performance measure— the mean-square projected Bellman error. We pro-

51

vided a convergence analysis for our algorithms. Among our new algorithms, TDC appears
to be more efficient than GTD and GTD2, in terms of empirical rate of convergence. How-
ever, TDC appears to be a bit slower than TD(0) on on-policy problems. In the next chapter
we develop nonlinear version of GTD2 and TDC.

52

Chapter 6

Nonlinear Gradient
Temporal-Difference Learning

In previous chapter we showed how to solve the problem of off-policy learning with linear
TD algorithms by introducing the projected Bellman-error objective function, and algo-
rithms that perform stochastic gradient-descent on this function. These methods can be
viewed as natural generalizations of previous TD methods, as they converge to the same
limit points when used with linear function approximation methods.

In this chapter 1, we generalize this work to non-linear function approximation. We present
a projected Bellman-error objective function and two gradient-descent TD algorithms, non-
linear GTD2 and TDC, that optimize it. We prove the asymptotic almost-sure convergence
of both algorithms, for any finite Markov decision process and any smooth value function
approximator, to a locally optimal solution. The algorithms are incremental and the com-
putational complexity per-time-step scales linearly with the number of parameters of the
approximator. Empirical results obtained in the game of Go2 demonstrate the algorithms
effectiveness.

6.1 Nonlinear TD learning

Just like previous chapter, we assume that we are given an infinite sequence of 3-tuples,
(Sk, Rk, S�k), that satisfies the following:

1This chapter is based on the following paper: Maei, H. R., Szepesvari, Cs, Bhatnagar, S., Precup, D., Silver
D., Sutton, R. S. (2009). Convergent temporal-difference learning with arbitrary smooth function approxima-
tion. In Advances in Neural Information Processing Systems 22. MIT Press.

2All the Computer Go results were obtained by David Silver. The results were published in our paper: Maei,
et al. (2009).

53

Assumption A1 (Sk)k≥0 is an S-valued3 stationary process, Sk ∼ µ(·), Rk = R(Sk) and
S�k ∼ P π(·|Sk).

We call (Sk, Rk, S�k) the kth transition, and we consider the samples to have underlying
i.i.d. distribution (see Chapter 5). Upon observing the kth transition, we compute the
scalar-valued temporal-difference error,

δk = Rk + γVθk
(S�k)− Vθk

(Sk),

which is then used to update the parameter vector as follows:

θk+1 ← θk + αk δk∇Vθk
(Sk). (6.1)

Here αk is a deterministic positive step-size parameter, which is typically small, or (for
the purpose of convergence analysis) is assumed to satisfy the Robbins-Monro conditions:
�∞

k=0 αk = ∞,
�∞

k=0 α2
k < ∞. We denote by ∇Vθ(s) ∈ Rd the gradient of V w.r.t. θ at

s.

Because we assume stationarity, we will sometimes drop the index k and use (S, R, S�) to
denote a random transition. When the TD(0) algorithm converges, it must converge to a
parameter value where, in expectation, the parameters do not change:

E[δ(θ)∇Vθ(S)] = 0, (6.2)

where S, δ are random and share the common distribution underlying (Sk, δk); in particular,
(S, R, S�) are drawn as in Assumption A1 and δ(θ) = R + γVθ(S�)− Vθ(S).

However, it is well known that TD(0) with nonlinear function approximation may not con-
verge (even for on-policy problems); the stability of the algorithm is affected both by the
actual function approximation Vθ and by the way in which transitions are sampled.

Our goal is to generalize our gradient-TD method approach, which we described in previous
chapter, to the case in which Vθ is a smooth, nonlinear function approximator. The first
step is to find a good objective function on which to do gradient descent. In the linear
case, MSPBE was chosen as a projection of the Bellman error on a natural hyperplane–the
subspace to which Vθ is restricted. However, in the nonlinear case, the value function is no
longer restricted to a plane, but can move on a nonlinear surface.

3Note, S is not necessarily finite.

54

6.2 Objective function for nonlinear function approximation

To find an analogous MSPBE objective function for nonlinear function approximation con-
sider the following scenario: Assume that Vθ is a differentiable function of θ, and thus
M = {Vθ ∈ R|S| | θ ∈ Rd} becomes a differentiable sub-manifold of R|S|. Projecting
onto a nonlinear manifold is not computationally feasible; to get around this problem, we
will assume that the parameter vector θ changes very little in one step (given that the value
function is smooth and learning rates are usually small); in this case, the surface is locally
close to linear, and we can project onto the tangent plane at the given point. We now detail
this approach and show that this is indeed a good objective function.

The tangent plane PMθ of M at θ is the hyperplane of R|S| that (i) passes through Vθ and
(ii) is orthogonal to the normal of M at θ. The tangent space TMθ is the translation of
PMθ to the origin. Note that TMθ = {Φθa | a ∈ Rd}, where Φθ ∈ R|S|×d is defined by
(Φθ)s,i = ∂

∂θi
Vθ(s). Let Πθ be the projection that projects vectors of (R|S|, � ·�µ) to TMθ.

If Φ�θ DΦθ is non-singular then Πθ can be written as

Πθ = Φθ(Φ�θ DΦθ)−1Φ�θ D, (6.3)

where D is a diagonal matrix whose sth diagonal component is µ(s).

The objective function that we will optimize is:

J(θ) = � Πθ(T πVθ − Vθ) �2µ, (6.4)

where T π represents Bellman operator, which is defined in Equation (2.2). For simplicity
we will drop the superscript π.

This is a natural generalization of the objective function defined by (3.3), as the plane
on which we project is parallel to the tangent plane at θ. More precisely, let Υθ be the
projection to PMθ and let Πθ be the projection to TMθ. Because the two hyperplanes are
parallel, for any V ∈ R|S|, ΥθV − Vθ = Πθ(V − Vθ). In other words, projecting onto the
tangent space gives exactly the same distance as projecting onto the tangent plane, while
being mathematically more convenient. Fig. 6.1 illustrates visually this objective function.

We now show that J(θ) can be re-written in the same way as done in Chapter 5 for the
linear case.

Lemma 3. Assume Vθ(s0) is continuously differentiable as a function of θ, ∀s0 ∈ S
s.t. µ(s0) > 0. Let (S, δ(θ)) be jointly distributed random variables, and assume that

55

Vθ

Υ θ
TV θ

T

TVθ

� J
(θ

)

Υ
θ

Tangent plane

Υθ∗TVθ∗ = Vθ∗

V θ
∗

TVθ
∗

TD(0) solution
Figure 6.1: The MSPBE objective for nonlinear function approximation at two points in the value
function space. The figure shows a point, Vθ, at which, J(θ), is not 0 and a point, Vθ∗ , where
J(θ∗) = 0, thus Υθ∗TVθ∗ = Vθ∗ , so this is a TD(0) solution.

E[∇Vθ(S)∇Vθ(S)�] is nonsingular. Then

J(θ) = E[δ(θ)∇Vθ(S)]� E[∇Vθ(S)∇Vθ(S)�]−1 E[δ(θ)∇Vθ(S)]. (6.5)

Proof. The derivation of the identity is similar to that of MSPBE derivation for linear
function approximation (see Equation 5.5 in Chapter 5), except that here Πθ is expressed
by (6.3), thus

J(θ) = � Πθ(TVθ − Vθ) �2µ
= (Πθ(Vθ − TVθ))�D(Πθ(Vθ − TVθ))

= (Vθ − TVθ)�Π�θ DΠθ(Vθ − TVθ)

= (Vθ − TVθ)�D�Φθ(Φ�θ DΦθ)−1Φ�θ D(Vθ − TVθ)

= (Φ�θ D(TVθ − Vθ))�(Φ�θ DΦ)−1Φ�θ D(TVθ − Vθ)

= E[δ(θ)∇Vθ(S)]� E[∇Vθ(S)∇Vθ(S)�]−1 E[δ(θ)∇Vθ(S)],

where the Φθ matrix in defined by (Φθ)s,i = ∂
∂θi

Vθ(s).

Note that the assumption that E[∇Vθ(S)∇Vθ(S)�]−1 is non-singular is akin to the as-
sumption that the feature vectors are independent in the linear function approximation case.
We make this assumption here for convenience; it can be lifted, but the proofs become more
involved.

Corollary 1. Under the conditions of Lemma 3, J(θ) = 0, if and only if Vθ is a TD(0)

solution (i.e., if and only if it satisfies (2.9)).

56

This is an important corollary, because it shows that optimizing the proposed objective
function will indeed produce TD(0) solutions.

6.3 Derivation of nonlinear GTD2/TDC

To derive nonlinear GTD2/TDC algorithm, we now proceed to compute the gradient of
MSPBE (6.5).

Theorem 4. Assume that (i) Vθ(s0) is twice continuously differentiable in θ for any s0 ∈
S s.t. µ(s0) > 0 and (ii) W (·) defined by W (θ̂) = E[∇Vθ̂(S)∇Vθ̂(S)�] is non-singular

in a small neighbourhood of θ. Let (S, δ(θ)) be jointly distributed random variables. Let

φ ≡ ∇Vθ(S), φ� ≡ ∇Vθ(S�) and

h(θ, u) def= E[(δ(θ)− φ�u)∇2Vθ(S)u], (6.6)

where u ∈ Rd
. Then

−1
2
∇J(θ)

= E[(φ− γφ�)φ�w(θ)]− h(θ, w(θ)) (6.7)

= E[δ(θ)φ]− γE[φ�φ�w(θ)]− h(θ, w(θ)), (6.8)

where w(θ) = E[φ φ�]−1 E[δ(θ)φ].

The main difference between Equation (6.8) and Equation (5.9), which shows the gradient
for the linear case, is the appearance of the term h(θ, w), which involves second-order
derivatives of Vθ (which are zero when Vθ is linear in θ).

Proof. The conditions of Lemma 3 are satisfied, so (6.5) holds. Denote ∂i = ∂
∂θi

.
From its definition and the assumptions, W (u) is a symmetric, positive definite matrix,
so d

du(W−1)|u=θ = −W−1(θ) (d
duW |u=θ) W−1(θ), where we use the assumption that

d
duW exists at θ and W−1 exists in a small neighborhood of θ.

For the sake of simplicity, here, let us define δ ≡ δ(θ) and w = w(θ), thus, from the above

57

identity, we have:

−1
2

[∇J(θ)]i

= −(∂iE[δφ])�E[φφ�]−1E[δφ]− 1
2

E[δφ]� ∂i

�
E[φφ�]−1

�
E[δφ]

= −(∂iE[δφ])�E[φφ�]−1E[δφ] +
1
2

E[δφ]� E[φφ�]−1(∂iE[φφ�]) E[φφ�]−1 E[δφ]

= −E[∂i(δφ)]�(E[φφ�]−1E[δφ])

+
1
2

(E[φφ�]−1E[δφ])� E[∂i(φφ�)] (E[φφ�]−1E[δφ]).

The interchange between the gradient and expectation is possible here because of assump-
tions (i) and (ii) and the fact that S is finite. Now consider the identity

1
2
x�∂i(φφ�)x = φ�x (∂iφ

�)x,

which holds for any vector x ∈ Rd. Hence, using the definition of w,

−1
2

[∇J(θ)]i

= −E[∂i(δφ)]�w +
1
2
w�E[∂i(φφ�)]w

= −E[(∂iδ)φ�w]− E[δ(∂iφ
�)w] + E[φ�w(∂iφ

�)w].

Using ∇δ = γφ� − φ and ∇φ� = ∇2Vθ(s), we get

−1
2
∇J(θ)

= −E[(γφ� − φ)φ�w]− E[(δ − φ�w)∇2V (s)w]

= E[(φ− γφ�)φ�w]− E[(δ − φ�w)∇2V (s)w].

Finally, observe that

E[(φ− γφ�)φ�w]

= E[(φ− γφ�)φ]�(E[φφ�]−1E[δφ])

= E[δφ]− E[γφ�φ�w],

concluding the proof.

Using the expression derived in Theorem 4, it suggests the following generalization of linear
GTD2/TDC (cf. Equations 5.8a and 5.10), to the nonlinear case. The weight wk is updated

58

as before on the “faster” timescale:

wk+1 = wk + βk(δk − φ�k wk)φk. (6.9)

The parameter vector θk is updated on a “slower” timescale, either according to

θk+1 = Γ
�
θk + αk

�
(φk − γφ�k)(φ

�
k wk)− hk

� �
, (non-linear GTD2) (6.10)

or, according to

θk+1 = Γ
�
θk + αk

�
δkφk − γφ�k(φ

�
k wk)− hk

� �
, (non-linear TDC), (6.11)

where
hk = (δk − φ�k wk)∇2Vθk

(sk)wk. (6.12)

Besides hk, the only new ingredient compared to the linear case is Γ : Rd → Rd; a mapping
that projects its argument into a set C, which is a parameter of the algorithm. Normally,
one selects C to be a bounded set that has a smooth boundary and which is large enough so
that the set of TD(0) solutions,

U = { θ |E[δ(θ)∇Vθ(S)] = 0 },

is subsumed by C. The purpose of this projection step is to prevent the algorithms’ param-
eters from divergence in the initial phase. Without the projection step this could happen
due to the presence of the nonlinearities in the algorithm. Note that the projection is a
common technique for stabilizing the transient behavior of stochastic approximation algo-
rithms (Kushner and Yin, 2003). In practice, one selects C just large enough (by using a

priori bounds on the size of the rewards and the derivative of the value function) in which
case it is very likely that the parameter vector will not get projected at all during the ex-
ecution of the algorithm. We also emphasize that the main reason for the projection is to
facilitate convergence analysis. In many applications, this may not be needed at all.

Let us now analyze the computational complexity of these algorithms per update. Here we
assume that we can compute Vθ(s) and its gradient with the cost of O(d) computation which
is normally the case (e.g., neural networks). If the product of the Hessian of Vθ(s) and w can
be computed in O(d) time in (6.12), we immediately see that the computational cost of these
algorithms per update will be O(d). We show this is normally the case including neural
networks. In the case of neural networks, let Vθ(s) = σ(θ�x(s)), where σ(a) = 1

1+exp(−a) ,
then ∇Vθ(s) = [Vθ(s)(1− Vθ(s))]x and

∇2Vθ(s)w =
�
Vθ(s) (1− Vθ(s)) (1− 2Vθ(s)) x�w

�
x.

59

The product of Hessian of Vθk
(s) and wk in (6.12) generally can be written as

∇2Vθk
(s)wk = ∇(∇Vθk

(s)�wk),

because wk does not depend on θk. As a result, because the scalar term, ∇Vθk
(s)�wk,

costs only O(d) to compute its gradient which is a vector and also has O(d) complexity. In
general the observation that the product of a Hessian matrix and a vector of size d can be
computed with the cost of O(d) is due to Pearlmutter (1994).

6.4 Convergence Analysis

In this section we provide a two-timescale convergence analysis (see Borkar, 2008) for
nonlinear TDC– note, the analysis will be similar for nonlinear GTD2 as well.

Let C(Rd) be the space of Rd → Rd continuous functions. Define the operator Γ̂ : C(Rd)→
C(Rd) by

Γ̂v (θ) = lim
0<ε→0

Γ
�
θ + ε v(θ)

�
− θ

ε
.

In fact, because by assumption Γ(θ) = arg minθ�∈C �θ� − θ� and the boundary of C is
smooth, Γ̂ is well defined and in particular Γ̂v (θ) = v(θ) when θ ∈ C◦ and otherwise
Γ̂v (θ) is the projection of v(θ) to the tangent space of ∂C at Γ(θ).

Consider the ODE
θ̇ = Γ̂(−1

2∇J)(θ). (6.13)

Let K be the set of all asymptotically stable fixed points of (6.13). By its definition, K ⊂
C. Further, for U ∩ C ⊂ K (i.e., if θ is a TD(0)-solution that lies in C then it is an
asymptotically stable fixed point of (6.13)).

The next theorem shows that under some technical conditions, the iterates produced by
nonlinear TDC converge to K with probability one. Thus, apart from the projection step,
the algorithm converges to the stationary points of the objective function J , which is the
best result one can in general hope when using a stochastic gradient algorithm with a non-
convex objective function.

Theorem 5 (Convergence of nonlinear TDC). Let (Sk, Rk, S�k)k≥0 be a sequence of i.i.d.

transitions that satisfies (A1). Consider the nonlinear TDC iterations (6.9), (6.11). With

positive deterministic step-size sequences that satisfy
�∞

k=0 αk =
�∞

k=0 βk =∞,
�∞

k=0 α2
k,

�∞
k=0 β2

k <∞ and
αk
βk
→ 0, as k →∞. Assume that for each s0 ∈ S such that µ(s0) > 0,

for all θ ∈ C, Vθ(s0) is three times continuously differentiable. Further assume that for

60

each θ ∈ C, E[∇Vθ(S)∇Vθ(S)�] is nonsingular. Then θk → K, with probability one, as

k →∞.

Proof. Let (Sk, Rk, S�k) be a random transition whose law is the same as the law underlying
(Sk, Rk, S�k)k≥0. Further, let φθ = ∇Vθ(S), φ�θ = ∇Vθ(S�), φk = ∇Vθk

(Sk), and φ�k =
∇Vθk

(S�k).

We begin by rewriting the updates (6.9)-(6.11) as follows:

wk+1 = wk + βk(f(θk, wk) + Mk+1), (6.14)

θk+1 = Γ
�
θk + αk(g(θk, wk) + Nk+1)

�
, (6.15)

where

f(θk, wk) = E[δkφk|θk]− E[φkφ
�
k |θk]wk,

g(θk, wk) = E
�
δkφk − γφ�kφ

�
k wk − hk|θk, wk

�
,

Mk+1 = (δk − φ�k wk)φk − f(θk, wk),

Nk+1 = (δkφk − γφ�kφ
�
k wk − hk)− g(θk, wk).

We need to verify that there exists a compact set B ⊂ R2d such that (a) the functions
f(θ, w), g(θ, w) are Lipschitz continuous over B (b) (Mk,Gk), (Nk,Gk), k ≥ 0 are mar-
tingale difference sequences, where Gk = σ(Ri, θi, wi, Si, i ≤ k;S�i, i < k), k ≥ 0 are
increasing σ-fields, (c) {(wk(θ), θ)} with φk(θ) = ∇Vθ(Sk) and wk(θ) update

wk+1(θ) = wk(θ) + βk

�
δk(θ)− φk(θ)�wk(θ)

�
φk(θ),

almost surely stays in B for any choice of (w0(θ), θ) ∈ B, and (d) {(w, θk)} almost surely
stays in B for any choice of (w, θ0) ∈ B. From these, thanks to the conditions on the
step-sizes, standard arguments (c.f. Theorem 2 of Sutton et al., 2009; Borkar, 1997; Borkar
2008; Szepesvári, 2010) allow us to deduce that θk almost surely converges to the set of
asymptotically stable fixed points of

θ̇ = Γ̂F (θ),

61

where F (θ) = g(θ, w(θ)). Here for θ ∈ C fixed, w(θ) is the (unique) equilibrium point of

ẇ(θ) = E[δ(θ)φθ]− E[φθφ
�
θ]w(θ), (6.16)

where δ(θ) = R + γVθ(S�) − Vθ(S). Clearly, w(θ) = E
�
φθφ�θ

�−1 E[δ(θ)φθ], which
exists by assumption. Then by Theorem 4 it follows that F (θ) = −1

2 ∇J(θ). Hence, the
statement will follow once (a)–(d) are verified.

Note that (a) is satisfied because Vθ is three times continuously differentiable. For (b), we
need to verify that E[Mk+1 | Gk] = 0, E[Nk+1 | Gk] = 0 ∀k ≥ 0, which in fact follow from
the definitions. Condition (c) follows since, by a standard argument (e.g., Borkar & Meyn
(2000)), wk(θ) converges to w(θ), which by assumption stays bounded if θ comes from a
bounded set. Now for condition (d), note that {θk} is uniformly bounded since θk ∈ C, ∀k,
and by assumption C is a compact set.

6.5 Empirical results

To illustrate the convergence properties of the algorithms, we applied them to the “spiral”
counterexample mentioned in Section 2.7, originally used to show the divergence of TD(0)
with nonlinear function approximation. The Markov chain with 3 states is shown in the
Figure 6.2. The reward is always zero and the discount factor is γ = 0.9. The value
function has a single parameter, θ, and takes the nonlinear spiral form

Vθ(s) =
�
a(s) cos (λ̂θ)− b(s) sin (λ̂θ)

�
e�θ.

The true value function is V = (0, 0, 0)� which is achieved as θ → −∞. Here we used
V0 = (100,−70,−30)�, a = V0, b = (23.094,−98.15, 75.056)�, λ̂ = 0.866 and � =
0.05. Note that this is a degenerate example, in which our theorems do not apply, because
the optimal parameter values are infinite. Hence, we run our algorithms without a projection
step.

We also use constant learning rates, in order to facilitate gradient descent through an error
surface which is essentially flat. For TDC we used α = 0.5, β = 0.05, and for GTD2,
α = 0.8 and β = 0.1. For TD(0) we used α = 2 × 10−3 (as argued by Tsitsiklis & Van
Roy (1997), tuning the step-size does not help with the divergence problem). All step sizes
are then normalized by �V �

θ D d
dθVθ�.

Figure 6.2, shows the performance measure,
√

J , as a function of the number of updates
(we used expected updates for all the algorithms). GTD2 and TDC converge to the correct

62

0 1000 2000 30000

5

10

15

Time step

√
J

GTD2

TD

TDC

1

2 3

1
2

1
2

1
2

1
2

1
2

1
2

Figure 6.2: Empirical evaluation results for spiral counterexample.

solution, while TD(0) diverges. We note that convergence happens despite the fact that this
example is outside the scope of the theory.

To assess the performance of the new algorithms on a large scale problem, David Silver
used them to learn an evaluation function in 9x9 computer Go. He used a version of RLGO
(Silver, 2009), in which a logistic function is fit to evaluate the probability of winning from a
given position. Positions were described using 969,894 binary features corresponding to all
possible shapes in every 3x3, 2x2, and 1x1 region of the board. Using weight sharing to take
advantage of symmetries, the million features were reduced to a parameter vector of d =
63, 303 components. Experience was generated by self-play, with actions chosen uniformly
randomly among the legal moves. All rewards were zero, except upon winning the game,
when the reward was 1. David Silver applied the four algorithms to this problem: TD(0),
the proposed algorithms (GTD2 and TDC) and residual gradient (RG). In the experiments,
RG was run with only one sample.

In each run, θ was initialized to random values uniformly distributed in [−0.1, 0.1]; for
GTD2 and TDC, the second parameter vector, w, was initialized to 0. Training then pro-
ceeded for 5000 complete games, after which θ was frozen. This problem is too large to
compute the objective function J . Instead, to assess the quality of the solutions obtained, he
estimated the average prediction error of each algorithm. More precisely, he generated 2500
test games; for every state occurring in a game, he computed the squared error between its

63

0.40

0.45

0.50

0.55

0.60

.00001 .0001 .001 .01 .1
α

RMSE

TD

GTD2

TDC

RG

TDC

TDC

TD

RG

Figure 6.3: Empirical evaluation on 9x9 Computer Go with nonlinear function approximation.

predicted value and the actual return that was obtained in that game. He then computed the
root of the mean-squared error, averaged over all time steps. Figure 6.3 plots this measure
over a range of values of the learning rate α. The results are averages over 50 independent
runs. For TDC and GTD he used several values of the β parameter, which generate the
different curves. As was noted in previous empirical work, TD provides slightly better esti-
mates than the RG algorithm. TDC’s performance is very similar to TD, for a wide range of
parameter values. GTD2 is slightly worse. These results are very similar in flavour to those
obtained in Section 5.4 using the same domain, but with linear function approximation.

6.6 Conclusions

In this chapter, we solved a long-standing open problem in reinforcement learning, by es-
tablishing a family of temporal-difference learning algorithms that converge with arbitrary
differentiable function approximators (including neural networks). The algorithms per-
form gradient descent on a natural objective function, the projected Bellman error. The
local optima of this function coincide with solutions that could be obtained by TD(0). Of
course, TD(0) may not converge with non-linear function approximation. Our algorithms
are on-line, incremental and their computational cost per update is linear in the number of
parameters. Our theoretical results guarantee convergence to a local optimum, under stan-

64

dard technical assumptions. Local optimality is the best one can hope for, since nonlinear
function approximation creates non-convex optimization problems. The early empirical re-
sults obtained for computer Go shows nonlinear TDC is more effective than GTD/GTD2,
which is similar to our linear results in the previous Chapter.

65

Chapter 7

Extension to Eligibility Traces

One of the key properties of TD methods is their ability to learn from successive predictions.
However, this may come with a cost of being sensitive to changes in successive predictions.
Monte-Carlo methods, on the other hand, do not have such sensitivity as the error is only
between the current prediction and the final outcome. To bridge the gap between one-step
TD prediction and the Monte-Carlo method, eligibility traces are incorporated in TD meth-
ods. Eligibility traces are essential for TD prediction because they bridge the temporal gaps
in cause and effect when experience is processed at a temporally fine resolution. Eligibility
traces, allow us to look further ahead through their mechanistic backward-view updates.
Several important properties of eligibility traces are as follows:

• They make TD methods more like efficient incremental Monte-Carlo algorithms.
For example, in TD(λ), λ ∈ [0, 1] refers to eligibility function, and is equivalent
to Monte-Carlo methods when λ = 1.

• They are particularly of interest when reward is delayed by many steps, thus, by
adjusting λ function we may get faster and efficient learning.

To learn more about how the notion of eligibility traces appears in TD learning we refer the
reader to the background section and also Sutton & Barto (1998).

In the previous chapters, we presented gradient TD algorithms that were based on one-step
TD prediction; that is, their predictions were only based on one-step look ahead. In this
chapter, we extend our gradient TD methods to include eligibility traces. Particularly, we
extend the TDC algorithm, which is used for state-value function predictions, to include
eligibility traces, and we call the resulting algorithm GTD(λ).

66

7.1 Problem formulation and objectives

Without loss of generality we use linear value function approximation— similar analysis
can be used for the nonlinear setting. We define the λ-return (function) according to

Gλ
t (V) def= Rt+1 + γ

�
(1− λ)V (St+1) + λGλ

t+1

�
,

where V (St+1) denotes value function at state St+1, and λ ∈ [0, 1] is a constant eligibility
trace parameter. For the table-look up case, a λ-weighted version of the Bellman equation
follows from MDP property, which can be written as:

V π(s) = E
�
Gλ

t (V π) | St = s, π
�
.

def= (T πλV π)(s),

where T πλ is called the λ-weighted Bellman operator for policy π. Note, the notation
E[.|s, π] indicates that the expectation is over the data that is generated by following policy
π from state s. For detailed description of λ-weighted Bellman equation we refer the reader
to Tsitsiklis and Van Roy (1997).

Let us consider linear function approximation: V (s) ≈ Vθ(s) = θ�φ(s). Our objective is
to find off-policy TD-solution, θ, which satisfies Vθ = ΠT πλVθ (Π is defined in Equation
(2.15)), while the data is generated according to a behavior policy πb, with state distribution
µ, that is, s ∼ µ(.).

Objective function Just like in Section 5.2, consider the following mean-square projected
Bellman-error (MSPBE) objective function:

J(θ) = �Vθ −ΠT πλVθ�2µ. (7.1)

Let us, first, consider the following definitions and identities. We start with the following
definitions:

φt ≡ φ(St),

Gλ
t (θ) def= Rt+1 + γ

�
(1− λ)θ�φt+1 + λGλ

t+1(θ)
�
, (7.2)

67

δλ
t (θ) def= Gλ

t (θ)− θ�φt, (7.3)

and

Pπ
µδλ

t (θ)φt
def=

�

s

µ(s)E
�
δλ
t (θ)|St = s, π

�
φ(s), (7.4)

where Pπ
µ is an operator.

And now consider the following identities:

E
�
δλ
t (θ)|St = s, π

�
= (T πλVθ − Vθ)(s),

E
�
φtφ

�
t

�
=

�

s

µ(s)φ(s)φ(s)�

= Φ�DΦ,

Pπ
µδλ

t (θ)φt =
�

s

µ(s)E
�
δλ
t (θ)|St = s, π

�
φ(s)

=
�

s

µ(s)
�
(T πλVθ − Vθ)(s)

�
φ(s)

= Φ�D
�
T πλVθ − Vθ

�
,

where D and Φ are defined in Sec. 2.5.

Following derivations in Chapter 5, which led to Equation (5.5), and also definitions and
identities, which we introduced above, we have:

J(θ) = �Vθ −ΠT πλVθ�2µ
= (Φ�D(T πλVθ − Vθ))�(Φ�DΦ)−1Φ�D(T πλVθ − Vθ)

= (Pπ
µδλ

t (θ)φt)�E[φtφ
�
t]−1(Pπ

µδλ
t (θ)φt). (7.5)

Practically, there are two major issues with the objective function (7.5): 1) The expectation
term is with respect to the policy π, while the data is generated according to behavior policy

68

πb, 2) We can’t do forward-view equations as they need future data.

To overcome the first issue, we use importance weighting scenario (also see Sec 4.2). In the
next section, we show how to use importance weighting, and show a forward-view objective
function whose expectation terms are with respect to behavior policy πb. Later, we use the
mechanistic TD backward-view to deal with the second issue.

7.2 Forward-view objective function

The expectation TD update term in J(θ), is with respect to target policy π. In order to
convert it to πb, we need to use the notion of importance sampling. After we conduct this
step, we will show how to transform the forward-view TD update terms into mechanistic
backward-view.

Importance weighting scenario Consider an agent which takes action, A, according to
behavior policy πb. We would like to estimate the return (future rewards) if the agent were
to follow target policy π. We use the following recursive λ−return equation, based on
importance sampling, at time t:

Gλρ
t (θ) = ρt

�
rt+1 + γ

�
(1− λ)θ�φt+1 + λGλρ

t+1(θ)
��

,

where
ρt =

π(At | St)
πb(At | St)

.

Gλρ
t (θ) is a noisy guess of future rewards from policy π, while following policy πb. Let

δλρ
t (θ) = Gλρ

t (θ)− θ�φt. (7.6)

Theorem 6. (Off-policy TD with importance weighting) Let πb and π denote the behavior

and target policies, respectively. Consider δλ
t (θ), δλρ

t (θ) defined in equations (7.3) (7.6).
Then,

Pπ
µδλ

t (θ)φt = E
�
δλρ
t (θ)φt

�
. (7.7)

69

Proof. We show this by expanding the right-hand side

E
�
Gλρ

t (θ) | St = s
�

= E
�
ρt

�
Rt+1 + γ(1− λ)θ�φt+1

�
+ ρtγλGλρ

t+1(θ) | St = s
�

= E
�
ρt

�
Rt+1 + γ(1− λ)θ�φt+1

�
| St = s

�
+ ρtγλE

�
Gλρ

t+1(θ) | St = s
�

= E
�
Rt+1 + γ(1− λ)θ�φt+1 | St = s, π

�

+
�

a,s�

P (s� | s, a)πb(a | s)
π(a|s)

πb(a | s)
γλE

�
Gλγρ

t+1(θ) | St+1 = s�
�

= E
�
Rt+1 + γ(1− λ)θ�φt+1 | St = s, π

�

+
�

a,s�

P (s� | s, a)π(a | s)γλE
�
Gλγρ

t+1(θ) | St+1 = s�
�

= E
�
Rt+1 + γ(1− λ)θ�φt+1 + γλE

�
Gλγρ

t+1(θ) | St+1 = s�
�
| St = s, π

�
,

which, as it continues to roll out, gives us

E
�
Gλρ

t (θ) | St = s
�

= E
�
Gλ

t (θ) | St = s, π
�
.

And, eventually we get:

E
�
δλρ
t (θ)φt

�
= Pπ

µδλ
t (θ)φt,

because the state-distribution is based on behavior state-distribution, µ.

The forward-view objective function (7.5), now can be written based on the importance
weighting idea, that is:

J(θ)

=
�
Pπ

µδλ
t (θ)φt

��
E[φtφ

�
t]−1

�
Pπ

µδλ
t (θ)φt

�

= E
�
δλρ
t (θ)φt

��
E[φtφ

�
t]−1E

�
δλρ
t (θ)φt

�
. (7.8)

70

7.3 Backward-view objective function

In this section, we transform the TD forward-view to mechanistic backward-view. To do
this, we propose the following theorem, which provides a great tool for forward-view to
backward-view transformation.

Theorem 7. (Equivalence of the TD forward-view and backward-view) The forward-view

description of TD update is equivalence to the following mechanistic backward-view:

E
�
δλρ
t (θ)φt

�
= E[δt(θ)et] , (7.9)

where δλρ
t (θ) is defined in Equation (7.6), δt(θ) is the conventional TD error, δt(θ) =

Rt+1 + γθ�φt+1 − θ�φt, and et is the eligibility trace vector at time-step t, and has the

following recursive update:

et = ρt (φt + γλet−1) . (7.10)

Proof. Consider

Gλρ
t (θ) = ρt

�
Rt+1 + γ

�
(1− λ)θ�φt+1 + λGλρ

t+1(θ)
��

= ρt

�
Rt+1 + γθ�φt+1 − θ�φt + θ�φt

�
− ρtγλθ�φt+1 + ρtγλGλγρ

t+1(θ)

= ρt

�
Rt+1 + γθ�φt+1 − θ�φt

�
+ ρtθ

�φt + ρtγλ
�
Gλγρ

t+1(θ)− θ�φt+1

�

= ρtδt(θ) + ρtθ
�φt + ρtγλδλγρ

t+1(θ),

thus,

δλρ
t (θ) = Gλρ

t (θ)− θ�φt

= ρtδt(θ) + ρtθ
�φt + ρtγλδλρ

t+1(θ)− θ�φt

= ρtδt(θ) + (ρt − 1)θ�φt + ρtγλδλρ
t+1(θ).

Also, consider the following identity:

E
�
(1− ρt)θ�φtφt

�
=

�

s,a

µ(s)πb(a | s)
�

1− π(a | s)
πb(a | s)

�
θ�φ(s)φ(s)

=
�

s

µ(s)

�
�

a

πb(a | s)−
�

a

π(a | s)
�

θ�φ(s)φ(s)

=
�

s

µ(s) (1− 1) θ�φ(s)φ(s)

= 0,

71

and consequently, E
�
(1− ρt)θ�φtφk

�
= 0, for k < t.

Putting all above together, we get:

E
�
δλρ
t (θ)φt

�

= E
�
ρtδt(θ)φt + (ρt − 1)θ�φt + ρtγλδλρ

t+1(θ)φt

�

= E[ρtδt(θ)φt] + 0 + Eπb

�
ρtγλδλρ

t+1(θ)φt

�

= E
�
ρtδt(θ)φt + ρt−1γλδλρ

t φt−1

�

= E
�
δ γρ
t (θ)φt + ρt−1γλ

�
ρtδt(θ)φt + (ρt − 1)θ�φt + ρtγλδλρ

t+1(θ)φt

�
φt−1

�

= E
�
ρtδt(θ)φt + ρt−1γλ

�
ρtδt(θ) + ρtγλδλρ

t+1(θ)
�

φt−1

�

= E
�
ρtδt(θ) (φt + ρt−1γλφt−1) + ρt−1γλρtγλδλρ

t+1(θ)φt−1

�

= E
�
ρtδt(θ) (φt + γλρt−1φt−1) + ρt−2γλρtγλδλρ

t (θ)φt−2

�

...

= E[δt(θ)ρt (φt + ρt−1γλφt−1 + ρt−2γλρt−1γλφt−2 + · · ·)]

= E[δt(θ)et] , (7.11)

where et = ρt(φt + γλet−1) .

7.4 Derivation of the GTD(λ) algorithm

Now from Equation (7.8) and Theorem 7, we get

J(θ) = E[δt(θ)et]� E[φtφ
�
t]−1E[δt(θ)et] .

Just like the TDC derivation, we have:

−1
2
∇J(θ)

= −1
2
∇

�
E[δt(θ)et]� E[φtφ

�
t]−1E[δt(θ)et]

�

= −∇E
�
δt(θ)e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
(γφt+1 − φt) e�t

�
E[φtφ

�
t]−1E[δt(θ)et] .

72

We use the following identity:

E
�
φte

�
t

�
= E

�
φtρt(φt + γλet−1)�

�

= E
�
φtρtφ

�
t + φtγλe�t−1

�

= E
�
φtρtφ

�
t + φt+1ρtγλe�t

�

= E
�
φtφ

�
t + φt+1γλe�t

�
,

where we have used shifting indices trick and the following identities

E
�
φtρtφ

�
t

�
= E

�
φtφ

�
t

�
, E

�
φt+1ρtγλe�t

�
= E

�
φt+1γλe�t

�
.

Thus,

−E
�
(γφt+1 − φt) e�t

�
= E

�
γφt+1e

�
t − φte

�
t

�

= −E
�
γφt+1e

�
t −

�
φtφ

�
t + φt+1γλe�t

��

= E
�
φtφ

�
t − γ(1− λ)φt+1e

�
t

�
.

Using the above identity, we get

−1
2
∇J(θ)

= −E
�
(γφt+1 − φt) e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E
�
φtφ

�
t − γ(1− λ)φt+1e

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γ(1− λ)φt+1e

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γ(1− λ)φt+1e

�
t

�
w(θ), (7.12)

where w(θ) = E[φtφ�t]−1E[δt(θ)et].

The GTD(λ) algorithm By direct sampling from Equation (7.12) and following the TDC
derivations steps we get the GTD(λ) algorithm:

θt+1 = αt

�
δtet − γ(1− λ)(e�t wt)φt+1

�
, (7.13a)

wt+1 = βt

�
δtet − (w�t φt)φt

�
, (7.13b)

73

where
δt = rt+1 + γt+1θ

�
t φt+1 − θ�t φt,

et = ρt (φt + γλet−1) ,

ρt =
π(At | St)
πb(At | St)

.

Algorithm 1 GTD(λ) with linear function approximation
1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].

3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to πb, and arrive at St+1.
6: Observe sample, (φt, Rt+1, φt+1) at time step t.
7: for each observed sample do
8: δt ← Rt+1 + γθ�t φt+1 − θ�t φt.
9: ρt ← π(At|St)

πb(At|St)
.

10: et ← ρt (φt + γλet−1).
11: θt+1 ← θt + αt

�
δtet − γ(1− λ)(e�t wt)φt+1

�
.

12: wt+1 ← wt + βt
�
δtet − (φ�t wt)φt

�
.

13: end for

Convergence remarks: Just like the convergence remarks in Sub-section 5.3.4 for TDC
with importance weighting, it can be shown that GTD(λ) is guaranteed to converge under
standard conditions and proper choice of step-sizes.

7.5 Conclusion

In this chapter we extended our gradient-TD algorithm (TDC-style update) to include eligi-
bility traces. To derive the GTD(λ) algorithm we carried out a forward-view/backward-view
analysis and used importance sampling. Just like our previous gradient-TD algorithms,
a convergence guarantee can be assured for GTD(λ). A through convergence analysis,
with Markov noise, can be carried out as a future work by following the remarks in Sub-
section 5.3.4.

74

Chapter 8

GQ(λ): A Gradient-TD Algorithm
for General Prediction

In this chapter1, we develop a new off-policy TD method, called GQ(λ), for estimating
action-value functions. This new algorithm can be seen as extension of GTD(λ), which was
developed for estimating state-value functions, to an off-policy TD method for estimating
action-value functions. Because action-value functions typically are denoted by Q, thus we
call our new algorithm GQ(λ). GQ(λ) can be thought of as an extension of Q-learning as
well. We extend our existing convergence results for policy evaluation to this setting. Just
like GTD(λ), we derive GQ(λ) by conducting forward-view/backward-view analysis. Our
analysis for deriving GQ(λ) is similar to that of GTD(λ) with some subtle differences in
definition of λ-return, which results in different updates. Later in this chapter, we show
how to extend the GQ(λ) algorithm to the control domain.

8.1 Problem formulation and objectives

We consider the problem of policy evaluation in finite state-action Markov Decision Process
(MDP) and standard RL setting. Let

Qπ(s, a) def= E
� ∞�

t=0

γtRt+1 | S0 = s, A0 = a, π

�
,

where γ ∈ (0, 1] is discount factor and Qπ(s, a) denotes action-value function that evaluates
policy π given state-action pair (s, a). To simplify the notation, from now on, we drop the
superscript π on action values.

1This chapter is based on the following paper: Maei, H. R. and Sutton, R. S. (2010). GQ(λ): A general
gradient algorithm for temporal-difference prediction learning with eligibility traces. In Proceedings of the

Third Conference on Artificial General Intelligence, pp. 91–96. Atlantis Press.

75

Analogous to state-value functions, we define the λ-return for action-value functions:

Gλ
t (Q) = Rt+1 + γ

�
(1− λ)Q(St+1, At+1) + λGλ

t+1(Q)
�
, (8.1)

where Q(s, a) denotes the value of taking action a from state s, γ ∈ (0, 1], and λ ∈
[0, 1]. Under MDP assumption, for every entry of state-action pair we get the following
λ-weighted Bellman equation for action-value functions:

Qπ(s, a) = Eπ

�
Gλ

t (Qπ) | St = s, At = a, π
�
.

def= (T πλQπ)(s, a),

where T πλ is a λ-weighted state–action version of the affine |S × A| × |S × A| Bellman
operator for the target policy π.

To estimate action-value functions, we use linear function approximation, where Q ≈ Qθ =
Φθ is the vector of approximate action values for each state–action pair (s, a) ∈ S×A, and
Φ is the matrix whose rows are the state–action feature vectors φ(s, a)� ∈ Rd

Our objective is to estimate Qπ action-value functions under the following constraint: (1)
Linear function approximation, (2) Data is generated according to behavior policy πb, (3)
TD learning with linear complexity both in terms of memory and per-time-step complex-
ity. Here, the TD solution satisfies Qθ = ΠT πλQθ, where Π = Φ(Φ�DΦ)−1Φ�D, is a
projection matrix that projects any point in the action-value space into the linear space of
approximate action values, and D is a diagonal matrix whose diagonal (s, a) entries cor-
respond to the frequency, µ(s, a), with which each state–action pair is visited under the
behavior policy.

Following our approach for derivation of GTD(λ) in Section 7.1, we consider the following
projected Bellman-error objective function:

J(θ) = �Qθ −ΠT πλQθ�2µ

=
�
Pπ

µδλ
t (θ)φt

��
E[φtφ

�
t]−1

�
Pπ

µδλ
t (θ)φt

�
, (8.2)

where δλ
t denotes λ-weighted TD-error at time t:

δλ
t (θ) def= Gλ

t (θ)− θ�φt, (8.3)

76

Pπ
µ operator is defined in Equation (7.4), Gλ

t (θ) is

Gλ
t (θ) = Rt+1 + γ

�
(1− λ)θ�φt+1 + λGλ

t+1(θ)
�
, (8.4)

and φt ≡ φ(St, At).

First, in the next section we introduce the GQ(λ) algorithm, a gradient TD method, whose
learning parameter is updated according stochastic gradient descent in the objective func-
tion J(θ). Later, in this chapter, we show the derivation of algorithm..

8.2 The GQ(λ) algorithm

First, we specify the GQ(λ) algorithm as follows: The weight vector θ ∈ Rd is initialized
arbitrarily. The secondary weight vector w ∈ Rd is initialized to zero. An auxiliary memory
vector known as the eligibility trace e ∈ Rd is also initialized to zero. Their update rules
are

θt+1 = θt + αt

�
δtet − γ(1− λ)(w�t et)φ̄t+1

�
, (8.5a)

wt+1 = wt + βt

�
δtet − (w�t φt)φt

�
, (8.5b)

and
et = φt + γλρtet−1, (8.6)

where,
δt = Rt+1 + γθ�t φ̄t+1 − θ�t φt, (8.7)

φ̄t =
�

a

π(a | St)φ(St, a), (8.8)

ρt =
π(At | St)
πb(At | St)

,

where φt is an alternate notation for φ(St, At), and αt > 0, βt > 0, are positive step-size
parameters for θ and w weights respectively.

In the next section we derive GQ(λ) based on gradient-descent in projected (λ-weighted)
Bellman error objective function.

77

Algorithm 2 GQ(λ) with linear function approximation
1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].

3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to πb, and arrive at St+1.
6: Observe sample, (St, Rt+1, St+1) at time step t (with their corresponding state-action

feature vectors).
7: for each observed sample do
8: φ̄t+1 ←

�
a π(a | St+1)φ(St+1, a).

9: δt ← Rt+1 + γθ�t φ̄t+1 − θ�t φt.
10: ρt ← π(At|St)

πb(At|St)
.

11: et ← φt + ρtγλet−1.
12: θt+1 ← θt + α

�
δtet − γ(1− λ)(e�t wt)φ̄t+1

�
.

13: wt+1 ← wt + β
�
δtet − (φ�t wt)φt

�
.

14: end for

8.3 Derivation of GQ(λ)

To derive GQ(λ), we follow the GTD(λ) derivation steps; that is: (1) Importance weighting
and deriving forward-view objective function whose expectation terms are with respect to
behavior policy πb, (2) Transforming the TD forward-view update to backward-view, and as
a result obtaining the backward-view objective function, (3) Updating learning parameters
along stochastic gradient-descent of desired objective function.

8.3.1 Forward-view objective function based on importance sampling

The expectation terms, in the proposed objective function (8.2), are with respect to the
target policy π while the data is generated according to behavior policy πb. To overcome
this issue, we use importance sampling. We start with equation (8.1), which is a noisy
estimate of future rewards (return) by following policy π. To have a noisy estimate for the
return of policy π while following policy πb, we define the following λ−weighted return
function:

Gλρ
t (θ) = Rt+1 + γ

�
(1− λ)θ�φ̄t+1 + λρt+1G

λρ
t+1(θ)

�
,

where
φ̄t =

�

a

π(a | St)φ(St, a),

78

ρt =
π(At | St)
πb(At | St)

,

and Gλρ
t (θ) is a noisy guess of future rewards of policy π, if the agent follows policy π from

time t.

Let

δλρ
t (θ) = Gλρ

t (θ)− θ�φt. (8.9)

The next Theorem shows Pπ
µδλ

t (θ)φt (see Eq. 8.2) can be replaced by E
�
δλρ
t (θ)φt

�
.

Theorem 8. (Off-policy TD with important weighting) Let πb and π denote the behavior

and target policies, respectively. Consider δλ
t (θ), δλρ

t (θ) defined in equations (8.3) (8.9).
Then,

Pπ
µδλ

t (θ)φt = E
�
δλρ
t (θ)φt

�
. (8.10)

Proof. We show this by expanding the right-hand side

Eπb

�
Gλρ

t (θ) | St = s, At = a
�

= E
�
Rt+1 + γ

�
(1− λ)θ�φ̄t+1 + λρt+1G

λρ
t+1(θ)

�
| St = s, At = a

�

= E
�
Rt+1 + γ(1− λ)θ�φ̄t+1 | St = s, At = a, π

�

+γλE
�
ρt+1G

λρ
t+1(θ) | St = s, At = a

�

= E
�
Rt+1 + γ(1− λ)θ�φ̄t+1|St = s, At = a, π

�

+
�

s�

P (s� | s, a)
�

a�

πb(a� | s�)
π(a�|s�)

πb(a� | s�)
γλE

�
Gλρ

t+1(θ) | St+1 = s�, At+1 = a�
�

= E
�
Rt+1 + γ(1− λ)θ�φ̄t+1 | St = s, At = a, π

�

+
�

s�,a�

P (s� | s, a)π(a� | s�)γλE
�
Gλρ

t+1 | St+1 = s�, At+1 = a�
�

= E
�
Rt+1 + γ(1− λ)θ�φ̄t+1 + γλE

�
Gλρ

t+1(θ) | St+1 = s�, At+1 = a�
�
| St = s, At = a, π

�
,

which, as it continues to roll out, gives us

E
�
Gλρ

t (θ) | St = s, At = a
�

= E
�
Gλ

t (θ) | St = s, At = a, π
�
.

79

And, eventually it yields:

E
�
δλρ
t (θ)φt

�
= Pπ

µδλ
t (θ)φt,

because the state-action distribution is based on behavior state-action pair distribution, µ.

Therefore, from Theorem 8, the forward-view objective function (8.2) can be written as:

J(θ)

=
�
Pπ

µδλ
t (θ)φt

��
E[φtφ

�
t]−1

�
Pπ

µδλ
t (θ)φt

�

= E
�
δλρ
t (θ)φt

��
E[φtφ

�
t]−1E

�
δλρ
t (θ)φt

�
(8.11)

8.3.2 Backward-view objective function

In this section, we transform the TD forward-view to a mechanistic backward-view. To do
this, we propose the following theorem, which provides a great tool for forward-view to
backward-view transformation.

Theorem 9. (Equivalence of TD forward-view and backward-view) The forward-view de-

scription of TD update is equivalence to the following mechanistic backward-view:

E
�
δλρ
t (θ)φt

�
= E[δt(θ)et] , (8.12)

where δλρ
t (θ) is defined in Equation (8.9), δt(θ) = Rt+1 + γθ�φ̄t+1 − θ�φt, and et is

eligibility trace vector at time-step t, and has the following recursive update:

et = φt + γλρtet−1. (8.13)

80

Proof. Consider

Gλρ
t (θ) = Rt+1 + γ

�
(1− λ)θ�φ̄t+1 + λρt+1G

λρ
t+1(θ)

�

=
�
Rt+1 + γ(1− λ)θ�φ̄t+1

�
+ γλρt+1G

λρ
t+1(θ)

=
�
Rt+1 + γθ�φ̄t+1

�
− γλθ�φ̄t+1 + γλρt+1G

λρ
t+1(θ)

=
�
Rt+1 + γθ�φ̄t+1 − θ�φt + θ�φt

�
− γλθ�φ̄t+1 + γλρt+1G

λρ
t+1(θ)

=
�
δt(θ) + θ�φt

�
− γλθ�φ̄t+1 + γλρt+1G

λρ
t+1(θ) + γλρt+1

�
θ�φt+1 − θ�φt+1

�

=
�
δt(θ) + θ�φt

�
+ γλρt+1

�
Gλρ

t+1(θ)− θ�φt+1

�
+ γλ

�
ρt+1θ

�φt+1 − θ�φ̄t+1

�

=
�
δt(θ) + θ�φt

�
+ γλρt+1δ

λρ
t (θ) + γλ

�
ρt+1θ

�φt+1 − θ�φ̄t+1

�
,

thus,

δλρ
t (θ) = Gλρ

t (θ)− θ�φt

= δt(θ) + γλρt+1δ
λρ
t (θ) + γλ

�
ρt+1θ

�φt+1 − θ�φ̄t+1

�

Note that the last part of the above equation has expected value of vector zero under the
behavior policy because

E[ρtφt | St] =
�

a

πb(a | St)
π(a | St)
πb(a | St)

φ(a | St)

=
�

a

π(a | St)φ(St, a) ≡ φ̄t.

Putting all these together, we can write the TD update (in expectation) in a simple way in

81

terms of eligibility traces which leads to backward-view:

E
�
δλρ
t φt

�

= E
��

δt + γλρt+1δ
λρ
t+1

�
φt

�
+ E

�
γλθ�

�
ρt+1φt+1 − φ̄t+1

�
φt

�

= E[δtφt] + E
�
γλρt+1δ

λρ
t+1φt

�
+ 0

= E[δtφt] + E
�
γλρtδ

λρ
t φt−1

�

= E[δtφt] + Eb[γλρt

�
δt + γλρt+1δ

λρ
t+1 + γλθ�

�
ρt+1φt+1 − φ̄t+1

� �
φt−1]

= E[δtφt] + E[γλρtδtφt−1] + E
�
γλρtγλρt+1δ

λρ
t+1φt−1

�
+ 0

= E[δt (φt + γλρtφt−1)] + E
�
γλt−1ρt−1γλρtδ

λρ
t φt−2

�

...

= Eb

�
δt

�
φt + γλρtφt−1 + γλρtγλt−1ρt−1φt−2 + · · ·

��

= E[δtet] , (8.14)

where et = φt+γλρtet−1, which gives us a backward view algorithm for the TD(λ) update.

8.3.3 Stochastic gradient-descent derivation

Now from Equation (8.11) and Theorem 9, we get

J(θ) = E[δt(θ)et]� E[φtφ
�
t]−1E[δt(θ)et] .

Following the derivation of GTD(λ), we get:

−1
2
∇J(θ)

= −1
2
∇

�
E[δt(θ)et]� E[φtφ

�
t]−1E[δt(θ)et]

�

= −∇E
�
δt(θ)e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
��

γφ̄t+1 − φt
�
e�t

�
E[φtφ

�
t]−1E[δt(θ)et] . (8.15)

82

We use the following identity:

E
�
φte

�
t

�
= E

�
φt(φt + γλρtet−1)�

�

= E
�
φtφ

�
t + γλρtφte

�
t−1

�

= E
�
φtφ

�
t + γλρt+1φt+1e

�
t

�

= E
�
φtφ

�
t + γλφ̄t+1e

�
t

�
,

where we have used E
�
ρt+1φt+1e�t

�
= E

�
φ̄t+1e�t

�
.

Thus, from above and Equation (8.15), we get

−1
2
∇J(θ)

= −E
��

γφ̄t+1 − φt
�
e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
γφ̄t+1e

�
t − φte

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
γφ̄t+1e

�
t −

�
φtφ

�
t + γλφ̄t+1e

�
t

��
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
γ(1− λ)φ̄t+1e

�
t − φtφ

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γ(1− λ)φ̄t+1e

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γ(1− λ)φ̄t+1e

�
t

�
w(θ), (8.16)

where w(θ) = E[φtφ�t]−1E[δt(θ)et].

Thus, by direct sampling from the above gradient-descent direction and weight-duplication
trick we get:

θt+1 = θt + αt

�
δtet − γ(1− λ)φ̄t+1(e�t wt)

�
,

wt+1 = wt + βt

�
δtet − (w�t φt)φt

�
,

Convergence remarks: Convergence analysis of GQ(λ) is similar to GTD(λ). Thus, see
the convergence remarks for GTD(λ) in Section 7.4.

83

8.4 Greedy-GQ(λ): The extension of GQ(λ) to control

Just like the extension of TD(0) (with action values) to Q-learning (Watkins, 1989), we
can also extend GQ(λ), which was developed for the problem of prediction, to control.
Specifically, we consider the target policy πθ to be greedy with respect to Qθ. As a result,
we get the Greedy-GQ(λ) algorithm. Thus, the form of the Greedy-GQ(λ) iterates are the
same as GQ(λ)’s iterates, and the only difference is that now the fixed target policy π is
substituted with (parametrized) varying target policy πθ .

Algorithm (3), shows how to use the Greedy-GQ(λ) algorithm. Note, for the case of λ = 0,

Algorithm 3 Greedy-GQ(λ) with linear function approximation
1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].

3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to πb, and arrive at St+1.
6: Observe sample, (St, Rt+1, St+1) at time step t (with their corresponding state-action

feature vectors), where φ̂t+1(θt) = φ(St+1, A∗t+1), A∗t+1 = argmaxb θ�t φ(St+1, b).
7: for each observed sample do
8: δt ← Rt+1 + γθ�t φ̂t+1(θ)− θ�t φt.
9: If At = A∗t , then ρt ← 1

πb(A∗t |St)
; otherwise ρt ← 0.

10: et ← φt + ρtγλet−1.
11: θt+1 ← θt + αt

�
δtet − γ(1− λ)(φ�t wt)φ̂t+1(θt)

�
.

12: wt+1 ← wt + βt
�
δtet − (φ�t wt)φt

�
.

13: end for

we call GQ(0), the Greedy-GQ algorithm. Greedy-GQ has the following update rules:

θt+1 = θt + αt

�
δtφt − γ(φ�t wt)φ(St+1, A

∗
t+1)

�
, (8.17a)

wt+1 = wt + βt

�
δtφt − (φ�t wt)φt

�
, (8.17b)

where
δt = Rt+1 + γ max

b

�
θ�t φ(St+1, b)

�
− θ�t φ(St, At),

and
A∗t+1 = argmax

b

�
θ�t φ(St+1, b)

�
.

Clearly, the first term of θ-update, is the same as Q-learning update with linear function

84

approximation.

Maei et al. (2010) show that under a fixed behavior policy, Greedy-GQ is convergent while
Q-learning can diverge (Baird, 1995; 1999). An stronger proof, with milder assumptions,
can be done by using Theorem 17 in page 239 of Benveniste et al. (1990) (and also results
presented in Delyon, 1996).

8.4.1 Empirical results

In this sub-section, we illustrate the (empirical) convergence result of Greedy-GQ on a well
known off-policy example; Baird’s counterexample (Baird, 1995), for which Q-learning
diverges. This has been demonstrated in Figure 8.1.

Here, we have used the 7-star version of the “star” counterexample (see also Section 2.7).
The MDP consists of 7 states and 2 actions for each state. The reward is always zero and the
discount factor is γ = 0.99. In this problem, the true action value is zero for all state–action
pairs. The initial value of θ parameters for the action that causes transition to the 7th state
is (1, 1, 1, 1, 1, 1, 10, 1) and the rest are 1. The initial values for auxiliary weights w were
set to zero.

Updating was done synchronously in dynamic-programming-like sweeps through the state-
action space. The step-size parameter α = 0.1 was used for Q-learning, and for Greedy-GQ
we used α = 0.05, αw = 0.25. Figure 8.1 shows how the performance measure,

√
J (root

of the MSPBE objective function), evolves with respect to the number of updates. Both
algorithms used expected updates. The graph shows that Greedy-GQ finds the optimal

5 10 15 20 25 30 35 40 45 500

5

10

15

20

√
J

Sweeps

Q learning

Greedy GQ

Figure 8.1: Empirical illustration for Baird’s counterexample. The graph shows that Greedy-GQ
converges to the true solution, while Q-learning diverges.

85

weights, while Q-learning diverges.

8.5 Conclusion

The GQ(λ) algorithm, which has been introduced in this chapter, incorporates eligibility
traces into gradient-TD algorithms (TDC-style update) for estimating action-value func-
tions. To derive GQ(λ), we carried out a forward-view/backward-view analysis. GQ(λ) is
guaranteed to converge using our existing convergence results. GQ(λ) is a general gradi-
ent TD method for off-policy learning and as such can be seen as extension of Q-learning.
GQ(λ) is online, incremental and its computational complexity scales only linearly with the
size of features. Our work, however, is limited to policy evaluation. In this thesis mainly
we have considered the problem of prediction. However, GQ(λ) can be extended to control
domains, as we mentioned briefly.

86

Chapter 9

General Value Functions

In this chapter1, we extend GQ(λ) and GTD(λ), which we developed in the previous chap-
ters, to a more general settings, including general value functions (GVFs), terminal-reward
functions (outcomes), and allow policies to terminate at any given state with a termination
(probability) function. The GVFs are introduced in Sutton et al. (2011) (also see Maei &
Sutton, 2010). Under the MDP property, GVFs satisfy a Bellman equation and thus we can
use gradient TD methods to learn their values.

9.1 GVFs: The framework

We consider the problem of policy evaluation in finite state-action Markov Decision Process
(MDP). Under standard conditions, however, our results can be extended to MDPs with
infinite state–action pairs. In the standard RL setting, data is obtained from a continually
evolving MDP with states St ∈ S, actions At ∈ A, and rewards Rt ∈ R, for t = 1, 2, . . .,
with each state and reward as a function of the preceding state and action. Actions are
chosen according to the behavior policy πb, which is assumed fixed and exciting, πb(a |
s) > 0,∀(s, a); for the case of policy evaluation. We consider the transition probabilities
between state–action pairs, and for simplicity we assume there is a finite number of state–
action pairs.

Suppose that the agent finds itself in a state–action pair St, At, at time t. The agent ex-
pects its action-value function at that time, to tell something about the future sequence,
St+1, At+1, . . . , St+k, if actions were taken according to the policy, π : S × A → [0, 1],
until its termination time t + k. The termination probability of policy π for a given state s

is 1− γ(s), where γ : S → [0, 1].
1This chapter is based on the following paper: Maei, H. R. and Sutton, R. S. (2010). GQ(λ): A general

gradient algorithm for temporal-difference prediction learning with eligibility traces. In Proceedings of the

Third Conference on Artificial General Intelligence, pp. 91–96. Atlantis Press.

87

In standard RL, for episodic tasks, γ function normally is constant and is equal to 1, while
for continuing task (infinite horizon), normally it is considered to be constant and less than
1.

The next step, is to answer what we are trying to predict. In standard RL, the most common
type of prediction is the expected total or discounted future reward, while following a policy.
However, rewards could also be represented in the form of transient signals while acting—
transients are a measure of what happens during the trajectory rather than its end. We
denote the transient signal r : S×A→ R (note, we will show random variable with capital
letters).

The second type of prediction is the expected outcome of policy upon its termination. We
call this function the outcome target function, or terminal-reward function, z : S → R,
where z(s) is the outcome that the agent receives if the policy terminates at state s.

Finally, the prediction could conceivably be a mixture of both a transient and an outcome.
Here we will present the algorithm for predictions with both an outcome part z and a tran-
sient part r, with the two added together. In the common place where one wants only one
of the two, the other is set to zero.

Now we can start to state the goal of learning more precisely. In particular, we would like
our prediction to be equal to the expected value of the outcome target function at termination
plus the cumulative sum of the transient reward function along the way. Thus, conventional
action-value functions are defined in the following general form

Qπ(s, a) ≡ E[Rt+1 + Rt+2 + · · ·+ Rt+k + Zt+k | St = s, At = a, π, γ] , (9.1)

where γ : S → [0, 1] is a discount function representing the probability of continuing to
evaluate policy π from a given state, Qπ(s, a) denotes action value function that evaluates
policy π given state-action pair s, a, and its termination probability 1− γ(s). We call these
action-value functions, general value functions (GVFs). To simplify the notation, from now
on, we drop the superscript π on action-values.

Our definition of GVFs does not involve discounting factor, as policies will terminate after
some finite time—due to termination probability function 1 − γ. Later we will see that γ

function can be interpreted as discounting factor—γ(s) indicates probability of continuing
policy, π, from state s.

The Equation (9.1) describes the value functions in a Monte Carlo sense, but of course
we want to include the possibility of temporal-difference learning. To do this, first we re-
write the Equation (9.1) in the following bootstrapping form, which is derived under MDP

88

assumption:

Qπ(s, a)

= E[Rt+1 + Rt+2 + · · ·+ Rt+k + zt+k | St = s, At = a, π, γ]

=
�

s�

P (s� | s, a)

�
r(s, a, s�) + (1− γ(s�))z(s�) + γ(s�)

�

a�

π(a� | s�)Qπ(s�, a�)

�

def= (T πQ)(s, a), (9.2)

where T π has the form of Bellman operator for any given state-action pair, thus, we call the
above equation a Bellman equation.

Now that we have the above bootstrapping equation, we can implement our gradient TD
methods, which we developed in previous sections, to this setting. Here, we use linear
function approximation; that is, Qθ(s, a) = θ�φ(s, a) ≈ Qπ(s, a) for all s ∈ S and a ∈ A,
where θ ∈ Rd is a learned weight vector and φ(s, a) ∈ Rd indicates a state–action feature
vector. We want to learn parameter vector θ through a gradient TD method.

In the next section, we show how GQ(λ), which we developed in Chapter (8), can be ex-
tended to a more general settings, including GVFs, and varying eligibility traces; that is,
instead of a constant eligibility trace parameter, we let eligibility trace function, for a given
state, to be an arbitrary function of that state. It is easy to see that all of our convergence
analysis will be extended to such general settings, and similar studies can be done for esti-
mating (general) state-value functions using GTD(λ) developed in Chapter (7).

9.2 GQ(λ) for GVFs

In this section we show how to use GQ(λ) for learning parameters of GVFs. To do this,
we consider four functions: π and γ, for the policy, and z and r, for the target functions.
To specify how the answers will be formed, one provides their functional form (here in
linear form). Here, the feature vectors are denoted φ(s, a) for all state–action pairs, and
the eligibility-trace function is λ. The discount factor, which typically is used in standard
RL setting can be taken to be 1, and thus ignored— the same effect as discounting can be
achieved through the choice of γ function.

Now, we specify the GQ(λ) algorithm for GVFs as follows: The weight vector θ ∈ Rd

is initialized arbitrarily. The secondary weight vector w ∈ Rd is initialized to zero. An

89

auxiliary memory vector known as the eligibility trace e ∈ Rd is also initialized to zero.

GQ(λ) update rules are

θt+1 = θt + αt

�
δtet − γt(1− λt)(w�t et)φ̄t+1

�
, (9.3a)

wt+1 = wt + βt

�
δtet − (w�t φt)φt

�
, (9.3b)

et = φt + γtλtρtet−1, (9.3c)

δt = Rt+1 + (1− γt+1)Zt+1 + γt+1θ
�
t φ̄t+1 − θ�t φt, (9.3d)

φ̄t =
�

a

π(a | St)φ(a | St), (9.3e)

ρt =
π(At | St)

πb(At | St,)
, (9.3f)

φt and γt are an alternate notations for φ(St, At) and γ(St), respectively. Here, δt is one-
step TD error, and the sequence (αt, βt; t ≥ 0) are positive constant or decreasing step-size
parameters.

Table (4) shows how to use GQ(λ) with linear function approximation for GVFs.

Algorithm 4 GQ(λ) for GVFs
1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β.
3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to πb, and arrive at St+1.
6: Observe sample, (St, Rt+1, Zt+1, St+1) at time step t (with their corresponding state-

action feature vectors).
7: for each observed sample do
8: φ̄t+1 ←

�
a π(a | St+1)φ(St+1, a), and

λt ← λ(St), γt ← γ(St),γt+1 ← γ(St+1).
9: δt ←

�
Rt+1 + (1− γt+1)Zt+1 + γt+1θ�t φ̄t+1

�
− θ�t φt.

10: ρt ← π(At|St)
πb(At|St)

.
11: et ← φt + ρtγtλtet−1.
12: θt+1 ← θt + α

�
δtet − γt+1(1− λt+1)(e�t wt)φ̄t+1

�
.

13: wt+1 ← wt + β
�
δtet − (φ�t wt)φt

�
.

14: end for

Derivation To derive GQ(λ) with linear function approximation for GVFs, we follow the
derivation of GQ(λ) for standard value functions in chapter (8). However, there are some
subtle differences due to policy termination condition and varying eligibility traces. For the
full derivation, I refer the reader to Appendix (A).

90

9.3 General state-value functions

So far, in this chapter, we have considered only action-value functions. Action-value func-
tion are important because they determine which primitive action to take from a given states
in order to achieve a goal. However, state-value function are needed for various optimal
control methods, such as policy gradient method with actor-critic architecture.

Analogous to action-value functions, general state-value functions are defined in the fol-
lowing form:

V π(s) = E[Rt+1 + Rt+2 + · · ·+ Rt+k + Zt+k | π, γ]

≈ Vθ(s) = θ�φ(s), (9.4)

where the true state-value, V π(s), satisfies a Bellman-equation (under the MDP condition),
bringing the possibility of temporal-difference learning.

In addition to linear function approximation, we include eligibility traces and let the eli-
gibility trace function λ : S → [0, 1] be an arbitrary function of state, thus varying over
time.

To learn, modifiable parameters, θ, we extend GTD(λ) to the case where γ and λ functions
depends on states. The complete derivation of GTD(λ), for this general setting, is shown in
Appendix B.

Given all these, the algorithm is specified as follows: The weight vector θ is initialized
arbitrarily. The secondary weight vector w is initialized to zero. An auxiliary memory
vector known as the eligibility trace e is also initialized to zero. Their update rules are:

θt+1 = θt + αt

�
δtet − γt+1(1− λt+1)(w�t et)φt+1

�
, (9.5a)

wt+1 = wt + βt

�
δtet − (w�t φt)φt

�
, (9.5b)

et = ρt (φt + γtλtet−1) , (9.5c)

δt = ρt

�
Rt+1 + (1− γt+1)Zt+1 + γt+1θ

�
t φt+1

�
− θ�t φt, (9.5d)

ρt =
π(At | St)
πb(At | St)

, (9.5e)

and (αt, βt; t ≥ 0) are constant or decreasing step-size sequences (deterministic and pos-
itive). Table (5), shows how to use GTD(λ) for learning parameters of general state-value
functions with linear function approximation.

91

Algorithm 5 GTD(λ) for GVFs
1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β.
3: Repeat for each episode:
4: Initialize e = 0
5: Take At from St according to πb, and arrive at St+1.
6: Observe sample, (φt, Rt+1, Zt+1, φt+1), where φt = φ(St).
7: for each observed sample do
8: λt ← λ(St), γt ← γ(St),γt+1 ← γ(St+1).
9: δt ←

�
Rt+1 + (1− γt+1)Zt+1 + γt+1θ�t φt+1

�
− θ�t φt.

10: ρt ← π(At|St)
πb(At|St)

.
11: et ← ρt (φt + γtλtet−1).
12: θt+1 ← θt + α

�
δtet − γt+1(1− λt+1)(e�t wt)φt+1

�
.

13: wt+1 ← wt + β
�
δtet − (φ�t wt)φt

�
.

14: end for

9.4 Option conditional predictions with GQ(λ)

The theory of options in reinforcement learning, was first developed by Sutton, Precup, and
Singh (1998, 1999). An option is a triple o = (I, π, γ), where I ⊆ S , π : S ×A → [0, 1]
is the policy followed during o. I, normally is called initiation set, characterizes states in
which are excited (active) for option policy π.

For example, consider a mobile robot, which is trying to dock to charge its battery. Here,
I includes all states in which the charger is visible, π is a controller, which could be either
hand-coded or learned, and robot will terminate docking option from state s with probability
of 1− γ(s) if the dock or charger is not in sight from state s.

Option conditional predictions are a form of temporally abstract predictions, which are
essential as the means for representing abstract, higher-level knowledge about courses of
action (or options). There are some benefits to this form of abstraction: (1) representing
actions at a proper time scale can potentially help for faster learning and planning, (2) the
problem can be transformed into several sub-tasks, and also allows domain knowledge be
incorporate into the learning system.

The GQ(λ) algorithm is suitable for option conditional predictions. The algorithm allows
the agent to learn about large number of options, that are excited at particular states, while
the agent behaves according to its own policy.

92

9.5 Representing knowledge with GVFs

How can we know lots of things about how the world works, what can we do, and how
can we apply them efficiently to maximize reward? We know so much about low-level
sensory signals, how can we relate them to higher-level world knowledge? How can it all
be organized and maintained? What are the principles?

In this chapter, we showed GQ(λ) is suitable for learning GVFs, which can be used as
semantics for expressing knowledge (Sutton et al., 2011). GVFs are predictions and are
always in the form of answers to the questions—in order to make a prediction, a question
needs to be asked. Questions are like: “If I keep moving forward now, would I bump to
a wall after few steps?”, or in the game of chess “What particular actions would lead to a
win?”. Answer to these questions can be formulated in the form of a function that takes the
current state as its input and gives a scalar value function as output. The questions address
what to learn. The problem of prediction is how to learn value functions.

Based on these semantics, any answer to a question which is predictive is called knowledge.
In other words, prediction is a way of expressing knowledge. This knowledge is obtained
from sensory data communicated back and forth between agent and environment, and as
such we call it grounded world knowledge, or in short, world knowledge (see Sutton et al.,
2011, Maei and Sutton, 2010).

Of course, we already have made the working hypothesis that the world knowledge is
predictive. Given all these, we can see that GQ(λ) is suitable for learning experientially
grounded knowledge of the world. For example, Horde architecture (Sutton et al., 2011)
was implemented in a robotic task, which uses GQ(λ) for learning in order to predict the
world knowledge in a complex and nonstationary environment.

9.6 Conclusion

In this chapter we extended GQ(λ) and GTD(λ) to include general value functions (GVFs),
which can be considered as a semantics for knowledge representation. We showed how to
use the GQ(λ) and GTD(λ) algorithms to learn GVFs. In addition, our algorithms incor-
porate varying eligibility traces and policy termination function. These extensions makes
these algorithms suitable for learning option-conditional predictions.

93

Chapter 10

Perspectives and Prospects

In this thesis, we presented a new family of temporal-difference learning algorithms. This
is the first time that such algorithms have been developed while retaining their stability
for general settings, including nonlinear function approximation and off-policy learning.
Our gradient-TD algorithms can be viewed as performing stochastic gradient-descent in a
mean-square projected Bellman-error (MSPBE) objective function whose optimum is the
TD-solution. Another key and novel technique was introducing a set of auxiliary weights
that were used in the update of actual parameters. The auxiliary weights were trained
online, based on a stochastic update rule. All of our gradient-TD algorithms are guaranteed
to converge.

Eligibility traces are essential to TD learning because they bridge the temporal gaps in
cause and effect when experience is processed at a temporally fine resolution. Thus, we
incorporated eligibility traces into our gradient-TD methods. Particularly, we considered a
general scenario that eligibility trace function can be an arbitrary function of state, thus, can
vary over time.

Another contribution is extending and making gradient-TD algorithms suitable for learn-
ing general value functions (GVFs). In standard RL, the value of a state is a measure of
predicted future rewards from that state by following a policy. However, in the real-world,
predictions are not necessarily in the form of future rewards. We would like to be able to
answer questions such as: “If I keep moving forward now, would I bump to a wall after few
second?” This question not only considers the outcome of moving forward after a few sec-
ond, it also suggest that the policy of moving forward is only excited in particular states. The
GVFs formulation is suitable for answering these temporally abstract predictions, which are
also essential for representing abstract, higher level-knowledge about courses of action, or
options. Here, we let policies to have their own activation and termination conditions, thus,
making them suitable for option-conditional predictions.

Although, in this thesis, I focused on TD methods in the context of reinforcement learning,

94

all these new ideas and methods can also be extended to various approximate DP methods.
A good way to understand the impact of this work is to see it a a way of curing the curse-
of-dimensionality.

The curse appears in large class of decision-making problems or problems that involve
learning from interaction. Dynamic Programming (DP) is a general approach for solving
complex decision-making problems. However, due to Bellman’s curse-of-dimensionality
it has not been extended in solving large-scale applications. The curse is considered as
a malediction that has stopped scientists from finding exact solutions for large number of
practical problems (Bellman, 1961, p. 94). Approximate DP methods—a collection of
techniques for finding approximate DP solution— have been proposed to cure the curse.

However, approximate DP methods have cured the curse only partially. Baird’s counterex-
ample (cf. Chapter 2) suggests we may have a stability problem when using approximate
DP methods. Particularly, the problem arises when we are interested in algorithms that have
the following desirable features: incremental, online, and linear complexity both in terms
of memory and per-time-step computation.

Although our work is just a starting point and has focused on TD methods, because TD al-
gorithms are a class of approximate DP methods, our techniques and ideas can be extended
to various approximated DP approaches. Thus, our work solves the problem of curse-of-
dimensionality to a great extent.

We also have conducted empirical studies on comparing gradient-TD methods and con-
ventional TD algorithms. Our empirical results suggest that gradient-TD methods’ rate of
convergence may be slower than conventional TD methods on on-policy problems where
conventional TD methods sound. Our most recent gradient-TD methods are hybrid in that
their asymptotic rate of convergence can be just as fast as TD methods on on-policy prob-
lems (see Appendix C).

10.1 Future Research Directions

Empirical results on hybrid gradient-TD methods Hybrid gradient-TD methods are
promising methods to make gradient-TD methods more efficient. It turns out we can show
hybrid methods have the same asymptotic rate of convergence of conventional TD methods
on on-policy problems; that is, problems that conventional TD methods sound.

An important future direction would be to evaluate the effectiveness of hybrid gradient-TD
algorithms on various on-policy and off-policy problems and demonstrate their empirical

95

rate of convergence agains other gradient-TD methods as well as conventional TD algo-
rithms.

Making gradient-TD methods more efficient In addition of hybrid gradient-TD idea,
here I propose several potential ideas, which can make the gradient-TD algorithms more
efficient in terms of rate of convergence.

The first natural method is proper choice of step-sizes. Particularly, we are interested in
step-size methods that are not restricted to stationarity conditions; that is, are adaptive to
new streams of data. One promising adaptive step-size method is IDBD, in which the step-
sizes are adjusted based on gradient-descent on an objective error measure (Sutton, 1992).
One of the problems with IDBD is that it has its own tuneable parameter, which is called
the meta step-size parameter, and the performance of the main stochastic algorithm highly
depends on the right choice of meta step-size parameter, which is varying for different
problems. This means practitioners must spend a lot of effort to find the right value for
meta step-size parameter. Mahmood (2010) suggests, Autostep, a free-parameter-tuning
algorithm for step-size adaptation, which is robust and less sensitive to the choice of meta
step-size parameter for large class of problems. Although the algorithm is proposed for
supervised learning problems, it can also be extended to gradient-TD methods.

In addition, there is another motivation for using Autostep in gradient-TD algorithms.
Gradient-TD methods require two step-size parameters–one for the main learning param-
eters and another one for auxiliary weights. This means, practitioners need to spend a lot
of effort to tune the step-size parameters for particular problems. As the second set of
weights have an underlying supervised learning update, Autostep can directly be applied to
eliminate the second set of step-size parameter associated with auxiliary weights.

Another promising idea is to let the gradient TD-correction term, in TDC-like methods,
have its own step-size parameter for the update. Remember that the main update is com-
posed of two terms—the TD update and a gradient TD-correction term— and both have
the same step-sizes. Of course, this will introduce a third step-size and thus another tuning
parameter, however, Autostep, potentially can resolve the issues related to step-size tuning.

And finally, I think, regularizing the auxiliary weights can improve the rate of convergence.
Note that the gradient TD-correction term is a function of auxiliary weights which eventu-
ally converges to zero. When the learning parameters are getting closer to the solution, the
auxiliary weights get closer to zero and due to the noise, they can have a large effect on the
direction of the update used in the main algorithm. Thus, regularizing the auxiliary weights
(e.g. ridge regression) may potentially help us to reduce the noise and thus improve the rate

96

of convergence.

Knowledge representation with GVFs and option conditional predictions In our ev-
eryday life a large amount of knowledge is in the form of temporally extended predictions
which are goal oriented. General value functions (GVFs), to some great extent, can convey
this notion of knowledge and as such can be used as a semantic for representing world-
knowledge grounded in steam of experience.

Our desiderata for this form of knowledge, which is predictive and is grounded in received
data (in the form of sensory signals received back and forth between the intelligence agent
and the environment) should be useful for various kinds of things such as planning and
autonomously be verifiable.

Thus, it would be interesting to apply our general algorithms, GQ(λ) or GTD(λ), on various
temporal data, including robot data to learn about large amount of robot interactions with its
environment and gather various kinds of predictive knowledge. GQ(λ), has been applied on
robot data to learn about various kinds world-knowledge (Sutton, 2011), however, it has not
been extended to learn option models (Sutton et al, 1998; 1999) and the Dyna architecture
for planning purposes (Sutton, 1990)

We would like to have algorithms that can learn about multiple options at the same time—
parallel learning— from a single stream of experience generated according to behavior
policy. Thus, option conditional predictions involve off-policy learning, and gradient-TD
methods allows options to be learned in conjunction with function approximation. There-
fore, implementing gradient-TD methods on option conditional predictions and testing their
efficiency is very beneficial.

Extensions to policy gradient methods In this thesis, I presented only the value-function
based methods. Policy gradient methods are proposed as an alternative to value-function
based methods in order to approximate the optimal policy (Sutton et al., 2000). In value-
function based approaches, which we have discussed so far, the approximated value func-
tion has been used to select actions without constructing an explicit form for policy. This
action selection procedure, which is based on value function, corresponds to computing
a deterministic policy. However, policies are normally stochastic (Singh, Jaakkola, and
Jordan, 1994) and, as a result, value-function based methods can cause some limitations.
For example, for some problems (e.g., Gordon, 1995), convergence of the policy cannot
be assured because an arbitrary small change in value function can cause one not to select
some actions that would be selected by the optimal policy (Bertsekas and Tsitsiklis, 1996;

97

Gordon, 1995).

In policy gradient methods a stochastic policy is explicitly represented by a function approx-
imation with its own parameters independent of the value function. The policy parameters
at every time step are updated online according to the gradient of expected return (e.g., av-
erage reward) with respect to the policy parameters. For example, the policy might have a
neural network structure whose input neurones are features representing state, whose synap-
tic weights are the policy parameters, and whose output neurones represent action selection
probabilities.

The basic idea behind all policy gradient methods is to obtain an unbiased estimate for the
gradient term by sample trajectories. These sample trajectories are informed by an estimate
of average return, which is computed by conventional TD methods. Thus, with our new
theoretical developments on TD methods, it is natural to implement them in places where
TD has been used, such as policy gradient methods.

The Actor-critic algorithms are one of the most popular sub-class of policy gradient meth-
ods (Sutton et al., 2000; Peters et al., 2005, Bhatnagar et al., 2009). The Actor-critic meth-
ods also are considered a class of TD methods with two separate structure of actor and critic.
The actor structure explicitly represents the action-selection policy and is independent of
critic structure which estimates the value function. The critic addresses the prediction prob-
lem while the actor deals with the control problem. The actor and critic, simultaneously,
are updated online based on TD ideas.

Thus future work will be to develop an effective actor-critic algorithm that is guaranteed to
converge reliably under off-policy training and is suitable for large-scale real-world appli-
cations. Particularly, we seek a convergent policy gradient algorithm that: (1) Works with
actor-critic architecture, (2) Works with temporal-difference learning, (3) Updates the pol-
icy parameters according to a novel policy gradient theorem, (4) Can learn off-policy and
as such would allow using data effectively, (5) Has an incremental and online stochastic
gradient update rule for both the actor and critic, and as such is scalable to large-problems.

10.2 Closing remarks

The new gradient-TD algorithms are solving two open problems in reinforcement learn-
ing: (1) Convergent O(d) off-policy learning, (2) Nonlinear TD learning. We conclude that
function approximation in reinforcement learning now is nearly as straightforward as su-
pervised learning by using a gradient-descent method on a novel objective function (mean-
square projected Bellman-error). This indicates that the curse-of-dimensionality is almost

98

broken and general learning from interaction now is practical. The learning rate can still be
improved by hybrid Gradient-TD algorithms (see Appendix C).

99

References
Antos, A., Munos, R., and Szepesvári, Cs. (2007). Fitted Q-iteration in continuous action-

space MDPs. In Advances in Neural Information Processing Systems 20, pp. 916. MIT
Press.

Antos, A., Szepesvári, Cs., Munos, R. (2008). Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine

Learning 71:89–129.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxi-
mation. In Proceedings of the 12th Int. Conf. on Machine Learning, pp. 30–37.

Baird, L. C. (1999). Reinforcement Learning Through Gradient Descent. PhD thesis,
Carnegie-Mellon University.

Barnard, E. (1993). Temporal-difference methods and Markov models. IEEE Transactions

on Systems, Man, and Cybernetics 23(2):357–365.

Baxter, J., Tridgell, A., Weaver, L. (1998). Experiments in parameter learning using tem-
poral differences. International Computer Chess Association Journal, 21, pp. 8499.

Bellman, R. (1961). Adaptive control Processes. Princeton University Press.

Benveniste, A., Metivier, M., Priouret, P. (1990). Adaptive Algorithms and Stochastic
Approximations. Springer-Verlag.

Bertsekas, D. P., Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., Lee, M. (2009). Natural actor-critic algo-
rithms. Automatica 45 (11): 2471-2482.

Borkar, V. S. (1997). Stochastic approximation with two timescales. Systems and Control

Letters 29:291-294.

Borkar, V. S. (2008). Stochastic Approximation: A Dynamical Systems Viewpoint. Cam-
bridge University Press.

Borkar, V. S. and Meyn, S. P. (2000). The ODE method for convergence of stochastic
approximation and reinforcement learning. SIAM Journal on Control And Optimization

38(2):447–469.

Boyan, J. A. & Moore, A.W. (1995). Generalization in reinforcement learning: Safely ap-
proximating the value function. In Advances in Neural Information Processing Systems

7, pp. 369–376. MIT Press.

Boyan, J. (2002). Technical update: Least-squares temporal difference learning. Machine

Learning 49:233–246.

Bradtke, S., Barto, A. G. (1996). Linear least-squares algorithms for temporal difference
learning. Machine Learning 22:33–57.

Crites, R. H. & Barto, A.G. (1995). Improving elevator performance using reinforcement

100

learning. In Advances in Neural Information Processing Systems 8, pp. 1017-1023. MIT
Press.

Delyon, B. (1996). General results on the convergence of stochastic algorithms. IEEE

Trans. Automat. Contr., vol. 41, pp. 1245–1255.

Kushner, H. J. & Yin, G. G. (2003). Stochastic Approximation Algorithms and Applica-
tions. Second Edition, Springer-Verlag.

Geramifard, A., Bowling, M., Sutton, R. S. (2006). Incremental least-square temporal
difference learning. In Proceedings of the Twenty-First National Conference on Artificial

Intelligence, pp. 356–361.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. Proceed-

ings of the Twelfth International Conference on Machine Learning, pp. 261268. Morgan
Kaufmann.

Gordon, G. J. (2000). Reinforcement learning with function approximation converges to a
region. In Advances in Neural Information Processing Systems 13, pp. 1040-1046. MIT
Press.

Lagoudakis, M., Parr, R. (2003). Least squares policy iteration. Journal of Machine Learn-

ing Research,4:1107-1149.

Ljung, L. (1977). Analysis of recursive stochastic algorithms. IEEE Tran. Automat. Con-

trol, 22:551575, 1977.

Papavassiliou, V. A., and Russell, S. (1999). Convergence of reinforcement learning with
general function approximators. In Proceedings of the 16th international joint conference

on Artificial intelligence, pp. 748–757. Morgan Kaufmann.

Peters, J., Vijayakumar, S. and Schaal, S. (2005). Natural Actor-Critic. In Proceedings of

the 16th European Conference on Machine Learning, pp. 280–291.

Maei, H. R. and Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for temporal-
difference prediction learning with eligibility traces. In Proceedings of the Third Confer-

ence on Artificial General Intelligence, pp. 91–96. Atlantis Press.

Maei, H. R., Szepesvari, Cs, Bhatnagar, S., Precup, D., Silver D., Sutton, R. S. (2009).
Convergent temporal-difference learning with arbitrary smooth function approximation.
In Advances in Neural Information Processing Systems 22. MIT Press.

Maei, H. R., Szepesvari, Cs, Bhatnagar, S., Sutton, R. S. (2010). Toward off-policy learning
control with function approximation. In Proceedings of the 27th International Confer-

ence on Machine Learning, pp. 719–726. Omnipress.

Mahmood A. (2010). Automatic step-size adaptation in incremental supervised learning.
Master’s Thesis, University of Alberta.

Marbach, P., Mihatsch, O., Schulte, M., and Tsitsiklis, J. (1997). Reinforcement learning
for call admission control and routing in integrated service networks. In Advances in

101

Neural Information Processing Systems 10. MIT Press.

Pearlmutter, B. A (1994). Fast exact multiplication by the hessian. Neural Computation,
6(1):147–160.

Precup, D., Sutton, R. S. and Dasgupta, S. (2001). Off-policy temporal-difference learn-
ing with function approximation. Proceedings of the 18th International Conference on

Machine Learning, pp. 417–424.

Precup, D., Sutton, R. S., Paduraru, C., Koop, A., Singh, S. (2006). Off-policy learning
with recognizers. In Advances in Neural Information Processing Systems 18.

Precup, D., Sutton, R. S., Singh, S. (2000). Eligibility traces for off-policy policy eval-
uation. Proceedings of the 17th International Conference on Machine Learning, pp.
759–766. Morgan Kaufmann.

Schaeffer, J., Hlynka, M., Jussila, V. (2001). Temporal difference learning applied to a high-
performance game-playing program. Proceedings of the International Joint Conference

on Artificial Intelligence, pp. 529534.

Scherrer, B. (2010). Should one compute the Temporal Difference fix point or minimize
the Bellman Residual? The unified oblique projection view. In In Proceedings of the

27th International Conference on Machine Learning, pp. 959-966. Omnipress.

Silver, D., Sutton, R. S., Müller, M. (2007). Reinforcement learning of local shape in
the game of Go. Proceedings of the 20th International Joint Conferences on Artificial

Intelligence, pp. 1053–1058.

Silver, D. (2009). Reinforcement Learning and Simulation-Based Search in Computer Go.
Ph.D. thesis. University of Alberta

Singh, S. P., Jaakkola, T., Jordan, M. I. (1994). Learning without state-estimation in par-
tially observable Markovian decision problems. In Proceedings of the 11th International

Conference on Machine Learning, pp. 284292.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. Ph.D.

Dissertation. University of Massachusetts.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine

Learning 3:9–44.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental version of delta-
bar-delta. Proceedings of the Tenth National Conference on Artificial Intelligence, pp.
171–176, MIT Press.

Sutton, R. S. (1996). Generalization in Reinforcement Learning: Successful Examples
Using Sparse Coarse Coding. In Advances in Neural Information Processing Systems 8,
pp. 1038-1044. MIT Press.

Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowledge.
Working Notes of the IJCAI-09 Workshop on Grand Challenges for Reasoning from Ex-

102

periences.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. S., Precup D., and Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence

112:181–211.

Sutton, R. S., Precup D., and Singh, S. (1998). Intra-Option Learning about Temporally Ab-
stract Actions. In Proceedings of the 15th International Conference on Machine Learn-

ing, pp. 556-564. Morgan Kaufmann.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y. (1999). Policy Gradient Meth-
ods for Reinforcement Learning with Function Approximation. In Advances in Neural

Information Processing Systems 12, pp. 1057–1063. MIT Press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D.
(2011). Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In Proceedings of the 10th International Conference on

Autonomous Agents and Multiagent Systems.

Sutton, R. S., Szepesvári, Cs., Maei, H. R. (2009). A convergent O(n) algorithm for off-
policy temporal-difference learning with linear function approximation. Advances in

Neural Information Processing Systems 21. MIT Press.

Sutton, R. S., Maei, H. R, Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs. & Wiewiora,
E. (2009). Fast gradient-descent methods for temporal-difference learning with linear
function approximation. In Proceedings of the 26th International Conference on Ma-

chine Learning, pp. 993–1000. Omnipress.

Szepesvári, Cs., Smart, W. D. (2004). Interpolation-based Q-learning. In Proceedings of

the 21th International Conference on Machine Learning, pp .791–798. ACM.

Szepesvári, Cs. (2010). Algorithms for Reinforcement Learning. Morgan Claypool Pub-
lishers.

Tesauro, G. J. (1992). Practical issues in temporal difference learning. Machine Learning

8: 257-277.

Tesauro, G. J. (1994). TD-Gammon, a self-teaching backgammon program, achieves mas-
ter level play. Neural Computa-tion, 6, pp. 215–219.

Tadić, V. (2001). On the convergence of temporal-difference learning with linear function
approximation. In Machine Learning, 42:241267.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42:674–690.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University.

103

Appendix A

Derivation of GQ(λ) for GVFs and
Varying Eligibility Traces

To derive GQ(λ) for general value functions, we follow GQ(λ) derivation steps in Chapter
8.

A.1 Forward-view objective function based on importance sam-
pling

Define the following λ−weighted return based on importance sampling:

Gλρ
t (θ) = Rt+1 + (1− γt+1)Zt+1 + γt+1

�
(1− λt+1)θ�φ̄t+1 + λt+1ρt+1G

λρ
t+1(θ)

�
,

where
φ̄t =

�

a

π(a | St)φ(St, a),

ρt =
π(At | St)
πb(At | St)

,

and Gλρ
t (θ) is a noisy guess of future rewards of policy π, while the agent follows policy π.

Let

δλρ
t (θ) def= Gλρ

t (θ)− θ�φt, (A.1)

and

δλ
t (θ) def= Gλ

t (θ)− θ�φt, (A.2)

where Gλ
t (θ) is Gλρ

t (θ) with ρ = 1.

104

The next theorem shows Pπ
µδλ

t (θ)φt can be replaced by E
�
δλρ
t (θ)φt

�
.

Theorem 10. (Off-policy TD with important weighting) Let πb and π denote the behavior

and target policies, respectively. Consider δλ(θ), δλρ(θ) defined in equations (A.2) (A.1).
Then,

Pπ
µδλ

t (θ)φt = E
�
δλρ
t (θ)φt

�
, (A.3)

where Pπ
µ is defined in Equation (7.4).

Proof. Let ζt+1 = Rt+1 + (1− γt+1)Zt+1 and consider expanding the right-hand side of

E
�
Gλρ

t (θ) | St = s, At = a
�

= E
�
ζt+1 + γt+1

�
(1− λt+1)θ�φ̄t+1 + λt+1ρt+1G

λρ
t+1(θ)

�
| St = s, At = a

�

= E
�
ζt+1 + γt+1(1− λt+1)θ�φ̄t+1 | St = s, At = a, π

�

+E
�
γt+1λt+1ρt+1G

λρ
t+1(θ) | St = s, At = a

�

= E
�
ζt+1 + γt+1(1− λt+1)θ�φ̄t+1|St = s, At = a, π

�

+
�

s�

P (s� | s, a)
�

a�

πb(a� | s�)
π(a�|s�)

πb(a� | s�)
E

�
γt+1λt+1G

λρ
t+1(θ) | St+1 = s�, At+1 = a�

�

= E
�
ζt+1 + γt+1(1− λt+1)θ�φ̄t+1 | St = s, At = a, π

�

+
�

s�,a�

P (s� | St, At)π(a� | s�)E
�
γt+1λt+1G

λρ
t+1 | St+1 = s�, At+1 = a�

�

= E
�
ζt+1 + γt+1(1− λt+1)θ�φ̄t+1 + E

�
γt+1λt+1G

λρ
t+1(θ) | St+1

�
| St = s, At = a, π

�

which, as it continues to roll out, gives us

E
�
Gλρ

t (θ) | St = s, At = a
�

= E
�
Gλ

t (θ) | St = a, At = a, π
�
.

And, eventually it yields:

E
�
δλρ(θ)φt

�
= Pπ

µδλ
t (θ)φt,

because the state-action distribution is based on behavior state-action pair distribution, µ.

Thus, the forward-view objective function, which is derived based on importance weight-
ing, is as follows:

105

J(θ)

=
�
Pπ

µδλ
t (θ)φt

��
E[φtφ

�
t]−1

�
Pπ

µδλ
t (θ)φt

�

= E
�
δλρ
t (θ)φt

��
E[φtφ

�
t]−1E

�
δλρ
t (θ)φt

�
(A.4)

A.1.1 Backward-view objective function

In this section, we transform TD forward-view, and as a result the proposed objective func-
tion, to mechanistic backward-view. To do this, we propose the following theorem, which
provides a great tool for forward-view to backward-view transformation.

Theorem 11. (Equivalence of TD forward-view and backward-view) The forward-view de-

scription of TD update is equivalence to the following mechanistic backward-view:

E
�
δλρ
t (θ)φ

�
= E[δt(θ)et] , (A.5)

where δλρ
t (θ) is defined in Equation (A.1), δt(θ) = ζt+1 + γt+1θ�φ̄t+1 − θ�φt, and et is

eligibility trace vector at time-step t, and has the following recursive update:

et = φt + γλρtet−1. (A.6)

Proof. Let ζt+1 = Rt+1 + (1− γt+1)Zt+1 and consider

Gλρ
t (θ)

= ζt+1 + γt+1

�
(1− λt+1)θ�φ̄t+1 + λt+1ρt+1G

λρ
t+1(θ)

�

=
�
ζt+1 + γt+1(1− λt+1)θ�φ̄t+1

�
+ γt+1λt+1ρt+1G

λρ
t+1(θ)

=
�
ζt+1 + γt+1θ

�φ̄t+1

�
− γt+1λt+1θ

�φ̄t+1 + γt+1λt+1ρt+1G
λρ
t+1(θ)

=
�
ζt+1 + γt+1θ

�φ̄t+1 − θ�φt + θ�φt

�
− γt+1λt+1θ

�φ̄t+1 + γt+1λt+1ρt+1G
λρ
t+1(θ)

=
�
δt(θ) + θ�φt

�
− γt+1λt+1θ

�φ̄t+1 + γt+1λt+1ρt+1G
λρ
t+1(θ)

+ γt+1λt+1ρt+1

�
θ�φt+1 − θ�φt+1

�

=
�
δt(θ) + θ�φt

�
+ γt+1λt+1ρt+1

�
Gλρ

t+1(θ)− θ�φt+1

�

+ γt+1λt+1

�
ρt+1θ

�φt+1 − θ�φ̄t+1

�

=
�
δt(θ) + θ�φt

�
+ γt+1λt+1ρt+1δ

λρ
t (θ) + γt+1λt+1

�
ρt+1θ

�φt+1 − θ�φ̄t+1

�
,

106

thus,

δλρ
t (θ) = Gλρ

t (θ)− θ�φt

= δt(θ) + γλρt+1δ
λρ
t (θ) + γt+1λt+1

�
ρt+1θ

�φt+1 − θ�φ̄t+1

�
.

Note that the last part of the above equation has expected value of vector zero under the
behavior policy because

E[ρtφt | St] =
�

a

πb(a | St)
π(a | St)
πb(a | St)

φ(a | St)

=
�

a

π(a | St)φ(St, a) ≡ φ̄t.

Putting all these together, we can write the TD update (in expectation) in a simple way in
terms of eligibility traces which leads to backward-view:

E
�
δλρ
t φt

�

= E
��

δt + γt+1λt+1ρt+1δ
λρ
t+1

�
φt

�
+ E

�
γt+1λt+1θ

� �
ρt+1φt+1 − φ̄t+1

�
φt

�

= E[δtφt] + E
�
γt+1λt+1ρt+1δ

λρ
t+1φt

�
+ 0

= E[δtφt] + E
�
γtλtρtδ

λρ
t φt−1

�

= E[δtφt] + Eb[γtλtρt

�
δt + γλρt+1δ

λρ
t+1 + γt+1λt+1θθ

�
ρt+1φt+1 − φ̄t+1

� �
φt−1]

= E[δtφt] + E[γtλtρtδtφt−1] + E
�
γtλtρtγt+1λt+1ρt+1δ

λρ
t+1φt−1

�
+ 0

= E[δt (φt + γtλtρtφt−1)] + E
�
γt−1λt−1ρt−1γtλtρtδ

λρ
t φt−2

�

...

= Eb

�
δt

�
φt + γtλtρtφt−1 + γtλtρtγt−1λt−1ρt−1φt−2 + · · ·

��

= E[δtet] , (A.7)

where et = φt + γtλtρtet−1, which gives us a backward view algorithm for the TD(λ)
update.

A.1.2 Stochastic gradient-descent derivation

Now from Equation (A.4) and Theorem 11, we get

107

J(θ) = E[δt(θ)et]� E[φtφ
�
t]−1E[δt(θ)et] .

Following the derivation of GQ(λ), we get:

−1
2
∇J(θ)

= −1
2
∇

�
E[δt(θ)et]� E[φtφ

�
t]−1E[δt(θ)et]

�

= −∇E
�
δt(θ)e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
��

γt+1φ̄t+1 − φt
�
e�t

�
E[φtφ

�
t]−1E[δt(θ)et] . (A.8)

We use the following identity:

E
�
φte

�
t

�
= E

�
φt(φt + γtλtρtet−1)�

�

= E
�
φtφ

�
t + γtλtρtφte

�
t−1

�

= E
�
φtφ

�
t + γt+1λt+1ρt+1φt+1e

�
t

�

= E
�
φtφ

�
t + γt+1λt+1φ̄t+1e

�
t

�
,

where we have used E
�
ρt+1φt+1e�t

�
= E

�
φ̄t+1e�t

�
.

Thus, from above and Equation (A.8), we get

−1
2
∇J(θ)

= −E
��

γφ̄t+1 − φt
�
e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
γt+1φ̄t+1e

�
t − φte

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
γt+1φ̄t+1e

�
t −

�
φtφ

�
t + γt+1λt+1φ̄t+1e

�
t

��
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
γt+1(1− λt+1)φ̄t+1e

�
t − φtφ

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γt+1(1− λt+1)φ̄t+1e

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γt+1(1− λt+1)φ̄t+1e

�
t

�
w(θ), (A.9)

where w(θ) = E[φtφ�t]−1E[δt(θ)et].
Thus, by direct sampling from the above gradient-descent direction and weight-duplication
trick we get:

108

θt+1 = θt + αt

�
δtet − γt+1(1− λt+1)φ̄t+1(e�t wt)

�
,

wt+1 = wt + βt

�
δtet − (w�t φt)φt

�
.

109

Appendix B

Derivation of GTD(λ) for General
State-Value Functions and Varying
Eligibility Traces

Note, many steps here follows the derivation steps in Chapter 7. Here, let us define the
λ-return, for general value functions, according to

Gλρ
t (θ) = ρt

�
Rt+1 + (1− γt+1)Zt+1 + γt+1

�
(1− λt+1)θ�φt+1 + λt+1G

λρ
t+1(θ)

��
,

where
ρt =

π(At | St)
πb(At | St)

.

Let

δλρ
t (θ) = Gλρ

t (θ)− θ�φt. (B.1)

Given the above definition, for the case where ρ = 1 (on-policy), we define

δλ
t (θ) def= Gλ

t (θ)− θ�φt, (B.2)

and our usual one-step TD error is:

δt(θ) = Rt+1 + (1− γt+1)Zt+1 + γt+1θ
�φt+1 − θ�φt. (B.3)

Here, the derivations are very similar to the derivation of GQ(λ) thus we avoid many similar
steps.

Theorem 12. (Off-policy TD for important weighting) Let πb and π denote the behavior

110

and target policies, respectively. Consider δλ
t (θ), δλρ

t (θ) defined in equations (B.2) (B.1).
Then,

Pπ
µδλ

t (θ)φt = E
�
δλρ
t (θ)φt

�
, (B.4)

where Pπ
µ is defined in Equation (7.4).

Proof. The proof is similar to forward-view/backward-view derivations for GQ(λ), which
was derived in Appendix A.

The forward-view objective function, thus, is as follows:

J(θ)

=
�
Pπ

µδλ
t (θ)φt

��
E[φtφ

�
t]−1

�
Pπ

µδλ
t (θ)φt

�

= E
�
δλρ
t (θ)φt

��
E[φtφ

�
t]−1E

�
δλρ
t (θ)φt

�
(B.5)

B.1 Backward-view objective function

The derivation in this section is also very similar to GQ derivations for mechanistic backward-
view with subtle differences that we observed in derivation of GTD(λ) for standard value
functions, thus we avoid details due to similarities.

Theorem 13. (Equivalence of TD forward-view and backward-view) The forward-view de-

scription of TD update is equivalence to the following mechanistic backward-view:

E
�
δλρ
t (θ)φ

�
= E[δt(θ)et] , (B.6)

where δλρ
t (θ) is defined in Equation (B.1), δt(θ) is the conventional TD error,

δt(θ) = Rt+1 + (1− γt+1)Zt+1 + γt+1θ
�φt+1 − θ�φt,

and et is eligibility trace vector at time-step t, and has the following recursive update:

et = ρt (φt + γtλtet−1) . (B.7)

B.2 Derivation of the GTD(λ) algorithm

Now from Equation (B.5) and Theorem 13, we get

J(θ) = E[δt(θ)et]� E[φtφ
�
t]−1E[δt(θ)et] .

111

We have:

−1
2
∇J(θ)

= −1
2
∇

�
E[δt(θ)et]� E[φtφ

�
t]−1E[δt(θ)et]

�

= −∇E
�
δt(θ)e�t

�
E[φtφ

�
t]−1E[δt(θ)et]

= −E
�
(γt+1φt+1 − φt) e�t

�
E[φtφ

�
t]−1E[δt(θ)et] .

We use the following identity:

E
�
φte

�
t

�
= E

�
φtρt(φt + γtλtet−1)�

�

= E
�
φtρtφ

�
t + φtγtλte

�
t−1

�

= E
�
φtρtφ

�
t + φt+1ρtγλe�t

�

= E
�
φtφ

�
t + φt+1γt+1λt+1e

�
t

�
,

thus,

−E
�
(γt+1φt+1 − φt) e�t

�
= E

�
γt+1φt+1e

�
t − φte

�
t

�

= −E
�
γt+1φt+1e

�
t −

�
φtφ

�
t + φt+1γt+1λt+1e

�
t

��

= E
�
φtφ

�
t − γt+1(1− λt+1)φt+1e

�
t

�
.

Using the above identity, we get

−1
2
∇J(θ)

= −E
�
(γt+1φt+1 − φt) e�

�
E[φtφ

�
t]−1E[δt(θ)et]

= E
�
φtφ

�
t − γt+1(1− λt+1)φt+1e

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γt+1(1− λt+1)φt+1e

�
t

�
E[φtφ

�
t]−1E[δt(θ)et]

= E[δt(θ)et]− E
�
γt+1(1− λt+1)φt+1e

�
t

�
w(θ), (B.8)

where w(θ) = E[φtφ�t]−1E[δt(θ)et], which yields the GTD(λ) algorithm after direct sam-
pling.

112

Appendix C

Hybrid Gradient-TD Methods

To derive hybrid gradient-TD methods, first consider derivation of GTD2/TDC in Chapter 5.
The update equation for GTD2/TDC comes from (5.7) (or (5.9)). Let A = E

�
φ(φ− γφ�)�

�

and C = E
�
φφ�

�
. Then, the expected update of TDC/GTD2, assuming we know the exact

value of w, that is, w(θ) = C−1(−Aθ + b), where b = E[Rφ], is

∆θt = αtA
�C−1 (−Aθt + b) .

The above linear system is stable because −A�C−1Aθt negative definite1. Note C =
E

�
φφ�

�
is a positive definite matrix, and as a result A�C−1A is also positive definite

matrix. When training is done over off-policy data, then A may not be positive stable
matrix and thus TD(0) may diverge.

Now consider the Aπb = E
�
φt(φt − γφt+1)�

�
, which is computed from on-policy data (t

index refers to both time-step and tth sample). Then, one can prove Aπb is always positive
definite matrix (see Bertsekans and Tsitsiklis, 1996). Thus, if we use this new matrix instead
of C matrix, we get

∆θt = αtA
�A−1

πb
(−Aθt + b) , (C.1)

and still the above update remains convergence because −A�A−1
πb

A is negative definite
matrix. Because A�πb

is also positive definite matrix (note Aπb is not symmetric matrix),
thus, another way to get a convergent algorithm is to replace C with A�πb

, that is,

∆θt = αtA
�A�πb

−1 (−Aθt + b) , (C.2)

which again −A�A�πb

−1
A is negaitive definite. That is, we got another hybrid algorithm.

This update is interesting because it tells us if the learning problem is on-policy, that is,
1The matrix A ∈ Rd×d is positive definite if all the real-part eigenvalues of A + A

� are positive. In other
words, for any non-zero z ∈ Rd, we have z

�
Az > 0.

113

A = Aπb , then we get an update equivalent to expected TD(0) update. Another observation
is that the condition number of all of the above hybrid methods becomes the same as con-
ventional TD(0) for on-policy problems, thus, suggesting the same (asymptotically) rate of
convergence.

Now we turn into the derivation of hybrid gradient-TD algorithms. We would like to derive
stochastic algorithms whose update is composed of TD update and a gradient-TD correction
term (TDC-style). To do this, consider updates (C.1) and (C.2), and note state, s, has
an underlying state distribution µ(s) according to the behavior policy πb. Thus, we have
A = C − E

�
γφφ�� | π

�
and Aπb = C − E

�
γφtφ�t+1

�
.

First, let’s start with the right-hand side of (C.1):

A�A−1
πb

(−Aθ + b)

=
�
Aπb −Aπb + A�

�
A−1

πb
(−Aθ + b)

= (−Aθ + b) +
�
−Aπb + A�

�
A−1

πb
(−Aθ + b)

= (−Aθ + b) +
�
−Aπb + A�

�
ω(θ),

= E[δ(θ)φ | π]− γ
�
E

�
φ�φ� | π

�
− E

�
φtφ

�
t+1

��
ω(θ), (C.3)

where ω(θ) = A−1
πb

(−Aθ + b) and δ(θ) = R + γθ�φ� − θ�φ. Now we can conduct direct
sampling from the above update and use weight-duplication trick:

θt+1 = θt + αt

�
δtφt − γ

�
φ�φ�t ωt − φtφ

�
t+1ωt

��
(C.4a)

ωt+1 = ωt + βt

�
δt + γφ�t+1ωt − φ�t ωt

�
φt, (C.4b)

where δt = R + γφ��θt − φ�t θt, and the second set of of weights have an update similar to
TD(0) whose reward is δt. The stability of this algorithm can be guaranteed using the same
ODE approach we used in this thesis because Aπb matrix is positive definite.

The importance-weighting idea, also, can be used to learn about other policies. In this
case, for state-value predictions, we have δt = Rt+1 + γφ�t+1θt − φ�t θt and TD update
part is multiplied by likelihood ratio ρt while φ� in correction term will be replaced by
ρtφt+1. For action-value function predictions, we only need to replace φ� with

�
a π(a |

St+1)φ(St+1, a).

114

Now consider another alternative for deriving hybrid methods from Equation (C.2):

A�A�πb

−1 (−Aθ + b)

=
�
A�πb

−A�πb
+ A�

�
A�πb

−1 (−Aθ + b)

= (−Aθ + b) +
�
−A�πb

+ A�
�

A�πb

−1 (−Aθ + b)

= (−Aθ + b) +
�
−A�πb

+ A�
�

ω̂(θ),

= E[δ(θ)φ | π]− γ
�
E

�
φ�φ� | π

�
− E

�
φt+1φ

�
t

��
ω̂(θ), (C.5)

where ω̂(θ) = A�πb

−1 (−Aθ + b). Again, by direct sampling from the above update and
using weight-duplication trick, we get:

θt+1 = θt + αt

�
δtφt − γ

�
φ� − φt+1

�
φ�t ω̂t

�
(C.6a)

ω̂t+1 = ω̂t + βt

��
δt − φ�t ω̂t

�
φt + γ(φ�t ω̂t)φt+1

�
. (C.6b)

The interesting feature of the above update is that for the on-policy case, where φ� = φt+1,
the gradient TD-correction term automatically disappears and we get TD(0) update. Unlike
Equation (C.4b), the update (C.6b) is harder to describe, but using the index-shifting trick,
E

�
φtφ�t+1θ

�
= E

�
φt−1φ�t θ

�
, we can write it in the form of

ω̂t+1 = ω̂t + βt

�
δt + γφ�t−1ω̂t − φ�t ω̂t

�
φt, (C.7)

which is like TD(0) update with backward target value φ�t−1ω̂t. In other words, it means
that the ω̂ update is trying to predict the sum of all the (discounted) TD-error up to the
current time.

115

