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Abstract

The main goal of this thesis is to explore various applications of persistent

homology in statistical analysis of point-cloud data. In the introduction, after

a brief historical overview, we provide some of the underlying concepts of

persistence. Starting from Chapter 2, the focus is on analysis of point-clouds

sampled from a surface of a torus and a sphere; our first exploratory tool is a

homology plot. In Chapter 3 we calculate the Wasserstein distances in order to

visualize existing relationships among samples of data. Chapter 4 introduces

a new approach in topological statistical inference, based on the notion of

persistence landscapes. In Chapter 5 the method of persistence landscapes

is applied to non-perturbed data; following that, data in Chapter 6 involve a

component of noise which allows us to demonstrate the efficiency of the new

method. To test hypotheses, we implement suitable permutation tests. Last

but not least, in Chapter 7 we work with real data of samples of HIV-1 protease

some of which feature drug resistance. We truly hope that with the results

presented, we offer convincing evidence that testifies in favor of applications

of topology in statistical data analysis.



Preface

At one occasion, when I just began to embark on the path that eventually

lead to this thesis, a fellow colleague asked about my research. While trying

to provide an accurate and possibly interesting answer, it seemed that saying

“applications of topology to data analysis” could be a good way to start.

Indeed, the apparent contradiction conveyed by my brief statement turned

into an exciting discussion on the topic, all due to the fact that topology

has always been considered as a highly theoretical area in mathematics and

under no circumstances a part of applied mathematics or statistics. Yet, there

exists a significant overlap between the two areas, and in this intersection lies

computational topology.

To be able to study and learn about methods of computational topology has

certainly been an honor and a great challenge for me. Hopefully, in this thesis I

will be able to fulfill the main objective and demonstrate the unique and useful

applications of computational topology, in particular persistent homology, to

analysis of point-cloud data.
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Chapter 1: Introduction

1.A A Historical Overview

In order to better understand applications of computational topology, it would

be worthwhile to make a brief historical retrospective.

From the history of mathematics we know it was in 1735 when Leonhard

Euler solved the Königsberg Bridges problem; the solution published a year

later had the title “Solutio Problematis ad Geometriam Situs Pertinentis”,

or, in translation, “The Solution to a Problem Pertaining to the Geometry

of Position”. Though Euler’s explanation of the famous puzzle undoubtedly

represents a moment when graph theory was introduced into mathematics [2],

there may be an additional interpretation of the event [30]; as indicated in the

title of Euler’s paper, this is also when a new mathematical concept emerged,

sprouting from the idea that it is rather the relative position i.e. arrangement

of objects and not the actual coordinates that describes a set of objects. Hence,

the year 1736 when Euler’s solution was published might as well be regarded

as the early beginning of topology.

However, the majority of authors, e.g. [20], agree that on the historical

timeline of mathematics a more appropriate moment that marks the birth

of topology would be the years 1894-95, when Henri Poincaré developed and

1



systematically established the theory of algebraic topology by publishing a

series of six papers called “Analysis Situs”. When translated as “Analysis of

Position”, the given phrase reveals a meaning somewhat similar to the title

of the earlier mentioned Euler’s paper [31]. We also note that the expression

“Analysis Situs” actually represented the initial name for topology, referring

to the fact that the main concern of this theory are properties of geometrical

objects that remain unchanged under continuous elastic deformations such

as bending, twisting, or stretching, whereas shape and size are omitted from

consideration as irrelevant features.

Therefore topology has been present in mathematics for quite a long time;

however, until recently, topology used to be exclusively perceived as a field in

pure mathematics, without anticipating applications to real-world problems.

Nonetheless, starting from the beginning of this century, the situation has

changed. As Carlsson explains in his survey article [8], with breakthroughs of

modern science and technology, an increasing number of researchers frequently

encounter large datasets where each data-point is described by a long vector

that may contain even thousands of coordinates. An efficient way to deal with

such high-dimensional data is to use dimensionality reduction so that only a

few of the most important coordinates remain for further statistical analysis.

To implement this method a similarity measure i.e. a notion of a distance

function is needed but, unlike physics, where coordinates describe motion of

three-dimensional objects in the space-time continuum, in many other areas,

e.g. biology and medicine, “coordinates” are difficult to interpret. Even more,

it often happens that neither the choice of coordinates nor the metrics are

clearly defined which may lead to contradicting conclusions, depending on

a researcher’s choice. In such situations, as suggested by G. Carlsson, “we
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should not restrict ourselves to studying properties of the data which depend

on any particular choice of coordinates.” By focusing on properties that are

independent on the choice of coordinates and the metrics used, we arrive to

concepts of topology.

Applications of topology to data analysis have given rise to a new field

within applied mathematics called computational topology. A powerful tool of

computational topology follows from the concept of persistent homology, since

it allows us to obtain information on topological and geometrical properties of

an object based on a point-cloud dataset sampled from the object. Moreover,

some most recent results developed on the notion of persistence landscapes

show that a detailed statistical analysis may be further performed on data

obtained from persistent homology. This has brought forth a yet another new

area of research which we call topological data analysis.

Some of the most renown researchers in topological approach to statistical

analysis of data are Herbert Edelsbrunner, David Letscher, Afra Zomorodian,

Gunnar Carlsson, Robert Grist, Peter Bubenik, Vin de Silva, Robert Adler,

Patrizio Frosini, Massimo Ferri, and many others. The number of contributing

authors to computational topology continues to grow as the the method finds

its implementation not only in mathematics, but also in other applied areas

of modern science and engineering such as computational biology, medicine

and biostatistics, computer graphics and image processing, complex dynamical

networks in physics, etc.
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1.B From a Point-Cloud to a Stream

To introduce the main ideas, we start with the notion of a point-cloud. As

explained in [13], when a dataset is sampled, the goal is to obtain information

about the underlying phenomenon represented by the data. When the object

of study is a three-dimensional object, it is important to detect global features

such as the geometric shape, number of components, loops and holes through

the surface, or voids inside the object. For that purpose we sample points from

a given object to obtain a point-cloud dataset.

Point-Cloud Dataset : usually represents a large finite dataset sampled

from a geometrical object in a three dimensional space, possibly with

some noise. In general, a point-cloud can be sampled in an n-dimensional

metric space.

Modern techniques for obtaining point-clouds involve laser scanning in which

the distance of a ray of light from an object is measured as the ray travels on

the object’s surface [21]. That way up to 750,000 datapoints per second can

be recorded. A simulation of a point-cloud on the Klein bottle is shown below.

Figure 1.1: a point-cloud obtained by sampling points from a Klein bottle.
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The sampled points (or their subset) represent vertices that mutually connect

to form a structure called a simplicial complex or a stream. As Edelsbrunner

explains [9], it takes less effort to construct an abstract simplicial complex

so only afterwards we assign coordinates to embed the complex into a metric

space. Using this guideline, we start with the following definition.

Affinely Independent Points : Let x0, x1, ..., xk be points in an n-

dimensional Euclidean space En; these points are affinely independent

if and only if vectors xi − x0 , 1 ≤ i ≤ k, are linearly independent.

An n-dimensional space can have at most n linearly independent vectors so

there can be at most n + 1 affinely independent points. Based on this, we

define a k-simplex.

k-simplex : A k-simplex of k+1 affinely independent points x0, x1, ..., xk

in an n-dimensional Euclidean space En is defined as the set of all linear

combinations of the following form

σ{x0, x1, ..., xk} =
k∑
i=0

λi xi (1.1)

where all λi are nonnegative and
k∑
i=0

λi = 1.

For k = 0, 1, 2, and 3, the corresponding k-simplex is just a regular vertex,

edge, triangle, and tetrahedron, respectively.

edge triangle

a

b

tetrahedron

b

a

c

a

b

c

d

a

vertex

Figure 1.2: Illustration of k-simplices for k = 0, 1, 2, 3.
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Now we can define an abstract simplicial complex.

Abstract Simplicial Complex : Let σ be a simplex with its nonempty

subset τ that we will call a face. Then an abstract simplicial complex

K represents a finite collection of simplices such that it is closed under

taking faces and has no improper intersections. More formally,

• σ ∈ K and τ ≤ σ implies τ ∈ K

• σ1, σ2 ∈ K implies σ1∩σ2 is either an empty set or a face of both

To illustrate the above definition, we depict collections of simplices that do not

represent a simplicial complex because one of the two necessary requirements

is not satisfied.

Figure 1.3: Collections of simplices that do not form a simplicial complex. In the first
case (left), the two edges intersect at a vertex that does not belong to the complex. In the
second case (middle) an edge passes through a triangle at a point that is not a vertex in
the complex. Last example shows two triangles that intersect along an edge that is not a
face of any of the triangles.

An example of a simplicial complex is given below.

a

b

c

d

e

f

Figure 1.4: A simplicial complex that consists of 6 vertices (denoted by letters a, b, c, d,
e, f , g), 9 edges (ab, bc, be, bf , cd, ce, cf , de, ef), 5 triangles (bce, bcf , bef , cde, cef),
and 1 tetrahedron (bcef). The total number of simplices in this simplicial complex is 21.
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A realization of an abstract simplicial complex is obtained assigning actual

coordinates to the vertices. We also define a rule, called filtration, which

determines when an edge, triangle, or tetrahedron (if we are in a 3d-space,

these are all the possibilities) are formed. Such a filtered simplicial complex

is called a stream. Although a filtration represents the distance at which two

vertices bond, it is common to refer to this parameter as if it were time.

Among several existing approaches, we will implement two types of streams:

the Vietoris-Rips and the Lazy Witness. Since the latter is associated with

the notion of the Witness stream, we provide the definition for all the three

mentioned types of streams. For that purpose, we consider a point-cloud P

in a metric space whose subset L assembled from points [l0, . . . , lnL
] is called

a landmark set. Furthermore, let t represent the filtration time. Then the

following streams can be defined, as shown in [43].

• Vietoris-Rips stream:

– The vertices of the Vietoris-Rips stream are assembled from the

entire point-cloud set P .

– An edge between two vertices xi and xj appears at filtration

t = d (xi, xj) , (1.2)

where d is the distance between the two vertices.

– Higher order simplices enter the stream as soon all their edges have

been formed. Hence this stream represents the maximal simplicial

complex that can be constructed over a set of existing edges; such

a complex is called a flag.

7



• Witness Stream:

– The vertices of this stream are the landmark points in L.

– A k-simplex [l0, . . . , lk] appears in the stream at time t if all its faces

are formed and there exists a witness point ω ∈ P such that:

tsimplex +mk(w) ≥ max {d(l0, w), . . . , d(lk, w)} , (1.3)

where mk(w) represents the distance of of the witness point from

the (k + 1)-th closest point in L.

• Lazy Witness Stream:

– The vertices are members of the landmark set L.

– An edge between vertices li and lj appears at filtration t if there

exists a witness point w ∈ P such that:

tij +m(w) ≥ max {d(li, w), d(lj, w)} . (1.4)

The variable m(w) represents the distance of the witness point from

the ν-th closest landmark point, where ν is an input parameter with

values 0, 1, or 2. If ν = 0, then m(w) = 0.

– Higher order simplices appear when all their edges are formed.

The above defined streams can be easily constructed by implementing codes

provided in a software package called javaPlex [44]. In order to build a stream,

the user is required to input the point-cloud data, and in the case of Witness

or Lazy Witness stream the number of landmark points must be specified as

well. For more details, see [43].
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1.C Homology Groups

Before introducing the concept of persistent homology, we shall define the

underlying ideas of homology groups. To limit the extent of definitions, we

present only the most important ideas. Our main references in this section

are the Elements of Algebraic Topology by Munkres [29], the Computational

Topology by Edelsbrunner and Harer [9], and the Topology for Computing by

Zomorodian [49]. We start with the notion of an oriented simplex.

Oriented Simplex: Let σ be a simplex with two different orderings of its

vertices that differ from each other by an odd number of permutations;

then the two orderings fall into two different equivalence classes where

each class represents one orientation of σ. The simplex σ together

with its orientation represents an oriented simplex.

An oriented simplex spanned by vertices x0, x1, x2, ..., xp will be denoted by

[x0, x1, x2, ..., xp]. Figure 1.5 shows examples of oriented simplices in a three

dimensional space.

oriented edge oriented triangle

a

b

oriented tetrahedron

b

a

c

a

b

c

d

Figure 1.5: Oriented edge [a, b], triangle [a, b, c], and tetrahedron [a, b, c, d].

The orientation of an edge is denoted by an arrow; in the case of a triangle a

circular arrow is used. For a tetrahedron the “right-hand screw” was used i.e.

9



as explained by Munkres [29], if fingers of right hand follow the direction from

a to b to c, the thumb should be pointing toward d. The opposite orientation

would follow a “left-hand screw” rule. Note that a vertex as a 0-simplex has

no orientation. Let us now define a p-chain.

p-chain in a simplicial complex K is defined as the sum of oriented

p-simplices in K, that is,

C =
∑
i

ai σi (1.5)

where each σi is an oriented p-simplex. Coefficients a i can be integers,

rational numbers, or in general, elements of a ring or a field.

Think of a p-chain as a function Cp that assigns integers to p-simplices in K.

If σ and σ′ are the same simplex with opposite orientations, then we have

Cp(σ
′) = −Cp(σ); based on this, the set of p-chains is an Abelian group with

respect to addition. Now we define the boundary operator.

Boundary operator: a homomorphism ∂p : Cp → Cp−1 defined as:

∂pσ =

p∑
j=0

σ(x0, ..., x̂j, ..., xp) (1.6)

where σ is an oriented p-simplex spanned by vertices x0, x1, x2, ..., xp,

and x̂j means the vertex xj is omitted. In particular,

∂p [x0, x1, ..., xp] =

p∑
j=0

(−1)j [x0, ..., x̂j, ..., xp] (1.7)

describes the action of ∂ on a simplex σ = [x0, x1, x2, ..., xp].
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Using the above rule, we apply the boundary operator to oriented simplices

from Figure 1.5. From the results below and the accompanying illustration in

Figure 1.6, we see that the outcome corresponds to the following:

∂1 [a, b] = b− a

∂2 [a, b, c] = [b, c]− [a, c] + [a, b]

∂3 [a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c]

(1.8)

b

a

c

d

a

b b

a

c

Figure 1.6: Illustration for boundaries of oriented simplices.

Some important results related to properties of the boundary operator are

given as follows:

• The operation of taking a boundary commutes with addition, that is, for

two simplices σ and σ′, we have ∂p (σ + σ′) = ∂pσ + ∂pσ
′.

• Taking the boundary of a p-chain C =
∑
i

ai σi yields boundaries of its

simplices, that is, ∂pC =
∑
i

ai ∂σi

• Taking a boundary of a boundary produces a zero, that is, ∂p−1∂p (σ) = 0,

which in shorthand syntax, can be expressed as ∂2 = 0.
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Next, the definition of a chain complex follows.

A chain complex is a sequence of Abelian chain groups, connected with

their boundary homomorphisms:

. . .
∂P+2→ CP+1

∂P+1→ CP
∂P→CP−1

∂P−1→ . . . (1.9)

We also introduce p-cycles and p-boundaries, and explain their relationship.

Define a p-cycle as a p-chain with zero boundary: ∂pZp = 0. The group

Zp of p-cycles is the kernel of the p-boundary homomorphism:

Zp = ker ∂p (1.10)

Define a p-boundary as the boundary of a (p+ 1)-chain. The group Bp

of p-boundaries is the image of the p-boundary homomorphism:

Bp = im ∂p (1.11)

Then, as illustrated in 1.7, the p-boundary is also a p-cycle, that is,

Bp = im ∂p+1 is a subgroup of Zp = ker ∂p:

im ∂p ⊂ ker ∂p+1. (1.12)

Note that the image is contained in the kernel because of the property

of the boundary operator that ∂2 = 0.

Figure 1.7: Illustration of the boundary homomorphism, as in [9].
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Finally, we arrive to the definition of a homology group:

The p-th homology group is a quotient group denoted as the p-th cycle

group modulo of the p-th boundary group:

Hp = Zp/Bp = ker ∂p/im ∂p+1 (1.13)

Furthermore, the p-th Betti number is the rank of this group:

βp = rank Hp = rank Zp − rank Bp (1.14)

We will illustrate the implementation of the above equations at the end of the

next section. Now, in terms of applications, it is important to point out that

a homology group can be expressed in the following form:

Hp = Zβp , (1.15)

where Z is a field, e.g. the set Q of rational numbers or a multiplicative

group Zn of integers modulo n, where n is a prime number. The rank or the

group, denoted by βp, represents the Betti number in the p-th homological

dimension. Thus if we have H0 = Q1, then β0 = 1 (we will later understand

that this means that our object of interest is a single connected component).

Furthermore, as we explain later (see end of section 1.E), a Betti number

describes topological properties of an object in a particular homological di-

mension. Due to this important role of Betti numbers, it is very common to

refer to the given homological dimension as the Betti dimension. This notation

will be used throughout this thesis.
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1.D Calculating the Torus Homology

Now we illustrate by example how a homology group can be calculated. Our

main reference are lecture notes from a reading class with T. Gannon [12]. In

the example we implement the fact that the mapping of the boundary operator

∂p corresponds to the action of an incidence matrix Λp that characterizes the

boundary of each (p + 1)-cell in terms of lower dimensional p-cells. The p-th

Betti number of a finite chain complex is then:

βp = rank Cp − rankΛp − rankΛp+1 (1.16)

We work on a simple complex (called ∆-complex [16]) depicted in Figure 1.8.

Figure 1.8: Topological representation of a torus

The given rectangle, in which two opposite sides are identified and all the

vertices are equivalent, corresponds to the torus. After triangulation, the

components of the complex are a vertex a, three edges, x, y, and z, and two

triangles with faces f1 and f2. The orientation of the edges and triangles is

denoted in the picture. Then the chain complex of the torus is:

0 = C3
∂3→C2

∂2→C1
∂1→C0

∂0→C−1 = 0 (1.17)

Next, we describe the nontrivial chain groups C0, C1, and C3.
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The chain groups C0, C1, C3 for Betti dimensions 0, 1, 2, respectively, are:

0-dimensional chain group (vertices): C0 = {a}

1-dimensional chain group (edges): C1 = {x, y, z}

2-dimensional chain group (faces): C2 = {f1, f2}

Now consider the incidence matrices associated with our chain complex. For

the 1-chain, the corresponding incidence matrix Λ1 has one row (due to the

vertex a) and there are three columns corresponding to edges x, y, and z:

Λ1 = a

(
0 0 0

)
(1.18)

For the 2-chain, the associated incidence matrix Λ2 consists of three rows,

corresponding to edges x, y, and z, respectively, and there are two columns

that correspond to faces f1 and f2. Then:

Λ2 =


1 1

−1 −1

1 1

 (1.19)

Note that the entries of an incidence matrix are obtained by moving along the

given rectangle and observing the directions of simplices. For example, the

first element of the matrix Λ2 corresponds to the edge x which has positive

orientation when we travel along the face f1 so we assign a value of 1 to this

entry. On the other hand, the edge y is traveled in the opposite direction of

its orientation so the first entry in the second row takes the value -1. For

given orientations of the edges x, y, z that comprise the face f1, we obtain

respective numbers 1, -1, 1, for the first column of the matrix. In the same

manner, moving along the fact f2, we obtain the second column of Λ2.
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In the last step we determine the ranks of matrices Λ1 and Λ2. It is easy to

see that the rankΛ1 = 0, whereas rankΛ2 = 1, since all rows of the Λ2 matrix

are linearly dependent, i.e. there is only one linearly independent row. Then,

by the rule βp = rank Cp − rankΛp − rankΛp+1, we can finally determine the

Betti numbers of the torus:

β0 = rank C0 − rankΛ0 − rankΛ1 = 1− 0− 0 = 1

β1 = rank C1 − rankΛ1 − rankΛ2 = 3− 0− 1 = 2

β2 = rank C2 − rankΛ2 − rankΛ3 = 2− 1− 0 = 1

Therefore, the Betti numbers for the torus are (1, 2, 1). Now, a different way to

calculate these numbers would be to express the homology group as a quotient

group Hp = Zp/Bp as given in equation (1.13). For that purpose, we first

calculate the two underlying quantities, using the following guidelines:

Zp = ker ∂p = NullSp (Λp)

Bp = im ∂p+1 = ColSp (Λp+1)
(1.20)

The first expression means that the kernel of the p-boundary operator is the

null space of the incidence matrix; the second expression implies that the

image of the (p + 1)-boundary operator corresponds to the column space of

the incidence matrix. For p = 0, the boundary homomorphism ∂0 represents

the zero map, so it takes every vector in C0 ⊂ Z to zero. Hence,

Z0 = ker ∂0 = Z (1.21)

Since all the columns in Λ1 are zeros, their span is also zero, so we have:

B0 = ColSp (Λ1) = {0} (1.22)
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Thus the homology group of the torus in Betti dimension 0 takes the form of

the following quotient space:

H0 = Z0/B0 = Z/{0}, (1.23)

The final expression means that H0 is a set that consists of a single element

x in a field Z, where x and x+ 0 are identified. Because for every member of

any field the property x+ 0 = x holds, we conclude that the zeroth homology

group of the torus is the entire field Z:

H0 = Z (1.24)

Now, according to equation (1.15), the zeroth homology group can be expressed

in the form H0 = Zβ0 . Here Z represents any field, for instance, it could be

the set R of real numbers, the set Q of rational numbers, or a multiplicative

group Zn of integers modulo n where n is a prime number (note that we cannot

consider the set of integers Z because it does not represent a field, due to lack

of a multiplicative inverse). Therefore, we can finally conclude that:

β0 = rank (H0) = 1 (1.25)

which corresponds to the results we have already found. In the similar manner

we can calculate Betti numbers β1 and β2 which respectively correspond to

the torus homology groups in homological dimensions p = 1 and p = 2.
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1.E Persistent Homology & Betti numbers

The concept of persistence was developed by H. Edelsbrunner, D. Letscher, and

A. Zomorodian [10]. The main idea of persistence is that important topological

properties last over long filtration intervals, whereas short-lived features may

be ignored as noise. A formal approach would require sophisticated definitions

as shown in Computational Topology by Edelsbrunner and Harer [9]. We will

not go into such detail, but rather just summarize the underlying ideas.

From previous section we have seen that an n-dimensional manifold M

like a torus or a sphere is associated to a single chain complex, and thus to

homology groups Hp for 0 ≤ p ≤ n (with coefficients in some field Z). We also

know that these homology groups Hp are vector spaces which can be expressed

in the form Zβp , where the rank of the group, βp, represents the p-th Betti

number whose index p denotes the Betti (or homological) dimension.

Let us now make a transition from a manifold to a point-cloud dataset. As

shown in [12], when we deal with a point-cloud dataset P whose mathematical

representation is a stream (e.g. Vietoris-Rips, Witness, or Lazy Witness), then,

instead of a single chain complex, we have a sequence of chain complexes. In

that case, the associated persistent homology H i→j
p (C) is depicted in a suitable

plot which we call a homology plot or a barcode.

Now, in a homology plot horizontal bars denote topological features that

change through filtration time. Each bar corresponds to an interval (bi, di).

The beginning t = bi of the interval denotes a moment in time when the given

feature is “born;” the other endpoint of the bar denotes the “death” time

t = di when the given feature ceases to exist. The longer a bar, the more

important the associated feature.
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Figure 4.1 provides a simple illustration of a barcode, defined on a sequence

of three intervals {(0, 16) , (2, 6) , (4, 14)}.

Figure 1.9: Barcode for intervals {(0,16), (2,6), (4,14)}

The two longer bars imply an important topological feature whereas the short

bar does not carry much relevance. A point-cloud in an n-dimensional space

can contain maximally n barcodes, one for each dimension. Hence, a point-

cloud sampled on a torus or a sphere in the regular 3d-space can be associated

with three barcodes, one for each Betti dimension 0, 1, and 2.

An equivalent form of representation is a persistence diagram in which

the endpoints of intervals define coordinates (bi, di), i = 1, 2, ..., n, of points

scattered in the upper-half plane above the main diagonal.

Figure 1.10: Persistence diagram for intervals {(0,16), (2,6), (4,14)}
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Last but not least we consider a typical homology plot obtained on a point-

cloud sampled from an object whose topological features we wish to describe.

dim 0

dim 1

dim 2

Figure 1.11: Illustration of a homology plot across three Betti dimensions.

Observe that in Betti dimension 0 we have one long bar, accompanied by sev-

eral short bars, so the zeroth Betti number is β0 = 1. Since in this homological

dimension we count the number of components, if follows that the object from

which the data are sampled consists of a single component. Considering Betti

dimension 1, all bars are relatively short i.e. no long bar appears so β1 = 0;

because in this dimension we count the number of loops on a surface or the

number of holes through a surface, it follows that the associated object has

no loops or holes. In Betti dimension 2, a single long bar implies that β2 = 0;

since in this dimension we count the number of voids or hollow spaces inside

an object, it follows that the given object has one void. Therefore, the Betti

numbers corresponding to the dataset form a sequence (1, 0, 1) which is the

known homology of the sphere. That way the underlying object is identified

as the sphere.

In the following chapters we will illustrate by example various applications

of persistent homology.
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Chapter 2: Two Homologies

To demonstrate the methods of topological data analysis, we will work first

with data sampled from two well-known topological objects: the torus and

the sphere. Our goal is to explore the homology of these manifolds, based on

simplicial complexes constructed on the data.

2.A Point-Cloud Datasets

Consider two topologically different manifolds, for instance, a torus and a

sphere, embedded in a three-dimensional space. Sampling points uniformly

randomly from these surfaces, two point-cloud datasets are obtained.

SphereTorus

Figure 2.1: Point-cloud datasets obtained by sampling 2000 points uniformly randomly
from a torus and a sphere.

In our case, each dataset is of size 2000. The radius of the sphere is chosen

relative to the torus so that the surface densities of the point-clouds are equal.
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This particular requirement yields homology plots on approximately the same

scale which is important for making a statistically valid comparison between

the two manifolds (see Introduction). Due to the same number of points

sampled from each the torus and the sphere, the general requirement of equal

surface densities is reduced to having equal surface areas. Therefore,

4π2ac = 4πr2, (2.1)

where a is the radius of the toroidal tube, c is the distance of the center of

the tube from the center of the torus, and r is the radius of the sphere. From

the equation (2.1), we obtain r =
√
πac. Now consider a torus described by

parameters a = 1 and c = 2, as illustrated below.

a

c

Figure 2.2: Torus with tube of radius a = 1 and distance c = 2 from the center of the
torus to the center of the tube.

Then r =
√

2π ≈ 2.507 represents the radius of the sphere that has the same

area as the given torus. Note that this is only an initial estimate and a small

correction should be made. We implement a trial-and-error approach which

reveals the radius r = 2.8 as a more appropriate choice1.

1
The homological properties of the torus and the sphere are well-known; we use this to

find that the r = 2.8 value provides the expected results.
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2.B Building a Simplicial Complex

On each sampled point-cloud we construct a stream, i.e. a filtered simplicial

complex. For this purpose we implement javaPlex [44], the latest in a series

of similar open-source software packages for computing persistent homology.

As illustrated in the next section, the number of higher-dimensional simplices

rapidly increases with filtration time, i.e. the larger the number of vertices, the

greater the computational challenge. Consequently, it would be impractical

to assign the whole point-cloud to the vertex set of a stream; instead, a small

subset of well-spaced landmark points is selected to represent the vertices

of a given simplicial complex. The landmarks are obtained via an iterative

optimization procedure called the sequential maxmin [43], described below.

Sequential maxmin: Let the initial landmark l1 be randomly selected

from a point cloud P and Lk = {l1, l2, l3, ..., lk} be the set of landmark

points after k iterations of the maxmin algorithm. Then the next

chosen landmark is the point lk+1 ∈ P whose distance d (lk+1, Lk) from

the set Lk is maximal.

Applying this algorithm, we select 100 well-spaced landmarks from our datasets.

Landmarks on a Sphere

Landmarks on a Torus

Landmarks on a Torus

Figure 2.3: 100 well-spaced landmark points for the torus and the sphere, obtained by
applying the maxmin algorithm to the initial point-clouds.
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A landmark set defines vertices of a corresponding Lazy Witness stream. This

type of a simplicial complex is especially convenient because non-landmark

points may also be involved in the construction to serve as “witnesses” to the

binding process, so more information on data is captured at a relatively low

computational cost. Further, there is an additional parameter ν with values

in {0, 1, 2}, which allows more options in terms of building the complex. We

set ν = 1, thus the first neighbors of interlacing vertices witness the formation

of edges. For more detail on the Lazy Witness complex, see [6] and [43].

2.C Evolution of Streams and Homology Plots

For each the torus and the sphere, a homology plot (barcode) is generated.

Torus

dimension 0

dimension 1

dimension 2

Sphere

dimension 0

dimension 1

dimension 2

Figure 2.4: Homology plots for Lazy Witness streams on a torus and a sphere.

Comparing the two plots, we observe the following:

(i) At Betti dimension 0, both the torus and the sphere feature a long bar

which indicates a single-component manifold.

(ii) At Betti dimension 1, the two loops on the torus yield two long bars

while the sphere has none.

(iii) A long bar at dimension 2 implies a hollow space enclosed by each surface.
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Thus the torus has Betti numbers (1, 2, 1) and for the sphere they are (1, 0, 1)

which agrees with theory (e.g. [49]). Nonetheless a thorough inspection reveals

a discrepancy in terms of shorter bars; though usually considered as noise,

these bars may matter in statistical analysis. To understand their significance,

we explore the underlying phenomena. For that purpose we think of a filtration

value as a time parameter that describes the evolution of a given stream.

The expression “time” is used for illustration only; a filtration value actually

represents the maximal edge length between connecting vertices. For instance,

at filtration t = 0.02 connections are formed among vertices that lie within a

radius of 0.02 from each other. Now observe that the diameter of the sphere

is almost three times greater than the diameter of the toroidal tube. Thus

vertices on the torus lie closer to each other in the 3d-space so edges, triangles,

and tetrahedra are sooner generated than on the sphere. Moreover, at any

filtration time the total number of simplices is greater on the torus.

Table 2.1: Count of simplices through 15 filtration times.

Filtration Torus Sphere
time n0 n1 n2 n3 N n0 n1 n2 n3 N

0.00 100 0 0 0 100 100 0 0 0 100
0.02 100 72 2 0 174 100 61 5 0 166
0.04 100 139 26 1 266 100 122 23 2 247
0.06 100 181 55 3 339 100 162 48 3 313
0.08 100 222 92 6 420 100 203 76 3 382
0.10 100 241 113 7 461 100 222 92 3 417
0.15 100 285 180 20 585 100 265 152 11 528
0.20 100 310 226 31 667 100 295 201 16 612
0.30 100 378 369 101 948 100 336 280 45 761
0.40 100 443 536 219 1298 100 390 405 123 1018
0.50 100 557 929 629 2215 100 468 635 311 1514
0.60 100 716 1629 1677 4122 100 570 1021 767 2458
0.70 100 961 3151 5081 9293 100 698 1623 1731 4152
0.80 100 1239 5670 13023 20032 100 891 2796 4315 8102
0.90 100 1526 9407 31055 42088 100 1086 4305 8732 14223

n0 – number of vertices; n1 – number of edges; n2 – number of triangles;
n3 – number of tetrahedra; N – total number of simplices.
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The evolution of the streams is illustrated in the figure below.

t = 0

t = 0.02

t = 0.06

t = 0.15

t = 0.30

t = 0.70

t = 0.85

n0 =     100
n1 =       72
n2 =         2
N  =     174

n0 =     100
n1 =     285
n2 =     180
n3 =       20
N  =     585

n0 =     100
n1 =     378
n2 =     369
n3 =     101
N  =     948

n0 =     100
n1 =     961
n2 =   3151
n3 =   5081
N  =   9293

n0 =     100
n1 =   1370
n2 =   7263
n3 = 20039
N  = 28772

n0 =     100
n1 =     983
n2 =   3471
n3 =   6161
N  = 10715

n0 =     100
n1 =     698
n2 =   1623
n3 =   1731
N  =   4152

n0 =     100
n1 =     336
n2 =     280
n3 =       45
N  =     761

n0 =     100
n1 =     265
n2 =     152
n3 =       11
N  =     528

n0 =     100
n1 =       61
n2 =         5
N  =     166

n0 =     100
N  =     100

n0 =     100
N  =     100

n0 =     100
n1 =     181
n2 =       55
n3 =         3
N  =     339

n0 =     100
n1 =     162
n2 =       48
n3 =         3
N  =     313

Figure 2.5: Evolution of Lazy Witness streams on a torus and a sphere through seven
filtration times. Variables n0, n1, n2, and n3, respectively, denote the number of vertices,
edges, triangles, and tetrahedra at a given filtration time. The variable N represents the
total number of simplices. Note the consistently greater value of N in the case of the torus.
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Thus on evolutionary timeline, the torus progresses faster than the sphere.

Based on these results, we interpret the homology plots.

First, we explore Betti dimension 0, in which we count the number of

components in a given stream. With maximal value at initial time t = 0, this

number rapidly decreases until each stream becomes connected into a single

component; the zoomed-in-view shows this happens around time t = 0.085.

Torus Sphere
Betti dimension 0 Betti dimension 0

Figure 2.6: Homology plots of the torus and the sphere for Betti dimension 0.

Observe a slight difference in short-lived bars which appear longer for the

sphere. This is not necessarily a rule; another point-cloud may yield an oppo-

site outcome. Later statistical analysis will prove the difference insignificant.

Next, we focus on Betti dimension 1, associated with non-trivial loops

on a given stream. A major difference occurs from about t = 0.30 through

t = 0.60, since the torus has two independent loops and the sphere has none.

The situation changes around t = 0.6; at t = 0.7, the torus loses its features.

Torus Sphere
Betti dimension 1 Betti dimension 1

Figure 2.7: Homology plots of the torus and the sphere for Betti dimension 1.
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An explanation may be that until time t = 0.6 the formation of simplices on

a torus mostly occurs in the vicinity of the surface. As time progresses and

more distant vertices start to connect, simplices start to build up across the

hole in the center of the torus. At first only the rim of the hole is affected but

as the process continues, the hole is gradually reduced and a bit before time

t = 0.7 it ceases to exists, as illustrated in the evolution Figure 2.5.

At last we explore Betti dimension 2, associated with the number of voids

enclosed by a given stream. Though initially no cavities are observed, around

time t = 0.30 the streams are connected enough to form a closed surface that

encloses a hollow space inside. However this configuration lasts only until

t = 0.6 when several short-lived bars appear in the homology plot of the torus,

while no such bars show up in the case of the sphere.

Torus Sphere
Betti dimension 2 Betti dimension 2

Figure 2.8: Homology plots of the torus and the sphere for Betti dimension 2.

An explanation may be that about time t = 0.6 simplices with relatively long

edges start to form, passing through the toroidal tube. This process reduces

the size of the initial void, though in some regions small pockets of void appear

between the newly formed simplices. These remaining cavities are responsible

for the appearance of short-lived bars in the barcode of the torus. When

the last minuscule cavity disappears, the whole inner space of the torus is

partitioned by solid tetrahedra; this happens around time t = 0.85, when the
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last short bar in the homology plot meets its end. At that moment the stream

transforms to a non-interesting structure similar to a piece of solid described

by Betti numbers (1, 0, 0). Note that at the same time the void inside the

sphere still exists, as indicated by the long bar in the sphere’s homology plot.

Now we understand that even though in second Betti dimension the torus

and the sphere feature the same homology, a geometrical difference exists

due to the fact that the void inside the torus is smaller than the one in the

sphere. In other words, it is rather the geometrical component that makes

the difference and not the topological one. Therefore, not only that persistent

homology captures information about topological properties of objects, but

it also detects geometrical properties of objects. Therefore, in our statistical

analysis we will not be surprised if some difference between the torus and the

sphere is observed in the second Betti dimension.

2.D Chapter Summary

Retracing the work shown in this chapter, we recall that starting from the

initial point-cloud data, we constructed Lazy Witness streams and then, using

tools of persistent homology, the corresponding homology plots were generated.

Since the Betti numbers associated with these plots match the Betti numbers of

the torus and the sphere, we may conclude that persistent homology recovered

the topological and geometrical features of original manifolds from which the

data were sampled. This power of persistent homology to retrieve structural

properties of objects is one of the most important results of the chapter.
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Chapter 3: Analyzing Distances

For the purpose of statistical analysis, we generate 15 point-clouds of size 2000

for each the torus and the sphere. Using the maxmin procedure, we select 100

landmarks from every point-cloud and construct a Lazy Witness stream with

parameter ν = 1 and maximal filtration value 1. After generating persistence

intervals at Betti dimensions 0, 1, and 2, we wish to measure the proximity

of these sets; as shown in [27], a convenient measure of distance would be the

Wasserstein distance.

3.A Wasserstein Distance Matrix

For the purpose of measuring the Wasserstein distance between two sets of

barcodes we represent them in a plane in a form of persistence diagrams. Then

for persistence diagrams d1 and d2, the pth Wasserstein distance is defined as

Wp (d1, d2) =

(
inf
γ

∑
x∈d1

‖x− γ (x)‖p∞

) 1
p

, (3.1)

where γ represents all bijections from d1 to d2. Considering the implementa-

tion, there are two main stages in the process of obtaining the Wasserstein

distance between two sets of barcodes; in the first stage, as explained in [9],
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bipartite graph matching is used. In the last step a Hungarian algorithm

for optimal assignment problem is implemented. Applying the described al-

gorithm, we obtain three Wasserstein distance matrices, one for every Betti

dimension. Each matrix is symmetric and of size 30 × 30, with the (i, j)th

entry representing the distance between persistence diagrams di and dj. We

use these results to visualize the relationship between the 30 samples.

3.B Hierarchical Clustering

Our first visualization tool is cluster analysis. To estimate the dissimilarity

among the 30 samples, we use single-linkage hierarchical clustering in which

each sample initially represents a cluster; via an iterative procedure the sam-

ples are grouped into clusters based on the nearest neighbor criterion. That

way we obtain three dendrograms, one for each Betti dimension. The results

are displayed as follows. As expected, the first dendrogram shows the 15 tori

and the 15 spheres are indistinguishable from each other in Betti dimension 0.

Figure 3.1: Dendrogram for Betti dimension 0.
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At Betti dimension 1, two separate clusters verify the difference between the

torus and the sphere data.

Figure 3.2: Dendrogram for Betti dimension 1.

The dendrogram for second Betti dimension indicates a difference between

the torus and the sphere. As already mentioned, this is due to a difference

in the geometry of the torus and the sphere detected from the appearance of

short-lived bars in the homology plot of the torus.

Figure 3.3: Dendrogram for Betti dimension 2.

Last but not least, observe that the variation among the 15 spheres is much less
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than the variation among the 15 tori. This is due to the fact that at dimension

2 all the spheres in our sample feature a single persistence interval that extends

until the maximal filtration time; thus the only difference within the sphere

group is the difference among the 15 left endpoints. On the other hand, for all

the tori in our sample in addition to a long persistence interval there are also

several shorter intervals, which gives rise to more variation within the torus

group.

3.C Multidimensional Scaling

Though easy to implement, hierarchical clustering has a disadvantage because

it is a non-robust method where a small change in clustering criterion can yield

a significantly different outcome. A more reliable statistical tool to visualize

the relationship among our samples is the multidimensional scaling (MDS)

method.

A great advantage of MDS is that any measure of similarity (or dissimilar-

ity) among objects may be used, as long as there exists a monotone relationship

between numerical values of the chosen measure and the actual proximity of the

objects [19]. This allows us to use Wasserstein distance as a measure of dissim-

ilarity between sequences of persistence intervals. Classical scaling methods do

not have such flexibility; for instance, in principal component analysis (PCA)

similarity is expressed through covariances or correlation coefficients which

only measure the strength of a linear association between variables so there is

an assumption of a linear relationship. MDS has greater range of application

because no assumption on the nature of the data is needed, as shown in [18].
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Using MDS, we depict the 30 samples in a 2d-plane. From the first plot,

for Betti dimension 0, no major difference can be observed.

Figure 3.4: Multidimensional scaling for Betti dimension 0.

At Betti dimension 1, MDS shows a topological difference between the groups.

Figure 3.5: Multidimensional scaling for Betti dimension 1.
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In the case of Betti dimension 2, MDS yields a similar result as the clustering

analysis, that is, the two groups differ from each other.

Figure 3.6: Multidimensional scaling for Betti dimension 2.

Again, we recall that the reason for this outcome lies in the geometrical dif-

ference between the torus and the sphere. As in the Figure 3.3 at the end of

previous section, we can also observe that the variation within the group of

spheres seems a bit less than that of the torus group.

Note that the visualization methods used in the current and previous sec-

tions serve only as our exploratory tools, but for a sound statistical analysis

this is insufficient. We will now explore a method that involves a new data

descriptor called Persistence Landscape.
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Chapter 4: Persistence Landscapes

The theoretical framework for the method of Persistence Landscapes together

with examples on applications in data analysis have been developed by Peter

Bubenik, a mathematics professor at Cleveland State University1. Throughout

this whole chapter, we follow the ideas from a recently published paper of

Bubenik to introduce and implement persistence landscapes in our statistical

data analysis.

4.A Polish Space: Complete and Separable

As pointed out in [3], when we apply persistent homology to statistical analysis

of data, we would like to know if the resulting output, that is, the obtained

sets of persistence intervals, allow us to calculate means, estimate variability,

perform hypothesis testing, use convergence laws, etc. For implementations of

the probability theory to a class of non-traditional objects such as persistence

intervals, an appropriate mathematical environment is required. One such

environment is a Polish Space, defined as a metric space that is separable and

1The Persistence Landscapes method was presented for the first time in Peter Bubenik’s
talk [3] during the Joint Mathematics Meetings held in Boston at the beginning of this year;
another interesting presentation [4] with further developments on the topic took place during
a Mathematical Biosciences Institute workshop in Columbus, Ohio at the end of last May.
An article that will formally introduce Persistence Landscapes into science is expected to
soon join the list of numerous publications of Bubenik.
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complete. The importance of separability and completeness is explained in

more detail as follows.

Separability of a metric space means that a countable dense subset exists

in the given space. The crucial word here is “countable.” Namely, as shown in

[39], a measure µ on a sigma-field A (a non-empty class of sets that is closed

under complements and countable unions), is a set function defined by:

1. null empty set: µ (∅) = 0

2. non-negativity: µ (A) ≥ 0,∀A ∈ A

3. countable additivity: µ

(
∞⋃
n=1

An

)
=
∞∑
n=1

µ (An), for disjoint sets An in A.

Therefore the notion of countability, and hence separability, is substantial for

the measure theory; without this property we would not be able to introduce

a probability measure.

Completeness of a metric space means that every Cauchy sequence in the

given space converges and the limit is also in the space [41]. For example, the

open unit interval (0, 1) with the standard Euclidean metric is not complete

because the limit of the harmonic sequence xn =
1

n
, n = 1, 2, 3, ..., which is

Cauchy, does not belong to the space. On the other hand, the closed interval

[0, 1] or, in general, any closed subset of Rn equipped with the usual Euclidean

metric is complete. In any case, the property of completeness is important in

probability theory because it gives rise to the notion of convergence.

Hence, in a Polish space a probability measure can be introduced. This

result is crucial for applications of topology in statistical inference.
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4.B Probability Space of Persistence Diagrams

As proven in recent article [27], the space of persistence diagrams, labeled as

D together with the metric based on the Wasserstein distance represents a

Polish space in which a probability measure, denoted by P , can be defined. If

B (D) is the usual Borel sigma-algebra in D, then (D,B (D) ,P) represents a

probability space in which expectations and variances are defined as follows.

Definition: The Fréchet variance is a quantity defined by

V ar = inf
d∈D

F (d) =

∫
e∈D

W (d, e)2dP <∞

 , (4.1)

where W (d, e) denotes the Wasserstein distance between persistence dia-

grams d and e. Then the Fréchet mean is defined as the quantity that

minimizes the corresponding variance:

E = {d |F (d) = V ar} . (4.2)

The Fréchet mean defined above is a generalization of the usual mean and

thus can be used in any metric space [5]. However, from the above expressions

(4.2) and (4.1), it may seem that the implementation is far from trivial. Nev-

ertheless, if a different but topologically equivalent space is used, calculations

of the mean and the variance can be performed in a much easier way. Such a

convenient setting for obtaining the Fréchet mean and variance is the metric

space induced by a new data descriptor defined as the Persistence Landscape.

38



4.C Probability Space of Persistence Landscapes

In this section we briefly mention the results that lay out the theoretical back-

ground for statistical inference using persistence landscapes. The proof of each

result is given in [5].

• The metric space induced by persistence landscapes is topologically equiv-

alent to the Wasserstein distance. This is the main result, serving as the

base for development of the theory.

• The space of persistence landscapes is separable and complete, hence it

is a Polish space. Each of the results is separately stated and proved.

Together, they imply that a probability measure can be introduced in the

space of persistence landscapes, which is a crucial for statistical inference.

• In the probability space of persistence landscapes, the expectation of a

random variable is defined as the Fréchet mean and the variance is the

Fréchet variance.

• If the parameter in the definition 3.1 of Wasserstein distance is p = 2,

then the mean and the variance can be calculated pointwise.

• In the above case when p = 2, the Limit Laws hold pointwise. Proofs

are given for the Strong Law of Large Numbers and the Central Limit

Theorem. The corollary of the Strong Law of Large Numbers is the

pointwise convergence of the sample mean to the Fréchet mean.

These powerful tools give rise to a new area of research, which may be referred

to as the Statistical Topology using Persistence Landscapes [5].
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4.D Understanding Persistence Landscapes

To understand the construction of persistence landscapes [5], consider a set of

finitely many persistence intervals {Ik}nk=1 where each interval has the form

Ii = (bi, di), with finite non-decreasing endpoints so bi ≤ di < ∞. As usual,

we refer to the left endpoint bi as the “birth” time of a given bar and the

right endpoint di is the “death” time. We depict persistence intervals using a

homology plot i.e. a barcode, as shown below.

Figure 4.1: A simple barcode with intervals {(0, 16) , (2, 6) , (4, 14)}

The formation of a persistence landscape starts by constructing a triangle

whose base corresponds to a generalized persistence interval (bi, di) and the top

vertex is in the intersection of the vertical line through the midpoint
(
bi+di

2
, 0
)

and the circle passing through the endpoints, centered at the midpoint. The

result is an isosceles right triangle whose catheti meet at
(
bi+di

2
, di−bi

2

)
.

(bi,0)

(             ) ,bi+di di   bi
2 2

(di,0)

Figure 4.2: Persistence landscape of an interval (bi, di)
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Apply the same approach to all persistence intervals in a given barcode, as

illustrated on our simple barcode example.

Figure 4.3: Triangles constructed atop intervals {(0, 16) , (2, 6) , (4, 14)}.

Note that this is just the initial step in the construction of a persistence land-

scape; the triangles in the figure above do not represent a persistence land-

scape. The next stage of the construction can be described as the flattening

all the triangles to a single vertical plane, as illustrated below.

t

t

Figure 4.4: Overlapping triangles in a vertical plane. The triangles are constructed over
intervals {(0, 16) , (2, 6) , (4, 14)}, depicted at the bottom of the image.

With this construction the vertical plane becomes partitioned into polygon-

shaped regions, each characterized by the number of overlapping triangles. As
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shown in [5], let Pk, k ∈ N, denote a union of regions populated by at least k

triangles. Then the persistence landscape at a fixed value of k is a real-valued

function λk : R → R that corresponds to the profile of Pk. Also, we take

λk (t0) = 0, when the vertical line positioned at t = t0 does not intersect Pk.

A more formal definition is given as follows.

Definition: Let (b, d) be a persistence interval, so b ≤ d. Consider the map

f(b,d) : R→ R such that

f(b,d) (t) = min (t− b, d− t)+, (4.3)

where the symbol “+” denotes the positive part, that is, c+ = max (c, 0).

Then the persistence landscape of a set of intervals {(bi, di)}ni=1 represents a

map λ : N×R→ R whose profile λk : R→ R at a fixed k ∈ N is defined in

the following way:

λk (t) = kth largest value of
{
f(bi,di)

}n
i=1

, (4.4)

for t ∈ R. Furthermore, λk (t) = 0, for k > n.

We illustrate the definition on the simple barcode example. For intervals

{(0, 16) , (2, 6) , (4, 14)}, the first birth time occurs at time t = 0 and the last

death time is at t = 16, so times of interest lie in (0, 16). Consider t = 9.

Table 4.1: Calculating the Persistence Landscape.

b d t− b d − t min (t − b, d − t)+

0 16 9 7 7
2 6 7 -3 0
4 14 5 5 5

Thus λk (9) takes values 7, 5, 0, for k = 1, 2, 3, respectively.
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The persistence landscape contours for the given example are displayed below.

l1(9) = 7

l2(9) = 5

l3(9) = 0

Figure 4.5: Contours of a Persistence Landscape constructed on (0, 16), (4, 14), and
(2, 6).

A 3d-plot of the corresponding persistence landscape is given below.

Figure 4.6: 3d-plot of a Persistence Landscape constructed on (0, 16), (4, 14), and (2, 6).

Note that the value λk (t) of the persistence landscape for a particular value

of k ∈ N and a fixed filtration time t ∈ R, can be interpreted as the maximal
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possible radius of an interval centered about t, where t belongs to k intervals

in the given barcode [5].

Therefore, the persistence landscapes method allows us to capture two

important pieces of information, as explained below.

• First, since longer intervals yield higher values, a persistence landscape

carries information on lengths of intervals; this is important because

longer bars are associated with features that persist through longer fil-

tration times.

• Second, the information on the number of overlapping intervals at a

fixed filtration time is also recorded; this is important because regions

with high number of overlaps indicate short-lived bars which are usually

considered as noise.

With these properties, we may conclude that the persistence landscapes method

represents an excellent tool of data analysis in statistical topology. To imple-

ment the method, we use the MATLAB numerical software; though somewhat

modified, our software relies on original codes generated by P. Bubenik.
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Chapter 5: Application to Torus

and Sphere

Upon laying out the underlying theory of persistence landscapes, we return to

the statistical analysis of the fifteen point clouds sampled from each the torus

and the sphere. Recall from the beginning of Chapter 3 that we had already

generated persistence intervals for thirty samples; the data obtained will now

serve as input for the new method. Our primary goal is to make a comparison

between the torus and the sphere group. For that purpose, we first visually

explore the persistence landscapes for the fifteen tori and the fifteen spheres

at each of the three Betti dimensions. To avoid unnecessary repetitions, we

display images of persistence landscapes for Betti dimension 1 only; note that

complete sets of images across all Betti dimensions can be found in appendices

A and B.

5.A Torus in Betti Dimension 1

Remember that the torus is characterized by two loops, one loop corresponding

to the hole cutting through the middle and the other associated with the tunnel

inside the toroidal tube. These properties of the torus were already detected
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in the earlier homology plot 2.7 in Betti dimension 1. The same properties

are reflected in the persistence landscapes as well; namely, for each of the

fifteen tori the corresponding persistence landscape features two distinguished

triangular peaks, as illustrated below.

T1 T2 T3

T4 T5 T6

T7 T8 T9

T10 T11 T12

T13 T14 T15

Figure 5.1: Images of Persistence Landscape for the 15 tori in Betti dimension 1.
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As explained in section 4.C, we can obtain the Fréchet mean by pointwise aver-

aging. The resulting 3d-plot of the average persistence landscape is displayed

below.

Figure 5.2: Average Persistence Landscape for the torus group in Betti dimension 1.

Note that the average above does not correspond to any particular barcode.

Nonetheless, as shown in [5], it is possible to interpret the average persistence

landscape.

Interpretation of the Average Persistence Landscape: Consider a set

B = {B1, B2, ..., Bn} of n barcodes whose corresponding persistence

landscapes, denoted by λ(1), λ(2), ..., λ(n), yield the average persistence

landscape λ. Then, for fixed k ∈ N and t ∈ R, the value λ (k, t)

represents the average of the maximal possible radius of an interval

centered about t which belongs to k intervals of the set B.

This is a similar interpretation as the one given for the persistence landscape

at the end of section 4.D.
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Implementing the pointwise approach we calculate the Fréchet variance, that

is, we rather focus on the corresponding standard deviation s(k, t) which is

then subtracted from and added to the empirical mean. This allows us to

visualize the change in the average persistence landscape within a range of

one standard deviation, as shown in the Figure 5.3 below.

l - s(k,t) s(k,t)l +

Figure 5.3: The images to the left and right respectively show the change in the mean
persistence landscape after subtracting and adding one standard deviation.

Note that in the above calculations we ignored negative values that initially

appear in the matrix corresponding to the left image; the reason for avoiding

negatives is the fact that by its definition a persistence landscape is nonneg-

ative. Nevertheless, a negative value of λ − s(k, t) can occur at some point

(k0, t0) ∈ N × R if the variation in the fifteen values
{
λ(i)(k0, t0)

}n
i=1

is such

that it yields a standard deviation that exceeds the value of the mean at the

given point, so s(k0, t0) > λ(k0, t0).
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5.B Sphere in Betti Dimension 1

At Betti dimension 1, apart from smaller variations, the persistence landscapes

of the fifteen spheres show no pronounced feature; this is due to the fact that

the sphere has no loops, as already seen in the homology plot 2.7.

S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

S13 S14 S15

Figure 5.4: Images of Persistence Landscape for the 15 spheres in Betti dimension 1.
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The mean persistence landscape obtained by pointwise averaging also shows a

moderate structure.

Figure 5.5: Average Persistence Landscape for the spheres in Betti dimension 1.

The change in the mean within a range of one standard deviation is shown

below.

l - s(k,t) s(k,t)l +

Figure 5.6: The images to the left and right respectively show the change in the mean
persistence landscape after subtracting and adding one standard deviation.
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5.C Visual Comparison of the Two Groups

Let us now visually compare the average persistence landscapes for the torus

and the sphere across the three Betti dimensions.

Torus dim0 Sphere dim0

Torus dim1 Sphere dim1

Torus dim2 Sphere dim2

Figure 5.7: The figure represents average persistence landscapes for the torus group
(left) and the sphere group (right) for Betti dimensions 0, 1, and 2.
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Observe that there is no apparent difference between the average persistence

landscapes of the torus and the sphere in Betti dimension 0. A slight difference

occurs in Betti dimension 2 due to the specific geometry of each manifold. The

largest difference occurs in Betti dimension 1. Nonetheless, prior to making

any conclusions, methods of statistical analysis should be implemented to in-

vestigate which differences are statistically significant. Our main tool will be

a permutation test.

5.D Rearranging the Data

Before the actual analysis, we appropriately rearrange the data obtained from

persistence landscapes. This approach, originally proposed and implemented

in data analysis by G. Heo [17], yields a vector whose entries are obtained

by calculating the average number of overlapping intervals at each filtration

value. The main idea is illustrated below.

t = 9

Figure 5.8: Illustration of the idea of data rearrangement providing a more convenient
input format. For instance, consider the filtration time t∗ = 9 for which we sum up all
the values of the persistence landscape function along the red line; divide the obtained sum
by the maximal number of overlapping intervals m∗ = 2. Implement this approach for all
filtration values on the given grid.
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A more precise description is provided as follows.

Formatting of the persistence landscape data: Consider a persistence

landscape λ (k, t) whose values are defined on a grid of size m×n with

nodes (k, t). Recall that λk(t) describes the contour of the persistence

landscape at a particular k. Now, for a fixed filtration time t = t∗ at

which the number of overlapping intervals k takes m∗ distinct values

k = 1, 2, 3, ...,m∗, define a new variable:

η(t∗) =

m∗∑
k=1

λk(t∗)

m∗
. (5.1)

Repeat this for every t ∈ {t1, t2, ..., tn} to obtain a vector of the form

η = [η(t1), η(t2), . . . , η(tn)]. Call this vector η the average persistence

landscape curve, since it is obtained by averaging the contours of the

persistence landscape.

That way, instead of a persistence landscape in a shape of a matrix of size

m × n, a vector of length n is obtained which is convenient for our further

analysis. Note that in this process we did not lose too much in the quality of

data because every entry in the new vector stores information on the number

of overlapping intervals at a given filtration value.

5.E Permutation Tests

To compare two groups of samples, each described by a vector of length n,

some knowledge about the underlying distribution would be needed in order

to construct a test statistic. When we do not posses such knowledge, we use

resampling methods to gain information on the given distribution. Depending
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on the way of resampling, there exist various methods, e.g. bootstrapping,

jackknifing, or a permutation test. A necessary condition for implementing this

methodology is that the drawn samples are representative of their populations;

since our datasets are randomly generated, there is no reason to suspect the

condition does not hold.

A permutation test is based on repeated sampling a large number of times,

at least 1,000 or possibly 10,000. In each permutation the existing observations

are randomly assigned to the two groups and an appropriate test statistic is

calculated. These values represent the null distribution i.e. the probability

distribution of the test statistic under the assumption that there is no difference

among the two groups. Our goal is to test if this assumption, which we call the

null hypothesis, may be rejected. If the observed statistic takes an extreme

value in the null distribution, then it is highly unlikely that such a value

occurred by chance so there is strong evidence against the null hypothesis.

For a simple illustration, consider the figure below.

observed situation

perm 1 perm 2 perm 3 perm 4 perm 1000

...

Figure 5.9: Illustration of a permutation test in the case of a false null hypothesis.
The image at the top represents the observed situation in which a group of 15 blue bars is
distinguished from a group of 15 green bars (where a “bar” corresponds to a data vector).
Note how extreme is the observed situation compared to configurations obtained by shuffling
the bars in a random fashion; this indicates a significant difference among the groups.
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Recall that the data which we are going to submit to a permutation test are

high-dimensional since each of the thirty observations is expressed in a form

of a vector η = [η(t1), η(t2), . . . , η(tn)] called the average persistence landscape

curve. The length n of this vector corresponds to the number of distinct

filtration times (or the number of nodes along the t-axis in the grid over which

a persistence landscape is constructed). Due to such a high-dimensional input

variable we need to use a multivariate statistic in our analysis; a convenient

statistic can be found in Ramsay’s Functional Data Analysis [34]. At this

point, we emphasize that the implementation of methods of functional data

analysis is appropriate since our data change with filtration in the same manner

as some other data vary over the time continuum. That way, based on the

above mentioned reference, we introduce a formula that represents the basis

of our permutation test.

Permutation Test formula: Let x1 (t) and x2 (t) respectively denote

two data vectors consisting of n1 and n2 observations sampled at a

particular filtration time t. Define:

T (t) =
|x1 (t)− x2 (t)|√

1

n1

V ar (x1 (t)) +
1

n2

V ar (x2 (t))

(5.2)

as the test statistic of the permutation test.

The above defined statistic will serve as the main guideline in constructing our

permutation test. Note that apart from the above defined test statistic some

other forms of test statistics may be used, as shown in [33].
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Calculating the Test Statistic

The observed test statistic and its maximal value are obtained from non-

permuted data, that is, from the thirty observations given in a form of earlier

defined η-vectors describing the average persistence landscape curve. Since

there are n1 = n2 = 15 observations in each the torus and the sphere group

across n distinct filtration times, the observations assemble a data matrix with

n1 + n2 = 30 rows and n columns 1. For this data matrix, the observed test

statistic and the corresponding maximal value are calculated as follows.

• Observed test statistic: Applying the equation (5.2) to non-permuted

data, obtain the following values:

Tobs(t), where t ∈ {t1, t2, . . . , tn} (5.3)

Since Tobs(t) corresponds to a single time point t, we may think about it

as a pointwise statistic.

• Maximal Observed test statistic:

Tmax obs = max
t∈{t1,..,tn}

Tobs(t), (5.4)

Thus Tmax obs represents the maximum in the array of Tobs(t) values.

1
The number n of filtration times is user-defined; in our codes the range of filtrations is

divided into 50 equally spaced subintervals, which yields n = 51 distinct points.
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Calculating the Null Values

As explained in [34], the null distribution is generated from the observed data

by performing N different random permutations, where N is a large number.

Every permutation results in a new arrangement of η-vectors but the order of

components within each vector remains unchanged; in other words, only the

rows in the data matrix are rearranged while the ordering of the columns is

the same. In each such permutation, an array of null test statistic values and

their maximum are obtained as follows.

• Null test statistic of the i-th permutation: Consider a random shuffling

of rows in the observed data matrix; applying the equation (5.2) to the

given arrangement, calculate the following values:

T i
null(t), where t ∈ {t1, t2, . . . , tn} . (5.5)

Since T i
null(t) corresponds to a point t in filtration time, we may think of

it as a pointwise null value in the i-th permutation. Every permutation

i = 1, 2, . . . , N yields an array of null values across n filtration times,

hence the null values form a matrix of size N × n.

• Maximal null test statistic of the i-th permutation:

T i
max null = max

t∈{t1,..,tn}
T i
null(t). (5.6)

Thus T i
max null is the maximal value in the array T i

null(t). There are N

such values, one for each permutation.
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p-value of the Test

If the two compared groups are statistically indistinguishable, then random

permutations applied to the rows of observed data do not make a difference;

in that case, the observed test statistic blends in the null distribution. On the

other hand, if the two groups statistically differ, then random permutations

do make a difference; in that case the observed test statistic takes an extreme

value i.e. it is located in the tail of the null distribution. Therefore, the p-value

of the permutation test can be obtained as the proportion of null values which

exceed the observed test statistic. The smaller this value, the less likely that

the observed data occurred by chance.

• Permutation Test p-value:

p-value = mean
{
Tmax obs < T i

max null

}N
i=1

, (5.7)

that is, the p-value corresponds to the average number of cases in which

the maximal observed test statistic falls below a maximal null value.

The outcome of the test is obtained by comparing the p-value with the

significance level α = 0.05. When p-value < 0.05, we are able to reject the

null hypothesis.
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Visualization of Test Results

For the purpose of visualizing the results of the permutation test, the ob-

served test statistic Tobs(t) is plotted against filtration time, together with the

maximal critical value Cmax which we define as follows.

• Maximal Critical value:

Cmax = 0.95 quantile
{
T i
max null

}N
i=1

(5.8)

that is, the maximal critical value represents the 0.95-th quantile in the

null distribution of maximal null values {T i
max null}

N

i=1.

Since Cmax is a constant, its plot is a horizontal line. This line represents

a threshold value at which the difference between the two compared groups

becomes significant. Namely, for filtration times at which the observed test

statistic crosses the maximal critical value, a statistically significant difference

between the two groups exists. With this descriptive tool, we expect to gain

more information about the homological and geometrical difference between

the torus and the sphere.

Note that in all subsequent permutation test plots, the observed test statis-

tic Tobs(t) is represented by a blue curve, while the maximal critical value Cmax

is given by a red horizontal line.

Advantages of Permutation Tests

At the end of the section we point out some of the advantages of permutation

tests. As explained in [28], one of the main advantages is that the normality

condition is not required; hence, unlike the usual t-test, this method can be
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applied to any data, regardless of its nature. Another advantage is that these

tests are robust in the sense that accurate p-values are obtained even in cases

when the two distributions compared have different standard deviations. With

these properties and its easiness to implement, permutation tests are becoming

increasingly popular. Nevertheless, it is interesting to note that ever since

permutation methods were introduced into statistics by Fisher in 1935, there

has been some scepticism on behalf of users about the reliability of the method

[36]; contrary to this, the truth is that when a permutation test is properly

implemented with randomization and sufficient number of permutations, the

method actually represents a basis for exact inference [11]. This is explained

in the following excerpt, taken from [22].

“...tables of critical values in nonparametric statistical tests for

small sample sizes are based on permutations. The authors of these

tables have computed how many cases can be found, in the com-

plete permutation distribution, that are as extreme as, or more

extreme than the computed value of the statistic. Hence, proba-

bility statements obtained from small-sample nonparametric tests

are exact probabilities.”

Of course, for our thirty samples the idea of performing all the possible per-

mutations is computationally unattainable since 30!≈ 2.65 · 1032, but now we

understand why performing more permutations may lead to better results. A

usual recommendation as given in [22] is that 1,000 permutations suffice when

we encounter and explore a problem but for final results it would be better to

have at least 10,000 permutations.
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5.F Results

To apply the described algorithm, a suitable code is written by combining

the the tperm.fd procedure of Ramsay [34] with a code obtained from G.

Heo. Using this code, we perform the permutation test on the thirty samples

in order to statistically evaluate the significance of the difference among the

torus and the sphere data. First, we establish the test hypotheses.

Permutation Test Hypotheses

Recall from section 5.D, that the input data for the permutation test are

given as η-vectors which we call average persistence landscape curves. This

implies that there exists a population of average persistence curves with a

mean denoted by µ(η). Given the torus and the sphere group, we differentiate

among two particular populations of average persistence landscape curves:

ηT : Population of average persistence landscape curves for the torus,

described by the mean µ
(η)
T .

ηS: Population of average persistence landscape curves for the sphere,

described by the mean µ
(η)
S .

Then the fifteen η-vectors corresponding to the torus represent observations

from the population ηT and similarly, the fifteen η-vectors corresponding to

the sphere are observations obtained from the population ηS. Based on this,

we can now provide the test hypotheses.
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For the permutation test that compares the torus and the sphere data, the

statistical assumptions under the null hypothesis and under the alternative

hypothesis are defined as follows:

H0 : µ
(η)
T = µ

(η)
S

H1 : µ
(η)
T 6= µ

(η)
S

(5.9)

The outcome of the test is determined according to the p-value. Since the test

is performed at α = 0.05 level of significance, the decision about rejecting the

null hypothesis is made by comparing the p-value with the significance level:

p-value ≤ 0.05 ⇒ rejectH0

p-value > 0.05 ⇒ not rejectH0

(5.10)

In all permutation tests on the torus and the sphere, the same significance

level will be used, i.e. our decision in all hypothesis testing will be based on

the above shown criterion (5.10).

Three Approaches

To obtain more information from the permutation test, we use three ap-

proaches in terms of taking the data from persistence landscapes.

1. In the first approach, initially the data are assembled from the complete

persistence landscapes of the 15 tori and 15 spheres. To implement

a permutation test we need properly formatted data so we apply the

method proposed by G. Heo, as shown in equation (5.1). Since all peaks
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in each of the thirty persistence landscapes are taken into account, we

denote this setting by “all.”

2. In the second approach, instead of using all the peaks i.e. contours from

an individual persistence landscape, we consider only the first (highest)

peak which corresponds to the contour λ1(t) in a persistence landscape.

Since such data already form a vector, the formatting step from section

5.D has no purpose. The gain we expect from this approach concerns

Betti dimensions 0 and 2; in these dimensions, the highest peak in the

persistence landscape seems to be the same for both the torus and the

sphere. Since only the first peak is taken into account, we denote this

approach as “peak 1.”

3. In the third approach, every sample is described via all but the first

two peaks in its corresponding persistence landscape; in other words,

contours λ1(t) and λ2(t) are excluded from consideration. Since this

includes several rows from the data matrix of a persistence landscape,

we need to “flatten” the data into a vector according to the equation

(5.1). We expect this approach to be helpful in our analysis of the Betti

dimension 1 in which the two high peaks from persistence landscape of

the torus make the difference with respect to the sphere. Our notation

for this particular setting is “all but 1 and 2.”

Note that the application of these different approaches is adopted from Bubenik’s

article [5], where similar selections of peaks from persistence landscapes was

considered.
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Permutation Test Results

The results obtained after 10,000 permutations for the α = 0.05 level of sig-

nificance are displayed in Table 5.1.

Table 5.1: p-values for permutation tests at α = 0.05.

Betti dim Peaks considered p-value

0 all 0.1582
1 all 0.0000
2 all 0.0000

0 peak 1 1.0000
1 all but 1 and 2 0.1774
2 peak 1 0.0000

The comments on the above results are given as follows.

• At Betti dimension 0, if all peaks appearing in persistence landscapes

are considered, the permutation test in Betti dimension 0 yields a p-

value of 0.1582. Hence for the given α = 0.05 (and any other) level of

significance no evidence exists against the null hypothesis which means

there is no statistically significant difference between the torus and the

sphere group. Moreover, if only the first peak is taken into account, the

p-value of 1.0000 shows a perfect match between the two groups.

• At Betti dimension 1, when all peaks are considered, a practically zero

p-value shows compelling evidence against the null hypothesis. Thus, as

expected, the torus and the sphere do significantly differ in Betti dimen-

sion 1. However, if the two highest peaks are excluded from analysis, a

p-value of 0.1774 implies no significant difference among the two groups,

i.e. our statistical evidence confirms that the two loops of the torus cause

the difference between the two manifolds in Betti dimension 1.
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• At Betti dimension 2, whether all peaks are considered or only the first

peak is included into the analysis, a p-value of 0.0000 is obtained, im-

plying a significant difference. This happens because in Betti dimension

2 the focus is on the void inside the manifolds which involves not only

topological but also geometrical features. Thus, as already stated in [5],

homology detects both topological and geometrical properties.

Permutation Test Plots

More information is obtained by plotting pointwise values of the observed

test statistic as shown in Figure 5.10. This curve, given in blue, is compared

to the maximal critical value of the given permutation test, represented by a

horizontal line. Since the blue curve of the observed test statistic never crosses

the red line corresponding to the maximal critical value, it follows that in the

Betti dimension 0 the torus and the sphere are practically indistinguishable at

all filtration times.

Figure 5.10: Permutation test for the difference between the torus and the sphere in Betti
dimension 0. The observed statistic never crosses the critical value. The pre-processing of
data prior to the permutation test is carried out according to equation (5.1)
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Unlike this, in Betti dimension 1 a significant difference exists for filtrations

(0.23, 0.66), as seen in the Figure 5.11. During these times the two loops of

torus are pronounced, causing a striking difference between the two manifolds.

Figure 5.11: Permutation test for the difference between the torus and the sphere in
Betti dimension 1; a significant difference is present most of the time.

However, if the two highest peaks are ignored, no difference in Betti dimension

1 can be observed, as depicted in Figure 5.12.

Figure 5.12: Permutation test for the difference between the torus and the sphere in Betti
dimension 1 when the two highest peaks are ignored; no significant difference is detected.
At about time 0.35 small peaks disappear so no more homological activity is detected; thus
there are no observed values after t = 0.35.
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Figure 5.13 shows that in Betti dimension 2 a significant difference repeatedly

appears and disappears starting from about t = 0.4 until t = 0.77, when a

permanent difference settles in, as all cavities in the torus fill in.

Figure 5.13: Permutation test for the difference between the torus and the sphere in
Betti dimension 2. Significant difference occurs in a repeating pattern.

Figure 5.14 shows if only the highest peak is considered, a small difference

occurs in (0.40, 0.55). The major difference in a form of a large spike at about

t = 0.61 marks the moment when the main void in the torus disappears.

Figure 5.14: Permutation test for the difference between the torus and the sphere in
Betti dimension 2 when only the first peak is taken into account.
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At this point we emphasize that even though most of the main results

have already been known, the fine details depicted in the plots obtained from

the permutation tests are certainly appreciated. These plots not only prove

the efficiency of a permutation test, but also demonstrate the ability of the

persistence landscapes method to capture both geometrical and topological

features of objects.

Note that the above results rather correspond to an ideal situation when

there is no error or very little error exists among the observed data. This is

not a real situation since most datasets carry errors that can go even up to

15% or higher. Therefore, our next goal is to analyze a more realistic setup

which involves a noise component as well.
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Chapter 6: Noisy Torus and Sphere

Upon analyzing non-perturbed point-clouds we investigate the influence of

noise as an inevitable component of every real datasets. For that purpose

after generating point-clouds on either a torus or a sphere, Gaussian noise

is added to induce a random displacement of points. That way each point

moves within a small ball whose radius is a random variable from normal

distribution with zero mean and standard deviation whose value corresponds

to the assigned level of noise, calculated as a fraction of the given point’s

distance from the origin. In addition to this, as suggested by H. Adams,

each point-cloud acquires 200 sparse outliers which are generated uniformly

randomly in a box with dimensions [−3, 3]× [−3, 3]× [−3, 3]. An illustration

of sparse outliers scattered inside the box is provided in Figure 6.1.

Figure 6.1: 200 sparse outliers scattered in a cube with sides of length 6.
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Typical point-clouds obtained this way are depicted below for two different

levels of Gaussian noise.

SphereTorus

Figure 6.2: Point-clouds after adding 7.5% of Gaussian noise and 200 sparse outliers.

SphereTorus

Figure 6.3: Point-clouds after adding 15% of Gaussian noise and 200 sparse outliers.

Observe the shrinkage of the hole through the center of the torus as the amount

of the Gaussian noise increases. At the level of 7.5% of noise (Figure 6.2), the

opening is still fairly visible, whereas at 15% of noise, when looking from the

same viewpoint, it can be barely detected (Figure 6.3). Such noisy datasets

cannot be successfully analyzed unless smoothing of the data is performed prior

to the analysis; for that purpose, we implement appropriate kernel density

estimation methods.
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6.A Kernel Density Functions

Kernel density estimation (KDE) is a sophisticated tool of non-parametric

statistics used for estimating probability density functions of variables with

unknown distribution. Though plenty of literature exists for univariate data,

much less is available in the multivariate case. The reasons are issues that

arise in high-dimensional spaces; namely, if the domain of a density function

is subdivided by a Cartesian grid, it can happen that too few observations

are captured from high-density regions; in such situation, known as the empty

space phenomenon [38], the majority of observations arrive from tails of the

distribution which means low density regions gain influence on the estimate.

Another issue is that the sample size needed for accuracy of the estimation,

measured through the integrated mean square error, rapidly increases with

the dimensionality of data [40]. Also, the choice of the smoothing parameter

(bandwidth), becomes more difficult in higher dimensional spaces [48]. Thus

obtaining a kernel density estimate for multivariate data is not a trivial task;

to solve the problem we follow guidelines provided by Silverman [40]. First,

we define a density estimator.

Multivariate Kernel Density Estimator : Let X1, X2, ..., Xn be samples

in a d-dimensional space Rd. Then the kernel density estimator at a

point X ∈ Rd is defined as

f (X) =
1

nhd

n∑
j=1

K

{
1

h
(X −Xj)

}
. (6.1)

Here h denotes the value of the smoothing parameter and K the kernel

density function normalized so that its integral corresponds to the total

probability, i.e.
∫
Rd

K (X) dX = 1.
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Considering the kernel function K, its form depends on the nature of data. A

common choice is the multivariate standard normal (Gaussian) density:

KG(X) = (2π)−
d
2 e−

1
2
XTX . (6.2)

The multivariate normal kernel may not represent the best choice for our data

because each point cloud was sampled from a uniform distribution, and also,

the small Gaussian error is insufficient for normality. Furthermore, even if

the x, y, and z vectors in a point-cloud were univariate normal, their joint

density could still be non-normal. To verify formally that our data are not

multivariate normal we implement a suitable code [15] and perform a Mardia

test. This test uses measures of multivariate skewness and kurtosis 1 that were

introduced to statistics by K. V. Mardia [25]. Thus there are two separate

tests, one for skewness and one for kurtosis; only if both do not reject the null

hypothesis, multivariate normality of data may be assumed.

Table 6.1: Mardia test for normality of noisy point-clouds on each torus and sphere.

Torus reject Sphere reject
Noise Test t-stat C.V. H0 t-stat C.V. H0

7.5% skewness 1.536 18.307 No 0.701 18.307 No
kurtosis -15.128 1.645 Yes -23.6905 1.645 Yes

15.0% skewness 4.699 18.307 No 2.930 18.307 No
kurtosis -10.700 1.645 Yes -21.236 1.645 Yes

t-stat – test statistic; C.V. – critical value at significance level α = 0.05; H0 – null
hypothesis that data are multivariate normal.

1
As defined by Mardia [26], suitable measures for multivariate skewness and kurtosis

are β1,d = E
(

(X − µ)
T

Σ−1 (Y − µ)
)3

and β2,d = E
(

(X − µ)
T

Σ−1 (X − µ)
)2

, respectively.

Here X and Y are d-dimensional independent identically distributed (iid) random variables

with mean µ and covariance matrix Σ.
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From Table 6.1 we note that in all kurtosis tests the magnitude of the test

statistic exceeds the critical value; therefore we may reject the null hypothesis

about multivariate normality and conclude that, as expected, our data are

not multivariate normal. Hence it may be more suitable to seek a non-normal

kernel density estimator. One appropriate choice would be the Epanechnikov

kernel, defined as follows:

KE(X) =


1

2Vd
(d+ 2)(1−XTX) , XTX < 1

0 , else

(6.3)

The variable Vd represents the volume of the d-dimensional unit sphere, so

for dimensions d = 1, 2, 3, ... the corresponding volumes are Vd = 2, π, 4
3
π, ...,

respectively2.

The decision to use the radially symmetric Epanechnikov kernel is based

on the symmetries of the underlying objects from which the point-clouds were

sampled; since the sphere is radially symmetric and the torus possesses the

property of axial symmetry, the Epanechnikov kernel seems suitable. After

making the decision on the choice of the kernel, it remains to focus on the task

of finding the optimal value of the smoothing parameter h which we have seen

in the expression (6.1) for the general form of a density estimator.

2
In general, the volume of the d-dimensional hypersphere is Vd = πd/2

Γ( d
2 +1)

where Γ

denotes the gamma function defined as Γ (z) =
∫∞

0
tz−1e−tdt, where values z = 0,−1,−2, ...

are excluded as points where the function is not analytic. Important properties of the

gamma function are Γ (z + 1) = zΓ (z) and Γ
(

1
2

)
=
√
π.
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6.B Estimating the Bandwidth

In this section we briefly show the main ideas in the process of determining the

bandwidth; due to the nature of our data, we implement theory that applies

to radially symmetric density functions. Our references are Silverman [40] and

Rosenblatt [37].

First we start with a definition. Let f̂ be the estimated kernel and f the

true density. Then the mean square error of the estimate f̂ is defined as:

MSE(f̂) = E
(
f̂ − E(f)

)2
= bias2(f̂)− V ar (f)

(6.4)

where bias(f̂) = E(f̂) − f , as usual. Note that for simplicity the argument

is omitted from each function, but in general it would be a vector X ∈ Rd.

Now assume that the density f and its second derivative f ′′ are continuous

and bounded, with integrable squares [37]; then the integrated mean square

error (IMSE) is of the form:

IMSE(f̂) =

∫
bias2

(
f̂(X)

)
dX +

∫
V ar(X)dX (6.5)

The optimal bandwidth is obtained as the value that minimizes the integrated

mean squared error. Without going into more detail, we just mention that the

derivation involves the multidimensional version of Taylor’s theorem which is

applied to the bias and the variance to yield approximations that allow us to

estimate h.

74



As shown in [40], the optimal smoothing parameter in the case of a radially

symmetric kernel is given as follows:

hopt = σh0 = σ A(K)n−
1

d+4 (6.6)

Here A(K) represents a constant whose value depends on the type of the kernel

K and the dimensionality of data. For the Epanechnikov kernel and d = 2

and 3, the constant takes values A(KE) = 2.40 and 2.49, respectively3.

Considering the scaling parameter σ, there may be different choices. One

possibility, as suggested by Silverman, would be to find the variance of the

data averaged over the d-dimensions, that is, σ2 = 1
d

d∑
i=1

σ2
i . Our approach is

somewhat different; instead we use the standard deviation σ = [σx, σy, σz] of

the data to obtain h = [hx, hy, hz], where hi = σi h0 , i = x, y, z. Since the

torus is symmetric about the z-axis, the bandwidths corresponding to the x

and y axes are the same and half of that value is obtained for the z-axis due

to the specific geometry of our torus. In the case of the sphere, the bandwidth

is the same for all the three coordinate axes. Our estimates are displayed in

the table below.

Table 6.2: Estimated smoothing parameter values.

Torus Sphere
Noise hx hy hz hx hy hz

7.5% 1.26 1.26 0.63 1.36 1.36 1.36
15.0% 1.30 1.30 0.65 1.54 1.54 1.54

3
For higher dimensions, take A (KE) =

{
8
Vd

(d+ 4) (2
√
π)
d
} 1

d+4
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6.C Applying kd-trees

Due to the advantage of fast kernel density estimations, kd-tree structures

are often implemented in persistent homology, e.g. see de Silva and Carlsson

[6], Carlsson et al [7], and Carlsson and Adams [1] as main references in this

section. Our codes use a kd-tree library developed by Tagliasacchi [42].

To explain the main idea in applying kd-trees, consider the term 1
h
(X−Xj),

that appears as the argument of the kernel in equation (6.1). This means the

value of the density kernel at a fixed X depends on the distance X−Xj of the

given point from other points j = 1, 2, . . . n in the dataset. Using the notion

of distance a special structure called a kd-tree is constructed so that the data

are organized on the “nearest neighbor” criterion. Moreover, a convenient

parameter k is introduced so that the k-th neighbor is taken into account in

the process of kernel density estimation. Sampling from the kernel density

estimate the original data are replaced by a new point-cloud called the core

density subset ; depending on the choice of the parameter, different core subsets

and thus different density estimates can be obtained. For low values of k the

kernel density is rather locally estimated whereas high values of k yield more

global estimates. This variety of perspectives can provide a valuable insight

to the topology of the underlying space, so often multiple core subsets are

considered.

In terms of applying kd-tree structures to our data, we first recall that our

point-clouds contain sparse outliers. In such case a kernel density estimate of

the form
1

ρk
, that is, the reciprocal of the distance ρk(X) of a point X from

its k-th closest neighbor, is particularly convenient. Namely, if the distance

ρk is relatively small, then the k-th neighbor lies in the vicinity of the point
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X so the density is high in that region. On the other hand, large ρk implies

that the k-th neighbor lies far away from the point X which means the space

in-between is not very populated and thus the density of points in that region

is low. Thus the inverse relationship between the distance and the density

function comes as a natural choice since the densest regions contribute the

most in kernel density estimation.

This idea is used in a code kDensity.m by H. Adams [43]; implementing

the code we find that k = 75 yields least distorted homology plots; using this

value, we generate a core subset of size 2000. As shown below, the point-clouds

sampled from kernel density estimate based on the concept of inverse distance

contain much fewer outliers than initially in Figures 6.2 and 6.3.

SphereTorus

Figure 6.4: Point-clouds with 7.5% of noise after smoothing for the outliers.

SphereTorus

Figure 6.5: Point-clouds with 15% of noise after smoothing for the outliers.

The second step in processing noisy data involves smoothing based on the

Epanechnikov kernel for bandwidths displayed in Table 6.2. That way point-
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clouds of size 2000 are generated and 100 landmarks selected from each using

the maxmin procedure in order to construct Lazy Witness streams. After

computing persistent homologies of streams for the three Betti dimensions,

we produce homology plots, calculate Wasserstein distance matrices, and also

obtain persistence landscapes that allow us to carry out permutation tests.

Before presenting the results, let us point out that beside kd-trees there are

other ways for efficient multivariate kernel density estimation. For example, in

[48] a Bayesian approach is applied for bandwidth selection. Another method,

mentioned in [47], involves conversion of the density estimation to a regression

problem by subdividing the domain into smaller regions of equal sizes.

6.D Comparing the Results

Let us compare how properties of the torus and the sphere change as the level

of Gaussian noise increases. Our first visual tool, the dendrogram in Figure

6.6 obtained from cluster analysis using the Wasserstein distance, shows that

in Betti dimension 0, at noise level of 7.5%, the torus and the sphere still seem

indistinguishable, as it was in Figure 3.1; for noise of 15% some clustering starts

to appear indicating a difference between the torus and the sphere group.

Noise 7.5% Noise 15%Betti 0

Figure 6.6: Comparison of dendrograms for two noise levels for Betti dimension 0.
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Considering the results in Betti dimension 1, a perfect difference among the

two groups still exists at noise of 7.5% just as before in Figure 3.2; however,

when the amount of noise doubles and the torus starts losing its properties,

the distinction among the two groups becomes less pronounced, though we can

still observe some difference, as illustrated in Figure 6.7

Betti 1Noise 7.5% Noise 15%

Figure 6.7: Comparison of dendrograms for two noise levels for Betti dimension 1.

It seems the Betti dimension 2 is most sensitive to changes as the non-noisy

situation shown in Figure 3.3 does not appear anymore, not even at noise level

of 7.5%, though some difference between the two groups still exists. At noise

of 15% the difference gets lesser as shown in Figure 6.8.

Betti 2Noise 7.5% Noise 15%

Figure 6.8: Comparison of dendrograms for two noise levels for Betti dimension 2.

Thus as the noise increases, differences that initially existed in first and

second Betti dimensions become less pronounced.
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Figures 6.9 and 6.10 display the results of multidimensional scaling across

the three Betti dimensions. These results correspond to earlier dendrograms.

In zeroth dimension the two groups seem similar, though less than in the

non-noisy case from Figure 3.4. In Betti dimension 1, for low noise level, a

difference exists like in the non-noisy case from Figure 3.5, but at higher noise

this difference starts to diminish. The situation in Betti dimension 2 changes

the most; in comparison to the non-noisy case from Figure 3.6, the two groups

are not quite well distinguished even for low noise; also, as noise doubles the

difference between the torus and the sphere practically disappears.

Betti 0 Betti 1 Betti 2

Figure 6.9: Multidimensional scaling for noise level of 7.5%.

Betti 0 Betti 1 Betti 2

Figure 6.10: Multidimensional scaling for noise level of 15%.
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Now we compare the homologies of noisy point-clouds. Figure 6.11 shows

that at noise of 7.5% the homology plot of the torus looks different than the

earlier one from Figure 2.4; in Betti dimension 1, one of the longer bars dies out

sooner while the noise-related bars live longer than before. In Betti dimension

2 a long bar is not there as before. In the case of the sphere not much change

happens.

Torus
dimension 0

dimension 1

dimension 2

Sphere
dimension 0

dimension 1

dimension 2

Figure 6.11: Homology plots of a torus and a sphere for noise level of 7.5%.

Figure 6.12 shows that for noise of 15% the homology of the torus is practically

destroyed since only one bar exists in Betti dimension 1. At the same time,

the sphere is much less affected.

Torus
dimension 0

dimension 1

dimension 2

Sphere
dimension 0

dimension 1

dimension 2

Figure 6.12: Homology plots of a torus and a sphere for noise level of 15%.
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6.E Noisy Persistence Landscapes

Let us now consider the average persistence landscapes for the two noise levels.

Figure 6.13 shows averages for 7.5% noise.

Torus dim0 Sphere dim0

Torus dim1 Sphere dim1

Torus dim2 Sphere dim2

Figure 6.13: The figure represents average persistence landscapes of the torus group
(left) and the spheres group (right) across Betti dimensions for noise level of 7.5%.
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Average persistence landscapes for noise of 15% are shown in Figure 6.14

Torus dim0 Sphere dim0

Torus dim1 Sphere dim1

Torus dim2 Sphere dim2

Figure 6.14: The figure represents average persistence landscapes of the torus group
(left) and the spheres group (right) across Betti dimensions for noise level of 15%.

In comparison to the earlier situation from Figure 5.7, we can note several

differences. First, in Betti dimension 0 the averages do not look as much

alike as before and as noise increases, the difference between the torus and
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the sphere becomes more apparent. Second, in Betti dimension 1, only a

single high peak exists now in the averaged torus landscape; a much lower

peak can be noticed behind the group of small peaks, but as noise doubles,

this peak blends together with the small peaks. Last but not least, in Betti

dimension 2 we see a drastic change - while before the main peaks were of

approximately same heights, now the torus average falls to much lower heights

than the sphere and as noise increases this trend continues. Considering the

sphere, apart from some minor changes involving the noisy short-lived bars,

not much change occurs.

Therefore, due to its specific geometry, the torus is much more sensitive

to noise than the sphere. The most change that torus undergoes under the

influence of noise appears in Betti dimensions 1 and 2.

6.F Tests for Noisy Data

The final step in our analysis of noisy point-clouds involves permutation tests.

Again, we perform 10,000 permutations to test the null hypothesis that claims

no difference between the torus and the sphere at significance level α = 0.05.

The resulting p-values for 7.5% of noise are shown in Table 6.3.

Table 6.3: p-values for permutation tests at α = 0.05 for the difference between the
torus and the sphere perturbed by sparse outliers and 7.5% of Gaussian noise.

Betti dim Peaks considered p-value

0 all 0.0321
1 all 0.0000
2 all 0.0000

0 peak 1 1.0000
1 all but 1 and 2 0.0007
2 peak 1 0.0000
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Compared to p-values of non-perturbed data from Table 5.1, the new p-values

testify that the relatively small noise of 7.5% has changed the situation.

• In Betti dimension 0, when all peaks are considered, the p-value of 0.03

indicates moderate evidence against the null hypothesis so a difference

exists. If only the highest peak is considered, no difference appears.

• In Betti dimension 1, a significant difference still exists when all peaks

are compared. However, when the first two peaks are ignored, the low

p-value of 0.0007 indicates a difference as well. Thus, unlike before, the

short-lived bars also cause a discrepancy between the two groups.

• In Betti dimension 2, both p-values of 0.0000 are compelling evidence

against the null hypothesis, i.e. the torus and the sphere significantly

differ, as before.

The p-values for permutation tests when the data are perturbed by sparse

outliers and 15% of Gaussian noise are displayed in Table 6.4.

Table 6.4: p-values for permutation tests at α = 0.05 for the difference between the
torus and the sphere perturbed by sparse outliers and 15% of Gaussian noise.

Betti dim Peaks considered p-value

0 all 0.0003
1 all 0.0000
2 all 0.0000

0 peak 1 1.0000
1 all but 1 and 2 0.0002
2 peak 1 0.0000

At this level of noise, most p-values indicate a significant difference between

the torus and the sphere (except for the highest peak in Betti dimension 0,

which is the same for both the torus and the sphere).
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To obtain more information, we compare the corresponding time-plots that

allow us to determine filtrations at which a difference occurs. Figure 6.15 shows

that in Betti dimension 0, when the noise is low, almost no difference appears

at all times; for higher noise a difference lasts from earliest times until about

t = 0.17 but at later times no difference exists. Thus the short-lived noisy

bars cause the difference, unlike the earlier situation from Figure 5.10.

Noise 7.5% Noise 15%

Figure 6.15: Permutation test for the difference between the noisy torus and the noisy
sphere in Betti dimension 0 at significance level α = 0.05.

Figure 6.16 shows that in Betti dimension 1, the low-noise situation is similar

to the one from earlier Figure 5.11. At increased noise level, the difference

becomes much smaller.

Noise 7.5% Noise 15%

Figure 6.16: Permutation test for the difference for noisy data in Betti dimension 1 at
significance level α = 0.05.
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Figure 6.17 shows that even if the first two peaks are ignored, a difference in

Betti dimension 1 still occurs; this means the short bars cause more and more

difference as noise increases, unlike before as shown in Figure 5.12.

Noise 7.5% Noise 15%

Figure 6.17: Permutation test with α = 0.05 for noisy data in Betti dimension 1 when
first two peaks are ignored.

Figure 6.18 shows that in Betti dimension 2 no difference occurs initially; a

large spike at later times indicates a significant difference which increases with

the level of noise. Note that in the plot for 15% noise the tip of the spike i.e.

the test statistic takes a huge value of about 1016.

Noise 7.5% Noise 15%

Figure 6.18: Permutation test with α = 0.05 for noisy data in Betti dimension 2.

The above results again confirm the capability of homology to detect even

the finest differences between point-cloud datasets.
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Chapter 7: HIV-1 Protease Data

In this chapter we implement the aforementioned methods of topological data

analysis to a real dataset of twelve samples of the HIV-1 protease, an enzyme

responsible for the reproduction of the human immunodeficiency virus (HIV)

of type 1. For better understanding, we first explain the role of a protease in

the reproduction of HIV.

7.A Role of a Protease

As shown in literature, e.g. see [14] or [23], an essential part in the life-cycle

of HIV involves a production of an immature form that consists of numerous

proteins linked together into a long polyprotein. During an auto-catalytic

process, the polyprotein releases a protease enzyme; for the two known types of

HIV, the enzyme is denoted as the HIV-1 and the HIV-2 protease. Both types,

as determined from X-ray crystallography, consist of two identical, mutually

symmetrical protein chains, each composed of 99 amino acids. The chains act

as flexible flaps enclosing a tunnel which is the “active site” i.e. the “binding

pocket” of the protease; when the flaps open the protease wraps itself around

the polyprotein and with a help of a water molecule cuts it into proper pieces

that further assemble into a mature virus capable of infecting a new cell.
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These findings gave rise to a viable approach in inhibiting the reproduction

of the virus. The main idea is to apply a drug that mimics the polyprotein

so the protease is prompted to tightly bond around it. The drug is a strong

structure that cannot be easily cut; as long as its active site is held up by the

drug, the protease cannot clip the polyprotein and the virus cannot reproduce.

Unfortunately, due to viral mutations the inhibition is not permanent and after

a while the protease can change its structure and become drug resilient.

7.B Our Data

Depending on the interaction between a drug and the HIV-1 protease, different

complexes can arise. Our data are associated with twelve configurations of the

HIV-1 protease complexed with various drugs. The Protein Data Bank [35]

labels corresponding to crystal structures of these complexes are shown below,

as well as an illustration of one HIV-1 structure (without showing the drug).

Table 7.1: Protein Data Bank labels for 12 complexes of HIV-1 protease

1) 1HPV 2) 1HXB 3) 1HXW 4) 1MUI
5) 3JVY 6) 1HVR 7) 2B7Z 8) 2FNS
9) 2O4K 10) 2O4P 11) 2PYN 12) 1HHP

flaps

binding
pocket

Figure 7.1: Illustration of 3JVY structure of HIV-1 Protease Mutant.
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The image in Figure ?? is generated by downloading the appropriate 3d-

coordinates from the Protein Data Bank [35] and inputting them into an online

bioinformatics server at the University of Pittsburgh [32]. It is known that the

3JVY is a mutant structure, obtained in a complex with the drug darunavir.

Note that the data we actually work with are not the 3d-coordinates, but

dynamical “correlations” which we obtained from Y. Mao [24] who calculated

strengths of pairwise interactions between the 198 amino acids of the HIV-1

protease in various complexed environments. Thus, our analysis starts with

twelve “correlation matrices” of size 198× 198; in each such matrix, a correla-

tion coefficient is a measure of proximity between two amino acids. Note that

in statistics, both a distance matrix that measures the dissimilarity among

data and a proximity matrix with coefficients measuring similarity can be

equally used.

To implement our methods, we transform the dynamical correlations to

“coordinates” using the Isometric Mapping, also known as Isomap [46]. This

approach, as shown by Tenenbaum, de Silva, and Langford [45], is mostly

used for efficient dimensionality reduction of non-linear datasets; an advantage

is that the intrinsic geometry of data is preserved even in the case of non-

Euclidean metric. Furthermore, inputting a distance or proximity matrix, the

method gives back the corresponding coordinates. That way, every correlation

matrix yields a set of 198 “coordinates” that (in the sense of interactions)

best describe the corresponding dynamical structures of HIV-1 protease. Due

to confidentiality of data that are part of an ongoing research, the Isomap

transformation of the correlation matrices was performed by G. Heo.
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7.C Results for Protease Data

To investigate the dynamical structures of the twelve protease samples, we

start with methods of persistent homology. First, we choose an appropriate

type of the stream to be constructed. Since each investigated HIV-1 protease

structure consists of 198 datapoints only, a Vietoris-Rips stream which makes

use of all available information from the data can be implemented. This means

that every datapoint will represent a vertex in the constructed complex. Recall

that in the case of earlier point clouds of size 2000 a Vietoris-Rips stream

was not a feasible option, due to computational difficulties that arise when

the number of simplices becomes too large. Snapshots from the evolution of

the Vietoris-Rips stream built on sample 5 are shown in Figure 7.2 and the

corresponding number of k-simplices is presented in Table 7.2 below.

t = 0.4 t = 0.5 t = 1.0

Figure 7.2: Snapshots from the evolution of a Vietoris-Rips stream on sample 5 (3JVY
structure) of HIV-1 protease at filtration times 0.4, 0.5, and 1.0.

Table 7.2:

The number of k-simplices for k = 0, 1, 2, 3 at times 0.4, 0.5, and 1.0.

t n0 n1 n2 n3

0.4 198 118 24 4
0.5 198 223 111 37
1.0 198 1413 4393 8470
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In the table of k-simplices, observe the large number of tetrahedra at t = 1.0;

at the same time, there are about half less triangles. Since each tetrahedron

has four triangular faces, it follows that in most cases triangles are shared

between tetrahedra, i.e. we have regions with densely packed tetrahedra.

Figure 7.3 shows homology plots of sample 5 across Betti dimensions 0, 1,

and 2. In dimension 0 the initial 198 vertices mutually connect about time

t = 0.9 at which point the stream becomes a single connected component. In

dimension 1 relatively long bar appears, while all the bars in dimension 2 seem

to be noise.

Betti dim 1 Betti dim 2Betti dim 0

Figure 7.3: Homology plots for sample 5 in HIV-1 protease data.

More information follows from the persistence landscapes method. Figure 7.4

depicts mean persistence landscape across the three Betti dimensions.

Betti dim 0 Betti dim 1 Betti dim 2

Figure 7.4: Mean persistence landscapes for protease data.
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7.D Resistent and Non-Resistent Group

Let us point out that three out of the twelve given HIV-1 protease structures

have been experimentally confirmed as drug resistant mutants. The drug-

resilient structures correspond to our samples 5, 7, and 11. Using this prior

information as a motivation for further analysis, we perform a permutation

test. First, we define the test hypotheses.

Permutation Test Hypotheses

Due to two groups of data that we compare, we describe two populations:

ηDR: Population of average persistence landscape curves for the drug-resistent

group of HIV-1 protease, described by the mean µ
(η)
DR .

ηNR: Population of average persistence landscape curves for the non-resistent

group of HIV-1 protease, described by the mean µ
(η)
NR .

Then, for the test that compares the drug-resistent and the non-resistent

group, the assumptions under the null and alternative hypothesis are:

H0 : µ
(η)
DR = µ

(η)
NR

H1 : µ
(η)
DR 6= µ

(η)
NR

(7.1)

We perform the test at α = 0.05 level of significance, so the outcome of the

test is determined by comparing the p-value with the given significance level:

p-value ≤ 0.05 ⇒ rejectH0

p-value > 0.05 ⇒ not rejectH0

(7.2)
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Results for the Permutation Test

Using data from persistence landscapes we perform a permutation test with

10,000 repetitions at significance level α = 0.05. As stated in the previous

section, our assumption under the null hypothesis is that samples 5, 7, and 11

of HIV-1 protease do not differ from the rest of the group.

Performing the test for Betti dimension 0, we obtain the p-value of 0.0430

which indicates moderate evidence against the null hypothesis. Though not

very compelling, we are allowed to reject the null hypothesis and conclude that

protease structures 3JV Y , 2B7Z, 2PY N differ from the other nine. Plotting

the test statistic we find that a small but significant difference exists during

filtration times in (0.18, 0.26).

Figure 7.5: Permutation test for the HIV-1 protease data.

Based on Betti dimension 0 alone, the statistical analysis with sample size 12

yields a moderate evidence for difference between two groups of HIV-1 pro-

tease. These results correspond to the fact that the three protease structures

are mutants which acquired drug resistance.
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Chapter 8: Conclusion

In this thesis we have shown applications of persistent homology in statistical

data analysis. Using homology plots and the Wasserstein distance, we obtained

accurate description among our samples of data. We have also implemented a

new method; our results show that apart from standard persistent homology

descriptors, such as persistence diagrams and barcodes, persistence landscapes

offer a qualitative topological analysis of patterns hidden in complex, high

dimensional datasets. We have illustrated the strengths of this method via

point cloud analysis of spheres and tori under various noise levels, as well as

on an HIV-1 protease dataset.

Considering future research, there is a plenty of work to do; we have no

doubts that as we will progress in our data analysis, more researches will adopt

the topological approach in statistics.
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Appendices
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Appendix A: Landscapes for the

15 tori and 15 spheres
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T1 T2 T3

T4 T5 T6

T7 T8 T9

T10 T11 T12

T13 T14 T15

Figure A-1: Images of Persistence Landscape for the 15 tori in Betti dimension 0.
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T1 T2 T3

T4 T5 T6

T7 T8 T9

T10 T11 T12

T13 T14 T15

Figure A-2: Images of Persistence Landscape for the 15 tori in Betti dimension 1.
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T1 T2 T3

T4 T5 T6

T7 T8 T9

T10 T11 T12

T13 T14 T15

Figure A-3: Images of Persistence Landscape for the 15 tori in Betti dimension 2.
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S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

S13 S14 S15

Figure A-4: Images of Persistence Landscape for the 15 spheres in Betti dimension 0.
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S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

S13 S14 S15

Figure A-5: Images of Persistence Landscape for the 15 spheres in Betti dimension 1.
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S1 S2 S3

S4 S5 S6

S7 S8 S9

S10 S11 S12

S13 S14 S15

Figure A-6: Images of Persistence Landscape for the 15 spheres in Betti dimension 2.
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Appendix B: Variation in the mean

persistence landscape
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Torus dim0

Torus dim1

Torus dim2

l - s(k,t) s(k,t)l +

l - s(k,t) s(k,t)l +

l - s(k,t) s(k,t)l +

Figure B-1: Change in the average persistence landscape within a range of one standard
deviation across three Betti dimensions 0, 1, and 2 for the torus.
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Sphere dim0

Sphere dim1

Sphere dim2

l - s(k,t) s(k,t)l +

l - s(k,t) s(k,t)l +

l - s(k,t) s(k,t)l +

Figure B-2: Change in the average persistence landscape within a range of one standard
deviation across three Betti dimensions 0, 1, and 2 for the sphere.
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