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ABSTRACT

The aim of this research was to quantify the relationship between macrophyte biomass
and concentrations of phosphorus (P) and nitrogen (N) in freshwater ecosystems. A
literature survey revealed that approximately 30 % of the variability in macrophyte
biomass in lakes and rivers worldwide is explained by a form of both P and N in the open
water and the type of waterbody (river or lake). Macrophyte growth in the South
Saskatchewan River, Saskatchewan, was enhanced downstream of the Saskatoon sewage
treatment plant, however P and N concentrations explained only a portion of the
variability in biomass. Artificial stream experiments demonstrated that macrophyte
growth is greatest when sediment P concentrations are above 200 pg/g exchangeable P,
corresponding to the observation that maximum biomass in situ is reached at
approximately 200 pg/g sediment P. It is difficult to predict macrophyte abundance based
on open-water and sediment P and N concentrations and management strategies designed
to regulate macrophyte growth should integrate reductions in nutrient-loading with

manual plant harvesting when abundance reaches undesirable levels.
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Chapter 1: Background to study



1.0 INTRODUCTION

The use of lakes a:id rivers as receiving waters for wastes from human activities (such as
agricultural runoff and industrial and municipal effluent) has increased loading of
nutrients, especiaily phosphorus (P) and nitrogen (N), to freshwater ecosystems and
resulted in accelerated rates of eutrophication (Wetzel 1983). Research conducted over
the last half century has found that these culturally-enriched systems usually have high
rates of primary and secondary production, low species diversity, and community
assemblages that are often considered undesirable, when compared to undisturbed bodics

of water (Wetzel 1983; Hooper 1969).

The relationship between nutrients in freshwater and phytoplankton production in lakes
has been clearly demonstrated. both within individual lakes and over a broad geographic
range. For example, Schindler (1974) demonstrated through whole-lake experiments that
phytoplankton production increased when nutrients. especially P, were added to
oligotrophic lakes in northwestern Ontario. On a broader geographic scale,
phytoplankton biomass was directly related to open-water total P concentrations for lakes
across North America (Dillon and Rigler 1974). Phytoplankton biomass in the Rideau
River, Ontario, is related to both open-water P and N concentrations (Basu and Pick
1995). In contrast to the clear relationship between nutrients and phytoplankton, the link
between biomass of periphyton, or attached algae, and P and N concentrations in lakes
and rivers is less distinct, possibly because periphyton biomass is more heavily influenced
by physical and biotic factors than water chemistry (Cattaneo 1987; Horner and Welch
1981; Bothwell 1985). For rooted macrophytes, the relationship is even less < lcar,
despite reports documenting changes in macrophyte species composition and productivity
in response to increased nutrient loading (Kullberg 1974; Litav and Agami 1976;
Chambers ef al. 1991). The fact that rooted aquatic plants incorporate P and N from both

the open-water and from bottom sediments (Carignan and Kalff 1980; Chambers et /.



1989; Barko ef al. 1986) may explain the limited success in quantifying the impact of

nutrient enrichment on macrophytes.

The aim of the research presented here was to investigate the relationship between
macrophyte growth and open-water and sediment P and N concentrations in rivers, with
specific emphasis on the South Saskatchewan River in the Canadian prairies. This
introductory chapter reviews published literature regarding P and N dynamics in river
ecosystems and how changes in nutrient loading to rivers affect the growth of submerged
aquatic plants. Because of the paucity of information on macrophytes in lotic ecosystems,
conclusions will also be drawn from our understanding of the ecology of aquatic plants in
lakes. In addition, this chapter will outline the major goals and approaches of the

subsequent research projects.

1.1 PHOSPHORUS AND NITROGEN IN RIVER ECOSYSTEMS

The importance of P and N in mediating biological processes in both terrestrial and
aquatic systems has long been recognized. These nutrients are among the primary
elements that limit the growth and productivity of terrestrial (Bates 1971) and aquatic
(Gunnison and Barko 1989) plants and increases in P and N concentrations have been
linked to increases in the productivity of both lakes (e.g. Schindler 1974; Edmonson and
Lehman 1981; Aldridge er al. 1993) and rivers (Hynes 1969; Chambers et al. 1989).
While it is now clear that P concentrations play a critical role in regulating the
productivity of freshwater aquatic systems (Schindler 1974; Edmonson and Lehman
1981; Hynes 1970), the impact of N is less well defined. Howarth (1988) suggested that
N is more important than P in regulating primary production in marine systems and recent
investigations into the nutrient dynamics of lotic freshwater systems suggest that N can
limit primary production when P is present in a system in excess (e.g. Grimm et al. 1981;
Nichols and Keeney 1976a; Keeney 1973). This section will review the different forms

and dynamics of P and N in aquatic systems, with specific reference to rivers.



1.1.1 Forms of phosphorus in aquatic systems

The majority of our current understanding of the behaviour of P in aquatic systems arises
from the work of early researchers who focused on discriminating between the ditTerent
forms of P in water (Rigler 1956, 1964; Coffin et al. 1949: Hutchinson and Bowen 1950):
Hayes et al. 1952) and sediments (Mortimer 1941, 1942). P is present in natural waters
primarily as phosphates that can be separated into orthophosphates, condensed
phosphates and organically bound phosphates (APHA 1971; Olsen 1967). These can be
dissolved in the water or bound to detrital material and cellular components of living
organisms (APHA 1971). Inorganic P, as orthophosphate (PO,™). is biologically

available to primary producers for incorporation into their tissues (Lean 1973).

P in bottom sediments can play a major role in the P dynamics of lakes and rivers
(Mortimer 1941, 1942; Syers et al. 1973; Enell and Lofgren 1988). Concentrations of P’
in sediments, mostly inorganic, are generally much higher than open-water concentrations
(Syers er al. 1973). Phosphates can be present in sediments as dissolved ions in the

interstitial water or adsorbed to sediment and organic particles (APHA 1971 )

There has been considerable confusion over how to fractionate and anaiyse the different
forms of P in water and sediments and concentrations reported prior to 1960 are
inconsistent with respect to the form of P analysed (Olsen 1967). Analytical methods for
P determination in open water focus on three pools: (1) total P, which is a measure of all
forms of P in a sample of water, (2) total dissolved P, which is ali dissolved forms of P,
and (3) soluble reactive P, which consists largely of orthophosphate and also some
conderised phosphates, and is an indicator of bioavailable P (APHA 1971). Analysis of
sediment P can be divided into: (1) total P, which is the combined porewater and
sediment-bound P, (2) porewater P, and (3) exchangeable P, which is the P adsorbed to
sediment particles that can diffuse into the porewater as the latter becomes depleted

(Enell and Lofgren 1988).



1.1.2 Forms of nitrogen in aquatic systems

Nitrogen (N) occurs in freshwater in a variety of inorganic and organic forms. Dissolved
molecular N (N,), ammonium (NH,’), nitrite (NO,") and nitrate (NO,’) compose the
inorganic pool (Wetzel 1983). Organic N is present as amino and amide N, as well as
heterocyclic compounds such as purines and pyrimidines (Brezonik 1972). N compounds
can be dissolved in water as soluble organic forms or inorganic ions, or they can be
present as cellular constituents and nonliving particulate m-.tter (Brezonik 1972; Keeney
1973). The concentration of the various forms of N in water are primarily mediated by
biological activity (Brezonik 1972). Primary producers assimilate N as NH,* and NO;,
and N is returned to the inorganic nutrient pool through bacterial decomposition and
excretion of NH," and amino acids by living organisms (Brezonik 1972). Aerobic
bacteria convert NH," to relatively stable NO; and NO," through nitrification, and
anaerobic and facultative bacteria convert NO; and NO,  to N, gas, through
denitrification (Brezonik 1972). N-fixation, performed by blue-green algae and certain
bacteria, converts dissolved molecular N, to NH," primarily when other N pools have

been depleted in the water (Brezonik 1972).

N in bottcm sediments is primarily organic, with some inorganic N present as NH/
(Keeney 1973). Because sediments are generally anoxic, NO,  and NO, concentrations
tend to be low and NH," concentrations are usually high relative to the overlying water
(Keeney 1973). N is present in sediments in the porewater, as dissolved N, or adsorbed to

sediment and organic particles (Wetzel 1983).

There arc: many methods available to analyse for N in water and sediment samples. In
general, interstitial and open-water samples are analysed for NO, + NO, and NH,
concentrations, to determine bioavailable or inorganic N (APHA 1971). Total Kjeldahl N
measures NH," plus organic N and when added to NO; + NO,’, gives a measure of total

N in the water (APHA 1971). Total N is also determined from analyses of particulate



plus dissolved N (APHA 1971). Sediment samples are usually analysed for exchangeable
N, which reflects bioavailable N. and total N. which estimates organic N when the

exchangeable fraction is removed (APHA 1971).
1.1.3 Nutrient spiralling in rivers

The P and N dynamics of lakes have typically been described in terms of circular cycles
(Hutchinson 1948), with nutrients moving between lake sediments and the water column,
the hypolimnion and epilimnion, and seasonally. However, circular systems are less
easily discerned in rivers, because substances are continually displaced downstream
(Hynes 1970; Webster and Patten 1979). While nutrients cycle in rivers both seasonally
and between sediments and open water, their cycles are best described as spirals and not
as circular causal systems (Webster and Patten 1979). Spiralling reflects the processes
involved in cycling an element through its various phases while incorporating the

downstream movement of the element (Wallace ¢f al. 1977).

Periphyton and rooted plants in rivers incorporate dissolved P and N into their tissues,
storing these nutrients until the plants are either consumed by other organisms or
transported downstream as detrital matter (Wallace ef al. 1977; Webster and Patten
1979). Orgenic matter can be trapped and consumed by filter feeders to meet their P and
N requirements, or temporarily stored in sediments (Wallace et al. 1977). A spiral is
completed when dissolved P and N that has beer. taken up by plants is released back to
the water column through animal excretory products. death and bacterial decomposition
of grazers and other organisms, and from the plants themselves (Wallace ef al. 1977,
Webster and Patten 1979). The length of a spiral is defined as the downstream distance
required for an element to complete one entire cycle and is indicative of the efficiency of
organisms within a stream to make use of the nutrients that flow past them (Elwood ¢/ al.
1981; Newbold er al. 1981). That is, when spiral length is short, nutrients are in high

demand and organisms within the stream are considered highly efficient at processing the



element, in comparison to streams with long spiral lengths where nutrients are in low

demand (Wallace ef al. 1977; Webster and Patten 1979; Elwood et al. 1981). Retention
time in streams is the time it takes for the completion of a spiral and long retention times
also indicate that nutrients are in high demand and are being stored within sediments and

cellular components of organisms (Newbold ef al. 1982).

Nutrient spiralling has been used as a measure of the resistance and resilience of a stream
to perturbation (Webster and Patten 1979). Webster and Patten (1 979) demonstrated that
streams draining basins that had been perturbed by deforestation and replacement of
natural stands of forest had longer spiral lengths and processed organic matter less
efficiently than streams in drainage basins that had not been perturbed. Similarly,
Chauvet and Décamps (1989) found that streams in deforested watersheds had longer
spiral lengths with shorter retention times than streams draining undisturbed, mature

forest ecosystems.

1.2 PHOSPHORUS AND NITROGEN AND THE GROWTH OF MACROPHYTES

As early as the 1920s, ecologists recognized the importance of nutrients and sediment
type in regulating the abundance and dist: ibution of macrophytes in lakes (Pearsall 1920,
1921; Spence 1967) and rivers (Butcher 1933; Westlake 1973). Concern over the rapid
eutrophication of aquatic ecosystems has led to investigations into the responses of
macrophytes to P and N enrichment and the mechanisms of P and N uptake by aquatic
plants (e.g. Bristow and Whitcombe 1971; Toetz 1974; Carignan and Kalff 1980;
Chambers et al. 1989). Most recently, researchers have approached the study of
macrophytes from within a framework of ecosystem processes and attempted to
determine how aquatic plants affect their surrounding environment (e.g. Gregg and Rose
1982; Carpenter and Lodge 1986; Sand-Jensen ef al. 1989; Chambers and Prepas 1994).



1.2.1 Role of roots and shoots in nutrient uptake

Debate over the role of bottom sediments versus open water in supplying nutrients,
primarily P and N, to aquatic plants has been ongoing since the 1920s (Denny 1980).
Pearsall (1920, 1921) found no correlation between open-water nutrient concer' ations
and plant distribution in surveys of the English lakes, from which he concluded that
macrophytes derive their nutrients from the sediments via their roots. However. Spence
(1967) was unable to conclude with certainty that the distribution of macrophytes in
Scottish lakes was determined by sediment nutrient content. Others, identified by Denny
(1980), have assumed that because aquatic plants have small root systems, reduced
conducting tissue, and thin leaves and cuticles. nutrient absorption must be through the

leaves and shoots.

Experimental evidence from the last three decades has led to the general conclusion that
rooted aquatic plants growing in lakes and rivers derive the majority of their required P
from bottom sediments (Haslam 1978; Barko et al. 1991). Bristow and Whitcombe
(1971), used *?P to trace translocation of P in plants and found that 90, 59, and 74% of the
P in the shoots of Myriophyllum brasiliense, Myriophyllum spicatum and Elodea densa,
respectively, was derived from the roots. Bole and Allan (1978) also found that P was
primarily incorporated through the roots of Hydrilla verticillata and M. spicatum, but that
the relative amount of root absorption decreased with increasing concentrations of
orthophosphate in the open water. Carignan and Kalff (1980) demonstrated in sifu that
nine species of rooted aquatic plants incorporated greater than 91 % of their P from the
sediments in mesotrophic to mildly eutrophic waters, with shoots incorporating small
amounts of P (approximately 29%) only under highly eutrophic conditions. Chambers e
al. (1989) established that macrophyte biomass and shoot density in rivers in the
Canadian prairies was largely determined by sediment chemistry, indicating that roots are
the primary source of nutrient uptake for aquatic plants in lotic environments. Many

others (DeMarte and Hartman 1974; McRoy and Barsdate 1970; Best and Mantai 1978;



Barko and Smart 1980, 1981; Moeller ef al. 1988) have also demonstrated that roots of
submerged macrophytes are capable of P incorporation in controlled laboratory

conditions and in situ.

Lake and river sediments have also been demonstrated to be the primary source of N for
aquatic plants (Barko er al. 1991). Using *"NH,", Toetz (1974) found that under
laboratory conditions two species of aquatic plants (E. densa and Scirpus s.)
incorporated NH,’ through their roots. Nichols and Keeney (19765) used '*N to trace the
uptake and translocation of N in M. spicatum in the laboratory and determined that while
uptake of N through roots was possible, it was preferentially incorporated via plant
leaves. Barko and Smart (1981) found that four species of submerged macrophytes,
grown in controlled environment chambers, mobilized N from sediments when the
overlying water was N-deficient. Field surveys of Lake Wingra, Wisconsin, also
demonstrated that tissue N ievels of M. spicatum were correlated with sediment N levels,
indicating that sediments are a significant source of N to rooted macrophytes (Nichols
and Keercy 1976a). Results from in situ experiments performed by Rattray er al. (1991)
supported previous findings that submerged macrophytes incorporate N through their
roots when the overlying water is low in available N. Chambers er al. (1989) found that
the aquatic macrophyte, Potamogeton crispus, mobilized much of its required N from
bottom sediments when grown in flowing waters. Because sediments tend to be anoxic
and therefore have high NH," concentrations relative to the overlying water (Keeney
1973), the ability of plants to mobilize NH," through their roots allows them access to an

otherwise unavailable source of N (Toetz 1974).
1.2.2 Sediment type and phosphorus and nitrogen availability
Closely linked ic the ability of aquatic plants to incorporate P and N through their roots

are sediment type and nutrient availability (Barko ef al. 1991). Observations of the

distribution of aquatic plants in lakes and rivers have suggested that biomass and shoot



density are also related to physical characteristics of the sediment. such as texture and
bulk density (Pearsall 1920; Butcher 1933: Sculthorpe 1967; Bristow 1975: Haslam
1978). Sediment texture can affect a species' ability to penctrate the sediment surface and
form roots (Bristow 1975; Denny 1980). Fine-textured sediments in lakes and rivers tend
to have high porewater nutrient concentrauions as a result of changes in sorption capacity,
oxygen availability, microbial activity and groundwater intrusions (Chambers ¢t ai. 1992)
that favour the colonization of rooted aquatic plants. Sediment nutrient availability is
reduced by the presence of high concentrations of organic matter as P and N in solution
become adsorbed to detrital particles (Barko ef al. 1991). Decomposition and nutrient
regeneration by microorganisms in sediments can stimulate macrophyte growth by
making nutrients such as P and N available to plant roots for uptake (Gunnison and Barko
1989). However, these organisms can also inhibit plant growth by releasing phytotoxic
compounds during the anaerobic decay of organic matter (Gunnison and Barko 1989).
Boeger (1992) found that substratum influenced the growth of Ranunculus aquatilis in
flowing water such that highest plant biomass was observed in fine-textured, nutrient-rich
sediments, as compared to sand or gravel that typically had low nutrient concentrations.
Barko and Smart (1986) surveyed 40 sediments from 17 North American lakes and also
observed that macrophyte growth (M. spicatum and H. verticillata) was highly related to

sediment density and organic content, which reflected nutrient availability.

1.2.3 Critical phosphorus and nitrogen concentrations and nutrient limitation in

rooted aquatic plants

Critical to the development of nutrient reduction guidelines to control biomass of aquatic
macrophytes is an understanding of the relative amounts of P and N required to sustain
growth. Gerloff and Krombholz (1966) related plant tissue P and N concentrations to
biomass in laboratory cultures and identified critical concentrations that resulted in
maximum biomass. Critical tissue P and N contents of Vallisneria americana, Elodea

occidentalis, Ceratophyllum demersum and Heteranthera dubia were approximately 1.3
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and 0.13% dry weight, respectively (Gerloff and Krombholz 1966). Sytsma and
Anderson (1993), comparing tissue nutrients to plant yield, found that leaves and stems of
M. aquaticum were deficient in P below 0.16 and 0.10% dry weight, respectively, and
deficient in N below 1.35 and 0.38% dry weight, respectively. Others (Wong and Clark
1979; Schmitt and Adams 1981; Colman er al. 1987) have related tissue P content to rates
of photosynthesis, measured as carbon uptake, to determine critical nutrient contents for
aquatic plants. These experiments have, in general, yielded lower estimates of critical
nutrient concentrations, perhaps because they reflect an immediate response of plants to
changes in nutrient levels (i.e. photosynthetic rate) rather than an integrated response
tvpical of the plant yield experiments (Colman et al. 1987). Because of biochemical and
morphological similarities among aquatic angiosperms, considerable variation in critical
tissue P and N concentrations across species is not expected (Gerloff and Krombholz
1966; Duarte 1992). Based on the assumption of standardized critical P and N
concentrations, in situ experiments could be designed to determine if and when plant

growth is limited by nutrient availability.

Increases n plant biomass and rates of photosynthesis in response to added N or P can be
used as indicators of nutrient limitation in siru (Howarth 1988). Anderson and Kalff
(1986) de monstrated that biomass of M. spicatum in Lake Memphramagog increased
significantly in response to sediment N enrichment, but not to P enrichment, suggesting
that the plants were N-limited. Granéli (1985) fertilized water in reed stands in two
Swedish iakes and found that Phragmites australis was also primarily N-limited. P in
sediments was the limiting nutrient in an estuarine population of Zostera marina (Murray
et al. 1992). Nichols and Keeney (1976a) reported that tissue N concentrations of M.
spicatum in Lake Wingra were significantly correlated with available sediment N, which
varied between sites and seasonally, suggesting that the degree of nutrient-deficiency
depended on local conditions. In a survey of Wisconsin lakes, plant tissue contents were
never below critical levels but relative amounts of P and N in tissues suggested that P

would limit growth if nutrient supplies were depleted (Gerloff and Krombholz 1966).
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While little work has been done on plant nutrient limitation in streams, Wong and Clark
(1976) found that P concentrations in streams in southern Ontario were directly related to
tissue P, but not N, content of the alga. C ladophora, which indicated that P limited the
growth of this species. However, Cladophora was found to be primarily N-limited in the
Clark Fork of the Columbia River, Montana based on tissue nutrient concentratiorn. and

nutrient uptake rates (Lohman and Priscu 1992).

1.2.4 Effects of macrophytes on phosphorus and nitrogen dynamics in lotic

ecosystems

Research into the growth of submersed macrophytcs in rivers has primarily focused on
how the environment affects plant biomass, distribution and abundance, as opposed to
how macrophytes influence the stream environment. However, studies during the past
ten years provide increasing evidence that aquatic macrophytes modify the stream
environment. Carpenter and Lodge (1986) suggest that aquatic plants represent an
important link between biological communities in rivers, between river sediments and
open water, and between aquatic and terrestrial systems. They alter the physical and
chemi~al characteristics of their surroundings and in so doing can impact the nutricnt
dynamics of rivers (Barko er a/. 1991; Chambers and Prepas 1994). Dense macrophyte
beds cause reductions in flow rates and increase rates of deposition of nutrient-rich silt
and organic matter {Butcher 1933; Gregg and Rose 1982: Carpenter 1981; Sand-Jenscen ¢f
al. 1989). While macrophyte beds act as sinks for nutrients by trapping particulates, they
also deplete sediment nutrient pools by incorporating porewater nutrients into their
tissizes through their roots (Carignan 1985; Jaynes and Carpenter 1986). Macrophytes in
teruperate regions store nutrients in their tissues on an annual cycle, which affects the
retention time of P and N in aquatic systems (Carpenter and Lodge 1986). Decaying
plant tissues release P and N to the water and become an important source of nutrients to

aquatic organisms living in the water column (Carpenter 1981). Thus, while rooted
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aquatic plants are easily affected by changes in their environment, they can also markedly

influence the physical, chemical and tiological characteristics around them.

1.3 SUMMARY AND RESEARCH OBJECTIVES

To date, the reiationship between the growth of rooted macrophytes and concentrations of
P and N in rivers has been poorly quantified. While there is some evidence that suggests
that growth of rooted aquatic plants is related to nutrients in lotic systems (e.g. Wright
and McDonnell 1986; Carr and Goulder 1990), there is also conflicting evidence that
finds no relationship between macrophytes and nutrient concentrations (e.g. Kern-Hansen
and Dawson 1978; Canfield and Hoyer 1988). These contradictory reports may be the
result of different approaches to studying nutrient limitation (such as in situ versus
laboratory experiments, and monitoring changes in photosynthetic rate versus changes in
either biomass or tissue nutrients) and highlight the need for a comprehensive study of the
role of open-water and sediment-bound nutrients in regulating aquatic plant biomass in
running waters. Without such a study, attempiz to manage luxuriant plant growth in
rivers will be ineffec tive, because they will not address the factors most likely to limit
aquatic plant growth. Thus, the overall goal of this research was to quantify the
relationship between macrophyte abundance and nutrient concentrations in the open-
water and in the sediments in freshwater systems, particularly running waters. To address

this objective, two research projects were undertaken.

Project 1 (Chapter 2): Modelling freshwater macrophyte biomass in relation to

open-water phosphorus and nitrogen concentrations

The objective of this project was to quantify with multiple regression analyses the
relationship between macrophyte biomass and open-water nutrient concentrations in lakes
and rivers throughout the world, based on data collected in a detailed survey of published

literature. This study assesses the predictability of rooted aquatic plant biomass based on
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open-water P and N concentrations, and makes comparisons to other empirical models

generated for phytoplankton and periphyvton communities in lakes and rivers over broad

geographic ranges.

Project 2 (Chapter 3): Relationship between macrophyte growth and sediment

phosphorus and nitrogen concentrations in the South Saskatchewan River, SK

The purpose of this project was to quantify the role of sediment nutrients in regulating
macrophyte biomass in the South Saskatchewan River, SK., downstream of the City of
Saskatoon’s sewage treatment plant. Results from in situ observations and artificial
stream experiments were used to assess the effectiveness of management strategies aimed

at reducing aquatic plant biomass through nutrient reductions.
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Chapter 2: Modelling freshwater macrophyte biomass in relation to

open-water phosphorus and nitrogen concentrations



2.0 INTRODUCTION

The ability of empirical models to predict patterns across a broad range of aquatic
ecosysterrs has been demonstrated repeatedly over the past three decades (e.g. Dillon and
Rigler 1974; Watson and Kalff 1981; Chambers and Kalff 1985; Canfield and Hedgson
1983). Earliest models were relatively simple input-output models used to predict total
phosphorus (P) concentrations in lakes (Vollenweider 1975), and regression models to
predict chlorophyll a concentrations from in-lake TP concentrations (Dillon and Rigler
1974). Empirical modelling has expanded more recently to examine multjvariate
relationships between nutrients and biomass of benthos (Hanson and Peters 1984),
zooplankton biomass (Pace 1986), fish yield (Hanson and Leggett 1982), and periphyton
biomass in lakes (Cattaneo 1987). These models have become important tools in nutrient
and fisheries management in lakes and led to the formulation of limnological theories tha*

could then be tested through observation and experimentation (Peters 1986).

The aim of this study was to develop an empirical model relating open-water P and
nitrogen (N) concentrations to macrophyte biomass in lakes and rivers. Rooted
macrophytes are a critical component of aquatic ecosystems (Wetzel and Hough 1973;
Wetzel 1983) but the response of aquatic plants to P and N enrichment has not been
clearly quantified. Studies into the relationship between macrophyte growth and P and N
have yiel ded contradictory results. For example, Smith et al. (1978) documented high
aquatic plant biomass downstream of a fish processing plant in the Crnojevica River,
Yugoslavia, but found no relationship between macrophyte growth and concentrations of
P in the water. Similarly, macrophytes were abundant in the South Saskatchewan River,
SK, downstream of the City of Saskatoon’s sewage treatment plant, but the region of
peak biomass in the river did not correspond to the region of peak P and N concentrations
(Chapter 3). In contrast, Carbiener ef al. (1990) found that aquatic plant community
composition was strongly correlated with ammonium and soluble reactive P

concentrations in the Rhine River, France. The lack of clear and consistent correlations
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between macrophyte biomass and P and N concentrations has led to the hypothesis that
since rooted macrophytes incorporate the majority of their P and N from bottom
sediments (e.g. Chambers et al. 1989; Barko et al. 1991; Carignan and Kalff 1980; and
many others), sediment P and N concentrations may be better predictors of plant biomass
within specific bodies of water (Canfield and Hoyer 1988). However, only 30% of the
variability in macrophyte biomass in the South Saskatchewan River was explained by
sediment P concentrations (Chapter 3) and a survey of 19 Danish streams found no link
between macrophyte biomass and sediment nutrient concentrations (Kern-Hansen and
Dawson 1978). The conflicting evidence into the role of nutrients in regulating aquatic
plant growth may be due to the scale at which these patterns are investigated. Duarte and
Kalff (1990) proposed that factors that control macrophyte growth within an aquatic
system may be different from those acting over a broader geographic range. Therefore,
while P and N in sediments may be directly related to aquatic plant biomass in individual
lakes and rivers, as suggested by Canfield and Hoyer (1988). open-water P and N

concentrations may be better predictors of biomass over a broad geographic range.

This paper reviews data from the literature to test the utility of open-water P and N
ccneentrations in predicting macrophyte biomass in lakes and rivers. Few studies have
attempted to predict macrophyte abundance based on open-water nutrients and the results
from these studies have been contradictory. For example, submerged macrophyte
biomass was not related to open-water P and N concentrations for 25 lakes in Canada and
the United States (Duarte and Kalff 1990), 19 streams in Denmark (Kern-Hansen and
Dawson 1978), or 17 streams in Florida (Canfield and Hoyer 1988}, although in the casc
of the Florida study, the lack or correlation was attributed to the fact that the streams were
nutrient-saturated and therefore plant biomass was unlikely to be determined by nutricnt
concentrations. In contrast, Smith and Wallsten (1986) found using multiple regression
analysis that total nitrogen (N), but not P, concentration in lake water was an important
predictor of the percentage cover of emergent and floating-leaved macrophytes in Central

Swedish lakes (#2 = 0.91). In this study, data on mean and maximum macrophyte
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biomass and open-water P and N concentrations were compared for 81 rivers and 69

lakes located throughout the world.
2.1 METHODS

Data on mean and maximum submerged macrophyte biomass (g/m?) and open-water P
and N concentrations (ug/L) from lakes and rivers were compiled from the literature.
Mean biomass (B,,,,) Was recorded either as the average of all sites within a waterbody
for the period of peak biomass (usually late July through early September in the Northern
Hemisphere), or as the average of peak biomass collected over several seasons.
Maximum plant biomass (B,,,,). taken from the period of peak biomass, was recorded as
the highest value of the observed range when presented, or as the mean biomass plus
either two standard deviations or one 95% confidence interval. Biomass was recorded in
units of oven-dry weight and, when other units were reported, biomass was converted to
dry weight by assuming dry weight to be 10% of fresh weight (Westlake 1965), ash free
dry weight to be 80% of dry weight, and total organic carbon to be 37% of dry weight
(Westlake 1974). Open-water nutrients included total P (TP), total dissolved P (TDP),
soluble reactive P (SRP), total N (TN), total Kjeldahl N (TKN), total inorganic N (TIN),
ammonium (NH,"), and nitrate plus nitrite (NO,+NO;). When only nitrate was reported,
it was used in place of NO,+NO,, since nitrite concentrations are generally low. When
TKN and NO,+NO; or total dissolved N and particulate N were reported, they werz
summed to represent TN. Similarly, when NH,” and NO,+NO, were reported, thesé
values were added to determine TIN. When only SRP or TDP concentrations were
reported, TP was predicted from these values based on linear regressions of the
untransformed concentrations that were generated from the available data, explaining
over 98% of the variation in TP (TP = 34.4 + 1.10(SRP), n = 21, r=0.98; TP =
34.9+0.97(TDP), n =12, ¥ > 0.99). Similarly, TN concentrations were predicted from a
linear relationship with NO,+NO, that explained > 91% of the variation in TN (TN = 425
+ 1.35(NO,+NOQ,), n = 19; * = 0.91). When estimates of NO,+NO, were not
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accompanied by NH," concentrations, TIN concentrations were predicted based on a
linear relationship with NO,+NO, that explained approximately 97% of the variation in
(IN (TIN =137 + 1.08(NO,+NO;). n = 29; r* = 0.97).

The relationship between mean and maximum macrophyte biomass and open-water
nutrient concentrations was assessed using stepwise multiple regression for the entire
dataset with rivers and lakes distinguished with a dummy variable (SPSS 1993). To
ensure independence of observations, only one estimate of biomass and open-water
nutrients was entered for each waterbody. Thus, when parameters for individual lakes or
rivers were encountered in two or more published sources, the source that provided data
for the most number of parameters was selected for the model. When equal biomass and
nutrient parameters were reported in several sources for a waterbody, the source of the
data was randomly selected. Mean and maximum biomass were square-root transformed
to normalize their distribution about the independent variables. Independent variables
were transformed when necessary to meet the regression assumption of linearity.
Dependency among nutrient parameters was tested by examining the Pearson correlation
coefficients, and subsets of variables that were not highly correlated were entered

separately into multiple regression models.

2.2 RESULTS

The data set consisted of 81 rivers and 69 lakes from across the world. The majority of
lakes were from Canada (45), the United States (12) and Europe (9), but data from two
lakes in New Zealand and one in Africa were also included. The rivers included in the
data set were from Canada (8). the United States (52) and Europe (21). The raw data
used in this study are presented in Appendix A. Open-water nutrient concentrations
ranged from oligotrophic to eutrophic for both lakes and rivers (Table 2.1). It was rare
that all of the nutrient parameters investigated in this study were reported for one

waterbody and, as a result, the number of observations decreased when multivariate
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Table 2.1: Summary statisti~s (mean, minimum, maximum, and number of observations)
of all parameters collected, for lakes and rivers.

Variable Mean  Minimum Maximum No. of
observations

Lakes
Mean biomass (g/m?) 142 0.1 801 68
Maximum biomass (g/m°) 314 0.3 1950 61
TP (pg/L) 45 3 571 65
TDP (ug/L) 40 1 117 9
SRP (ug/L) 62 1.4 490 11
TN (ug/L) 662 83 1704 32
TKN (pg/L) 554 180 1100 8
TIN (pug/L) 256 12 1163 23
NH, 123 3 540 22
NO, 4+ NO, (pg/L) 125 4 950 24

Rivers
Mean biomass (g/m?) 386 1 34 81
Maximum biomass (g/m°) 585 2060 3500 60
TP (ug/L) 193 36 1950 81
TDP (pug/L) 272 7 1350 7
SRP (ug/L) 127 2 1150 41
TN (ug/L) 3254 20 48513 68
TKN (pg/L) 702 99 2670 21
TIN (ng/L) 3458 14 38693 45
NH, 294 6 1840 11
NO, + NO, (pug/L) 3927 6.4 35700 34




models were attempted. TDP was seldom reported in the literature and consequently its
effect on macrophyte biomass was excluded from multivariate analyses. TKN and N1;’
concentrations were also excluded from muitivariate models because they could not be

transformed to meet the regression assumptions of linearity.

Open-water concentrations of P and N were significantly correlated with the type of
waterbody and were consistently lower in lakes than in rivers (Table 2.2). All forms of
both P and N were, in general, highly correlated and therefore only one form of each
nutrient was entered into the models at a time (Table 2.2). P and N parameters were
positively correlated with each other, indicating that arcas with high P concentrations also

tended to have high concentrations of N (Table 2.2).

There was no single nutrient parameter that was an ideal predictor of macrophyte biomass
in lakes and rivers, however both mean and maximum biomass were best explained by
the type of waterbody and a form of P and N (Table 2.3). SRP and IN along with the
type of waterbody explained 30% of the variability in mcan biomass, while maximum
biomass was best explained (r* = 0.33) by the type of waterbody and the concentrations of
TP and NO,+NO, (Table 2.3: Figure 2.1). Biomass was positively correlated with
concentrations of P, negatively correlated with concentrations N, and was higher in rivers

than in lakes (Table 2.3).

2.3 DISCUSSION

Macrophyte biomass was significantly related to open-water P and N concentrations, but
the predictive power of these relationships was low (Table 2.3). The type o ~vaterbody
(lake or river) and some form ot P and N are the best predictors of biomass, with biomass
increasing with increasing concentrations of P and decreasing concentrations of N (1 ablc
2.3). Because P and N are positively correlated, it is likely that highest biomass occurs at

intermediate concentrations of these nutrients and that high levels of N may have an
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Table 2.2: Pearson correlation coefficients tor variables used as predictors of macrophyte
biomass in multiple regression models. Nutrient parameters transformed to meet
assumptions of linearity. “R/L” is the waterbody type, with rivers and lakes coded as
zero and one, respectively. All other abbreviations defined in text. Only significant (& =
0.05) coefficients presented.

In(TP) In(SRP) In(TN)  In(TIN) In(NO,*NO,)  R/L

In(TP) - 0.94 0.51 0.50 0.41 -0.49
In(SRP) - 0.57 0.58 0.58 -0.41
In(TN) - 0.92 0.91 -0.30
In(TIN) - 0.93 -0.56
In(NO,+NQO,) - -0.70
R/L




Table 2.3: Regression models predicting mean and maximum macrophyte biomass (B
and B,,, respectively) in relation to open-water nutrient concentrations. “R/L" refers to

mcan

type of waterbody and is coded zero for rivers and one for lakes. All other abbreviations

defined in text.

Equation r n P
VB, = 32.72 - 647(R/L) + 2.78In(SRP) - 3.85In(TN) 030 38 0.002
VB, = 32.47 - 2.13In(TN) - 8.75(R/L) 021 99  <0.00]
VB,.,,= 17.17 - 7.23(R/L) 015 149  <0.001
VB,,,,= 10.00 + 1.18In(SRP) 0.0 51 0.020
VB, = 32.53 + 2.62In(TP) - 3.20In(NO+NO,)-13.71(R/L) 033 50 < 0.001
VB, = 25.46 + 4.52In(TP) - 3.64In(TN) 022 76 <0.001
VB, =737 +2.76In(TP) 012 121 <0.001
VB,,, = 21.55 - 6.89(R/L) 0.09 121 0.001
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Figure 2.1: Relationship between mean and maximum observed and predicted biomass
of aquatic macrophytes (square-root transformed) in lakes and rivers, based on multiple
regression analyses. Mean biomass is predicted based on waterbody type (R/L), In(SRP),
and In(TN), and maximum biomass is predicted based on waterbody type (R/L), In(TP),
and In(NO,+NO,) (Table 2.3).
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inhibitory effect on macrophyte growth. Carbiener ¢r al. (1990) reported that ammonium
toxicity was responsible for shifts in macrophyte community assemblages in streams on
the Upper Rhine plain, France, and also that community associations were positively
correlated with NH," and negatively correlated with SRP concentrations. The
relationships observed globally in this study as well as those observed at an ecosystem
level in that of Carbiener ef al. (1990) highlight the importance of investigating the role
of both P and N in regulating macrophyte biomass, because while either nutrient may give
an indication of the trophic status of an ecosystem the combination of both nutrients will

show any interaction between the plant and nutrient variables.

While this is the only study to have examined the role of P and N in regulating
macrophyte biomass in both lakes and rivers on a global scale, empirical models
developed for either lakes or rivers have found that macrophyte biomass can be predicted
by factors in addition to P and N. For example, in a survey of 139 lakes from around the
world, lake size and underwater light were good predictors of macrophyte biomass
(Duarte et al.1986). Similarly, Duarte and Kalff (1990) surveyed 25 lakes from Canada
and the United States and reported that lake-average submerged biomass could be
predicted (#* = 0.80, P < 0.0001) by water alkalinity and littoral slope. Canfield and
Duarte (1988) further stressed the importance of light availability and littoral slope in
predicting macrophyte biomass in Florida lakes. Smith and Wallsten (1986) found that
areal cover of emergent macrophytes in Central Swedish Jakes could be predicted (r* =
0.91) from lake surface area, mean depth and open-water TN concentrations. Macrophyte
biomass in Iiorida streams and spring-runs was not related to nutrient concentrations, but
could be predicted (+* > 0.93 and * = 0.58, respectively) by the degree of shading by
riparian vegetation (Canfield and Hoyer 1988; Duarte and Canfield 1990). The study
presented here is the only one to date that has investigated the rolec of P and N in

regulating macrophyte biomass, irrespective of the type of waterbody.
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This study found that open-water P and N concentrations in rivers and lakes explained no
greater than 33% of the variability in macrophyte biomass (Table 2.3). P and N
concentrations did not explain any significant variation in macrophyte biomass surveys
for 17 Florida streams (Canfield and Hoyer 1988), 31 Florida spring-runs (Duarte and
Canfield 1990), 19 Danish streams (Kern-Hansen and Dawson 1978), and 25 lakes from
Quebec, New York and Vermont (Duarte and Kalff 1990). In contrast, open-water P and
N concentrations are excellent predictors of phytoplankton biomass in lakes, with surveys
of Florida, North American, and U.S. lakes finding that between 70 and 95% of the
variability in phytoplankton biomass can be explained by P and N concentrations (Table
2.4). The relationship between concentrations of P and N and phytoplankton biomass
was not, however, as strong in impoundments (»* = 0.38), an intermediate between lakes
and rivers, or streams (° = 0.53 tor Missouri streams and r* = 0.16 for the Rideau River,
Ontario) (Table 2.4). Furthermore, surveys of Quebec lakes, Antarctic lakes, and Danish
streams found that periphyton biomass was not as well predicted (* = 0.27 to 0.61) as
lake phytoplankton biomass by open-water P and N concentrations (Table 2.4). This
comparison of freshwater plant biomass responses to P and N concentrations suggests
that as the complexity of aquatic plants increases from algae to rooted macrophytes, the
predictability of plant biomass based solely on nutrient parameters decreases. Predictions
of rooted macrophyte biomass based on open-water P and N concentrations are
confounded because macrophytes can incorporate these nutrients from both the open-
water and the sediments of lakes and rivers, and their biomass can be further influenced
by factors particular to sediments, such as groundwater inputs, microbial activity,
sediment fertility, pH, and redox conditions (Barko ef al. 1991). Moreover, the poor
predictability of both macrophyte and periphyton biomass, when compared to
phytoplankton communities, may be due to high spatial heterogeneity in the physical
environments in which these plants are found, resulting in patchy biomass distributions
throughout a waterbody (Downing and Anderson 1985; Morin and Cattaneo 1992). Thus,

as the complexity of aquatic plants increases, so do the number of factors that can
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influence biomass accrual, making it difficult to predict biomass based solely on one or a

few factors.

In addition to differences among aquatic plant groups in their response to nutrients,
macrophytc biomass and nutrient concentrations were consistently higher in rivers than in
lakes (Table 2.1). This pattern contradicts what was observed by Seballe and Kimmel
(1987) for algae, namely that despite higher TP concentrations in rivers, algal abundance
per unit P was lowest in rivers and highest in lakes, suggesting that abiotic factors override
nutrients in limiting algal production in lotic ecosystems. Higher biomass of rooted
macrophytes in rivers observed in this study, however, is most likely due to higher rates of
photosynthzsis resulting from the constant supply of dissolved nutrients and gases to plant
shoots provided by flowing water (Madsen and Adams 1988; Westlake 1967). Moreover,
higher nutrient concentrations in rivers may be because they are the dominant receivers of
nutrient-rich wastes from agricultural, municipal and industrial activity. It is also possible
that differences in macrophyte biomass between lakes and rivers are an artifact of the
available data and reflect the general perception that macrophytes are a greater nuisance in
rivers because they can impede boat traffic and increase the potential for flooding. In
lakes, however, macrophytes are often perceived as less of a nuisance and more an integral
part of the :cosystem, associated with clear water and low algal abundances (Barko er a/.
1986; Wet:zel and Hough 1973; Canfield et al. 1983). Thus. it may be that studies of
macrophytes in lotic ecosystems are conducted in cases where biomass is high and
potentially problematic, while studies in lentic ecosystems are conducted to further our
understanding of macrophyte ecology. This study has demonstrated that macrophyte
biomass i1 lakes and rivers is weakly related to open-water P and N concentrations. It is
likely that the complexity of rooted macrophytes, when compared to algal communities,
results in many factors influencing biomass that confound empirical models developed to

predict biomass based on only one or a few factors.
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Chapter 3: Relationship between macrophyte growth and sediment
phosphorus and nitrogen concentrations in the

South Saskatchewan River, SK



3.0 INTRODUCTION

The impact of changes in phosphorus (P) and nitrogen (N) loading on the abundance and
diversity ¢ { submerged plants in rivers has long been debated, particularly with respect to
the effect of nutrient mitigation strategies in reducing excessive aquatic macrophyte
production. For example, Wright and McDonnell (19864, 1986b) predicted, on the basis
of a mode! developed for Central Pennsylvania rivers, that reductions in open-water P
concentrations would lower submerged plant bicmass. In a laboratory study on the
impacts of fish-farm effluents, Carr and Goulder (1990) demonstrated that inorganic P
released from these effluents can increase growth of the macrophyte Ranunculus
penicillatus in rivers in the United Kingdom. Similarly, Chambers ez al. (1991) reported
that biomass of rooted aquatic plants in rivers on the Canadian prairies can reach levels
greater than 1000 g/m? downstream of municipal sewage outfalls compared to values of
close to zero upstream of these nutrient-rich effluents. Declines in species diversity in
rivers of Israel have also been associated with point-source loading of P and N (Litav and
Agami 1976), while in the former Soviet Union, some riverine plant species have been
found to be more resistant to nutrient-rich industrial and municipal wastes than others
(Zeifert et al. 1991). In contrast, other researchers (e.g. Westlake 1973; Madsen and

Ad ms 1 28) have argued that aquatic plants are relatively insensitive to chemical inputs
anu ' .anges in macrophyte abundance and distribution are more likely a result of
increased turbidity and the accumulation of organic matter downstream of point-source
inputs. For example, Smith et al. (1978) reported abundant growth of submerged and
floating-leaved macrophytes downstream of a fish processing plant in the Crnojevica
River, Yugoslavia, but found no relationship between P and N in the river and
macrophyte growth. Furthermore, studies of streams in Florida (Canfield and Hoyer
1988), the Holston River, Tennessee (Peltier and Welch 1969), and lowland streams in
Denmark (Kern-Hansen and Dawson 1978) found no relationship between macrophyte

growth and open-water P and N concentrations.
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The aim of this study was to quantify the relationship between P and N and aquatic
macrophyte growth in the South Saskatchewan River, SK. downstream of the City of
Saskatoon’s nutrient-rich municipal sewage outfall. Previous studics .1 macrophyte
growth in response to nutrient enrichment focused for the most part only on open-water P
and N concentrations. However, aquatic plants appear to incorporate the majority of their
required P and N from bottom sediments rather than the water column in both rivers
(Chambers ef al. 1989) and lakes (Bristowe and Whitcombe 1971; Carignan and Kalfl
1980; Barko ef al. 1991). While the chemistry of bottom sediments is partially dependant
on the chemistry of the overlying water (Chambers et al. 1992), sediment P and N
concentrations are also determined by underlying geology. sediment particle size. and
organic carbon concentrations (Meyer 1979; Hill 1982; Barko ¢f al. 1991). P and N in
groundwater inputs have also been shown to alter the chemistry of bottom sediments
(Lodge et al. 1989). Thus, because sediments are the primary source of P and N to
macrophytes and because they reflect both the direct effects of anthropogenic nutrient
loading and the background conditions of the river, sediment P and N concentrations may

be better predictors of macrophyte growth in rivers.

In this study, the relationship between sediment P and N concentrations and the growth of
rooted macrophytes, in terms of both plant biomass and tissue nutrient concentrations,
was examined for a Canadian prairie river. /n situ P and N limitation and the effects on
plant growth can be evaluated by quantiiying the change in plant biomass (Howarth 1988)
and tissue P and N concentrations (Bates 1971) to nutrient-enrichment in controlled
experiments. Nutrient-enrichment studies can also provide insight into the critical PP and
N concentrations that result in maximum plant growth (Gerloff and Krombholz 1966). In
this study, in situ observations were uscd to determiie if macrophyte biomass and cover
were related to distance downstream of a mugicipal sewage outfall and to sediment P and
N concentrations. Artificial stream experiments in which sediments were enriched with a
range of P and N concentrations were then conducted 0 determine if aquatic plants from

prairie rivers are P- or N-limited and if there is a critical sediment P concentration above
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which aquatic plant biomass and tissue P concentrations are not further enhanced.
Information on the relationship between macrophyte growth and sediment P and N
concentrations in prairie rivers will allow development of environmerital regulations to

effectively control nuisance aquatic plant biomass.

3.1 METHODS

3.1.1 Site description

The South Saskatchewan River is a seventh order stream and a major tributary of the
Saskatchewan-Nelson river system. It arises at the confluence of the Bow and Oldman
Rivers in south-castern Alberta, and flows across the semi-arid Canadian prairie ecozone
{0 east-central Saskatchewan. In Saskatchewan. it converges with the North
Saskatchewan River to form the Saskatchewan River which flows through Cedar Lake
and Lake Winnipeg into the Nelson River which drains into Hudson Bay (Figure 3.1).
Flows in the South Saskatchewan River are regulated by more than 20 dams in Alberta
and the Gardiner Dam, located 114 km upstream of the City of Saskatoon. Mean annual
flows at Saskatoon averaged 214 m*/s from 1965 to 1986, and flows during the open-
water months (April - October) averaged 183 m’/s from 1965 to 1990 (Environment

Canada 1992).

The City of Saskatoon, with a population of 186,058 (Statistics Canada 1992), is the
largest municipality that discharges sewage effluent directly into the South Saskatchewan
River. In 1971, Saskatoon initiated primary sewage ireatment which was followed in
1985 by chlorination. to kill bacteria and thereby reduce biochemical oxygen demand. In
1990. alum precipitation was implemented with the result that total P concentrations in
the ettluent decreased from 6.1 = 0.9 to 1.8 + 0.7 mg/L (mean = 1 SE). The sewage
treatment plant was upgraded to a biological nutrient removal system in 1995 to further

remove P and N.
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3.1.2 [n_situ Observations

Acrial surveys of the South Saskatchewan River, extending from the Saskatoon sewage
treatment plant outfall to 150 km downstream, were undertaken by the City of Saskatoon
in early August 1984, 1986, and 1987 to determine the percent of the river covered by
submerged vegetation. Colour photographs of the river were taken from a height of
approximately 300 m above the surface of the water. Macrophyte beds were identified on
the photographs and selected areas were ground-truthed to ensure accurate interpretation.
The extent of macrophyte cover relative to the total area of the river was determined by
planimetry for 10 km river reaches. Surveys of rooted plant biomass were also
undertaken in late July and early August (the period of peak biomass) 1984 and 1985 (by
the City of Saskatoon; Kerc 1986), and 1988 (P.A. Chambers, unpublished da.a).
Macrophyte biomass was evaluated at five to seven sites extending up to 150 km
downstream of the Saskatoon sewage treatment plant outfall (Figure 3.1). At each site,
macrophyte standing crop was harvested from either five replicate 0.165 m’ quadrats
(1984 and 1985) or ten replicate 0.1 m? quadrats (1988). All macrophyte samples were
dried to constant mass at 80°C. In 1988, water and sediment samples were collected at
cach site every 7 to 14 days from June 9 to September 1. Water samples were analysed
for total dissolved P and N by the Prairie and Northern Regional Water Quality Branch
Laboratory, Environment Canada, Saskatoon, following procedures outlined in their
manual (Environment Canada 1979). Sediment samples were analysed for exchangeable
P and N by Environment Canada, at the National Hydrology Research Institute, as

described in Section 3.1.4.

A detailed survey of macrophyte biomass and sediment P and N concentrations was
undertaken in 1992 (P.A. Chambers, unpublished data). Ten to twenty replicates of
macrophyte standing crop were harvested from 0.1 m? quadrats between July 28 and
August | at five sites downstream of the Saskatoon sewage treatment plant (Figure 3.1).

Samples of the upper 5 cm of sediments were collected with an Ekman dredge from

45



within each quadrat. Plants were sorted t. species, except for fine-leaved Potamogeton
species, including P. pectinatus, P. vaginatus. P. foliosus. and P. pusillus, which were
grouped. Macrophytes were dried to constant mass at 80°C and sediments were analysed

for exchangeable P and N concentrations.
3.1.3 Artificial Stream Experiment

1.3.1 Stream design

To test the hypothesis that n. o2 ""~'te biomass and tissue nutrient content are related (o
sediment nutrient concentratio. werophytes were grown in two once-through
aluminum artificial streams, 6 m long x 1.0 m wide x 1.0 m deep (after Gee and Bartnik
1969) in sediments enriched with either N, or P, or both. The streams were located along
the South Saskatchewan River, at the City of Saskatoon Water Treatment Plant, upstream
of any municipal and industrial outfalls, and oriented along a north-south axis so that
shading from the sides and ends of the streams was equal across cach test section over a

day.

Untreated river water (except for coarse (1 cm) filtration) was pumped through a 4"
polyvinyl chloride (PVC) pipe from the City of Saskatoon water treatment plant to a 1200
L head tank. The head tank dampened fluctuations in the flow of water through the
streams as a result of variability in the rate of water delivery. An overflow pipe from the
head tank to collecting pipes at the downstream end of the streams drained excess water.
Water exited the head tank from a 6" PVC standpipe, approximately 1 m high, into a
manifold that split the flow into two 4" PVC pipes that led to each stream. Water flow
entering the streams was regulated with 4" gate valves. The targeted water velocity in the
streams was 5 cm/s, which is consistent with velocities observed in macrophyte beds in
prairie rivers (Chambers et al. 1991), howcver this was reduced when necessary to avoid

damage to plant shoots caused by heavy siltation. Upon entering each strcam, water
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passed through a collimator to reduce turbulent flow (Nowell and Jumars 1987; Vogel
1981). The collimators were constructed of plywood frames (0.2 m long x 1 m wide x 1
m deep) that encased three sheets of plastic gridding (1 cm grid diameter) spaced at equal
intervals along the length of the collimators. The collimators were placed approximately
() cm from the upstream end of each stream. Water exited the artificial streams at the
downstream end of the troughs through a 60 cm high, 4" PVC standpipe, and was
collected into a 6" PVC pipe that drained via a culvert to the South Saskatchewan River

(Figure 3.2).

To avoid 7ones of turbulent flow and allow for flow deviations at the downstream end of
the streams, the first 1 m and last 0.5 m were excluded from the test section of each
stream. In 1995, a further 1.13 m was excluded from the upstream end of the streams due
to heavy siltation and sediment deposition. To minimize boundary layer effects from the
walls of the streams, 0.25 m on the sides of each stream were also excluded from the test
section. To account for variation in water velocities between the upstream and
downstream ends of the streams, the test sections were divided into four (three in 1995)
1.13 m long blocks. Within each test section, flows were estimated to be subcritical, with
a Froude number of approximately 0.02, and turbulent, with Rcynold's numbers ranging
from 50,00 at the upstream end to 275.000 at the downstream end of the test sections

(calculations following Craig 1993).

3.1.3.2 Experimental Design

Pilot exp:riments were conducted in early summer 1994 to determine the type of
sediment to be used in the experiments, the most effective method for enriching the
sediments, and the type and amount of N-only and P-only fertilizers required to achieve
the desired range of sediment P and N concentrations. These experiments are outlined in

Appendix B.
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Figure 3.2: Artificial stream schematic, showing intake line, head tank, manifold and
control valves, aluminum streams, collimators, and test section within each stream.
Figure not drawn to scale.

48



To determine if macrophytes in the Seuth Saskatchewan River are limited by the
availability of either sedimen: P or N, .’ntamogeton pectinatus, a rooted macrophyte
zomimon in the river, was grown in the artificial streams in 1994 in one of four
treatments: (1) unamended sediments, (2) P-enriched sediments, (3) N-enriched
sediments, and (4) combined N + P-enriched scdiments. To identify critical sediment P
concentrations producing maximum macrophyte biomass, additional experiments were
conducted in which P. pectinatus plants were grown in sediments enriched at nine P
doses, ranging from approximately 40 to 1000 pg/g exchangeable P (summer 1994), or
eight different P doses, ranging from approximately 60 to 300 ug/g exchangeable P
(summer 1995). Trials with Myriophyllum exalbescens were also conducted in 1995

following the P. pectinatus experimental design for 1995.

For all experiments, individual plants were grown in 785 mL pots buried in a gravel bed
at the bottom of the flumes. The pots were filled with sediments that were a mixture of
silica sand and terrestrial soil collected near the Town of Asquith, SK, with baseline
sediment P concentrations ranging from 40-60 pg/g exchangeable P and sediment N
concentrations less than 1 ug/g exchangeable N (Appendix B). The sediments were
enriched by mixing in known quantities of P-only fertilizer (Vigoro Super Triple
Phosphate; 0-46-0), N-only fertilizer (Westco ammonium-nitrate; 34.5-0-0), or both N-
only and P-only fertilizers (Appendix B). Sediments in the nutrient limitation experiment
were enriched with 3.0 g of P-only fertilizer (P-enriched and N+P-enriched sediments)
and 2.5 g of N-only fertilizer (N-enriched and N + P-enriched sediments). To ensure that
macrophyte production was not limited by the availability of N in the critical P
enrichment experiments, sediments were also enriched with N-only fertilizer to give
sediment N concentrations averaging approximately 185 ug/g exchangeable N. To
minimize nutrient diffusion, pots were covered with solid plastic lids except for a 2 cm?

hole through which plant shoots could grow.
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Macrophytes were collected from three sites. In 1994, P. pectinatus was collected from a
macrophyte bed in the South Saskatchewan River, 22 km downstream of the City of
Saskatoon. In 1995, growth of rooted aquatic plants in the South Saskatchewan River
was inhibited due to high flows. Asaresult, M. exalbescens plants were collected from
Pike Lake, SK. an oxbow lake formed from the South Saskatchewan River after the
completion of the Gardiner Dam in 1965. P. pectinatus plants were collected in 1995
from an irrigation canal in the Eastern Irrigation District. near Brooks, AB. Water in this
canal originates from the Bow River, which converges with the Oldman River to form the
South Saskatchewan River. Shoot length and fresh biomass were recorded for all plants
at the start of the experiments. Fresh biomass was converted to dry weight from a fresh
to dry weight ratic determined for additional plants of each species from each experiment
and initial plant tissue P and N concentrations were estimated from analysis of additional
plants (Table 3.1). All macrophytes were transplanted into the flumes wi. .1 24 hours of

collection.

Eight, ten and nine replicate pots per treatment were randomly distributed among
downstream blocks in the streams for the 1994 and 1995 /. pectinatus and 1995 M.
exalbescens experiments, respectively. In 1995, the two species were grown in separate

streams to avoid interspecific competition.

To monitor changes in sediment chemistry over the duration cf each experiment and
assess if macrophytes depleted available sediment P through root-uptake, additional pots
without plants were randomly placed throughout the flumes and removed at regular
intervals: in 1994, three replicates of five treatments spanning the range of P additions
were removed on days 1, 8, 22, and 36, and, in 1995, two replicates of three treatments
were removes: o5 duvs 1, 7, and 21 of the M. exalbescens experiment. There were no pots
removed duniay the 1995 P. pectinatus experiment. Differences in sediment P
concentrations between planted and unplanted pots were evaluated for all treatments at

the end of ach experiment.
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Table 3.1: Initial characteristics of macrophytes collected for the artificial stream
experiments (mean = 1 SE). Analyses for total organic N not conducted on macrophytes
from 1995 experiments.

P. pectinatus M. exalbescens
: 1994 1995 1995
Biomass (g DW) 0.146 = 0.006 0.060 + 0.004 0.086 + 0.003
Shoot length (cm) 16.7+£0.5 16.3+0.5 8.7+x04
Tissue nutrients (mg/g DW)
Total organic P 231£0.17 1.21 £ 0.40 1.54 0.23
Total organic N 284+£64 r/a n/a
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Current velocity in the streams was measured every 4 to 8 days throughout the
experiments with a Gurly Price 1205 Mini velocity meter. Average velocity in each
experimental block was calculated as the mean of three readings (measured at 60% of the
total depth) across the width of the flume at the midpoint of each block. Water
temperature in the head tank was monitored with a Ryan RTM2000 temperature recorder.
Photosynthetically active radiation (PAR), 10 cm above the surface of the water, was
recorded hourly with a LiCor Quantum sensor and datalogger throughout the 1994
experiments and from August 8 to September 22, 1995. These measurements were
summed to obtain daily irradiance estimates. Water samples were collected cevery 4 to 8
days from the head tank and at the exit of each flume and analysed for total P (TP), total
dissolved P (TDP), soluble reactive P (SRP), ammonium (NH,), and nitrite + nitrate (NO
+ NO,).

U

The 1994 P. pectinatus nutrient-limitation and critical P enrichment experiments ran
concurrently for 51 days from July 6 - August 22. The 1995 M. exalbescens experiment
ran from July 6 - August 17 (43 days), while the 1995 P. pectinatus experiment ran for 49
days (August 5 - September 22). At the end of each experiment, macrophytes were
removed from the pots, separated into above and below ground portions, and dried to
constant mass at 80°C. The above-ground portion of all macrophytes wis analysed for
total organic P content. Sediments from all pots were collected, frozen and later analysed
for exchangeable P concentrations. Due to high rates of siltation in the flumes in 1995,
many plants did not survive until the end of the experiments. Macrophytes that had
decomposed or lost above-ground biomass by the end of the experiments were excluded
from data analysis. As a result, two treatments in the 1995 P. pectinatus experiment,
corresponding to approximately 120 and 170 pg/g exchangeable P, were reduced to less

than five replicates and these treatments were excluded from statistical analysis.

3.1.4 Analytical Methods
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Water samples for TDP and SRP were filtered through pre-washed 0.45 pm membrane
filters. Samples for TP and TDP were digested by Menzel and Corwin's (1965)
potassium persulfate method. All P samples were analysed spectrophotometrically
following the molybdenum blue colorimetric method (Murphy and Riley 1962). Samples
for NH, in 1994 were analysed spectrophotometrically by the phenol - hypochlorite
colorimetric method (Solorzano 1969). All samples for nitrite + nitrate (NO,+NO,) and
NH, samples in 1995 were analysed at the University of Alberta water chemistry lab
(Department of Biological Sciences) on a Technicon autoanalyser following the methods

described by Stainton et al. (1977).

Total organic P and N in plant shoots were extracted by wet oxidation with sulphuric acid
and hydrogen peroxide (Parkinson and Allen 1975) and analysed spectrophotometrically
by the molybdenum blue (Stainton et al. 1977) and phenol-hypochlorite (Haslemore and

Roughan 1976) colorimetric methods, respectively.

Exchangeable P was extracted from sediments by shaking for 16 hours with 0.1N NaOH-
NaCl and measured spectrophotometrically as soluble reactive P (Stainton ef al. 1977).
Exchangcable N was extracted from sediments by shaking for 1 hour with 2M KCI
(Bremner 1965) and measured spectrophotometrically as NH, (Haslemore and Roughan

1976).

3.1.5 Statistical analysis

Data were analysed with SPSS (1993). Regression analyses were used to determine the
relationship between macrophyte biomass and sediment exchangeable P and N

concen' ations in the South Saskatchewan River for the 1992 survey. Biomass data in

1992 were log-transformed to stabilize variances and normalize residuals.
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Differences in water chemistry, light and temperature among the three artificial stream
experiments, as well as sediment chemistry over time and water velocity within each
experiment, were evaluated with analysis of variance (ANOVA). r-tests were used to
examine differences in water chemistry between the head tank and the downstream ends
of the streams for each experiment and between sediment P concentrations in pots with
and wi'hout plants for each treatment and experiment; a correction for unequal variances
was ), "1ed when necessary (SPSS 1993). Macrophyte growth, measured as the change
in plant biomass over an experiment, and tissue P concentration were evaluated in
relation to sediment nutrient treatments with ANOVA. The downstream position ot the
plants in the streams were included as blocking factors in the ANOVA models only when
significant (P < 0.05) The assumptions of normality and variance homogeneity were
tested for the depe ' ariables with the Lilliefors and the Levene tests, respectively,
and wh i necessary, ...la were analysed non-parametrically or were rank-transformed and
the ranked numbers analysed parametrically (Potvin and Roff 1993). The power to detect
true differences among treatment means was estimated for each analysis and when power
was < 0.50 (50 %) statistical tests were interpreted at o = 0.10 to balance the probability
of committing Type I and Type II errors (SPSS 1993). Reverse Helmert contrasts, where
the mean of one group is compared tn the mean of all preceeding groups, were used to
identify differences among unamended, N-enriched, P-enriched, and N+P-enriche

sediments in the nutrient limitation experiment (SPSS 1993).

While ANOVA detects differences among treatment means, it does not describe the
pattern of response of a dependent variable to quantitative manipulations of an
independent variable (Keppel 1991; Day and Quinn 1989). Multiple comparisons of
means tests, while identifying differences among specific treatments, are inappropriate
tests to use when the independent variable in the desiga is yuantitative becausc they
provide no information about the underlying trend in the data (Petersen 1977 Buker
1980; Dawkins 1983). Consequently, polynomial contrasts, where ANOVA treatment

sums of squares are partitioned into single degree of freedom orthogonal comparisons
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representing linear, quadratic, cubic and higher order trends in the data were used to
describe the pattern of response of aquatic plants to increasing sediment P treatments
(Day and Quinn 1989; Sokal and Rohlf 1981; Keppel 1991). The significance of each
contrast was tested against the residual mean square error with the F - distribution (SPSS
1993). A significant linear trend in the data implies that there are no inflections in the
pattern of response, while a quadratic trend indicates the presence of one inflection in the
response-curve (taking the shape of a parabola) (Keppel 1991). While the only limitation
in the number of trends that can be detected is the number of treatment groups, there is
little biological theory to guide the interpretation of higher-order trends and consequently
interpretation of the contrasts was not taken beyond the quadratic component (Keppel
1991). When trend components were significant, a regression curve that related
macrophyte biomass or tissue P concentrations to sediment P enrichment was
constructed. The points on the curve were calculated such that the predicted mean for
each treatment equalled the grand mean of the dependent variable plus the product of the
calculated slope of the line and the trend coefficient generated for each treatment and
contrast (linear or quadratic) ( ['able 3.2) (Keppel 1991). Linear and quadratic regressions
were combined when both were significant. The polynomial coefficients were
constructed to include unequal spacing of the treatments and unequal replication (Table

3.2) (Robson 1958; Cohen 1980; SPSS 1993).

3.2 RESULTS

3.2.1 I situ Observations

Macrophyte cover in the South Saskatchewai. River was negligible upstream of the
Saskatoon sewage treatment plant, incressed “or a distance up to 60 km downstream of
the plant and thereafter declined (Figuiw 3.3). Cover was low in 1986, however discharge
in the South Saskatchewan River at Saskatoon was high during the open-water months of

this year relative to the other years survzyed (Table 3.3). While the distance at which
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Table 3.2: Linear (C,) and quadratic (C o) coefficients used to construct polvnomial
contrasts for all experiments. Treatment names refer to quantity (in grams) of P-only
fertilizer added to sediments. Coefficients are orthogonal and have been constructed to
include unequal treatment spacing.

P. pectinatus 1994 P. pectinatus 1995 M. exalbescens 1995
Treatment C, Co C, Co C, C,
oP -0.467 0.514 -0.463 0.517 -0.460 0.521
0.1P - - -0.352 0.096 -0.351 0.176
0.2P - - -0.241 -0.232 -0.243 -0.091
0.3P - - - - -0.135 -0.282
0.4P - - -0.019 -0.610 -0.027 -0.396
0.5P -0.359 0.198 - - - -
0.6P - - - - 0.186 -0.391
0.8P - - 0.426 -0.253 0.406 -0.079
1.0P -0.252 -0.047 0.649 0.483 0.622 ().542
1.5P -0.144 -0.221 - - - -
2.0P -0.036 -0.323 - - - -
2.5P 0.072 -0.354 - - - -
3.0pP 0.180 -0.313 - - - -
4.0pP 0.395 -0.017 - - - -
5.0P 0.611 0.564 - - - -
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Figure 3.3: Percent macrophyte cover (left column) and macrophyte biomass (right
column) in the South Saskatchewan River, downstream of the Saskatoon sewage
treatment plant from 1984 to 1987. Biomass data presented as mean + 1 SE.
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Table 3.3: Discharge in the South Saskatchewan River at Saskatoon averaged for the
open-water months (April - October) and annually. Mean (& 1 sE) discharges in the river
since the completion of the Gardiner Dam upsiream of Saskatoon are also presented
(1965-1986) (Environment Canada 1992). “n/a" means not available duc to missing
winter data.

Year April - October discharge (m?/s) Annual discharge (m?'/s)

1984 56 85

1985 66 92

1986 170 202

1987 97 n/a

1988 51 n/a
1965-1986 183 +23 2141 15
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maximum biomass was observed varied among years (from 25 to 100 km downstream),
the pattern in the data was similar to the cover data with cover and biomass increasing
from zero »~strcam of the Saskatoon sewage treatment plant to a maximum downstream
of the city' and declining further downstream (Figure 3.3). In 1988, biomass reached a
maximum approximately 75 km downstream of the sewage treatment plant while open-
water and sediment exchangeable P and N concentrations peaked 25 km downstream of

the «.utfall and declined further downstream (Figure 3.4).

Maucrophyte biomass in 1992 ranged from 4 to 577 g/m* and was correlated with sed. nent
P concentrations (F, 45 = 19.87, P <0.0001). This relationship was best described by a
quadratic fit through the data, explaining 28% of the variability in biomass (Figure 3.5).
Biomass was not related to sediment N concentrations (P 2 0.06 tor linear and quadratic

regressions) (Figure 3.5).

3.2.2 Artificial Stream Experiments

3.2.2.1 Buckground conditions

Water teriperature in the head tank differed among all experiments, and was highest in
the 1994 I, pectinatus experiment (F, 354 = 5428, P < 0.0001) (Table 3.4). Daily PAR in
1994 aveiaged 41.1 E/m® and was greater than during both the 1995 experiments (F. 203 =
13.35. P <0.0001). Irradiance :"'d not differ amorg the two 1995 experiments (P > 0.05,
L.SD). Cpen-water concentrations of phosphorus (TP, TDP, and SRP) and nitrogen (NH,
and NO, +NO,) did not differ between the head tank and the downstream ends of the
artificial streams for all experiments (P > 0.12). TP and SRP concentrations did not
differ among experiments (P > 0.10), while TDP concentrations in the 1994 P. pectinatus
experiment were higher than in both 1995 experiments (F; ¢, = 12.65, P < 0.0001). NH,
and NO,+NO; concentrations varied among experiments (F,, = 7.93, P = 0.0009 and

144 =21.17. P <0.0001), and were lowest in the 1995 and 1994 P, pectinatus

59



Macrophyte biomass

0 ] I | 1 ] |
0 25 50 75 100 125 150
120 — 400
—Oo— TDP
90 —e— Exchangeable P
~1 300
60
30 -1 200
0 | 1 L | | L1 100
0 25 50 75 100 125 150

700 -— 100
—o— TDN

—&— Exchangeable N -| 75

Open-water nutrients (ug/L)
Sediment nutrients (Jig/g DW)

100 ] i | { ] | I 0
0 25 50 75 100 125 150

Distance downstream of Saskatoon sewage outfall (km)

Figure 3.4: Mac:ophyte biomass (top panel) in early August, and mean scasonal P
(middle panel) and N (bottom panel) concentrations in the South Saskatchewan River,
downstream of the Saskatoon treatment plant in 1988. Open-water (open symbols) and
sediment (solid symbols) nutrients are presented. All data are mean + 1 SE.
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N (bottom) concentrations. Samples collected in 1992 in the South Saskatchewan River,
downstream of the Saskatoon sewage treatment plant.
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Table 3.4: Background conditions of artificial stream experiments. Data presented as
mean % ] SE.

P. pectinatuy M. exalbescens

Paraineter 1994 1995 1995
Water temperature (°C) 21.24 £ 0.03 16.36 1+ 0.04 17.28 + 0.03
Daily PAR (E/m?) 41.1+ 1.6 31.6 + 1.6* 249 + 4. 7%
Stream water chemistry

TP 314 204 1 2642

TDP 13+£2 4.7+0.2 4.71 0.5

SRP 23+0.2 26103 264 0.0

NH, 1442 S.it1.0 14+ 3

NO,+NO, 102+ 10 186+ 10 1351 14
Discharge (m*/day-flume) 1800 + 140 < 270 1300 + 420
Stream velocity (m/s) 0.034 £ 0.001 < 0.012 0.043 £ 0.005

*PAR in 1995 averaged from Aug. 8 - 17 for M exalbescens experiment and from Aug, 8 - Sept, 22 for /?
pectinaris experiment.
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experiments, respectively. Water velocity in the streams was higher in the upstream than
the downstream blocks for all experiments, and discharges were highest in the 1994 P,
pectinatus experiment. To minimize damage 1o plant shoots caused by heavy siltatior,
velocity and discharge were maintained low (below detection limits) for the 1995 P,

pectinatus experiment (Table 3.4).

Scdiment exchangeable P concentrations in pots with plants were linearly related to the
quantity of P-only fertilizer added for all experiments {Figure 3.6). Sediment P
concentrations in pots without plants did not vary over the duration of the 1994 P,
pectinatus experiment or the 1995 M. exalbescens experiment (P > 0.05; non-parametric
ANOVA). Moreover, at the end of the experiments, sediment P concentrations did not
differ (/' -~ 0.05; r-test) between pots with and without plants except for the lowest P-
enrichment treatment (corresponding to = 45 pg/ g exchangeable P) in the 1994 P,
pectinatus experiment and the 0.8P treatment (corresponding to = 210 pg/g exchangeable
P) in the 1995 P. pectinatus experiment which were less in pots with plants than without

plants (P < 0.019; t-test).

3222 iment nutrient limitation

P. pectinatus growth, expressed as the change in biomass of the 1994 experiment,
differed among unamended, N-enriched, P-enriched, and N+P-enriched sediments (¥ 335 =
3.54, P =0.024; ANOVA on rank-transformed data) (Table 3.5). Biomass was greatest
on the N+P-enriched sediments, lowest on unamended and N-enriched sediments, and
intermediate on the P-enriched sediments (Figure 3.7). There was no difference in
biomass between the unamended and N-enriched sediments (P = 0.721; Reverse Helmert
corrast). Biomass on the P-enriched sediments was greater than the combined biomass
on N-enriched and unamended sediments (P = 0.097; Reverse Helmert contrast

interpreted at & = 0.10 because of low power), and biomass on the N+P-enriched
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All regressions significant at P < 0.0001.
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Table 3.5: Analysis of variance table for change in biomass in relation to sediment type
(unamended, N-enriched, P-enriched, N+P-enriched) in the nutrient limitation

experiment, with Reverse Helmert contrasts.

Source of Variation SS daf MS F P
Treatment 1149 3 383 3.54 0.024
N vs unamended 14 1 14 0.13  0.721
P vs N & unamended 315 1 315 291  0.097
N+P vs P, N, & unamended #20 1 820 7.57  0.009
Residual Error 3791 35 108
Total 4940 38
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sediments was greater than biomass on unamended, N-enriched, and P-enriched

sediments (P = 0.009; Reverse Helniert contrast) (Table 3.5, Figure 3.7).

nt rati resulting in maximum growth

Growth of P. pectinatus in the 1994 experiment increased with increasing concentrations
of sediment P (Figure 3.8). While there was no overall difference in the change in plant
biomass among treatments (P = 0.165; ANOVA), a linear trend in the data was evident (P
= (0.003) with biomass increasing with sediment P concentrations (Table 3.6). Over a
narrower range in sediment P (the 1995 P. pectinc. s experiment), there were no
differences in biomass among treatments (P > 0.05; ANOVA) and no trend component to
the data when interpreted at & = 0.05 (Table 3.6, Figure 3.8). The power to detect true
differences in biomass among treatments for the 1995 experiment was, however, very low
(22%), and a linear trend was evident when interpreted at & = 0.10 (Table 3.6). Growth
of M. exalbescens differed among the P-amended sediments (P = 0.025; ANOVA) and

increased linearly with sediment P concentrations (Table 3.6, Figure 3.8

While the overall biomass . sponse of P. pectinatus to sediment P enrichment was not
different among treatment', Table 3.6), tissue P concentrations differed (P < 0.023;
ANOVA) among the sedii» :nt P groups for both the 1994 and 1995 experiments (Table
3.7). Over a 900 pg/g span » sediment exchangeable P concentrations (the 1994
experiment), linear and quadr.. ¢ trends with increasing sediment P concentrations were
observed in plant tissue P concentrations (Table 3.7, Figure 3.9), while over a finer scale
(60-300 pg/g exchangeable P; the 1995 experiment) linear and quadratic trends were
evident in tissue P concentrations when interpreted at & = 0.10 (because of low power)
(Table 3.7, Figure 3.9). Tissue P concentrations of M. exalbescens also differed with
sediment P enrichment (P <0.001; ANOVA; Table 3.7) and linear and quadratic

cemponents (P < 0.002) in the pattern of increase were evident (Table 3.7, Figure 3.9).
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Table 3.6: Analysis of variance tables for change in biomass in relation to P addition,
with polynomial contrasts.

a) P. pectinatus 1994

Source of Variation SS df MS F P
Treatment 0.92 8 0.11 1.52 0.165
Linear 0.74 1 0.74 7.76 0.003
Quadratic 0.01 ] 0.01 0.11 0.747
Residual Error 5.28 70 0.08
Total 6.20 78

b) P. pectinatus 1995

Source of Variation SS daf MS F P
Treatment 0.03 5 0.01 0.87 0.512
Linear 0.02 1 0.02 297 0.094
Quadratic <0.01 1 <0.01 0.14 0.711
Residual Error 0.24 33 0.01
Total 0.27 38

¢) M. exalbescens 1995

Source of Variation SS daf MS F P
Treatment 2.25 7 0.32 2.57 0.025
Linear 1.79 1 1.79 14.32 <0.001
Quadratic 0.03 1 0.03 0.28 0.601
Residual Error 5.62 45 0.12
Total 7.88 52
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Table 3.7: Analysis of variance table for tissue P concentrations in relation to P additions,
with polynomial contrasts.

a) P. pectinatus 1994

Source of Variation SS df MS F r
Treatment 79.54 8 9.94 4.11 0.001
Linear 49.12 1 49.19 20.29 < 0.001
Quadratic 18.84 1 18.84 7.78 0.007
Residual Error 135.56 56 18.84
Total 215.10 64
b) P. pectinatus 1995
Source of Variation SS df MS F r
Treatment 23.42 5 4.68 3.06 0.023
Linear 14.55 1 14.55 9.56 0.004
Quadratic 5.90 1 5.90 3.85 0.058
Residual Error d 32 1.53
Total 2 37
c) M. exalbescens 1995
Source of Variation SS df MS F P
Treatment 92.83 7 13.26 25.30 <0.001
Linear 82.15 1 82.15 156.7 < 0.001
Quadratic 5.79 1 5.79 11.04 0.002
Residual Error 23.59 45 0.52
Total 116.4 52
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3.3 DISCUSSION

Field observations of macrophyte biomass and cover in the South Saskatchewan River
conducted from 1984 to 1988 demonstrated that plant growth increased downstream of
the City of Saskatoon sewage treatment plant and lend support to the beliet that
anthropogenic nutrient loading to aquatic systems increases plant production (Wong, ¢f al.
1979; Werner and Weise 1982). Macrophyte cover was, in general, nepligible upstream
of the Saskatoon sewage outfall, peaked at approximately 60 km downstream and
declined with distance further downstream (Figure 3.3). Low cover in 1986 can be
attributed to high discharges in the river relative to the other years surveyed (Table 3.3).
A similar pattern to the cover data was observed in macrophyte biomass, albeit with
greater interannual variability, with increasing biomass up to 100 km downstream of the
sewage treatment plant, followed by a decline in biomass further downstream (Figure
3.3). Comparison of biomass and nutrient concentrations in 1988 revealed that biomass
reflected the patterns in open-water and sediment P and N concentrations, with peak
biomass occurring 50 km further downstream than the site of peak nutrient concentrations
(Figure 3.4). More detailed survey data from 1992 revealed that scdiment exchangeable
P concentrations explained 28% of the variability in macrophyte biomass in the South

Saskatchewan River (Figure 3.5).

The observation of increased submerged vegetation downstream of the Saskatoon sewige
outfall is consistent with reports of effluent-enhanced submerged vegetation in the Tees
River. England (Butcher 1933), the Great Stour River, England (Fox ef al. 1989), and the
Bow River, Alberta (Chambers ¢f al. 1991). However, macrophyte growth was not
related to nutrient-enrichment in the Crnojevica River, Yugoslavia (Smith e: . 1978),
the River ivel, England (Owens and Edwards 1961), the Holston River, Tennessee
(Peltier and Welch 1989) or Badfish Creek, Wisconsin (Madsen and Adams 1988),
suggesting that macrophyte-nutrient relationships are confounded by other factors that

have been demonstrated to influence submerged plant growth (Madsen and Adams 1988:
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Owens and Edwards 1961). Thus, the low explanatory power of the 1992 biomass-
sediment nutrient relationship (Figure 3.5) may be due to site-specific differences among
factors such as sediment type, texture and organic matter content (Barko er al. 1986),
herbivory (Sheldon 1987; Lodge and Lorman 1987), current velocity within macrophyte
beds (Chambers er al. 1991), or light availability (Peltier and Welch 1969; Canfield and
Hoyer 1988).

Artificial streams were employed to isolate the effects of sediment P and N on aquatic
macrophytes from other potentially confounding factors. Historically, artificial streams
have been used to determine the relationship between algal production and nutrients in
lotic systems (Bothwell 1993), and the benefits offered by an artificial stream approach.
such as increased environmental control and increased treatment diversity and replication.
can also be applied to macrophyte studies (see Lamberti and Steinman 1993 for review).
In my experimental stream design. compromises were necessary to accommodate the
depth of water needed to grow rooted macrophytes and simulate velocities typical of
macrophyte beds in the South Saskatchewan River. Thus, the streams used in this study
were narrower than the width to depth ratio of five recommended to avoid irregular flows
caused by boundary layers along the walls of the streams (Nowell and Juraars 1987), and
water velocities were generally slower than the targeted 5 cm/s due to limitations in the
rate of water delivery and high rates of siltation in 1995 (Table 3.4). These compromises
were olfsct, however, by the bencfits gained by locating the streams adjacent to the South
Sashutchewan River, upstream of any municipal and industrial sewage outfalls. and by
supplying natural river water to the system under conditions of ambient light and

temperature,

Results from the artificial stream experiments revealed that biomass of P. pectinatus
plants was enhanced with the addition of P-only fertilizer. and further enhanced with the
addition of P-only and N-only fertilizers in combinaiion, suggesting that plant growth in

the South Saskatchewar River is primarily limited by the availability of P and, when P is



in excess, secondarily limited by N availability (Figure 3.7). These results are consistent
with observations made in situ in 1992, namely that r.acrophyte biomass was related to
sedimem P but not N concentrations (Figure 3.5). Moreover. the artificial stream P-
enrichment experiments demonstrated that over a broad range of sediment P
concentrations, biomass of P. pectinatus and M. exalbescens increased lincarly with
sediment P and a saturaticn point was not reached (Figure 3.8). However, tissue P
concentrations for all experiments increased linearly up to a critical sediment P range of’
200-450 pg/g exchangeable P, beyond which tissue P was not enhanced (F igure 3.9),
These critical P concentrations represent the plants’ physiological optima with respect to
sediment P (Ernst 1978). and maximum macrophyte biomass in the South Saskatchewan
River in 1992 was reached near the physiologically optimal concentration of
approximately 200 pg/g exchangeable P (Figure 3.5). However, the 1988 biomass survey
revealed that macrophyte biomass was not maximal throughout the portion of the South
Saskatchewan River where sediment P concentrations were above 200 pg/g exchangeuable
P (approximately 15 to 100 km downstream of the sewage treatmert plant), indicating
that macrophytes in the South Saskatchewan River are constrained by additional factors
and do not achieve maximum biomass over the entire geographic range where sediment P
conditions are optimal (Figure 3.4). Itispos: . . .* . - ohvtes growing closest to the
Saskatoon sewage treatment plant are constraincd *y hig b cissolved N concentrations in
the open-water. It has been demonstrated that open-water N concentrations influence
macrophyte community assemblages in strearns of the Upper Rhine plain, Alsace
(Carbiener er al. 1990) and they are negatively correlated with macrophyte biomass in
laiies and rivers worldwide (Chapter 2). Furthermore, invertebrate abundance may be
higher closer to the sewage treatment plant, thereby increasing grazing pressure on

aquatic plants and maintaining biomass low despite optimal sediment P concentrations.

Studies such as this cne that have atteinpted to relate estimates of macroyhiyte growth in
rivers to P and N concentrations in the surrounding environment (water or sediments)

have yielded contradictory resuite probabiy because of the interactive effects of physical
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(light availability, temperature, flow), chemical (pH, micro-nuirients, dissolved oxygen),
and biological (tissue decay, competition, herbivory) factors (Wong and Clark 1976). For
example, macrophyte growth was P-limited in rivers of Southern Ontario (Wong and
Clark 1976), the Grand River, Ontario (Walker ¢ al. 1979), Spring Creek, Pennsylvania
(Wright and McDonnell 19864) and the River Hull, England (Carr and Goulder 19920). In
contrast, the growth of macrophytes in 19 streams in Denmark was limited primarily by
faciors other than nutrient availability such as variable discharge rates and variations in
sediv «ent texture (Kern-Hanson and Dawson 1978). The macrophyte Myriophyllum
aquaticum in drainage ca:vi!s and lakes of northern California was limited by the
availability of N, P, or neither nutrient depending on location (Sytsma and Anderson
1993), while studies of macrophyte growth in eutrophic streams (i.e. where P and N are
present in excess) have generally found that light availability and water temperature are
the primary determinants of growth (Peltier and Welch 1969). For example, macrophyte
growth is not limited by nutrient availability in eutrophic streams in Florida (Canfield and
Hoyer 1988), Little Conesus Creek, New York (Peverly 1979}, Badfish Creek, Wisconsin
(Madsen and Adams 1989), and the Crnojevicéa River, Yugoslavia (Smith et al. 1978).
Thus, while macrophytes in some rivers are limited by P and N availability, the general
picture of the macrophyte-nutrient relationship is one of poor predictability both within
specific rivers (this study) and among many rivers spanning a broad geographic range
(Chapter 2). This poor predictability of biomass based on P and N concentrations
indicates that macrophyte growth is constrained by many contrasting factors that are not

casily quantified.

The variability in macrophyte response to nutrient addition makes it difficult to set
environmental guidelines (or nutrient release to control submerged plant biomass. In siru
investigations and controlled experiments demonstrated that macrophyte growth in the
South Saskatchewan River is enhanced downstream of the City of Saskatoon’s sewage
treatment plant, primarily due to increased sediment P availability. Thus, nutrient control

will result in reduced macrophyte biomass in tlie river, bui the extent of the reduction is
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difficult to quantify primarily because of the low predictive power of the in siru sediment
exchangeable P and biomass relationship (Figure 3.5). Other studies have likewise
demonstrated that open-water concentrations of P and N are poor predictors of
periphyton, epiphyton, and macrophyte biomass in rivers (Chapter 2; Jones er ul. 1984:
Kern-Hanson and Dawson 1978; Canfield and Hoyer 1988. Peltier and Welch 1969).
Thus, while management strategies aimed at controlling phytoplankton production in
lakes have been successful by focusing on open-water P and N concentrations, this
approach may work in some specific situations but won't necessarily apply to all rivers.
The current approach being adopted or reviewed by agencies from across North America
is to regulate primary production in terms of the plants themselves and not P and N
concentrations (Nordin 1985; Health and Welfare Canada 1992: Saskatchewan
"nvironment 1988; Ministére de I'Environnement du Québee 1992: U.S.EPA 1988 and
:*74&b). Thus, while P and N reductions in Saskatoon’s sewage effluent will fower
macrophyte biomass downstream ef the city, the magnitude of the decrease cannot b
well-predicted because of the interactive effects of factors other than sediment P. such as
invertebrate grazing, flow differences, and ini- ves variability, on macrophyte growth,
Furthermore, there is only limited informatior. « - “he relationship between open: water
and sediment P and N loads and on the lag time between nutrient reductions in the open-
water and lowered sediment nutrient concentrations. Therefore. the management of’
.ooted macrophytes in prairie rivers should integrate long-term reducticn®. in municipal
nutrient loading and short-term control of undesirablc biomass through manual harvesting

tecliniques.
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Chapter 4: Synthesis



4.0 SYNTHESIS

The aim ¢ this research was to quantify the relationship between phosphorus (1) and
nitrogen (N) in freshwater systems and the abundance of rooted aquatic plants. The vole
of these nutrients in regulating macrophyte abundance, particularly in lotic cnvironments,
is poorly understood. Some studies have found that macraphytes are either P or N-
limited and that abundance increases in response to nutrient enrichment (¢.¢ Carr and
Goulder 1990; Anderson and Kalff 1986), whereas other studics have demonstrated that
riacrophyte abundance is not related to P and N concentrations in cither the open-water or
sediments (Canfield and Hoyer 1988 Kern-Hansen and Dawson 1978). To address my
objective and to clarify the conflicting reports in the literature, two main projects were
undertaken. The first project examined the relationship between macrophyte biomass and
open-water concentrations of P and N in lakes and rivers worldwide with data published
in the literature (Chapter 2). The second project integrated in site observations and
artificial stream experiments to determine how sediment P and N concentrations regulate
growth of submerged aquatic plants in the South Saskatchewan River, Saskatchewan and
to make recommendations regarding the management of rooted macrophytes in prairic

rivers (Chapter 3).

On a global « 3G%2 of the variability in macrophyte biomass was
explaine’ and N and the type of waterbody (lake or river ).
Macroy- correiated to concentrations of P and ncgatively
correlate le open water, suggesting that there is an optimal
combinat.. - b4t results in maximum biomass. Elevated concentrations

of N may be ... « rooted macrophytes and may inhibit growth, supporting the
observation by Carbiener et al. (1990) that ammonium-toxicity can cause shifts in
macrophyte community associations. Both open-water P and N concentrations and
macrophyte biomass were higher in rivers than in lakes, possibly because rivers are the

dominant receivers of nutrient-rich wastes and because flowing water decreases boundary
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layers at the plant surface allowing increased gas exchange and increased rates of
photosynthesis (Madsen and Adams 1988; Westlake 1967). Furthermore, the higher
biomass observed in rivers on a global scale may reflect a sampling bias, namely that
macrophytes are often studied because they cause problems that are generally associated
with rivers (such as impeding boat traffic or increasing the potential for flooding), rather
than for their ecological importance as providers of habitat for fish and invertebrates and
contributors to the cycling of nutrients and organic matter. A compaison to other
empirical models revealed that as the complexity of aquatic plants increases from
phytoplankton to periphyton and macrophytes. the predictability of biomass based on
open-water P and N decreases, pointing to the importance of more than one factor in

regulating abundance of higher vegetation

On a local scale, macrophytes growing in the South Saskatchewan River, SK. grew
abundantly downstream of the Saskatoon sewage treatment plant, but the link between P
and N concentrations and plant biomass was not clear based on in situ observations
(Chapter 3). For example, sediment P concentrations explained only 28% of the
variability in macrophyte biomass collected in 1992, and surveys of the river in 1988
demonstrated that the site of peak biomass did not co respond to the site of peak sediment
and open-water nutrient concentrations. This pattern of increased growth downstream of
nutrient-rich effluents was observed in the Tees River, England (Butcher 1933), the Great
Stour River, England (Fox e ul. 1989) and the Bow River, Alberta (Chambers ¢f al.
1991). Artificial stream experiments employed to elucidate the relationship between
sediment P and IN concentrations and macrophyte growth in the South Saskatchewan
River supported in situ observations that plant growth was P-limited. Morcover, these
studies found that maximum growth was likely to occur when sediment P concentrations
were greater than 200 pg/g exchangeable P. This critical concentration represents the
physiological optimum of rooted macrophytes under controlled conditions. Other factors
such as light availability, open-water N concentrations, and discharge rates will also

affect macrophyte biomass in situ (Wong and Clark 1976), resulting in an ccological
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optimum for plant growth that may not coincide with sites where sediment P
concentrations are optimal. In this study, n phyte biomass in the South Saskatchewan
River was not maximal throughout the zone of physiologically optimal sediment P

concentrations, supporting the hypothesis that other factors control plant growth in situ.

Management strategies aimed at controlling phytoolankton production through reductions
in nutrient-loading in lakes have been successful, primarily because of the strong
relationship between phytoplankton biomass and open-water P and N concentrations,
However, results from this study have demonstrated that while macrophyte biomass is
related to open-water P and N concentrations worldwide, the predictability of this
relationship is low (Chapter 2). Furthermore, macrophytes were limited by sediment P-
availability in the South Saskatchewan River, SK, but sediment P and N concentrations
did not explain a large amount of the variability in r :acrophyte biomass based on in situ
observations (Chapter 3) Thus, while reductions in nutrient-loading to freshwater
systems may result in decreased biomass of rooted macrophytes, the magnitude of this
decrease cannot be quantified. Currently, agencies from across North America are setting
guidelines to regulate primary production in terms of the plants themselves, rather than on
water quality criteria (e.g. Nordin 1985; Health and Welfare Canada 1992 Saskatchewan
Environment 1988; Ministére de I'Environnement du Québec 1992; U.S. EPA 19884 and
1988b), and it is recommended that plant management strategies in the South
Saskatchewan River follow a similar approach. Reductions in P and N loading in the
City of Saskatoon sewage effluent should be encouraged to promote long-term reductions
in macrophyte abundance, while short-term management strategies should attempt to
identify levels of biomass and percent cover that are considered undesirable and
harvesting of the plants when necessary should be performed to maintain macrophyte

abundance below these levels.
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Appendix A: Data from literature survey



Site
L/R

Meanbio

Maxbio

TP
TDp

SRP

TN

TKN

TIN

NH4
NO2+NO3

References

A.0 LEGEND TO TABLE A1l

Site of waterbody investigated;

Indicates type of waterbody investigated (L = lake; R = river);
Mean macrophyte biomass, during period of peak biomass, in
g/m’;

Maximum macrophyte biomass, during period of peak biomass, in
g/m?;

Total phosphorus concentration in the open-water, in neg/L;

Total dissolved phosphorus concentraticn in the open-water, in
pe/L;

Soluble reactive phosphorus concentration in the open-water, in
pg/L;

Total nitrogen concentration in the open-water, in ug/L;

Total Kjeldahl nitrogen concentration in the open-water, in pg/L;
Total inorganic nitrogen concentartion in the open-water, in ug/L;
Ammonia concentration in the open-water, in pg/L;

Nitrite plus nitrate concentration in the open-water, in pg/L;

Data source.
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Appendix B: Artificial stream pilot experiments



B.0 INTRODUCTION

To test the hypothesis that macrophyte production in lotic systems is related to sediment
phosphorus (P) and nitrogen (N) concentrations, | wanted to develop growth curves for
aquatic plants growing in a range of sediment nutrient concentrations. Pilot experiments
were conducted to: (1) identify a rooting medium low in exchangeable P and N but which
otherwise mimicked sediments in the South Saskatchewan River downstream of the
Saskatoon sewage treatment facility, (2) determine the most efficient method for
enriching the sediments with N-only and P-only fertilizers, (3) determinc target
concentrations for sediment enrichment, and (4) determine the extent to which P and N in

the sediments diffuse into the overlying water.

B.1 PILOT EXPERIMENT 1: Identification of Sediment Source

The design of the artificial stream experiments necessitated that sediments low in
exchangeable P and N be used so that they could be enriched at a range of concentrations
spanning natural riverbed nutrient levels. Sediment-bound P and N in the South
Saskatchewan River range from 28 to 360 Hg/g exchangeable P and <1 to 116 pg/g
exchangeable N (Chambers and Prepas 1994) and it was desirable that background
nutrient concentrations of sediments in the artificial stream experiments were at or ncar
the lowest recorded values. Sediments in prairie rivers tend to be spatially heterogencous
both in terms of nutrient availability and particle size whereas terrestrial soils are more
homogeneously distributed, relatively easy to collect, and can mimic river sediments in
terms of fertility. Thus, to reduce collection times and ensure that relatively
homogeneous samples were collected, terrestrial soils were used in place of river

sediments as rooting media in the artificial stream experiments.

Two terrestrial soil types were investigated as possible rooting media for the plants in the

artificial stream experiments: (1) C horizon (approximately 50 cm below surface) soils of
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the Bradwell association (described by Tiessen et al. 1982), and ( 2) roadside soils
collected near the town of Asquith, SK. Both types of soil were analysed for sediment
exchangeable P and N concentrations (analytical methods described in Chapter 3) and
particle size distribution (following McKeague 1978). The Bradwell and Asquith soils
had exchangeable N concentrations that were comparable to the lowest concentrations
found in river sediments (Table B1). Exchangeable P concentrations, however, were
higher than river sediments, and the soils were therefore diluted with pure silica sand (=
2.5 ug/g exchangeable P) to lower sediment P levels. A dilution of one part Bradwell soil
to four parts silica sand was required to obtain P concentrations which approached the
targeted 30 ng/g exchangeable P concentration (Figure B1). Asquith soils had lower
exchangeable P concentrations than pure Bradwell soils prior to dilution with silica sand
(Table B1) and 1:1 and 2:1 silica sand to Asquith soil dilutions produced sediment P
concentrations near the targeted 30 pg/g exchangeable P, in 1994 and 1995, respectively
(Figure B1). Particle size analysis revealed that Asquith soils most closely resembled
South Saskatchewan River sediments (Table B2), and it was therefore decided that
Asquith soils, diluted 1:1 with silica sand in the 1994 experiments, and 2:1 with silica
sand in the 1995 experiments, would be used as the rooting media in the artificial stream

experime:nts.

B.2 PILOT EXPERIMENT 2: Determination of Enrichment Method

Three envichment methods were compared to unenriched sediments (control) to
determine the most efficient way to increase sediment nutrient concentrations: €3
fertilizer mixed into sediments (mixed), (2) fertilizer packaged in nylon bags and buried
in sedimznts (bag), and (3) fertilizer placed at the bottom of pots and allowed to diffuse
throughout the sediments (bottom). Sediments were enriched with either P-only or N-
only fertilizers. Westco ammonium-nitrate fertilizer (34.5-0-0) was used as a N source
for the sediments and Vigoro "Super Triple Phosphate” (0-46-0) was used as a P source.

Enrichment methods were tested at low and high N and P doses, such that 785 mL of
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Table B1: Nutrient concentrations of Bradwell and Asquith soils

Soil Type Exchangeable P (ug/g DW) Exchangeable N (ug/pg DW)
Bradwell soil 118 <]
Asquith soil 1994 73 <1
Asquith soil 1995 110 <]
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Figure B1: Sediment exchangeable P concentrations of pure soils and soils diluted with
silica sand to lower sediment P levels. Data are mean + 1 SE.
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Table B2: Particle size distribution - Potential sediments

Sediment Type

Sand (%6)

Silt (%)

Clay (")

South Saskatchewan River sediment
Bradwell soil
Asquith soil

Pure silica sand (sieve analysis only)

76
30
90
100

10
47
3
0

14
23
7
0
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sediment were enriched with 2 g of fertilizer for the Low N and P treatments and 8 g of

fertilizer for the High N and P treatments.

Sediments used in this experiment were undiluted Bradwell soils, as an appropriate soil
low in P had not yet been identified. It was assumed that the response of sediments to the
different enrichment methods would be similar, regardless of initial nutrient
concentrations. Sediments were well-mixed prior to nutrient-enrichment. Enriched
sediments were firmly packed in plastic pots approximately 10 cm bighand 10 cm in
diameter (approximately 785 mL). Each enrichment method was replicated three times
per treatment and three unenriched control pots were analysed for each group of treatment
doses, with a total of twelve pots per treatment. The pots were placed in one of four
plastic containers, filled with distilled deionized water (DDW), according to their
treatment. After five days, the pots were removed and the sediments analysed for

exchangeable N and P.

The three enrichment methods were compared for each treatment dose, and tested for
homogeneity of variance using the Bartlett-Box F test (SPSS 1993). With the exception
of exchangeable P concentrations for the High P treatment, the variances for
exchangeable P and N concentrations did not significuutly differ from each other for each
treatment type (P > 0.05). Mean exchangeable P concentrations in both the Low and
High P treatments varied significantly with enrichment method (ANOVA, F, ,=9.02, P
=0.02 and F, ,, = 5.20, P = 0.05, respectively) and in both cases the method of mixing the
fertilizer into the sediments resulted in the highest P concentrations (Figure B2). Mean
exchangeable N in the Low N treatment also varied significantly with enrichment method
(ANOVA, F, ,, = 44.0, P <0.001), with the mixed method resulting in the highest
concentration (Figure B2). Enrichment methods for the High N treatment did not
significantly differ from each other (ANOVA, F,,=0.24, P = 0.80) (Figure B2).
Unexpectedly, P concentrations in the Low and High N treatments also varied
significantiy from each other (ANOVA, F32,=11.8,P=0.002and F;,,= 178, P=
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0.001, respectively) (Figure B2). It was assumed that these variations were due to
background variability in the P content of the soils. These results showed that the method
of mixing fertilizer into the sediments resulted in the highest nutrient enrichment and it

was decided that this method would therefore be used in the artificial stream experiment.

Further analysis of the sediments in this preliminary experiment revealed that the addition
of P-only fertilizer resulted in an increase in exchangeable N concentrations such that all
three enrichment methods for both Low and High P treatments had higher N
concentrations than the control pots (Figure B2). Exchangeable N concentrations did not
significantly differ between the three enrichment methods for either the Low or High P
treatments (Tukey multiple comparison tests; 0.2 <P <0.5,0.1 <P < 0.2, respectively),
but controls varied significantly from the bottom and mixed methods in the Low P
treatment (0.025 < P <0.05) and from the mixed methods in the High P treatment (0.001
<P <0.005) (Figure B2). When P-only fertilizer dissolves in the sediments, hydrogen
ions are released and these compete for adsorption sites with ammonium (NH,;).
Hydrogen ions have the same valence but smaller surface area than NH,” ions and

therefore adsor: more readily to clay particles, releasing NH,* ions into solution.
B.3 PILOT EXPERIMENT 3: Establishing Target Nutrient Concentrations

The desired range of sediment P concentrations for the sediments in the 1994 and 1995
artificial stream experiments was from 30 to 600 ng/g and 30 to 200 pg/g exchangeable
P, respectively, as these encompass the range of concentrations reported for sediments
collected in the South Saskatchewan River (Chambers and Prepas 1994). Pilot
experiments were conducted in 1994 and 1995 to determine the amounts of fertilizer

required to achieve these ranges.

Asquith soil mixed with one and two parts silica sand in the 1994 and 1995 target

experiments, respectively, was used as the sediment source. Vigoro "Super Triple
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Phosphate" (0-46-0) P-only fertilizer was used as the P-source in both experiments.
Sediments were enriched at eight doses (unamended. 0.5, 1.0, 1.5, 2.0, 2.5. 3.0 and 4.0 I\
fertilizer added) and three replicate pots were tested for each dose. The fertilizer was
mixed thoroughly with the sediments and these were packed into experime.ial pots (785
mL) that were randomly distributed among four large plastic containers filled with DDW.
Pots were equilibrated in their containers for five days after which sediments were

analysed for exchangeable P concentrations.

Sediment exchangeable P concentrations were directly related to the amount of P-only
fertilizer added to the sediments in both the 1994 and 1995 experiments (+* = 0.89, P <
0.0001; * = 0.97, P < 0.05, respectively) (Figure B3). Based on the relationship between
P-only fertilizer and sediment P concentrations (Figure B3), it was anticipated that an
addition of 5 g fertilizer in 1994 would result in an exchangeable P concentration near
625 ug/g DW, and that an addition of 1.0 g P-only fertilizer in 1995 would produce a

sediment exchangeable P concentration of approximately 200 pg/g DW.,
B.4 PILOT EXPERIMENT 4: Determination of Nutrient Release from Sediments

To determine the extent of diffusion of N and P from enriched sediments into the
overlying water and the change in sediment nutrient concentration over time, sediments
enriched at one of three nutrient doses (1.0 and 3.0 g P-only fertilizer and 3.0 ¢
ammonium-nitrate fertilizer, plus untreated controls) were firmly packed into
experimental pots (27 replicate pots per treatment) and these were placed according to
their treatment in large tanks filled with untreated South Saskatchewan River water.
Three pots from each treatment were randomly sampled at 24 hours and 7 days following
immersion in the tanks. Sediment samples were collected and frozen for later analysis of
exchangeable P and exchangeable N concentrations. Water samples were collected 5 and
12 days following immersion of the sediments into the tanks and analysed for soluble
reactive P (SRP).
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SRP concentrations in tanks with sediments enriched at 3.0 g P-only fertilizer averaged
275 pg/L compared to < 1 ng/L in the control tanks after five days, while after twelve
days SRP in these tanks was greater than 550 pg/L compared to 1.7 ue/L in the controls.
Based on these observations, it was evident that nutrient diffusion from the pots would
occur in the artificial stream experiments and the decision was made to cover the
experimental pots with plastic lids to minimize diffusion. It was also decided that
additional pots would be placed in the artificial streams to be sampled several times over

the course of each experiment to monitor changes in sediment nutrient concentrations.
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Appendix C: Artificial stream experimental data



C.0 LEGEND TO TABLES C1, C2, AND C3

Treatment  Treatment name refers to quantity of fertilizer added to sediments.
in grams (e.g. treatment “0.5P™ implies that 0.5 g of P-only
fertilizer was added to the sediments in each pot);

Pot # Reference number to identity pots, plants, and treatments;

N-only, P-only fertilizer
Weight in grams of ammonium-nitrate and P-only fertilizer added
to sediments in pots;

Exchangeable N, P
Sediment N and P concentrations at the completion of the artificial
stream experiments, in ug/g DW. Exchangeable N not analysed
for all pots in the 1995 experiments;

Initial biomass
Initial dry weight (in grams) of macrophytes at the time of
transplanting. Biomass converted to dry weight based on a fresh 1o
dry weight ratio determined from additional plants for each
experiment;

Final biomass
Oven-dry weight (in grams) of macrophytes at the completion of
the artificial stream experiments;

Change in biomass
Final biomass minus initial biomass, in grams dry weight;

Tissue P, N Macrophyte tissue nutrient concentrations at the completion of the

experiments.
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