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ABSTRACT

This thesis discusses the application of a simulation
method to determine the accuracy of an approximate distribution
of the sample cross-correlation between two linear, stationary
Markov series with known autocorrelations of lag one, P1 and
02 . The topics discussed are: the simulation of the sanmple
cross-correlation distribution; the generation of pseudo-random
numbers; the statistical testing of simulation results; the
determination of the critical values of the approximate
distribution; the application of the simulated distribution‘to
estinmate the accuracy in the approximate distribution and its

critical values.

The results presented here show that the approxinate
distribution is accurate for low values of the product of
autocorrelations piP2 (lp,p) £ .5).  For high values of the
autocorrelations and small sample sizes (¢ 30) of the Markov
series, however, the approximate distribution appears to have

too large a variance.

A practical example is used to illustrate how the
approximate distribution may be applied to test for correlation

between two series of data of known autocorrelations.
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CHAPTER I

THE APPROXIMATE NULL DISTRIBUTION OF THE SAMPLE CROSS-

CORRELATION BETWEEN TWO LINEAR STATIONARY MARKOV SERIES.

1.1 Introduction,

e

The testing for correlation between two variables is often
desired, but well-known tests for this purpose are generally
based on the assumption that at least one variable is not
autocorrelated (that is, there is no interdependence or serial
correlation between successive observations of the variable)..ln
economic, meteorological, biological and some other time series,
autocorrelation usually exists. Hence, there is a real need for

a test for correlation between two autocorrelated series.

To use hypothesis testing, the null distribution of the
sample correlation must be available. For two series of
independent observations, the sample cross-correlation r is
known to have the null distribution of the Pearson correlation
coefficient (see Keeping [21]). However, if both series are
autocorrelated, very little is known of the exact distribution

of r.

Since the npathematical model of a time series is a

stochastic process, the most promising approach to the



satisfactory analysis of time series is the use of stochastic
processes. McGregor and Bielenstein [30] have derived an
approximate null distribution of the cross-correlation between
two autocorrelated series which are generated by stationary,
linear Markov processes. This approximate distribution depends
only on the size of the sample taken in each series and the

product of the autocorrelations in the series.

In order to apply the approximate distribution of r in any
valid test for correlation, it is necessary to determine the
accuracy of this distribution and to compute the critical values
of r. This paper will consider; a) the use of simulation to
check the accuracy of the approximate distribution; b) an
algorithm for evaluating the critical values of r; c) the
estimation of error bounds for the approximate critical values
of r; and d) the application of the approximate distribution

and critical values in some practical examples.

An attempt at obtaining the accuracy of the approximate
distribution is nmade by comparing this distribution to a
simulated distribution of the cross-correlation coefficient.
simulation of the cross-correlation distribution requires the
use of a large number of normal random numbers. The simulation
procedure is described in Chapter 2.  Chapter 3 will discuss
the properties and choice of a pseudo-random number generator
suitable for use in the sinmulation. Before the simulated

distribution can be used for any purpose, it is necessary to



determine how closely it represents the true distribution.
Chapter 4 discusses a series of test criteria which can be used
to determine the goodness-of-fit of the simulated distribution.
The comparison of the approximate and simulated distributions,
and the estimation of the error in the approximate critical
values of r are discussed in Chapter 5. Chapter 6 will consist
of an exanple of application of the approximate
distribution, the conclusion, and discussions of further

research to improve the simulation efficiency.

Let ( xt ' Yt )e t=1,2,...4n, be a sample of n pairs of
values observed from two linear, stationary Markov processes

(that is, first order autoregressive processes) defined by:

Xt p1 Xt_ 1 + Zt

(1. 1)

Yt szt_l + ZE
where 2y and ZE are assumed to be independent, normal, N(0,1)
random variables; and the autocorrelations of lag one of the

processes, p, and p, , respectively are assumed to be known.

-



The cross-correlation (or product correlation) between the

two stationary processes, X, o+ Y. is defined by:

pXY = COV(Xt ’ Yt) (1.2)

[Var(Xy) . Var(yy) Jr/2

it is a number between -1 and +1, and is zero when Xt and Yt

are uncorrelated.
An estimator of Pyy is the sample cross-correlation

coefficient Lyy o given by:

Tyy = tgl (X, - 0 (t, - 1) (1.3)

n a2 ¥ yy2q1/2
[tﬁl(xt - X) tzl(yt -12]

where

The random variable Lyy is an unbiased estimator of Pyy if

pXY = 0' since E(rXY) = pXY .

Processes of the type given in Eqn. (1.1) are frequently
used as sampling models in the studies of economic time series;
and testing for correlation between two series generated by
these processes is often desired. It is often required to test

the null hypothesis that the two processes X Y are

A



uncorrelated (that is, Pyy = 0). Por this purpose the
distribution of the sample cross-correlation Lyy + under the

assumption 0, nust be available, as well as the

Pxy ©

corresponding and appropriate critical values for Lyy

When either {xt} or {yt} or both, for t=1,2,...,n, are
series of independent observations (that is, either p1 or P2 or
both are zero so that at least one of the series is a sample
fron a normal distribution ) the sample cross-correlation Tyy
has the following null distribution of the Pearson correlation

coefficient (see Keeping [21]),

plr) = [ 1~z (=872 (1.4)

B[-zl(n-Z),-zl]

where r is a value of the random variable rXY + p(r) is the

probability density function of Tyy ¢ 1D is the number of

observations taken in each Markov series, and B is the Beta

function. 1In this case the two processes xt v Yt are

uncorrelated, = 0. The density function p(r) is a

Pxy
symmetrical, bell-shaped curve for n 2 5 so that

E( = 0.

Txy
For an illustration of the graph of p(r) see Fig. 1.1 with

p1p2 = 0. It can be shown that

E( (n=~-1)-

2
iy
and hence

Var(r = (n- 1)1,

XY)



The kurtosis is =6/(n-1), which tends to zero as n increases.

For very large n, the distribution is approximately normal.

When both series {xe} {y¢} are autocorrelated, the
Pearson distribution no longer holds and very little is known of

the exact distribution of the sample correlation Lyy «

McGregor and Bielenstein [30] have found an approximate
probabilty density function of the sample correlation IXY under
the hypothesis that the population cross-correlation is zero,
that is, Py = 0. For a random sample { (x, Yo ) o

t=1,2,...,0 } generated by the two processes in Eqn. (1.1) the

approxinate density function, p*(r), of Lyy Was derived to be

p* () = 2M‘3(1-pxpz)l/2 (1 - r2ft4)/2
X =
B[ 341, 1] {{ (1401092 - ‘Hilpzf"’]'ZL + (1'9192)y-2

1 1
L0002 - borpar2 o + (pipa)}z g1 ¢ ok 3,
X X

[ (T+p1p2)2 = Up,p,r2]1/2

(1.5)

where

Boo= n + pip,( 6= 5p,0 > 2,

T - (p1py )2

Ipll <1 ' |pz| <1 [ Irl <1 ’ n

v

6,

7
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=

'

-
-
Pt
—

[}

T -1 (i) .

[ S

TG =-7)

The derived approximate density function, p*(r), depends only
on the sample size n and the product of the autocorrelations,
p1P2 . For the special case when the product of the
autocorrelations is zero (that is, p1p2 = 0) the approximate
density function reduces to the null distribution p(r) given in

Eqn. (1.4).

t . . . .
The k h moment, m; ¢ of the approximate distribution may be

evaluated by the following general formula :
n = fltk- .p ¥(r) dar .
-1

The variance, skewness and kurtosis are given by :

* *
Variance m = (mp)?2

* *
Skewness my / (mp )3/2

. * *
Kurtosis = my / (m, )2



Computation of the above statistics involves nuperical
integration and evaluation of p*(r). The calculation procedure
used is similar to that described in Appendix A for the
evaluation of the critical values of Ly* The above statistics
for the p*(r) distribution for n = 10, with pip2 = -.25, 0, 5
and n = 15, 30, 50, 75, 100, with pip. = -.5, 0, .5 are
tabulated in Table 1.1. Plots of p*(r) for these values of
(b, p,py are shown in Figs. 1.1 (a), (b), (c), where the same
scale is used for all three figures., The graphs show that the
variance of the distributions for pi1p2> 0 is larger than that
of the pi1pp2= 0 distribution and the variance of Loy for p1p2< 0

is less than that for pipz2 = 0.

"



Moments, Skewness and Kurtosis of Approximate Distribution

notopip Variance 4th Mon. Kurtosis
10 [ -.25| 0.0 [ .1002 0.0 . 0267 0.0 2.663
0] 0.0] 11N 0.0 0303 0.0 2.450
51 0.0 .1956 0.0 .0782 0.0 2.043
15 | =5 | 0.0 | .0550 0.0 .0097 0.0 3.216
0 0,0 L0714 0.0 0134 0.0 2,625
S| 0.0] L1460 0.0 0469 0.0 2.205
30 | -.5 ] 0.0 .0162 0.0 .0084 0.0 3.200
0 1 0.0 0345 0.0 .0033 0.0 2.807
.5 | 0.0 | .0837 0.0 .0173 0.0 2.464
50 | -.5 | 0.0 .0082 0.0 .0002 0.0 3.122
.0 | 0.0 | .0204 0.0 0012 0.0 2.882
5 1 0.0 .0536 0.0 . 0075 0.0 2,623
75 | =5 0.0 .0051 0.0 <0001 0.0 3.046
0 1 0.0 .0135 0.0 .0053 0.0 2.921
51 0.0 .0370 0.0 .0037 0.0 2.724
100 -.5 | 0.0 | .0037 0.0 0000 0.0 2,834
0 | 0.0 L0101 0.0 .0003 0.0 2,941
.51 0.0 | .0283 0.0 0022 0.0 2.782
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1.3 outlining the Steps used in Studying the Approximate
Distribution of the Sample Cross-Correlation,

In order to apply the approximate density function of Loy

in any valid test for correlation the following points have to

be considered :

a)

b)

c)

since the derived density function of ka (Eqn. (1.5)) is
only an approximation dependent on the two parameters, the
sample size n and the product of the autocorrelations,
P10z, it is necessary to determine the accuracy of the
approxinate distribution for various combinations of these
parameters, particularly for small sample sizes ({since the
approximation is of 0(%) and partly for the reason stated

in (b) below).

It is also necessary to establish a minimum sample size for
which the approximate density function may be used with
acceptable accuracy, since in practice the size of series

of data or items available for analysis is usually small.

In order to test the null hypothesis that two
autocorrelated series are uncorrelated, critical values of
Ly for appropriate values of pP1P2, under the assumption

that Pyy = 0, have to be available. Hence, these critical



14

values have to be computed from the approximate density

function for each suitable value of pi1p2 .

These points of interest will form the subject of

discussion of this thesis. The thesis will focus on :

1)

2)

3)

The design of an algorithm for evaluating the critical
values of Iyy Using the approximate density function.
Discussion of the algorithm, including numerical

integration, will be contained in Appendix A.

The simulation of linear stationary Markov series and the
distribution of the cross-correlation coefficient Cyy in
Chapter 2. The discussion will cover a method of simulating
realizations of linear stationary Markov processes,
including a criterion for determining stationarity of the

processes, and of obtaining an empirical distribution of

the sample cross-correlation of these realizations.

The generation of pseudo-random numbers, including
techniques of generating normal random numbers and criteria
for testing the quality of a random number generator in
Chapter 3. This chapter will also consider the desired
properties and the choice of a suitable generator for use

in the simulation.




4)

5)

6)

7

15

The determination of the error in simulation by a series of
goodness-of-fit tests and the estimation of a suitable
sanple size to use for a desired accuracy in the simulation

in Chapter 4.

The use of simulation as a method for determining the
accuracy of the approximate distribution of Ly P
especially for small sample sizes in Chapter 5. This
chapter will study methods of comparing the simulated and

approximate distributions and critical values.

The estimation of error bounds for critical values of Sm
as computed from the approximate density function "in

Section 5.4.

The application of the approximate distribution in a

practical example in Chapter 6.
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CHAPTER II

STMULATION OF THE CROSS-CORRELATION DISTRIBUTION.

In order to study the distribution of cross-correlation
between two linear, stationary Harkov series for a variety of
values of sample sizes and autocorrelations, only simulation
provides ready access to a large number of these cross-

correlations.

7o simulate realizations of a stationary process of the

form,

X = pX + zZ (2. 1)

the following requirements are evident :

a) an initial starting value, Xg 3

b) a ‘'good' random number generator which will produce

independent normal random numbers ;

c) a criterion for determining the stage at which the process

may be considered to have become stationary.
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The starting value X, may be arbitrarily chosen as it
will be shown that the behaviour of the stationary Markov

process is independent of Xy«

Chapter 3 will discuss the choice of a 'good' random number
generator and will contain a description of the random generator

that will be used in the simulation.

The criterion for determining stationarity of the process

in Eqn.(2.1) will be discussed in the following section.

2.2 Determination of Stationarity of Simulated Mar.ov Process.

A stochastic process Xt is said to be stationary up to

order K if and only if ,

1) the mean and variance are constants, independent of t ;

2) the covariance Cov(xs ¢ X is a function of the lag

¢ )
Is - t| only;

3) all nmoments of the fornm

k k k
E(xtl,xtz,...,xtn)
1 2 n
up to order
k., +k, +...+k = K,

1 2 n



18

where k; and K are integers, depend only on the time lag

L(tiha) - t, 1.

Consider the first order autoregressive process defined by
o= 0 xt—l + zt (2.2)

where o is the autocorrelation of lag one of the process

and {Z. } is a sequence of independent random variables of known
. 2 .

constant mean Wy and constant variance 0, .+ By successive

substitution, Eqn. (2.2) may be rewritten as
x = ofx o+ fli, 2.3
t - p 0 i=0p . ( . )

where ﬁ) is the initial value of the process. Taking
expectation, we have

t-1

t .
E(X = X + L o E(Z
() p LB )

L SRR WIREL VIS

[XO Ty, /(1= p) 1] pt + uz/(1~ p)

(2.4)
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since E(Z, ;) = Hg and | P | < 1. The variance of the

process is given by

var (Xt ) E{{X¢ - E(X¢) ]2}

t-1 . t=1 ;
= E lZ ¢ - 1 2
{( 1£0p t-1 lgop “z] }
t-1 .
= BE{f .Zopl(zt-i - ug ) 1%
l=

kel o '
= E[i§0[921(zt-i - ug?
+ 20 (B¢ - uy) (Ze-1- Hg)

taee v (Zg- Ug) (21 WD

= o {eHEE,; - H)2)
+ 20M[E(Zg - M) E(Zt-1 = MHp)

+ eee + E(Zy - W)E(2g - ¥g) ]}

= ‘E { p2i0'§
+ 201 (E(Zy) - w2 (E(Zg-) - W2

t ...t (B(Z2) - Hg) (E(ZD - ¥ 1}
= o2 (1= p28) /7 (-8 o (2.5)

since  {Zy} are independent random variables of constant mean
and variance. The covariance of X5, Xt s 2t , may be

expressed as follows @
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Cov (Xt I} Xs) = E{[xt = E(xt) ][xs = E(xs) ]}
t-1 . s-1 .
= E{[ igopl (zt"i = uZ) ][ jgopj (zs—j = lJz) ]}

’ t~1 i (s~t)~-1.
= E{[ Ip"(Z-i = Wg) ][jgopj(zs-j - g

t=1
+opsttI) et (Bt-i - w2 B

bl
= E{ pS [1;001 (Zt -1 = UZ) ]2

t-1 . t)-1.
+ leopl(Zt_i - UZ) i[ )- pJ(ZS J = 1‘[2) ]}

= pS- tE{qi pi{By-g - uz) 13}

£)-1.
¢ T (e - u) L b PRy - b))

i=0 j=Q ‘
= gEest(l- g2t) /(1= 2, (26)

using the result obtained in Egn. (2.5).

For the process in Eqn. (2.2) to be stationary, the
mean, E(Xy), and variance, Var(Xy), must be independent of t,
and the covariance, Cov(X. , Xg), must depend only on the lag
Is-t|. Since | p | < 1,
t

lin  p = 0

tro

and from Egms.(2.4) , (2.5) and (2.6) , we have as t tends to

infinity,
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%ig [EX)T = wg 7 (0-0)

.'tL:ig\) {Var(Xy) ] 0% /(1= 02)

lim [Cov (X , Xg) ]

trw

025t/ (1= ) .

Hence, the process (2.2) 1is stationary only after a sufficient
number of terms has been generated. The time point at which the
process may be considered to have stabilized can be determined
by setting pt equal to a very small value (that is, a numerical
zero). In the simulation the following condition for

stationarity is used :
ot = 10-e (2.7)

Hence, the time point ty after which the process Xt

stabilizes is given by
ty = 1In1W08/1nj|opo]|. (2.8)

At time point t, we may write

E(X;) wz / M=-p) + ¢

Var(Xy) 0% / (1 - DZ) + g
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Covi¥y » Xg) = o2 0/ (1= @) + ¢n

where ¢ , g' ,e'' are small error terms (of the order of
10-8), Since the errors are small we may assume that at this

time point we have a stationary series.

As can be seen from Eqn. (2.5) and (2.6) , the variance and
covariance are independent of the initial value Xy + and by
setting pt equal to a numerical zero as a condition for
stationarity the mean becomes independent of X; . Hence, in the
stationary state the process X does not depend on the

starting value Xj .

For the case where {Zt} is a sequence of independent

N(0,1) random variables we have as t tends to infinity,

lin [E(X%)] = 0

t->00
lin [Var(Xy)1 = 1/ (1 - p?)
£

"

Lis [Coviy , )] = 5%/ (1 p)



23

2.3 Generation of the Cross-Correlation Frequency Distribution.

To obtain empirical distribations of the cross-correlations
between autocorrelated series, a set of observations of two
series is generated by means of processes of the form in
Eqn. (2.2) and the sample cross-correlation between these series
is computed using the formula given below. The following

notation is used :

LR linear, stationary Markov processes defined by
Ke = Pide1 v 2t
(2.9)
Yo = pely g v 24
Py , P2 = known autocorrelations of lag one
Zt ' Zé -~ independent normal N(0,1) random variables
ty o ty - time-points at which Xt , Y¢ , respectively,

reach stationarity as determined by Egn. (2.8)

n - the number of realizations of each of the
processes X, , VY, that is, the sample size

or length of the time series
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rXY - the sample cross-correlation between the Xt

and Yt processes

r - a value of the random variable rXY

N - the number of simulated observations r of Tyye

The following procedure is used to simulate N values of
the sample cross-correlation between two series generated by Xy,

Yi ¢

1) The first t, sucessive values of ({x;} are generated and

discarded.

2) The next n generated values are then taken to be the sample

observations of the ({x;} series.

3) The above process is repeated to obtain a sample of n

observations of the ({y.} series.

4) The values of the sample cross-correlation ryy for this
particular (Xe oY ) sample is then evaluated by the

following formula :
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= Il -
X, - §)2 - §)ann/2
(xi - %) tgl(yt y) 2]
where

I ;o= 1 Iy

t ’ - .

t=1 Bt

5) steps (2) , (3) and (4) are repeated N times to obtain N
sinulated values of the sample cross-correlation

coefficient ryy between the ({x{} and ({y{} series.

The sample of N observations of r generated by this
procedure is then organized and summarized to obtain the

following :
1) A frequency table as shown in Tables 4.2 and 4.3.

2) A graph of the relative frequency distribution,
representing the empirical probability density function of

Lyyr @S shown in Pigs. 4.2 and 4.3,

3) A graph of the cumulative frequency distribution,
representing the empirical cumulative distribution function

of Ly 88 shown also in Figs. 4.2 and 4.3.
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4) The k th moment, my, about the mean of the empirical

distribution as given by the general formula :
_ N _ k
My = [igﬁri my) ]/ N

5) Skewness and kurtosis as given by :

Skewness m, / (m, )3/2

Kurtosis my / (m3 )2

The simulated distributions of cross-correlation for
p1pg =0, n=10, 30 and N = 7000 are shown in Figs. 4.2
and 4.3 , and tabulated in Tables 4.2 and 4.3. Table 4.4 shovs
the nmoments, variance, skewness and kurtosis computed for these

distributions.

Digressing from the consideration of two processes,
consider for a moment the behaviour of an autoregressive process
of lag one by itself. Fig. 2.1 shows a series of 100 terms
generated according to Eqn.(2.9) with p; = .5 and the
corresponding observed autocorrelations rXX(k) of lags
k=1,2,...,20. Fig. 2.2 demonstrates these values for 02 = -.5,
The autocorrelation values of rxx(k) and rYY(k) are given in
Table 2.1. The sample autocorrelation of lag k for the

Xt process is given by :
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&
k) = 251 (X - D) (K - B (2.10)

nzk = LNk z
5@ - B2 Ty - DE)/e

r
XX

The theoretical autocorrelation of lag k is given by

= olkl
bygRl = p (2.1

For the series with p; = .5 , the theoretical

|kl, which

autocorrelation function (acf) is given by pxx(k) = .5
decays to zero exponentially with increasing lag, as can be
observed from the plots of the sample acf in Fig. 2.1(b). For
the series with P2= -,5, the theoretical acf is pYY(k) = (-.SﬂkJ
which also damps out exponentially but oscillates from positive
to negative values, reflecting the oscillatory nature of the
series. This behaviour is also indicated by the sample acf in
Fig. 2.2. From these two examples it can be seen that a process
with only one nonzero autocorrelation, that of lag 1, has an
exponentially decaying autocorrelation function. Hence, in
practice it is often difficult to determine whether or not the
time series comes from an autoregressive model of order ome or
from some other model. Box and Jenkins [5] have developed

guidelines for both identification and estimation of time series

nodels.



Table 2.1

First 20 Lags of the Sample ACF for Sample of 100 Terms of the
Xt and I, Processes.

Sample ACF
k rxx(k) rYX(k)
1 0.4099 -0.3945
2 0.2012 0.1141
3 0.0228 -0.0083
4 0.0069 -0.1193
5 0.0804 -0.0149
6 0.0122 -0.0195
1 0.13u49 -0.1372
8 -0.0106 0.0265
9 0.0890 -0,0733
10 -0.0289 0.0403
1 -0.0181 0.1209
12 0.0127 0.0359
13 -0.0428 -0.0617
14 -0.0149 0.0070
15 -0.0447 0.0570
16 0.1209 -0.9440
17 0.4429 0.1043
18 0.0335 -0.1475
19 -0.0895 0.0172
20 -0.0672 -0.0032
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Fig.2.2(a)
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CHAPTER III

PSEUDO-RANDOM NUMBER GENERATION.

3.1 Introduction to the Generation of Random Numbers.

All Monte Carlo methods and most simulation studies depend
on the use of randor numbers, usually in great quantities.
Hence, the need arises for fast methods of generating 1large
nunber of random numbers with a fairly wide variety of

distribution functions.

Most techniques for generating random numbers from specific
distributions depend on random numbers uniformly distributed
over the interval (0,1). The usual procedure is to generate
values of uniform random variables from the interval (0,1) and
by some functions transform these values to random numbers from
the desired distribution. For example, if y is a uniform
random number from the interval (0,1) (that is, U(0,1) random

number) then

x = = In(t-3) / A

is a random number having the exponential distribution with

parameter . If y, 6, y, are U(0,1) random numbers then
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(=2 1In y, y1/2 Cos 2 Ty,

N
n

(3.1)

z, (-2 1n y,)1/2 sin 271y,
are a pair of independent standard normal (that is, N(0,1))
randon numbers. This last set of transfomations is known as the

Box-Muller method [6].

In complex sampling experiments it is useful to be able to
select random numbers and repeat the calculations as a method of
checking the results and increasing the accuracy of the
experiment. The need for the generation of a random number
sequence that can be regenerated is self-contradictory because
of the definition of random numbers. It is, however, possible to
obtain random numbers by a deterministic method which display
randon behaviour. In practice, a random number is obtained
usually by a computer program by means of an algorithm which
will generate a sequence of numbers satisfying various
statistical criteria of randomness. Such a sequence is called

pseudo-randon.

Two types of methods of generating random numbers for
sampling with computers have been proposed, the physical process

and the arithmetical process.

In the physical process, the output of some physical device

which is attached to the computer, such as random noise or pulse
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generated is converted to a segquence of random digits. This
nethod, however, involves practical difficulties such as the
storage of a large volume of randon numbers for check
calculations and hence, is usually not very applicable for fast

access of random numbers in present digital machines.

In the arithmetical process, a sequence of pseudo-randon
nupbers is derived using an algorithm and an initial supply of
random numbers as starting values. The sequence of generated
nunbers is always cyclic (since the number representation in a
digital computer has a finite number of digits); however, if the
cycle is long emough this will present no difficulties. The
generated numbers are deterministic and completely predictable
as soon as the initial values and computational rules are known.
Four types of arithmetical processes for generating pseudo-

randon numbers have been used in various studies :

a) the mid-square method,
b) the randomization by summation modulo p method,
c) the sequence of digits in transcendental numbers,

d) the residue-class or nultiplicative congruential method.

In this thesis only the multiplicative congruential method will
be considered (see Section 3.4). Descriptions and discussions on
the other three methods may be found in Jannson [17] and Tocher

[38].
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3.2 Desired Properties of a Pseudo-Random Number Genmerator.

To determine the performance of a random number generator,
a broad range of statistical properties are investigated. Scue
desirable properties which a 'good' generator should satisfy and
which can be used for comparison between different generating

processes are :

a) Good statistical behaviour =~ the generated numbers (in
large and small samples) must satisfy various statistical
criteria of randomness and the distribution function of
these numbers must approximate as closely as possible to

the desired distribution.

b) Long period - the period after which the sequence of
nunbers repeat itself should be sufficiently long to ensure
that the sequence contains enough random numbers for it to

be useful in a particular problen.

c) Rapid and short calculating procedure - the generating time
on the computer must be short and the space used for

storage in core memory small.

Points (b} and (c) are often easy to study and for most

generators can be achieved by proper choice of initial values
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and parameters of the generator. The choice of initial values

and parameters, however, will depend on the computer used.

Point (a) is more difficult to study and requires thorough
investigation in many different respects. The usual procedure is
to test a sample of generated numbers by standard statistical
tests concerning distribution and randomness. However, the
suitability of a generator for any study depends upon the
properties required for that particular use. Hence, a necessary
condition for the approval of a sequence of pseudo-randon
nunbers is that the numbers pass such statistical tests as are

relevant for the application under consideration.

3.3 Statistical Tests for Pseudo-Random Number Generators.

Ideally these statistical tests should be selected in
accordance with the actual applications, since different
applications are more or less sensitive to different properties
of the random numbers. In practice, however, most of the
generators have a general use as standard routines and they
consequently have to pass a number of standard tests. The tests
most often used will be briefly introduced here. Detailed
descriptions of these tests and their applications may be found

in [17].

A
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a) Tests for the Distribution of Generated Numbers.,

1)

2)

3)

Moments.

The mean, variance, third and fourth moments, skewness
and kurtosis are computed for samples of the generated
numbers and compared with the corresponding values fron

the true distribution.

Goodness-of-Fit of Generated Numbers to a Theoretical

Distribution.

A goodness-of-fit test is performed on a sample of the
generated numbers to determine how closely the generated
numbers fit the desired distribution. The two most
commonly used goodness-of-fit tests are :

i) Chi-square test, and

ii) Kolmogorov-Smirnov test.

Cumulative Distribution.

The sample cumulative distribution is conputed for the
generated numbers and compared with the values from the

desired theoretical cumulative distribution.
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4) order and Small Sample Statistics.
The r'" order-statistic of a sample is the gt
smallest observation in a sample. A useful test for the
local statistical properties of a generator is to
conpute the distribution of the order statistics, range,
mean and variance for small samples of size, say,
4,6,10,16. A lack of randomness would cause these
observed distributions to deviate from the theoretical

distributions.

b) Tests for the Randomness of the Generator.

1) Serial Correlation.

A serious type of non-randomness which might be expected
from the generator is correlation between successive
numnbers and between numbers that are k elements apart.
Measures of  these correiations are the serial
correlations of lag 1 and 1lag k. If the numbers are
randon there should be no correlation between them. 2As a
test for randomness the sample correlations are computed

and compared with the theoretical values.
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Run Tests.

Serial effects could also be revealed by rum tests. A
run up (or down) of length p is defined as a subsequence
X1 > % <Xy < veen £ xi+p-l < xi+p > Xi+p+l (and
with reversed inequality signs for runs down) in a

sequence of n random numbers.

Let r nunber of runs in the sequence,

P

Then expressions for expected values are given by Levene

nunber of runs of length p in the sequence.

and Wolfowitz [39],

E(r) = (28 - 1) /3 ;
Var (r) = (16§ - 29) / 90 ;
E(rp) = [2N(p2 + 3p + 1) - 2(p3 + 3p2 - p-4) ]

(p + 3!

Let r(m) be the number of runs above and below the

mean, then
™) = 2+ 1.

These runs are counted by constructing a sequence of ¥
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signs with the §th sign plus or minus depending on
whether x ig greater than 1/2 or less than 1/2 .
The runs of plus and minus signs are then counted. For
testing the generated Sequence, the observed moments are

compared with the abovye fornulas.

Extreme Valyes.

In a sequence of randon numbers the extreme values are
€xpected to be randonly dispersed. The expected number
of such values is 1 per 10,000 (see Chen [7)) and they
should follow the Poisson distributiog With mean 1, 1p
this  test the observed cumulatjve distribution ' of
extreme values is compared with the expected value
computed from the Poissop distribution, The Kolmogorov-

Smirnov  test may be used to compare the two

distributions,
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Generators.

o e e e i 5 Al e ey S D R o e e S -

The multiplicative congruential generator which is based on

number theory takes the form

LI A X, (mod m), 1=0,1,2,..., (3.2)
where A is the multiplier, m is the modulus, and X, is the
starting value or seed; X A and n are selected integers such
that xo <nmn, A<n, 0 < x, < m. The sequence {xn / n} is

0
then taken to be the uniform random number sequence in (0,1).

The procedure used in this generator is briefly outlined as

follows :

1) A beginning value Xy (also known as the seed) is chosen,
the first number of the pseudo-random sequence ;
2) X is multiplied by the constant multiplier A ;

3) The product is divided by the modulus m and +the remainder

taken as a new X, o the next pseudo-random number ;

) Steps 2 and 3 are repeated, with the new random nunmber in

place of Xy for every successive number desired.
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The multiplicative generator is one of the most frequently

used generators and appears to be a satisfactory generator for

the following reasons :

a)

b)

¢)

It is economical in computing time and DeROry requirements.
Only two numbers A and x, have to be stored.
Computation of X.4+1 camn  be accomplished by one
nultiplication since, if m is chosen judiciously, taking
moduli merely means shifting the radix point of the product

of X and x,,

For proper choice of m, X and Xg o the sequence of
random numbers obtained from Eqn. (3.2) will never
degenerate (that is, produce any X, equal to zero, which
would make all subsequent Xn+1 2ero), and a maximum cycle

length may be obtained.

This generator has been well-tested in several studies
(7). (8], (9], [26] and has been found to be highly
satisfactory - the word 'satisfactory! referring in large
part to the existence of good statistical properties for

the sequence of numbers generated.

The process of searching for a good multiplicative

generator is focused on determining A and B so that the
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generator behaves well according to the evaluation principles of

Section 3.2. The following briefly summarizes the conditions

which these parameters should satisfy :

1)

2)

3)

4)

It can be shovwn from number theory (Fermat-Euler theoren)
that in order to generates a full length cycle (that is, a
cycle for which A" returns to the starting point for each
repetition) :

gcd(A,m) = 1 and ged (xg,m) = 1

From number theory it can be shown that if m is a prime
number and A a primitive root of m then Eqn. (3.2)
generates a full cycle which is a permutation of the

integers 1,2,.s..,0-1.

The operation of taking a congruence involves a division
and it is desirable to choose m to make this usually
lengthy operation rapid. For a binary computer the usual
choices of m are :

n o= 28 or n o= 28 & 1
where B is the number of bits of a computer word. In
these cases, division by m can be replaced by a shift or a

shift and a subtraction or addition, respectively.

Choice of m =2 B pakes the calculations fast and simple

but it makes it impossible to attain the largest possible
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periods, The maximum cycle attainable is of length 2 B2
instead of 2B « The values of X , X, 9giving this cycle

must satisfy the conditions

A=t 3 (mod 8)
xg isodd, 1 € x5 < 2% -1,
5) For n = 2B - 1, the longest cycle (that is, period

m-1) will be given when B is chosen so that 2° - 1

is a prime and A is a primitive root of m ; then the
cycle length is 2B - 2, DNote that 28 - 1 is prinme

only if B is prine.

6) A should be large so as to prevent a small value X,
being followed by small values Axn ' lzxn . A3xn re o o e
A large value of ) causes Axn to exceed m and so X1

is not necessarily small.

Some of the nultiplicative generators that have been
investigated by various auathors and tested for use with
different types of binary computers are listed below in Table
3.1. In most cases the author has either made reference to or
based the choice of the parameters for the generator on the
recommendations of Coveyou and MacPhersonm [8], who have given
one of the few analytical evaluations of pseudo-random number

generators in the literature.



Table 3.1

4y

Some Pseudo-Random Number Generators for Binary Computers.

Author (s) Computer | Progranm n A Xy Gen.*
Lang. Tine
(usec)
S.Gorenstein n.a. GPSS 235 513 513 n.a
D.Y.Downhan KDF9 ALGOL 67099- | 8192 | odd n.a.
F.D.K.Roberts 547 integer
G.Marsaglia IBM 360 | FORTRAN 232 [ 8pt3 |random | n.a.
T.A.Bray IBM 7094 | FORTRAN 235 | 8nt3 |integer
SRU 1108 | FORTRAN 236 1
D.W.Hutchinson | IBM 7094 | n.a. 235-31 | 58 n.a, n.a.
P.A.W.Levis IBY ASSEM. [ 231-1 78 random | 31.2
A.S.Goodman 360767 integer
J.M.Miller
D.S.Seraphin IBYN ASSEM. 232 32781 1 11.8
360/67
Oakridge IBN ASSEM. 232 (45280 518 27
Laboratory 360/67 -7053
E.H.Chen IBM FORTRAN 231 21443 | odd 35
360/90 218+3 I integer

n.a. stands for 'not available'.

*

generating time per number.
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In the simulation of the cross-correlation distribution we
are required to use standard normal N(0,1) random numbers.
Hence, we shall now consider some techniques of generating
normal random numbers which are based on the multiplicative

congruential method.

unber Generator for Binary Machines.

The random normal number generator which was proposed by
E.H.Chen [7] 1is based on the combination of two multiplicative
congruential generators. This dual type of generator has also

been suggested by Kronmal [23] and, Maclaren and Marsaglia [28].

The multiplicative congruential generator used by Chen is

of the form

Ry = Ry ( 2P+ k) (mod 231) (3.3)
where p is a positive integer, 2 < p < 31,

K is an odd integer,

R, the starting number, is a random odd integer.

0

Uniform random variables from (0,1) are then obtained by

U; = Ry / (23t -1 (3.4)
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Two independent random standard normal variables are produced

from two independent uniform variables, U, and U, , by the
Box and Muller transformation :
X, = (-21nU, )t/2 Cos(2nU,)
(3.5)
X, = (2100 yt/2 sin(2m u,)

Normal variables with other means and variances may be obtained

by suitable linear transformations of the X i's.

Good statistical behaviour of the generator in Eqn. (3.3)
is dependent on the careful choice of the values of p and K.
The performance of various combinations of p and K with
respect to serial correlation (lag 1), mean and variance for
the normal variables was investigated by Chen. In order to
improve serial correlation a dual type of generator of the

following form was tried and tested by Chen:

R1,i-1(21% + 3) (mod 231)

=
=
-
-
]

(3.6)

[R2,i-1(218 + 3)](218 + 3)  (mod 231) .

to
[ 3]
-
]

This generator was found to be satisfactory relative to several

criteria for testing nmormality and randomness. The periods of



47

the first and second generators are 229 and 228 ,
respectively. The combined period of the dual generator is at

least 231,

A brief account of the series of statistical tests
performed by Chen on his random number generator and the results
obtained is given in the following section. To test the
generator, ten trials each of sample size n = 106 were
successively generated with the first pair of starting integers
randonly chosen. Por each trial the series of tests listed below
was performed. As a further check on the performance of the
generator we repeated some of these tests on the generatet using
sample sizes of 40,000 , generated with the sane pairs ~of
starting integers as those used by Chen. The results obtained

were compared with those of Chen's.

3) Tests for Normality

1) Mean and Variance.

The mean and variance were computed for each trial.
Assuming the sample mnean to be normally distributed with
mean zero and variance 1/n, and the sample variance to
have a chi-square distribution with n-1 degrees of
freedom, Chen found that none of the computed sample neans

and variances exceeded the .05 level of significance.
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We computed the sample mean and variance for 10 trials of

sample size 40,000 each and found that the values

obtained compared quite vell with those obtained by Chen

using a sample size of 106, The two sets of test results
are shown in Table 3.2. Fig. 3.1 illustrates the fit of ome

of the sanmples of 40,000 normal randon numbers to the

standard normal curve.

Table 3.2
Mean and Variance for 10 Trials of Sample Size 40,000
and 106 each.
Mean variance
Trial Sample Size
4 x 104 106 4 ¥ 10¢ 106
1 .0026 -,0001 .9940 .9995
2 -,0028 -.0001 .9976 .9985
3 -, 0004 .0005 .9903 1.0010
) -,0007 .0002 .9928 .9991
5 L0067 L0014 .9969 .9999
6 ,0030 .0005 .9985 .9989
7 .0010 -.0010 .9949 1.0014
8 -,0025 -.0003 .9966 1.0014
9 -, 0044 -.0006 .9963 .9988
10 -,0080 -.0016 1.0010 1.0020
¥ean -,0006 -.0001 .9959 .9999
Expected
Value 0.0 0.0 1.0 1.0
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3)
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Goodness-of-Fit,

The chi-square test was used to test the goodness-of-fit of
the generated numbers to the standard normal. The test
statistics showed close agreement with the theoretical
value and the null hypothesis of normality was accepted at

the .05 significance level.

Central Area under Normal Curve.

The frequencies of generated deviates between -x and x
were compared with the values np , where p is the area
under the standard normal curve between -x and x for

x = 0 (.01) 4.50. There were no large deviations of the
observed values from the theoretical. The Kolmogorov
statistic was also computed for each trial and was found to

lie within the Kolmogorov .10 bound.

Order and Small Sample Statistics.

Each trial was divided into 106/N subsamples for N =
4,6,10,16., For each subsanple the order statistics, range,
mean and variance were computed. The mean and variance of
these statistics taken over the 106/N  subsamples showed

excellent agreement with the theoretical values.
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B) Tests for Randomness

1)

2)

Serial Correlation.

Serial correlations of lag 1, 2 and 3 were computed. None
of the serial correlations were significantly different

from zero at the .05 level.

Using sample sizes of 40,000 we computed the serial
correlations of lags 1 and 2 and compared the results with
those of Chen's. The two sets of results were found to

agree well as can be seen from Table 3.3.

Run Tests,

Runs up and down, and runs above and below the mean of
various lengths were obtained for each trial. None of the
chi-square test statistics computed for these runs were

significant at the .05 level.
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Table 3.3

Serial Correlations of Lags 1 and 2 for 10 Trials of Sample
Size 40,000 and 106 each.

Serial Correlation
Lag 1 Lag 2
Trial Sample Size
4 x 104 106 4 x 104 106
1 -.0035 -.0001 -.0125 -.0008
2 -.0047 -.0003 .0000 -.0004
3 .0035 -.0001 .0057 -.0004
4 .0002 -.0006 -.0086 =.0005
5 .0033 6016 .0004 0015
6 .0016 -.0014 .0006 .0017
7 .0004 .0009 .0039 -.0019
8 -.0006 -.0008 .0062 .0009
9 -.0085 -.0003 -.0086 .0000
10 .0008 -.0006 .0058 -.0006
Mean =.00075 =.00017 =-.0007 -.00005
Expected
Value 0.0 0.0 0.0 0.0

3) Extreme Values.

For each trial, 100 subsamples of size 10,000 were
examined for values exceeding in absolute value 3.891
(vhich are classified as extreme values). The observed
cumulative distribution of these extreme values agreed

excellently with the theoretical distribution.
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In a second set of tests, all previously discussed
statistics except small sample statistics were conputed for each
of 100 subsamples of size 10,000. The overall agreement of
these test statistics with the theoretical values were quite
good. Judging from the results of the statistical tests, the
performance of this random number generator may be considered to
be remarkably good. We shall next consider the choice of a

suitable random number generator for our simulation experiment.

The choice of a random number generator for any
investigation is based on the properties required for that
particular use. In the simulation of the cross-correlation
distribution we are interested in simlating realizations of two
lipear, stationary HMarkov processes (Eqn. (2.9)) which are
uncorrelated. Since correlation between the two processes, X,
and Yt ¢« could arise only through the terms, 2y and zy , it
is essential that the generator used in the simulation should
generate uncorrelated normal randcm numbers. Furthermore, the
generated numbers nust satisfy in all Lespects various
statistical criteria of normality and randomness. In the process

of searching for a suitable generator for the simulation, three

recently proposed generators were closely examined - they were
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those suggested by the oOak Ridge Laboratory (1968) (323,

P.A.W.Lewis (1969) [26] and E.H.Chen (1971) [7]. Some of the
inportant features of these generators are summarized in
Table 3.1. Chen's generator has been described in the preceding
section. All  three generators use the nultiplicative
congruential method to generate uniform U(0,1) random nuambers.
Standard normal N(0,1) random numbers are then obtained by the

Box-Huller transformation (Eqn. (3.1)).

Of the three generators considered, only the ones proposed
by Lewis and Chen have been well-tested for their performances
as uniform and normal random number generators, respectively,
and have been found to perform remarkably well. Complete
descriptions and results of the testing of these generators are
available in (7] and [26]. As for the generator suggested by
the Oak Ridge Laboratory, there has been no report on its

performance or of any testing done on it.

A comparison was made between the three generators using
samples of 40,000 standard normal random numbers generated by
each of the generators (and the Box-Muller transformation, where
necessary). For each sample, the mean, variance, third and
fourth moments, skewness and kurtosis were computed, as shown in
Table 3.4. Reasonably good results were obtained in each case.
For each generator, samples of 1000 generated normal numbers
were tested for 'normality! by the Kolmogorov-Smirnov criterion

(see sSection 4.2 for the Kolmogorov-Smirnov goodness-of-fit
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test). In each case there was good agreement between the

empirical and theoretical distributions.

Table 3.4

Conparison of Moments, Skewness, Kurtosis of Samples of 40,000
Normal Random Numbers Generated by Various Generators.

Generator | Mean Var. fdﬂom. &hﬁom. Skewness | Kurtosis
Oak.Lab. .0040( .9975| -.0129 .0140f -.0130 2.999
Lewis -.0061] .9980( -.0271| .0600| -.0272 '2.952
Chen .0005( .9884 | .0047] .0640 .0048 2.995
Expected

Value 0 1 0 0 0 3

The above comparison and the information in Table 3.1 did
not provide any strong indication as to which of the generators

is the more superior or better of the three. It is, however,

necessary to decide on one which would be considered most

suitable for the simulation. Since the generator proposed by the
Oak Ridge Laboratory has not been thoroughly tested and proved
satisfactory for application, it was decided to disregard it for
the simulation. Between the generators proposed by Lewis and
Chen, it

was decided after careful consideration that Chen's

generator would perhaps be a more suitable choice for the
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simulation of the cross-correlation distribution, since

1) the generator generates standard normal random numbers
which have been thoroughly tested for normality and
randomness using large and small samples, and has been

found to be highly satisfactory ;

2) it has been specially designed to minimize serial
correlation between generated numbers, which is one
important property the generator for the simulation nust

have ;

3) the period of the generator is at least 231 .

Note that this does not mean that Lewis's generator is in
any vay inferior to that of Chen's, Using Chen's generator we
can avoid having to test the generator thoroughly to ensure it
satisfies all properties of normality and randomness, and hence
save a considerable amount of computer time. Furthermore, the
statistical quality of Chen's generator, as indicated by the
test results, are found to be acceptable and sufficient for our
simulation purposes. This random number generator is implemented
as a Fortran subroutine in the nmain simulation program. Each
call of the subroutine returns a sequence of normal random

nunbers of specified length.
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CHAPTER IV

DISCUSSION OF STATISTICAL TESTS OF SIMULATED DISTRIBUTIONS.

4.1 Introduction to Relevant Statistical Tests of Sinulated

———— e € e e e

Distributions.

Before using the simulated distribution for any purpose it
is necessary to determine the accuracy of this distribution. The
error in a simulation experiment may arise from sampling
fluctuations such as variations in sanple distributions which
are influenced by the sample size, or from nonsampling errors
such as nonrandomness of the sample drawn and incorrect
population distribution. Hence, the following questions should

be considered in the present simulation :

a) How closely does the simulated distribution represent the

actual distribution of cross-correlation?

b) Hov much sampling must be done to reduce the error due to

sampling fluctuations to a desired value?

The first question concerns the goodness-of-fit of the simulated
distribution while the second question is concerned with the

determination of the sample size required to obtain the
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simulated distribution to a desired precision.

Since only the distribution of the sample cross-correlation
for the case Pi1p2 = 0 is known (it is the null distribution of
the Pearson correlation coefficient), it is used as the
hypothesized distribution for testing the goodness-of-fit of the
sinulated distribution. The distribution of the sample cross-
correlation with either p; or p, equal to zero is simulated
and compared with this known distribution. The following tests,

which are described in detail in the next section, are used :

1) Goodness-of-fit tests.

a) Kolmogorov-Smirnov test of goodness-of-fit [22,29].

This test compares the empirical cumulative distribution
function (cdf) directly with the hypothesized cdf. The
measure of discrepancy used is the maximum absolute
deviation between these two cdf's. This test statistic can
be wused to compute the necessary sample size for a desired
precision in the simulated distribution, and to form a
confidence band which can be used to estimate the accuracy
of the approximate distribution given by Eqn. (1.5). This

will be explained in the next chapter.
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2)
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Anderson-Darling test of goodness-of-fit [1,25].

Since we are interested in computing the critical points
for the sample cross-correlation, it is important that the
tails of the simulated distribution agree well with those
of the hypothesized distribution. The Anderson-Darling test
which is also based on comparing the empirical cdf with the
hypothesize cdf is designed to be especially sensitive to
discrepancies at the tails of the distributions; and,
hence, is used to test for good fitting of the
distributions in the tail regions. Details are given in

Section 4.3.

Comparison of simulated and theoretical critical points.

Another method of checking the accuracy of the simulated
distribution is to compare the critical points of this
distribution with those of the theoretical distribution.
This method is based on Bahadur's [2] theory on sample
quantiles and is described in Section 4.4. The theory also
furnishes a method for computing error bounds for the

critical points of the approximate distribution.
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et X be a random variable with the continuous

probability distribution function

U(x) = Pr{X<x} (4.1)

Let Xy, X940 « « o Xy be a sample of size ¥ for X,
ordered so that Xl < Xz < e < XN . The enmpirical
distribution function of the sample X1 v x2 g0 e XN is

the step-function Sy(x) defined by

<

0 for x Xl

Sy(x) = k/N for Xk <x< Xk+l
1 for x > XN

(4.2)

That is, NSy (x) equals the number of variables X; , which

are less than x. For large N one would expect

SN(X) e U(x) as Now .

The goodness-of-fit problem is to devise a test of the

hypothesis
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By ¢ U(x) = F(x} , for all x ,

where F(x) is a completely specified, hypothesized

distribution function of the random variable X.

For the purpose of testing the hypothesis H,, Kolmogorov

[22] introduced in 1933 the statistic

D(N) = Sup |Sy(x) - F(x}{ , (4.3)

=X <0
which measures the maximum absolute deviation between the sample
cunulative distribution Sy(x) and the hypothesized cunulative
distribution F(x ). H, is rejected if D(N) is sufficiently

large.

The probability distribution of the random variable D(N)
depends on ¥ but is independent of the special form of F(x)
provided only that F(x) is continuous (that is, the test is
distribution free). The exact distribution of D(N) is not
known but Kolmogorov found that  (N¥/2)D(N) has a limiting

distribution given by

® . 2, 2
lin Pr{d(N) < zN"v2} = 1 - 23.;1(-1)1'1 g21°z

N~

= L(z) (4.4)

The function L{z) has been tabulated by Smirnov ([37]. The
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early work of Kolmogorov and Smirnov is summarized in [22] and
[36]. Tables of the critical values of D(N) have been given by
Massey [29] , Birnbaum [4] and Miller [31]. Appendix Table D1

gives the critical values of D(N) computed by Massey.

This test of goodness-of-fit was proposed by Anderson and
Darling {1] in 1954, The test is sensitive to discrepancies at
the tails of the distribution rather than near the median. The

test procedure is the following :

Let x_1 < x2 € eveo g xN be N ordered observations in a

sample from the random variable X. Let
u; = F(xy) , (4.7

where TF(x) is a completely specified, hypothesized distribution
function for X, and let SN(x) be the empirical distribution
function as defined in (4.2). The test criterion suggested by
Anderson and Darling is

«Q

W(N) = N/ [S.(x) - F(x)]2 y(F(x)) dF(x) , (4.8)
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where Y (F(x)) = ¥Y(u) is sonme lon-negative weight Ffunction
Chosen to accentuate the values of SN(x) - F(x) where the test
is desired to have sensitivity, The hypothesis that the sample
has been drawn from the distribution F(x) is rejected if W(N)

is sufficiently large,

For the test to be sensitive to discrepancies at the tails
of the distribution ¥(a) should be large for u pear 0 and 1,

and small near uy = 1/2. The weight function chosen by Anderson

and Darling is

Ya) = 1/ (e -] . (4.9)

This function has the effect of weighting the tails heavily

since it is large near u =0 apg y = 1.

Subsituting (4.9) for ¥(F(x)) , Eqn. (4.8) may be written

as

]

iy = J'[SN(X) “FX) ]2 dr(x)
FIL1 - Fx) ]

-00

=2 1=

X1 )
- J F2(x) dF(x) J [Sy(x) - P(x) ]2 aF(x)

_— o+
F(x)[1 - F(x)] SN[ - F(x) ]
-0 X

1

«©

...t [V - F(x)]2 dr(x) (4.10)
J F[1 - F(x)]

N
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By straightforvard integration and collection of terms , (4.10)

reduces to

W(N) = - N = 1%1

TR

(2§ - 1)[Ln uj + Ln(1 - uN—j+ﬂ 1.

j=1

(4.11)

If this number, W(N), is too large, the hypothesis that F(x) is

the true distribution is rejected.

Asymptotic significance (or critical) points for W(N) are
given by Anderson and Darling (see Table 4.5). Significance
points for W(N) for small sample sizes have been determined and
tabulated by Lewis [25] who also gave the following equivalent

forn of the test statistic W(N)

N

WN) = - N=-2% I [(FNLnus+ (2(8-3) ¢ Nin(i-vy ]
N j=1 J ]

(4.12)
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imulated and Theoretical Critical Points.

Since the theoretical and approximate density functions of
the sample cross-correlation are symmetrical about r = 0 in the
null case, only the upper (or positive) critical points need to
be considered. The critical point of r

X
level is also the (1- ¢)-quantile of the cdf of

v at the o -significance
rXY L]
Bahadur's theory [2] on sample quantiles which is used in the

comparison of critical points may be outlined as follows :

Let  F(x) be the theoretical probability distribution

function. The p-quantile, Ep » Of F(x) is defined by
F( Ep) = p, 0<p<1. (4.13)

gp is also the p -lower critical point of F(x) for 0 < p < 12

and the (1-p) -upper critical point of F(x) for 172 < p < 1,

Let

(xl ,X2 P 'XN ) be a random sample from F(x),

YN be the sample p-quantile,

P
BN be the number of observations Xi in the sample such
that X, > Ep ,
f(x) be the density function corresponding to F(x),

and g =1-p,
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Then,

Iy = 5 ¢ By~ ¥ /BE(EYT + Ry,
(4.14)

where Ry becomes neglible as ¥ + @ , It was shown by Bahadur

that with probability one,

By = 0 (N-3/4 Log N) as N+

Hence, for N large RN may be assumed to be zero and the
tern (By - ¥q]/ Nf(&p) gives an estimate of the possible

difference between the sample and the theoretical p-quantile.

As a means of checking the accuracy of the simulated
distribution, the p-quantile (or g-critical value) can be
conputed for the simulated and theoretical distributions for

P1p2 = 0 and the observed difference between the two values
can be compared to the corresponding value of the above-stated
error estimate which is computed for the two distributioms. This
test on the simulated distribution will be performed in Section

4.8.
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4.5 Error Bounds for Critical Points of Simulated and

Approximate Distributions.

The theory on sample quantiles [2] may also be utilized to
estimate error bounds for critical points of the simulated
distribution and the approximate distribution of Eqn.(1.5). As
can be seen from Egn. (4.14) , the error between the theoretical
and simulated quantile will not be the same for all guantiles,
and, hence, has to be determined individually for each quantile

as shown below.

It is known that YNIP is approximately normally

distributed when N is large with
E(ly,p) = £ (4.15)

Var(YN,p) = pq/ Nf2(5p) H (4.16)

and N1/2(YN o gp) is asymptotically normally distributed
, :

when N » o  with

]
(o]
-

BN/ (Y - E)) (4.17)

Var(v/2(ty o - E)) = pa / £2(5,) . (4.18)
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Let
i = Y - % . (4.19)
Since N'/ZUN,p is asymptotically normally distributed, we can

determine, for various large sample sizes N , certain critical

points of the distribution of Uy p s shown below.
1

Let ZN,p denote the standardized normal variable

Nl/ZUN,p' Then
Zy,p = [§2/20y o = 0]/ [Var(Nl/ZUN'P) /2
= (W/any £(g) )/ G VE . (4.20)

Let z be the upper o - critical point of the N(0,1)

distribution. Then we have,

P[ZN,pS Za] - 1 - 0 [
P[NV/20y f(g) / (V2 S 2] = 1- ¢
PIN/20y o < zofp@ /2 / E(E) ] = 1- 0o .

(4.21)

Hence, the upper o - critical point of the distribution of
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1/2 i i
N UN,P 1s given by

Z(pg) /2 / (g .

It follows that the critical values of the asymptotic

distribution of UN,P are given by

Un,p,a= 2a(PQ)t/2/ [NV/2f(E9] . (4.22)

UN,p,a can be used to determine an approximation to the error
between the simulated and theoretical critical points of the
p(r) distribution. The difference between the simulated and
theoretical critical values for a simulation sanple size N is
compared to the values of UN,p,o« If this difference is less
than Uy,p,qfor the specified o , then we are (1- %) 100%
certain that the error between the simulated and theoretical
critical point is at most [h,p,a' Hence, QN,p,a may be taken

to be the resultant error in simulation for sample size N.

Fron Egn.(4.22) we can compute the sample size which is
necessary for a desired precision in the simulated critical
points of p(r). For example, to be 99% sure that the error
in the simulated .01 - critical point is less than .02 ¢ we

have,
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N1/2 >z gq[ (.99) (.01) Jt/2 / [ (.02) £(E 49 ]

2.326[ (. 99) (.01) /2 / [.02(.161) ]

71.85 .

Therefore ¥ = 5184 .

Hence, for any sample size N 2 5200 used in the simulation the

error in simulation for the critical points is at most .02.

4.6 Kolmogorov-Smirnov Test on Simulated Distribution.

To determine the accuracy of the simulation, the
distribution of the cross-correlation for the case Prp, =10 is
generated and compared to the known distribution given by
Eqn. (1.4) by means of the Kolmogorov-Smirnov test. The following

notativn is used :

pzér;n,k) = approximate distribution p(r) with P, = k
psaun,k) = sinulated distribution p(r)

ptér;n,k) = theoretical or true distribution p(r)
FA(r;n,k) = cdf of pA(r;n,k)

FS(r;n,k) = c¢df of ps(r;n,k)
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FT(r;n,k) = cdf of pT(r;n,k)
n = sample size of Markov series
N = number of simulated r values
Dgp(¥) = Hax [Fp(cin k) - Fs(r;n,k)|
[ri<1
Da(¥) = o -critical value of Dgp(N) such that

PDgp(M) > DgM} = o,

Using the table of critical values , Dou(N) , by Massey
given in Appendix D (see Table D1. ) , we can estimate the
sanple size necessary for a desired accuracy in the sinulated
distribution. For a large sample size, N , we can say we areé 99%
sure that the simulated distribution Fs(r;n,O) will lie within
1.63(N)-t/2 of the true distribution Fp(r;n,0) over the
entire distribution, if the observed maximum deviation DST(N)
is less than the .01 - critical value Dgi(N). Therefore to
pake this statement for a deviation of .02 the necessary

sanple size is found as follows :

From Appendix Table D1 we find that

1.63(N) "1/2 = .02,

D 1M

therefore N 6643 .

Hence, for a sample of 7000 the error in the simulated
distribution should be within 2% over the entire distribution

with 99% probability.
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Using sample sizes ranging from 50 to 7000 , p(r) with

p,p, = 0 was simulated for n =10, 30 and the Kolmogorov-

Smirnov  statistic Dgp (N) was computed for each of the

sinulated distributions. The observed values of D (N) and
corresponding critical values Dy(¥) for o = .01, .05, .10

are tabulated in Table 4.1. Fig. 4.1 shows values of

Dgp(¥) plotted against N, for both values of 1.

Table 4.1

Kolmogorov - Smirnov Statistics for Simulated Distribution

Sample Max. Dev. Critical Value D,(N)
Size D (W)
o
N n=10 n = 30 .01 .05 .10
50 .0894 1145 .230 .192 173
100 .0519 L0734 .160 . 136 122
200 .0719 .0660 115 .096 .087
500 .0478 .0260 .073 .061 .055
1000 .0433 .0272 .051 043 .039
3000 .0102 .0135 .030 .028 .022
5000 .0072 .0121 .023 .019 014
7000 .0108 . 0094 .020 .016 .015
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As shown in Table 4.1, the observed Kolmogorov-Smirnov
statistic, Dgp(N) , for each of the distributions simulated is
less than the corresponding .01-critical value. Using the
Kolmogorov-Smirnov  criterion, the simulated distribution ,
Fo(rin,0) for a sample size of 7000 is within .0108 of the
theoretical distribution , Fq(r;n=10,0) , and is within .0094

of Fq(r;n=30,0) with 99% probability.

Hence, using sample sizes of 7000 we can estinate with
99% certainty that the error in the simulated distribution will
be at most .02 over the entire distribution for any value of
n 2 6. (Note that determination of the sample size for this
degree of accuracy in the simulated distribution is independent
of the value of n.) Having estimated the error in the
simulated distribution, we shall now apply this upper bound on
the error estimate in the confidence band technique furnished by
the Kolmogorov-Smirnov test to evaluate the error in the
approximate distribution , p*(r) , for values of pp #0 as

will be shown in Section 5.1.

Note that the accuracy in the simulated distribution can be
improved by using a larger simulation sample size, N. To obtain
a paximum of 1% error over the entire simulated distribution
would require a sample size of over 25,000, However, this
approach is expensive in terms of computer time. Hence, we have
lipited the value of N used in this simulation to 7000. It is

also obvious that it is impossible to obtain very significant
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improvement in the accuracy by this direct sampling method.
Therefore it is important and profitable to explore (perhaps in
further research) alternative methods such as variance -
reduction techniques for reducing the sampling variability of
simulations and improving the accuracy without increasing the

number of simulations.

Tables 4.2 and 4.3 show the frequency distributions of the
simulated r values for the case p,p, =0, for n = 10 and n = 30.
Figs. 4.2 and 4.3 1illustrate the fit of the simulated values to
the theoretical values both for the density function and the
cunulative distribution function. Table 4.4 compares the
moments, variance, skewness and kurtosis of the sinulated
distribution to the theoretical distribution. As can be seen

fron the table, the two sets of values agree quite well.

Note that in order to compare the generated (or simulated)
and theoretical p(r) values, the values of the generated p(r)
and cdf in columns % and 5 of the frequency tables (4.2 and

4,3) are given by ,

Generated p(r) Frequency / [ (N) (Interval Width) ]

Generated cdf Cumulative Sum of Frequency / N



Simulated and Theoretical Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 -0.90
-0.90 -0.85
-0.85 -0.80
-0.80 =-0.75
-0.75 -0.70
-0.70 -0.65
-0.65 -0.60
-0.60 =-0.55
-0.55 =-0.50
-0.50 -0.45
-0.45 -0.40
-0.40 -0.35
-0.35 =-0.30
-0.30 -0.25
-0.25 -0.20
-0.20 -0.15
-0.15 -0.10
-0.10 -0.05
-0.05 0.00

0.00 0.05
0.05 0.10
0.10 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0.40 0.45
0.45 0.50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.75 0.80
0.80 0.85
0.85 0.90
0.90 0.95

0.95

1.00

N = 7000

Freg.

2

1

2
13
17
43
56
97
17
127
173
191
248
302
296
324
359
367
el
387
352
352
373
341
351
330
261
252
204
164
170
147
80
61
35
25
12

Table 4.2

n=10 p1p2 = 0.0
Gen.P(r) Gen.CDF Theo.P(r)
0.0057 0,0003 0,0001
0.0029 0.0004 0.0033
0.0057 0.0007 0.0141
0.037M 0.0026 0.0356
0.0486 0.0050 0.0697
0.1229 0.0111 0.1168
0.1600 0.0191 0.1765
0.2771 0.0330 0.2475
0,3343 0.0497 0.3280
03629 0.0679 0.4157
0.4943 0.0926 0.5079
0.5457 0.1199 0.6017
0.7114 0.1554 0.6942
0.8629 0.1986 0,7825
0.8457 0.2409 0.8639
0.9257 0,287 0.9359
1.0260 0.3384 0.9963
1. 0490 0.3909 1.0430
1.0400 0.4429 1.0750
1.1060 0.4981 1.0920
1.0060 0.5484 1.0920
1.0060 0.5987 1.0750
1.0660 0.6520 1.0430
0.9743 0.7007 0.9963
1.0030 0.7509 0.9359
0.9429 0.7980 0.8639
0.7457 0.8353 0.7825
0.7200 0.8713 0.6942
0.5829 0.9004 0.6017
0.4686 0.9239 0.5079
0.4857 0.9u81 0.4157
0.4200 0.9691 0.3280
0.2286 0.9806 0.2475
0.1743 0,9893 0.1765
0.1000 0.9943 0.1168
0.0714 0.9979 0.0697
0.0343 0.9996 0.0356
0.0029 0.9997 0.0141
0.0057 1.0000 0.0033
0.0000 1.0000 0.0001

Theo.CDF

0.0000
0.0001
0.0005
0.0017
0.0042
0.0088
0.0161
0.0267
0.0410
0.0596
0.0827
0.1104
0.1428
0.1798
0.2210
0.2660
0.3143
0.3654
0.4184
0.4727
0.5273
0.5816
0.63u46
0.6857
0.7340
0.7791
0.8202
0.8572
0.8896
0.9173
0.9404
0.9590
0.9733
0.9839
0.9912
0.9958
0.9984
0.9995
0.9999
1.0000

76



Simulated and Theoretical Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 -0.90
-0.90 -0.85
-0.85 -0.80
-0.80 -0.75
-0.75 ~0.70
-0.70 ~-0.65
-0.65 -0.60
-0.60 ~-0.55
-0.55 -0.50
-0.50 -0.45
-0.45 -0.40
-0.40 -0.35
-0.35 -0.30
-0.30 -0.25
-0.25 -0.20
-0.20 -0,15
-0.15 -0.10
-0.10 -0.05
-0.05 0.00

0.00 0.05
0.05 0.10
0.10 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0.40 0.45
0.45 0,50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.75 0.80
0.80 0.85
0.85 0.90
0.90 0.95

0.95

1.00

N = 7000

Freq.

O OO aadWw

Table 4.3

n = 30 PPy = 0.0
Gen.P(r) Gen.,CDF Theo.P(r)
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0001
0.0000 0.0000 0.0008
0.0057 0.0003 0.0033
0.0171 0.0011 0.0113
0.0343 0.0029 0.0316
0.0629 0.0060 0.0753
0.1486 0.0134 0.1570
0.3229 0.0296 0.2917
0.4714 0.0531 0.4902
0.7029 0.0883 0.7527
1.1630 0.1464 1.0650
1.3740 0.2151 1.3960
1.6490 0.2976 1.7050
1.9630 0.3957 1.9440
2.0570 0.4986 2.0750
1.9540 0.5963 2.0750
1.9740 0.6950 1.94u40
1.7230 0.7811 1.7050
1.4110 0.8517 1.3960
1.1110 0.9073 1.0650
0.7200 0.9433 0.7527
0.5114 0.9689 0.4902
0.2857 0.9831 0.2917
0.1800 0.9921 0.1570
0.1086 0.9976 0.0753
0.0286 0.9990 0.0316
0.0086 0.9994 0.0113
0.0057 0.9997 0.0033
0.0029 0.9999 0.0008
0.0029 1.0000 0.0001
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000

Theo.CDF

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0004
0.0015
0.0040
0.0086
0.0206
0.0399
0.0707
0.1160
0.1775
0.2552
0.3468
0.4478
0.5522
0.6532
0.7448
0.8225
0.8840
0.9293
0.9602
0.9794
0.9904
0.9960
0.9986
0.9996
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

71



78

Fig.4.2
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Fig.4.3
g (r) (a) Theoretical and Simulated p(r)
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Table 4.4

Moments, Skewness and Kurtosis of Simulated and Theoretical

Distribution.
pp, = 0 N = 7000
n = 10 n = 30
Theo. Sim. Theo. Sim.
Mean 0.0000 0.0042 0.0000 0.0018
Variance 0.111 0.1108 0.0345 0.0350
Third Moment 0.0000 -.0050 0.0000 0.0001
Fourth Moment 0.0303 0.0297 0.0033 0.0035
Skewness 0.0000 -.0136 0.0000 0.0202
Kurtosis 2.4550 2.4215 2.8070 2.8259

4.7 Anderson-Darling Test on Simulated Distribution.

One of our main objectives is to determine the critical
values of the distribution of cross-correlation. We are
therefore interested in the tails of our simulated distribution
- those areas at the ends of the range containing 1% to 5% of
the total area under the curve. To obtain good estimates of the
critical values, the simulated distribution should have a good
fit at the tail regions. Since the Kolmogorov-Smirnov test is
not particularly semsitive to discrepancies at the tails of the
distribution, the Anderson-Darling test was used to check the
goodness-of-fit at these regions of the simulated distribution.

The following notation is used :
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N = nunmber of simulations of r values
r, = i th opservation in a sample of N sinmulations
u; = Fqfrjingk) (theoretical cdf)
W(N) = Anderson-Darling statistic given by
N
N(N) == N8-1 T (251)[1n us+ ln(i=uy._-
(M Nj=l(j)[ i (1~uy-5+2 ]

W) 0 - critical value of W(N)

The above test was performed on the simulated distributions
with p,p, =0 for n =10, 30 , using the known theoretical
distribution of Eqn.(1.4). Results of the test appear in Table

uls.

Table 4.5

Anderson-Darling Statistic for Simulated Distribution

P1P2 = 0
W(N) W, (N)
N n=10 n =30 a= .01 o= .05
5 1.542 971 3.95 2.53
8 2. 408 .879 3.95 2.52
10 2.139 1.112 3.85 2.49
100 2. 152 646 3.85 2.49
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The values of W(N) obtained for both values of n are well
below the the 5% significance point for all cases of N. Hence,
¥e may conclude that the simulated distribution has a good fit

at the tail regions for all values of n26

4.8 Comparison of Sigulated and Theoretica Critical Points

Using Bahadur's theory [2] on sanple quantiles described
in Section 4,5 , a comparison is nmade between the critical
points of the simulated and theoretical distributions for
P10, = 0, as a final check on the accuracy of the simulatipn.

The following notation (with reference to Section 4.5) is used :

g = 1-p

rTIq(n,k) true g - critical value of r for p;Pz =k,

that is,

Prir ¢ rT'q(n,k)] =1-q = p

LA q(n,k) = approximate q - critical value of r
!
rs (n,k) = sinulated q - critical value of r
g
¥ = number of simulations of r
By = number of observations in a sanple of r
that are greater than r (n,k)
T,q
Z, = o= critical value of the N(0,1)

distribution, that is,
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Pr{z €24 ] = 1+

=
1]

b Eg gk = g o(nrk) |

uN,q;x = 0 - critical value of uN’q . that is,

< = -
Pr{ Uy,q S UN,q,0 ] 1 o

Revriting Egn. (4.14) in terms of the q - critical value of r, we

have ,

rslq(n.k) = rqu(n.k) + [(BN - Nq) / NpT(rT,q:n.k)] t R
(4.22)

where with probability one,
Ry = O(N-3/4 Log N)

becomes neglible as N + «

Assuming Ry to be zero for large N , the term
I [By - Nq]/ NPT(rT’q;n,k) !
gives an estimate of the possible difference between the
simulated and theoretical ¢ - critical values. This term may
be compared with the observed difference,
u = |t
l S

N,q
as a final check on the performance of the simulation. The

n,k) - r n,k
,q(,) T,q(')|'
theoretical and observed differences for the case 0102 = 0,
n=10, 30, N =7000 and q = .01, .02, .05 are shown in

Table 4.6,
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Table 4.6

Theoretical and Observed Difference between Simulated and
Theoretical Critical Values

PP = 0 , ¥ = 7000

Series Sig. - Sim. Theo. Obser. Theo.,
Sample Level Crit. Crit, Diff. Diff.
Size Value Value
u »-Nq‘
N, ’Nﬁil_a
r r = =
f d S,q T,q “E[llq 'g,h BI‘ I;I‘r
10 .01 .7094 7154 0061 .0056
.02 .6493 +6546 .0053 .0028
.05 .5496 5494 .0002 .0049
30 .01 4310 L4226 .0084 .0123
.02 .3798 +3770 .0028 . 0085
.05 +3081 .3061 .0020 0113

Table 4.6 shows that the observed differences are less
than the theoretical differences in most cases and do not differ
too greatly from the theoretical values in others. This serves

to indicate reasonably good accuracy im the simulated

distribution.
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4.9 Error Bounds for Simulated Critical Values.

An error bound for the simulated gq -~ critical value for a
particular set of parameters (n,p,p;) can be determined using
the theory described in Section 4.5, It was shown that the o -

critical value , u of the difference between the

N,q,0 !
theoretical and simulated critical value, Uy q" is given by
1

uqu’a = zu(PQ)t/z / [NI/ZPT(IT,&n,plpz )l (4.23)

where g = 1 -p and 2z, is the o - critical value of the
N(0,1) distribution (as defined in the previous section). The

values of uqu’a for pip2 = 0 , ao=,01, .02, .05,

q=.0t, .02, .05 , n=10, 30 and N = 7000 are shown

in Table 4.7.

Comparison of the observed differences , u . in column

N,q
5 of Table 4.6 with the critical values of Table 4.7 shows

that in all cases , the observed values of Uy g are much less
[4

than the values. Hence, we can, for example, say with

UN,q,0

99% probability that the error in the simulated .01 - critical
value for n = 7000 , n = 30 is not more than u = ,0172.
N,q,.01

That is , we may conclude that

r,.01% Ts,.01% 0172
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Table 4.7
Critical Points of N,q = | rT’q - rS,qI
p1p2 = 0 N = 7000
Series Sig. - Theo. uN,q,0
Sample Level Crit.
Size Value Significance Level o
n q I't,q .01 .02 .05
10 .01 .71154 .0218 .0192 . 0154
.02 6546 .0191 .0168 .0135
.05 <5494 .0163 L0144 .0115
30 .01 4226 0172 0152 L0121
.02 .3770 .0136 .0120 . 0096
.05 .3061 .0105 .0092 .0074
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CHAPTER V

DETERMINATION OF THE ACCURACY OF THE APPROXIMATE DISTRIBUTION

AND ITS CRITICAL VALUES.

i e D S € i S i s i S Gl - s S D

one of the most useful features of the Kolmogorov-Smirnov
test is that the critical values of the test statistic, D(N)
(Eqn. (4.3)) nay be used to set a confidence band for an unknown

continuous distribution function.

Let F(x) be the true unknown distribution function,
S (x) be the sample distribution function based
on a sample drawn from F(¥),

D,(N) be the o -critical value of D(N),

that is,
PC{D(N) 2 Dg(M)] = o .
Then,
Pr{D(N) = Sup ISy(x) - F(x}| > D, (W) ] = o . (5.1)
X
That is,

Pr s y(x) - D (N) < P(x) < Sy(x) + Dy(M) 3 for all x] = 1- o .
(5.2)
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Thus for any unknown distribution function F(x), a random
sample could be drawn from the distribution and a confidence
band of width £ Dy(N) set up around the sample distribution
function Sy(x), so that with probability 1- o the true
F(x) lies entirely within this band. This is a simple and

direct method of estimating a distribution function.

We shall now apply this method to compare the approximate
and simulated distributions for a value of p,p, # 0, and
estimate the error in the approximate distribution. The

procedure is described in the following section.

5.2 Determination of Accuracy

'O

Approximate Distribution.

——

By simulating the distribution of the cross-correlation,
Lyye for the case p,;p, = 0 and comparing it to the known
theoretical distribution of Eqn. (1.4) wusing the Kolmogorov-
Smirnov criterion, we estimated the error in simulation to be at
most .02 over the entire distribution. Since this error will
mainly be due to sampling fluctuations (that is, variations in
simulation results which are dependent on the size and number of
sanples of r taken) we shall assume that the same error bound
holds in the simulation of p(r) for non-zero values of 0,P,.
That is, the error in the simulated distribution with

p,p,=k#0, =-1<k <1, using a sinulation sample of 7000 r
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values is within +.02 of the true distribution of r for
0,0, =k with probability .99. This assumption can be
justified by showing that the assumption holds true for some
known distribution of a form similar to p(r) and simulated by
peans of the same random number generator. The justification of
this assumption by showing that it holds true for the normal
distribution is given in Appendix B. We now proceed to make an
estimate of the accuracy of the approximate distribution,

p*(r), given by Eqn. (1.5), using the confidence band technique

described in the previous section.

Having estimated the error in simulation to be at
nost .02 for sample sizes of 7000, we now simulate the
distribution of r for miP2 =k #0, =-1<k<1,and a given
value of n, using this sample size. We then set up a confidence
band of width t.02 around the simulated cunulative
distribution Fs(r;n,k) (refer Section 4.6 for notation). We
can say with 99% certainty that the true cdf FT(r;n,k) will
lie within this confidence band, that is, within $.02 of the
simulated distribution Fg(rjn,k). The resulting probability
statement, for the given values of n and k, and all values of r,

is

Pr[FS(r;n,k) - .02¢< FT(r;n,k) < Fs(r;n,k) +.02]) = .99.

(5.3)
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Next, we evaluate the approximate cdf, FA(r;n,k), using the
approximate density function, p*(r) , of Egn. (1.5) Wwith
PP, =k, and compute the maximum deviation

between FA(r;n,k) and Fg(r;n,k) , which is given by

DSA(N;n,k) = HNax [Fp(rin,k) - Fg(rin, k)| . (5.4)

lr|<1

If DSA(N;n,k) <.02 , FA(r;n,k) lies within the
.02 confidence band of Fs(r;n,k). The deviation between the
approxinate and true distribution can then be at most +.04 ,

that is
|FAa;n,m - FTu;n,MI < .04 .
Thus we can conclude with 99% certainty that the error in the

approximate distribution is less than .04,

1f DSA‘N;n,k) >.02 , Fp(rin,k) falls outside the
confidence band and we may say that the error in the approximate

distribution could be greater than .04.

The above test was performed on the approximate

distribution for the following values of the parameters :

P = .2 P2 = .5 P1P2 = .10 n=10, 30
b, ==2 P, = .5 PP, = =10 n = 30
pl = -c7 pz = 07 9192 = "149 n-= 30
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pr = -.8 P2 = .9 P1P2 = =.72 n = 30
p, ==.9 P, = .9 PP, = -,81 n= 30
Py = W7 Py = W1 PPy = .49 n= 30
pp = .8 P2 = &9 P1P2 = .72 n =30
py = 9 Py = 9 PPy = .81 n = 30

The results of the test are tabulated in Table 5.1. Tables 5.2
- 5.6 show the frequency distributions of the simulated r values
for the parameters (n,p1p2) = {10,.1), (30,.1), (30,.49),

(30,-.1), (30,-.49)., Figs. 5.1 - 5.9 illustrate the fit betwveen
the simulated and approximate distributions, for all the
parameters considered. Tables 5.7 - 5.9 compare the moments,
skewness and kurtosis of the approximate distributions with the

corresponding values of the simulated distributionms.

Pable 5.1

Maximum Deviation between Approximate and Simulated

Distributions
N = 7000

! P1 P2 plpz DSA(M
10 o2 o5 .10 .0102
30 o2 .5 10 .0099
30 .1 .1 49 .0152
30 .8 .9 12 .0322
30 .9 .9 .81 .0395
30 -.2 .5 -.10 .0078
30 ~-.7 .7 -.49 .0120
30 -.8 9 -.72 L0571
30 -.9 .9 -.81 . 1744




Sinpulated and Approximate Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 =-0.90
-0.90 -0.85
-0.85 -0.80
-0.80 -0.75
-0.75 -0.70
-0.70 =-0.65
-0.65 -0.60
-0.60 -0.55
-0.55 =-0.50
-0.50 =-0.45
-0.45 -0.40
-0.40 -0.35
-0.35 -0.30
-0.,30 -0.25
-0.25 -0.20
-0.20 -0.15
-0.15 -0.10
-0.10 -0.05
-0.05 0.00

0.00 0.05
0.05 0.10
0.170 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0.40 0.45
0.45 0,50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.75 0.80
0.80 0.85
0.85 0.90
0.90 0.95
0.95 1.00

N = 7000

Freq.

354
364
362
348
329
37
344
300
304
301
260
219
164
166
128

89

63
38
12
1

Table 5.2

n-=

Gen.P(r)

0.0000
0.0029
0.0229
0.037
0.1086
0.1114
0.2657
0.2800
0.3257
0.4229
0.5314
0.6514
0.7143
0.7343
0.7857
0.911
1.9029
1.0110
1.0400
1.0340
0.9943
0.9400
1.0690
0.9829
0.8571
0.8686
0.8600
0.7429
0.6257
0.4686
0.4743
0.3657
0.2543
0.2343
0.1800
0.1086
0.0343
0.0314
0.0086
0.0000

10 P1P2

Gen.CDF

0.0000
0.0001
0.0013
0.0031
0.0086
0.0141
0.0274
0.0414
0.0577
0.0789
0.1054
0.1380
0.1737
0.2104
0.2497
0.2956
0.3407
0.3913
0.4433
0.4950
0.5447
0.5917
0.6451
0.6943
0.7371
0.7806
0.8236
0.8607
0.8920
0.9154
0.9391
0.9574
0.9701
0.9819
0.9909
0.9963
0.9980
0.9996
1.0000
1.0000

= 0.1

Appr.P(r)

0.0001
0.0042
0.0184
0.0464
0.0888
0.1446
0.2219
0.2879
0.3700
0.4553
0.5413
0.6253
0.7053
0.7794
0.8458
0.9032
0.9505
0.9867
1.0110
1.0240
1.0240
1.0110
0.9867
0.9505
0.9032
0.8458
0.7794
0.7053
0.6253
0.5413
0.4553
0.4553
0.3700
0.2879
0.1446
0.0888
0.0463
0.0184
0.0042
0.0001

Appr.CDF

0.0000
0.0001
0.0006
0.0021
0.0055
0.0112
0.0201
0.0326
0.0490
0.0696
0.0946
0.1237
0.1570
0.1942
0.2348
0.2786
0.3250
0.3735
0.4235
0.4744
0.5256
0.5765
0.6265
0.6750
0.7214
0.7652
0.8058
0.8430
0.8763
0.9054
0.9304
0.9304
0.9510
0.9674
0.9888
0.9945
0.9979
0.9994
0.9999
1.0000

92



simulated and Approximate Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 -0.90
-0.90 -0.85
-0.85 -0.80
-0.80 -0.75
-0.75 =-0.70
-0.70 -0.65
-0.65 -0.60
-0.60 =0.55
-0.55 =-0.50
-0.50 =-0.45
-0.45 -0.40
-0.40 -0.35
-0.35 -0.30
-0.30 -0.25
-0.25 =-0.20
-0.20 =0.15
-0.15 =0.10
-0.10 =0.05
-0.05 0.00

0.00 0.05
0.05 0.10
0.10 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0.40 0.45
0.45 0.50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.7 0.80
0.80 0.85
0.85 0.90
0.90 0.95

0.95

1.00

N = 7000

Freq.

-
W a2 00O oo O O

19
52
93
131
194
2717
400
476
601

Table 5.3

n =30 P10

Gen.P(r)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0029
0.0057
0,037
0.0543
0. 1486
0.2657
0.3743
0.5543
0.7914
1.1430
1.3600
1.7170
1.7830
1.8630
1.8910
1.7260
1.6260
1,3310
1.1310
0.8486
0.5771
0.3286
0.2u86
0.1057
0.0371
0.037
0.0086
0.0000
0.0000
0.0029
0.0000
0.0000
0.0000
0.0000

Gen.CDF

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0004
0.0023
0.0050
0.012t
0.0257
0.0444
0.0721
0.1117
0.1689
0.2369
0.3227
0.4119
0.5050
0.5996
0.6859
0.7671
0.8337
0.8903
0.9327
0.9616
0.9780
0.9904
0.9957
0.9976
0.9994
0.9999
0.9999
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000

= 0.1

Appr. P (r)

0.0000
0.0000
0.0000
0.0000
0.0001
0.0004
0.0022
0.0080
0.0234
0.0568
0.1194
0.2226
0.3749
0.5782
0.8254
1.0990
1.3730
16170
1.8010
1.8990
1.8990
1.8010
1.6170
1.3730
1.0990
0.8254
0.5782
0.3749
0.2226
0.1194
0.0568
0.0234
0.0080
0.0022
0.0004
0.0000
0.0000
0.0000
0.0000
0.0000

Appr.CDF

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0003
0.0010
0.0029
0.0072
0.0156
0.0303
0.0539
0.0888
0.1369
0.1987
0.2737
0.3594
0.4523
0.5477
0.6406
0.7263
0.8013
0.8631
0.9112
0.9461
0.9697
0.9845
0.9928
0.997
0.9990
0.9997
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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sipulated and Approximate Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 -0.90
-0.90 -0.85
-0.85 -0.80
-0.80 -0.75
-0.75 -0.70
-0.70 -0.65
-0.65 -0.60
-0.60 =0.55
-0.55 =-0.50
-0.50 =-0.45
-0.45 -0.40
-0.40 -0.35
-0.35 -0.30
-0.30 =-0.25
"0-25 -0.20
-0.20 -0.15
-0.15 =-0.10
-0.10 =0.05
-0.05 0.00

0.00 0.05
0.05 0.10
0.10 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0.40. 0.45
0.45 0.50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.75 0.80
0.80 0.85
0.85 0.90
0.90 0.95

0.95

1.00

N = 7000

Fregq.

4u1
445
467
438
448
402
370
345
283
207
190
123
116

81

43

OO OO W™

Table 5.4

n =30 Pip2 = 0.49
Gen.P(r) Gen.CDF Appr.P(r)
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0002
0.0029 0.0001 0.0025
0.0029 0.0003 0.0112°
0.0200 0.0013 0.0323
0. 0657 0.0045 0.0708
0.1057 0.0099 0.1299
0.1600 0.0178 0.2099
0.3057 0.0331 0.3088
0.3857 0.0524 0.4227
0.5314 0.0790 0.5466
0.6971 0.1139 0.6750
0.7800 0.1529 0.8021
0.8457 0.1951 0.9224
1.0086 0.2456 1.0308
1.2714 0.3091 1.1231
1.15M 0.3670 1.1955
1.2600 0.4300 1.2454
1.2714 0.4936 1.2708
1.3343 0.5603 1.2708
1.2514 0.6229 1.2454
1.2800 0.6869 1.1955
1.1486 0.7443 1.1231
1.0571 0.7971 1.0308
0.9857 0.846U 0.9224
0.8086 0.8869 0.8021
0.5914 0.9164 0.6750
0.5429 0.9436 0.5466
0.3514 0.9611 0.4227
0.3314 0.97717 0.3088
0.2314 0.9893 0.2099
0.1229 0.9954 0.1299
0.0600 0.9984 0.0708
0.0229 0.9996 0.0323
0.0086 1.0000 0.0112
0.0000 1.0000 0.0025
0.0000 1.0000 0.0002
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000

Appr.CDF

0.0000
0.0000
0.0000
0.0001
0.0004
0.0014
0.0039
0.0088
0.0172
0.0301
0.0u84
0.0726
0.1031
0.1400
0.1832
0.2321
0.2860
0.3440
0.4052
0.4682
0.5318
0.5948
0.6559
0.7140
0.7679
0.8168
0.8599
0.8969
0.9274
0.9516
0.9699
0.9828
0.9912
0.9961
0.9986
0.9996
0.9999
1.0000
1.0000
1.0000

9



sipulated and Approximate Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 -0.90
-0.90 -0.85
-0.85 =-0.80
-0.80 -0.75
-0.75 -0.70
-0.70 -0.65
-0.65 =-0.60
-0.60 =-0.55
-0.55 -0.50
-0.50 =-0.45
-0.45 -0.40
-0.40 -0.35
-0.35 =0.30
-0.30 -0.25
-0.25 =-0.20
-0.20 =-0.15
-0.15 -0.10
-0.10 =-0.05
-0.05 =-0.00

0.00 0.05
0.05 0.10
0.10 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0.40 0.45
0.45 0.50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.75 0.80
0.80 0.85
0.85 0.90
0.90 0.95

0.95

1.00

N = 7000

Freq.

U m OO OCCOOOOCOC

- W O
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Table 5.5

n =30 P10 = -~ U9
Gen.P(r) Gen.CDF AppL.P(r)
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0004
0.0029 0.0001 0.0016
0.0029 0.0003 0.,0057
0.0143 0.0010 0.0179
0.0829 0.0051 0.0510
0.1257 0.0114 0.1311
0.2514 0.0240 0.3047
0.6800 . 0.0580. 0.6350
1.2340 0.1197 1.1740
-1.93M1 0.2166 1.8985
2.6229 0.3477 2.6454
3.1057 0.5030 3.1347
3.2086 0.6634 3.1347
2,6686 0.7969 2.6454
1.9343 0.8936 1.8985
1.1429 0.9507 1.1739
0.5686 0.9791 0.6350
0.251 0.9920 0.3047
0.1000 0.9970 0,131
0.0457 0.9993 - 0.0510
0.0143 1.0000 0.0179
0.0000 1.0000 0.0057
0.0000 1.0000 0.0016
0.0000 1.0000 0.0004
0.0000 1.0000 0.0001
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000
0.0000 1.0000 0.0000

Appr.CDF

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0002
0.0007
0.002¢
0.0066
0.0170
0.0397
0.0840
0.1603
0.2743
0.4205
0.5795
0.7257
0.8397
0.9160
0.9603
0.9830
0.9934
0.9976
0.9992
0.9997
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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Simulated and Approximate Distributions of Cross-Correlation

Range
-1.00 -0.95
-0.95 -0.90
-0.90 -0.85
-0.85 -0.80
-0.80 -0.75
-0.75 -0.70
-0.70 -0.65
-0.65 -0.60
-0.60 -0.55
-0.55 -0.50
-0.50 -0.45
-0.45 -0.40
-0.40 -0.35
-0.35 -0.30
-0.30 -0.25
-0.25 -0.20
-0.20 -0.15
-0.15 =-0.10"
-0.10 -0.05
-0.05 =0.00

0.00 0.05
0.05 0.10
0.10 0.15
0.15 0.20
0.20 0.25
0.25 0.30
0.30 0.35
0.35 0.40
0,40 0.45
0.45 0,50
0.50 0.55
0.55 0.60
0.60 0.65
0.65 0.70
0.70 0.75
0.75 0.80
0.80 0.85
0.85 0.90
0.90 0.95

0.95

1.00

N = 7000

Freq.

WUINOODODODOOO
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Table 5.6

n =30 P1p2
Gen.P(r) Gen.CDF
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0057 0.0003
0.0143 0.0010
0.0086 0.0014
0.0343 0.0031
0.1143 0.0089
0.2514 0.0214
0.3714 0.0400
0.7000 0.0750
0.9629 0.1231
1.3686 0.1916
1.7657 - 0.2799
2,0029 0.3800
2.41M 0.5009
2.0943 0.6056
2.1629 0.7137
1.8543 0.8064
1.3943 0.8761
0.9200 0.9221
0.7457 0.9594
0.4400 0.9814
0.2000 0.9914
0.0857 0.9957
0.0571 0.9986
0.0200 0.9996
0.0057 0.9999
0.0028 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000
0.0000 1.0000

=-.10

Appr. P (r)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0014
0.0053
0.0167
0.0450
0.1052
0.2169
0.3999
0.6661
1.0093
1.3992
1.7818
2.0901
2.2628
2.2628
2.0901
1.7817
1.3992
1.0093
0.6661
0.3999
0.2169
0.1052
0.0450
0.0167
0.0053
0.0013
0.0003
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Appr.CDF

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0002
0.0007
0.0021
0.0057
0.0135
0.0286
0.0549
0.0965
0,1566
0.2363
0.3336
0. 4431
0.5569
0.6664
0.7637
0.8434
0.9034
0.9451
0.9714
0. 9864
0.9942
0.9979
0.9993
0.9998
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

96
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Fig.5.1
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Fig.5.2
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Fig.5.3
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Fig.5.4
Q o(x) (a) Approximate and simulated p(r)
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Fig.5.5
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Fig.5.6

(a) Approximate and Simulated p(r)
n=30 pe,= .72 N = 7000
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Table 5.7

104

Moments, Skewness, Kurtosis of Simulated and Approximate

Distribution.
PPy = 1 N = 7000
n = 10 n = 30
Appr. Sim. Appr. Sim.
Mean 0.0000 0.0052 0.0000 -,0027
Variance 0.1213 0.1217 0.0405 0.0408
Third Moment 0.0000 -.0003 0.0000 -,.0001
Fourth Moment 0.0349 0.0356 0.0045 0.00u46
Skewness 0.0000 -.0078 0.0000 0.0012
Kurtosis 2.3800 2.4038 2.7480 2.7761
Table 5.8

koments, Skewness, Kurtosis of Simulated and Approximate

Distribution.
n =30 N = 7000

plpz ==, 10 plpz ==,49 plpz ==,72 plpz =-,81

Appr. Sim. |Appr. Sim. |Appr. Sim. |Appr. Sim.
Mean 0.000 0.0010.000 -.009 {0.000 0,001 0.000 0.000
var. 0.029 0.029]0.016 0.015 [0.019 0.009 0.059 0.008
Fdwon. | 0.000 0.000 {0,000 0,000 |0.000 0.000 | 0.000 0.000
4mon. | 0.002 0.002 [0.001 0.00% |0.001 0.000 | 0.015 0.000
Skew 0.000 -.025]0.000 -.059 {0.000 -.053 0.000 -.048
Kurt. 2.865 2.899 | 3.186 3.122 [3.908 3.457 4.306 3.450
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Table 5.9

Moments, Skewness, Kurtosis of Simulated and Approximate

Distribution,
n = 30 N = 7000
PP, = .49 p,p, = .72 pp, = .81
Appr. Sinm. Appr.  Sinm. Appr.  Sim.
Mean 0.000 0,003 0.000 0.006 0.000 -.003
Var. 0.082 0.078 0.143 0.123 0.190 0.156

3MMon. 0.000  0.000 0.000  0.000 0.000 0.000
Wgon, | 0.017  0.015 | 0.045 0.035 | 0.074 0.052
Skew. 0.000 -.002 | 0.000 0.001 | 0.000 0.003
Kurt. 2,470 2.492 | 2.200 2.301 | 2.040 2.133

The values of DSA(N) obtained for f,P, = .1, .49 and
n=10, 30 are well below the .01 significant point, q01(7000) =
.0172 (and therefore less than .02). Hence, we can say with 99%
confidence that the approximate distribution is accurate to
within % .04 of the true distribution for these values of the
parameters. However, for higher values of p;p, the results are
not as satisfactory. For p,p, = .72, .81, n = 30, the values
of DgalN) exceed .02 indicating a possible error in the
approximate distribution greater than .04. A comparison of the
simulated and approximate distributions in Fig. 5.7 and the
values of the moments in Table 5.9 indicates the variance of the

approximate distribution for high values of p,p, and small n
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(n =30) is too large. Fig. 5.7 shows the simulated
distribution has a narrower spread and higher peak than the
approxinate distribution. The difference between the two
distributions is less severe for the lower value of 0,0,
( 0,0, «72). Fron these observations it would appear that for
high values of the autocorrelations, a more accurate
distribution may be obtained only with larger values of n, since
the variance of the approximate distribution decreases with
increasing n. This can be observed from the graphs in Fig. 1.1,
The approximate distribution for PP, = .72 has a variance of

0966 for n = 50 as compared to a variance of .1425 for n = 30.

Comparing the simulated and approxinate distribution for
negative products of the serial correlations (that is, p,p, < 0),
it can be seen from Table 5.1 and Figs. 5.4, 5.5 that the
approximate distribution closely resembles the simulated one for
=5 < pp, < 0. However, for P1P, = =72, -.81 in Figs. 5.8, 5.9
the approximate distribution again seems to have a larger
variance than the simulated distribution, where the simulated
distribution (that is, the empirical frequency distribution)
Tepresents the true (unknown) distribution of the sample
crosscorrelation Lyy - Thus the approximate distribution not
only has larger variance for large positive p,p, values but also
indicates an increase in variance for decreasing values of

P1P, < =.50, which does not agree with the behaviour of the

simulated distribution.
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In order to illustrate this discrepancy in the two
distributions the variances for both the approximate and the
simulated distribution were plotted for n = 30 in Fig. 5.8 .
The corresponding values of the variances are listed in Table
5.10. For this case, n = 30, the variance, o? , for the
approximate distribution appears to have a mfﬁimum close to

P1Pp = -.6 whereas the sinulated variance tends to zero as p,p,

tends to -1.

Table 5.10

Variances of Approximate and Simulated Distribution of Tyy »

n = 30 , N = 7000

Variance
P10, Approx. Sim.
-.81 .059 .008
-.12 .019 .009
-.49 .016 .015
-.10 .029 .030
.00 .035 .035
.10 . 0U1 041
49 .082 .078
.12 143 <123
.81 . 190 . 156
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The primary implication of the results given in this
section appears to be the following., The approximate
distribution for values of -.5 < P10, < .5and n € 30 is
accurate to within + .04 of the true distribution of cross-
correlation with 99% probability. For high values of |p,p,l and
the same values of n, the approximate distribution appears to
have too large a variance. The error in the distribution in this
case could be greater than .04, For larger values of n,
however, the approximate distribution for high values of | 0,0,
could be a pmore accurate representation of the true
distribution, since the variance of the distribution decreases

with increasing n.

To obtain a more definite pattern of behaviour of the
approxinate distribution with respect to the parameters, n,
PP, + more thorough testing would have to be performed on the
distribution for various combinations of the parameters. Due to
the high computer cost involved in sinulating and testing each
distribution (see Table C in Appendix C) we have limited the
testing of the approximate distribution to the few values of the
parameters considered above, and observations on the behaviour
of this distribution have been nmade based on the results of

these tests,

Since the degree of accuracy in  the approximate
distribution for a particular value of PP, varies with n, it

is possible to test for a value of n which will give a desired
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precision in the approximate distribution for that value of
p,p, « For practical purposes, however, it would be useful to
establish for each value of p,p, , a ninimum value of n with
which the approximate distribution may be applied with
reasonable accuracy (since in practice, series of data
encountered are usually small). In the next section we shall
apply the confidence band technique to estimate a minimum value

of n for a particular value of 0,0,

Since the approximate density function as given by
Eqn. (1.5) is dependent only on the sample size n and the
product of the autocorrelations PPy it is useful to be able
to establish a wminimum value of n, say Do for which the
approximate distribution for a particular value of p p can be

used with reasonable accuracy.

Let ¢ be the desired accuracy we wish to have in the
approximate distribution, Let N be the sample size which will
give a simulated distribution within te /2 of the true
distribution  with 99% probability. The algorithm for

estimating n given a value of p,p, , may be summarized in

m !

the following steps :



1

1) For an initial value of n, evaluate FA(r;n,k) using

Egn. (1.5).

2) sipulate the distribution Fg(rijn,k) using a sample of

size L

3) Compute DSA(NE;n,k) by Bgn. (5.4).

4) If Doa(Ncin,k) < €, put n=n-1 and go to (1).

If Dgn(Neinek) 2 €, put o =n-1 and exit,

Taking ¢ = .04, N, = 7000, the value of L estimated

by the above algorithm was 6 for p1pp = <1 and 10 for
PP, = .49. The above algorithm can be used to determine the
smallest sample size that can be used with each value of 0,0,
in | P,pJ < 1. However, from the discussion in Section 5.2 the
range of P,p,- values for which these calculations should be

applied is (-.50,.50).
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5.4 Critical Values of the Approximate Distribution.

Approximate critical values of erfor PP, # 0 can be
determined using the approximate density function of Egn. (1.5).
It is, however, necessary to estimate an error bound for these
approximate critical values. The procedure used is based on the

theory on error bounds described in Section 4.6.

We first simulate the distribution of r for PPy =k #0
using a sample size of 7000 for the given value of n, and
evaluate the g-critical value, rslq(n,k) (refer Section 4.9).
Then we can say with (1-a)100% certainty that

er’q(n,k) - rS’q(n,k)| < u (5.5)

N,q,o
vhere rT,q(n,k) 1s unknown and uN,q’a is the critical value of

uN,q given by Eqn. (4.23).

Note from Egn. (4.23) that, to compute uN,q,a' Wwe require
the value of the true density function at the critical point.
However, since both these values are unknown and since we have
shown that the simulated distribution has a good fit at the tail
regions for 0,0, in (-.5,.5), we shall replace pT(rT,q;n,k) by

the simulated value, that is, we compute

Wogo T 2 RUVE/[N2p5(rg ginioie2)] , (5.6)
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Next, we evaluate the approximate critical value,

L, q(n,k) « Uusing the approximate density function of
!

Eqn. (1.5), and then compute the absolute difference between the

approximate and simulated critical values,

er’q(n.k) - rs,q(n.k)l . (5.7)

If |rA’q(n,k) - rslq(n,k)l < uqu,u ¢ then wve know that

|1].;'&n,k) = E.’&nlk)l I%,&nlk) - I'S’&nrk) - E:’&nik) + g'&n,k)l

<t (n,k) - ¢ (n,k)i
'A,&') S,<(I')

t iz (n,k) - ¢ (n,k)|
T,q 5,9

< Zuqu,a (5.98)

Hence, ZuN q,0 can be used as an approximate error bound for
™7

the critical value computed from the approximate distribution.

That is, we can say with (10 )100% certainty that the true

critical value is given by

nT,q (n,k) = rA,q(n,k) + 2u N,q, 0 (5.9)

To illustrate the above nethod, the critical values of the

simulated and approximate distributions of r for PP, = .1,
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n 10, 30 and ¥ = 7000, and values of u for

N,q,0
.01 are computed and shown in Table 5.11. In all cases,

o
the difference (5.7) is less than the corresponding

u .Hence, we may conclude with 99% certainty that the

N,q,.01
true critical value for, say, q = .01 and n = 10 is given by

rT,.0£10"1) = rA,‘0f10,.1) t .0332
«7340 £ ,0332 .

Critical values of the simulated and approximate distribution of
rXY for pipp=-.49, -.1, 49, n = 30 and N = 7000 are shown in
Table 5.12.

Having devised methods of estimating the degree of accuracy
obtainable with the approximate distribution for various
conmbinations of the parameters (n, plpz and approximating the
error in the critical points computed.from this distribution, it
is now possible to apply the approximate distribution in tests
of significance for correlation. Since statistical tests have
indicated good accuracy in the approximate distribution, for the
small n values and 0,0, in (-.5,.5), it may be reasonable to use
critical values, for these values of the parameters, evaluated
from this distribution as the exact values, assuming the errors
in them to be neglible. A table of critical values of r computed
from the approximate distribution for various values of n and

p,p, 1is given in Appendix Table D2.
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115

Approximate and simulated Critical Values of Iyy and the
corresponding uy q,0 Values.
I

¥y =700 , a=.01

P1Py | B k! a,q rg,q | 1K, 8.ql | "N,q,.01
4 110 | .01 | L7340 .7372 .0032 .0166
02 | .6756 .6780 L0024 L0166
05 | L5720 .5737 .0013 .0163
30 | .01 | .us45 4527 .0018 .0169
02 | .u069 .4089 -0019 S0140
05 | .3319 .3301 L0019 L0112
able 5.12

Approximafe and Simulated Critical Values of Ly -

N = 7000 , o= .01

n r r r -t
plpz q A'q S'q I , S,ql

-.10 30 [ 010 .3930 .3952 .0022

.025 .3340 .3361 .0021

.050 .2830 .2880 .0050

-.49 301 4010 3040 .3128 .0088

025 .2530 2537 .0007

.050 2100 .2129 .0029

.49 30 | 010 .6163 .6083 .0080

.025 5433 5428 .0002

.050 YRR 4685 .0026
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CHAPTER VI

APPLICATION, CONCLUSION AND DISCUSSIONS.

6.1 Application of the Approximate Distribution of C(Cross-

Correlation.

———— - S i

We shall present in this section an example to illustrate a
practical application of the approximate distribution of the
cross-correlation in economic time series analysis. The example
shows that using the approximate distribution it is possible to
test for correlation between two processes (that is, two series
of data) without having to assume that their serial correlations

are zero.

The time series dealt with here is the forecast errors in
the interest rates on the U.S. Federal Fund given in a paper by
Janssen [16]. Forecast errors for Friday, Monday, Tuesday and
Wednesday were observed over a period of 33 weeks. The following

notation was used :
t : time index, Thursday (t=1), Friday (t=2),
Monday (t=3), Tuesday (t=4), Wednesday (t=5)

v, ¢ forecast error on day t

The forecast errors appear in Table 6.1.

™



Forecast Errors for the Period 4.1.68 - 30,10.68

Table 6.1

(33 Weeks)
Fri Mon Tue Wed
2 3 4 5
-0.007 0.000 -09500 -1.427
-0.199 0.111 0.259 -1.096
0.081 -0.117 -0.383 0.469
-0.477 0.215 0.267 0.286
-0.132 -0.258 -0.019 0.133
0.011 0.003 0.001 -0.109
0.010 0.128 -0.364 -0.392
0.306 0.025 0.128 0.288
=-0.142 -0.008 -0.124 ~0.362
0.047 0.131 0.137 0.170
~-0.018 0.001 -0.498 -0.767
-0.042 ~-0.126 ~-0.258 0.122
0.367 0.030 -0.371 -0.136
-0.077 0.122 0.136 -0.208
-0.116 -0.131 0.117 0.534
-0.016 0.127 -0.739 -0.413
-0.915 0.558 -0.582 0.092
0.492 0.039 0.129 0.035
-0.009 0.252 0.146 0.043
-0.018 0.001 -0.123 0.264
-0.007 -0.123 -0.133 0.260
0.118 0.011 0.127 -0.087
0.000 0.002 0.127 -0.087
0.000 -0.123 -0.008 0.022
-0.124 -0.007 0.126 0.157
-0.143 0.009 0.000 0.391
-0.007 0.002 -0.123 -0.740
0.045 0.005 -0.124 -0, 111
0.125 0.136 0.136 0.154
0.002 -0.498 0.463 0.181
-0.133 0.117 -0.115 0.261
0.118 0.011 -0.123 -0.611
-0.089 -0.005 0.126 0.404

117
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In his analysis, Janssen used the t-distribution to test
the hypothesis that no correlation exists between forecast

errors of two different days, that is,

p(vy + V) =0 (6.1)

for t =2,3, 4 and s=3, 4,5, t # s. The t-test for
correlation requires that at least one of the variables be
normally distributed. This condition is satisfied in this case
since the author has established, in an earlier part of his
analysis, the distribution of the forecast errors to be
approximately normal by hypothesis testing. The coefficients of
correlation between each of the four series, and the associated
t-values, as obtained by Janssen, are shown in Table 6.2.
critical values of the t-distribution and the associated

critical correlation coefficients are :

tgg * 1.3 or rvtvs’.10 = ,229
t95 = 1.7 or thVSI’OS = ,292 Y for all s, t
tog 5 = 275 or thVs"0°5= LU43

where thVsra is the o -critical point of the sample cross-

i i < = 1-0
correlation r (that is, P[rvtvs S Ty.vgia 1=1 ), and a

ViVs

value of thVs is denoted by (Vi V).

Janssen observed that the correlations between successive
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days are large enough to cause rejection of the hypothesis
(6.1), that is, rejection of the assumption of independence
between these series of forecast errors. However, for longer
lags (that is, not adjacent days) the results do not give

reasons to reject the hypothesis.

Table 6.2

Janssen's Observed Coefficients of Correlation, r(q%,v ) and
s

Associated t-test Values between Series of Foreca LLOLS
(Days) «
Mon. Tue. Wed.
s 3 4 5
Time t
Fric 2 '.“25 0131 -.052
(2.61) (.736) (. 290)
Mon. 3 -, 280 -. 131
(1.63) (.735)
Tue. 4 . 345
(2.05)

We shall perform here the test for correlation between each
of the four error series using the approximate distribution
(Eqn. (1.5)). To apply this distribution the autocorrelation in
cach series must be known. The autocorrelation of lag 1 for each

of the error series can be estimated from the series of
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observations in Table 6.1 using the formula (see Jenkins and

Watts [18]),

n-.

n-1; -
iél(vti- Vie)?
where ¥ = &k ? v
t n jz;t1 *

Estimates of the autocorrelation of lag 1 for each of the error
series are shown in Table 6.3. In order to be able to apply the
approximate distribution we shall assume that the true
autocorrelations (serial correlations) are given to be
p, = -.3133, p,=-.1752, 0, =-.0532, P5= -.0192 ,
th

where pj is a given serial correlation for the j~ series of

forecast errors.

Table 6.3

Estinates of Autocorrelation of Lag 1

t r(Vé1)
Fria 2 -u3133
Mon. 3 -.1752
Tue. 4 -.0532
Wed. 5 -.0192
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The sample cross-correlations between each of the four
error series are estimated by the following formula, using a

sample size of 33,

33 _ -
r(vt,vs) = igl(vti— vt)(vsi- vg) (6. 3)

3 =12 33 -
[igl(vti- vt)ziil(vsi- g2 ]r/2

for t=2, 3,4 s=3,4,5 and t +# s. These estimates
which are the same as those obtained by Janssen in Table

6.2 are shown in Table 6.4.

Table 6.4

Sample Cross-Correlation between Error Series

Mon. Tue. Wed.
S 3 4 5
Time t
Fri. 2 - .25 <131 -.052
Mon. 3 -.280 - 13
Tue. 4 . 345
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To test the null hypothesis that
P (Ve o vy) = 0
for t=2,3,4, s=3,4,5 and t+s, critical values of
thVs must be available. The relevant values of PP are shown
in Table 6.5, where py and pg are the specified values given
earlier. Using the approximate distribution in Eqn. (1.5) the o~
critical values of thVs are computed for o = .005, .01, .025,
05, <10, n =33 and the relevant PPy values, and are

tabulated in Table 6.6.

Table 6.5

Product of Autocorrelations of Lag 1

P+Pg
s 3 4 5
Pq -.1752 -.0532 -.0192
t P
2 -. 3133 .0549
3 -.1752 .0167 0093
4 ~.0532 .0060 0034 .0010
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Table 6.6

One-Tail Critical Values of Ly, vg

n = 33
Critical Values TIy.vg,q
PePq of +005 010 .025 .050 . 100
.0549 460 420 .359 .305 .240
.0167 47 .408 .349 .295 .232
.0093 445 .406 .348 .293 .231
.0060 Jauy 405 346 .293 .230
.0034 L443 04 .345 .292 .229
.0010 442 403 344 .292 .229
For p2ps = L0549 the observed cross-correlation
r(v,,v;) = -.425 is less than the .025-critical point

-rvzva,.oz? -.359 for a two-tail test; and, hence, the null
hypothesis of p(v,,v,) =0 must be rejected at the .05 level.
This implies that the cross-correlation between the Friday and
Monday forecast errors has a negative value and is not zero;
hence, these two series of error forecasts are not independent.
similarly, for @0, = .0010, r(v“,vs) = .345 which exceeds
Ty, Vere02s" .344, This implies that the series of Wednesday

forecast errors depends on the Tuesday forecast errors. The
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other two adjacent days which indicate dependence in their
forecast error series are Monday and Tuesday. Comparing the
Friday forecast error series with those of Tuesday,
r(vz,vu) = ,131 < erVgrgé' and those of Wednesday

r(v,,v,) = -.052>-1r , their cross-correlations are not

V2V5:95
significantly different from zero, implying that these series
are linearly independent. Similarly, the cross-correlation
between the Monday and Wednesday forecast errors,

r(vs,vs) = -,131, is not significantly different from zero.

These results are similar to those obtained by Janssen, In
using the t-test Janssen made the assumption that the product of
the serial correlations is zero (that is, PePg = 0) or in other
words that at least one of the series comes from a normal
distribution and hencé, thVs had the Pearson correlation
coefficient distribution. In this particular example of forecast
errors the serial correlations were relatively small, yielding
even smaller products, see Table 6.5. Since, these products are
all fairly close to zero, Janssen's assumption did not result in
erroneous decision. Perhaps the Friday - Monday relationship
should be considered in more detail. For testing (two-tail test)
Jdanssen used the critical value
rV2V3,'02§ L, .,5(33; 0,0,= 0) = 344,

whereas the critical value from the approximate distribution is
rV2V3,.02§ r.025(33; P,0,= .0549) = .359 .

Thus even for a small serial correlation product, such as

P,P3 = 4055, there exists a noticiable difference in the
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critical values. Suppose the observed cross-correlation r(v,,v,)
had turned out to be -.350, then Janssen would have concluded
that the series are dependent, whereas the critical points in

Table 6.6 would have lead to the conclusion of independence.

The development in Chapter 5 showed that the critical
points of the approximate distribution closely represent the
true critical points of the true cross-product correlation
distribution as long as the two series have small serial
correlations with the same or opposite sign. Thus for series
with such serial correlations the critical, sanple-
crosscorrelation values should be determined as shown in
Appendix A instead of just using the critical points of the

Pearson correlation coefficient distribution.

Enphasizing this point further, consider two series of size
n = 30 with serial correlation product of 0 0,= -.49, see Table
5.1. The o= ,025 - critical value, as found in Table 5.12 is
T .,025(n=30; p,p7 -.49) = .253
whereas, under the assumption of 0., = 0 the critical point is
r.024n=30; o,p= 0) = .361 .

Hence, wusing .361 the null hypothesis, 0, will not be

Pxy =
rejected ( that is, series are not independent) when it actually
should be. This could of course result in serious errors in

practical situations.



126

6.2 Conclusion and Discussions.

To test whether or not the correlation between two series
is significantly different from zero, the distribution of the
sample cross-correlation, r, and its critical values must be
available. McGregor and Bielenstein [30] have derived an
approximate null distribution (Egn. (1.3)) of the cross-
correlation for two series of the linear, stationary Markov type
with known (serial correlations) autocorrelations of lag 1,
py and p2. This approximate distribution depends only on
the sanple size, n, of the series and the product of the
autocorrelations, 0,°f, . For the case where P P, = 0, tpis
distribution reduces to the null distribution of the Pearson

correlation coefficient (Egn. (1.4)).

To compute critical values of r from the approximate
distribution an algorithm has to be designed to evaluate the
approximate density function, p*(r;n, p,p) (Eqn. (1.9)) .
Several terms in the expression for this density function tend
to present overflow and underflow problems, which must be dealt
with in the algorithm, see Section A1 in Appendix A. The Guass-
Legendre quadrature formula is used for the numerical

integration of the demsity function.

In order to apply the approximate distribution of cross-

correlation in any valid test for correlation it is necessary to
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determine the accuracy of this distribution and its critical
values. The best approach to this problem is simulation since
the Markov series required for investigation into the problenm

are not readily available in a suitable form in practice.

A distribution of the cross-correlation is simulated by
taking N observations of the sample cross-correlation between
sapmples of size n of two series generated by two linear,

stationary Markov processes of the form,

e = Pk v %
1
r Palyy ¥ B¢

where p,, P, are known autocorrelations of lag one and Zt ‘

2t

realizations of the Markov processes the main requirements are a

are independent N (0,1) random variables. To simulate

criterion to deternine stationarity of the processes and a
'good! random number generator which will generate independent
normal random numbers satisfying various statistical criteria of

randomness and normality.

The process of searching for a random number generator for
the simulation is focused on its properties satisfying normality
and randomness, especially with respect to serial correlation
since the simulated Markov series should be unrelated. It was
decided after careful consideration, see Section 3.6 , that the
generator proposed by Chen [7] would be most suitable for this

simulation.

Before applying the simulated distribution, it is necessary
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to determine how closely it represents the true distribution of
cross-correlations. The Kolmogorov-Smirnov and Anderson-Darling
tests are used to determine the goodness-of-fit of the simulated
distribution for the case p 0,= 0, using the null distribution
of the Pearson correlation coefficient (Eqn. (1.4)) as the
hypothesized true distribution. Using the Kolmogorov-Smirnov
criterion, the error in simulation is estimated to be at most

t .02 over the entire cumulative distribution of cross-
correlation, with 99% probability for a sample of size N = 7000.
Results of the Anderson-Darling test show that there is a good
fit of the simulated to the theoretical distribution at the tail
regions. A comparison between the simulated and theoretical
critical values of r using Bahadur's theory on sample quantiles,
see Section 4.8 , also indicates reasonably good accuracy in the

simulation.

To determine the accuracy of the approximate distribution
(Eqn. (1.5)) for PP, ¢+ 0, a comparison is made between this
distribution and the corresponding simulated distribution, using
the confidence band technique furnished by the Kolmogorov-
Smirnov test. The error in the simulated distribution for
PP, # 0 is assumed to be t .02. It is estimated that the
error in the approximate distribution for values of |p,0,l ¢ ,5
and n < 30 is less than t .04 with 99% probability. For
high values of | p,p,l and small n (n = 30) the approximate

distribution indicates a larger variance than the true
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distribution, hence, resulting in an error that could exceed
.04. The results of tests performed on the approxinate
distribution seem to offer some evidence that for high values of
| plp! the approximate distribution is accurate only for large
values of n (n > 30). However, to be able to draw more
definite conclusions on the behaviour of the approximate
distribution with respect to n and p P, more thorough testing
would have to be performed on the distribution for a wider range

of values of the paranmeters.

The confidence band technique is also used to establish a
mininum sample size & with which the approximate distribution
for a particular value of p, p,may be applied with reasonable

accuracy.

Using Bahadur's theory on sample quantiles, an error
bound, € , can be estimated for each g-critical
value, rA,q(n' plpz, of the approximate distribution for
values of p,p,# O. The true critical value, rT,q(n,plp). is
then given by,

rqu(n,plpa = rAlq(n,plpg t € .

This paper serves to illustrate how simulation may be used
to study a theoretical approximation to an unknown distribution.
simulating realizations of the true unknown distribution of Lyy
has added a large amount of information on the tgoodness' of the

approximate distribution developed by HMcGregor and Bielenstein
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[30]. In studies where data of a particular class is not
available, or where analytical or mathematical methods cannot be
applied, simalation is perhaps the best approach to solving the
problem. In practice, simulation methods have found wide
applications only on powerful computing machines. The properties
of these methods make them peculiarly suitable for realization
on digital computers. Usually simulation methods are also highly
dependent on the availability of a ‘'good' randon number
generator for generating a large quantity of random numbers on
the computer. Hence, they are expensive in terms of computer
cost since random number generation by computer is costly, see
Table C. validation of the simulation results also demands
careful choice and development of methods of testing the results
to determine their representational value and usefulness, and of

estimating the error in simulation.

In this thesis simulation was used to obtain more detailed
information on the distribution of the sample cross-correlation
Iyy between two stationary, linear Markov series for both the
true unknown distribution and the approximate density function

given in [3].
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6.3 Further Research,

In our study of the cross-correlation distribution, we
obtained, using a sample of 7000 simulated values of r, an error
of 2% over the entire simulated distribution. To obtain a
reduction in this error would require a significant increase in
the sample size N of r and hence the amount of computation.
The rate of convergence of the error in the ordinary simulation
pmethod is not high and is dependent on 1/8Y/2 (see Shreider
[34] and Table D1). Hence, to obtain an error of, say 1% over
the entire simulated distribution a sample size > 25,000 would
have to be used. This approach is expensive in terms of computer
cost and it is obvious that very significant improvement of the
accuracy cannot be gained by this meams. This observation and
the fact that the high computer cost involved in simulation has
restricted our testing of the approximate distribution to only a
few values of the parameters im Section 5.2, are quite
indicative of the inefficiency and impracticability of simple
sipulation methods as a means of solving distribution theory
problems when the entire distribution is required with great
accuracy. The ordinary simulation method cannot give any
solution of very high accuracy unless special techniques are
erployed to improve the results. Therefore alternative
approaches to improve the accuracy of simulation and

modifications of computer simulation methods to increase
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efficiency are worth exploring. Several methods, commonly known
as variance-reduction techniques, have been proposed  for
reducing the sampling variability of sipulation to increase
efficiency. Variance reduction techniques are important in
sinulation studies since they emable one to improve the accuracy
of estimates without increasing the number of tests (or
sipulation runs). They are, in general, directed towards
altering the probability structure of the simulation model so
that efficiencies in computation are obtained. Some variance
reduction techniques which have been suggested are :

1) Stratified sampling

2) Systematic sampling

3) Importance sampling

4) Correlated sampling

5) Regression methods

6) Use of expected values

7) Russian roulette and splitting

8) orthonormal functions

9) Antithetic variates

10) Control and Concomitant variates
Kahn and Hammersley [13,19,20] offer two rather complete
discussions of variance-reduction techmigues. A number of the
above-mentioned methods was described and discussed in a recent

paper by Gaver [11].

It may be possible and vorthwhile in a future research to

develop some of the variance-reduction techmiques for
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application in the present simulation study to obtain more
reliable and accurate results, based on which some concrete
judgement may be formed on the over-all validity of the

approximate distribution,

Our study shows that comparison of the simulated
distribution with the true or approximate distribution by the
Kolmogorov-Smirnov test is expensive on computer time since the
test procedure is laborious, involving at each generation of the
r value, the non-decreasing ordering of the r sequence and
numerical integration of the p*(r) function. Furthermore, this
test measures the deviation around the region of paxinmup
discrepanéy only and is not sensitive to discrepancies in the
important tail regions, which may be small but are significant.,
This indicates the need for more efficient and reliable methods
of comparing and testing simulation results, and hence the scope

for further research.

While the approxinate distribution of cross-correlation may
be used to test for correlation between autocorrelated series,
its application is limited since it is completely dependent on
knovledge of the true autocorrelations which are usually not
obtainable in practice. Furthermore, the results of our
sinulation study seem to indicate that for high autocorrelations
of same or opposite sign the approximate distribution is
accurate only for large n (that is, longer series). This imposes

another restriction on the applicability of the approximate
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distribution since in practice series of data available for
testing are usually small. Hence, it would be useful if sone
distribution of the cross-correlation coefficient could be
developed in the future for application with estimated values of
the autocorrelations and small samples of data even vwhen the
absolute value of the serial correlation product is greater than

l5.

Other methods of studying the cross-correlation between two
series are also worth exploring., Spectral analysis is one
approach that may be taken. Since the autocorrelation function
and the spectrum (and the cross-correlation and the cross-
spectrun) are Fourier transforms of each other, they are
mathematically equivalent and therefore have equal
representational value. Hence, the spectrum may be used in place
of the autocorrelation as a tool in building simulation models
and spectral analysis of the results be applied. However, the
choice between the spectrum and the autocorrelation as a tool in
model building depends upon the nature of the models which turn
out to be more useful and efficient. It would be worthwhile to
conduct further research into the possibility of applying
spectral analysis to multivariate time series in order to derive
a distribution of the cross-correlation which is less resticted
in application than the approximate distribution that is being

studied.

™
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APPENDIX A

ALGORITHM FOR COMPUTING CRITICAL POINTS FOR SAHPLE CROSS-

CORRELATION

A1 Evaluation of p*(r;jn,n;pz).

Since the approximate density function of ?XY : p*(r), is
an even function of r, it is symmetrical about r = 0. Hence,
only positive (or upper) critical points for Lyy need to be

considered.

Let p*(rin, p,p) denote the approximate density function
of ryy for a particular set of values of the parameters
(R, p,p). Let ra;n,plpzbe the upper critical point for Tyy at
the o - level of significance for that particular set of
parameters., L, o pBay be determined from the relation

l!12

r
ain,pi1p2

I p*m,pp) ar = -0 . (A1)

0
Computation of critical points by the above equation involves
the numerical integration and evaluation of p*(r;n,plpz) for
ranges of r-values. 1} Fortran program is designed to accomplish
these two tasks. For numerical iqtegration » the Guass-Legendre
quadrature formula is employed. A detailed description of this

method of integration is given in Krylov (24] and Shroud [35].
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The evaluation of p*(r;n,plpz) by computer programming
presents both overflow and underflow problems in various terms
of the expression in Egn. (1.5). The following section will
discuss the difficulties encountered and methods of avoiding

then.

Consider the following terms in the expression of Eqn.

(1.5) for the approximate density function, p (r;n,P1P2) :

ko= 2M3 (1 - g2 (.2)
B{g = 1, 7]
and
D = R(1 - r2)t-4)/2 (A.3)
[C+ (1= pypy) 1¥572
vhere

rau-1r(i/2) (2.4)

rin-1)

B{7H-1, 7]

(9]
"

[(1 +p,0,)2 - Upjpr2 Ji/2 ' (8.5)

=
1

n+ pp46 = 5p1p2) (2.6)

1 - (P1pP2)2
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Then Egn. (1.5) may be written as
P (rin, 0102 = DC+ (1+#pp)J0/2 / € . (AT

From Eqn.(A.6) it can be seen that M is large for large
values of n with absolute values of close to zero. That is,
B+ = s n +® , I ppal + 0
For small values of n, M becomes negative for values of
close to -1. That is, for small n
H » == as pPi1p2 *-1.

Fig. A1 shows the variation of M with values of a and 0,0, .

However, the restrictions,
M > 2 for (¥4 -1 to have a positive argument
and
n 2 6 for the exponent of (1 - r2) in Eqn.(1.4) to be
positive,
impose a lower bound on the possible values of pip. for small
sample sizes. For n = 6 ,
B = 6+ pipa(6 =5p,0) /{1~ (PP92] > 2
requires that

p1p2 > =42, (2.8)

Hence, for small sample sizes, choice of the parametersf,, 0,

nust be subject to the condition (A.8).
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In K (A.2), both the BETA function and the factor 2M-3
produce overflows for large values of M. To compute the
BETA  function, Eqn.(R.4) is used. For H 2> 115, overflow

condition will result in the computation of the GAMMA
function since for arguments greater than 57, values of the
GAMHMA function exceed 1075, In order to handle large values

of M, the following Triplication Formula [14] is used
= 3z-1 1 2
r'3z) = 3°%72 T(2) I'(z + ) Mz +5) / 21 . (A9

This formula can handle values of ¥ as large as 343, For
larger values of #, the following Guass Multiplication
Formula [14] may be used :

(1-k)/2 | kz=3

n-1
r(kz) = (27 ) _Ho(z + i/k) . (A.10)
1=

For 4 > 130, the factor 2M3 in «k will  produce
overflows. To avoid this, the kth'root (such as k = 3) of K is

first computed by
Kl/k = 2 (M"3)/k / {B['ZLH -1 ' %]}1/}{ (5.11)

and the resultant g /K value is then raised to the power k at

an appropriate stage of the calculation.
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In D (R.3), the term (1 - rZﬂM'4)/2 may produce
underflows since it approaches zero rapidly as r tends to one.
To prevent underflows, the &h root (such as d = 50) of D is

computed by
pl/d= /40 - 20429 o g L,y (D2 )

The resultant Dl/d

value is then checked against a specified
small value ¢ . If pt/d ¢ e + D 1is set equal to zero, and
the value of the integral in Egm.(A.1) is not changed. For
exanple, for 4 = 50 , ¢ is taken to be 0.5 since

(0-5)50 = 10-,'5 .

Taking into account the above considerations, an algorithm
and Portran program may now be developed to evaluate
p*(r;n, p,p) for a given set of parameters (n,p,p). The
following steps comprise a gemeral procedure for evaluating

p*(rin, p,p,) at a given r-value :

1) Compute the value of M for the given set of parameters

(n,0,0,) using Eqn. (A.6).

2) If M <2 pp,is incremented by § (that is, .o, =p,0,* Se
where § is a small increment such as .01) until o
becomes greater than 2. This step ensures the proper choice

of p,p, for the particular small sample size n used.
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Compute B[%u -1, % ] using Eqn. (A.%) and formula (4.9)
or (A.10) for the GAMMA  functions (depending on the

magnitude of M).

Conpute Kl/k by Eqn.(A.11) , (using, for example, k = 3).
Raise the value Kl/k to the power k.

1/d . _
Compute D by Eqn. (A.12) , (using, for example, d = 50).

1f Dl/d < ¢ (using € = .5 for d =50), setD equal to
Zero.

1/d . .
If D > ¢, raise its value to the pover d.

Compute C by Eqn.(A.5).

Evaluate p**(r:n,p,pz) using Eqn. (A.7),

(@ (i, p1p) = pr(Tin, p10d) .

To facilitate the handling of very large numbers and at the

same time achieve greater accuracy in the computation of

p*(r;n, 0,0, double precision arithmetic is used to program the

above algorithm.
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A2 Procedure for Evaluation of Critical Values of L y-

Using the method developed in Section A1 for evaluating
p*(r;n,p1p2) and Guass-Legendre quadrature formula for numerical
integration, an algorithm is deviced to compute the critical
points of Ly for appropriate sets of the parameters (n,P1og.
The method of interval bisection is used to estimate the

critical points to a desired accuracy.

0" (rin,p709)

3-Iy
[»)
-1 [
ru;n,plpz

Fig. A2 : p*(r;n,plpz) Distribution and

Critical Point.
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Let I, denote the area under the p*(r;n,p,p,) distribution
curve as indicated in Fig. A2. Then Iy is given by,
La;n,pip2

Iqo = [ p¥rin,p0) dr = 1/2- 0 . (A.13)
0

For any point r; ¢ (0, 1), let

rj
Ij = f0 p¥(rin, pypy) dr . (2. 14)

The algorithm for computing rg;p,p,p, Proceeds as follows :

1) Set a=0, b=1, i=1
Compute

r; = (a+b) /2.

2) Compute the area I; by Eqn.(A.14) using Guass-Legendre

quadrature formula for integration.

3) If | Ii - I41 < ¢ for a prescribed ¢ , ry is
taken to be the value of ry . [It is possible to arrive at
this inequality since the Guass-Legendre quadrature formula
used to compute I; and Iy is known to converge for the
p*(r:n, p.p) function (see Shroud [35] and Krylov [24]).]

Otherwise, go to step (4).

4y 1f 13 - I, >0, set b=ri , i=1+1 and go to
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step (1) to compute the next approximation.
If I;- I, <0, set a=r; i=i+ 1 andgo to
step (1) to compute the next approximation.

The critical points computed by the above algorithm will 1lie

within ¢+ ¢ of the exact critical values for the approximate

distribution.
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APPENDIX B

JUSTIFICATION OF THE ASSUMPTION THAT THE ERROR IN THE SIMULATED
DISTRIBUTION FOR p,p2 # 0 IS THE SAME AS THE ERROR OBTAINED FOR

THE CASE WHERE pip2 = 0.

We note from the plots of the approximate
distribution p*(r) im Fig. 1.1 that the distributions for the
various values of p;p; are ' similar in form ' to the
normal N(0, 0) distribution with zero mean and variance o¢?.
For the case p,p,= 0, p(r) is approximately normal for large
n. Hence, let us use the normal distributions to validify our

assunption concerning the error estimate pade in Section 5.2.

Let us consider the N({0,1) distribution as analogous to
the p(r) distribution for p,p, = 0. Similarly, let the
N(0,0) and N(0,0) distributions, where o0, > 1 and
0,< 1, be considered analogous to the p(I) distributions for
p,pp 0 and p,pK 0, respectively. Making an arbitrary choice
of the values of ¢, and 0,, we simalated the N(0,1), N(0,.5)
and N(0,1.5) distributions, using Chen's random number
generator and a sample size of 7,000 in each case. We repeated
this set of simulations twice, using in each case a different
pair of seeds to generate the sanple of random numbers. For each
of the distributions simulated we computed the corresponding

Kolmogorov-Smirnov statistic D(N). If our assumption is valid
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the values of D(N) for all nine distributions should be less

than D, (7000) = .0172. The results of the simulations are

shown in Table B below.

Table B

Kolmogorov-Smirnov Statistics for Simulated Normal

Distributions.
N = 7000

Pair of 748,511,649 281,879,585 983,246,497
Seeds 147,303,541 27,530,613 858,619,509
Normal Dist. D (N) D(N) D(N)

N(0,.5) .0063 .0059 .0038

N (O, 1) . 0064 .0058 .0036

N(0,1.5) .0061 .0058 .0039

As shown in the above table, the values of D(N) for all

nine distributions are less than .0172. Hence, we can conclude

with 99% certainty that the error in all nine simulated
distributions is less than .02. This serves to justify our
assumption that the error estimate for the sinmulated

distribation with p.0,= 0 holds also for cases where P, $# 0.
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APPENDIX C

COMPUTER CONSIDERATIONS IN SIMULATION.

Simulation programs are usually written in a high level
language. Fortran IV is used in this simulation study since it
is a readily available general-purpose, problem-oriented
language most suited to the nature of the problems encountered
here. The normal random number generator suggested by Chen is
written in Fortran and was found to perform reasonably well on

the IBM 360/67.

The major costs of computation involved in this study

result from the following :

1) Generation of a large number of normal random numbers in
each simulation of the cross-correlation distribution. Each
sinulation with 7,000 sample values requires over 200,000
randem numbers. Approximately 3 minutes are required for
each simulation run on the IBM 360/67, using Chen's randon

number generator.

2) Testing the goodness-of-fit of the simulated distribution
by the Kolmogorov-Smirnov test. This test involves, at each
generation of the r value, the non-decreasing ordering of

the r sequence to compute the empirical cdf, and the
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numerical integration of the function p*(r;n,plpg to
obtain the theoretical cdf. The numerical integration in
the test is done by means of the 32-point Guass-Legendre
formula which integrates functions up to degree 63 exactly.
L complete test on the simulated distribution by the
Kolmogorov-Smirnov criterion, using a sample size of 7000,
required about 10 minutes of computer time. It is possible
to reduce the amount of computation in the integration by
employing a quadrature formula of low order (that is, with
less number of base-points). However, this would require
knowledge of the degree of the p*(r;n,plpg function to
be integrated before the formula can be applied
appropriately. Using the 32-point formula this requirement
can be avoided since the formula can handle functions of
high degrees. Furthermore, for the range of values of the
parameters, D, 0,0y considered, the degree of the
p*(r;n,plpz) function is not likely to exceed 63. To
improve the accuracy in computation, double precision
arithmetic is used to program the evaluation and

integration of p*(r;n,plpg.

Due to the high cost involved in simulating and testing a
distribution with a large sample, the error analysis for the
approximate distribution and its critical values could be

perforned only for a limited number of values of the parameters
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(n, p p). Table C below shows the computer timing obtained for
12

some runs of the simulation and testing programs.

Table C
Computer Time Statistics.

(CPU Time Used)

Type of Run ’ Approx. Time
Used (secs.)

Generation of 40,000 normal
random numbers. 25

Generation and testing
(by Kolmogorov-Smirnov test)
of 7,000 normal random numbers. 375

simulation of cross-correlation

distribution for
0P, = 472, n = 30, ¥ = 7000 160

Sinulation and testing

(by Kolmogorov-Smirnov test)
of distribution for

p1p2 = .72, n = 30, ¥ = 7000 769
0,0, = «10, n = 30, ¥ = 7000 162
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APPENDIX D
Table D1

Critical values D . (N) for the Kolmogorov-Smirnov Test
such that

P{ Max {Fop(rsn, 0,02 = Fglrin,pypdi > D () } = @
r

Sample Significance Level o
Size
N .01 .05 .10
5 0.669 0.565 0.510
6 0.618 0.521 0.470
7 0.577 0.486 0.438
8 0.543 0.457 0.411
9 0.514 0.432 0.388
10 0.490 0.410 0.368
1 0.468 0.391 0.352
12 0.450 0.375 0.338
13 0.433 0.361 0.325
14 0.418 0.349 0.314
15 0.404 0.338 0.304
16 © 0,392 0.328 0.295
17 0.381 0.318 0.286
18 0.3M 0.309 0.278
19 0.363 0.301 0.272
20 0.356 0.294 0.264
25 0.320 0.270 0.240
30 0.260 0.240 0.220
35 0.270 0.230 0.210
> 35 1.63N-1/2  1,36N-1/2  1,22N-1/2

Adapted from Massey,F.J.,Jdr., [29]
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