
University of Alberta

O R A M w i t h a F a u l t - t o l e r a n t R e c o n f i g u r a b l e ID ,2D a n d 3D
C o m m u n i c a t i o n N e t w o r k

by

Daniel Arie Leder

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful­
fillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives Canada

Published Heritage
Branch

3 9 5 W elling ton S tr e e t
O ttaw a ON K1A 0N 4
C a n a d a

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

3 9 5 , ru e W elling ton
O ttaw a ON K1A 0N 4
C a n a d a

Your file Votre reference
ISBN: 0-612-96507-4
Our file Notre reference
ISBN: 0-612-96507-4

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis introduces a reconfigurable interconnection network for Computational

RAM (O R A M) that incorporates ID, 2D and 3D communication between pro­

cessing elements. The processing element mesh is designed to be a dynamically

reconfigurable interconnection network with fault-tolerance extending into all three

dimensions of the mesh. A novel memory bank architecture for O R A M is also

proposed that allows for computations and load/store operations to occur simulta­

neously.

The efficiency of operation for O R A M is enhanced by the introduction of

the dynamically reconfigurable interconnection network, since shifting can be per­

formed more efficiently. The efficiency of O R A M is also enhanced by the memory

bank architecture, since computations are maximized by allowing computations to

be performed in parallel with external memory access.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This research was supported by Micronet R&D, MOSAID Technologies Inc, and
the University of Alberta. I would like to give special thanks to my supervisor,
Duncan Elliott for the help and direction. I would also like to thank Tyler Brandon,
Craig Joly and John Koob for listening, and letting me bounce ideas off of them.
I would like to thank Kelsey Thompson for her efforts in reading and editing my
thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Thesis Organization.. 3

2 Prior Art 4
2.1 Computational RAM (C»RAM) A rc h ite c tu re 4

2.1.1 O v erv iew .. 4
2.1.2 Generic C*RAM A rch itectu re .. 5
2.1.3 3DSOI C»RAM ... 8

2.2 Silicon-on-Insulator.. 11
2.2.1 O v erv iew 11
2.2.2 MIT Lincoln Labs - 3D S O I .. 12

2.3 Grid Based Processors ... 14
2.3.1 Network T o p o lo g ie s ... 14
2.3.2 Implemented Grid Based Processors.. 16

2.4 R edundancy... 19
2.4.1 Logic R edundancy ..20
2.4.2 Memory Redundancy...20
2.4.3 C«RAM Redundancy...22
2.4.4 Grid Based R ed u n d an cy .. 22
2.4.5 Altera’s 2D Programmable R edundancy...................................... 24

2.5 S u m m a ry .. 24

3 Architectural Concepts 26
3.1 Memory Array .. 26

3.1.1 Multi-bank D e s ig n ..28
3.2 Interconnection N e tw o rk .. 31

3.2.1 Applications of a Multi-dimensional N etw ork 32
3.2.2 Architecture of a Multi-dimensional N e tw o rk 33
3.2.3 Architecture of the 3D N e tw o rk ... 34
3.2.4 A ID Network in a 3D N e tw o rk ... 35
3.2.5 A 2D Network in a 3D N e tw o rk ... 36
3.2.6 Multiple Chip Interconnection.. 38

3.3 Redundancy D esig n ..41
3.3.1 Compatibility with Memory R ed u n d an cy41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.2 Processing Element Redundancy...46
3.3.3 Interconnection R edundancy... 53

3.4 S u m m a ry ... 55

4 Implementation 56
4.1 MIT Lincoln Labs 0 .18/nn S O I ... 56
4.2 Memory Array ... 57

4.2.1 Multi-bank M e m o ry .. 57
4.2.2 Multi-bank Memory Controller ...67
4.2.3 Memory Redundancy.. 71

4.3 Processing E lem e n t...73
4.4 Processing Element R edundancy.. 75

4.4.1 Row & Column Redundancy... 75
4.4.2 Redundancy C ontroller... 77

4.5 Interconnection N e tw o rk ... 78
4.5.1 Broadcast Bus Interconnection.. 79
4.5.2 ID, 2D, and 3D Interconnection... 80
4.5.3 Interconnection Network C o n tro lle r.. 92
4.5.4 Off-chip Interconnection C o n tro lle r.. 92

4.6 3D SOI Stack Im plica tions.. 93
4.7 Perform ance..94

4.7.1 Design P e rfo rm an ce .. 95
4.8 Design Results ... 98

4.8.1 Power - E stim ation ..99
4.8.2 Area - Estim ation... 102
4.8.3 Y i e l d ...107

4.9 S u m m a ry ..112

5 Testing 114
5.1 Testing of First Generation 3DSOI C * R A M .. 114

5.1.1 Proof of 3DSOI T echno logy ..115
5.1.2 Test S tra te g y ..117
5.1.3 Test R esu lts ...119

5.2 S u m m a ry ..124

6 Conclusions 125
6.1 Future W o rk .. 127

Bibliography 128

A Yield Calculations 130
A .l Column and PE Bus Redundancy...130
A.2 Dependent Column and PE R edundancy... 131
A.3 Independent Column and PE R edundancy .. 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B 2D Switch Grid Redundancy Yield 133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 PDSOI versus FDSOI [1 1] .. 12

3.1 Plane Addressing Calculation on F a ilu re ... 53

4.1 Sense Amplifier Index ing ...68
4.2 Multi-Bank Controller O peration..69
4.3 Circuit Propagation Delay for 1.2V & 1.5V O peration............................ 97
4.4 Maximum Operational Frequencies for 1.2V & 1 . 5 V 98
4.5 Dynamic Power Calculations for 1.5V O p e ra t io n100
4.6 Dynamic Power Calculations for 1.2V O p e ra t io n101
4.7 Dynamic Power for Select C ircu its ...102
4.8 Height Approximations of Shift and Redundancy W ir in g104
4.9 Length Approximations of Shift and Redundancy Wiring (single die) 104
4.10 Area Approximations for 4x8x4 Array with R ed u n d an cy105
4.11 Area Approximations for 4x8x4 Array R edundancy............................106

5.1 3DSOI C*RAM Test R e su lts ...121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 O R A M Array - Memory cell array incorporating PEs [8] 6
2.2 O R A M PE - 256-Function PE including interconnection [8] 7
2.3 3DSOI O R A M Organization [1 6] .. 9
2.4 3DS0I O R A M Processing Element [16] .. 10
2.5 MIT Lincoln Labs 3D SOI S ta c k .. 13
2.6 Network Topologies [8,2] .. 15
2.7 Conventional Column Redundancy Architecture [9] 21
2.8 Shift Column Redundancy Architecture [9] .. 22
2.9 Grid Based Redundancy Approaches [1 7] ..23

3.1 Multi-Bank O R A M ... 30
3.2 O R A M - One-dimensional Interconnect in Three-dimensional Mesh 36
3.3 O R A M - Two-dimensional Interconnect in Three-dimensional Mesh 37
3.4 Off-chip Data Shifting .. 39
3.5 Multi-chip ID and 3D P rob lem ...40
3.6 O R A M Redundancy of Processing Elements and Memory (original) 42
3.7 O R A M Redundancy of Processing Elements and Memory (option 1) 43
3.8 O R A M Redundancy of Processing Elements and Memory (option 2) 44
3.9 Yield Plots for Memory and PE red u ndancy 45
3.10 O R A M Grid Redundancy using Redundant B u s 47
3.11 O R A M Redundancy of Processing E lem e n ts48
3.12 Two-dimensional PE R ed u n d an cy .. 50
3.13 90% Yield for PE R edundancy ... 52
3.14 O R A M Interconnection R ed u n d an cy .. 54

4.1 Multi-Bank Architecture with 4 Banks per P E 58
4.2 Word-line to SRAM c e l l ... 60
4.3 Word-line Decoding (o p t io n l) ...60
4.4 Word-line Decoding (o p tio n 2) ...60
4.5 Sense Amplifier (M R egister).. 62
4.6 Write-Back M Register to C e l l ...63
4.7 Sense Amplifier, Precharge & Column C o n tro lle r63
4.8 Column D ecoding..64
4.9 Redundancy of Column D e c o d in g .. 65
4.10 Address Recalculation for Address C ontinuity66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.11 Plane Address Recalculation for Address Continuity 67
4.12 Multi-bank Memory C ontroller.. 71
4.13 Memory and PE Replacement .. 72
4.14 Memory Redundancy Schematic Detail ..73
4.15 Processing E lem en t..74
4.16 Processing Element R edundancy...76
4.17 Two-dimensional PE R ed u n d an cy ..76
4.18 PE Grid Redundancy S c h e m a tic ...77
4.19 PE Grid Redundancy D eta il... 78
4.20 Shift C irc u it... 82
4.21 Shift Circuit with z R ed u n d an cy ... 82
4.22 Shift Circuit In terconnection... 84
4.23 Interconnections for ID and 3D using S p ira l....................................... 85
4.24 Interconnections for 2D using S p ir a l .. 85
4.25 PE Interconnections with a Failed P l a n e .. 86
4.26 Spiral Interconnection Circuit with R edundancy................................. 87
4.27 Torus with Similar Delay L in k s .. 88
4.28 Torus Across Multiple A rrays... 88
4.29 Array Block Interconnection over Multiple Array B lo c k s90
4.30 3D via (a)symbol, and (b) s tack in g ..94
4.31 Possible PE placement for 2D G rid .. 102
4.32 Area Bar G ra p h .. 106
4.33 Yield Plots for PE re d u n d a n cy .. 108
4.34 Equivalent Yield for PE A r r a y .. 109
4.35 Equivalent Yield for 64x64 Fault-tolerant G rid110
4.36 Equivalent Yield for 64x64x8 Fault-tolerant A rray110
4.37 Yield Plots for Memory Redundancy...I l l
4.38 Equivalent Yield for Memory Redundancy...112

5.1 Chip Plots - a black dot represents a good c e l l122
5.2 Chip P lo t s .. 122
5.3 Contour Shmoo Plot of Good Cells of Chip 1123
5.4 Contour Shmoo Plot of Errors of Chip 1 .. 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols & Abbreviations

ALU Arithmetic Logic Unit

O R A M Computational Random Access Memory

CVD Chemical Vapour Deposition

DRAM Dynamic Random Access Memory

FDSOI Fully-Depleted Silicon-On-Insulator

I/O Input-Output

IC Integrated Circuit

MUX Multiplexer

NEWS North-East-West-South (interprocessor communication)

PDSOI Partially-Depleted Silicon-On-Insulator

PE Processing Element

PIM Processor-in-Memory

RAM Random Access Memory

SIMD Single Instruction stream Multiple Data streams

SRAM Static Random Access Memory

SOI Silicon-On-Insulator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

This thesis presents architectural enhancements and circuit designs for Computa­

tional RAM (C»RAM) for implementation in a three-dimensional (3D) integrated

circuit (IC) process. C«RAM is a Single Instruction stream Multiple Data stream

(SIMD) processor-in-memory parallel processing architecture. Enhancing the inter­

processor communication capabilities while maintaining design reliability is pre­

sented. This architecture involves the addition of processing elements to con­

ventional memory, where each processing element is built in the pitch of a small

number (1-4) of memory columns [8]. This thesis will contribute to the creation

of a dynamically reconfigurable interconnection network that will allow for one­

dimensional, two-dimensional, and three-dimensional communication between pro­

cessing elements. How the addition of redundancy to the design accommodates all

dimensions of communication will also be shown. The main contribution will be

transforming a linear array of processing elements (PEs) into a fault-tolerant three-

dimensional cube of PEs. The target IC process is the Massachusetts Institute of

Technology Lincoln Labs (MIT LL) developed fully-depleted silicon-on-insulator

(FDSOI) process where the wafers can be stacked on top of each other, thereby

automatically adding a third dimension to chip creation. During previous work,

techniques to take advantage of this process were discovered that allow for a single

design to be used and stacked multiple times to create a scalable architecture. The

designer is only required to determine the maximum height, since it would be nec­

essary to be able to address all dies in the stack. This would require the designer to

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

anticipate the number of dies needed to accomplish the design.

This has led to the architecture changes that are discussed in this thesis, where

the stacking of dies is used to reduce the number of interconnections on a single

wafer to create a complete N x N x N cube. With stacking capabilities it is pos­

sible to make each die a N x N plane of the cube, thereby reducing the number of

interconnection wires per die by N. Since the current stack height has been limited

to two wafers, each die design will be based o n a N / 2 x N x N cube, which leads to

a single order of magnitude decrease in the number of interconnection wires per die.

Due to the fact that a new dimension has been added to chip design, design tech­

niques for dividing a design and maintaining single die functionality are needed.

These techniques allow for additional scaling of the stack while ensuring correct

functionality that meets the design specifications. Some techniques for preserving

functionality of single to multiple die stacks will be researched and discussed in this

thesis.

An additional contribution of this thesis will be enhancing the memory interface

of the O R A M architecture. Previous architectures have been limited to loading or

storing the memory of the O R A M before computations could be performed. The

limitation has been that during loading or storing of the memory, computations

cannot be performed, thereby reducing the efficiency of the O R A M architecture.

The memory interface of the O R A M architecture is enhanced by implementing

multiple banks of memory per processing element, allowing for external memory

accesses to be performed in parallel with the processing element computations. In

this way, the efficiency of the O R A M architecture is improved so that the process­

ing elements are operating as much as possible.

A prior generation O R A M architecture manufactured in the MIT LL process is

tested to determine the viability of the MIT LL process and to determine the amount

of redundancy that may be needed to improve the yield of the design being done in

the MIT LL process.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Thesis Organization

1.1 Thesis Organization

In this thesis, Chapter 2 presents an overview of past work in fields of SIMD archi­

tectures, silicon-on-insulator (SOI) technology, processor interconnection networks

and redundancy. In Chapter 3, design trade-offs and architecture enhancements of

C«RAM are discussed. To show that the architecture enhancements are viable,

Chapter 4 describes the design of the new architecture. Chapter 5 presents the test

results of the prototype chip of the prior SOI C«RAM architecture. Chapter 6 sum­

marizes and presents the conclusions for the thesis.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Prior Art

This chapter presents four sections: Computational RAM, 3D SOI, grid-based pro­

cessors, and redundancy for memory and logic.

Section 2.1, Computational RAM, introduces the developed C«RAM architec­

tures. The generic C*RAM architecture, a commercial and a research design, are

discussed to show the viability of the design.

Section 2.2, 3D SOI, introduces MIT Lincoln Labs’ silicon-on-insulator (SOI)

technology that allows for the stacking of multiple SOI wafers (three-dimensional).

Section 2.3, Grid Based Processors, takes a look at past implementations of

grid-based processors and the processor interconnection methods used.

Section 2.4, Redundancy, looks at prior methods of redundancy used for mem­

ories, and grid-based logic.

2.1 Computational RAM (C«RAM) Architecture

2.1.1 Overview

Computational RAM (C*RAM) is a processors-in-memory (PIM) parallel process­

ing architecture, sometimes known as a logic-enhanced memory. The main con­

cept in C*RAM is to implement computational units near the memory core of a

chip. This concept allows the designer to take full advantage of the bandwidth that

is available at the sense-amplifiers of a memory [7]. C«RAM is implemented by

matching a processing element (PE) to the pitch of one or more columns of memory.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Computational RAM (C»RAM) Architecture

The typical O R A M PE is bit-serial and is constructed from a set of three registers

and a 256-function ALU. The ALU uses an 8-bit opcode (instruction) generated

off-chip to perform the 256 possible ALU functions. All PEs receive the same op­

code (Single Instruction stream) as the input to their ALU and the contents of the

registers selects the appropriate result. O R A M attempts to maintain the conven­

tional memory interfaces for SRAM or DRAM memory, except for the allowance

of new pins to provide the opcodes, additional control signals and clock for the PE.

O R A M has previously been implemented in a DRAM process, a logic process

using SRAM for the memory core [8], and in a silicon-on-insulator (SOI) process

using SRAM for the memory core [16].

2.1.2 Generic ORAM Architecture

Computational RAM (O R A M) is a SIMD (Single-Instruction stream Multiple-

Data stream) architecture that was developed at the University of Toronto [8]. The

architecture builds on the structure of DRAM and SRAM memory cores in order to

minimize the architectural changes that would be required to implement O R A M

into a memory core. O R A M has been implemented in a DRAM IC process, and

logic IC processes.

The architecture consists of 1-bit processing elements (PEs) constructed as a

linear array. The 1-bit PE contains a 256-function ALU and 3 registers which

act as operands to the ALU. O R A M has been constructed using DRAM and

SRAM as the main memory of the PEs. Each PE has access to its own local

memory through the means of a global address (uniform addressing). O R A M

is a SIMD architecture because all the PEs are supplied with the same instruction

(Single-Instruction stream), although each PE operates on its own data (Multiple-

Data stream). O R A M can perform point-to-point communication where there is

one sender and one receiver. For O R A M the point-to-point communication is

patterned so that all PEs shift left or right to their nearest neighbours, and when dis­

tances greater than one are required, the shift operation is performed multiple times.

O R A M also has the capability to broadcast data and combine data through a global

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Computational RAM (C»RAM) Architecture

bus (broadcast bus), which has been implemented as wired-OR or wired-AND. To

improve scalability, O R A M was designed with a scalable left-right interconnect

and broadcast bus to allow for scaling of the processor array by connecting multi­

ple chips together.

Row
D eco d ers ________________ M em ory cells

Row A ddress

S e n s e am plifiers
and

colum n d eco d e rs

SIMD instruction P E s

Figure 2.1: O R A M Array - Memory cell array incorporating PEs [8]

The idea behind O R A M was to take advantage of the bandwidth that is avail­

able from the sense amplifiers of a memory. By increasing the size of memory and

allowing each column or several columns of memory to be tied to a PE, the process­

ing power increases with the amount of columns of memory or banks of memory

that are introduced in each generation. O R A M was also designed to replace stan­

dard memory, so that the user only has to buy one type of memory. The advantages

of O R A M can best be seen in areas of computing where there is a high level of par­

allelism. The PEs are directly integrated into the memory and data is stored in each

column of memory. For O R A M to be useful, there needs to be enough computing

that can be parallelized to take full advantage of the O R A M architecture. When

the computing parallelism is low, O R A M is likely to be slower than a uniproces­

sor system, since O R A M is only a 1-bit serial processor and uniprocessors are

typically 32-bit or 64-bit processors. Another advantage of O R A M is that it is a

processor-in-memory (PIM), so it is a system within itself and is able to operate at

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Computational RAM (C»RAM) Architecture

lower power than a complete uniprocessor system. In addition, the O R A M chip

is small and therefore can be implemented in a hand-held system and still maintain

the advantages of high-speed computing and low power usage.

Memory
Columns

Sense Amps
and Decode

Shift Left

Shift Right

X,Y,Memory /

Programmable
Function
(multiplexer)

Global Instruction

Bus Transceiver

W ired AND B us

Write
Enable
Register

Figure 2.2: O R A M PE - 256-Function PE including interconnection [8]

Despite this advantage, there is the disadvantage, that the PE does not fit into

the pitch of two bit-lines in a DRAM process. Additionally, the logic (PE) does

not scale the same way in a DRAM process; therefore, with each new generation of

processing technology, it may be necessary to re-design the PE. In a DRAM process

the PE is usually built to fit the pitch of eight bit-lines in the DRAM memory. This

adds additional costs to development of a new O R A M with each generation.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Computational RAM (C»RAM) Architecture

2.1.3 3DSOI ORAM

At the University of Alberta, an implementation of O R A M was built using a

silicon-on-insulator (SOI) process supplied by MIT Lincoln Labs [16]. The process

from MIT allows for the stacking of multiple dies (wafers), since one of properties

is that the substrate is actually an insulator rather than a conductor. This allows for

the etching of holes through the die and filling the holes with a conductive layer

that can tie signals from one die to a signal in another die. The implementation of

O R A M in SOI was done with the concept that identical dies can be stacked, and

that the processor array would scale linearly by the number of processing elements

on a die.

2.1.3.1 Memory Organization

The memory organization of 3DSOI O R A M is similar to the generic O R A M

architecture. The memory core of the 3DSOI O R A M is SRAM and is placed in

a grid pattern. Since the memory core is SRAM, the interface to the memory is

similar to a SRAM interface with row and column address being supplied together.

For O R A M , the ability to turn on only the row for operations is included so there

is an enable signal for the row and column address. This allows the user to read and

write data to the row and column of memory by asserting both enable signals.

The memory consists of one bank of memory with 256 PEs for the bank. The

bank consists of 256 rows of memory cells for each PE, and a single column of

memory cells for each PE. This gives a result of 64Kb per O R A M die, but with

the MIT process two dies can be stacked resulting in a 128Kb SRAM with 512 PEs

per chip. To relax the pitch that the PE needed to be, the PEs were distributed above

and below the memory array. This corresponds to each PE pitch being matched to

two columns of memory; however, there is a PE above and below the memory array,

resulting in two PEs being constructed in the pitch of two columns of memory.

The memory organization for the 3DSOI O R A M is shown in Figure 2.3.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Computational RAM (C»RAM) Architecture

Column Decoders

Processing Elements

Row
Decoders

TT TT TT

SIMD Instruction

n n

TT TT

n n

TT TT

SIMD Instruction

n n

Memory Array

Processing Elements

Column Decoders

Figure 2.3: 3DSOI O R A M Organization [16]

2.1.3.2 Processing Element

The processing element (PE) for 3DSOI O R A M is similar to the PE of the generic

O R A M architecture. The PE is a bit-serial processor with three registers and a

256-function ALU. The ALU remains as a 8-to-l MUX which can perform 256

functions, but the MUX was built using pass-transistor logic. The PE has two addi­

tional registers: one is used when performing conditional operations, and the other

is used for maintaining communication in the event of a failure in the PE or in the

column of memory associated with the PE.

2.1.3.3 Communication

The communication scheme used in 3DSOI C»RAM is a left-right 1-bit shift net­

work, where each PE shifts the ALU result to its left or right neighbour, depending

on the control signals. This interprocessor communication allows for all PEs to

send data to other PEs one or more PEs away, and to retrieve data from other PEs

that are sending their data at the same time. This can be thought of as patterned

communication, since all PEs send data the same distance simultaneously, as seen

in Figure 2.4.

There is also a broadcast circuit that allows a single PE to broadcast a result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Computational RAM (C^RAM) Architecture

To Mem Column n To Mem Column n+1

Data Bus

dd Left Shift

R ight Shift

Opcodes Opcodes

Bus Transceiver Bus Transceiver
Broadcast Bus

>ocra•oc
3"a0)cc
LU
CL

Figure 2.4: 3DSOI O R A M Processing Element [16]

to one or more PEs. This broadcast circuit also has the ability to combine the

results of multiple PEs (global wire-OR or wire-AND), so that all PEs communicate

simultaneously with each other to determine whether or not one or more PEs are

looking at the same data. For example, this broadcast network can be used to find a

minimum or maximum data value among the PEs.

2.1.3.4 Redundancy

In 3DSOI O R A M , the redundancy technique was used to shift the problem down

the array. If one PE or column of memory failed, then it would set its skip register

to ‘1’, indicating that it should not participate in the shifting of data due to a fault

associated with the PE. This way the chip can still be usable, even if at the end

there are only 128 PEs out of 256 PEs that are usable. In Figure 2.4, the redundancy

circuit is shown for the PE. This redundancy circuit allows the bypassing of one or

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Silicon-on-Insulator

more PEs. More information about O R A M redundancy can be found in Section

2.4.3.

2.2 Silicon-on-insulator

2.2.1 Overview

The Silicon-on-Insulator (SOI) CMOS technology process has emerged as a poten­

tial alternative to the conventional bulk CMOS technologies that are currently in

use. The advantages of SOI are related to the feature of device islands (transistors)

being dielectrically isolated from each other and from the underlying substrate. Due

to this feature, there is a reduction in the junction capacitance of transistors, CMOS

latch-up is eliminated, short-channel effects are enhanced, and the immunity to ra­

diation induced soft errors is improved [5]. The lateral isolation of device islands

allows for more compact designs, since there is no need for wells or inter-device

trenches [6].

Since SOI is an emerging technology, difficulties in manufacturing and design

at the device and circuit level are common. Despite these difficulties, an SOI design

can - and most often will - exhibit reductions in power consumption when operating

at the same frequency as an equivalent conventional bulk CMOS design. Alterna­

tively, an SOI design can operate at higher frequencies than the CMOS design for

the same power consumption [5].

SOI processes can be classified by active area depth into fully-depleted (FD)

and partially-depleted (PD). There are advantages and disadvantages to both device

technologies. In Table 2.1, the characteristics of FDSOI andPDSOI that were con­

sidered during the design of the Alpha microprocessor are shown [11], The results

show six reasons to choose the FDSOI, and six reasons to choose PDSOI.

In the table poor indicates that the process gives poor results when the condition

is examined. For example, the leakage current for FDSOI is poor this means that

FDSOI has higher leakage currents than the PDSOI process. Likewise, for FDSOI,

the stability of a transistor without a body contact is good indicating that FDSOI

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Silicon-on-Insulator

Table 2.1: PDSOI versus FDSOI [11]
PDSOI FDSOI PDSOI FDSOI

Performance Good Good Ease of Manufacture Good Poor

Design Compatibility Poor Good Breakdown Voltage Good Poor

CAD Environments Poor Poor Leakage Current Good Poor

Stability w/ contact Good Fair Transconductance Good Poor

Stability w/o contact Poor Good Short Channel Effect Poor Good

Operation Voltage High Low Body Contact Good Poor

History Dependence Poor Good Body Effect Good Good

Parasitic Bipolar Effect Poor Good Self-Heating Poor Poor

still works well when transistors have a floating body. Floating body refers to case

where the device well of the transistor is not connected to a voltage source, but

rather floats as the transistor switches. Good is an indicator of a positive reason to

choose the process, while poor or fair are indicators not to choose the process.

Choosing the SOI device type to use will depend on which reasons are most

important for a specific design. While working with FDSOI may allow lower op­

erating voltages, manufacturing FDSOI is more difficult since the silicon layer is

thinner than that for PDSOI. The self-heating of PDSOI and FDSOI is a result of

the buried oxide thermally insulating the transistors in the design, causing heat to

build up.

2.2.2 MIT Lincoln Labs - 3D SOI

MIT Lincoln Labs has developed a Fully-Depleted (FD) Silicon-on-Insulator (SOI)

technology [3,4], where multiple wafers can be stacked to form a three-dimensional

chip. This development will allow designers to look to another dimension when

building chips, so that the planar area of a chip can now be used more efficiently.

The stacking ability is an advantage in that separate circuits can be built on separate

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Silicon-on-lnsulator

wafers. Additionally, the interconnect wires will not have to traverse across the

chip, but can now run through the die. Previously, sending a signal across the chip

would require a wire length greater than 1000/jm, resulting in long signal delays,

but now the same signal can be connect through the chip in less than 10 jim.

The MIT process involves three wafers. The first wafer is a photo-diode layer,

and the second and third wafer are circuit wafers. The current process is limited

to two circuit wafers and three metal layers per circuit wafer. The wafer stack is

created by placing the second wafer upside down on the photo-diode layer, where

the photo-diode layer is first covered with a wafer bonding agent. Then the bottom

of the second wafer (handle) is cut away to minimize the wafer height and the

length of the vertical conductor. The wire through the die is created by etching a

hole through the die, and filling the hole with metal. The holes are etched and filled

forming the vertical conductors, also called 3D vias. For MIT process, the 3D via

connects metal between dies, while a normal via connects metals within the dies.

The vertical conductor is formed when a hole is etched through the wafer, where

the third metal has a donut hole for the etching mechanism to cut through until the

first metal of the wafer below is contacted, stopping the etch. After the etching is

Carrier
Wafer

Metal 1
Metal 2
Metal 3

SOI

(wafer 3)

3D Via Standard Via

Figure 2.5: MIT Lincoln Labs 3D SOI Stack

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Grid Based Processors

done, the holes are filled with tungsten, using chemical vapour deposition (CVD).

The wafer is then polished to provide a smooth surface for the bonding agent to

be applied. The same process is used for the third wafer. Once the third wafer

is bonded and etched, a handle is applied to the bottom of the third wafer to add

stability. Then the stack is flipped over and the bond pads are etched.

MIT currently has a 0.18/jto Fully-Depleted Silicon-on-Insulator process that

can be used to create a three-dimensional stabk. When creating a three-dimensional

stack, the process is limited to three metals, instead of the five metals that are avail­

able for their standard 0.18fim FDSOI process.

2.3 Grid Based Processors

In this section, some of the grid-based communication SIMD multiprocessor ar­

chitectures are described. The descriptions will include the number of processing

elements (PE) in the architecture, the features of the processing elements (PE), how

the architecture was constructed, the inter-processor communication network, and

the type of redundancy used.

2.3.1 Network Topologies

When discussing the grid-based processors it would be worthwhile to look at some

of the different network topologies that can be used for grid-based networking. In

Figure 2.6, some of the network topologies are shown that can be used for pro­

cessors organized in a two-dimensional grid. For a two-dimensional grid, each

processor is typically able to communicate with its four nearest neighbours. This

network topology is typically called a NEWS (North-East-West-South) network,

where each processor communicates in one of four directions. The NEWS network

is the basic network topology for processor communication between processors

organized in a grid. In general, EW is typically referred to as left-right commu­

nication between neighbours. The toroid interconnection network is an expansion

on the NEWS network, where all the boundaries of the two-dimensional grid are

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Grid Based Processors

/ \ / \ / \

V " X / \ /
X -N et Interconnect

Bi-directional com m unication port
on e a c h c o m e r is wired to 3

ne ighbours

EH - P rocesso r Element

| - Interconnect Wire

Figure 2.6: Network Topologies [8, 2]

connected using torus interconnects. The toroid designation comes with the under­

standing that all dimensions are connected using a torus interconnect. The spiral

interconnect is the easiest way of creating a one-dimensional string of processors

out of a two-dimensional grid of processors. This spiral interconnect allows left-

right interconnections between all processors creating a complete shift chain for

left-right communication. The torus interconnection network can be composed of

only a torus connection for one dimension, and may include a spiral interconnect

for the other dimension. The torus designation is typically used when not all of

the dimensions use a torus to connect the boundaries of the grid. The X-NET in­

terconnect is a different type of interconnect, where each processor is tied to more

than one processor at a time. All processors broadcast their data out over one of the

four wires that emanate from the processor, and each processor listens to one of the

three remaining wires. In this way the interconnection wires are shared and allow

for more flexibility in the way that communication is performed. In the following

section, one or more of these topologies will be used for each of the grid-based pro­

cessors. It can also be noted that many of these network topologies can be extended

15

NEWS interconnect Toroid Interconnect

d l c a l l e a l l e a l L1̂ - -"1 1̂ - ~ ^ i 1̂ - - ^ 1

[j L _ J L > | L _ J L <^ 1 1̂ - -H 1̂ - -H 1̂ - - ^ 1 r -̂

Spiral Interconnect Torus Interconnect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Grid Based Processors

to three-dimensional meshes to produce similar patterns of communication.

2.3.2 Implemented Grid Based Processors
ILLIACIV

The ILLIAC IV was the first operational processor array, and was built in 1972

[2]. When it was built, it was designed to have four 64 PE quadrants, but the first

system only contained one quadrant. The ILLIAC was designed with each PE hav­

ing access to a 2048 64-bit word memory. The memory was fully accessible by the

control unit, but each PE could only access its own memory using uniform address­

ing. Each of the PEs was designed with its own arithmetic circuitry and 4 64-bit

registers, which were used for holding shifted data, accumulator data, operand data

and temporary data.

The 64 PEs were organized into an 8x8 processor grid (two-dimensional) with

each processor being able to communicate to its four nearest neighbours using the

NEWS network topology network, where each processor communicates in one of

four directions. The inter-processor communication (shift) network topology for the

ILLIAC is described as a torus, where the top and bottom processor of each column

in a two-dimensional grid are connected together. The left processor is connected

to the right processor of the previous row in a two-dimensional grid. This type

of connection is typically called a spiral network topology, since the data would

be shifted in a spiral nature around the processor array. Since the bottom-right

processor is connected to the top-left processor, the East-West network topology is

also a called a torus. No mention was made to the type of redundancy, leading to

the belief that no redundancy of either PEs or memory was done.

DAP

The ICL DAP (Distributed Array Processor) was first implemented in 1976,

with 1024 PEs having 4Kb of memory per PE [8,12]. The PE was a 1-bit processor

containing a full-adder and 3 registers. The system was constructed using medium

scale integration TTL components and standard memory chips. The inter-processor

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Grid Based Processors

communication network topology for the ICL DAP was the NEWS network, where

each processor communicates with its 4 neighbours on a two-dimensional grid.

This communication was done using a 4-to-l multiplexer in each PE to select the

network output of one of the four adjacent PEs as the PE’s input.

The DAP architecture was further developed by Active Memory Technologies

Ltd. (AMT) into the DAP 500, 510C and 610C. These were developed as a SIMD

’’back-end processor” to work with a VAX minicomputer or SUN workstation host

[8]. The DAP 500 was AMT’s version of the ICL DAP; it contained a 32x32 PE

two-dimensional grid with 64 PEs per integrated chip. For the DAP 510C and

DAP 610C, AMT added 8-bit math co-processors for each PE to improve arithmetic

performance; however, these were located on separate chips. The DAP 5 10C was an

array of 32x32 PEs, and the DAP 610C was scaled to 64x64 PEs. The DAP 500 used

parity to increase reliability, duplication of the entire operation, and master/slave

comparison as means of redundancy [20].

MPP

The Massively Parallel Processor (MPP) developed by Goodyear Aerospace for

NASA Goddard Space Flight Center in 1981 contains 16384 PEs organized in a

128x128 processor plane capable of two-dimensional communication between pro­

cessors [2, 8]. Each PE in the MPP had access to IK bits of memory, and the local

memory is accessed through uniform addressing. The MPP was equipped with a

16-MB staging memory which was used to reformat and buffer the data for the pro­

cessor plane. Each PE is a bit-serial processor containing a full adder, 6 registers,

a programmable-length shift register, a boolean and routing-logic unit, comparison

logic, and a local data bus. The system was built with 8 processors per chip and with

off-chip memory for each PE. The memory for the PEs was organized in 128x128

1-bit per PE planes. The 16384 PEs were organized into a 128x128 processor grid

(two-dimensional) where each processor could communicate between its four near­

est neighbours. The interconnection topology is similar to the ILLIAC IV in that it

uses a NEWS interconnection topology. MPP added the ability to transform the in-

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Grid Based Processors

terconnection into a toroid, where the edge processors shift to the processors on the

same row or column at the other edge of the grid, forming horizontal and vertical

cylinders. It also has the ability to form a spiral, closed spiral and a spiral toroid.

No redundancy was found for the MPP architecture.

Connection Machine

The Connection Machine (CM) is an architecture that was developed by Think­

ing Machines Corporation in 1985 and, like the architectures above, is a processor

array [2, 8]. Of all the Connection Machines implementations, the CM-1, CM-

2 and CM-5 architectures are discussed most often. The CM-1 was implemented

with 64K bit-serial PEs, with each PE having 4K bits of memory. The PE of the

CM-1 consisted of dual Boolean units (256 functions), 8 general-purpose registers,

and a selector for selecting the source operand for the Boolean unit. The CM-1 was

constructed using commodity DRAM for main memory, each processor chip con­

taining 16 PEs with an autonomous hypercube router and a PE control unit. The

CM-1 contained two interconnection topologies, where the first was the standard

NEWS network where each PE could communicate with its nearest neighbour. The

second topology was an autonomous hypercube network, where two PEs were sep­

arated by no more than 12 hypercube wires. No redundancy was found for this

implementation.

The CM-2 is similar to the CM-1, except that the NEWS network was dropped

from the interconnection topology. The system was changed to have a 64-bit float­

ing point processor for every 16 PEs. Within a group of 32 PEs, each PE can access

another PE’s local memory. The memory for the CM-2 was expanded to allow

1Mb per PE; this was still done with commodity DRAM. The interconnect was

split into two levels, where in the first level the PEs, in a group of 16, communi­

cate by writing directly into each other’s memory by means of a flipper network

(butterfly network). The next level involves the hypercube of dimension 12 (a 12-

cube), where each PE group occupies one vertex of the 12-cube. No redundancy

was found for this machine as well.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Redundancy

The CM-5 was built as MIMD machine using commercially available micro­

processors (SPARC), instead of custom chips [18]. For the CM-5, the network and

data interface are decoupled from the microprocessors so that the networks are not

relying on the microprocessors in order to perform network functions. The CM-5

was designed to be resilient in the presence of faults, despite the specific network

topology.

EXECUBE

The EXECUBE architecture built in 1994 consists of 8 16-bit PEs with 4.5Mb

of DRAM memory. The PEs can operate in SIMD mode, with each PE receiving a

broadcast instruction, or in MIMD mode, with each PE fetching their own instruc­

tion [8]. Since the processor array can operate in MIMD mode, it was required that

each PE has its own address by which to access its memory, which is also called au­

tonomous memory addressing. Each PE has access to two 32K 9-bit word DRAM

arrays, where the 9th bit is parity. The processor array is built in a 4Mb DRAM

process with 8 processors implemented using ”sea of gates” semi-custom logic.

The PEs are connected in a cube formation with each PE having four point-to-

point links for interprocessor communication. This is equivalent to one PE at each

point of the cube. For off-chip communication, 8 links are made available instead

of the required 24 for a full three-dimensional mesh. No processor redundancy was

found for this architecture. Since the DRAM was built using a commodity DRAM

macro, memory redundancy techniques are more than likely incorporated into the

DRAM.

2.4 Redundancy

Redundancy is a method where the reliability and yield of a design can be im­

proved to the point of reducing the number of manufactured chips that are rejected.

Redundancy is used to eliminate or limit the impact that defects in the die may have

on the bonded chip. In this section the types of redundancies that have been used

previously will be discussed briefly.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Redundancy

2.4.1 Logic Redundancy

When implementing redundancy for the means of increasing yield, maintaining

or preserving functionality of a logic-based chip, it may be necessary to create a

replacement block or element. Adding redundant logic will increase the area of the

block. For O R A M , if the redundant logic was added to each PE, the area of the

entire PE would increase. The selection of which piece of the PE will be replicated

to add redundancy must then be made to ensure reliability.

Another method of redundancy would be to create a redundant PE instead of

adding a redundant element to the PE. This will cut down on the area that is used

for redundancy, but the number of redundant PEs to use becomes the factor in im­

proving the yield.

2.4.2 Memory Redundancy

The use of redundancy in designing is an effective method of improving the reliabil­

ity, increasing the production yield, and reducing the cost per bit for memory chips

[13]. When working with memories, the use of redundancy is needed because the

density of the design is high and the probability of a defect or failure in the memory

array is also high.

2.4.2.1 Conventional Techniques

In memories, the redundancy techniques replace defective memory elements

using on-chip spare elements. The defective elements are usually word lines or data

lines. For word-lines, there are N spare word-lines with N address comparators. The

address of the defective word-lines are programmed into the address comparator

during wafer testing, and one of the spare word lines is activated anytime the input

address matches one of the defective addresses. The programming elements are

usually poly-silicon fuses, which are blown by means of a laser beam or a pulsed

current.

For word-line (row) redundancy, there are a number of ways to replace the de­

fective word-lines. When using sub-arrays, two sub-arrays share a common sense

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Redundancy

amplifier so only one of the word-lines will be activated. If there are sub-arrays

in the chip, which is common, then the defective word-line address can be applied

globally to all the sub-arrays simultaneously. In this way all the sub-arrays re­

place the word-lines with the same spare word-lines, and this reduces the number

of comparators. The word-lines can also be replaced individually, which results in

the needed for less spare word-lines per sub-array [13].

Another technique involves activating the spare word-line and the defective

word-line simultaneously. This involves splitting the sense amplifier between two

sub-arrays, and programming the spare word-line onto the sub-array that does not

have the defective word-line. This results in no access penalty, since the defective

and the spare word-line results are independent. The data is then selected from the

sense amplifier containing the spare word-lines data.

In Figure 2.7, the conventional technique used for data line (column) redun­

dancy is shown. Spare columns of memory can be used to replace a defective

column of memory in a similar way to how a word-line (row) is replaced. For col­

umn redundancy, columns can be selected using a multiplexer to determine which

column will be used. The multiplexer selects whether the defective column or the

spare column is to be used [9].

130 GIO = [64 GIO + 1 S p a re GIO] * 2(Even/O dd)

S p are GIODefective GIO

R edundant D ata Bus

Pre-A m plifier &
2 -w a y S elector

R edundancy S ignals
S elector

64 I/O

Figure 2.7: Conventional Column Redundancy Architecture [9]

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Redundancy

2A.2.2 Embedded Memory Technique

In [9], a column redundancy technique for an embedded DRAM core is pre­

sented. The method of column redundancy is used to shift the column addressing

over by one column, as shown in Figure 2.8. To accomplish this the data lines (bit-

lines) are connected to pre-amplifiers, then the output of the pre-amplifiers is se­

lected. This keeps the column addressing uniform, and results in no access penalty

when compared to the conventional column redundancy scheme.

130 GIO = [64 GIO + 1 S pare GIO] * 2(Even/Odd)

Defective GIO ■/ S pare GIO

h " v£ S'
® t 5 <

Pre-Amplifier &
2-w ay Selectoro .

Redundancy Signals
Shift Switch

64 I/O

Figure 2.8: Shift Column Redundancy Architecture [9]

2.4.3 O RAM Redundancy

As O R A M is a memory variant and memory redundancy typically adds rows

and/or columns of memory, it makes sense to add redundant PEs instead of adding

redundancy to the PE. When doing this, however, the redundant PEs and columns

of memory will have to accommodate failures in both the memory array and the

PEs. Since O R A M has a shift network where the PEs are connected in order, the

redundancy mechanism must preserve the functionality of the shift network [8,16].

2.4.4 Grid Based Redundancy

In [14], a dynamically reconfigurable interconnect for array processors is presented.

The reconfigurability of processor arrays is important because it allows for efficient

execution of different algorithms and for the isolation of faulty processors. The

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Redundancy

interconnection network uses SRAM cells to configure the interconnect switches

to bypass faulty processors or to form different interprocessor network topolo­

gies. The use of SRAM allows for the dynamic reconfiguration of the processor

array in the field and different algorithms that require other network topologies.

The reconfiguration algorithm allows for elimination of the minimum number of

rows/columns that cover all of the faulty cells, while maintaining the desired net­

work topology. Each interconnection switch is configured by a SRAM storage cell,

requiring many cells to be used to create the interconnection networks.

Redundancy for grid-based logic ICs is more logical considering its regular

structure. In [17], the author explains how it is more suitable to incorporate re­

dundancy in a logic circuit with a regular structure, as opposed to a microprocessor

(random IC) which is more complex than a memory IC. The author also illustrates

three reconfiguration approaches for grid-based logic. In one approach a failure in

a row or column results in the complete removal of the row and column containing

the fault; see Figure 2.9(a). The second approach, Figure 2.9(b), steps over faulty

logic blocks in the array. The third approach, not shown, is to perform interstitial

redundancy where a number of PEs are attached to a redundant element. In the au­

thor’s example each logic element is connected to two redundant elements, so that

PE— PE

PE

PE

PE

PE— PE

- r H i

PE

IE

l T

PE

IE

IEL i E

E
_ l_

E L

EEL

(a) (b)

Figure 2.9: Grid Based Redundancy Approaches [17]

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Summary

the faulty logic blocks can be more efficiently and effectively replaced to maintain

functionality. In Figure 2.9(b), the author was showing a simple reconfiguration

scheme that adds spare columns to the array. The processors were re-indexed in the

rows to skip faulty processors. Then the vertical connections were made between

the rows. This scheme requires a complex switch and interconnection structure to

support reconfiguration.

2.4.5 Altera’s 2D Programmable Redundancy

For Altera programmable logic devices, redundancy is provided by the addition of

spare columns and rows of logic blocks and switch boxes. The device is able to

bypass a column or row containing one or more defective logic blocks, and switch

in a spare row or column of defect-free logic blocks [10]. This redundancy imple­

mentation bypasses an entire row or column of logic blocks, and switches to the

defect-free redundant row or column. The use of multiplexers at the inputs and

outputs of the logic blocks allows the bypassing of the defect logic blocks. The

method of redundancy shifts the configuration data over to an adjacent column of

defect-free logic blocks by means of a datapath. This can be extended to defective

switch boxes, allowing for the replacement of a defective row or column of switch

boxes.

2.5 Summary

In this chapter, a few of the available network topologies for two-dimensional PE

grids were defined. These network topologies need not - and should not - be con­

fined to only two-dimensional PE grids. In the next chapter, a dynamically recon-

figurable three-dimensional PE grid is designed that makes use of some of the two-

dimensional network topologies that were examined. The reasons for redundancy

in O R A M were discussed, and in the next chapter the redundancy is extended to

include another dimension of PEs. This design focuses on the creation of a three-

dimensional mesh of PEs, and the addition of redundancy along the z-axis of the

cube is proposed. The following chapter details the architectural changes required

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Summary

to design a fault-tolerant, dynamically reconfigurable ID, 2D and 3D Communica­

tion Network for C«RAM.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Architectural Concepts

The development of the generic O R A M architecture has led to a highly parallel and

compact SIMD machine capable of high speed computation on highly parallelizable

code. Previous generation O R A M architectures have had a linear communication

network, and programming algorithms that involved multiple dimensions of shift­

ing required complex programming to perform the shifts. If the number of shifts in a

parallel program are high due to the large diameter of the network, then the majority

of the processing time can be taken up by shifting. To speed up multiple dimensions

of shifting, an interconnection network that selectively supports one-dimensional,

two-dimensional, and three-dimensional shifting is proposed and explained in this

chapter; design specifics are in the following chapter. In addition, due to the high

overhead of I/O when performing real-time parallel computing, a bank-style mem­

ory architecture for simultaneous I/O and computing is also proposed. Since these

are new aspects of the O R A M architecture, the PE needs minor modifications to

accommodate the changes to the architecture. A novel processor redundancy archi­

tecture, which maintains functionality of the proposed communication networks, is

also developed.

3.1 Memory Array

For the O R A M architectures of the past, the external datapath has been small due

to the fact that data is re-organized in the memory to accommodate a large number

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Memory Array

of bit-serial processing elements (PE). In O R A M , each data element (i.e. integer)

is required to be stored per PE (column of memory), where as in standard DRAM,

the data elements are stored in rows across multiple columns of memory. For this

reason the external datapath of O R A M has usually been kept small to reduce the

amount of processing that needs to be performed on the data before supplying it to

the O R A M chip. The restriction on the external datapath means that time to load

or store (save) the data of the program can be quite extensive, and a large amount

of computing time is taken up by data transfer. One way to improve the speed of

data loading is to implement a ‘comer-turning’ cache, where data is loaded into the

cache and then transposed to allow multiple columns to be written simultaneously,

allowing for a wider datapath into the memory. This would reduce the amount of

time used for data transfer.

The above method does not reduce the effects of data transfer enough to make

O R A M viable enough as a parallel processing system. Typically, computation

cannot occur until the entire array of data has been loaded or stored. By performing

computations and external memory accesses individually, the amount of computing

that can be performed per second is reduced. For example, trying to MPEG encode

a TV signal or digital camcorder signal in real-time requires that the number of

frames per second be a certain value; about 30 frames per second for TV, and 24

to 30 frames per second for the digital camcorder. If, however, the amount of time

taken to load the memory array and store the encoded data to disk is 33.3ms, then

the amount of time remaining to perform computations during one second is zero.

This would actually result in a decrease in the number of frames per second being

encoded; therefore, frames would be lost. If the processing elements, however,

could be performing calculations on the previously loaded data while data is being

transfered for the next set of calculations, then the problem of having zero time

available for computations is removed, since computations are performed during

data transferring.

Therefore, the method of O R A M I/O improvement being described in this

chapter reduces the amount of computing time being wasted by data transfer by

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Memory Array

allowing the data to be loaded or stored while the processing elements are per­

forming computation: allowing data transfer and computation to occur in parallel.

The architectural enhancement to the memory is the implementation of loading or

storing external data during computation. This architectural enhancement can be

combined with the ‘comer-turning’ cache to improve the overall performance of

the O R A M I/O.

3.1.1 Multi-bank Design

To improve the I/O performance of O R A M , a multi-bank memory design is pro­

posed that allows computation and external memory access to occur simultaneously,

in parallel. This reduces the amount of time that is stolen from computation when

external load or store operations need to be performed. It can be shown how the

computations and memory access for a O R A M chip containing 512 PEs with 1024

bits of memory per PE are related. Assuming that the external access cycle is 8ns,

the internal access cycle is 4ns and the ALU operates at 3ns. It will be assumed

that one in three ALU operations requires two internal accesses to write and read

the M register value. From these assumptions the external reading and writing of

the memory array will require:

texternal = 2cycles x 512P.Es x 1024b its /P E x 8ns/b it = 8.389ms

Using the time required for external reading and writing of the array, the number

of PE operations that can be performed in that amount of time can be extracted.

Since it was said that one in three ALU operations requires two internal accesses,

the time for the accesses will be distributed over the three ALU operations. From

the assumptions, the number of ALU operations that can be performed in the same

time is:

nurriALUOps = 8.389ms/(3ns + (8ns/3)) = 1480342

Therefore, if the external accesses can be performed during the computation

cycle, then it is possible to perform 1480342 ALU operations in place of the external

accesses. By hiding the external accesses in the computation cycles, it is possible

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Memory Array

to read and write the memory externally a maximum of 119 times per second; thus,

twice as many calculations can be performed per second. If the external accesses

were to be performed after computation and the computations take the same amount

of time as external accesses, then the complete cycle (read, write and compute) can

only be performed 59 times per second.

This multi-bank design would be ideal when the O R A M is used as an MPEG

encoder. For MPEG encoding, the need for near real-time computing requires the

ability to load the next frame into memory, while computation is performed on

the current frames. In MPEG encoding, the encoding is dependent on the current

frame and the previous video frames. In this way, the number of frames encoded

per second can be maximized, since there is no need to wait for all the data to be

loaded entirely before proceeding to the next computation. This is done using a

four bank strategy: one bank can contain the previous frame; one bank can contain

the current frame; one bank contains the result; and another bank can be loaded

with the next frame in the sequence while the processing is done with the other

three banks. The load or store can be partially or fully hidden in the computation,

allowing for more computations, and therefore frames, to be done per second, since

there is no need to wait for complete loading and storing of the data externally. In

Figure 3.1, the architecture is simplified to two banks, but can be easily extended to

more than two banks, with minor changes to the row decoders. There needs to be a

row decoder for each bank of memory to provide full functionality and interleaving

of the multi-bank architecture.

The concept used for the multi-bank design is to perform auto-addressing in­

ternally, so that the external interface always references the banks in a sequential

manner. In this way, the user or programmer does not need to write program code

to determine the new bank address. The memory banks for the processing element

always appear as bank 0, 1, and 2, while the external datapath interface only ever

sees one bank. Once the externally visible bank is finished loading and/or storing

and the processing elements are ready to continue to the next phase, a signal can be

applied to the chip indicating that the internal address (bank referencing) needs to

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Memory Array

Processing Elements

TT TT TT

w
k _0

T3OO0
C l
5
o
DC

Memory Array

J J ___

V)
0TJOO
0
Q
$
o

DC

Processing Elements

Figure 3.1: Multi-Bank O R A M

be incremented or decremented, depending on design choice. In Figure 3.1, shows

that there are two row decoders for the array. Each bank of memory should be indi­

vidually addressable, and therefore, each bank requires its own row decoder. Using

this architecture, the processing element and external datapath have access to both

banks of memory and can address them separately. In this way the external datapath

can address a different row of memory than the parallel program is accessing for

the processing elements.

The multi-bank design can be built with all banks of memory being individually

addressable, such that every bank of memory can access different rows simultane­

ously. In this way, accesses to memory can be interleaved, so that when the PE

is using one bank for accessing, the other banks can be precharging in preparation

for the next access. This method requires a memory controller that can properly

time the control signals, unless the control signals for every bank are externally

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

10

3.2 Interconnection Network

controllable. The multi-bank memory controller should still be able to perform

auto-addressing such that the external interface need not keep track of the new bank

addresses. Alternatively, the multi-bank design can be built with the banks being

grouped together into PE accessible banks and external accessible banks. This re­

quires that only two addresses are required for row accessing; thus, only two row

decoders, and only two groupings of control signals. In this way, the PE accessible

banks would all be accessed simultaneously with the same row address and control

signals. This method removes the ability to interleave row accesses; however, it

simplifies the row accessing for PE computation and external addressing. It also

simplifies the external interface and memory controller.

By performing auto-addressing internally, the programming is always able to

reference the banks as 0, 1, and 2 with no need to externally keep track of which

bank of memory is actually the zero bank of memory. For MPEG encoding, the

banks can always appear as result, previous, current, and next data, respectively

for programming purposes because of the auto-addressing scheme. This allows the

programmer to take advantage of the data dependency between loops of a program.

This architecture is similar to the method of frame buffering used in video cards

for graphics, where the frame buffer is always written in the same way. The data

in the frame buffer is position sensitive because each data location corresponds to a

position on the display.

3.2 Interconnection Network

The inter-processor connection network of previous O R A M architectures has been

a one-dimensional patterned communication network within rows of PEs, where

each processing element (PE) communicates left or right to its nearest neighbour,

and two-dimensional patterned communication beyond the rows. This poses a lim­

itation on the type of algorithms that can be performed efficiently on the O R A M

architecture. Previous O R A M generations have also had the capability of extend­

ing the communication network over many chips in order to meet the processing

needs of some parallel applications. This section proposes a dynamically recon-

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

figurable inter-processor connection network that allows multiple dimensions of

inter-processor communication in an attempt to enhance the ability of O R A M to

perform more complex algorithms and to perform shifting more efficiently.

The implementation of a dynamically reconfigurable inter-processor connection

network should maintain the capability of extending the communication over many

chips. In this way, multiple chips can be combined to meet the processing needs of

the parallel application being executed.

3.2.1 Applications of a Multi-dimensional Network

The development of a multi-dimensional network was considered to increase the

commercial viability of O R A M , since previous O R A M designs have been some­

what limited by the interconnection network. In previous O R A M designs, applica­

tions that extended beyond 2D required complex programming to perform shifting

and storing of data. Typically, 2D applications were implemented by using the

memory above the PEs, such that the PEs were the x dimension and the rows of

memory became the y dimension. This organization still required some complex

programming to perform shifting of data; however, not as much as for a 3D appli­

cation.

The main 3D application that could benefit from a 3D mesh of processors is

volumetric rendering, where each PE would represent a volume pixel (voxel). In

volumetric rendering, each voxel is created by combining the density data of neigh­

bouring pixels. For volumetric rendering, data from a MRI scan is converted to

a digital image of pixels. Each pixel will represent a density based on color or

shade of the coordinates. From this pixel information, a volumetric rendering can

be made that will represent the images in a more readable form. To perform this,

every voxel requires access to all of its nearest neighbours; however, the algorithm

has been simplified so that only 6 of its nearest neighbours are used, rather than all

26 neighbours at all points of a 3x3x3 cube. Only 6 of the points are used due to the

increased overhead of shifting or obtaining the data for all 26 points; nonetheless, 6

points can produce a fairly accurate result. By looking at this example, we can see

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

that if a cube of processors can use patterned communication and can communicate

in 6 dimensions, it could be possible to retrieve all 26 neighbouring points to create

a very accurate volumetric rendering of the data.

The development of a multi-dimensional network that incorporates a 2D inter­

connection network could be used for 2D applications that have a time component

to them, such that the time component would be stored in the memory rows of the

PEs. In this way, the 2D shifting of data would be minimized due to the 2D inter­

connection network. MPEG encoding or decoding, JPEG compression, or image

manipulation are some 2D applications that could possibly benefit from the imple­

mentation of a 2D interconnection network.

The benefits of a dynamically reconfigurable network can also be seen when

looking at the problem of shifting for a ID network of PEs. If we assume that 512

PEs are involved in the ID network, and the number of shifts to the left or the right

varies from 1 to 512 PEs, then a large amount of computing time will be taken

up by shifting. If the PEs are not only connected as a ID network, but also as a

2D network and a 3D network, then shifting of data can be simplified and more

efficient. The 512 PEs are organized as an 8x8x8 cube and an 8x64 grid, such that

shifting of the data can also be performed along the cube or along the grid. For

example, a shift right of 74 PEs can be performed two ways: one way is to shift

right 74 times along the ID network, and the other way would be to shift up once

along the cube, once north along the grid and two times right along the ID network.

Therefore a shift that would have taken 74 shift cycles can be reduced to 4 shift

cycles using a dynamically reconfigurable multi-dimensional network.

3.2.2 Architecture of a Multi-dimensional Network

A reconfigurable multi-dimensional network can be dynamically reconfigured into

different inter-processor communication network types. The ability to transform

a linear array of processors into a cube of processors can be useful when the size

of a shift is equivalent to the size of one plane of the cube. In this way, an entire

shift can be done by shifting entire planes of data up or down in the cube, rather

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

than shifting N PEs left or right. The shifting of data around the array can be done

more efficiently and reduces the amount of computational time used for shifting.

This decreases the communication bottlenecks, which enhances the efficiency of

the computation.

In [14], the dynamically reconfigurable interconnect required that the SRAM

cells be loaded with the configuration for the interconnect. This requires additional

loading time and would increase the time to reconfigure the interconnect network

dynamically. The reconfigurable interconnect of [14] was also used to reconfigure

the network to bypass PE failures. For this design, the dynamically reconfigurable

interconnect is focused on enhancing the PE communication by dynamically alter­

ing the interconnection configuration. Since O R A M ’s communication is pattern

based, the interconnect will be globally assigned as opposed to being assigned in­

dividually to each PE. By globally assigning the interconnection it is possible to

change the configuration of the network quickly and efficiently, since there is no

need to set up SRAM cells that control inter-processor connections.

3.2.3 Architecture of the 3D Network

For this research, the concept of creating a three-dimensional network to allow

PEs to communicate in 3D was the primary focus. It is possible, however, to cre­

ate many communication networks within a three-dimensional mesh network. As

discussed in Chapter 2, many of the two-dimensional grid networks implemented

toroidal, torus and spiral edge interconnection. Since previous array processors im­

plemented these interconnection networks, the same interconnection networks are

implemented in the three-dimensional processor mesh and extended to the third

dimension of the mesh.

For the three-dimensional network, a three-dimensional toroid, where all di­

mensions perform shifting in a torus nature, is created. This toroid can then be

broken down into its basic components, where each dimension of the mesh can per­

form torus operations independently. In this way, the network can be reconfigured

to allow for torus shifting in one or more of the dimensions at any point in time, or

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

to have no torus shifting at all. There are also other methods of shifting that can

be added to the three-dimensional network, that can allow for the ability to create

one-dimensional or two-dimensional shift networks. These network modifications

are discussed in the next sections.

The development of a three-dimensional mesh network for O R A M is pro­

posed due to the introduction of the 3D SOI technology, where multiple dies can be

stacked to create dense circuit designs. The SOI technology allows for a reduction

in the amount of wiring per die by allowing some of the wiring to be done between

the dies, using a via to connect two similar dies together to form a scalable design.

The architectural concepts discussed here are independent of the technology that is

being used; however, the design viability or density may be affected by the type of

transistor technology used.

3.2.4 A ID Network in a 3D Network

For previous O R A M generations, a linear network was implemented, so it would

be wise to continue to embed this ID network in any new network. A three-

dimensional network is composed of the same PEs as a one-dimensional network;

this implies that the three-dimensional network can be expanded to include the one­

dimensional network. The three-dimensional mesh can be transformed into a one­

dimensional mesh by taking the first processor at position (0,0,0) and the last pro­

cessor at position (N,N,N), and looking at the processors in the middle as points on

a string. Each processor is given a processor ID number that would be associated

with a point on the string and a point in the mesh. In Figure 3.2, one possible PE

ordering can be seen where a one-dimensional network is created within a three-

dimensional network. This requires the addition of a spiral left-right shift network.

This spiral network can be used at any time, but is designed more specifically for

the one-dimensional network.

The spiral network can also be opened or closed, so that PE 26 can be con­

nected to PE 0, resulting in a closed spiral (torus) for the one-dimensional com­

munication network. The option of a closed spiral is implemented since previous

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

125 H H261

I]'-

p - ® " ® ~

p— ® - /

r - S F — ® — - ® - /

Figure 3.2: O R A M - One-dimensional Interconnect in Three-dimensional Mesh

array processors containing a spiral network had this option. This one-dimensional

communication network allows the PE array to operate in the same way as previous

O R A M architectural chips have operated. All PEs can communicate through a pat­

terned left-right shift network to maintain a backward-compatibility with previous

program coding.

3.2.5 A 2D Network in a 3D Network

When designing the two-dimensional interconnect network, it should be noted that

two methods of creating the two-dimensional grid from the three-dimensional mesh

were investigated. Unfolding the mesh into a rectangle of N x N 2 is one method

used to create a two-dimensional grid, and unfolding the mesh into a square of

N 2/ 2 x N 2/ 2 is another method to create a two-dimensional grid. Unfolding the

mesh into a square is more difficult since it requires a much more sophisticated in­

terconnect to be developed. The next architecture question is how to take advantage

of the available architectural pieces. If the grid is formed using a square, then the

one-dimensional network is unusable in the grid and would have to be redesigned.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

Therefore, two spiral networks would need to exist for spiral shifting if the grid is

unfolded into a square. If the grid is formed using a rectangle, then the fact that the

one-dimensional network already works through the processors in an incrementing

fashion can be reclaimed by unfolding the array in one of the ways seen in Figure

3.3.

23

6or0

^ _________

3 H *1 4 r* ------

Figure 3.3: O R A M - Two-dimensional Interconnect in Three-dimensional Mesh

Once the mesh has been folded out into a two-dimensional grid, it can then be

modified to incorporate the different types of two-dimensional grid networks. The

common two-dimensional grid communication network is the North-East-West-

South (NEWS) network, where each processor can communicate to its four nearest

neighbours. The three-dimensional mesh already has the base communication of

the two-dimensional grid within each plane; therefore, the NEWS network is nearly

complete. The addition of circuitry to produce a NEWS network across the planes

is all that is needed to create a two-dimensional grid out of a three-dimensional

mesh. There are also other modifications that need to be added to the NEWS net­

work: torus across all directions of communication, torus across only one direction

of communication, no torus communication, spiral communication for one direc­

tion with or without torus communication in the other direction, and open or closed

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

spiral communication.

3.2.6 Multiple Chip Interconnection

It has been mentioned that previous O R A M designs have had the capability of

scaling the processing capabilities by extending the interconnection over multiple

chips. This allows for the shifting of data from chip to chip, thereby maintaining the

flow of data and increasing the amount of processing power available. It was also

mentioned that this method of scaling the processing power should be maintained;

however, the implementation of this scaling method raises the problem of the num­

ber of pins needed to maintain full interconnection between dies. For example, a

4x8x4 (x,y,z) cube would require 64 bi-directional pins for the left-right intercon­

nect, 64 bi-directional pins for the north-south interconnect, and 64 bi-directional

pins for the up-down interconnect. This means that 192 bi-directional pins are re­

quired for shifting data. If we take the same block and replicate it on a die such

that each die contains an 8x8x4 (x,y,z) cube, and then two dies are stacked together

using the MIT LL 3D SOI technology, the number of pins required for shifting be­

comes 384. The problem of increasing the number of pins on the die results in the

die area being more pad-limited than core area limited.

To solve the problem of an ever increasing pin count, it was determined that the

shifting of data off-chip should be multiplexed. By multiplexing the shift data, the

number of pins required for off-chip shifting is reduced to a reasonable number of

pins. The number of pins to use for shifting is determined from the size of the cube

that is implemented in a single package. This multiplexed shifting circuit takes into

consideration the possibility of plane failures that can interfere with the left-right

and north-south interconnection shifting.

This off-chip shifting circuit is able to operate properly under all of the config­

urations of the communication network. In other words, the shifting of data during

ID communication should only depend on one bit of the shift pins, since in ID

communication only one PE is sending data off-chip and only one PE is receiving

data from off-chip. The off-chip shifting controller is designed to take care of all

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

the shifting conditions and the resultant behaviour. This controller is designed to

respond to a shift clock signal that controls the shifting of data between chips or for

a single chip to external circuitry.

In Figure 3.4, the shifting is simplified to a 2D array. In this figure we see how

the number of pads required for off-chip shifting is reduced through multiplexing

the data. This method of multiplexing can be extended to a 3D cube in much the

same way as it is shown in the figure. A shift controller that automatically incre­

ments an internal address that corresponds to the multiplexer port connected to the

pads is designed in the next chapter. The use of a shift clock signal that is common

to all chips in the design allows for the shifting of data to be synchronized, such

that all chips are shifting the appropriate data in and out.

PA D S

PE

Figure 3.4: Off-chip Data Shifting

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interconnection Network

In the development of a test chip it is advantageous to have additional pins to

perform shifting, since most academic testers do not have bi-directional test pins.

For this reason, a fixed number of input pins and a fixed number of output pins

are added along with a pin for identifying tester operation. In this way, the shift

controller and shifting circuits could be easily tested on a tester that does not have

bi-directional test pins.

It should be noted that a problem becomes apparent when looking at multi-chip

interconnection as it relates to the ID multi-chip communication network. It is

most evident when looking at the spiral across multiple chips, since the spiral is

designed specifically for within a chip package. When shifting using the 2D and

3D configurations, data is communicated between chips, and data PE adjacency

ordering is maintained. In the ID multi-chip configuration, the PE adjacency is

not maintained relative to the 2D and 3D configurations; thus, the dynamically

reconfigurable nature of a multi-chip system may not be feasible.

1 2 5 H H 2 0 I

 -y*j§)* _____
P»lgl« »g i« >g)<Z7..

.............

 •y '& r —

■

 —H iM"

 —H S

'■ 'k-
C hip 1

l 2 5 l h *126

1 21 r * — * 1 2 2 / * -------*1231

.............

 —IHF—*0 ^

■ pifP^—

............

 /H f l - —-fUF—

I v * /
C hip 2

1D Spiral In terconnect
3D In terconnect

Figure 3.5: Multi-chip ID and 3D Problem

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

3.3 Redundancy Design

Redundancy has been a common design addition when working with memories be­

cause of the high density of memory cells and higher possibilities of manufacturing

defects affecting the cells in a column or row of memory. When creating redun­

dant elements it is better if the redundant element is identical in every respect to the

element that it is replacing. For memory, if a redundant memory element is differ­

ent from the basic memory element, the performance or reliability of the redundant

memory cells can alter the functionality of the design. If the performance or reli­

ability is worse than the basic memory element, the total speed of the design and

its reliability will be compromised. It is also possible that the redundant element is

more reliable and faster than the basic element; in this instance, there should be no

compromises in the speed of the design or its reliability. For memories, additional

rows and/or columns of memory are added to increase the chances that the final

die is fully functional. The addition of redundant rows and/or columns of memory

may be needed to increase the yield of O R A M , since a large portion of O R A M is

memory. Since O R A M ’s aim is to attach a single PE to every column of memory,

every additional (redundant) column of memory should result in a redundant PE.

Assuming that the defect density can be anticipated, the cost of redundancy on the

yield can be determined. With the cost and yield improvement, it will be possible to

determine the cost effectiveness of the redundancy. As this is an academic design, it

has been decided that the actual design will contain all the PE redundancy designs

to improve the chances of obtaining a fully functional test chip.

3.3.1 Compatibility with Memory Redundancy

O R A M is a processor-in-memory variant, which can benefit from the addition of

redundancy since a large portion of the design is memory. The redundancy mech­

anism for failed rows can be identical to that of standard memory arrays; however,

the mechanism for failed columns needs to be different since the memory is iden­

tified by both the column address and the PE adjacency. For O R A M , the basic

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

column redundancy is performed by using PE redundancy to skip the failed column

of memory, as seen in Figure 3.6 and Figure 2.4. For example, when a column

of memory is found to be defective, the column of memory and the PE associated

with the column of memory are flagged as defective and then skipped. The PE and

column are replaced by a redundant PE/column element. This also happens if the

PE itself is found to be defective. This technique is very limited when the memory

column is bad but the PE is good, because then the good PE is discarded. Addi­

tionally, if the column of memory is good but the PE is bad, then the good column

of memory is omitted as well. This can result in a non-functional chip if the two

scenarios occur within the same redundancy block. Defects are not uniform in size

or uniformly distributed over the die; therefore, a single defect can cause one or

more columns or PEs in a group to be faulty. It is for this reason that additional

levels of redundancy are added to the PE mesh. These levels of redundancy will

be discussed in the next section. Two additional memory redundancy options for

performing column redundancy in O R A M are designed.

P ro c e s s in g
E lem en t
R e d u n d an cy -
Sw itch

In te rco n n ec t
Circuitry

SA SA SA SA SA SA SA SA SA

P E PE PE PE PE P E PE PE PE

Figure 3.6: O R A M Redundancy of Processing Elements and Memory (original)

The first option involves the addition of a switch that allows a single PE access

to two possible columns depending on which column has failed. In Figure 3.7, the

architecture can be seen where one PE is connected to two (or more) columns of

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

memory through a redundancy switch. This technique is also limited in that the

addition of an extra column of memory will be needed to maintain the ability of all

PEs to access good memory. This option is limited since the aim of O R A M is to

attach every column of memory to PE, and it can be seen that not every column of

memory will be directly connected to a PE. In this option, every ten columns or

groups of columns will be connected to only nine PEs. Due to this limitation, the

second option was formed.

SASA SA SA SA SA SA SA SASA

Memory
R edundancy
Switch

PE PE PE PE PE PE PE PE PE

Processing
Element
R edundancy
Switch

Interconnect
Circuitry

Figure 3.7: O R A M Redundancy of Processing Elements and Memory (option 1)

The second option, in Figure 3.8, involves the addition of a switch that com­

bines the effects of memory redundancy and PE redundancy. This way the memory

columns are still matched to the PEs, and the bad PE or bad column of memory

can be bypassed independently. The possibility of failure is reduced even farther

than before. The simplified version of this option is seen in Figure 3.6, where the

switch between the sense amplifiers and the PEs is removed. By simplifying this

option, the PE redundancy switch would be used to perform redundancy for the

memory and the PEs. This option is advantageous since each column of memory is

connected to a PE, thereby meeting the column requirement.

In both options, the memory redundancy switch requires the result of a register

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

SA SA SASA SA SA SA SA SA

M em ory
R ed u n d a n c y
Sw itch

PE PE PE PE PE P EPE PE PE

P ro c e s s in g
E lem en t
R ed u n d a n c y
Sw itch

In te rco n n ec t
Circuitry

Figure 3.8: O R A M Redundancy of Processing Elements and Memory (option 2)

that stores the skip result, such that if the skip register for the sense amplifier is

set, then the switch is flipped to the next sense amplifier. The skip register can be

placed within the switch or within the sense amplifier. Both options also are able

to maintain memory addressing so that all column addresses will address a valid

column of memory. This is done by incorporating the column enable signal into the

redundancy mechanism, such that the column enable signal traverses through every

redundancy switch before finally reaching the sense amplifier databus connection

switch. Therefore, it will still be possible to identify each PE by a column address,

though its physical location may not correspond to its logical location. The col­

umn redundancy mechanism will maintain the column address and PE adjacency

requirements. If a failure occurs in the memory redundancy switch, it will result in

the complete failure of the chip. When determining the final yield of the design, the

possibility of a failure in this area must be considered as well.

The first option is not feasible, since it does not meet the requirement of attach­

ing a PE to each column or group of columns of memory. To determine the value

of the second option versus the original, the yield and cost need to be investigated.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

0.'

0.35

01

Oi

o
0001 0 0012 0.001400004 0.0006 0.00080 0.0002

04

0.158>
O'

0.05

0
0.001 0 0012 0.0014 0.00160 0.0002 0.0004 00006

Average number at Average number c<

(a) Column Redundancy using PE Re- (b) Independent Column and PE Redun-
dundancy (original) dancy (option 2)

Figure 3.9: Yield Plots for Memory and PE redundancy

In Figure 3.9, the yield graphs for a 9x9x9 PE array mesh with 260 rows of

memory are shown. The graphs show only the yield as it relates to the defect den­

sity that it can accommodate, showing the original, an implementation of memory

redundancy through the PE redundancy, and the second option, in which the mem­

ory redundancy and PE redundancy are split. The graphs contain the plots for 90%

yield and 75% yield. From the graphs, we can see that the separation of memory

and PE redundancy results in a better overall response to the defect density of the

technology. Though the graphs indicate that the separation of memory and PE re­

dundancy will result in better yields, the additional area cost of this redundancy

should still be considered before incorporating this redundancy mechanism into the

design. In Section 4.8.3, the yield as related to area cost is shown.

In [16], the PE redundancy mechanism was also used to perform PE and column

redundancy. The 3DSOI O R A M , however, did not include column address redun­

dancy. The mechanism was able to bypass PEs and columns of memory for shifting

operations, but the memory addresses for the failed column or PE were still address­

able. Therefore, it was still possible to access invalid data, and the column address

and PE adjacency were not consistent. The means of bypassing failed PEs and

columns of memory is still maintained in this design, and the addition of column

address redundancy allows uninterrupted addressing of PEs and memory. In 3DSOI

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

O R A M , the user or programmer must include test and setup configuration into the

programming code, as well as code that reconfigures the addressing of memory. In

this design, no reconfiguration of memory addressing should be required, as the the

column addressing is incorporated into the redundancy. The need for initial test and

setup is still required to initialize the O R A M array to avoid faulty PEs and columns

of memory. With 3DSOI O R A M , it is possible to use all the PEs and columns of

memory on the chip if no failures are found; this is, however, not possible in this

design.

3.3.2 Processing Element Redundancy

The redundancy of the processing elements is needed, since it is the next most

likely failure point in the chain based on area and density. By adding redundancy

for the processing elements, the possibility of a chip failing as a result of a faulty

PE is reduced. By adding redundancy to the design it is possible to increase the

total yield for the design, thereby offsetting the design cost of adding redundancy.

When looking at processing element redundancy in O R A M , two options arise:

one required the addition of a processing element that was slightly different from

the non-redundant PE, and the other required the addition of an identical process­

ing element. The first method, where a modified processing element is used, was

designed in such a way that when one PE failed, it connected itself to a redundant

bus. This redundant bus passed the failed PE’s connection points to the redundant

PE so that the redundant PE will in effect appear as if it was located in the failed

PE’s position. If the redundant PE is not identical to the other PEs, more design

work is required, and it may result in additional failures. The redundant bus will

result in slower shifting for the PE that is connected to the redundant bus, since all

the PEs in the group have their redundant signal switches attached to the redundant

bus. Therefore, the redundant bus has increased capacitance due to the switches.

Total operation will also be slower since the signals must be passed from the failed

PE to the redundant PE. This method is limited in that only one PE in the group can

fail. If more than one PE in the group fails, then the whole chip is non-functional.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

This can, however, be fixed by creating a grid layout of redundancy using buses.

This is seen in Figure 3.10; however, this requires that two S registers be available

in order to connect the faulty PES to the proper redundant bus.

Redundancy Bus

Redundant PEs

Figure 3.10: O R A M Grid Redundancy using Redundant Bus

The second option was produced when the embedded memory column redun­

dancy was discovered. The embedded memory redundancy scheme was aimed at

moving the problem down the array. The second option, where all the PEs are

identical, can be seen in Figure 3.11. This option allows for the replacement of

the PEs by a switch network, thereby allowing all PEs to have similar delay paths,

as well as identical design. This results in less design work being needed for the

PE, allowing for more design work to be performed on the interconnection network

and interconnection redundancy. In this option it is also possible to see that it can

only accommodate one PE failing in the group; however, this option can easily

be extended to a two-dimensional grid of PEs where the two-dimensional grid is

redundant in two-dimensions.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

P ro c e s s in g
E lem en t
R ed u n d an cy -
Sw itch

In te rco n n ec t
Circuitry

SA SA SA SA SA SA SA SA SA

PE PE PE PE PE PE PE P E PE

Figure 3.11: O R A M Redundancy of Processing Elements

3.3.2.1 Grid Redundancy for PEs

When looking to create redundancy on a two-dimensional grid, previous imple­

mentations of grid redundancy are sufficient. For the proposed fault-tolerant three-

dimensional interconnection network to be possible, the two-dimensional redun­

dancy must maintain the interconnection between planes. Previous implementa­

tions of grid redundancy were aimed at embedding a fault-free grid within a faulty

grid. This method, however, removes the ability of maintaining the interconnection

between the planes. The proposed three-dimensional interconnection network re­

quires that all planes in the cube have a uniform fault-free grid; this is not possible

using current grid redundancy techniques. Therefore, a new redundancy grid that

maintains a uniform plane for use in a three-dimensional cube is proposed.

In order to build a fully redundant PE grid, it is necessary to have the ability to

perform redundancy in more than one dimension. This is done by creating a two-

dimensional grid of PEs, and allowing there to be at least one additional PE for each

dimension. For example, an 8x8 PE grid would be built from a 9x9 PE grid to allow

for redundancy. For simplicity, we call the column of PEs X and the row of PEs Y.

If there is more than one failure in the X direction, then one of the PEs needs to be

replaced by one of the redundant PEs in Y, and the other PE can be replaced by the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

redundant PE in X. In Figure 3.12, we see how PE failures can be replaced using

the redundant PEs in both the X and Y directions. In this way, the ability to replace

the failed PEs is enhanced by extending the redundancy into another dimension.

Four failed PEs are easily replaced using this method of redundancy, although only

three out of the four PEs is in the area that needs to be repaired. From this small

example, it is derived that the method of replacement should work properly. When

moving to a large sized two-dimensional grid, the addition of one PE per dimension

remains. In this design, the two-dimensional plane is required to be 8x8; therefore,

the actual grid is made of 9x9 PEs. This corresponds to 17 redundant PEs for every

64PEs; about one-quarter of the array is made up of redundant elements.

This can improve the yield, since additional PEs are available for repairing or

replacing non-functional PEs or columns. In this, way two failed PEs within a

group of PEs can be replaced by a redundant PE from the second dimension of

redundancy, as seen in Figure 3.12. It can be seen that a fault-free 3x3 grid is

embedded in a faulty 4x4 grid of PEs. This is the aim of this research: to create a

fault-free mesh within a faulty mesh. For example, an 8x8x8 fault-free mesh can

be embedded in a 9x9x9 mesh that contains faulty PEs, assuming that the number

of faults or defects does not exceed the number of redundant PEs available for

replacement. If an 8x8x8 fault-free mesh is not possible, the device should be

discarded. If, however, there exists a number of fault-free 8x8 planes less than 8,

this device can be used as a diminished device due to the addressing redundancy

and plane interconnect redundancy mechanisms.

It should be noted that a failure in the redundancy switches will result in a

complete failure of the two-dimensional grid of PEs. For this reason, it was decided

that an additional dimension of redundancy be incorporated. This will be termed

as plane redundancy, where each plane is a two-dimensional grid of PEs that can

be replaced by a redundant plane. The implementation of a global skip register for

the planes that can be set externally in the case that the redundancy switches for the

plane have failed is also added. This skip register will be OR-ed with the results

of the redundancy switches, such that if the skip register is ‘1’ or the redundancy

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

Y

| | - P rocessing Elem ent

| R | - R edundant P rocessing E lem ent

- Failed P rocessing E lem ent

O - R edundancy Switch Elem ent

(J) - Virtual P rocessing Elem ent/Switch

| - Possib le Wire Connection

| - Actual Wire Connection

Figure 3.12: Two-dimensional PE Redundancy

switches result is ‘1’, the plane will be skipped. To ensure that the plane is removed

from all the appropriate communication networks, the skip result for the plane is

sent back to all the PEs for the plane to be combined with each PE’s local skip

register.

Section 4.8.3, shows the yield improvement for each level of redundancy. In the

section, the area cost for the redundancy mechanisms are seen. From the yield and

cost, the best option of redundancy can be chosen that gives the best yield versus

cost analysis.

3.3.2.2 Plane Redundancy

Plane redundancy is the redundancy mechanism for the z dimension of a three-

dimensional mesh, where redundant planes of PEs are added to perform replace­

ment when an entire plane of PEs fails. By adding entire planes of redundant PEs,

the probability of a fully functional design is higher, even when a plane of PEs

fails. The plane redundancy must allow for full addressing of the PE array, as well

as maintaining the inter-processor connections for a three-dimensional mesh. When

a plane fails, the plane must be bypassed, thereby allowing all data to flow past the

failed plane to maintain the shifting of data. The building of plane redundancy

should make allowances for addressing the good planes sequentially, even if there

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

are failed planes.

For the PE redundancy, plane redundancy is performed through the intercon­

nection network. The interconnection network is used to perform the third level

of redundancy, because it is not feasible to use only some of the good PEs from a

plane. Replacing planes that are found to be faulty with another entire plane ensures

that the interconnection of PEs in the grid of the plane will maintain proper PE ad­

jacency to other PEs on the grid, as well as being able to maintain PE adjacency

between PEs on different planes.

3.3.2.3 Yield Improvement Through Redundancy

It has been discussed that redundancy is added to improve the die yield in order to

obtain the highest number of working dies. In this section, the yields of each type

of redundancy are examined in an attempt to determine the best redundancy mech­

anism. In Figure 3.13, the 90% yield plots for each redundancy mechanism are

shown. For ID redundancy, the switch method of redundancy and the bus method

of redundancy will have the same yield, since both methods perform redundancy

through the replacement of one PE per redundancy block. The same is said for the

combination of ID redundancy with plane redundancy (3D), where plane redun­

dancy replaces entire planes. After these two methods of redundancy the results

diverge, since the grid redundancy using bus replacement of PEs is not as flexible

as the grid redundancy performed using grid switching. Plane redundancy (3D),

as discussed previously, is based on replacement of an entire plane of PEs rather

than replacing single fault PEs, as is done in the grid redundancy. This is to help in

maintaining the grid interconnect.

In the graph we can see that the ID and 2D bus redundancy results in better

yield than the ID and 3D redundancy mechanism. This is due to grid redundancy

being more flexible, because 3D redundancy replaces an entire plane while 2D re­

dundancy will only replace single faulty PEs. We also see that the ID and 2D switch

redundancy mechanism, in Section 3.3.2.1, results in better yield response than the

bus redundancy mechanism containing ID, 2D and 3D redundancy.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

0.35
90% Yield - PE 1D Switch or t D Bus ---------

90% Y ie ld -P E 1D& 2D bus
90% Yield - PE 1D & 3D Switch or bus

90% Yield - PE 1D & 2D bus, 3D
90% Yield - PE 10 & 2D Switch ---------

90% Yield - PE 1 D,2D & 3D Switch --------
0.3

UJ
O- 0.25

2L&
0.2

T3
O
s
E
c
<D
Ol

0)I

0.05

0.0012 0.00140 0.0002 0.0004 0.0006 0.0008 0.001
A verage num ber of

defects per cell

Figure 3.13: 90% Yield for PE Redundancy

Though the graphs indicate that the PE redundancy built, using switches to per­

form grid redundancy, will result in better yields, the additional area cost of this

redundancy should still be considered before incorporating this redundancy mech­

anism into the design. In Section 4.8.3, the yield as related to area cost is shown.

3.3.2.4 Addressing Redundancy

When addressing memory in DRAMs or SRAMs in a complete chip, the address

should always be pointing to something valid. In DRAMs or SRAMs with redun­

dancy, this is done by using fuses to set failed addresses to point to new areas of the

memory array. For O R A M designs, however, this can be very difficult, since the

PEs are attached to columns of memory and the position of the PE indicates its po­

sition in the interconnection scheme. If the same scheme as a DRAM or SRAM was

used, then the interconnection scheme would have to be modified to accommodate

the failure of a column of memory or PE. The PE redundancy is modified in such a

way that the failed PEs can be replaced using a switch network. The interconnection

of PEs then becomes independent of the failure of a PE, and is dependent on a sep­

arate switch for performing the interconnect. This scheme can be extended to the

addressing of the memory and/or PE, so that the addressing of memory or PE is not

based on the physical memory or PE location, but rather on the redundancy switch.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

Therefore, the redundancy switch is how the PEs and memory are addressed. In

Figure 3.11, the numbers represent the address used by the external memory inter­

face. Both the redundancy switches and the interconnect switches have the same

addresses.

This addressing redundancy can be extended further into the second and third

dimensions. For the second dimension the addressing is similar to that seen in

Figure 3.11, where the redundancy switch will extend to another row of PEs. The

third dimension of addressing redundancy uses a different technique to maintain

address continuity between the external and the internal world, so that the user does

not have to create code to accommodate failures in planes of PEs. The technique

used to maintain address continuity performs internal address recalculation for the

planes. If a plane of PEs is found to have failed, then the internal address would be

calculated using the external address. The failure signals that the next good plane

is associated with the good external address, see Table 3.1.

Table 3.1: Plane Addressing Calculation on Failure
Physical Plane Failure Addressable Internal Address

0 0
1 X None
2 1
3 2
4 X None
5 3

3.3.3 Interconnection Redundancy

For the interconnection network, there is no redundancy of the interconnection

switches for the PEs in a plane of the cube, since the probability of failure for

the interconnect is minimal in comparison to that of the PEs or the memory ar­

ray. The failure is minimal because the interconnection network has low density in

comparison to the PEs and the memory array, since the interconnection network is

composed almost entirely of wiring. Redundancy of the interconnection network

is implemented between planes of the PE mesh, so that when a plane fails, it is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Redundancy Design

bypassed. To allow one or more planes of PEs to fail, the interconnection network

between the planes of PEs performs bypassing of the failed processor planes. To

maintain full functionality, additional planes of processors would need to be added

to the design for redundancy, and the ability to fully access every plane of proces­

sors would be useful. If the planes are not accessible and there are no failed planes,

then the chip would be using power for unusable processors. It may also be useful

to have the processors that are unusable disabled, along with the unusable switch­

ing circuitry that uses the most power, to minimize the power usage of the chip. In

Figure 3.14, the interconnection redundancy is shown where the redundancy for the

left-right interconnection is performed. The PE interconnection redundancy block

contains circuitry for bypassing failed planes of memory while maintaining the left-

right interconnection.

PE Interplane
Interconnect

and
R edundancy

Figure 3.14: O R A M Interconnection Redundancy

If one or more of the planes of PEs fails, the circuit needs to be able to maintain

functionality by bypassing the failed planes and making it appear as if they do not

exist. This way, all shifting operations can occur without the possibility of a failed

PE shifting data to another PE. If the middle plane in Figure 3.14 has too many

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Summary

failures that cannot be repaired with the redundant PEs, then the data from the

middle plane should not be passed to the next available good plane. Moreover, the

data from the other good planes should not be used by the failed plane; the data

should bypass the failed plane. This is also a requirement when shifting in the z

dimension of the cube, so that the failed planes are bypassed entirely. The method

of bypassing more than one failed processor plane is added, since it possible to use

the MIT LL 3D SOI technology, which allows for the addition of extra dies to the

stack to create a fully functional stack.

3.4 Summary

In this chapter, the modifications for the O R A M architecture that allows for a

dynamically reconfigurable and redundant PE array architecture are defined. The

architectural changes allow for more complex parallelizable code to be run, since

the interprocessor communication network is dynamically reconfigurable. The ar­

chitectural changes to add multiple dimensions of redundancy allows for failures to

occur in any of the three dimensions. It also includes the ability to repair or replace

the failed PEs while maintaining all dimensions of communication with little or no

delay penalty. All PEs would have a uniform delay for shifting between its 6 nearest

neighbours. The addition of a separate memory bank for external access allows for

computation and I/O to occur simultaneously, thereby reducing the amount of time

stolen from computation. This allows for more computation to occur per second

than was previously possible.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Implementation

In this chapter, the architectural concepts proposed in the previous chapter are dis­

cussed in detail. This chapter details the design specifics. We chose the MIT Lin­

coln Labs 0.18//m SOI - 3D wafer stacking technology as the target process. The

MIT LL process was chosen because of the ability to stack multiple dies to create

a design that extends into the third dimension of space. This easily allows for the

extension of O R A M into a true three-dimensional mesh, which results in the rout­

ing per die being minimized. By sub-dividing the mesh over the dies, the routing of

signals for each die is also sub-divided, and the wires to connect the pieces of the

mesh are connected through the die.

4.1 MIT Lincoln Labs O.lfymi SOI

The base SOI technology at Lincoln Labs was added to by Bums et al. [3, 4], al­

lowing for the stacking and connecting of multiple wafers (dies). This technology

allows for the connecting of inter-die wires to adjacent dies in the stack. This intro­

duces the ability to create readily scalable designs that depend only on the amount

of scaling capability that was designed into the die. Similarly, a design can be seg­

mented into multiple dies, where the wiring interconnect length between the dies

of the design would be about lO/xm. Designs typically requiring that signals be

routed 1mm or more across the design can benefit from the speed-up gained from a

shorter wire. The design is beneficial, since the signal does not need to be buffered

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

or boosted, and the propagation delay of the signal will decrease due to the reduced

resistance and capacitance of the signal wire.

Due to the benefits of stacking, the creation of a three-dimensional interconnec­

tion network could take advantage of this technology. The ability to route intercon­

nection wires vertically through the die to another identical die is beneficial when

creating a three-dimensional cube of processors, since each die can contain one or

more planes of the cube. The ability to stack two or more dies also allows for future

expansion of the design. In addition, if the design is constructed properly to allow

for redundancy, additional dies could be continually added until all of the chips are

fully operational.

This SOI technology is also low voltage; it is designed to operate at 1.5V. This

should result in a fairly low-power design when operating at high frequencies, as

compared to a bulk-CMOS design operating at similar frequencies.

4.2 Memory Array

Our O R A M memory array employs CMOS SRAM cells, which are lower density

than DRAM. Since the technology process from MIT LL is not a DRAM process,

SRAM cells are used as the memory elements, to be conservative. SRAM cells

were used for the entire O R A M memory array because of their robustness and low

access times. As was mentioned in the previous chapter, the addition of multiple

banks of memory per PE to O R A M will be discussed in detail. The multiple bank

architectural change requires additional columns of memory per PE. It also requires

the addition of extra row decoders, as well as control circuitry to determine which

columns of memory are to be connected to the PEs, and which column of memory

is connected to the external databus.

4.2.1 Multi-bank Memory

The multi-bank memory in O R A M can be constructed of two or more columns

of memory per processing element. In the multi-bank memory, all the columns of

memory are accessible through the databus and by the PE. The added enhancement

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

is that all columns of memory can be accessed simultaneously with each of the

banks (columns) of a PE accessing different rows. Four banks of memory were

chosen for the design, since it was discussed that a four bank architecture would be

advantageous for MPEG encoding. For the multi-bank design, it was decided that

three of the four columns would be addressable by the PE supplying the two frames

of data and a bank for storing the results, with the three columns accessing the

same row simultaneously. This was done to minimize the number of row addresses

that would be needed and to simplify the controlling of the sensing, precharging

and addressing of columns. The fourth column of memory is connected to the

external databus of the chip. In this way, the PE and external memory R/W can

occur simultaneously.

Multi-Bank Memory

BankO Bankl Bank2 Bank3

PE

ResultOpCode

Internal
Address

SA/M

Prech.

SA/M

Prech.

SA/M

Prech.

SA/M

Prech.

Sense Amp,
Precharge
M Reg Sel.
Controller

Multi-Bank
Memory
Controller

Figure 4.1: Multi-Bank Architecture with 4 Banks per PE

The simplification of the design allowed three banks to be simultaneously sup­

plied with the same control data, which also simplifies the signal control for the

PEs and the external memory bank. Additional control was added to select one of

the three columns of memory to be the M register for the ALU and for perform­

ing reads/writes. The last aspect of the design requires that the column to databus

connections be switchable, allowing the external I/O to connect to each column of

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

memory. All of the above suggested that all columns be individually controllable

to allow for individual column access as well as grouped column access.

Each bank of memory requires a sense amplifier in order to store the results of

the row access or the result of the ALU operation. Each PE is assigned a sense am­

plifier group consisting of four sense amplifiers, with control signals being supplied

by the multi-bank memory controller. The sense amplifier group has additional

circuitry used to translate the external control signals and the multi-bank memory

controller signals into bank specific control signals.

4.2.1.1 Word-line Decode

As was discussed, all columns are individually controllable. This means that all row

decoders need to be individually addressable and controllable to allow for external

I/O accesses and PE accesses to occur simultaneously. There are actually only two

row control circuits need for this simplified design; one row control circuit is used

to control the PEs’ memory access, and the other row control circuit controls the

external I/O row access. Only two row control circuits are needed since the design

and control of the multi-bank are simplified. To perform row accesses, all the word-

line drivers need to be able to retrieve the row signal from either the PE row address

circuit or the external memory R/W row address circuit; see Figure 4.3. A selection

circuit for each bank of memory, essentially, a multiplexer, which is controlled by

additional circuitry, selects which row address or decoded row address to select

depending on the internal address. Due to the way that the selection circuits are

built, pre-decoding of the row address is still possible, so that a majority of the

decoding of the address is done before the row enable signal arrives. This reduces

the delay of the word-line enable signal once the row enable signal is activated. The

internal address stores which bank of memory is currently being used for external

memory R/W. The internal address is incremented each time that the bank-clock-

enable is activated, indicating that the program is ready to progress to the next bank

of memory. The controller circuit will be discussed later.

In Figure 4.4, an alternative method is presented where the row decoding is

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

Figure 4.2: Word-line to SRAM cell

Bank3 WL
Bank2 WL
B ankl WL
BankO WL

SRAM
CELL

BankO WLs

Bankl WLs

Bank2 WLs

Bank3 WLs

S ense-A m ps
& Column Select

Row Decoding Bank 3

External I/O Row A ddress Row Decoding Bank 2

Row Decoding Bank 1PE Row A ddress

Row Decoding Bank 0

Multi-Bank
Memory
Controller

Sense-A m p & Column
Select Control

Figure 4.3: Word-line Decoding (optionl)

done prior to multiplexer in attempt to reduce the number of row decoders that

are calculating row addresses. This method requires that the proper row decoder

outputs are supplied to the appropriate word-line drivers.

BankO WLs

Bankl WLs

Bank2 WLs

Bank3 WLs

S en se-A m p s
& Column S elect

PE Row Decoding

External I/O Row Decoding

PE Row A ddress

External I/O Row A ddress

M ulti-Bank
Memory
Controller

S en se-A m p & Column
S elect Control

Figure 4.4: Word-line Decoding (option2)

There are advantages to both approaches, and certain costs associated with the

advantages. For instance, if only two address are being used, as is the case in

both figures, option 2 is likely to more advantageous since it will use less area,

and the number of row decoders calculating addresses is reduced. This reduces

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

the amount of power used to decode the row addresses, as well as occupying less

physical area. This option, however, requires a selection circuit before each word-

line driver; therefore, there are more selection circuits in option 2 as compared to

option 1. This becomes more of a problem when the number of addresses used

to access banks is increased, so that all banks are individually addressable. This

option has the disadvantage of having a large number of selection circuits with

more inputs, plus the row decoders for all the banks. In option 1, the advantage is

that the design requires all banks to be individually addressable. Since the number

of selection circuits does not change, only the number of inputs to the selection

circuits change. Option 1, however, requires that all the row enable signals for the

decoders go through a selection matrix as well.

For this design, option 2 was chosen due to the design choice of having only

two row addresses: one for PE accesses and one for external accesses. This results

in less area being used for row decoding, and less power as well.

4.2.1.2 Sense Amplifier and Bit-line Precharge

The multi-bank memory design requires changing how rows and columns are ac­

cessed or controlled, which also requires changing how the sense amplifiers and the

precharge circuits are controlled. For multi-banking, each of the banks (columns)

of memory of a PE must be individually controllable. Each bank contains a sense

amplifier and precharge circuit, which is required to read and write the SRAM cells

of the column. PEs can be built with a single column (bank) of memory or multi­

ple columns of memory. When SA (sense amplifier) appears in a figure, it can be

replaced by a single sense amplifier or a group of sense amplifiers (multi-bank). In

Figure 4.5, the sense amplifier and precharge circuit for each bank of memory is

shown. In the figure, all the necessary control signals and data are identified.

In order for O R A M to work properly, a write-back circuit that is dependent on

the WE register must be added. This is to ensure that only the PEs that have the

WE register set to ‘1’ should be overwriting the SRAM cell with the contents of the

sense amplifier. This write-back circuit can also be used to speedup the overwriting

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

BL BLn

BL_prechargen

1 1

¥

A. A.
_ l — 1 Y 1— 1____

BLISO

Lii
|

O
o

D atabus

ALU result

<
wl£

I
- C

1

Mn

D—

1 . r

LU
|

o
O

D atabusn

ALU resultn

S e n s e Enable

Figure 4.5: Sense Amplifier (M Register)

of cell contents by the databus. In Figure 4.6, a possible write-back circuit is shown

where M and Mn are supplied by the sense amplifier, and WriteBL is generated.

The WriteBL activates for external memory operations when the column enable

signal for the column and the write memory signal are high, or for PE operations

when the WE register is ‘ 1 ’ and the write group signal is high.

Additional selection circuitry, which is similar to that used for the word-line

decode, is used for the sense amplifier and precharge circuits to apply the control

signals and connect data results of the PE. Since three columns are simultaneously

available to the PE, three columns (banks) are controlled simultaneously to match

the decoding used for the word-line decoding circuit. In this way, three of the banks

have their data available at the same time, allowing for quick access to all three of

the banks that are associated with the PE. A change in an external address, used

to address one of the three sense amplifiers, will result in a new M register being

available to the PE.

In Figure 4.7, the column controller can be seen where the multi-bank memory

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

BL BLn

WriteBLn WriteBLn

Mn

Mn

WriteBLWriteBL

Figure 4.6: Write-Back M Register to Cell

■c _o0 m2> c
1 LU

« 5
C (0

i ,5

E
<

CO g
<D LU

E 0) M

I l f<2 O 2
S 2 .

Multi-Bank
Memory
Controller

Figure 4.7: Sense Amplifier, Precharge & Column Controller

controller is used in conjunction with control signals to control the bank signals.

For instance, when the bank control signal is ‘O’, the external signals will be sent

through to the proper bank. In this way, each bank can be controlled individually

or grouped together through means of the multi-bank memory controller. In Figure

4.7, the multi-bank memory controller sets the bank-enable signal to ’O’ for the se-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

lection multiplexer associated with the external I/O bank and to ’ 1 ’ for the selection

multiplexers associated with the PE banks. For example, when the Ext. Sense sig­

nal makes transitions, the sense amplifier associated with the external bank will be

enabled or disabled.

4.2.1.3 Column Decoding

For column decoding, only the external memory I/O address is necessary, so there

is no need to have multiple column decoders. The column decoding signals are

passed to the sense amplifier groups, and each sense amplifier group has circuitry

for connecting the column (bank) of memory to the external databus. In Figure 4.7

and 4.8, we see that the databus is tied to the sense amplifiers through a switch.

The switch is activated by the column decoding circuit and the column controller

when the current sense amplifier group (columns of memory) is tied to the external

databus. The internal address corresponds to the bank of memory that is attached

to the external datapath.

Bank3BankO Bankl Bank2

Internal
Address

Prech.

SA

Prech.

SA

Prech.

SA

Prech.

SAS e n se Amp.
P recharge
Column Sel.
Controller

M ulti-Bank
Memory
Controller

Global D atabus

Figure 4.8: Column Decoding

In order to maintain the logical addressing and PE adjacency in the event of a PE

or memory column failure, the column selection signals are propagated through all

possible levels of redundancy before finally making their way to the sense amplifier

group. In this way the failure of a column of memory or PE will not result in

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

a column address addressing an invalid column of memory. In Figure 4.9, this

method of column address redundancy is seen.

SA SA SA SASA SA SA SA

SW SW SW SW SW SW SW SW

PE PE PE PE PE PE PE PE

SW SW SW SW SW SW SW SW

Figure 4.9: Redundancy of Column Decoding

For this design, the PEs are organized in a three-dimensional mesh such that

each plane of the mesh has its PEs numbered from 0 to N . This corresponds to

the column addressing being broken into two parts; one part is the plane number,

and the second is the PE number on the plane. The combination of the two parts

forms the actual column address. Therefore, since the column address is formed

from the PE number on the plane and the plane number, the logical addressing can

be further modified by plane redundancy. Thus, when a plane fails, its address is

given to another plane. This allows the logical column address to always access a

valid column of memory.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

Plane Address Recalculation

The plane address recalculation is designed to allow the user to address all the

planes of PEs that pass as being sequentially assigned. This means that if physical

plane two fails, physical plane three is given the new plane address two. In Figures

4.10 and 4.11, we see two methods of address recalculation that re-evaluate the

address of the planes in the three-dimensional mesh. Using recalculation, the user

of the chip does not need to know which planes have failed, and the programs

always address the same plane addresses.

Skip Plane Signal

2D Plane of PEs
Plane Sel.,

PAddr = 3

Skip Plane Signal

2D Plane of PEsPlane Sel.,

PAddr = 2

Skip Plane Signal

2D Plane of PEsPlane Sel.,

PAddr = 1

Skip Plane Signal

Address 2D Plane of PEsPlane Sel.,

PAddr = 0

Figure 4.10: Address Recalculation for Address Continuity

In Figure 4.10, the address is recalculated and compared against the internal

plane address. Here, the address is recalculated every time the address changes.

This means that there is a delay from the time that the address changes until all the

planes receive the recalculated address. If the address matches, then the plane can

be used to perform a column access, since the data is valid.

In Figure 4.11, the plane address is only recalculated whenever the contents of

the S registers change. Since this usually only occurs at startup, the plane addresses

are only calculated once as compared to the option where the address would need

to be recalculated on every access. This method is superior in that the change of the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

Skip P lane Signal

Plane Address 2D Plane of PEs
P lane Sel.

Skip P lane Signal

Plane Address
2D Plane of PEsPlane Sel.

Skip P lane Signal

Plane Address
2D Plane of PEsP lane Sel.

Skip P lane Signal

Plane Address
2D Plane of PEsPlane Sel.

A ddress

Figure 4.11: Plane Address Recalculation for Address Continuity

external address only requires a comparison to enable the plane for external access.

If the address matches and the plane is valid, then the plane can be used to perform

a column access, since the data is valid.

4.2.2 Multi-bank Memory Controller

The multi-bank memory controller is responsible for creating the bank enabling and

M register select signals. The multi-bank controller creates these signals to allow

each bank to connect the appropriate control signals to the bank. Each bank is

supplied with two signal groups; one group is used for external I/O memory R/W,

and the other is used for PE memory R/W. Both signal groups contain a signal for

controlling the activation of the sense amplifier, a signal for the precharge circuit,

a signal for attaching the column to the databus, and a signal for overwriting the

sense amplifier with the PE result. In Figure 4.7, the signal groups can be seen in

detail.

In Table 4.1, the indexing of the M registers is shown. In the table, the M

register address is used to address the sense amplifiers at each point in the cycle.

The table also shows how the sense amplifiers are indexed, where ‘X ’ represents the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

bank being accessed externally for loading or storing or data. For internal address

0, if the M register address being supplied externally is ‘1’, then the contents of

sense amplifier 1 would be connected to the PE. If the M register address stays ‘1’

as it moves to internal address 1, the PE would switch its connection from sense

amplifier 2 to sense amplifier 3. Similarly, as it moves from internal address 0 to

1, the sense amplifier that is reachable externally switches from 0 to 1. When the

M register address is set to a valid address, the sense amplifier associated with the

address will become the M register, and can be written to by the result bus of the

ALU.

Table 4.1: Sense Amplifier Indexing
Internal
Address

Sense Amplifier
0 1 2 3

0 X 1 2 1 0
1 0 X 2 1
2 1 0 X 2
3 2 1 0 X
0 X 2 1 0

This can be extended to the MPEG encoding example. When M register address

equals ‘2 ’, the results frame is connected to the sense amplifier; when it is ‘1’ the

previous frame is connected; and when it is ‘0’ the current frame is connected.

Starting at internal address 0, when the M register address is ‘2 ’, the sense amplifier

1 is connected to the PE. For as long as the internal address is 0, sense amplifier

0 can be connected to the databus. During internal address 0, it is assumed that

all the possible memory cells connected to the sense amplifier 0s of the PEs are

loaded with data for the next cycle, while the current cycle uses the memory cells

of sense amplifiers 1 to 3 to perform computations. All data results of the current

cycle are stored in memory cells of sense amplifier 1. As the cycle finishes, the

internal address is incremented and data of sense amplifier 1 becomes the externally

accessible. Now that the results of the previous cycle are accessible, they can be

'X indicates the sense amplifier that is connected to external memory and is unreachable using
external M bank address

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

stored, and then new data can be loaded. The data that was previously loaded into

sense amplifier 0 is accessible by the PEs, and is now addressable as the current

frame (M register address ‘0’). Now that the previous frame data of the previous

cycle is no longer needed, it is reasonable to overwrite the data with the results of

the new cycle. This can continue indefinitely, since the internal address will loop

over, as is also seen in the table.

In Table 4.2, the data of Table 4.1 is extended to time-based addressing and ac­

cess. At time 0, it is assumed that the internal address has been reset. In the table,

M Register is a signal that is generated by the multi-bank controller to connect the

sense amplifier to the PE. As above, the the numbers 0 to 3 correspond to the num­

bering of the sense amplifier. Bank-enable is a signal used for connecting control

signals to the sense amplifiers, and row decoding, such that ‘H ’ indicates PE con­

trol and ‘L’, indicates external memory R/W control. The bank-clock enable signal

indicates that the internal address should be incremented because the program cycle

has completed and is proceeding to the next cycle.

Table 4.2: Multi-Bank Controller Operation
Time Bank-clock

Enable
M Bank
Address

Internal
Address

M Register Bank-enable
0 1 2 3 0 1 2 3

0 0 0 0 L L L H L H H H
1 0 1 0 L L H L L H H H
2 0 2 0 L H L L L H H H
3 0 3 0 L L L L L H H H
4 1 3 1 L L L L T i H H
5 0 0 1 H L L L H L H H
6 0 2 1 L L H L H L H H
7 1 2 2 L L 1 T H T 1 H
8 0 1 2 H L L L H H L H
9 1 1 3 1 T L L H H T 1
10 0 1 3 L H L L H H H L
11 1 1 0 L 1 T L i H H T
12 0 0 0 L L L H L H H H

Note that when the M bank address is maintained during the activation of the

bank-clock enable, that the sense amplifier being connected to the PE transitions

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

from left to right as in Table 4.1. It should be noted that all control signals should

be disabled before the transition is made; otherwise, unwanted operations on the

memory could be performed. The bank-enable signals also transition, such that

the sense amplifier with the same index as the internal address transitions from ‘L’

(low) to ‘H ’ (high), and the sense amplifier with the same index as the new internal

address transitions from ‘H ’ to ‘L’.

From Table 4.1 and Table 4.2, the multi-bank memory controller that can gen­

erate the bank-enable signalling is created, which is used for connecting the appro­

priate control signals to the proper banks of memory. In Table 4.2, the signals for

the M register and bank enabling are shown. This table indicates how the M bank

address, as well as the internal addressing, affects the M register and bank enable

signals.

In Figure 4.12, the schematic for generating the bank-enable and M register

selection signalling is shown. The figure was designed using the data from Table

4.1 and Table 4.2. This is one method; other methods are possible that use multiple

counters. From the table, it is possible to see that the bank-enable signal is low

where the internal address is equal to the number and is high for every other point,

which is equivalent to the NAND operation. Similarly, when the M bank address,

which is supplied externally to select which sense amplifier is to be connected to the

PE is ‘3’, all M Register select signals are low, indicating an invalid address. When

the M bank address matches one of the values in Table 4.1, the M register select

line will activate. From the internal address, it is possible to see that a method

of addition would be needed. From M Register and Bank-enable, more than one

counter or method of storing more than one value of the count is needed, since

there are four signals, each which rely on the internal address. It was discovered

that a cyclic register would be the best method of emulating the internal address,

since there is no need to wait for the signals to propagate through multiple counters.

Additionally, using multiple counters requires a register to hold the internal address

and latch the new internal address when the bank-clock-enable signal is activated.

The internal address can be broken into two cyclic registers, so that only a single

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

shift is required instead of shifting by two.

LOAD
B ank E nab le 3

BANK_CLK_ENABLE Bank E nab le 2

Bank E nab le 1

Bank E nab le 0

M R eg iste r S e le c t 3

M R eg iste r S e le c t 2

M R eg iste r S e le c t 1

M R eg iste r S e le c t 0

M R eg ister A ddress

Figure 4.12: Multi-bank Memory Controller

The cyclic shift register acts as the internal address; however, instead of in­

crementing an address, the addresses are pushed through the shift register. When

both shift register bits are ‘I ’, the position of the bits is equal to an incrementing

address. By using a cyclic shift register, the M register addressing is also imple­

mented, thereby reducing the design complexity and increasing the speed of the

design. It is also advisable that the shift register be able to load a default on power

up, or when the user requests that the internal addressing be reset.

4.2.3 Memory Redundancy

The redundancy for the memory could be improved by adding redundant memory

rows to the array, since column redundancy is already added through the PE redun­

dancy. This type of column redundancy, however, is limited, because if a column

of memory is found to have a fault and the PE associated with it is good, the good

PE and the faulty column of memory must be bypassed. This by itself is not en­

tirely bad, but if another PE in the redundancy block is found to have a fault and its

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Memory Array

memory column is found to be good, the block of redundancy will be identified as a

failing block. For this reason, the introduction of the column redundancy technique,

seen in Figure 4.13, was proposed so as to allow for the failure of one PE and one

column in the redundancy block. A failure in the memory and a failure in the PE

can be repaired using the proposed redundancy mechanism.

SA
failed

SASA SASA SASA SA SA

Memory
Redundancy
Switch

PEPE
failed

PE PEPE PE PE PEPE

Processing
Element
Redundancy
Switch

Interconnect
Circuitry

Figure 4.13: Memory and PE Replacement

In Figure 4.14, the detailed schematic of the memory redundancy is seen. In the

figure, the SA (sense amplifier) can be a single sense amplifier or a group of sense

amplifiers, as in the multi-bank design. In the schematic, a ground is sent into the

first switches of the redundancy group so that the first switch is not automatically

pointing to SA1. In this way, the first SA or PE that fails will cause the remaining

switches to change, thus pushing the the remaining switches over, as seen in Figure

4.13. Each sense amplifier or sense amplifier group contains an additional register

used to store the skip result.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Processing Element

<cn

S ense Amplifier
Skip P ropagate

Processing Element
Skip P ropagate

:e >
:e>

SAO SA1 SA2 ••• SA9 SA10 SA11

3

PEO PE1 PE2 — PE9 PE10 PE11

Figure 4.14: Memory Redundancy Schematic Detail

4.3 Processing Element

The processing element in O R A M is a 256-function ALU with input from three

data registers. The 256-function ALU is created using a 8-to-l multiplexer con­

trolled by the three data registers X, Y and M. The M register is the sense-amplifier,

with its contents being the currently accessed row of the memory. The X and Y reg­

isters store temporary values during calculations. The result of the ALU can then be

stored to memory (M), to the X or Y register, broadcasted to all other PEs, or shifted

to a nearest neighbour. The broadcast bus used in O R A M is a wired-AND bus; all

PEs must be broadcasting a ‘ 1 ’ to produce a ‘ 1 ’ on the broadcast bus. The broadcast

bus is also read by each PE for use in other calculations. Each PE also contains a

WE (write-enable) register which is used for performing parallel conditional op­

erations, such as ‘if ’ statements. It is possible to perform conditional nesting by

writing the previous results of the conditional statement to memory, which are then

backed out of as the nesting concludes.

The O R A M processing element for this design is similar to the 3DSOI O R A M

PE, which has the additional skip register used to perform redundancy. The skip

register can remain in the PE, or it can be moved into the redundancy mechanism;

however, it was moved to the redundancy mechanism, since there is no reason for

it to remain in the PE. It was originally placed in the PE because the redundancy

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Processing Element

ALU

O pcodes

Skip P la n e

WE

T o R e d u n d a n c y M ech an ism

Figure 4.15: Processing Element

mechanism was part of the PE. It was decided that the redundancy mechanism

would be designed to perform replacement automatically, such that the setting of

the skip register would automatically propagate a redundancy setup through the

redundancy matrix. This reduces the amount of setup that is needed to perform re­

dundancy, since the skip register can still be set by the results of the PE. This will

be discussed more in the next section.

The PE was changed to allow a single register to be the destination of the shifted

data, so the opcode would not need to be changed to alter the direction of shifting.

It should be noted that this change can introduce non-symmetric timings; there­

fore, during design and simulation, the destination register was used to determine

worst case timings. Since the shifting is no longer limited to only left and right,

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Processing Element Redundancy

the shifting mechanism was taken out of the actual PE and was designed as a sep­

arate interconnection network. The shifting of data is then no longer dependent on

PE failures, but on the way in which PE failures can be repaired. In this design,

O R A M is a three-dimensional mesh of PEs, and therefore may need to have re­

dundancy for all the dimensions that the PE interconnect extends. The final choice

as to how much redundancy is included will be determined by yield versus cost

analysis. All dimensions of redundancy are designed in the following section.

4.4 Processing Element Redundancy

The basic PE redundancy allows the network to determine if each PE is an active

participant in the computations, which requires that each PE be associated with

a register indicating its activity. This register is called the S (skip) register for

simplicity. The additional register is used since the WE register is used only for

writing back to memory, and is used during conditional operations. The S register,

however, keeps its contents until changed or until power-down. The S register is

also used to control switches used for performing redundancy; in this way, the PE

will either be connected to the flow of data or not. For example, if the S register for

the PE is set, the broadcast bus signals will not be connected to the global broadcast

bus. Therefore, the PE will not be able to be connected to the global flow of data

through the broadcast bus. In Figure 4.16, the mechanism for PE redundancy is

shown where five identical PEs are used to emulate four PEs. Thus, if one of the

five PEs fails, there are still four functional PEs with the ability to perform proper

data shifting. Since the shift data is sent through the redundancy switches, there will

always be four PEs with valid shift data that will be able to emulate four sequentially

ordered PEs.

4.4.1 Row & Column Redundancy

In Figure 4.17, a virtual 3x3 PE grid exists. In this, each plane is able to repair itself,

then each virtual PE can be connected to the virtual PEs on another plane; in this

way, the three-dimensional interconnection network remains intact. Note that the

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Processing Element Redundancy

OpcodesOpcodes OpcodesOpcodes

Skip P lan e

Opcodes

R e d undancy R edundancyR e d undancy R e d undancy

B ro a d ca s t B us (wired AND)

Figure 4.16: Processing Element Redundancy

redundancy method does not require that all planes be repaired in the same way. It

should also be noted that if a plane contains too many failures such that the failures

can not be repaired, there exists another level of redundancy that is able to bypass

the planes that fail.

P ro c e s s in g E lem e n t

R e d u n d a n t P ro c e s s in g E lem e n t

F a iled P ro c e s s in g E lem e n t

R e d u n d a n c y S w itch E le m e n t

V irtual P ro c e s s in g E lem e n t/S w itc h

P o ss ib le W ire C o n n e c tio n

A ctual W ire C o n n ec tio n

X

Figure 4.17: Two-dimensional PE Redundancy

In Figure 4.18, the schematic representation of the row and column redundancy

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Processing Element Redundancy

method is shown. Here, the circuit translates a two-dimensional grid into a linear

array attached to a memory array, since a memory array is organized linearly. The

figure also shows how the actual processing elements are turned into virtual pro­

cessing elements through a processing element addressing scheme. It can also be

seen that the interconnection network is connected to virtual processing elements

rather than the actual processing elements. This removes the need for additional cir­

cuitry to perform redundancy in the interconnection network. All the redundancy is

applied to the processing elements and memory, since they are the most likely place

for defects to occur.

P rocessing
Elem ents

P rocessing
Elem ent
R edundancy

P rocessing
Elem ent
A ddressing

Interconnection
Network

Figure 4.18: PE Grid Redundancy Schematic

A detailed schematic of the redundancy is shown in Figure 4.19, where the flow

of data is through a selection matrix controlled by the S register, not shown. The

results of the S registers are combined to create the additional signalling required

to automate the replacement of failed PEs. This combination of S registers can also

be used to create the signal for the failure of a plane of PEs.

4.4.2 Redundancy Controller

The redundancy controller is the circuitry used to determine the failure of a PE or

the failure of a plane of PEs. The plane failure is determined by taking the skip

signals of the columns of PEs and combining them to determine if the plane has

failed. The recomputing of the address of each plane in the design is performed

using the results of the plane failure identification, as seen in Section 4.2.1.3. The

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

PE1 P E 9 P E 1 0PEO

Figure 4.19: PE Grid Redundancy Detail

recalculation of plane addresses is done in order to maintain uniform addressing for

external accesses. By maintaining uniform external addressing, the programmer or

user does not need to be informed of which PEs or planes have failed. The redun­

dancy controller performs repair (replacement) automatically, thereby removing the

responsibility from the user.

4.5 Interconnection Network

All O R A M architectures have implemented some type of an inter-processor com­

munication network (interconnection). There have typically been two interconnec­

tion networks in O R A M : the one-dimensional patterned left-right communication,

and the broadcast bus. The left-right communication is used for shifting data around

the O R A M array, while the broadcast bus is used for sharing data between all the

PEs simultaneously. For this research, the broadcast bus is changed by the effects of

redundancy, while the one-dimensional patterned communication is extended to al­

low for two-dimensional and three-dimensional patterned communication between

processors. Because the MIT LL process is used, the interconnection network can

be divided and/or built to be scalable for another dimension. In this way, the in-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

terconnection network must be able to work when only one die is in the stack, as

well as being able to accommodate stacking of extra dies. The stack must maintain

one-dimensional, two-dimensional and three-dimensional interconnections.

4.5.1 Broadcast Bus Interconnection

The broadcast bus must also be workable for multiple dimensions of interconnect;

most specifically, for multiple dies being stacked. The broadcast bus must be able

to tie multiple dies’ broadcast buses together to allow broadcast bus communication

to occur between the dies in a stack. The broadcast bus circuit developed in 3DSOI

O R A M already accommodates broadcasting between multiple chips, so there is

no need for changes to be made to allow for broadcasting between dies, since it is

already available. It is also possible to create a segmented broadcast bus where each

plane of PEs can broadcast between only the PEs of its own plane; however, it was

decided that this modification would not be incorporated. The segmented broadcast

bus was not incorporated since there did not seem to be any forseeable advantage

in doing so, and the design issues that it introduced also contributed. Some design

issues were connecting the plane segmented broadcast buses externally for reading

and writing, so that as the number of planes grows, so does the number of pins

required for all the broadcast buses.

Due to the redundancy design considerations, a small change to the broadcast

bus was performed. In order to ensure that only PEs with valid data are connecting

themselves to the broadcast bus, it was required that the connection to the broadcast

bus flow through the redundancy circuitry. In this way, the broadcast bus performs

its task properly and the invalid PEs do not interfere with correct operation of the

broadcast bus. The broadcast bus flows through the redundancy circuitry in case all

the PEs are good, causing the redundant PEs to broadcast data onto the broadcast

bus when they do not have valid data. When the plane that a PE is located on

fails, all the PEs on that plane must have their broadcasting privileges severed. To

perform this, the signal used to indicate the failure of a plane is passed back to all

its PEs; if the signal is low, all the PEs can broadcast their data; otherwise, they will

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

all be disconnected from the broadcast bus. This is to ensure that failed PEs will

not interfere with proper operation of the broadcast bus.

As 3DSOI O R A M already incorporated the disabling of the broadcast bus

transceiver, this does not need to be changed. A change, however, is made to the

signal that disables the transceiver. In 3DSOI O R A M , the transceiver is disabled

by the S (skip) register. In this design, the S register disconnects PEs locally from

the broadcast bus, and the plane fault signal disconnects PEs globally from the

broadcast bus.

4.5.2 ID, 2D, and 3D Interconnection

The previous chapter showed that a one-dimensional and two-dimensional inter­

connection network could be embedded into a three-dimensional interconnection

network. It was also shown that to implement PE redundancy and maintain the in­

terconnection networks, the interconnection needs to be separated from the PE and

its redundancy. In this section, the circuits used to implement the interconnection

are designed. The shift circuit is implemented in such a way that each PE commu­

nicates with the shift circuit and each shift circuit can communicate with six other

possible shift circuits. All the shift circuits are controlled by the same signals so

that they all shift left, right, north, south, up or down. This is where the patterned

communication enters into the design. The shift circuit, however, is only part of

the solution. The shift circuit is easily used to create the three-dimensional mesh

of PEs, but it is necessary to incorporate the one-dimensional and two-dimensional

networks as well. This required additional circuits on the boundaries of the three-

dimensional mesh that are used to transform a three-dimensional mesh into a one­

dimensional string of PEs or a two-dimensional grid of PEs. These circuits also

make allowances for failed planes of PEs, and then bypass the failed planes by

connecting only valid planes together.

It should be noted that within each of the dimensional modes it is possible to

use the properties of the mesh to perform long shifts. For example, if the mesh

is an 8x8x8 PE array and the program is operating in one-dimensional mode, a

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

left shift of 64 PEs is required. This could be done by shifting down one plane of

PEs instead of shifting left 64 times. The design of the interconnection network

and the interconnect controller takes this example into consideration, due to the

dynamically reconfigurable nature of the interconnect.

4.5.2.1 Shift Circuit

The shift circuit is designed to allow PE redundancy to be performed without af­

fecting the inter-PE connection. The PE redundancy is built so that the data shifted

in and out from the PE is sent through the redundancy matrix before being used

by the shift circuit. In this way, the shift circuit only needs to be concerned with

connecting the data being shifted out to the proper interconnect wire, as well as

connecting to the proper interconnect wire to allow for data to be shifted in. In Fig­

ure 4.20, the circuit to perform this task is shown. The shift signals are buffered to

ensure that the signal has enough drive, since the switches will experience a thresh­

old voltage (Vt) drop for each switch that the signal passes through. Since there

will be a drop of approximately two times Vt , the inverter for the shift in data may

consume static power when a ‘1’ is being shifted. This is attributed to the problem

NMOS transistors have in passing a ‘1’ (Von)- Since, the signal being buffered into

the PE is less than the full V d d the inverter will consume power due to the crowbar

effect. The crowbar effect is seen when there is a direct path from Vdd to ground.

This occurs because the PMOS transistor of the first stage of the buffer will not be

completely turned off. The shift circuit is composed of a number of switches which

are connected to the interconnect wires.

In Figure 4.21, a selection circuit (MUX) is added for the shift out data. This

is to accommodate the possibility of a failed plane when shifting in the z direction

(up/down). The MUX will redirect the shift in data to the output if the plane is

to be skipped, and the shift operation being performed will be in the z direction.

The redundancy for the z direction was added because of its proximity to the shift

circuit, thereby reducing the delay penalty that a failed plane injects.

It should be noted that only three actual interconnect wires are required to per-

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

Shift O ut D ata Shift In Data

To Left
PE

To South
PE

PE

Figure 4.20: Shift Circuit

Shift O ut D ata Shift In D ata

To Left
PE

T o S ou th
PE

PE

Shift Lett

Shift Right

Shift South

Shift North

Shift Down

Shift Up

To Right
PE

To North
PE

To U pper
PE

skipU D

Shift Left

Shift R ight

Shift S ou th

Shift North

Shift Down

Shift Up

To Right
P E

To North
P E

To U pper
P E

Figure 4.21: Shift Circuit with z Redundancy

form six dimensions of communication. In Figure 4.20 and Figure 4.21, six con-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

nection wires are shown; however, these six connection wires can be combined

into only three interconnect wires. In Figure 4.22, the interconnection of the shift

circuits is seen for a 2D grid. In the figure, we see that the Ls (to Left PE) are

bi-directionally connected to the Rs (to Right PE), and the Ns (to North PE) are

bi-directionally connected to the Ss (to South PEs). This can be extended to the

3D mesh in the same way. The implementation uses the bi-directional capability

of a wire to perform bi-directional communication, thereby reducing the number of

wires that need to be routed. Due to the size of the PE mesh, the number of wires

used for interconnect could be quite high if each direction of communication had

its own wire. In this way, the number of wires is reduced by a power of 2. It should

also be noted that by using the MIT LL technology, the number of wires by are

reduced by yet another factor. When the N x N x N sized mesh is divided into X

dies, the number of wires on the die are reduced by a factor of X. This is possible

because the MIT LL technology has additional vias that can connect metal layers

between dies. The number of wires routed horizontally or vertically on a die are

reduced since the wire is now created through the dies, reducing wire length and

the delay path for a signal.

4.5.2.2 Fault-Tolerant Network Interconnections

To implement the one-dimensional and two-dimensional interconnection within the

three-dimensional mesh, additional circuitry is added on the boundaries of the mesh

to form the interconnection networks. This would appear to be quite simple if not

for the redundant nature of the design. The boundary circuits were designed to

respond based on whether the plane of PEs is still good or not; therefore, the circuit

is able to repair the connections between planes so that the bad planes of memory

can be bypassed to maintain the proper interconnections. It should also be noted

that these boundary circuits are only active when the proper interconnection mode

is entered.

Since all the dimensional modes can have common interconnection modes such

as a spiral interconnect used for left-right interconnect in two-dimensional and

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

Figure 4.22: Shift Circuit Interconnection

three-dimensional, the wiring was designed to reduce the amount of additional

wiring and circuitry used for the boundary interconnect. For one-dimensional and

three-dimensional interconnect, the spiral interconnect was designed to be identi­

cal, and therefore, the boundary circuit for the spiral is common, as seen in Figure

4.23.

For two-dimensional interconnect, using a spiral interconnect for left-right com­

munication presents two possibilities. The first possibility is to use the spiral inter­

connection of the one-dimensional and three-dimensional, as seen in Figure 4.24(a).

This results in only one spiral network for ID, 2D and 3D, and maintains sequential

PE addressing. This method also requires that an additional boundary interconnect

circuit with redundancy be built for north-south interconnections. In the other pos­

sibility, the two-dimensional grid connect and one-dimensional spiral connect share

many of the same interconnections. The only changes would be on the boundary of

the two-dimensional grid, where the interconnects would need to be staggered for

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

, *121 / * *12 2 r * -------*123i

18 r*— n i 9L r— *120

12 J-*------ *113--h*------ * 114

9 L r — *110 Lr*— * 1 n

125|

122

20

(3) (b)

Figure 4.23: Interconnections for ID and 3D using Spiral

the spiral interconnect; see Figure 4.24(b). The PE ordering for this second method

is no longer sequential and requires more complex programming and data writing

techniques. This also interferes with the ability of switching between the ID, 2D

and 3D interconnection schemes, and maintaining PE interprocessor relationships.

(a)

or 0

—*[fjy

(b)

Figure 4.24: Interconnections for 2D using Spiral

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

To maintain the interconnection during a failure of a plane, the failed plane

must be bypassed with a minimal amount of effort and circuitry. In Figure 4.25, the

plane interconnects must be severed and replaced by a new interconnection. This

results in additional circuitry that may add extra delay to the interconnection chain;

however, this is necessary to maintain full functionality of the interconnect in the

event of a plane failure. Looking at Figure 4.25, it would appear that Figure 4.25(b)

is less complicated that Figure 4.25(a); yet the amount of additional circuitry is the

same for both. For this reason, the two-dimensional spiral option that was chosen

was Figure 4.25(a), so that the PE ordering would be maintained for a left-right

spiral interconnect.

or 0

3 or22 23

0 or 3\m

(a) (b)

Figure 4.25: PE Interconnections with a Failed Plane

The circuit in Figure 4.26 is the method designed to create the interconnections

between planes for a spiral interconnect. This circuit has the benefit of implement­

ing the redundancy and the standard interconnect together. In the figure, the blocks

are shift interconnect circuits that perform the actual shifting of data into and out

of the PE. The vPIane(0,l,2) signals indicate a valid (good) plane, and if the spiral

is to be closed so that PE interconnect 26 is connected to PE interconnect 0 then

ClosedSpiral is asserted. If vPlanel is low, indicating a failure, then the data of

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

plane one is bypassed, and PE interconnect 8 is connected to PE interconnect 18

through the elements: Q l, 10, Q5, II, and Q9, where 10 and II are bi-directional tri­

state drivers controlled by the direction of the shift. Using the tri-state drivers, the

shifting delay can be reduced, since stand-alone NMOS and PMOS transistors will

reduce speed by reducing the drive of a signal. In this circuit, if all the planes are

valid (no failure), then the data is appropriately shifted to the proper interconnect

block of the next plane. If a plane is found to have a failure, the interconnect blocks

from the planes above and below the failed plane are connected together instead. In

this way, the failed plane data is bypassed, thereby removing the possibility of the

data interfering in the computations.

17|15 16

6 7 6

Shift Right

vPlane2vPlaneO vPlanet
Q7Q4

Q 0 1

Q 9

Shift Left

Figure 4.26: Spiral Interconnection Circuit with Redundancy

4.5.2.3 Torus Interconnection

Since most early 2D interconnected PE arrays have included the torus interconnec­

tion construct, it was decided that the torus interconnect would also be included.

The addition of the torus to the network is done to finish the interconnection net­

work. The torus is used to close all dimensions of communication so that all the

data will remain in the mesh. When looking at the cube structures throughout this

chapter, it can be seen that the spiral interconnection and torus interconnections

will require extended routing for PEs that are located on the boundaries of the cube.

This would result in a longer delay for the signal to reach its destination, mean-

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

ing the entire shift would have to be slowed down to the longest delay. In order

to produce nearly identical communication delays when communicating through

the torus, the organization in Figure 4.27 is used to route the interprocessor com­

munication wiring. This method of folding the torus was performed in the Cray

T3D supercomputer. This method increases the delays between individual proces­

sors, but it also reduces the delay for communicating between the boundaries. This

means that the shift circuit can actually operate at a faster frequency despite increas­

ing the delay between the PEs in middle of the torus. This also reduces the delays

that would be present in the boundary circuits since the boundaries of the mesh that

would need to be closed to complete a torus would all be near each other. All the

left-right boundary PEs would be located side by side, as would the north-south and

up-down PEs. This also produces the effect that an entire array could be replicated

and the arrays could be tied together, and the torus could still be complete; see

Figure 4.28.

Figure 4.27: Torus with Similar Delay Links

Array 0 Array 1

Figure 4.28: Torus Across Multiple Arrays

In the above figures, the right end of the torus can be extended, but at some

point it will need to be closed in order to maintain the interconnection. This closing

of the right end of the torus could be controlled by a switch that is enabled when

the array block is found to be at the right-most boundary. Similarly, for the left

interconnection, the closing of the torus should only be possible when the array

block is at the left-most boundary and the method of interconnection is a torus. It

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

should be noted that this mechanism is implemented for all dimensions of the PE

mesh, thus reducing the delay for PEs located on the boundaries of a mesh.

In Figure 4.28, the PE ID numbers progress across all the arrays. From this it

was determined that a measure of address translation was needed if more than one

array block was used. To accommodate multiple array blocks, an address transla­

tion circuit was designed that translates the linear logical address into a physical

address corresponding to the method of PE ordering shown in the figure. Since the

number of rows and columns of PEs per plane in an array block are known and

those numbers are divided in half for the torus, a parameterized verilog model was

constructed that can be modified to be synthesized for any number of blocks on the

die. For example, in the figure, if the logical address input into the chip was 10, the

circuit translates this into an enable signal for array 0, and the physical address 4 of

the array.

4.5.2.4 Array Block Interconnection

As discussed in the previous section, the design is created to be scalable through the

creation of a scalable torus architecture that is able to connect two blocks together

to form a new, larger array of PEs. This scalable torus architecture is not confined

to only a single die, but is extended to multiple dies through the use of MIT LL’s 3D

SOI technology. For this reason, each block will be designed identically. To ensure

that each block will not interfere with the total torus, boundary identification must

be added in order to produce a cohesive 3D mesh. This means that only blocks that

meet the boundary conditions should close the points on the boundary. For exam­

ple, only blocks that are identified as being the right-most block should be allowed

to close the right side of the torus. In Figure 4.29, the boundary connections for

left-right interconnection network is shown where the left-right interconnection is

built from three identical array blocks. The L and R signals should be hardwired

appropriately to create the proper interconnect. In the figure, the dotted-box rep­

resents an array block, and the torus control signal is external to the array block,

while the block boundary position identifiers are local to the array block.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

T orusL R

000 00 <>

00 <>0 00

000 00 0

Left Block Middle Block Right Block
L = T & R = 'O’ L = ’O' & R = 'O’ L = ’0 ’ & R = T

Figure 4.29: Array Block Interconnection over Multiple Array Blocks

This mechanism is extended to the north-south and up-down interconnection

network; however, the up-down (3D) interconnection uses a special boundary iden­

tifier due to the stacking ability of MIT LL’s 3D SOI technology. This technology

requires that the stack be able to automatically identify the top and bottom die of

the stack, since it is possible to have a single die or a stack of two or more dies.

For left-right and north-south interconnect, the single die must be complete in that

all the array blocks must be placed and that each array block is assigned the proper

boundary identifiers corresponding to its’ place in the left-right and north-south

interconnection grid.

4.5.2.5 Boundary Interconnections

Previous sections have discussed the fault-tolerant nature of the interconnection

network using additional planes of PEs. This section discusses how multiple in­

terconnection networks can be formed within a 3D mesh of processing elements

(PEs) by using the torus interconnection layout for producing similar delays for

shifting between PEs. It was discussed previously that besides the ID, 2D and 3D,

additional elements could be added to the simple mesh to produce a 3D toroidal

mesh. Similarly, a spiral network could be added into the 3D mesh to produce the

ID PE array, and this spiral network can be used in the 2D and 3D interconnection

networks. Most of the discussion has been on how to perform the redundancy for

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

the spiral network to maintain the spiral through the mesh in the event of a failure,

but this is only one part of the spiral. The boundary interconnections must provide

reconfigurability to switch between a left-right spiral interconnect, a left-right torus

interconnect, or no left-right interconnect on the boundaries of the PE array. Mul­

tiple switches exist for the PEs on the boundary to connect PEs in the same row

(torus) or PEs in different rows (spiral), or not to be connect to any other PEs. The

boundary interconnections exist in all array blocks, and therefore, only the switches

that exist on real boundaries perform boundary operations.

4.5.2.6 Off-chip Interconnection

To maintain the ability of scaling the processing power through the interconnection

of multiple O R A M chips, the shifting of data for all the inter-processor communi­

cation networks is supported. This is implemented by creating three groups of pins:

one group for left-right communication, one group for north-south communication,

and one group for up-down communication. These pins should be bi-directional,

since internally, all interconnections are bi-directional to limit the number of pins

required for shifting. The design of this research is based on a chip package con­

taining an 8x8x8 cube. Since the design uses the MIT LL 3D SOI technology, each

die contains an 8x8x4 cube. From this it was determined that the off-chip shift­

ing would require eight pins to be used as the shift bus width. This means that 16

pins are used for left-right interconnection, 16 pins for north-south, and 16 pins for

up-down. Therefore, the total number of pins being used for shift interconnect is

48.

The off-chip interconnection circuit is designed to support all possible inter­

processor communication networks. For instance, when the chip is in ID commu­

nication mode, only one PE should be receiving data from off-chip and only one

PE should be sending data off-chip. It should be noted that all PEs can send data

off-chip without interfering with operations, but if all PEs are receiving data from

off-chip, it will interfere. Therefore, the receiving circuit is the only circuit that

needed special consideration. It must, however, be noted that ID communication is

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Interconnection Network

special since the (N,N,N) PE does not line up with the (0,0,0) PE in the shift bus.

From the discussion above, it can be seen that the off-chip interconnection is de­

pendent on the communication network type. Thus, a controller was designed that

sets up the off-chip interconnection based on the communication type and current

state of shifting. It should also be noted that ID off-chip shifting does not maintain

the same PE ordering that is found in 2D and 3D off-chip shifting.

4.5.3 Interconnection Network Controller

The interconnection network controller controls the method of interconnection to

be used for inter-processor communication. There are six directions of commu­

nication that would require 6 pins for operation. Using a decoder built as part of

the interconnection controller, this is dropped to 3 pins using an 8-bit decoding

value. There are also multiple types of interconnection that are possible, such as

torus connection for the left-right (east-west), north-south or up-down directions

of communication, spiral interconnection for left-right shifting operation, closed

or open spiral interconnection, and no boundary interconnection. Some, however,

are mutually exclusive, and this is converted into a decoder circuit. The left-right

spiral interconnect and left-right torus interconnect are mutually exclusive inter­

connection methods, so a decoder circuit was created that ensures that these two

interconnection methods are not enabled simultaneously. If both are enabled, there

will be contention between the signals being shifted into the boundary PEs.

There should only be one interconnection network controller for the entire die,

rather than a controller for each array block. This is possible since all array blocks

are shifting data in the same direction.

4.5.4 Off-chip Interconnection Controller

The off-chip interconnection controller controls the off-chip shifting circuits that are

used for extending the inter-processor communication network over multiple chips.

The controller only requires two pins in addition to the pins needed for shifting data

in and out of the chip. The two pins for the controller are used to reset the controller

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 3D SOI Stack Implications

and to increment the internal counter used by the controller to multiplex the shift

data in and out of the chip. On the rising edge of the clock, the data is shifted out,

and on the falling edge of the clock, the data being shifted in is latched. In this way,

the multi-chip communication is synchronized so that the data of the chip is sent

out, and given sufficient time to be set up before it is sampled by the chip looking

at the shift data.

During the design of the off-chip interconnection controller, it was determined

that the circuit designed for plane addressing could be used to maintain off-chip

shifting in the event of plane failures. The controller could send a plane address to

the plane address enable circuit, and if the plane address from the shift controller is

identical to the address of the plane, the shift data for that plane would be selected

for input and output.

As in the interconnection network controller, there should only be one off-chip

interconnection controller for the entire die. There should only be one off-chip

interconnect controller that is active for a complete package as well. This means

that if multiple dies are stacked together, only one of the controllers should be able

to set up the selection of the shift data.

4.6 3D SOI Stack Implications

When using MIT LL’s 3D SOI technology, the ability to stack a number of identical

dies brings up the problem of multiple controllers being active in the stack of dies.

This can be repaired by the introduction of a master die select signal which can be

connected to the outputs of each controller on a die. In this way, only the die that

has the master signal active will control the operation of the stack. The completion

of this scheme requires that the outputs of the controllers on the master die be

sent down/up through the stack to ensure that all dies in the stack are operating

under the same control. The introduction of stacking dies to create a scalable 3D

O R A M mesh requires that the 3D via (inter-die via) be properly connected in order

to produce a scalable mesh while maintaining single die functionality. In Section

2.2.2, Figure 2.5 shows how a 3D via is formed between two dies; however, in the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Performance

figure we see that the two dies are not identical. At the University of Alberta[16], a

technique for stacking identical dies was created along with circuits for identifying

the top and bottom die in a stack. A master die identifier was also developed, along

with a symbolic representation for the 3D via. The 3D via symbol is representative

of the layout of the 3D via used to stack identical dies. Figure 4.30(a), shows the

symbol created at the University of Alberta to represent a 3D via that can be used in

a stackable design. In Figure 4.30(b), the symbols (3D vias) are stacked to transfer

signal data to/from a lower or upper die.

3DVia Landing 3Dvia

(a) (b)

Figure 4.30: 3D via (a)symbol, and (b) stacking

It should be noted that the 3D via, just like a wire, is bi-directional; therefore, it

can be used by the middle die to send or receive data from the die below. It is also

useful in creating the identification circuits and conceptualizing the flow of global

data, as well as inter-die dependent data.

4.7 Performance

The performance of this design was evaluated using Cadence to create schematic

circuits and Hspice to perform the simulation of these circuits. The performance of

the design is an approximation since it was found that the simulation of a complete

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Performance

4x8x4 (x,y,z) PE array was not viable. Therefore, approximations were made by

computing the capacitance and resistance of the wiring to determine wiring delays

that could be expected for driving signals across the memory and PE array. Since

SOI is a 1.5V process, the designing of the PE array was optimized to obtain the

highest performance when running at 1.5V. The design was also simulated at 1.2V

to ensure that the design would be operable at 1.2V, and to determine the perfor­

mance reduction when operating at the lower voltage.

4.7.1 Design Performance

The following performance parameters are based on a cube where x equals 4, y

equals 8 and z equals 4. It could be possible to place all the PEs on the bottom, since

each PE is attached to 4 columns of memory. To reduce the routing congestion for

the redundancy and shift interconnect, it is assumed that the PEs are placed above

and below the memory array. The actual dimensions for the cube then become x(5),

y(10), and z(4) when redundancy is included. Placing PEs above and below relaxes

the pitch used for matching the PEs to the memory columns.

The simulation was performed using the lumped-RC T-model where the resis­

tance and capacitance were extracted by creating layout. During the layout, wire

lengths for the shift and redundancy circuits were obtained, along with an equa­

tion to estimate wire lengths for other array sizes. The maximum wire lengths for

the redundancy and shift circuits and for the 4x8x4 PE array were used during the

simulation of the redundancy and shift circuits.

The maximum wire lengths for the redundancy circuit are:

Lyjire (j jd im /2 T 1) X X W pp

or:

Lyjire (n '^ O 'l0 3 m em -f“ TlFtoWSre(irnerrl) X hgpAM

The maximum wire length above is for creating the lumped-RC T-model used

for simulating the redundancy delay.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Performance

The maximum wire lengths for the shift circuit are:

Lyjire iVdim/^1 T" 1) X Z(Hm X 2.5 X W pp

or:

Lwire — FtOW Smem “F X hsRAM

The maximum wire length above is for creating the lumped-RC T-model used

for simulating the shift circuit delay. The complete shift circuit actually includes

the redundancy delays since, a shift must pass through the redundancy circuit before

it gets to the shift interconnect circuit. The shift must then pass back through the

redundancy circuit to get back to the PE. It should be noted that the 2.5 factor was

used to accommodate the possibility of connecting two array blocks together.

From Table 4.3, the minimum timing for ALU operations, shift operations, and

memory operations are shown, along with timings for select circuits. The minimum

timings for the circuits assume that signals can be supplied at precisely the right

time to achieve maximum speed. This works in theory, assuming that the signal can

be supplied at exactly the right time using precision self-timed circuits.

In the table, the shift operation takes approximately three times as long as an

ALU operation. It should be noted; however, that the shift operation includes an

ALU operation as well. The complete shift operation involves the ALU operation

of setting the ALU result bus, then shifting out the result bus through the redun­

dancy, through the shift circuit, back through redundancy, and into the X register.

Therefore, the shift operation requires only two additional ALU cycles to complete.

The maximum operational speeds are shown when operating at 1.5 V, and are

summarized in Table 4.4. The maximum speed of operation, based on the ALU

cycle, is 256MHz, assuming that signals can be supplied precisely. The maximum

operational speed for writing memory externally is 121MHz or 121Mb/s, while

reading is 129MHz. The maximum operational speed for writing memory internally

for the PEs is 175MHz; or 22.4Gb/s bandwidth for all 128 PEs. Reading memory

internally for the PEs results in a maximum operational speed of 148MHz.

The maximum operational speeds are shown when operating at 1.2V, and are

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Performance

Table 4.3: Circuit Propagation Delay for 1.2V & 1.5V Operation
Circuit Condition Delay @ 1.2V Delay @ 1.5 V

Signal Drive
Delay

Single
Driver

1.68ns 1.38ns

Signal Drive
Delay

Drive
2 sides

1.26ns 968ps

Boundary Interconnect
with Redundancy

2 Sequential
Failed Planes

620ps 535ps

Redundancy Switching
Circuit

2 Level
Redundancy

2.65ns 1.55ns

Shift Interconnect
Circuit

Through
Redundancy

9.26ns 5.2ns

Overwriting Register
X, Y ,orW E

Write Enable
to Overwrite

1.19ns 1.05ns

Maximum Delay
for Computing

Ext. Opcode to
ALU result

4.89ns 3.29ns

Maximum Delay
for Shift

ALU result
to X register

12.3ns 7.35ns

SRAM Write
Cycle Time

External 10
Cycle Time

10.8ns 8.2ns

SRAM read
Cycle Time

External IO
Cycle Time

9.64ns 7.74ns

SRAM Write
Cycle Time

PE Cycle
Time

9.52ns 5.71ns

SRAM read
Cycle Time

PE Cycle
Time

12.45ns 6.74ns

Shift Operation
Cycle Time

Cycle
Time

17.96ns 11.48ns

ALU Operation
Cycle Time

Cycle
Time

6.08ns 3.9ns

summarized in Table 4.4. The maximum speed of operation, based on the ALU

cycle, is 164MHz, assuming that signals can be supplied precisely. The maximum

operational speed for accessing memory externally is 92MHz or 92Mb/s, while

reading is 103MHz. The maximum operational speed for writing memory internally

for the PEs is 105MHz; or 13.4Gb/s bandwidth for all 128 PEs. Reading memory

internally for the PEs results in a maximum operational speed of 80MHz.

In Table 4.4, when the operating voltage is changed from 1.5V to 1.2V, some of

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

Table 4.4: Maximum Operational Frequencies for 1.2V & 1.5V
Circuit 1.2V 1.5V

ALU Operation 164MHz 256MHz
Shift Operation 55MHz 87MHz

External Memory Write Operation 92MHz 121MHz
External Memory Read Operation 103MHz 129MHz
Internal Memory Write Operation 105MHz 175MHz
Internal Memory Read Operation 80MHz 148MHz

the circuits undergo a remarkable change in the maximum operational frequencies.

The circuits that seem to undergo major changes are the ALU operation and the

shift operation, at about 64% of the 1.5V frequency. Looking at the the voltages,

it can be seen that 1.2V is 80% of 1.5V. From this it may be expected that the

maximum frequency for 1.2V should be about 80% of the maximum frequency for

1.5V operation, and this is seen in the external memory operations.

To ensure that off-chip data shifting completes in the cycle time of the shift

operation, the pins and external shift interface must run faster than 87MHz for 1.5 V

operation. For an 8x8x8 cube having a 8-bit shift interface, the shift pins and the

external shift interface must be able to transfer data at 700MHz for 1.5V operation

and 440MHz at 1.2V operation.

4.8 Design Results

The following results are estimates of the power and area of the design made

through simulation and layout. This section is included to indicate the power con­

sumption that could be expected if this design was taken to the final stage of fabri­

cation. The areas are estimated based on individual transistor layout of the core cir­

cuits of the design. It is included to indicate the overhead that would be introduced

by a fault-tolerant dynamically reconfigurable O R A M communication network.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8.1 Power - Estimation

4.8 Design Results

The focus of the design of the fault-tolerant, dynamically reconfigurable O R A M

communication network was not on designing for low-power. It is, however, of

interest to know the power consumption of such a design. It is possible to deter­

mine the power consumed per cycle of the design, and consequently possible to

determine if the design is low-power. The design is implemented using the SOI

technology, which has the ability to operate at higher frequencies at lower voltages

than conventional bulk CMOS technologies of the same voltage level. This design,

however, is not implemented in a bulk CMOS technology, due to the limiting factor

of creating a 3D stack of chips. It could have been possible to implement the same

die design in a bulk CMOS technology to determine single die comparisons, but

this was not done.

In this section, the power requirements of the core circuits are measured. For

some of the circuits, the power of a single circuit is measured and then scaled to

indicate the power used by the total circuit. For example, one sense amplifier is

measured for its dynamic power usage, and then the measured value is scaled by

the number of active sense amplifiers during the cycle. The dynamic power is also

scaled using the activity factor («), since the probability of all sense amplifiers

changing from 0 to 1 is not necessarily 100%. The dynamic power is measured

or estimated, as it will give the maximum power draw for the circuit during op­

eration. As most of the circuits are designed as complementary CMOS gates, the

static power consumption should ideally be nearly zero. We know, however, this

is not completely true due to the sub-threshold leakage of the NMOS and PMOS

transistors in MIT LL’s SOI technology.

In Table 4.5 and Table 4.6, the dynamic power calculations for the PE and mem­

ory array are calculated using the dynamic power formula:

P d y n = olC l o a d Vo h /

The tables contain the circuits that are localized to the array so that the dy-

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

namic power for the array is calculated rather then measured, due to the problems

of simulating the complete array. When simulating the array, the Cadence multi­

plier parameter is used to estimate the timing needed for proper functionality. The

current measurement gained through simulation using the multiplier parameter will

only be an upper estimation, as almost all of the array circuits will be performing

exactly the same operation. For this reason, it was decided that the dynamic power

use for the array would be calculated using the dynamic power formula. All calcu­

lations are for a 4x8x4 PE array with redundant elements for the x and y dimensions

of the array.

Table 4.5: Dynamic Power Calculations for 1.5V Operation

Circuit Quantity
Operating

Period
(ns)

Load
(fF) a

Dynamic
Power
(mW)

PE Row Drivers 3 6.74 1755 1 1.76
PE Signal Drivers 16 6.74 827 1 4.41
PE Bit-lines 1200 6.74 774 0.5 155
PE SRAM Cells 600 6.74 5.8 0.5 0.58
PE Sense Amplifiers 600 6.74 5.8 0.5 0.58
10 Row Drivers 1 8.20 1755 1 0.48
10 Signal Drivers 20 8.20 827 1 4.54
10 Bit-lines 400 8.20 774 0.5 42.4
10 SRAM Cells 200 8.20 5.8 0.5 0.16
IO Sense Amplifiers 200 8.20 5.8 0.5 0.16
Control Drivers 32 3.90 774 0.5 7.14
ALU Opcode Drivers 32 3.90 774 0.5 7.14
ALU Result Latch 200 3.90 12 0.5 0.69
Registers (X,Y,WE,S) 800 3.90 6 0.5 1.38
Total 226.42

In Table 4.5 and Table 4.6, the power requirements for the 1.2V operation is

less than the 1.5V operation. This is due to the decrease in voltage, but most of

this decrease is due to the reduction in the maximum operating frequency of the

circuits. This suggests that if the main requirement is low-power, the circuit should

be run at 1.2V rather than 1.5 V. As already determined, the chip would run at about

100MHz for a 1.2V supply.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

Table 4.6: Dynamic Power Calculations for 1.2V Operation

Circuit Quantity
Operating

Period
(ns)

Load
(fF) a

Dynamic
Power
(mW)

PE Row Drivers 3 12.5 1755 1 0.61
PE Signal Drivers 16 12.5 827 1 1.52
PE Bit-lines 1200 12.5 774 0.5 53.4
PE SRAM Cells 600 12.5 5.8 0.5 0.20
PE Sense Amplifiers 600 12.5 5.8 0.5 0.20
10 Row Drivers 1 10.8 1755 1 0.23
10 Signal Drivers 20 10.8 827 1 2.21
10 Bit-lines 400 10.8 774 0.5 20.6
IO SRAM Cells 200 10.8 5.8 0.5 0.08
10 Sense Amplifiers 200 10.8 5.8 0.5 0.08
Control Drivers 32 6.08 774 0.5 2.94
ALU Opcode Drivers 32 6.08 774 0.5 2.94
ALU Result Latch 200 6.08 12 0.5 0.28
Registers (X,Y,WE,S) 800 6.08 6 0.5 0.57
Total 85.86

In Table 4.7, the power for periphery circuits are shown. These power values

were obtained through simulation rather than calculation, since the periphery is not

regularly structured. From the table, the periphery results in large peaks in power

requirement. These peaks are a result of a large number of gates that are dependent

on the switching of other gates, such that a large number of gates are switching

simultaneously. In the memory core a large amount of the switching is being per­

formed by the signal drivers. These signal drivers are driving the largest capacitive

load with minor result changes occurring within each PE or sense amplifier. The

peaks in the periphery, however, are averaged with the other switching into the av­

erage power, and thus, the average power of the periphery circuits is smaller. If the

design is scaled to more than one die and more than one array block per die, only

the power of the row decoder and shift circuitry would need to be scaled to get the

total power of the design.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

Table 4.7: Dynamic Power for Select Circuits

Circuit
1.2 V 0] jeration 1.5 V O]aeration

Peak Power
(mW)

Avg. Power
(mW)

Peak Power
(mW)

Avg. Power
(mW)

Row Decoders 30.2 9.8 79.5 25.8
Periphery 406.6 38.2 856.5 55.2
Shift Circuitry 15.4 1.14 40.5 3
Total 452.2 49.14 976.5 84

4.8.2 Area - Estimation

During the design process, it was of interest to discover the approximate area that

would be used by the redundancy and shift circuitry. During this time, attempts

were made to derive the amount of space used below the PEs for the wiring of the

shift and redundancy circuits. The following calculations assume that the three-

dimensional cube on a single die is split on the y-dimension, such that half of the

PEs are placed above and the other half below the memory array. The split is

performed on the y-dimension because it seemed the most logical way to split the

cube. See Figure 4.31 to observe how the PE layout might look as a 2D grid split

on the y-dimension. This layout can be easily extended to a 3D cube. Where the

lines are PE interconnection wires.

Processing
Elem ents

(XY)

Memory
Array

Processing
Elem ents

(XY)

02 05 2 15 22 25 32 35 42 45 52 55

43 44 53 54

07 10 17 I 20 27 30 37 I 40 47 60 67
01 06 11 16 21 26 31 36 41 46 51

Figure 4.31: Possible PE placement for 2D Grid

The following formulas are specific to this design and the method of layout

used. For the redundancy circuits, the amount of space used explicitly for wiring

can be obtained from the following formula:

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

Ked-wire = J'di'"/2x ~'M"1 x n u m red_signais x (wireSpc + wireW)
i y h o r z —m e t _ l a y e r s

For the shift circuits, the amount of space used explicitly for wiring can be

obtained from the following formula:
kshift wire = (+ Xdim+ydi™/2+Zdi™-NZorz-rnet_laVers\ x twireSpC +

J V h o r z —m e t — l a y e r s J

wireW)

For the formulas above, the size of the cube in the x, y and z dimensions are

Xdim, ydim and Zdim, respectively. The spacing between the signal wires is des­

ignated by wireSpc, while the width of the signal wires is designated by wireW.

The number of signals used for redundancy is designated by numred_signais, and

the number of horizontal metal layers available for routing signals horizontally is

designated by Nhorz-metJayers- This assumes that the PEs are placed horizontally

within the PE array.

In Table 4.8, sample calculations are performed to show the impact that the

dimensions of the cube have on the routing height for the redundancy and shift cir­

cuits. In the table, it is also possible to see how the number of available horizontal

metal layers affects the routing height. From this table it would seem reasonable

to use an 8x8x4 (x,y,z) cube instead of a 4x8x4 cube since there is almost no addi­

tional area penalty in doing so. In Table 4.9, however, the length of the wires for

routing of the redundancy, shift, and control signals show that the control signal

wires will increase in length. This increase in length adds additional capacitance

and resistance to the wire, which means that the delay of the signals increases. This

increase in delay reduces the maximum frequency of operation of the design. In

addition, by moving from the 4x8x4 cube to the 8x8x4 cube, there is a doubling in

the number of processors directly connected to the same control signals.

One of the advantages of this design is that two blocks of 4x8x4 PEs can be

connected together to form an 8x8x4 cube of PEs without adversely affecting the

delay or maximum speed of operation.

In Table 4.10, area approximations are given for a 4x8x4 PE array that includes

redundancy. The table shows the area taken up by the SRAM array, the area taken

up by the addition of O R A M PEs, and the area of the periphery. It should be

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

Table 4.8: Height Approximations of Shift and Redundancy Wiring
Cube
Dimensions
(x,y,z)

Horz
Metal
Layers

Metal
Width

/im

Metal
Spacing

/.tm

Redundant
Signals

Redundancy
Height

f im

Shift
Height

/im
4x8x4 2 0.25 0.5 7 43.4 18.6
8x8x4 2 0.25 0.5 7 43.4 20.15
8x8x8 2 0.25 0.5 7 86.8 34.1
8x8x8 1 0.25 0.5 7 173.6 43.4
8x8x8 3 0.25 0.5 7 57.9 18.35

Table 4.9: Length Approximations of Shift and Redundancy Wiring (single die)
Cube SRAM PE Redundancy Shift Control Signal
Dimensions Height Width Wire Length Wire Length Wire Length
(x,y,z) tan lim /im l im /im
4x8x4 6.15 33.55 671 1678 3355
8x8x4 6.15 33.55 671 1678 6039
8x8x8 6.15 33.55 1342 3355 12078

noted that by replicating the 4x8x4 PE array, the area for the periphery remains

unchanged. Periphery is not included in the base area or the overhead, as it is the

combined total for both, and is unaffected by the replication of the base 4x8x4 array.

From the table, it is seen that the total overhead added by O R A M is 12.5%,

and that the reconfigurable interconnection network adds only 5% of the overhead

to the total area. Note that the addition of redundancy adds more than 5%, because

the addition of redundancy requires additional SRAM columns that may not be

accessible.

In Table 4.10, Boundary Cct is the boundary interconnection circuit used for

creating the spiral and torus networks for ID, 2D and 3D interconnection. The

Interconnect Cct is the interconnection circuits for connecting PEs within the planes

and connecting the planes; it does not include the boundary interconnection. The

redundancy circuits area of the table is only for performing grid redundancy for

each plane of PEs.

In Table 4.10, it should be noted that two row decoders are used in calculating

the total area. This is for the case of using only two addresses and two row decoders

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

Table 4.10: Area Approximations for 4x8x4 Array with Redundancy
Circuit Dimensions Area

/um2
Qty. Total

m m 2
Area

Percentagex(^m) y (pm)
Memory Cells 33.55 6.15 206 25600 5.3 66.25%

Signal Driver Ccts 150 2.5 375 1228 0.5 6.25%
Sensing & Precharge 33.55 67.9 2278 200 0.5 6.25%

Row Decoder 35.4 1574.4 55734 2 0.1 1.25%
Column Decoder 3355 35.4 118767 2 0.2 2.5%

Base Area (SRAM) 1 6.6 82.5%

Processing Element 33.55 25.125 843 200 0.2 2.6%
Redundancy Circuits 3355 65 218075 2 0.4 5.0%
Interconnect Circuit 3355 32.5 109038 2 0.2 2.5%

Boundary Circuit 3355 60.5 202977 1 0.2 2.5%
Overhead (C*RAM) 1 1.0 12.5%

Total Periphery 300 1400 420000 1 0.4 5.0%

Total Area 1 8.0 100%

for the multi-bank design. In this way the two row decoders were built on a single

side of the memory array. This was done to ensure that the design could be extended

to four decoders, if the specifications required it. If the design was changed to

include four row decoders the total area would increase by an additional 0.1mm2.

The table shows the area of four banks of memory per PE; however, a PE is

pitch matched to eight banks of memory. The area of the SRAM cell is 24.6f im2

for a multi-bank containing four banks. For a one and two banks of memory per

PE, the area of the SRAM cell is 22f im2. The width of the SRAM cell remains

constant at 4fim, while the height of the SRAM cell increases or decreases as banks

are added or removed. The height of the SRAM changes, since the word-lines for

each bank are routed through every SRAM cell.

It should also be noted that the total area does not include the input and output

pad frame. This design is more than likely to be pad limited in size then it is to be

limited by the core area of the design.

In Figure 4.32, a bar graph of the areas in Table 4.10 is shown. This figure gives

a quick overview of how the area of the core of the die is divided.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

CL o>

T3
CL

O)

Figure 4.32: Area Bar Graph

Table 4.11: Area Approximations for 4x8x4 Array Redundancy
Circuit Dimensions Area

ftm2
Qty. Total

m m ?
Percentage

x(/im) y (urn)
Memory Cells 33.55 6.15 206 9216 1.90 23.75%

Sensing & Precharge 33.55 67.9 2278 72 0.16 2%
Processing Element 33.55 25.125 843 72 0.01 0.13%

Redundancy Circuits 3355 65 218075 2 0.4 5.0%
Boundary Cct. 3355 60.5 202977 1 0.2 2.5%

Redundancy Area 2.67 33.38%

As was discussed above, it was of interest to determine the amount of area

overhead that was added by the redundancy and interconnection network. In Table

4.10, we see that the interconnection network adds 5.0% of overhead. This area

may be more when all measures of redundancy are removed from the design. In

Table 4.11, the amount of area taken up by redundant memory cells, processing

elements, and redundancy mechanisms is about 33% of the total area of a 4x8x4

array containing redundancy. It should be noted that if the size of the array were

scaled, the amount of overhead added by redundancy would be reduced. A 4x8x4

array containing redundancy has 72 redundant PEs, meaning 36% of the PEs are

redundant, as opposed to a 16x16x4 array with 132 redundant PEs corresponding

to 11% of the PEs being redundant.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8.3 Yield

4.8 Design Results

As was discussed in the previous chapter, the cost of yield improvements will dictate

whether the yield improvement is worth the cost of the additional area. The goal of

designing a chip package is to obtain the highest possible die yield, and to minimize

the cost of the package. In the following sections, the yield versus cost for the

redundancy designs proposed and developed in this thesis are shown and discussed.

For the plots, an 8x8x8 fault-free cube is assumed that contains 256 bits per PE with

4 redundant rows.

For yield, global defects, such as mask misalignment or incorrect implant levels,

are ignored as they are not repairable by redundancy. The Poisson model is used for

calculating the yield for this design. This model takes into account defect density

and the area of a critical region, such as a PE. Fault clustering is not modeled. This

model; however, tends to give pessimistic yield estimates. For yield modeling, the

die is divided into the three parts that are susceptible to defects. Defects can cause

faults in the memory cell, processing element (PE) or the periphery. In this analysis,

each parts’ area is consider to be critical, such that any defect that intersects the

area of a memory cell, a PE or the periphery will cause a fault. In Appendix A and

Appendix B, the equations for calculating the yield are shown.

4.8.3.1 Yield for PE Redundancy

Previous chapters have discussed that adding redundancy will increase the die yield

of a design. Section 3.3.2.3, showed that each level of redundancy improved the

response of the die to defects. It was also mentioned that the area cost of the added

redundancy must be addressed before the final method of redundancy is selected.

In this section, the yield of the die is shown relative to the defect density. In Figure

4.33(a), the yield of the array is shown relative to the defect density. This shows

how the defect density will affect the yield for each method of redundancy. The

defect density for MIT LL’s SOI process is unknown; therefore, if we assume that

the defect density is less than 500 d e fec ts /c m 2, any of the methods of redundancy

will result in the array of the die having nearly 100% yield. Unfortunately, this is

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

not the entire result, as there exists circuitry in the die that does not contain any

redundancy. The control circuit, the shift interconnect circuit and the redundancy

switches are circuits that contain no redundancy. If a defect intersects any of these

non-redundant circuits, the die will fail.

In Figure 4.33(b), the redundancy methods are grouped into curves that contain

the same non-redundant circuits. This figure shows that implementing the 2D re­

dundant switch or bus grid will actually reduce the overall yield, since it contains

more non-redundant circuit area than other redundancy methods. Therefore, the

choice as to which method of redundancy to use should be determined by the area

cost of each method of redundancy on the yield.

0.8

0.6

04

02

0
25000 1000 1500 2000

10 Switch.

0.8

0.6

I
0.'

D»fec)9/Cm*2

(a) Yield of PE Array (b) Yield of Die

Figure 4.33: Yield Plots for PE redundancy

In Figure 4.34, the equivalent yield of the PE array is shown. This graph shows

how the yield of the redundancy mechanism is related to the cost of the area of

the redundancy, relative to an array containing no redundancy. In the graph, the

ID and 2D switch redundancy introduces about 35% of area overhead, which is

similar to the bus redundancy mechanisms. The switch redundancy, however, has

a better immunity to defects than the bus redundancy methods for the same area.

Additionally the ID bus or switch redundancy only introduces about 12% overhead

over the non-redundant array. Therefore the ID redundancy would hold an 88%

yield for up to about 350 d e fec ts /c m 2, relative to a non-redundant array reaching

88% yield at 1.4 d e fec ts /c m 2. The Intel process has a defect density of 0.2 to 0.3

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

d e fec ts /c m 2 for the Pentium4 in the 130nm process [15], and this process has a lot

more research energy involved than the MIT LL SOI process. Assuming that MIT

LL’s SOI process has a defect density of 5 d e fec ts /c m 2, the expected yield of the

process without redundancy is approximately 50%.

PE 1D Switch or 1D bus
P E 1 D & 2 D bus

PE 1D & 3D Switch or bus
P E 1 D & 2 D bus, 3D

PE 1D & 2D Switch
PE 1 D,2D & 3D Switch

No R edundancy0.8

ID>
C0)
.§3
cr

LU
0.4

0.2

0 500 1000 1500 2000 2500
Defects/cmA2

Figure 4.34: Equivalent Yield for PE Array

In further analysis, the array was expanded to have each plane contain a 64x64

fault-free grid (4096 PEs). Accelerix created a O R A M design that contained 4096

PEs within a single die [1], and it is of interest to stack multiple dies each containing

4096 PEs and determine its affect on the yield. In Figure 4.35, the equivalent yield

of a die containing a 64x64 grid of PEs is shown. Each die actually contains a 65x65

grid of PEs, such that 129 PEs are redundant (3%) compared to 20% of the PEs

being redundant in a 8x8 (actual 9x9) grid. Knowing that 3% of the area comes from

the redundant PEs. Expanding these calculations to three-dimensional redundant

meshes; in a 8x8x8 mesh, 30% of the PEs are redundant and in a 64x64x8 mesh,

14% of the PEs are redundant. In both these cases the additional plane adds most

of the redundant PEs. From Figure 4.35, we see that for a 64x64 grid, containing

2D redundancy, approximately 15% of the added area comes from the redundancy

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E
qu

iv
al

en
t

Yi
eld

E

qu
iv

al
en

t
Y

ie
ld

4.8 Design Results

switches.

PE 1D Switch or 1D bus
P E 1 D & 2 D bus

PE 1D & 3D Switch or bus
P E 1 D & 2 D bus, 3D

P E 1 D & 2 D Switch
PE 1 D,2D & 3D Switch

 No R edundancy

1

0.8

0.6

0.4

0.2

0
300150 200 2500 50 100

Defects/cmA2

Figure 4.35: Equivalent Yield for 64x64 Fault-tolerant Grid

PE 1D Switch or 1D bus
PE 1D & 2D bus

PE 1D & 3D Switch or bus
P E 1 D & 2 D bus, 3D

P E 1 D & 2 D Switch
PE 1 D,2D & 3D Switch

No R edundancy

1

0.8

0.6

0.4

0.2

0
500 100 150 200 250 300

Defects/cmA2

Figure 4.36: Equivalent Yield for 64x64x8 Fault-tolerant Array

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.8 Design Results

In Figure 4.36, the dies are stacked and the results of the redundancy can be

seen. The equivalent yield decreases for the addition of 3D redundancy, since the

area being used to perform redundancy increases due to the additional plane. Also,

the 50% yield is reduced from approximately 240 d e fec ts /c m 2 to less than 200

d e fec ts /c m 2 due to the stacking of the dies. In Figure 4.34, the plot assumed that

an 8x8x8 mesh was constructed on a single dies instead of separated into a number

of dies. This is the reason for a higher equivalent yield for the 64x64x8 mesh,

where the mesh was composed of separate dies. This shows that dividing the mesh

into multiple dies reduces the area impact of the routing of the redundancy and

interconnect networks.

4.8.3.2 Yield for Memory Redundancy

In this section, the graphs are of a PE array containing all three dimensions of re­

dundancy. This section determines whether the introduction of independent mem­

ory and PE redundancy produces enough improvement in yield to offset the area of

separating the memory from the PE redundancy. In Figure 4.37(a), the yield im­

provement is introduced to the array by implementing a redundancy switch mecha­

nism between the memory and the PE. PE and memory redundancy corresponds to

the separation of the memory and the PE by a redundancy switch, while PE redun­

dancy corresponds to the memory redundancy handled by the PE redundancy. In

0.1>.8

0.6

0.2

0 20

PE & Memoiy Redundancy-------
PE Redundancy

0 0

06
3

02

0
500 tooo 1500

(a) Yield of Array (b) Yield of Die

Figure 4.37: Yield Plots for Memory Redundancy

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Summary

Figure 4.37(b), the additional area added by the redundancy switches between the

memory and the PE actually reduces the overall yield of the die.

P E & M em ory R ed u n d a n c y
P E R ed u n d a n c y
N o R ed u n d a n c y

0.8

p£ 0.6
ca>(0>3
O '

LU
0 .4

0.2

0 5 0 0 1000 1500 2000 2 5 0 0

D e fec ts /cm A2

Figure 4.38: Equivalent Yield for Memory Redundancy

In Figure 4.38, the area cost on the yield is small, and the yield improvement is

also small. This indicates that the memory redundancy mechanism of a redundancy

switch between the memory and PE is not worth the additional cost, as it does not

provide enough of an advantage to offset the area and yield cost.

4.9 Summary

In this chapter, the modifications defined in Chapter 3 have been applied to the

C«RAM architecture, showing that a dynamically reconfigurable and redundant

PE array could be designed and simulated. Simulation of the design resulted in

the determination of the power usage, speed of the design, and ultimately in an

estimation of the area. It was noted that the design could be run at both 1.5V

and 1.2V, with the maximum speed and power usage of the design being reduced

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Summary

when operating at 1.2V. It was also determined that the yield cost of separating

the memory and PE for redundancy did not have enough benefit to warrant it being

included in a fabrication of this design. The yield cost of the ID and 2D switch

redundancy was identical to that of a ID and 2D bus redundancy mechanism, with

the switch redundancy having a greater immunity to the defect density of a process.

It was also discovered that the yield cost of adding 3D redundancy to the switch

redundancy was quite high for the limited improvement in overall yield. If 3D

redundancy is to be added, it should not be added at the die level, but rather at

package level. To add redundancy at the package level, additional wafers should be

added to the stack. It is not possible to add good dies to a stack, since it is difficult to

line up single dies. The wafers are stacked untested in the MIT LL 3D SOI process.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Testing

To ensure that the design will operate properly in silicon, it is necessary to ensure

that the technology to be used is viable. Fortunately, a O R A M design has already

implemented in this process, which has been called 3DSOI O R A M [16]. Wafers

for the previous SOI O R A M design have been manufactured. The 3D stacking of

the wafers is still to be completed. The manufactured wafer was diced, bonded in

an IC package and tested. These chips were sufficiently functional to allow for the

running of test programs. The testing of the 3DSOI O R A M design characterizes

the SOI process as it pertains to O R A M . This will allow the extraction of some

useful information that may aid in further characterization of the design performed

in this paper.

5.1 Testing of First Generation 3DSOI ORAM

In order to prove the 3DSOI O R A M design, it is necessary that chip be able to

run a fully parallel program with little or no need for communication with an ex­

ternal host controller. To perform this, the O R A M compiler program developed

by Duncan Elliott [8] was modified to export test vectors that could be used on an

HP81200 VXI Tester, as well as an University of Alberta designed FPGA tester

[19]. Modifying the compiler to export test vectors specific to the current 3DSOI

O R A M chip made it possible to program any O R A M based operation, and ex­

port properly sequenced test vectors for each operation to the chip. In modifying

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DSOI C»RAM

the compiler, the chip can be tested under several programming conditions to check

for chip functionality.

While at the University of Alberta, I developed a program that allows the user

to create a custom GUI program that can run the HP81200 VXI Tester and control

multiple power supplies simultaneously. In this way, the limitations of the HP81200

Software were removed to allow for fully customizable tests that made use of power

supply controlling to be run. This has allowed for the creation of programs that run

on the HP81200 VXI Tester using HP power supplies connected using the GPIB

interface. A program that varies the power supplies and the frequency of opera­

tion was built that allowed for the creation of shmoo plots. Shmoo plots, typically

plot the pass and fail of a device relative to frequency of operation, and voltage,

and sometimes temperature. Therefore, to create the shmoo plots a program that

obtains the results of the chip device under multiple frequencies and voltages was

designed, called shmoo program. The shmoo program uses input files containing

test vectors and shmoo environment data to setup the tester, the program can be

executed and requires no intermediate interaction until the results are ready. With

the HP software, users are required to sit at the workstation, continually changing

the test-vector file and power-supplies, this is very time consuming.

5.1.1 Proof of 3DSOI Technology

The 3DSOI C«RAM design was created to allow for die stacking, as well as single

die execution. At the time of writing and testing, the single die packages were

the only packages available. It still allows testing of the functionality of the chip.

There are also a number of circuits in the design that are used to identify and enable

each die in the stack; these circuits can still be tested for rough functionality, since

if they fail, the chip will be un-addressable. The outputs of the chip will remain

unchanged, since all outputs depend on the die identification circuits.

The 3DSOI O R A M design was implemented in a FDSOI transistor technology.

As described in earlier chapters, there are some advantages and disadvantages to us­

ing a Fully-Depleted SOI technology. The FDSOI has better operational ability in

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C»RAM

the absence of a body contact in comparison with a PDSOI technology. The 3DSOI

O R A M was simulated using spice models provided by MIT, and through simu­

lation, the design was optimized to provide a PE operational speed near 500MHz.

The testing of the 3DSOI O R A M will give a good indication of how closely the

actual design matches the simulated results.

Unfortunately, no equipment was available to test the O R A M chip near their

estimated 500MHz maximum operational speed. The maximum testing speed avail­

able at the University of Alberta was 200MHz using the Agilent HP81200 tester.

The actual maximum testing speed that was possible was 33MHz, since the pro­

totype board is built using wire-wrap and testing above this speed resulted in un­

explainable errors. The purpose, however, is only to prove the functionality of the

design. The design should be extremely reliable at 33MHz, and therefore it should

be possible to determine the functionality of the design.

5.1.1.1 3D Technology - Die Extended Signals

For O R A M , it has been mentioned that the design was intended to allow for stack­

ing of multiple identical dies in an attempt to create a device that is scalable within

a package. To do this, additional circuitry was needed that allowed for signals to

propagate through the multiple dies of the package while maintaining the signal

properties. For example, a shifting bus must maintain the left and right interconnect

linearity between the dies and the external interface. Therefore, the signal must

propagate through the other dies if it is not to be used on that die.

Testing of the O R A M device began by testing the databus and die addressing.

The die addressing is essential for all memory accessing, and therefore the databus.

If the die addressing does not work, then writing to the databus will have no effect

on the databus output. To test the databus, the die address was left at 0, indicating

that an attempt to access the first die in the stack. After ensuring that the die address

is properly set, the databus is written to and the output is analyzed. To ensure proper

databus operation it is necessary to write all possible patterns to the databus. To test

the die addressing, the die address is changed, indicating a different die in the stack.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C»RAM

Since only one die is available, the databus manipulation will result in no change

on the data output pin when the die address is not 0. During testing, we determined

that the databus and the die addressing were fully functional.

To begin testing the 3D technology aspect of the shift network, the PEs on

the ends of the array were toggled to ensure that the shift out pins also toggled.

Performing this operation, we determined that the die interconnect was properly

configured, so as not to interfere with individual die packaging.

A similar test was performed for the broadcast bus, and results indicated that

the broadcast bus was still operational for single die packaging.

These four simple tests helped to prove that the 3D circuits that were developed

operate properly in the absence of a three-dimensional stack.

5.1.2 Test Strategy

The testing of 3DSOI O R A M can best be performed by testing the PEs of the chip

first. Once the PEs are tested, they can be used to test the memory array in parallel.

This is possible because of the parallel nature of O R A M , which implies that each

PE can be used to test the column of memory that it is associated with. Once all the

PEs that have failed are determined, it is possible to test all the memory above the

PEs by writing to them manually through the databus. In this way, the yield of the

memory array apart from the PEs is determined, as well as the yield of the PEs apart

from the yield of the memory array. The best redundancy scheme for compensating

for failures in both the memory array and the PEs can then be determined.

For 3DSOI O R A M , all the control signals are supplied externally. This allows

us to change the order in which control signals are applied, as well as the time

between control signals. In this way, we have full control over the chip and its

operation. We have full control over the instructions being supplied to the PEs, the

enabling of the broadcast bus, the enabling of the shift network, and reading and

writing to the registers of the PE. We also have full control over the memory array

above the PEs. The full control over 3DSOI O R A M was built because it was to be

a test of the O R A M architecture in a SOI process.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS01 C*RAM

To test the PEs of O R A M , it is best to run through all of the PE operations that

are available. Since all PEs share the common broadcast bus, it is possible to use

the broadcast bus to determine faults in the PEs. If the broadcast bus is found to be

faulty regardless of the PE state, it can be said that the chip is non-functional. It was

determined after the chip was sent for fabrication that the broadcast bus circuit may

not have been designed properly and may be non-functional. Therefore, it may be

necessary to use other methods to determine PE faults.

5.1.2.1 Testing with Non-Functional Broadcast Bus

When the broadcast bus is non-functional, another method of determining the re­

sults of the PE is required. One method is to use the databus so that the results are

written to the sense amplifier of each PE, and then read for each PE. This requires,

however, that all pins of the databus are fully functional to allow for correct reading

of the PE’s results. If the databus is not functional, there still exists the possibility

of using the shift circuit. By using the shift circuit, we require that every point in

the shift circuit must work properly. Yet by using the shift circuit, it is possible to

find the first PE with a failure in the shift circuit or in the actual PE. Using the shift

method, it would be possible to find at least two failures, since it is possible to shift

left and right. Therefore, two shift failures or PE failures can be diagnosed.

This method of testing is very time consuming, since each test must shift out the

results every time. It is highly dependent on the shift circuit being fully functional.

5.1.2.2 Testing with Functional Broadcast Bus

At the University of Alberta, X. Sun et al. devised a testing strategy that could be

used to determine the functionality of a O R A M device [21]. This testing strategy

relies heavily on the broadcast bus of the O R A M device being fully functional. In

[21], X. Sun proposes that the PEs be tested first, and that it be done independent of

the local memory. Once testing of the PEs has verified the functional PEs, the PEs

can be used to generate and apply test patterns to the local memory. The testing

strategy supplied ignores the availability of skip (S) registers that can be used to

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C»RAM

disconnect faulty PEs from the broadcast bus. The skip register allows devices that

have faulty PEs to still be used; however, with a smaller set of available PEs.

During investigation of the testing strategy, it was noted that the functional di­

agram in [21] differed slightly from the actual implementation of O R A M that is

tested. The general testing strategy, however, can still be applied to the 3DSOI

O R A M chip to help identify the number of PEs that are functional. The testing

procedures of X. Sun is modified slightly to accommodate the actual implemen­

tation of O R A M . The following testing procedures are used: (1) Left/RightShift;

(2) ANDbusWalk-0; (3) MMUXtest; and (4) OpcodeWalk-O/1. The AMUXtest,

XMUX_XStest and YMUX_YStest are not usable for 3DSOI O R A M . Once test­

ing of the PEs is performed, the local memory above the functional PEs is tested

using the WMUXtest, CRAM_MATS+ and DatabusTest testing procedures.

This method of testing is very fast, since every test is combined on the broadcast

bus. If at least one PE fails, the results of the test are seen immediately. Using

the broadcast bus, it is possible to set the skip register such that the shift circuit

could determine the PEs that passed and the PEs that failed. This method is very

dependent on the broadcast bus being fully functional.

5.1.3 Test Results

As mentioned above, only the single die packages were available for testing at the

time this thesis was written. It is for this reason that only the test results for the

single die packages are included. In Section 5.1.1.1, the test to determine single die

functionality was described, and through this testing, it was possible to determine

that all the single die packages passed the single die 3D technology tests. The

next stage of testing is determine the functionality of the O R A M array. Using the

test strategy described in the previous section, the following results for single die

operation are presented.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C»RAM

5.1.3.1 Single Die

The compiler available for O R A M was used to code the testing procedures that

were used to generate test vectors for the 3DSOI O R A M chips. The 3DSOI

O R A M chip is tested using the HP81200 VXI tester. Initial testing of the 3DSOI

O R A M proved that the broadcast bus was functional at a 10MHz operational

speed.

Initial Test Results

Initial testing was performed with the 3DSOI O R A M chip operating at 1.5V, and

vectors being delivered at 10MHz. The ALU operations, however, require from

five to ten test vectors per cycle, resulting in a total operating speed of 1 to 2MHz.

Through the testing procedures of [21], it was possible to initially diagnose that

either some of the Y registers were unable to write ‘0’s, or that the ALU is unable

to test Ybar. It was also found that shifting to the right produced incorrect results;

from this it can be determined that the problem may exist in the Y registers and not

the ALU. This is due to the fact that the Y register is the target for a shift right

operation.

In initial testing, shifting left and writing of the X register produced proper

results. ALU operations that rely on the X register alone produced right results;

however, operations for the Y register or M register produced incorrect results. The

skip register was also tested to determine if setting the skip register produced proper

results. For instance, when all PEs’ skip registers were set to ‘1’, the broadcast bus

remained unchanged; when each PE should was broadcasting a ‘0 ’ to the broadcast

bus; this is proper operation. Despite the fact that the skip registers could be prop­

erly set to ‘1’, it was not possible to produce a fault-free PE array because the skip

register is set based on the M register results. The problem seems to be an ALU

issue, since it is not possible to combine the Y and M register results to produce the

appropriate skip register setup.

From initial testing it was found that the number of working PEs for the array

cannot be determined due to the ALU, Y register, and M register problems. During

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C»RAM

initial testing it was also found that two of the chips had partially working databuses.

For one of the chips, the bottom two databus pins were fully functional, while for

the other chip, the top two databus pins were fully functional. From this it can

be determined that the databus problems are not design related, but are probably

related to possible manufacturing defects or power surges. The 3DSOI O R A M

chips were not designed with ESD protection diodes, and are therefore susceptible

to static discharges causing problems. The fact that only two of the databus pins

work well on each chip means that only half of the chip can be tested for correct

operation and that it is not possible to set the skip registers by using the databus.

The chip was designed to allow for the skip registers to be written by writing to the

M register and then copying the value of the M register into the skip register.

Full Test Results

Full testing of the 3DSOI O R A M chip involved testing the PEs using the suite of

tests developed by X. Sun et al. Since it was found through the test suite that it was

not possible to isolate the failed PEs, the testing of the memory array was performed

through brute force method. The brute force method of testing was to perform a

march test on the memory array, much the same way that X. Sun mentioned for

testing using the PEs. The testing of the entire array; however, was performed

through the databus using the column addressing rather than PE operations. The

test was run with the chip operating at 1.5V and the test vectors being supplied on

a 10MHz clock. The test was run on four available packages, with the following

results in Table 5.1.

Table 5.1: 3DSOI O R A M Test Results
Chip No. Functional Cells Total Cells % Good

1 8938 65536 13.6
2 6536 65536 10.0
3 5447 65536 8.3
4 1390 65536 2.1

In Figure 5.1 and Figure 5.2, the chip plots of the four chips are shown. Chip

2 seems to be better than chip 1 for half of the chip. From the plots, it can be

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C*RAM

determined that on chip 2, two bits of the databus are faulty. For 3DSOI O R A M ,

the databus is built so that two bits of the databus are used for columns 0 to 127,

and the other two bits are used for columns 128 to 255. Since chip 1 seems to have

the largest number of working cells, and it appears that all four bits of the databus

are working, the shmoo of the device was performed on chip 1.

I f

T

0 1 . .i.---- i—

; -P:

s
i
i

so

0
150 2000 so 100

Row Number

(a) Chip 1 (b) Chip 2

Figure 5.1: Chip Plots - a black dot represents a good cell

250 -wc,1 .'i ■ •■■•wvv ■■■■ i f -mr.

r ; - ■

L
. ' . 'I! , .It

SO 100 150 200 250
Row Number

(a) Chip 3

SO 100 150 200 250

(b) Chip 4

Figure 5.2: Chip Plots

For the shmoo of the device, it was decided that the frequency range used to

supply the vectors would be 1MHz to 31MHz, and the operational voltage would

range from 1.0V to 1.8V. The shmoo of the device is performed on the memory

array, to determine the best operational voltage and frequency for supplying the test

vectors. During the shmoo of the device, it was found that only 1445 cells were

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Testing o f First Generation 3DS0I C»RAM

common to each operating point. For this reason, the shmoo plots for this device

are not shown as a pass or fail, but rather as contour plots showing how many cells

passed at each operating point. The contour shmoo plot of good cells is seen in

Figure 5.3.

G o o d C ells

14000

13000

12000

11000

0000

15 20
F req u e n c y (MHz)

Figure 5.3: Contour Shmoo Plot of Good Cells of Chip 1

Since in testing it is possible that multiple runs may result in slightly different

results, chip 1 was run through the shmoo test several times. Figure 5.3 shows the

results of all the cells that were good for all the tests. Each test results in cells that

have errors, which can be separated into errors that occurred in all tests, and errors

that occurred in at least one test. Errors that occur in one or more tests are soft

errors; they do not always occur. Errors occurring in all tests are defined as hard

errors, since they always occur. In Figure 5.4, the number of soft and hard errors

for each operating point are shown.

From the results of the shmoo, we found that operating at less than 10MHz re­

sulted in a lower number of working cells than operating above 15MHz. The result

of poorer operation at a lower frequency suggests that some of the circuits in the

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Summary

10000

Frequency (MHz)Frequency (MHz)

(a) Soft Errors (b) Hard Errors

Figure 5.4: Contour Shmoo Plot of Errors of Chipl

chip have poor responses at lower frequencies. This may be due to the subthreshold

leakage or floating body effects of the SOI process, which only become apparent

at lower frequencies where the time between cycles is too large. From the plot, it

is determined that 3DSOI C«RAM be operated at 1.5V and 17MHz to 19MHz for

optimal functionality.

5.2 Summary

From the test results of 3DSOI C»RAM, it has been determined that the use of a

pass-transistor ALU may have contributed to the PE failures. It appears that the

ALUs do not pass signals for all 256 combinations of the ALU. This makes the

operation of the PEs questionable, and the results cannot be completely trusted.

In addition, during testing, it was determined that the memory array and databus

of 3DSOI C*RAM were less than acceptable. The failures in the memory array

may be due to defects in the SOI process. The process was quite new, and the

defect density of the the process was unknown at the time of designing. It was also

discovered that the simulation parameters for SPICE were found to be lacking, so

that the simulation results were under question. It appeared that the NMOS and

PMOS transistor models were extremely leaky, resulting in some design choices

being forced. It was found that the optimal operating point for 3DSOI C*RAM is

1.5V, with test vectors being supplied on a 17MHz to 19MHz clock frequency.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions

This work presents the results from research into implementing a dynamically re-

configurable fault-tolerant interconnection network for the O R A M architecture. A

dynamically reconfigurable interconnection network capable of one-dimensional,

two-dimensional and three-dimensional communication was implemented. The

design of a dynamically reconfigurable interconnection network required that all

methods of redundancy be changed in order to accommodate the reconfigurability

of the network, as well as the multi-dimensional nature of the network. In this re­

search, the redundancy methods to accommodate the multi-dimensional nature of

the interconnection network were designed and implemented. This work also pre­

sented results from research into implementing a memory interface that can perform

external loading or storing of data, while the PEs are performing computations us­

ing a different address. This was done by attaching multiple banks of memory to

each PE, with each bank of memory being individually accessible.

In Chapter 3, the design of a dynamically reconfigurable interconnection net­

work was presented. This interconnection network resulted in the need for new

methods of redundancy that would maintain the network despite the failure of mul­

tiple processing elements (PEs). The interconnection network was composed of

multiple grids of PEs (planes) that could be organized into a cube or a larger grid.

The introduction of the cube interconnect was the main reason for the development

of a new redundancy method for PE replacement. For the cube to be complete, all

the grids (planes) must have a uniform construction to accommodate a patterned

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connection between the planes.

The design of the multi-bank memory interface was also addressed in Chapter

3. The advantage of allowing two accesses to occur in parallel, accessing data

externally with the databus and internally with the PEs, is that more computations

and data accesses can be performed per second than was possible using a single

bank of memory. This interface increased the PE utilization per second, as well as

allowing for more efficient use of the data.

Chapter 4 presented the implementations of the architectural design changes

described in Chapter 3. The speed and power usage of the design was given, as

well as the area of the design allowed for evaluation of the yield cost for the redun­

dancy designs. From the yield costs, it was found that the addition of redundancy

switches between the memory array and the PEs did not produce sufficient improve­

ment to warrant its implementation during fabrication. It was also found that two

possible methods of redundancy produced the best yield results for their cost: the

implementation of one-dimensional redundancy through either switches or a bus, or

two-dimensional redundancy through switches. Three-dimensional redundancy on

die level is of little or no advantage. Using the stacking ability of MIT’s SOI pro­

cess, three-dimensional redundancy could be added by stacking additional wafers.

The cost of the circuitry to produce three-dimensional redundancy between planes

is small as compared to the area added by redundant planes of PEs.

The testing of the prior generation, 3DSOI ORAM architecture is presented in

Chapter 5. It was found that chips, for the most part were unusable, since there was

not a single chip that could be configured into a complete array of PEs. During test­

ing it was found that less than 14% of the memory cells in the array were functional.

We also determined that the pass-transistor ALU may not have been properly sized,

or at least, the process does not work well with pass-transistor architectures. It was

possible, however, to determine that the broadcast bus was designed properly, as

testing revealed correct operation.

In conclusion, the introduction of a multi-bank memory interface and a dy­

namically reconfigurable multi-dimensional interconnection network improve PE

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Future Work

utilization and shifting.

6.1 Future Work

This work demonstrates the improvement in efficiency and PE utilization that can

be obtained through modification of the O R A M architecture. It also demonstrates

the need for improvement in the redundancy architecture of O R A M . The redun­

dancy architecture aimed at producing a fixed size fault-free grid within a faulty

grid of PEs is shown. It was also seen that the improvement of yield in the array

is directly counteracted by the non-redundant nature of the redundancy switches.

Future work should focus on creating a redundancy architecture that is not lim­

ited to a fixed size fault-free grid, and on building redundancy into the mechanism

used to perform redundancy, which would reduce the impact that a failure in the

redundancy mechanism has on the die.

The introduction of another network type, such as Xnet, to the interconnection

network could introduce new uses and improve shifting efficiency further.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Noah Aklilu. Integrating Computational RAM (CRAM) into a System Archi­
tecture. Master’s thesis, University of Alberta, 2001.

[2] Robert J. Baron and Lee Higbie. Computer Architecture: Case Studies. Ad­
dison Wesley, Reading, Massachusetts, 1992.

[3] J. A. Bums et al. 3D Circuit Integration Technology for Multiproject Fabrica­
tion. MIT Lincoln Laboratory, May 2001. DARPA PI Meeting.

[4] J. A. Bums et al. Three-dimensional Integrated Circuits for Low-power, High-
bandwidth Systems on a Chip. In Proc. IEEE Intl. Solid-State Circuits Conf.,
pages 268-269, 453, feb 2001.

[5] C. T. Chuang, P. F. Lu, and C. J. Anderson. SOI for Digital CMOS VLSI:
Design considerations and advances. Proc. o f the IEEE, 86(4):689-720, April
1998.

[6] Sorin Cristoloveanu. The VLSI Handbook, chapter 4. CRC Press LLC, 2000.

[7] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie.
Computational RAM: Implementing Processors in Memory. IEEE Design
and Test o f Computers, pages 32-41, January-March 1999.

[8] Duncan George Elliott. Computational RAM: A Memory-SIMD Hybrid. PhD
thesis, University of Toronto, 1998.

[9] Hirohito Kikukawa et al. 0.13-um 32-Mb/64-Mb Embedded DRAM Core
with High Efficient Redundancy and Enhanced Testability. IEEE Journal o f
Solid-State Circuits, 37(7):932-940, 2002.

[10] Richard Cliff et al. Implementation of Redundancy on a Programmable Logic
Device. Technical Report 5,498,975, US Patent Office, 1996.

[11] Sung Bae Park et al. A 0.25-/im, 600-MHz, 1.5V, Fully Depleted SOI CMOS
64-bit Microprocessor. IEEE Journal o f Solid-State Circuits, 34(11): 1436—
1445,1999.

[12] Terry Fountain. Processor Arrays: Architecture and Applications. Academic
Press, 1987.

[13] Dr. Kiyoo Itoh. VLSI Memory Chip Design. Springer-Verlag, 2001.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[14] Lizy Kurian John and Eugene John. A Dynamically Reconfigurable Intercon­
nect for Array Processors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 6(1): 150-157, 1998.

[15] IC Knowledge. 130nm Yields. Retrieved January 5, 2004, from
http://www.icknowledge.com/economics/yields.html.

[16] John C. Koob, Raymond J. Sung, Tyler L. Brandon, Duncan G. Elliott,
Bruce F. Cockbum, and Lisa Mcllrath. Design of a 3D Fully-Depleted SOI
Computational RAM. In Proceedings o f the 28th European Solid-State Cir­
cuits Conference, ESSCIRC 2002, pages 135-138, Firenze, Italy, September
2002.

[17] Israel Koren and Adit D. Singh. Fault Toleamce in VLSI Circuits. Computer,
Special Issue on Fault Tolerant Systems, 23:73-83, July 1990.

[18] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feyn­
man, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C.
Kuszmaul, Margaret A. St Pierre, David S. Wells, Monica C. Wong-Chan,
Shaw-Wen Yang, and Robert Zak. The Network Architecture of the Con­
nection Machine CM-5. Journal o f Parallel and Distributed Computing,
33(2): 145-158,1996.

[19] Fang Pang. IC Tester Implemented using ARM Rapid Prototyping System.
Meng - ECE, University of Alberta, 2003.

[20] D. Parkinson, D.J. Hunt, and K.S. MacQueen. The AMT DAP 500. In Di­
gest o f Papers: COMPCON Spring 88. Thirty-Third IEEE Computer Society
International Conference, pages 196-199, 1988.

[21] X. Sun, B.F. Cockbum, and D.G. Elliott. An Efficient Functional Test for the
Massively-Parallel CRAM Logic-Enhanced Memory Architecture. In Pro­
ceedings o f IEEE 18th International Symposium on Defect and Fault Tol­
erance in VLSI Systems, pages 475^-82, Cambridge, MA, USA, November
2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.icknowledge.com/economics/yields.html

Appendix A

Yield Calculations

A.l Column and PE Bus Redundancy

y*c =

t/-_ _ _ _ _ _ -ycolumns
row * sc

v _ ■sr̂ ed (to w s + ro w sre(j \ vrows+rowSred- i /•, _ y y
r S R A M 2 ^ I • l * r o w V 1 I row)

i= 0 V 1 J

l
 _ \ / ‘ rows

r o w e f f * S R A M

1
Y / - ____ \/" columns
* s c e f f 1 r o w e f f

 -\yrows
rc * s e e f f

Ype = e p

Y p E r c = Y p e * Y rc

_ s r Y d (P E X + P E xred \ y P E x+ P E xred- i / - . _ Y y
1 group / j I ■ I * P E r c \ P Er c)

i=0 V 1)

 1_____
\ r \ T { P E x + P E x r e d)
1 0D — 1 group

Y w = I T (PEx + P E ™ A Yijpde’+pe‘~ ‘-' (1 - Ym)‘
i= 0 V %)

130

(A .l)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A. 10)

(A .l 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. 2 Dependent Column and PE Redundancy

= Pf T + (1 - Y2D)‘ (A.13)
i=0

A.2 Dependent Column and PE Redundancy
Ysc = e_A (A. 14)

Yrow = “ (A. 15)

* W = r° £ 1‘ f ™ " * '+ r0WSred) Y ; ™ ^ ™ ^ (1 _ Yrowy (A. 16)
i=0 V 1 J

Y roW e f f = Y g R A M (A. 17)

1
Kce// = n ™ e ? r (A-18)

YrC = Ysr™f sf (A. 19)

Ype = e -p (A.20)

YpErc = ypB * (a .2 i)

IV -p = " i f (PEy + P E ^ d\ Yp ^ c PEvnd~i (! - W (A.22)
2 = 0

roD — X g ro u p

PE,

v _ ' t/r (P E y + P E y md .) / A 9 0 \
-i 0 £) — ■* g r o u p \r \ .z .j)

Y\D = £ ‘1 + P£sreii C +™ F e r i (1 - W (A.24)i = 0 V z /
y 2D = Pf f (P E ‘ + (1 _ y 1D)i (A.25)

i= 0 \ *

Y * .= Y ‘ (P E ‘ + P E ‘’J] Y 2 D ^ FE‘r- ^ ^ - Y w)i (A.26)
1=0 \ 1 1

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. 3 Independent Column and PE Redundancy

A.3 Independent Column and PE Redundancy
Ysc = e - A (A.27)

Yrow = Ysc°lumns (A.28)

Y s r a m = 7 x T (r o w s + rowSred) y ; r 8+rou'Sre,‘“ i (1 - Yrowy (A.29)
n \ 0 /2 = 0 \ /

1„ „ . OU)~
r- r o w e f f 1 S R A M

P E yred / + P E A p E

y * = i f (P E ‘ + p e ™ A y £,e -+ fe"--‘- ‘ (i - y 2D)‘
i = o V 1)

(A.30)

Y sce ff= Y r% % ? (A.31)

Yrc = YIcTff (A.32)

Y1Dmem = f + y ^ + « W - (1 - y cy (A.33)
i=0 \ Z /

yPE = e~p (A.34)

= PE " (PEy + PEyred) Y ™ ^ ™ ^ (1 - YPEy (A.35)
i= o V 1 /

Yqroup = Yi£)mernY\£)pE (A.36)

y ___ y (P Ey + P Eyred) / A O ' y A
I OD — 1 group \ r \ . J /)

y iD = E (A.38)

y2D = ^ (PEx + PE *r<A Y[E*+PExred-i (1 _ y iDy {A3g)
i=0 V * /

(A.40)

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

2D Switch Grid Redundancy Yield

Yield of a single PE, where A p e c is the critical area of the PE and D o is the defect
density.

Yp e = e~x = e~ApEcD° (B .l)
Using the grid redundancy method there exist a number of configurations of four

faulty PEs that will result in a plane failure. This equation calculates the number of
configurations that exist for four PEs that will kill a plane of PEs.

■ypE-3
n u m ^ k u i = x p e Up e + % P E { y p E ~ 3 + E V

i = 1

x p e - 3

+ U p e (x p e — 3 + E j) (B.2)
i=i

x p e — 3 V p e — 3

+ { x p e - 3 + E j) (y p E - 3 + E i)
j = 1 j = l

Since we know that the grid redundancy mechanism can repair upto four faulty
PEs with no problem, the summation is separated. The first summation finds the
yield assuming zero to three faulty PEs. For four PEs upto the number of redundant
PEs available in the grid, we subtract the number of four PE configurations that kill
the plane from the value of the choose operation. This is that one or more four PE
combinations may occur that will cause the plane to fail; however, only one of these
four PE combinations needs to occur to make the plane fail.

^ 2d = E f P E * y + P E x y r e d \ Y p E X V + P E x y r e d ~ i (1 - Y P E y
i = o' - 1 '

P E rl
+ g ™ f r P E xv+P E Xyred\ __ n u m \ Y P E xy+ P E xyr^ - i (1 _ (R 3)

i = 4 ' ' ' '

In this way the yield of the grid is actually smaller than if the grid could be
completely reconfigured to allow the replacement of PEs until all the redundant
PEs are used up before failure occurs. Similarly Y p e could be replace by Y q d in
Appendix A yield formulas.

The yield of the array also depends on the number of planes built within a die.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y1 array

Finally, the die yield also depends on the yield of the periphery circuits and the
circuits that do not contain redundancy. These circuits are circuits that can cause
the die not to function if the defect occurs in this area. A NRc is the critical area
of the non-redundant circuitry, such as the periphery controller, the interconnection
network and the redundancy switches.

p er ip h ery &
—An RcDq (B.5)

array X I p e r ip h e r y (B.6)

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

