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ABSTRACT 

Mining companies are investing in fewer but larger equipment, and downtime associated with 

larger equipment now represents a higher percentage of operational capacity loss. Thus, it is 

essential to frequently and accurately monitor the health of this equipment to avoid unscheduled 

breakdowns and expensive repairs. Modern mining is facilitated by the use of sensors for real-time 

monitoring of equipment operating parameters, external environmental conditions, and various 

key performance indicators. Although this data has existed within some companies for years, it is 

vastly underutilized in the mining industry. Thus, the problem statement for this research is: “The 

development of fault diagnostic and fault prognostic models using data from multiple sources and 

implementation of various data mining techniques to address critical failures in haul trucks”.  

In this research, the primary objective is to develop, implement and validate a robust engineering 

methodology to identify critical failures, diagnose and predict their remaining useful life in haul 

trucks using machine learning-based and deep learning-based data-driven approaches. To address 

a major shortcoming of the previous research works, this research does not use any fabricated data 

or data generated by simulations in the lab, but instead uses actual data originating from multiple 

haul trucks and various mines. 

In order to achieve the objectives of this research dissertation, a complete framework for 

developing data-driven fault diagnostic and prognostic models has been developed. These models 

were able to diagnose a critical failure in haul trucks at various mines and predict the remaining 

useful life of haul trucks diagnosed with the critical failure. This research demonstrated the use of 

several aspects of data-driven models such as data collection, data pre-processing, implementing 
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supervised and unsupervised learning models, hyperparameter tuning, and evaluating model 

performance.  

The main contribution of this research is the development and implementation of an integrated 

methodology for diagnosing critical issues in haul trucks and estimating their remaining useful life 

using several data mining techniques. Based on the results obtained in this research, various data 

mining techniques can be confidently employed for fault diagnosis and prognosis in haul trucks. 

In addition, the performance of several data-driven fault diagnostic and fault prognostic models 

are compared to identify the best-performing model for each task. This provides a better 

understanding of the applicability of various machine learning-based and deep learning-based 

models on various types of data and facilitated a more reliable detection of failures and prediction 

of their remaining useful life.  
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Chapter 1: INTRODUCTION 

 

 

This chapter provides an overview of this research. It presents a brief background to the study, 

introduces the problem statement, the objectives of this research, and the proposed methodology. 

The organization of this thesis is presented at the end of this chapter.  



 

 2 

 General Background 

Large mining equipment such as haul trucks are critical to a mine’s success and equipment 

downtime has a negative effect on their ability to meet production targets and generate revenue. 

Thus, having reliable equipment that performs as intended and operates at the lowest possible cost 

is essential and requires equipment health condition to be frequently and accurately monitored to 

avoid unscheduled breakdowns and costly repairs (Sander 2011). Mobile equipment maintenance 

represents a significant aspect of asset management, thus effective maintenance plays a vital role 

in providing a competitive advantage in the global market. 

Modern mining is facilitated by the use of sensors for real-time monitoring of equipment operating 

parameters, external environment and various key performance indicators (KPIs). Monitoring 

equipment condition and failures on a regular basis and making predictions based on the current 

conditions and historical data will help minimize maintenance costs and the probability of failure 

(Kothamasu, Huang, and Verduin 2006). Improved connectivity coupled with a large number of 

sensors mounted on mining equipment made large quantities of data available for use to achieve 

various maintenance goals. Although this data has existed within some companies for years, it was 

vastly underutilized until recently (Young and Rogers 2019). With the availability of large 

quantities of data, researchers are directing their efforts on exploring the use of data mining (DM) 

techniques on existing data to get the best value out of the existing data.  

DM can be defined as the analysis of (often large) observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and useful to 

the data owner (Hand, Mannila, and Smyth 2001). The use of DM techniques for industrial 

applications began in the 1990s and has steadily attracted more attention so that DM is now used 

in many different areas in manufacturing to extract useful information for use in predictive 
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maintenance, quality assurance, design, production, scheduling, and decision support systems 

(Baqqar, Ahmed, and Gu 2011). According to Zhang (2014), DM is the process of applying a 

computer-based methodology, including new techniques for knowledge discovery from data. It 

draws ideas and resources from multiple disciplines, including statistics, database research and 

high performance computing (Zhenyou Zhang 2014). On a broader scale, DM utilizes the concepts 

of machine learning (ML) and deep learning (DL) to address a variety of problems. By the use of 

such sophisticated techniques, there is a possibility to analyze equipment health conditions, to 

identify unexpected behaviors and anticipate future faults, thus resulting in sufficient lead time for 

planning maintenance tasks.  

Although DM techniques have gained a lot of popularity in various engineering domains and have 

been successfully implemented to detect faults and to predict the expected life of faulty 

components, the application of DM techniques is still not widespread in large mobile mining 

equipment such as haul trucks. Thus, the research question that drives this thesis is: 

“Is it possible to develop, implement and validate a robust integrated engineering 

methodology to identify critical failures in haul trucks, diagnose those failures and 

predict their remaining useful life that will result in higher accuracy and provide 

longer lead times for maintenance tasks, using a combination of various data mining 

techniques, and use this methodology as a reliable tool to address such failures in 

similar haul trucks and other mines?” 
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 Research Objectives 

The primary objective of this research is to develop, implement and validate a robust engineering 

methodology to identify critical failures, diagnose and predict their remaining useful life (RUL) in 

haul trucks using ML-based and DL-based data-driven approaches. Different from previous works 

on fault diagnosis and prognosis of haul trucks that are primarily based on knowledge-driven 

methods, this thesis presents a novel way to employ ML-based and DL-based approaches for 

diagnosing and prognosing faults, which refers to a purely data-driven method. Although some 

researchers have used data-driven methods for fault diagnosis and prognosis of mining equipment, 

those works used only ML-based approaches and did not explore DL-based approaches to diagnose 

faults in equipment. 

In summary, the main objectives of this thesis are presented below: 

• Identification of the critical failures in haul trucks using a combination of data from 

multiple sources. 

• Determination of a set of condition indicators that can be used for developing fault 

diagnostic and prognostic models to address such failures.  

• Exploration of the use of various DM techniques such as ML-based and DL-based methods 

for diagnosing critical failures in haul trucks and predicting the RUL of haul trucks 

diagnosed with such failures. 

• Development of fault diagnostic and fault prognostic models using state-of-the-art DM 

techniques and comparison of their performance with traditional methods. 

• Verification and validation of the fault diagnostic and prognostic models by implementing 

them on multiple trucks and various mines. 
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 Research Methodology 

To achieve the objectives of this research dissertation, a complete framework for developing data-

driven fault diagnostic and prognostic models has been developed. These models were able to 

diagnose a critical failure and predict the RUL of the component experiencing critical failure in 

haul trucks at different mines. 

This thesis demonstrates the use of several aspects of data-driven models such as data collection, 

data pre-processing, implementing supervised and unsupervised learning models, hyperparameter 

tuning and evaluating model performance. In order to guarantee professional modelling and 

adoptability, popular platforms such as Python programming language and toolkits such as 

MatPlotLib, Seaborn, Scikit-Learn, TensorFlow, Keras etc. were employed in this research. 

In order to achieve the objectives of this research, the following tasks have been completed: 

• Literature Review: An extensive literature review of application of relevant ML-based 

data-driven approaches for fault diagnostics and fault prognostics have been reviewed for 

this task. In addition, theoretical knowledge of various DL-based data driven approaches 

along with their application in fault diagnosis and prognosis of equipment have been 

reviewed. Finally, an extensive review of the application of ML and DL-based approaches 

for fault diagnosis and prognosis of mining equipment has also been reviewed. 

• Data Collection: Data was collected first-hand from various sources, and from different 

haul trucks and mines. In order to distinguish from existing studies and to accurately model 

the real-world scenarios, no simulated or fabricated data was used in this research. In 

addition to using the data for developing fault diagnostic and prognostic models, the data 

was also used to identify critical failures in haul trucks. 
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• Developing Fault Diagnostic Models: Different ML-based data-driven models were built 

to diagnose a critical failure identified in the research. The objective of this fault diagnostic 

model is to detect the critical failures with sufficient lead time to failure and with a 

significant accuracy. Several ML-based methods were also compared in order to identify 

the best performing model. 

• Developing Fault Prognostic Models: Different DL-based data-driven models were 

developed to predict the RUL of a haul truck diagnosed with the critical failure. The 

objective of the fault prognostic models is to predict the RUL with significant accuracy. 

The DL-based methods used in this research were then compared with ML-based methods 

to identify the best performing models.  

• Verification and Validation of Fault Diagnostic and Prognostic Models: The fault 

diagnostic and prognostic models developed using data-driven models were tested at 

different mines and various trucks in order to verify and validate the model’s performance 

and attest the model’s generalization capabilities. 

 Organization of Thesis 

This thesis comprises six chapters in total and are titled as follows: Chapter 1 (Introduction); 

Chapter 2 (Literature Review); Chapter 3 (Identifying Failures to Investigate); Chapter 4 (Fault 

Diagnosis using Data-driven Approaches); Chapter 5 (Fault Prognosis using Data-driven 

Approaches) and Chapter 6 (Conclusions). 

Chapter 1 provides a general overview and background of this research. It provides an introduction 

to the research by discussing the general background of the study, the problem statement, 

objectives of this research and the proposed methodology. 
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Chapter 2 provides a literature review based on the research objectives of this thesis. The major 

focuses (foci) are on: (i) evolution of equipment maintenance strategies; (ii) fault diagnostic and 

prognostics methods using traditional and ML-based data-driven approaches; (iii) a brief 

introduction (theory) to commonly used DL-based data-driven approaches for fault diagnosis and 

prognosis; (iv) application of fault diagnostic and prognostic models based on DL-based 

approaches and (v) a review of the application of fault diagnostics and prognostic models on 

mining equipment. 

Chapter 3 presents an approach to identify the critical failures to investigate in this research by 

using data from a variety of sources available at the mine. This chapter forms the basis for this 

research as the objective of this chapter is to identify a critical failure for which data-driven fault 

diagnostic and prognostic models are to be developed. The type of data available and the choice 

of data-driven approaches are dependent on the failure identified in this chapter. In addition to the 

critical failure investigated in this research, this chapter also identifies other failures that have a 

major impact on the reliability and maintainability of haul trucks. 

Chapter 4 presents an approach to develop fault diagnostic models using ML-based and DL-based 

data-driven approaches. This chapter present a detailed overview of the various steps involved in 

diagnosing failures such as data collection, extracting condition indicators, data pre-processing, 

building data-driven models, hyperparameter tuning and evaluating the performance of models. 

Finally, this chapter presents various unsupervised learning approaches for diagnosing a critical 

failure identified in the previous chapter, and the results obtained by validating the performance 

of fault diagnostic models at multiple mines. 
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Chapter 5 presents an approach to develop fault prognostic models using ML-based and DL-based 

data-driven approaches. This chapter presents a detailed overview of the various steps involved in 

prognosing failures such as data collection, extracting condition indicators, data pre-processing, 

building data-driven models, hyperparameter tuning and evaluating the performance of models. 

Finally, this chapter presents various supervised learning approaches for predicting the RUL of a 

critical failure diagnosed in the previous chapter, and the results obtained by validating the fault 

prognostic models on multiple haul trucks. 

Chapter 6 presents the summary and conclusions of this research. This chapter also discusses the 

significance and novel contributions of this research. In addition, this chapter contains 

recommendations for future work using approaches such as natural language processing and 

convolutional neural networks for fault diagnosis and prognosis. 
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Chapter 2: LITERATURE REVIEW 

 

 

This chapter provides an overview of the evolution of equipment maintenance strategies and 

existing research in the field of fault diagnosis and fault prognosis. Several machine learning-

based and deep learning-based approaches for diagnosing and prognosing faults in various 

equipment are presented in this chapter. In addition, this chapter also presents a review of the 

application of fault diagnostic and prognostic models on mining equipment.    
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 Evolution of Equipment Maintenance Strategies 

Maintenance is defined as a set of tasks or activities required to restore a system (component/ 

equipment) to a state where it can perform its designated functions (Dhillon 2002). The role of 

equipment maintenance has evolved in the last few decades, from merely being a part of production 

to an essential strategic element in mining operations. Since early 2000’s, maintenance practices 

are recognized as a profit contributor, giving more importance to maintenance practices, and 

elevating them to the same level as production (Kobbacy and Murthy 2008). Figure 2.1 illustrates 

the three basic maintenance strategies that are widely in practice.  

 

Figure 2.1. Basic maintenance strategies (adapted from (Tomlingson, 2008)) 

The correct mix of these three can be determined based on evaluating: risk, cost and impact on 

environment and health and safety. In the 1940’s, maintenance activities were treated as ‘a 

necessary evil’, where repairs and replacements were corrective and addressed only when an 

equipment or a component of the equipment failed, also known as a run-to-failure maintenance 

strategy. By the 1960’s, equipment maintenance activities started to be regarded as a technical 
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matter and involved optimizing maintenance solutions and activities. Many companies started to 

recognize relations between component failures and the time (or number of cycles) in use, thus 

initiating the switch from corrective to scheduled maintenance. Scheduled maintenance strategies 

are routine and repetitive as the same set of procedures are repeated at regular intervals determined 

based on failure time analysis (J. Lee et al. 2006). Scheduled maintenance relies on the assumption 

that failure behavior is predictable based on hazards or failure rate trends, known as bathtub curves. 

Figure 2.2 shows a typical bathtub curve where failure rates can be divided into three phases: 

break-in phase where systems are assumed to experience decreasing failure rates early in their life 

cycle, normal operating phase with near constant failure rate and a wear-out phase with increasing 

failure rates that represents the end of their life cycle (Ahmad and Kamaruddin 2012).  

 

Figure 2.2. Bathtub curve (adapted from (Ahmad and Kamaruddin 2012)) 

The intervals for scheduled maintenance are often recommended by equipment manufacturers 

based on bathtub curves, which must be followed to retain warranty rights, but may not be optimal 
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because of varying operating conditions thus resulting in excessive maintenance costs (Labib 

2004), (Tam, Chan, and Price 2006).  

As equipment began to grow more complex towards the late 1970’s, scheduled maintenance was 

proven to be ineffective on the more complex equipment due to the lack of knowledge and poor 

understanding of the failure characteristics of the newer complex equipment. Another drawback 

of scheduled maintenance is when following a fixed schedule, components may not be utilized to 

full capacity if the repair is made too early and too long intervals may result in unplanned failures 

resulting in additional costs. These limitations of scheduled maintenance led to the gradual 

evolution of predictive (periodic and continuous) maintenance strategies (Pintelon and Parodi-

Herz 2008).  

The late 1980’s and early 1990’s witnessed the emergence of a new maintenance trend where 

maintenance requirements were integrated into the early stages of equipment design and 

development. This led to the maintenance strategies being proactive rather than reactive, with 

maintenance activities being recognized as profit contributors and better appreciated within the 

organization (Pintelon and Parodi-Herz 2008).  

 Predictive Maintenance 

Predictive maintenance, often-referred to as Condition based maintenance (CBM), uses the 

degradation trends and deviation from normal operating behavior based on information collected 

through condition monitoring (CM) process to schedule maintenance operations (Jardine, Lin, and 

Banjevic 2006). A core component of CBM is the CM process, which uses various sensors to 

monitor signals, and the data collected through this process is referred to as CM data (J. Campos 

2009). Most failures are preceded by certain signs and indications of an impending failure and the 

probability of failure of a system can be estimated based on its condition by using CM data 
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collected from various sensors and their respective statistical history (Ahmad and Kamaruddin 

2012). This optimizes planned maintenance schedules and mitigates premature failures (Gupta and 

Lawsirirat 2006).  

A variety of tools were developed to monitor the health of a system and the most widely accepted 

CBM monitoring techniques were oil analysis, vibration monitoring and temperature monitoring. 

But with the advent of technology, CBM has evolved from conventional oil, vibration analysis and 

thermography to using modern instrumentation, detailed fluid analysis, ultrasonic analysis that not 

only expand the spectrum of data being analyzed but also enables near-real time analysis of all 

available data, thus allowing early detection of faults and minimizing the impact of system 

downtime (Pintelon and Parodi-Herz 2008).  

In order to implement CBM on any system, it is essential to acquire relevant data pertaining to the 

characterization of operational faults, contextual information and environmental conditions such 

as temperature, pressure and humidity to enrich the modeling process (Braglia et al. 2012). The 

main goal of CBM is to avoid costly maintenance interventions and mitigate the consequences 

involved with an unexpected failure.  

CBM techniques can be broadly classified as periodic or continuous. While periodic monitoring 

systems acquire data at selected time intervals, continuous monitoring systems collect data 

continuously. Selection of an appropriate CBM technique is a function of hardware and installation 

costs, time, availability of resources and implication of the failures (Ahmad and Kamaruddin 

2012).  

CBM has been widely used in various industrial domains, building structures and medical 

equipment. One of the primary focuses of CBM applications is on CM process, which uses CM 
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data for fault diagnosis and prognosis (Ahmad and Kamaruddin 2012). Fault diagnosis is the 

process of finding a fault in the system and its source, while prognosis is the process of estimating 

the time to a potential failure (Jeong, Leon, and Villalobos 2007). 

One of the most significant benefits of CBM is through maximizing the P-F interval, shown in 

Figure 2.3, which increases the window between indicated potential failure and functional failure. 

From a maintenance perspective, failures can be classified as: potential failure (P) that denotes an 

identifiable physical condition which indicates the start of a failure process; and functional failure 

(F) that represents the inability of a system to meet a specified performance standard (Prajapati, 

Bechtel, and Ganesan 2012). P1 to Pn represent the points at which potential failure could be 

identified by collecting CM data for periodic CBM, with more lead time being available for CM 

data collected at P1 compared to the data collected at Pn. While periodic CBM can only detect the 

potential failure at designated points on the curve, Px, continuous CBM has the ability to detect the 

potential failure at almost any point on the curve. The goal of CBM practices is to detect a fault 

closer to its inception that results in a large P-F interval. Increasing the P-F interval gives the 

maintenance personnel more time to prioritize, plan, schedule and execute the necessary 

maintenance activities to prevent or mitigate the consequences of a failure. 
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Figure 2.3. P-F curve (adapted from (Prajapati, Bechtel, and Ganesan 2012)) 

To enable early detection of potential failures and accurately distinguish them from normal 

operating conditions, various CBM techniques can be used. These techniques detect failure 

conditions much faster and with greater accuracy compared to routine physical inspections. 

Because of the ability of continuous CBM approaches to enable near real-time diagnosis, it has 

emerged as the most popular choice of maintenance strategy for most applications (Peng, Dong, 

and Zuo 2010). 

 The Future of Maintenance 

Improved connectivity and access to low-cost computational power has led to the start of a new 

digital revolution known as ‘Industry 4.0′ (Short and Twiddle 2019) . With the advent of Industry 

4.0, an abundance of data, often referred to as big data, is being generated each day, averaging to 

about 2.5 quintillion bytes globally each day (Young and Rogers 2019). Big data provides an 
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opportunity for mining innovation and the ability to digitally transform the mining industry by 

making real-time CM and predictive maintenance more accessible and feasible. 

According to Sander (2011), “The sophistication of current technology provides the opportunity 

for the analysis of the reams of data available, both current and historical, and to use this to 

statistically make predictions about future events” (Sander 2011).  Big data is widely available 

today making it inexpensive to access and store the data, and some of the unique features of big 

data are volume, velocity, variety and value (C. K. M. Lee, Cao, and Ng 2016), (Waller and 

Fawcett 2013). Ningyuxin and Liyueling discussed the opportunities and challenges associated 

with big data and how to realize its importance (Ningyuxin and Liyueling 2013). There is a strong 

interconnection between big data and predictive analytics. According to Lee et al. (2016), 

“Without proper analytics, big data is just a deluge of data, while without big data, predictive 

analytics, the strength of statistics, modeling, and data mining tools for analyzing current and 

historical conditions will be undermined” (C. K. M. Lee, Cao, and Ng 2016). With the advent of 

CBM and the availability of big data, researchers are directing their efforts on exploring the use of 

DM techniques on existing data to get the best value out of the existing data.  

Figure 2.4 shows a holistic framework for an advanced CBM systems that typically incorporates 

data acquisition, data pre-processing, fault diagnosis, fault prognosis and decision making in 

sequential order (J. W. Sheppard, Kaufman, and Wilmering 2008), (J. Sheppard, Kaufman, and 

Wilmer 2009), (Arnaiz et al. 2010), (Bousdekis et al. 2015). 
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Figure 2.4. Framework of a CBM system (adapted from (Bousdekis et al. 2015)) 

(Isermann 2006) and (Vachtsevanos et al. 2006) defined some of the key terminology in fault 

diagnosis and prognosis as follows. 

• Fault. Fault is an abnormal condition or defect at the component, equipment, or sub-system 

level which may lead to a failure. A machine fault occurs when the condition of any of its 

components is degraded or exhibits an abnormal behavior. 

• Malfunction. Malfunction is defined as a sporadic interruption of the execution of a system 

due to faults in the system. 

• Failure. Failure refers to the state or condition of not meeting a desirable or intended 

objective. The failure of a machine occurs when one or more of the principal functions of 

the machine are no longer available. This generally happens when one or more of its 

components are in a fault condition. 

Decision Making
Making decisions based on the predictions and domain knowledge

Fault Prognosis
Predicting the future health based on available data

Fault Diagnosis
Using the pre-processed data to diagnose faults

Data Pre-processing
Pre-processing the data to extract features and condition indicators

Data Acquisition
Obtaining data from the sensors and other external sources

Sensors
Data generated from sensors mounted on the equipment or from external sources



 

 18 

• Fault diagnosis. Fault diagnosis is the process of detecting and identifying an impending 

or incipient abnormal equipment operating conditions (fault conditions).  

• Fault prognosis. Fault prognosis is the estimation of time to failure and risk for one or 

more existing or anticipated fault modes. An alternative definition of prognosis is a point 

estimate of the RUL of a system based on one or more condition or performance signals 

observed at some point during its life. 

The following sections present a detailed overview of the various steps of the CBM framework 

such as fault identification, fault diagnosis and fault prognosis along with the survey of prominent 

research works in each domain. 

 Fault Diagnosis 

Fault detection refers to the process of determining the presence of faults in a system (J. Liu 2012) 

and fault diagnosis is a comprehensive task that involves fault detection and identification 

(Severson, Chaiwatanodom, and Braatz 2016). Fault diagnosis is the process of recognizing, 

localizing, and identifying the severity once a fault is detected. Since fault diagnosis could directly 

suggest the ensuing maintenance tasks or operation adjustments, the prediction accuracy of fault 

diagnostic models needs to be more rigorous than fault detection models (Liangwei Zhang et al. 

2019). The occurrence of a fault in a system is usually unknown and faults can be classified as 

abrupt, incipient or intermittent based on their time of occurrence (Severson, Chaiwatanodom, and 

Braatz 2016). Failures can be classified as random, deterministic or systematic based on their 

predictability (Y. J. Park, Fan, and Hsu 2020). Numerous methodologies have been developed for 

detecting faults or anomalies, isolate faulty systems and predict potential implications of a failed 

component on the overall health of a system. “Fault diagnostic algorithms must have the ability to 
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detect system performance, degradation levels, and faults (or failures) based on physical property 

changes through detectable phenomena” (Vachtsevanos et al. 2006).  

Although earlier works classified fault diagnostic techniques into model-based and historical data-

based methods (Venkatasubramanian et al. 2003), the current practice now is to classify fault 

diagnostics into model-based, signal-based, data-driven and hybrid approaches (Zhiwei Gao, 

Cecati, and Ding 2015), (Zhiwei Gao et al. 2015). A more recent classification proposed by (Yan 

Xu et al. 2017) divides fault diagnostic techniques into knowledge-driven, data-driven and value-

driven (DL-based) methods as shown in Figure 2.5. 

 
Figure 2.5. Classification of fault diagnostic models (adapted from (Yan Xu et al. 2017)) 
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The following sections cover knowledge-driven and data-driven methods for fault diagnostics in 

detail while value-driven fault diagnostic methods are discussed later in this chapter. 

 Knowledge-driven Fault Diagnostic Methods 

Knowledge-driven fault diagnostics are based on mechanical principles and empirical knowledge 

of systems, and are generally applicable to systems that are easy to model and for systems with 

abundant empirical knowledge (Zhiwei Gao et al. 2015). Knowledge-driven fault diagnostic 

models employ physical principles, fault mechanisms and domain expertise to realize real-time 

fault diagnosis. The accuracy of such models is determined by the precision of the physical or 

mathematical models and the richness of domain expertise (Yan Xu et al. 2017). Knowledge-

driven methods are further divided based on the type of knowledge into mechanical knowledge-

driven and empirical knowledge-driven methods. 

 Mechanical Knowledge-driven Fault Diagnostic Methods 

Mechanical knowledge-driven methods use precise mathematical and physical models to detect 

faults by finding inconsistencies between predicted and actual behavior of the system. (Foo, 

Zhang, and Vilathgamuwa 2013) proposed a novel algorithm for estimating fault states in 

synchronous motors based on physical models by using extended Kalman filters and (W. Chen et 

al. 2014) used physical models to estimate the state of Lithium-ion batteries for detecting faults. 

(Zhai, Wang, and Ye 2015) proposed a parameter estimation-based fault diagnostic method in 

closed-loop systems using reliable mathematical models. Other notable research in mechanical 

knowledge-driven fault diagnostic methods include the works of (Odendaal and Jones 2014) for 

actuator fault diagnosis and (M. Zhong, Song, and Ding 2015) for diagnosing faults in time-

varying systems. Despite producing satisfactory results, mechanical knowledge-driven models are 

difficult to build and may not provide accurate insight for complex systems (Yan Xu et al. 2017). 
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 Empirical Knowledge-driven Fault Diagnostic Methods 

Empirical knowledge-driven fault diagnostic methods use reasoning and decision making based 

on empirical knowledge and domain expertise to diagnose faults qualitatively. Although empirical 

knowledge-based methods are easy to understand in simple systems, they tend to get extremely 

complicated in complex systems and requires massive computational resources to diagnose faults. 

A popular empirical knowledge-based method used in fault diagnosis is Case-Based Reasoning 

(CBR), which offers a reasoning paradigm that is similar to the way people routinely solve 

problems. CBR began to be applied in fault diagnosis in 1990s and became very popular afterwards 

(Zhenyou Zhang 2014). The cyclic process of CBR can be described as: when a new problem 

occurs, one or more similar cases are retrieved from the database; a solution suggested by the 

matching cases is then re-used and tested for success. Unless the retrieved case is a close match, 

the solution probably will have to be revised, producing a new case that can be retained in the 

database. Currently, this cycle rarely occurs without human intervention and most CBR systems 

are used mainly as case retrieval and reuse systems. CBR requires hard coding on a case-by-case 

basis, which is tedious and is prone to errors. Researchers also successfully implemented graph 

theory to diagnose faults in power grids (Lei Wang et al. 2015) and nuclear power plants (Y. K. 

Liu et al. 2016), and expert systems to diagnose gearbox faults in wind turbines (Z.-L. Yang et al. 

2012) and gas turbine engines (Ningbo Zhao et al. 2015) using strong domain expertise. Due to 

the limitations of knowledge-based methods for fault diagnosis, data-driven fault diagnostic 

techniques were developed to provide better alternatives (C. Yang et al. 2019). 

 Data-driven Fault Diagnostic Methods 

Data-driven fault diagnostic methods use historical data and DM techniques instead of explicit 

model-based or experience-based systems to diagnose faults and include techniques such as signal 
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processing, statistical analysis and ML (Cai et al. 2017). Data-driven fault diagnostic methods can 

be further classified as traditional methods which include signal processing techniques and 

statistical analysis or ML-based methods that utilize ML techniques. 

 Traditional Data-driven Fault Diagnostic Methods 

Fault diagnosis using signal processing techniques use various types of input data such as 

vibration, current, sound etc. to extract faults in time-domain, frequency-domain and time-

frequency domains (R. Yan, Gao, and Chen 2014). (J. Yan and Lu 2014) developed a novel weak 

signal detecting methodology for early fault diagnosis using vibration signals and (J. Chen et al. 

2016) used wavelet transformation for diagnosing faults in rotating machinery.  

Statistical data-driven analytical methods uses statistical models to describe correlations among 

variables for diagnosing faults (S. Yin et al. 2012). (Grbovic et al. 2012) proposed an approach for 

diagnosing faults using sparse Principal Component Analysis (PCA) in process monitoring sensor 

networks. (S. Yin, Zhu, and Kaynak 2015) used partial least squares to decompose measurable 

process variables into KPIs and used them to diagnose faults in Tennessee Eastman (TE) 

benchmark process, which simulates actual chemical processes at large-scale process industry. 

(Niu and Jiang 2017) proposed a CBM system that uses seasonal autoregressive moving average 

(SARMA)-based exponentially weighted moving average (EWMA) to predict wear of railway 

braking systems and demonstrated significant improvements over knowledge-based methods.  

Traditional data-driven fault diagnostic approaches are computationally expensive and fail to 

capture complex relationships between various parameters; thus, limiting the scope of their 

applicability for fault diagnosis. These problems are typically overcome by ML-based data-driven 

fault diagnostic methods. 
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 ML-based Data-driven Fault Diagnostic Methods 

ML-based data-driven approaches use CM data collected from sensors to train various algorithms 

for diagnosing complex faults with very little human intervention (Z. Yin and Hou 2016). With 

the recent advances in sensor technology and computational power, ML-based data-driven 

methods are becoming increasingly popular in fault diagnosis and prognosis (Dai and Gao 2013), 

(Liangwei Zhang, Lin, and Karim 2015), (Liangwei Zhang, Lin, and Karim 2017).  

Depending on the availability of labelled data, ML-based data-driven methods can be further 

classified as supervised, semi-supervised or unsupervised approaches. A label in fault diagnostic 

and prognostic space can constitute either a health indicator (for fault detection tasks), a specific 

fault type (for fault diagnostic tasks), or the RUL at each time step of measurement (for fault 

prognostics) (Fink et al. 2020).  

Supervised learning is the ML technique of learning a function by mapping the input to an output 

based on example input-output pairs (Hastie, Tibshirani, and Friedman 2009), (Russell and Norvig 

2009), (Goodfellow, Bengio, and Courville 2016). Unsupervised learning methods are typically 

used when there is a lack of sufficiently labelled data, and unlike supervised methods, 

unsupervised methods output a continuous value representing the abnormality of a particular 

sample and the likelihood of the sample being an outlier increases with the increase in this score. 

In practical applications, a threshold is used to assist the judgement of the occurrence of faults, 

and the threshold value is application dependent with an objective of minimizing both false 

positive rate (Type I error) and false negative rate (Type II error) (Liangwei Zhang et al. 2019). 

While supervised learning techniques require a sufficient amount of labelled data (both normal 

operating conditions and fault conditions) to train and validate the fault diagnostic algorithms, 
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unsupervised learning techniques use data that does not contain any information about the desired 

output (Lo, Flaus, and Adrot 2019). 

Artificial neural network (ANN) and support vector machine (SVM) are the most popular 

techniques for ML-based data-driven fault diagnosis and prognosis models using supervised 

learning approaches and k-nearest neighbour (k-NN) is the most popular technique for ML-based 

data-driven fault diagnosis using unsupervised learning approaches (Ademujimi, Brundage, and 

Prabhu 2017). 

2.2.2.2.1 Artificial Neural Networks 

An ANN is a network of computational units linked by directed and weighted connections where 

each unit performs some calculation and outputs a value that is propagated as input to other 

connected units (Gamboa 2017). The most basic type of ANN is a feed forward neural network 

which consists of only forward connections between the neurons  while a backpropagation neural 

network consists of both forward and backward connections of neurons (Lei et al. 2020).  

As shown in Figure 2.6, a simple ANN consists of 3 types of layers: input layer, hidden layer and 

output layer. Input layer is the first layer of a neural network (NN) and consists of a set of nodes 

that feed the subsequent layers of the network. Output layer is the last layer of a NN and generates 

the model output. All other layers encompassed within the input and output layer are called hidden 

layers and are responsible for performing the aggregation and activation functions, and to 

propagate the resulting output to neurons in the subsequent layers. 
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Figure 2.6. Architecture of artificial neural network (created from (LeNail 2019)) 

There are two stages of computation performed by each node: aggregation function corresponds 

to calculating the sum of inputs received from all incoming units, and activation function to 

transform the value of the aggregation function by using nonlinear activation functions.  

Each neuron in the hidden and output layers acts as a computational unit that takes an input from 

the input vector, !! ,	and outputs $ as follows (R. Liu et al. 2018): 

$ = &(("!) = & *+(!

#

!$%
!! + -. 

Where, & is the activation function, 

 (! is the vector of weights associated with /&' neuron and 

- is the bias (scalar). 

The most common activation functions used for ANNs were logistic sigmoid and hyperbolic 

tangent, but recently rectified linear unit (RELU) has become increasingly popular (Gamboa 

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ¹
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2017). The weights are obtained and updated by an iterative procedure called training and plays a 

crucial role in tuning the ANNs hyperparameters for obtaining maximum accuracy (Hewamalage, 

Bergmeir, and Bandara 2021). (G. P. Zhang and Kline 2007) stated that the selection of input 

parameters plays a crucial role in determining the accuracy of an ANN. 

ANNs tend to perform better than model-based approaches because of their ability to model 

unknown and non-linear relationship in the data with minimum apriori assumptions and transfer 

learnt relationships to unseen data (Hewamalage, Bergmeir, and Bandara 2021). Because of ANNs 

powerful pattern classification and recognition capabilities, it  is one of the most commonly used 

architecture in fault diagnostics (R. Liu et al. 2018). The most common variant of ANN in this 

domain is multi-layer preceptron (MLP), in which the units are arranged in layers with only 

forward connections to units in the subsequent layers (Y. H. Hu and Hwang 2001). (Meireles, 

Almeida, and Simões 2003) presented a comprehensive review of industrial applications of ANNs 

since 1990 and also presented several variations of ANN that were widely used. (Z. Li et al. 2010) 

proposed a hybrid fault diagnostic method to identify multiple faults in gears using vibration 

signals. (Yaghobi, Mashhadi, and Ansari 2011) presented an ANN approach for detecting internal 

faults in a synchronous generator by using samples of magnetic flux linkages. In order to address 

the issue of “curse of dimensionality” when dealing with fault diagnsosis of high dimensional 

datasets, (K. Zhang et al. 2011) proposed a hybrid model that combines multiple feature selection 

algorithms to select the most significant input features to be fed to an ANN. ANN architectures 

have shown great results for fault diagnostic applications even in the presence of noise in the input 

data, but they are computationally intensive, have a slow rate of convergence and are often prone 

to overfitting (Lo, Flaus, and Adrot 2019). In order to achieve better accuracy and to prevent over-

fitting, a regularization term is often added to the ANN architectures (R. Liu et al. 2018).  
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2.2.2.2.2 Support Vector Machines 

SVM is a supervised learning method based on statistical learning theory and is widely used for 

classification tasks (Widodo and Yang 2007). SVM classifies data by solving a constrained 

quadratic optimization problem that is based on structural risk minimization to build an optimal 

separating hyperplane to create a widest margin possible by maximizing distance between the 

plane and the nearest data points as shown in Figure 2.7 (Cristianini and Shawe-Taylor 2000), 

(Scholkopf and Smola 2018).  

 

Figure 2.7. Optimal hyperplane for binary classification using SVM (created using (Greitemann 2018)) 

For binary classification, hyperplane &(!) = 0 that separates the data is represented as: 

$ = &(!) = ("! + - =+(!!! + -
#

!$%
= 0 

Where, ( is the n-dimensional input vector, and  

- is a scalar that is used to define the position of separating hyperplane.  

Class-A 
Class-B 

Margin 

Hyperplane 
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SVM has excellent generalization capabilites on small datasets and is thus widely used in the field 

of fault diagnosis (Z. Yin and Hou 2016). (Y. S. Wang et al. 2014) used SVM to diagnose engine 

faults based on engine noise produced during normal operating condition and several fault states. 

(Soualhi, Medjaher, and Zerhouni 2015) used a similar approach to diagnose faults in roller 

bearings. Semi-supervised learning with SVM was used with satisfactory results for early detection 

of faults in an air handling unit of a heating, ventilation and air conditioning (HVAC) system (K. 

Yan et al. 2018). SVM can also be used for non-linear classification with the application of kernel 

functions like linear, polynomial and Gaussian radial bias function, and the selection of a kernel 

function is application dependent (Cristianini and Shawe-Taylor 2000). Choosing the best kernel 

function remains a significant bottleneck for successful implementations of SVM in fault diagnosis 

(Lo, Flaus, and Adrot 2019). The application of SVM for classification is generally restricted to 

small datasets since expressing complex functions in higher-dimensional feature space is 

computationally expensive and could also result in overfitting (Widodo and Yang 2007). 

2.2.2.2.3 k-Nearest Neighbour 

k-NN is an instance-based learning algorithm that can be used for both classification and 

regression and has been widely used for diagnosing faults. The underlying principle of a k-NN 

algorithm is that all instances (data points) with similar properties in a dataset will generally exist 

in a close proximity to each other (Cover and Hart 1967). K-NN is typically applied in combination 

with dimensionality reduction methods such as principal component analysis (PCA), kernel 

principal component analysis (KPCA) and contribution analysis (CA) to compress the high-

dimensional feature sets into low-dimensional eigenvectors which are then utilized as input to k-

NN algorithm (R. Liu et al. 2018). (Z. Li et al. 2013) proposed a method to diagnose multiple faults 

in a gearbox by converting non-stationary vibration signals into a lower dimensional feature vector 



 

 29 

and applying k-NN architecture on the resultant feature vector. (Jung and Koh 2015) developed a 

method for classifying high-dimensional vibration signals for diagnosing faults in roller bearings 

using k-NN architecture. (J. Tian et al. 2016) presented a method that diagnoses multiple bearing 

faults and monitors the degradation of bearings in an electric motor using PCA and semi-

supervised k-NN architecture. (Zhou, Wen, and Yang 2016) demonstrated the ability of PCA and 

k-NN architecture to be successfully applied to diagnose faults in TE benchmark process with 

nonlinear, multimode, and non-gaussian distributed data. Researchers also compared the 

performance of various ML-based architectures for fault diagnostics such as k-NN, SVM and ANN 

by applying them to the same dataset (Moosavian et al. 2013), (Dou and Zhou 2016). (R. Liu et al. 

2018) notes that the key issue with successful application of k-NN is the optimal choice of the 

number of classes, usually denoted as parameter ‘k’ since it greatly influences the performance of 

a k-NN algorithm. 

In addition to the techniques mentioned above, Naïve Bayes classifier has drawn a lot of attention 

recently because of its high learning and prediction accuracy (Wan et al. 2016), (Duan et al. 2016). 

Other ML-based techniques such as fuzzy neural networks, decision trees and Bayesian networks 

were also applied for diagnosing faults in various domains. Researchers also compared and 

comprehensively evaluated the performance of various architectures used for diagnosing faults in 

several domains (Seshadrinath, Singh, and Panigrahi 2014), (Cunha Palácios et al. 2015), (Flett 

and Bone 2016). A detailed survey on the application of several ML-based data-driven approaches 

for fault diagnosis can be found in (Yan Xu et al. 2017), (R. Liu et al. 2018). 

ML-based data-driven approaches require high quality data as input and require complete datasets 

with little to no missing data. The computational complexity of such approaches increases with 

the volume of data collected and their shallow structure poses challenges in learning complex 
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mappings between input data and fault types. Depending on the type of measurement and the type 

of system where the fault diagnostic approaches are used, a smaller or larger data set is needed. 

An arbitrary increase of the size of the data set will not significantly improve the accuracy of a 

fault diagnostic model and it will result in increased computational complexity. The strength 

behind data-driven fault diagnostic techniques does not lie in the in the amount of data collected 

but in the correct choice of the types of data to use (G. Xu et al. 2019). Another drawback of ML-

based data-driven approaches is that they require manual feature extraction which is time 

consuming and relies heavily on domain expertise (G. Xu et al. 2019). 

 Fault Prognosis 

Fault prognosis refers to the process of predicting a fault before it occurs and estimating the failure 

progression to predict the RUL of a system by taking into consideration its degradation trajectory 

and future operational usage (G. Xu et al. 2019) (Fink et al. 2020). The primary task of RUL 

estimation is to predict the time left before the system fails to perform its intended tasks based on 

the historical time-series sensor data obtained by the CM system (Worden et al. 2016), (Lei et al. 

2018). The goal of prognosis is to ensure cost-effective operations by protecting the assets from 

potential hazards and sudden breakdowns (Hamadache et al. 2019). According to (J. Lee et al. 

2014), prognosis can be considered as a holistic approach to an effective and efficient system 

health management that focusses on assessing and minimizing the operational impact of failures, 

and controlling maintenance costs.  

It is always important to have an accurate RUL estimation since early predictions (estimated RUL 

is less than the actual RUL) may result in unwanted maintenance while late predictions (estimated 

RUL is larger than the actual RUL) could lead to catastrophic failures. RUL estimates need to be 

accompanied by a confidence bound to quantify the fluctuations in estimations caused by several 
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uncertainties in the real world. From a DM point of view, fault prognosis is a regression problem 

that aims to learn a relationship between the condition of a system and its RUL estimate. The 

dependence of the target value on operating conditions in the future makes it hard, sometimes 

impossible to predict the RUL at any given time (Liangwei Zhang et al. 2019).  

The criteria defining the occurrence of a failure is application dependent and, in most instances, 

the RUL labels are derived using data from run-to-failure tests. In some cases, degradation starts 

only after a certain amount of usage, yielding a piece-wise function of RUL that has a constant 

RUL followed by a different degradation function. In such cases, prior knowledge of failures can 

be used to determine the time point segmenting the piece-wise function (Al-Dulaimi et al. 2019), 

(L. Wen, Dong, and Gao 2019). Researchers have also investigated the use of non-linear power 

functions and lower-order polynomial functions to understand the degradation function better 

(Yuting Wu et al. 2018), (Andre Listou Ellefsen et al. 2019). 

RUL predictions are grouped into three categories: model-based methods, data-driven methods 

and hybrid methods (G. Xu et al. 2019), (Liangwei Zhang et al. 2019). Model-based methods rely 

on statistical or physical models for assessing normal operating conditions and estimating physical 

degradation, while data-driven approaches are based on CM data (J. Lee et al. 2014) and hybrid 

approaches are typically a combination of model based and data-driven approaches (Chao, Adey, 

and Fink 2019).  

 Model-based Fault Prognostic Methods 

Physics model-based approaches are correlated to material characteristics and stress levels and 

utilize finite element analysis or empirical physical models to interpret system damage and 

degradation process (Jardine, Lin, and Banjevic 2006), (Hanachi et al. 2015). While physics 
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model-based methods are highly accurate at the component level, they may not perform well in 

modern systems because of complex intra-system interactions that cannot be easily captured 

(Liangwei Zhang, Lin, and Karim 2018). 

Statistical model-based approaches utilize available past data to fit a probabilistic model without 

relying on any physics or engineering assumptions for RUL prediction (Si et al. 2011). Statistical 

model-based fault prognostic approaches include statistical measures such as moving average over 

a time window, auto regressive integrated moving average (ARIMA), Kalman filter and 

cumulative sum (Box, Jenkins, and Reinsel 2011). (Yang Zhang et al. 2020) presented a summary 

of various statistical and physics model-based approached used by various researchers in the last 

decade.  

 Data-driven Fault Prognostic Methods 

Although earlier works in RUL prediction have focused on model-based methods, widespread 

deployment of low-cost sensors and advances in connectivity have led to the increasing popularity 

of data-driven approaches for fault diagnosis and prognosis (Hamadache et al. 2019), (G. Xu et al. 

2019), (Fink et al. 2020). Data-driven fault prognostics methods get rid of the complexity of 

creating physical or statistical models and attempt to acquire knowledge from empirical data, to 

infer current health state of the system and to predict its RUL (Tsui et al. 2015), (Zhiwei Gao, 

Cecati, and Ding 2015), (G. Xu et al. 2019). Early works for predicting RUL using ML techniques 

involved the use of ANNs and MLP models that used multiple CM measurements as inputs to 

predict RUL (R. Huang et al. 2007), (Z. Tian 2009). (Mahamad, Saon, and Hiyama 2010) proposed 

an ANN-based RUL prediction method for rotating machinery, (Soualhi et al. 2014) proposed a 

RUL prediction method for bearings based on hidden Markov model and neuro-fuzzy inference 

system, and (H. Kim et al. 2009) trained a SVM model to estimate the RUL of machines. (Cristaldi 
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et al. 2016) proposed a NN-based approach for predicting RUL using CM data from previous 

timesteps as input. With the advancements in ML-based techniques, it was possible to model 

highly nonlinear, complex and multi-dimensional systems without any prior knowledge of the 

system (Khan and Yairi 2018). (Diez-Olivan et al. 2019) proposed a technique that uses gaussian 

process regression and MLP to model complex and nonlinear dependencies for RUL prediction. 

Researchers have also investigated the use of hybrid methods to further improve the performance 

of RUL predictions. (Di Maio, Tsui, and Zio 2012) proposed a method by integrating model-based 

and data-driven approaches where relevance vector machine was used to select the base function 

and exponential regression was used to predict bearing RUL. (P. Baraldi et al. 2013) proposed an 

ensemble NN model for RUL prediction by fusing the outputs of several NNs. 

Despite their extensive application, traditional ML-based techniques had several limitations in the 

field of RUL prediction since they require high levels of expertise, suffer from poor generalization 

ability and pose challenges in seeking optimal model configurations (G. Xu et al. 2019). Industrial 

big data often tends to be unstructured, decentralized and highly nonlinear, posing significant 

challenges to traditional data-driven fault diagnostic and prognostic methods (X. Wu et al. 2014), 

but with the advancements in artificial intelligence (AI), DL-based techniques provide a solution 

to the challenges posed by big data (Liangwei Zhang et al. 2019). 

 Deep Learning approaches for CBM 

ML-based methods for fault diagnosis and prognosis usually consist of manual extraction or 

selection of the right set of features which are then fed to shallow (single-layered) ML-based 

models such as ANN, SVM, Naïve Bayes etc. for model training (R. Zhao et al. 2019). Manually 

extracting features for a complex domain requires a significant amount of domain expertise and 
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the performance of ML-based models is limited by the representation of data that is provided to 

them (Bengio, Courville, and Vincent 2013). Another key drawback of traditional shallow ML-

based methods is their inability to jointly optimize feature engineering and the model training 

process, which hinders the model performance.  

DL-based fault diagnostic and prognostic methods overcome such drawbacks by extracting 

hierarchical representations from input data through multiple layers of non-linear transformation 

(G. E. Hinton and Salakhutdinov 2006). The use of a single layer can automatically learn 

representations of the input and complex representations from raw input can be learnt by stacking 

multiple layers. Compared to shallow ML-based methods, DL-based methods do not require 

extensive human labor or domain expertise and all model parameters can be trained jointly (R. 

Zhao et al. 2019). In addition, DL-based methods also have the ability to scale faster for larger 

datasets unlike conventional shallow techniques. Figure 2.8 shows a comparison of different 

frameworks for fault diagnosis and prognosis.  
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Knowledge-driven Methods 
 

 

 

Traditional Data-driven Methods 

 

 

Deep Learning-based Methods 

 

Figure 2.8. Framework of various fault diagnostic and prognostic models (adapted from (R. Zhao et al. 2019))
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DL originated from ANN as a branch of ML that tries to learn hierarchical representations of data 

through multiple non-linear processing layers. According to (Bishop 2006), DL is a concept that 

encompasses new variants of a range of established learning models such as NNs. DL is now 

commonly referred to as deep neural networks (DNNs) because they have multiple layers of 

computational units, whereas traditional NNs usually have only a single layer (Goodfellow, 

Bengio, and Courville 2016), (Aston Zhang et al. 2020). Although the early adoption of DL-based 

methods took place in the early 1990s, initial attempts proved disadvantageous compared to 

shallow networks which resulted in a decline in the interest on DL-based methods (Tesauro 1992). 

As computer hardware performance continued to improve with time, new ways of training DL 

models were gradually developed (Geoffrey E. Hinton and Osindero 2006), (Bengio et al. 2007). 

The development of deep convolutional neural networks (CNNs) and its successful adaptation 

resulted in a surge of interest in DL-based methods, and resulted in rapid advancements in their 

application (He et al. 2016), (Krizhevsky, Sutskever, and Hinton 2017). The most successful 

factors that contributed to the growth of DL-based methods include availability of large CM 

datasets, affordable hardware and the development of sophisticated open source software (Fink et 

al. 2020). In the last few years, DL-based methods have proven to be very effective in several tasks 

such as object recognition and image quality assessment (S. Jia and Zhang 2018), classification 

tasks (Krizhevsky, Sutskever, and Hinton 2012) and speech recognition (G. Hinton et al. 2012), 

which encouraged researchers to apply such techniques for fault diagnosis and prognosis. 

(Liangwei Zhang et al. 2019) did a comprehensive review of the application of DL-based methods 

for fault diagnosis and prognosis and identified auto-encoder (AE), restricted Boltzmann machine 

(RBM), convolutional neural networks (CNN) and recurrent neural networks (RNN) to be the most 

widely used models. Tha data available for training a fault diagnostic and prognostic model also 
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varied widely and included images, vibration signals and data from multiple sensors which led to 

various DL models being used to address different problems. The following sections present a 

brief introduction to the most commonly used DL models in the domain of fault diagnosis and 

prognosis. 

 Auto-Encoder 

AE is an unsupervised technique that uses feed-forward network architecture to learn feature 

representations and consists of two components; an encoder and a decoder. Figure 2.9 shows the 

architecture of an AE, where the input data is compressed into a hidden layer with fewer neurons 

by the encoder (combination of input layer and hidden layer) and the decoder (combination of 

hidden layer and output layer) tries to generate the output (!! 	 ∈ 	ℝ") by reconstructing the input 

while minimizing the average reconstruction loss over the training set (Snoek, Adams, and 

Larochelle 2012). 

 

 

Figure 2.9. Architecture of an auto-encoder (created from (LeNail 2019)) 

Input Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ⁵

Decoder Encoder 
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Hidden layer 

Visible Layer 

AE is based on the intuition that the neurons in the hidden layer must preserve the vast majority 

of information of the input data for the decoder to obtain a good reconstruction of the input signal. 

Complex feature representations can be easily learnt with the aid of nonlinear activation functions 

such as RELU, Tanh and Sigmoid, and the hierarchical features can be learnt by increasing the 

depth of the AE network. A summary of several variations of AEs can be found in (Liangwei 

Zhang et al. 2019). 

 Restricted Boltzmann Machine 

The RBM network is an undirected Probabilistic Graphical Model (PGM) where all visible and 

hidden layers are conditionally independent of each other, but are fully connected without any 

intra-layer connection in the graph (Geoffrey E. Hinton 2012). As shown in Figure 2.10, neurons 

in the hidden layer are a feature representation of the input data which is accepted by the visible 

units. The network weights and bias units are updated iteratively to form a feature representation 

of the input in the hidden layer, which is then used to reconstruct the input similar to AEs.  

 

Figure 2.10. Architecture of a restricted Boltzmann machine (created from (LeNail 2019)) 

Input Layer ∈ ℝ⁵

Output Layer ∈ ℝ⁵
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Stacking multiple RBMs on top of each other results in the construction of a deep belief network 

(DBN), and is typically trained using unsupervised layer-wise pretraining which provides a good 

initialization to the network parameters, and is fine-tuned by back propagation that adjusts the 

parameters to fit the target data with higher accuracy (G. E. Hinton and Salakhutdinov 2006). Deep 

Boltzmann Machines (DBM) can be created by extending a simple RBM’s single hidden layer to 

multiple hidden layers. DBM networks have the ability to learn complex structures and construct 

hierarchical feature representations of input data, but they are sophisticated and computationally 

expensive (Salakhutdinov and Hinton 2012). Further information on RBMs can be found in (H. 

Lee et al. 2009), (Geoffrey E. Hinton 2012), (Salakhutdinov and Hinton 2012) and (K. H. Cho, 

Raiko, and Ilin 2013). 

 Convolutional Neural Networks 

(LeCun et al. 1990) originally proposed CNNs for recognizing handwritten digits and since then 

it has been proven to be successful in computer vision, natural language processing and speech 

recognition. The two fundamental operators of a CNN model as shown in Figure 2.11 are: 

convolution operator that extracts local features from the input data using different filters (kernels), 

and the pooling (subsampling) operator that extracts the most significant local features from the 

output of a convolutional layer. The final layer of a CNN is constructed with a fully connected 

layer, and target prediction is performed by an output layer that follows the fully connected dense 

layer (Liangwei Zhang et al. 2019).  
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Figure 2.11. Architecture of a convolutional neural network (created from (LeNail 2019)) 

Figure 2.11 shows a two-dimensional (2-D) CNN that uses 2-D filters to conduct convolution 

operation in both lateral and longitudinal dimensions of the input, while a 1-D CNN employs 1-D 

filters to convolve along single dimension of the input. 1-D CNNs adopt simple array operations 

and are computationally less demanding making them ideal candidates for time series signals 

(Liangwei Zhang et al. 2019). CNNs can learn hierarchical feature representations of the input data 

by stacking multiple convolutional and pooling layers and increasing the depth of the CNN 

architecture enables the network to learn more abstract feature representations. Backpropagation 

algorithm can be used to train a CNN and the filters (kernels) of a CNN can be learnt automatically 

instead of being handcrafted. CNN exploits local correlations by enforcing a local connectivity 

pattern, which together with weight sharing mechanism reduces the number of network parameters 

significantly.  CNN's ability to exploit local correlations combined with the ability of a pooling 

layer to reduce the dimensionality of intermediate layers makes CNN less prone to overfitting 

(Krizhevsky, Sutskever, and Hinton 2017). 

 Recurrent Neural Networks 

RNNs are DL models that can generate and address memories of arbitrary-length sequences in 

input patterns (Schmidhuber 2015). RNNs benefit from their ability to store the output of its 

previous state in the network’s internal state and are increasingly becoming popular for sequential 

Input Convolution Convolution Pooling Pooling Fully connected Dense Layer 
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learning because of their superior performance in speech recognition, machine translation, natural 

language processing etc. (Graves, Mohamed, and Hinton 2013). Unlike conventional NNs that can 

only map from input data to target vectors, RNNs define unique topological connections between 

neurons to encode temporal information in sequential data by allowing the hidden state at time 

step t to receive a signal from the input at current time t, and from the output of hidden state at 

previous time t-1 which enables memory of the previous input to be maintained in the network’s 

internal state (Funahashi and Nakamura 1993), (Jaeger 2008), (Yang Zhang et al. 2020). Thus, the 

total number of parameters is greatly reduced while still being able to learn important features 

from the input sequence (Jozefowicz, Zaremba, and Sutskever 2015). Figure 2.12 presents the 

difference between a conventional NN and an RNN, depicting RNNs ability to use the output of a 

previous timestep as an input to the current timestep.  

 

Figure 2.12. Comparison of RNN and ANN architectures (Eliasy and Przychodzen 2020) 

For supervised learning tasks, RNNs use sequential input data and are trained via backpropagation 

through time to produce target (output) values. Similar to other DL models, stacking multiple 
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hidden layers enables the RNN to learn more hierarchical and abstract feature representations. 

Depending on the specific application, the number of neurons in the output layer of an RNN will 

vary in size (Liangwei Zhang et al. 2019). 

Simple RNNs (vanilla RNNs) need to have deep recurrent architecture to maintain long temporal 

dependencies in sequential data, but during the backpropagation phase of model training, they may 

not be able to capture the long-term dependencies from the sequential input signal due to the 

problem of exploding or vanishing gradients (Gers, Schmidhuber, and Cummins 1999), (Gers, 

Schraudolph, and Schmidhuber 2003), (Kolen and Kremer 2010), (Pascanu, Mikolov, and Bengio 

2013). In order to overcome the problem of exploding or vanishing gradients, researchers proposed 

two variants of RNN: Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) 

and Gated Recurrent Unit (GRU) (Chung et al. 2014), which consist of a gating mechanism that 

allows important information and features in the input stream to be maintained instead of being 

overwritten and enable each recurrent unit to adaptively capture dependencies of different time 

scales (R. Zhao et al. 2019). Similar to RNNs, LSTM and GRU networks have proven to be 

successful for speech recognition and machine translation since they can capture long-term 

temporal dependencies and non-linear dynamics in a sequential signal and have become a suitable 

candidate for use in fault prognosis for RUL prediction (Yonghui Wu et al. 2016). Bidirectional 

RNN (BRNN) is another variant of RNN that attempts to exploit temporal information in 

sequential data by encoding information in both forward and backward directions, i.e., the hidden 

states in a BRNN depend on both past and future states (Schuster and Paliwal 1997). Bidirectional 

LSTM or bidirectional GRU can be obtained by replacing the basic hidden units in a BRNN with 

LSTM or GRU respectively, and these variants allow them to be more flexible and powerful than 

a simple RNN. 
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 DL-based Fault Diagnostic and Prognostic Methods  

By applying DL-based approaches to fault diagnosis and prognosis, researchers are trying to solve 

complex problems that were otherwise not solvable with traditional approaches or to improve the 

performance of traditional approaches through their ability to automatically extract useful features 

from higher dimensional data, learn complex functional and temporal relationships between the 

time series components of CM signals and the ability to transfer knowledge between different 

operating conditions and different units (Fink et al. 2020). The following sections provide a brief 

overview of the application of DL-based approaches in fault detection, fault diagnosis and fault 

prognosis. Unlike traditional approaches, DL-based fault diagnostic methods are separated into 

two sections: fault detection and fault diagnosis due to the extensive availability of research carried 

out in each field in the last few years. 

 DL-based Fault Detection Methods 

The simplest form of fault detection is a binary classification task, whose objective is to classify 

whether an item of interest is working well or if something went wrong (Liangwei Zhang et al. 

2019). Fault detection applications using DL approaches can be grouped as either supervised or 

unsupervised approaches based on the availability of faulty samples. 

 Approaches based on Supervised Learning Techniques 

The type of input data available and the application domain influence the selection of a particular 

DL model for fault detection. The four major categories of input data that affect this decision are: 

vibration data, imagery data, time-series data, and structured data. In order to better represent the 

patterns in negative samples, all intrinsic features need to be extracted from the data. In vibration 

data, such features include time domain features, frequency domain features, time-frequency 

domain features and a combination of these; imagery data consists of spatial structural features; 
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structured data comprises of cross correlations between several features that are not sequential; 

and time-series data encompasses temporal dependencies (Liangwei Zhang et al. 2019). 

Fault detection using vibration (and acoustic) data is the most researched subject in fault detection 

and plays a crucial role in detecting faults in rotating or reciprocating equipment. Vibration data 

is typically collected in the form of a time-series signal but has a significantly higher sampling 

frequency. For fault detection using vibration data, researchers have used AEs (Luo et al. 2018), 

but CNN proved to be more successful for this type of data (Janssens et al. 2016), (Abdeljaber et 

al. 2017), (L. Guo, Lei, et al. 2017), (Bach-Andersen, Rømer-Odgaard, and Winther 2018).  

The use of imagery data for fault detection is increasing in the last few years because of the 

improvements in the field of computer vision and the excellent results obtained by using CNN for 

classifying imagery data. Several researchers have successfully used CNN to inspect railway tracks 

(Santur, Karaköse, and Akin 2017), (Gibert, Patel, and Chellappa 2017), road pavement crack 

detection (Lei Zhang et al. 2016), (R. Fan et al. 2019) and concrete crack detection (Cha, Choi, 

and Büyüköztürk 2017), (F. C. Chen and Jahanshahi 2018). Video data has also been used as input 

data for fault detection, but since CNN cannot encode temporal information, researchers used CNN 

to extract features from video frames and combined it with other techniques such as Naïve Bayes 

classifier and Gaussian process to model the dynamics of sequential images (Jha, Srivastav, and 

Ray 2016), (Cha, Choi, and Büyüköztürk 2017). 

Structured data also constitutes a major part of input data for fault detection and requires 

considerable effort in data preprocessing as structured data may be multi-sourced, distributed or 

heterogenous. Structured data may originate from several sources such as temperature, pressure, 

displacement, speed, voltage, current etc., and hence it would be necessary to perform data fusion 
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to attain meaningful results (Diez-Olivan et al. 2019). The key to using structured data as an input 

for fault detection is to find good feature representations that enable easy separation of faults from 

normal operating conditions. Limited research has been conducted using DL approaches and 

structured data as input for fault detection, and some of the notable works include developing a 

DBN model to detect faults in thermocouple sensors of nuclear power plants (Mandal et al. 2017), 

and a CNN-based architecture to learn deep representation of Supervisory Control and Data 

Acquisition (SCADA) data to detect icing accretion in wind turbines (L. Chen et al. 2019). 

Time-series data is a sequence of data points that are obtained through repeated measurements 

over time and indexed in time order. Time-series data encapsulate useful temporal dependencies 

and may also contain cross correlations in multivariate data, similar to structured data. Crucial 

temporal information could be discarded resulting in poor model performance if the samples at 

different timesteps are summed to be independent, and researchers have attempted to tackle this 

problem at both data level and algorithm level (Liangwei Zhang et al. 2019). Data-level methods 

aim to convert temporal dependencies into cross correlations by generating sequence of data 

instances via a fixed length sliding window using phase space embedding representations. It is 

however, challenging to determine the window size and the sliding stride size without prior 

knowledge or tedious hyperparameter tuning (Qiu et al. 2015), (K. B. Lee, Cheon, and Kim 2017), 

(D. Guo et al. 2018), (D. Guo et al. 2018). Algorithm-level methods such as RNN explicitly model 

the temporal dependencies in their architectural design and is also the most researched DL 

approach for time series data.  

When performing fault detection using time-series data, it is essential to capture any temporal 

information that reflects the health status of the monitored system. The most popular choice for 

supervised fault detection using time series data is RNN, and one of the earliest works in this 
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domain was to use a simple RNN architecture in software fault detection which outperformed the 

conventional feedforward ANN in prediction accuracy (Q. P. Hu et al. 2007). (Obst 2014) built an 

RNN to learn spatial-temporal correlations between sensors and used the residuals between actual 

sensor readings and the RNN predictions to detect sensor faults in a distributed wireless sensor 

network. (S. Zhang et al. 2017) built multiple LSTMs and fed their concatenated outputs to an 

SVM classifier to capture long-term dependencies in time-series data and detect line trip faults in 

a power system.  

In addition to RNN, CNN is also commonly adopted for fault detection using time series data. 

(Ince et al. 2016) used the raw current signal as input to a 1-D CNN to detect motor faults by 

capturing the temporal information in a time-series data. (M. F. Guo et al. 2018) applied continuous 

wavelet transformation to the raw current signal into time-frequency images in greyscale and used 

the resultant images as an input to construct a CNN for detecting faulty feeders in power 

distribution systems. 

Despite numerous applications being reported in the literature, the challenge in obtaining data on 

fault conditions is still the limiting factor for the use of supervised data for fault detection. In order 

to overcome this, most researchers use data from simulations or laboratory tests, but such data 

does not account for all scenarios in the real world. The other limitation of supervised approaches 

is the poor generalization capability of the models to unseen faults that are not present in the 

training dataset (Liangwei Zhang, Lin, and Karim 2018). 

Although the choice of DL model for fault detection depends on the type of data available and the 

application domain, some common practices are widely accepted across all models. This includes 

the use of regularization techniques like dropout and weight decay to prevent overfitting and the 
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amount of regularization is a hyperparameter that needs tuning to obtain optimal performance. The 

other common practice is to evaluate the model accuracy using techniques such as precision, recall, 

F-score, Receiver Operating Characteristics (ROC) curve, and Area Under the Curve (AUC) for 

classification problems, and R2 score, Root Mean Square Error (RMSE) for regression problems 

(Liangwei Zhang et al. 2019).  

 Approaches based on Unsupervised Learning Techniques 

Similar to fault detection with supervised approaches, vibration signals are the major source of 

input data for fault detection approaches based on unsupervised learning techniques with AEs 

being the most researched DL technique in this domain (Oh and Yun 2018), (Y. H. Park and Yun 

2018), (Lu et al. 2018), (Principi et al. 2019). Some researchers have used AEs to extract features 

from vibration signals and used these extracted features as an input to LSTM network to explicitly 

model the temporal dependencies in bearing vibration data (Lu et al. 2018). (Sun et al. 2014) 

developed an encoder-decoder like DBN and applied greedy-layer wise training to detect defective 

electro-motors using vibration signals.  

Unlike the extensive application of imagery data for fault detection using supervised techniques, 

research on fault detection using unsupervised approaches is extremely limited because of the 

complex nature of imagery data which makes annotating images a very labor intensive task. (Kang 

et al. 2019) developed an approach to detect defective catenary insulators by using CNN to localize 

the insulator in an image and performing the fault detection using an AE. 

Applications of fault detection using unsupervised structured data has also been limited to a very 

few works conducted in the last few years. Researchers used SCADA data to build AEs to detect 

faults in wind turbines and nuclear power plants by using only samples of normal condition to 
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conduct layer-wise pretraining and fine-tuning to train the networks (Shaheryar et al. 2016), 

(Hongshan Zhao et al. 2018). A common strategy dealing with structured data is to choose a target 

variable from the multivariate measurements and build a prediction model to map all other 

variables to this target. The unsupervised problem can be converted into a supervised problem by 

training the prediction model with samples of normal condition, and residual error can be 

calculated as the difference between the target prediction and actual measurement (Liangwei 

Zhang et al. 2019). Using this approach, (Long Wang et al. 2017) built a feedforward neural 

network to detect faults in a wind turbine gearbox by selecting lubricant pressure as the target 

variable, and (H. Wang et al. 2019) built a DBN for detecting faults in wind turbines using the 

main bearing temperature as the target variable. 

The most complex data type for unsupervised fault detection is time-series data because they 

contain temporal dependencies that need to be modeled either explicitly or implicitly. (Jiang et al. 

2018) proposed a sliding window strategy that involves dividing a multivariate time-series data 

into chunks of fixed length along the time-axis to model temporal information for detecting faults 

in wind turbines and (C. Fan et al. 2018) adopted a similar idea to detect anomalies in building 

energy usage data. (André Listou Ellefsen, Bjørlykhaug, Æesøy, et al. 2019) proposed an 

unsupervised reconstruction-based fault detection algorithm for maritime components which takes 

in one vector at a time as input and forms a new time series from the chronological ordered residual 

error instead of slicing data along the time axis. (C. Kim et al. 2018) took an alternate approach 

and proposed a model named DeepNAP which consists of two modules: prediction and detection. 

The prediction module tries to predict a sequence of output with minimum reconstruction error 

and consists of AE and LSTM as its building blocks. The detection module is a fully-connected 

MLP that accepts only a part of the output sequence from previous step and projects it to the 
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remaining part of the sequence. (Fengming et al. 2017) adopted a similar approach to detect 

anomalies in power demand of smart grids and observed superior accuracy by training the two 

modules together. (Piero Baraldi et al. 2015) compared the ability of signal reconstruction methods 

such as vanilla RNN, auto-associative kernel regression and fuzzy similarity for fault detection 

based on time-series temperature measurements. In order to overcome the drawbacks of each 

individual methods and to improve accuracy and robustness of the model, (Piero Baraldi et al. 

2015) proposed an ensemble of the three models and reported satisfactory results. 

 DL-based Fault Diagnostic Methods 

Similar to fault detection using DL-based methods, vibration data is one of the most significant 

sources for fault diagnosis and thus the majority of research in the field of fault diagnosis used 

vibration (or acoustic) data as the input data and employed CNN for fault diagnosis, followed by 

AEs as the second most widely used DL-based method. Although some researchers have 

demonstrated the use of RBMs, RNNs and a combination of RNNs and CNNs, very limited work 

exists using these techniques when using vibration data as input for fault diagnosis (Liangwei 

Zhang et al. 2019).  

Despite the recent advancements in DL theory and the development of CNN, the availability of 

sufficient labelled samples remains a bottleneck to the application of DL-based methods for fault 

diagnosis using imagery data. Most of the research in the domain of fault diagnosis using imagery 

data used CNN, with some differences in the network depth, training depth or choice of the 

regularization method. Some researchers have successfully demonstrated the ability of CNN to 

produce satisfactory results even with the availability of very limited amount of input data. 

(Janssens et al. 2018) used a well-known pretrained CNN architecture and replaced the last layer 

with a soft-max layer to build a fault diagnostic model that yields an accuracy of over 95% by 
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using only 40 infrared thermal videos of 10 minutes long each. (Tao et al. 2018) trained a CNN to 

diagnose metallic surface defects by using only 50 raw images and without the use of transfer 

learning. Similarly a few other researchers were able to successfully train CNNs to perform multi-

class fault diagnosis with highly accurate results by using very limited input data (Xiaoxia Li et al. 

2019), (Z. Jia et al. 2019).  

For fault diagnosis using structured data as input, RBM-based and AE-based DL approaches are 

most researched since they resemble feedforward neural networks, allowing cross correlation in 

the input to be learnt and do not impose any topological or sequential relations from input data 

unlike CNN and RNN. Several researchers built DBNs and AEs for fault diagnosis with structured 

data as input by using layer-wise pretraining, and fine-tuned the network’s hyperparameters by 

stacking previously learnt layers (Jun Ma et al. 2017), (Y. Guo et al. 2018), (Chaolong Zhang et 

al. 2018), (Chaolong Zhang et al. 2018). Layer-wise pretraining is typically unsupervised and the 

number of required labelled data can be reduced by using the pretrained network which serves as 

an initialization to the model. This also greatly boosts the convergence speed of the model (Zehan 

Zhang et al. 2019). (S. Wang et al. 2018) took an alternative approach and used CNN to tackle 

structured data with spatial topology for diagnosing system faults in a power system. In real-world 

applications, data may be subject to numerous problems such as incompleteness, heterogeneity, 

low signal to noise ratio etc. (D. Chen, Yang, and Zhou 2019) proposed a framework by using 

transfer learning to tackle incomplete data problem caused by multi-rate sampling. 

Several researchers have used RNN for fault diagnosis using time-series data as input because of 

its ability to learn varying lengths of temporal dependencies via its memory retention mechanism 

(De Bruin, Verbert, and Babuska 2017), (Haitao Zhao, Sun, and Jin 2018), (Z. Wu et al. 2018), (J. 

Yang and Kim 2018), (Appiah et al. 2019). Some researchers have used DL models to learn feature 
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representations and combined it with other models such as deep quantum NN (Zehai Gao et al. 

2017), multi-grained cascade forest (G. Hu et al. 2018) and Fischer discriminative sparse 

representation (Q. Tang et al. 2018) to increase the model classification accuracy. 

 DL-based Fault Prognostic Methods 

 Approaches based on Supervised Learning Techniques 

In contrast to traditional methods, DL-based methods have a superior ability to learn representative 

features from raw signal data, and are thus widely adopter for RUL prediction in the recent past 

(Yuan, Wu, and Lin 2016), (Malhotra et al. 2016), (R. Zhao et al. 2017), (Yuting Wu et al. 2018). 

The most researched areas using DL-based approaches in fault prognosis are to predict the RUL 

of machining tools, batteries, turbofan engines, and rotating bearings. RUL prediction using 

vibration data is one of the most researched areas in fault prognosis and vibration data acquired 

from an accelerated aging platform, PROGNOSTIA, was used to predict the RUL of bearings with 

truncated monitoring data (Nectoux et al. 2012). Vibration and force signals are also typically used 

to monitor and predict wear in machining tools. (Aghazadeh, Tahan, and Thomas 2018) proposed 

a standard CNN for estimating wear of tools in milling. (Jinjiang Wang et al. 2017) proposed 

bidirectional GRU architecture to capture temporal dependencies and better model the degradation 

trend for tool wear prediction. (R. Zhao et al. 2017) used CNN to extract features and combined it 

with bidirectional LSTM for sequential modelling of wear prediction in tools.  

Multivariate time-series data has been used to predict the RUL of turbofan engines with the help 

of several DL models such as AE (Jian Ma et al. 2018), CNN (Xiang Li, Ding, and Sun 2018), 

LSTM (J. Zhang et al. 2018). (Gugulothu et al. 2017) proposed a technique that uses time-series 

embeddings based on RNN to predict RUL independent of the assumptions of degradation trends. 

(Hsu and Jiang 2018) employed a simple LSTM for RUL prediction of NASA C-MAPSS dataset 
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and (Jiujian Wang et al. 2019) proposed a bidirectional LSTM network for predicting RUL of C-

MAPSS dataset. (Ansi Zhang et al. 2018) used bidirectional LSTM to study the problem of 

transferability among different operating conditions and noted negative transfer when transferring 

from a dataset of multiple operating conditions to a dataset of single operating condition. (C. G. 

Huang, Huang, and Li 2019) proposed a bidirectional LSTM method for systems under multiple 

operating conditions where the fully connected layers in LSTM network are combined with a linear 

regression model to predict RUL. 

Another area that sparked interest recently is to map multivariate time-series measurements 

(current, voltage, temperature etc.) to estimate battery capacity retention which is used as a 

common indicator to signify battery life. Some notable works in this field include the use of 

feedforward LSTM architectures as function approximators to predict RUL of lithium-ion 

batteries, most commonly used in electric vehicles (You, Park, and Oh 2017), (Yongzhi Zhang et 

al. 2018), (Ren et al. 2018), (Khumprom and Yodo 2019).  

Fault prognosis based on CNN and DBN were also used by some researchers. (Xiang Li, Ding, 

and Sun 2018) designed a CNN to use normalized input signal data to predict RUL of aero engines. 

(Deutsch and He 2018) presented a method that uses feed forward DBN to predict RUL of rotating 

components. (Chong Zhang et al. 2017) proposed a technique that integrates multi-objective 

evolutionary algorithm with traditional DBN to address the performance issues and maximize 

prediction accuracy and diversity for RUL prediction. Conventional DBNs were combined with 

an evolutionary algorithm to establish an ensemble method called Multi-objective DBN ensemble, 

which was used for RUL estimation (Saxena, Goebel, et al. 2008), (Chong Zhang et al. 2017).  
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As both RNNs and CNNs have proven applicability in fault diagnosis and prognosis, some 

researchers adopted a sequential approach, which first extracts local features using CNNs and then 

feeds them to LSTM network for temporal understanding (Canizo et al. 2019), (Zheng et al. 2019). 

(Malhotra et al. 2016) proposed a LSTM based AE structure that transforms a multivariate input 

raw sequence into a fixed length vector which is then used to produce the target sequence by the 

decoder. (R. Zhao et al. 2017) demonstrated a hybrid DL model combining CNN and bidirectional 

LSTM, where a CNN is employed for extracting local features and bidirectional LSTM network 

is built on CNN network to output temporal information encoding and representation learning. 

Similar architectures were employed by other researchers, where the outputs from the LSTM and 

CNN network are summed and fed into a subsequent LSTM layer (Al Dulaimi et al. 2019), (Jialin 

Li, Li, and He 2019).  

However, these hybrid network architectures may not be practical because they require a large 

number of network hyperparameters for tuning, resulting in a larger model (Yang Zhang et al. 

2020). An emerging trend in the field of fault prognosis is to understand the time-series data by 

translating them into images and taking advantage of the existing knowledge on image 

representation learning such as ImageNet (pre-trained image classification models) for fault 

diagnosis (Cao, Zhang, and Tang 2018), (Shao et al. 2019). (Krummenacher et al. 2018) proposed 

an intuitive approach to convert the natural plot of 1-D time series data to 2-D image. (Z. Wang 

and Oates 2015) and (Hatami, Gavet, and Debayle 2018) proposed several encoding approaches 

for converting time-series signals into images such as Garmin Angular Fields (GAF), Markov 

Transition Fields (MTF) and Recurrence Plots (RP), which were adopted for failure detection 

using vibration signals (Gecgel et al. 2019). Figure 2.13 shows sample encoding of time series data 

with GAF, MTF and RP. Current research in this field is focused on evaluating the benefits of 
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different time-series to image encoding techniques and then comparing their performance for 

different time-series data and different fault types (Garcia et al. 2020). 

 

Figure 2.13. Sample encoding of time-series data with GAF, MTF and RP (Fink et al. 2020) 

Some researchers have taken an alternative approach to leverage the benefits from recent 

advancement in convolutional operations and use them for fault diagnosis and prognosis (Ince et 

al. 2016), (Jing et al. 2017), (Q. Wang, Michau, and Fink 2019). (Babu, Zhao, and Li 2016) 

proposed a CNN with two convolutional layers, two average pooling layers and a fully connected 

dense layer to estimate the RUL of airplane engines based on time-series data and reported that 

the proposed CNN method outperformed regression methods such as MLP, Support Vector 

Regression (SVR) and Relevance Vector Regression (RVR). Some of the research works that 

adopted CNN for fault prognosis include using a deep CNN architecture for RUL estimation by 

using time window approach for sample preparation (Xiang Li, Ding, and Sun 2018) and using 

Short-time Fourier transformation and multi-scale feature extraction with CNN to enhance 

network learning capability (X Li, Zhang, and Ding 2019).  

Despite the popularity of CNN for fault prognosis, (Liangwei Zhang et al. 2019) noted the lack of 

existing research using imagery data in the field of fault prognosis unlike fault detection and fault 

diagnosis. They also identified the need for researchers to properly address their efforts towards 
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building confidence bounds associated with a RUL prediction and highlighted the need for unified 

evaluation metrics for assessing fault prognostic models to make comparing various models easier. 

 Approaches based on Unsupervised Learning Techniques 

As it is not always feasible to collect labelled data, unsupervised and semi-supervised learning 

techniques can come to aid in situations where data is sparce. Signal reconstruction is one of the 

most popular unsupervised learning approaches in the field of fault prognosis using DL-based 

approaches that involve defining a model to learn normal system behavior. The model is then used 

to distinguish normal system behavior from dissimilar system states under normal operating 

conditions, a technique commonly known as novelty or anomaly detection (Fink et al. 2020). AEs 

are typically used for signal reconstruction, and deep AEs have the potential to capture more 

complex relationships to be able to detect more subtle deviations from the representative system 

conditions (Bengio et al. 2007).  

Semi-supervised techniques have also been tested for fault prognosis, to deal with large datasets 

where only a subset of the samples are labelled (Oliver et al. 2018), (Shi 2018), (André Listou 

Ellefsen, Bjørlykhaug, Æsøy, et al. 2019). Semi-supervised techniques such as self-training (Yoon 

et al. 2017), graph based methods (Y. Zhao et al. 2015) and co-training methods (C. Hu, Youn, 

and Kim 2011) were commonly used for RUL predictions. MixUp method (H. Zhang et al. 2017) 

involves mixing labelled and unlabeled data and is found to be a promising semi-supervised 

learning approach, motivated by its successful use in other domains such as image classification 

(Berthelot et al. 2019), (Verma et al. 2019), (Q. Wang, Li, and Van Gool 2019).  

Despite the superior adaptability and performance of DL-based models for fault diagnosis and 

prognosis, they are generally restricted to use with only laboratory data because of insufficient 
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labelled data in real-world applications. Furthermore, the generalization capability of the models 

to predict faults that were not present in the training dataset are poor, resulting in low testing 

accuracy in real world applications (Tidriri et al. 2016), (A. Kumar, Shankar, and Thakur 2018), 

(Liangwei Zhang et al. 2019). 

 Fault Diagnostic and Prognostic Applications for Mining Equipment 

This section provides a comprehensive review of existing literature on fault diagnostics and 

prognostic models for mining equipment from 2012 to 2020. The most common methods used for 

fault diagnosis and prognosis of mining equipment are Statistical-based and ML-based data-driven 

approaches. 

 Applications based on Statistical-based Methods 

(Page et al. 2012) developed a method to diagnose faults and predict RUL of Caterpillar vehicles 

by identifying the most important elements of an oil analysis and constructing a statistical model 

in conjunction with the historical maintenance database. (Ghodrati, Ahmadzadeh, and Kumar 

2012) used a Weibull proportional hazards method (PHM) to compute the RUL and develop 

optimal scheduled maintenance schedule for hydraulic jacks of load haul dumper (LHD) machines 

by taking into consideration the operating conditions. (Balaba, Ibrahim, and Gunawan 2012) 

investigated the use of analytical tools such as Failure Mode and Effect and Criticality Analysis 

(FMECA) and Weibull analysis to understand the failure characteristics and improve the scheduled 

maintenance schedule of a shearer loader in underground mining. (Ho and Hodkiewicz 2013) used 

traditional data-driven approaches to understand the failure behavior of hydraulic cylinders in two 

different classes of haul trucks at various sites and to assess the influence of physical properties of 

ore on component failures. (Carstens and Vlok 2012) used a statistical approach, PHM, to predict 
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the RUL of Caterpillar 793D haul truck engines using data obtained from a South African mine 

and reported that RUL predicted by the developed models is very accurate. 

(Mohammad Hajizadeh 2014) applied a hybrid model-based (interacting multiple model) fault 

detection approach for diagnosing faults in mining haul truck suspension struts. (M Hajizadeh and 

Lipsett 2015) presented a wavelet-based analytical technique in parallel with an autoregressive 

model-based method to detect suspension strut faults in haul trucks and reported favorable results. 

(J. J. Wu, Wu, and You 2014) developed a method that incorporates an optimal multivariate 

Bayesian model to address critical issues with PHM for complex mining equipment and 

demonstrated the superior performance of the developed model with an example of jaw crushers. 

A similar Bayesian network was constructed by creating a mapping between the Bayesian network 

and a fault tree for diagnosing faults in a scraper conveyor at a coal mine in China (Xue, Li, and 

Xu 2016). (Groenewald, Kleingeld, and Cloete 2018) used a statistical-based autoregressive model 

for fault diagnosis of large three-phase induction motors in electrical machines in deep 

underground mines in South Africa. (Rahimdel, Ghodrati, and Vahed 2020) analyzed the failure 

behavior of critical subsystems of railcars in a Swedish mining company and developed a 

statistical-based PHM model to predict the RUL of railcars by considering the effect of various 

operational factors. 

 Applications based on ML-based data-driven Methods 

(P. Kumar and Srivastava 2012) built an expert system that uses mathematical and ML-based data 

driven approaches such as genetic algorithms and ANNs to detect various faults in an excavator 

and its components by using historical maintenance database. (Dindarloo and Siami-Irdemoosa 

2017) applied ML-based data-driven approaches to diagnose faults in a fleet of ten shovels using 

data from a historical maintenance database during a one-year period. They used k-means 
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clustering to classify shovels into four categories and used SVM to classify impending failures 

with a classification accuracy of over 75%. (Nixon et al. 2018) used a hybrid ML-based data-

driven approach by using linear discriminant analysis classification technique in combination with 

Naïve Bayes classifier to diagnose faults in diesel engine components. After extensive 

experimentation, they concluded that SVM outperforms the hybrid linear discriminant analysis 

(LDA)-Naïve Bayes classifier and also emphasized on the importance of domain expertise for fault 

diagnostics. (Andrejiova and Grincova 2018) applied Naïve Bayes classifier to classify various 

types of impact damages occurring in conveyor belts by studying the influence of different types 

of conveyor belts, drop height and type of impacting material under laboratory conditions. 

(Juanli Li et al. 2018), (Juanli Li et al. 2019) and (Juanli Li et al. 2020) proposed a fault diagnosis 

method for braking system in mine hoists using ML-based data-driven methods such as MLP and 

decision tree using real-time data and reported satisfactory model accuracy. (G. Zhong, Dong, and 

Ye 2018) proposed a ML-based data-driven approach for diagnosing faults in shearer equipment 

used in underground mines by using PCA for dimensionality-reduction and constructing an ANN 

architecture with backpropagation. They also reported greater generalization ability and higher 

accuracy by combining the ANN architecture with an ensemble learning method, Adaboost. 

(Paithankar and Chatterjee 2018) proposed a hybrid ML-based data-driven method using NN and 

genetic algorithm (GA) using data from historical maintenance database to predict the RUL of 

LHD machines with satisfactory prediction accuracy that outperformed other traditional methods 

such as lifetime distribution models and Markov models. (M. Liu et al. 2019) developed a unique 

approach that uses an online diagnosis method based on incremental sparse kernel extreme 

learning machine (ISKELM) for classifying faults. They applied ISKELM to classify faults in 
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diesel engines and realized a high classification accuracy and faster online diagnosis compared to 

other existing online diagnostic methods.  

(Taghizadeh Vahed, Ghodrati, and Hossienie 2019) applied a ML-based data-driven method called 

enhanced k-NN (combination of k-NN and GA) to diagnose faults in draglines using data obtained 

from a historical maintenance database and reported better classification accuracy compared to 

conventional k-NN and ANN models applied to the same dataset. (Ding et al. 2019) applied radial 

bias function (RBF) classifier with linear independent component analysis (ICA) to extract fault 

features for diagnosing faults in shearers using vibration signals measured by with an 

accelerometer. The results showed a higher accuracy of fault detection for the developed method 

compared to other traditional methods. (Xiangong Li et al. 2020) proposed an approach that 

combines PCA for dimensionality reduction and SVM for diagnosing faults in a conveyor belt 

used in underground mines using data collected by various sensors and achieved an accuracy of 

over 97%. (Nanyang Zhao et al. 2020) proposed a method based on variational mode 

decomposition for reducing the dimensionality of the feature set and random forest for diagnosing 

valve train clearance faults in diesel engines effectively. (Sahu and Palei 2020) developed an 

approach that used real-time data from various sensors as input to a Bayesian Network for 

classifying faults in draglines in an Indian mine. 

 Summary of the Literature Review 

The above literature review summarized the major contributions of previous researchers seeking 

to better understand and implement various DM techniques for diagnosing and prognosing faults 

in various equipment including mining equipment. Researchers have implemented numerous ML-

based and DL-based models and achieved satisfactory results for fault diagnosis and prognosis in 

various industries.  
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The literature review also shows that several researchers have addressed the same failures by using 

different DM techniques on some of the easily accessible and popular datasets rather than trying 

to identify and address novel failures. In addition, some researchers tend to use fabricated or 

simulated data for diagnosis and prognosis of failures which may not account for all complex 

scenarios in the real world. Although fault diagnostic and prognostic models are not novel to 

mining industry and mining equipment, existing works on mining equipment are primarily focused 

on knowledge-driven approaches (model-based and statistical-based) and traditional ML-based 

approaches. Despite the popularity and successful application of DL-based approaches in other 

domains, no such work related to mining equipment has been reported so far. Thus, there is a need 

for an integrated engineering methodology which can be used for identifying critical failures in 

mining equipment and developing various ML-based and DL-based data-driven approaches for 

fault diagnosis and prognosis using data from several sources associated with the equipment. 
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Chapter 3: IDENTIFYING FAILURE MODES TO 

INVESTIGATE  

 

 

This chapter presents an approach to identify the critical failure modes to investigate in this 

research by using data from a variety of sources. This chapter forms the basis for this research as 

the objective of this chapter is to identify a critical failure for which data-driven fault diagnostic 

and prognostic models are to be developed. The type of data available and the choice of data-

driven approaches are dependent on the failure identified in this chapter.  
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 Background Information 

The objective of this phase was to identify a suitable candidate for developing fault diagnostic and 

prognostic models using ML and DL algorithms. Since haul trucks are complex equipment with 

several components, the following sections describe a systematic methodology adopted to identify 

a key component of haul trucks for which the fault diagnostic and prognostic models need to be 

developed. Figure 3.1 presents a flowchart detailing the steps involved in identifying the key 

failures of interest through a unique and robust approach that utilizes data from various 

components of historical maintenance database such as downtime reports, alarm log database and 

work order reports. 

 

Figure 3.1. Flowchart detailing the steps to identify critical failures to investigate 
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The historical maintenance database consists of the following components: 

• Downtime Reports: Data on frequency of failures and the down time associated with each 

failure (or repair) is stored in this database and can be grouped by site, equipment type, 

failure category such as electrical, mechanical, hydraulic systems etc.  

• Alarm Log Database: Alarms generated when a specific component of a truck operates 

outside the desired operating range are stored in alarm logs. These alarm logs consist of 

information such as equipment ID, alarm code and description, date and time at which the 

alarm was triggered and ended, alarm priority etc.  

Alarms can be broadly classified into two types:  

o Original Equipment Manufacturer (OEM) defined alarms: These alarms are logged 

when a truck or a specific component of the truck are operating outside a desired range 

and are defined by OEMs. 

o User Defined Events (UDEs): These alarm conditions are defined by the maintenance 

personnel after thoroughly investigating the performance of various components in a 

haul truck and are customized to meet the unique conditions at each mine site. 

• Work Order reports: All maintenance work carried out on any equipment on site is logged 

into the work order history. A typical work order consists of essential information such as 

a unique ID associated with each work order, equipment ID, the date on which repair work 

has started and ended and a brief description of the work completed along with other 

information.  A sample work order history is presented in Appendix A. 

Figure 3.1 shows how data from the three components of the historical maintenance database are 

used in series to identify the ideal candidate for developing fault diagnostics and prognostics 

models, and the same framework is elaborated in the following sections. 
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 Event Log Analysis 

Equipment failure frequency and downtime records for haul trucks were obtained from the 

downtime reports for a period of 24 months (January 2018 to December 2019) at a mine (mine A). 

The data collected was then filtered to include only unscheduled mechanical failures with the 

objective to identify the most problematic categories whose failures are hard to predict. The top 

ten categories of unscheduled mechanical failures were then selected, and a Pareto analysis was 

performed to identify the categories that contributed towards the highest down hours and frequency 

of failure as shown in Figure 3.2 through Figure 3.5. The X-axis on these figures represents the 

failure category and the Y-axis represents the percentage of down hours or number of events for 

each failure category.  

 
Figure 3.2. Pareto analysis of down hours for unscheduled mechanical failures in 2018 
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Figure 3.3. Pareto analysis of number of events for unscheduled mechanical failures in 2018 

 
Figure 3.4. Pareto analysis of down hours for unscheduled mechanical failures in 2019 
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Figure 3.5. Pareto analysis of number of events for unscheduled mechanical failures in 2019 

Figure 3.2 through Figure 3.5 indicate that engine related failures are by far the most frequent 

failures at the mine and also accounted for the highest downtime in both years. With the primary 

focus narrowed down to engines, further analysis was carried out as detailed to identify a specific 

problem area within engine related failures.  

 Alarm Log Analysis 

This section presents how historic alarms stored in the alarm log database were used to identify 

the failure(s) of interest by analyzing the frequency of alarms. The idea behind the analysis 

performed in this section is to narrow down the broader spectrum of engine related failures by 

identifying and analyzing only the alarms (related to engine failures) with the highest frequency.  
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The large number of alarms triggered in a short period of time remain one of the limiting factors 

for using alarm logs for failure analysis. This makes them almost unmanageable, and difficult to 

extract relevant component related information without the use of sophisticated data filtering 

techniques. For instance, 1,518,636 alarms were logged in 2018 and 1,496,681 alarms were logged 

in 2019. This results in an average of over 4000 alarms per day, and an average 141 alarms per 

each truck in a day. A preliminary analysis of the alarm log database indicated the presence of 

duplicate rows and rows with missing timestamps, all such events were deleted prior to using the 

alarm log for further analysis. Table 3.1 shows the count of unique alarms codes of priorities 1, 2 

and 3 recorded, with priority 1 alarms being the most severe alarms that require immediate 

attention. 

Table 3.1. Alarm priority count and frequency 

 2018 2019 

Alarm 
Priority 

Unique Alarm 
Types 

Alarm 
Frequency 

Unique Alarm 
Types 

Alarm 
Frequency 

Priority 3  455 85.6% 455 86.2% 

Priority 2  334 8.5% 334 7.5% 

Priority 1  329 5.9% 329 6.3% 

 

Although the truck generates both OEM and UDE alarms, the UDE alarms are more representative 

of potential engine failures. Thus, the primary focus of this approach was to investigate the most 

frequently occurring engine related UDEs. Figure 3.6 shows the distribution of the most frequent 

UDEs with low engine oil pressure contributing to 39.2% of the total UDE count over the two 

years.  
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Figure 3.6. Distribution of most frequent UDEs 

There were two types of engine oil pressure alarms, priority 1 representing the high priority alarms 

requiring immediate attention and a less severe priority 3 alarm. Due to the high amount of low 

engine oil pressure alarms, only alarms with the highest priority (priority 1) were considered for 

this analysis. By filtering the alarm log database for high priority low engine oil pressure alarms, 

a new dataset was created consisting of equipment ID and the date and time of the alarm. The high 

priority engine oil pressure alarms may contain a few false alarms (false positives), and the 

following section describes a procedure to use the results of this section to further narrow down 

the scope for identifying the key component to be investigated. 

 Work Order Report Analysis 

After identifying low engine oil pressure as the alarm of interest, work order history from January 

2018 to December 2019 was obtained and investigated for all the haul trucks at this mine. The 

rationale for performing this analysis using work order reports is the intuition that most true 
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positive high priority low engine oil pressure alarms would be followed by a repair. All engine 

related work orders within a week following a low engine oil pressure alarm were identified and 

Figure 3.7 shows the frequency of several failures that occurred within a week following a low 

engine oil pressure alarm in a truck. 

 

Figure 3.7. Frequency of failures following low engine oil pressure alarm 

Figure 3.7 illustrates that 40% of all the work orders created (repairs performed) within a week of 

a high priority low engine oil pressure alarm were related to high-pressure fuel pump (HPFP) 

failures, followed by 16% work orders related to coolant leaks and exhaust leaks each. Other 

failures include engine oil leaks, truck not starting, fuel injector failures, low horsepower etc. 

constitutes 19% of work orders.  In addition, majority of the HPFPs at the three mines (Mine A, 

Mine B and Mine C) failed prematurely at about 5,000 – 6,000 hours lasting on average only a 
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third of their expected life. Based on these results, HPFPs were chosen to be the ideal candidates 

for developing fault diagnostic and prognostic models.  

 
 High Pressure Fuel Pump Failures 

HPFP is one of the primary components of the diesel injection system and is responsible for two 

primary functions: injecting certain amount of fuel under the designated pressure and regulating 

the required injection timing. The electric priming pump pulls fuel from the fuel tank and passes 

it though a fuel filter (shown in grey) before sending fuel into the HPFP (part E). Low pressure 

fuel entering the HPFP is pressurized before being delivered to the solenoid controlled electronic 

injectors (part D) that are mounted on the high-pressure rail (part A). Fuel injection pressure and 

timing can be accurately controlled by the electronic engine control unit (part C) and the solenoid 

controlled electronic injectors. The common rail pressure is measured by the rail pressure sensor 

(part F) mounted on the high-pressure rail. An electronic actuator located at the inlet of the HPFP 

called inlet metering valve (IMV) controls the fuel pressure and this pressure is measure by a 

sensor mounted on top of the HPFP. The manufacturers bulletin states that the HPFP is lubricated 

by engine oil for longevity of the pump. 
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Figure 3.8 Flow diagram of common rail fuel system (Bosch 2021) 

There are three major types of HPFP failures: cavitation failure, gerotor failure and particle 

ingression failure. Cavitation failure is caused when air or water gets entrained into the fuel causing 

localized bubbles that implode and eventually damage the surfaces in the HPFP. Gerotor failures 

are caused when the gerotor pump in the HPFP cracks (or breaks) due to excessive stress causing 

a slow and gradual ingress of engine oil (which is used as a lubricant) into the fuel thereby resulting 

in contamination of the fuel. Particle ingression is caused either by manufacturing debris (such as 

weld spatters and abrasives), ingested particles (such as pulverized coal and ore dust) or generated 

particle (caused by corrosion and mechanical wear). Particle ingression can lead to contact fatigue 

which under repeated stress reversal cycles may ultimately result in spalling of HPFP components. 

Because of the issues surrounding the availability of data for developing fault diagnostic and fault 
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prognostic models for cavitation and particle ingression failure, only gerotor failures were 

researched for developing fault diagnostic and prognostic models. 

 Summary and Conclusions 

In this research, a novel approach was proposed to identify critical failures in haul trucks using 

data from various historical maintenance databases such as the frequency of failures, duration of 

downtime, alarm logs and work order reports. The analysis performed in this chapter was focussed 

on using frequency of failures and average downtime duration from the unscheduled mechanical 

failures at the mine in 2018 and 2019. The results of Pareto analysis indicate that engine related 

failures are the most frequent failures and account for the highest percentage of downtime in 2018 

and 2019. With the primary focus on engines, historical alarm logs were analyzed to identify 

engine related alarms with the highest frequency. Due to the large number of alarms generated at 

the mine, only UDE alarms of priority 1 (highest priority) were used and low engine oil pressure 

was identified to occur the most with a frequency of 39.20%. Since low engine oil pressure could 

be caused due to a variety of reasons, work order reports were investigated to identify major 

failures following a high priority low engine oil pressure alarm. HPFP failures were eventually 

identified to be the critical failure of interest because of their high frequency of occurrence and 

tendency to fail prematurely. In addition to HPFP failures, other failures such as coolant leaks, 

exhaust leaks, turbo charger failures and fuel injectors fuel injectors were identified to have a high 

failure frequency indicating the need for future research to address these issues. The rest of this 

thesis was focused on developing data-driven fault diagnostic and fault prognostic models to 

address gerotor failures in HPFP. 
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Chapter 4: FAULT DIAGNOSIS USING DATA-

DRIVEN TECHNIQUES 

 

 

This chapter presents an approach to develop fault diagnostic models using machine learning-

based and deep learning-based data-driven approaches. This chapter present a detailed overview 

of the various steps involved in diagnosing failures such as data collection, extracting condition 

indicators, data pre-processing, building data-driven models, hyperparameter tuning and 

evaluating the model performance. This chapter also presents the results of validating various 

unsupervised approaches implemented to diagnose a critical failure identified in the previous 

chapter, by testing them at multiple mines.  
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 Background Information  

The objective of this chapter is to develop an approach to diagnose gerotor failures in HPFP with 

significant accuracy and sufficient lead time of at least 2-3 weeks prior to a potential failure. Figure 

4.1 presents a flowchart with the steps involved in diagnosing gerotor failures in HPFP.  

 
Figure 4.1. Flowchart detailing the steps involved in diagnosing gerotor failures in HPFP 

The following sections of this chapter present a detailed overview of the various steps involved in 

diagnosing gerotor failures in HPFP such as data collection, extracting condition indicators, data 

pre-processing, building data-driven models, hyperparameter tuning and evaluating the 

performance of models. The model performance was validated by testing it at two other mines and 

is presented in this chapter. 
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 Data Collection 

As mentioned in the Chapter 2, the most common types of input data used for building fault 

diagnostic models are vibration data, imagery data, time-series data and structured data. Although 

some researchers have successfully applied DL-based approaches such as CNN and RNN to 

diagnose faults using time-series data, such models cannot be adopted in this research due to the 

lack of availability of labelled and high-frequency time-series data. Because of the unavailability 

of vibration and imagery data, the rest of this chapter focuses on developing fault diagnostic 

models using time-series data and unlabeled structured data as input. 

Time-series data is available in the form of sensor readings from several sensors mounted on the 

haul trucks, and these signal readings are used to generate alarms that are subsequently stored as 

alarm log database, as described in Chapter 3. The rationale for using the alarm log database to 

diagnose gerotor failures in HPFP is to assess the occurrence of high priority alarms to identify 

common occurrence patterns prior to a failure. The choice of the second dataset (unlabeled 

structured dataset) is based on the empirical knowledge that a gerotor failure results in the 

contamination of engine oil that is used to lubricate fuel pumps. This is a slow process, and the 

contamination of engine oil should theoretically alter the concentrations of additives and other 

physical properties of engine oil such as the viscosity. Therefore, it could be possible to identify 

the specific samples whose concentration of additives or physical properties are outside the desired 

range by analyzing engine oil samples. 

Typically, engine oil samples are collected at an interval of 750 hours and if the results of the 

analysis indicate the presence of an abnormality, the necessary repairs are performed, and oil 

samples are collected following the repair to ensure the haul trucks are restored to normal operating 

conditions. The output of the engine oil analysis for each sample consists of the concentrations of 
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various contaminants, additives and wear metals. Table 4.1 shows all the features (contents) that 

are obtained by analyzing an engine oil sample. There are a total of 36 features including several 

additives, contaminants and wear metals. A total of 997 oil samples were collected and analyzed 

from all the haul trucks at this mine (mine A) between January 2019 to August 2020.  

Table 4.1. Input features of oil sample analysis report 

 

The following sections describe the procedure adopted in this research to identify condition 

indicators and develop fault diagnostic models to diagnose gerotor failures in HPFP. 
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 Selection of Condition Indicators 

Feature selection is the process of selecting specific features from the input dataset that contribute 

most to predicting the target (output) value and is dependent on knowledge of the possible 

degradation types and past observations of failures. Selecting too few features may result in missed 

alarms and too many features may result in an excessive number of false alarms reducing the 

credibility of the developed model. Thus, feature selection plays an important role in developing 

fault diagnostic models and must contribute to minimizing false alarm rates and maximizing the 

detection rate (Fink et al. 2020).  

Feature selection assists in the selection of condition indicator, which is “a feature of condition 

monitoring system whose behavior changes in a predictable way as the system degrades or 

operates in different operational modes”, enabling the distinction between normal operation from 

fault conditions (Sharma and Parey 2016). (Y. Hu, Palmé, and Fink 2016) discussed some of the 

desired characteristics such as monotonicity, robustness and adaptability that the condition 

indicators should possess, and (L. Guo, Li, et al. 2017) proposed several ways to design condition 

indicators and use them for fault prognostics. Due to the possibility of multiple fault types in a 

system, it may be challenging to design a set of condition indicators that are able to classify all the 

fault types. The performance of ML and DL-based methods is highly dependent on the quality of 

the condition indicators, and as the number of CM features increase it becomes arduous to extract 

quality condition indicator(s). Hence it is essential to perform manual pre-processing of the raw 

data to derive more useful representations of the data. This process is known as feature 

engineering, and feature engineering typically involves the following steps: transforming raw data, 

signal processing, reducing the dimensionality of the data (Forman 2003). 
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Although a lot of researchers have proposed numerous condition indicators for developing fault 

diagnostic and prognostic models for various failures, the research on condition indicators for   

HPFP failures in large diesel engines still does not exist. Although the focus of this research is on 

addressing gerotor failures in HPFP, the following section proposes an empirical way of 

determining condition indicators by assessing the occurrence pattern of existing HPFP related 

alarms and determining the feasibility of using the most frequent alarms as potential condition 

indicators for all types of HPFP failures. 

 Assessing the Occurrence Patterns of Alarms Related to HPFP Failures 

The objective of this phase was to assess the relationship between various alarms and HPFP 

failures, and to identify potential condition indicators for developing fault diagnostic models. 

Currently there are no existing UDE alarms to predict a HPFP failure, so this section focuses on 

OEM alarms.  

Although the fault diagnostic and prognostic models were being developed only for gerotor 

failures in HPFP, historical alarm log data was obtained for all types of HPFP failures in order to 

extract as many condition indicators as possible. There were a total of 37 HPFP failures at the mine 

starting from July 2018 to August 2020, and alarm log data was collected for up to 15 days prior 

to each failure. Each failure was given a unique identification number from 1 to 37, and the 

occurrence of various HPFP related alarms (excluding low engine oil pressure alarms) prior to 

each failure were recorded. Since the objective of this phase was to assess the occurrence of various 

alarms prior to a HPFP failure, the alarm dataset was reduced by considering only one alarm of 

each type per haul truck in a day and if the same alarm was triggered with different priorities, only 

the alarm with highest priority during the day was considered. For example, if there were multiple 
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low fuel alarms of priority 1 and priority 3 registered in a day prior to a failure, only one low fuel 

alarm of priority 1 was considered. 

The most frequent alarms in the 15 days prior to each HPFP failure were manually analyzed to 

identify their pattern of occurrence, and to identify potential candidates for developing condition 

indicators. Table 4.2 shows the frequency of the top 8 alarms that occurred 15 days prior to a HPFP 

failure. 

Table 4.2. Frequency of top 8 alarms prior to a HPFP failure 

Alarm Code Frequency 

Low Horsepower 29 

High Blow-By Pressure 20 

Injector Metering Rail Pressure Low 19 

Fuel Pump Delivery Pressure Low/High 19 

Low Fuel 16 

Fuel Pump Delivery Pressure Low 13 

Fuel Pump Delivery Pressure High 12 

Engine Fuel Delivery Pressure High 5 

 

Table 4.2 shows that a low horsepower alarm was triggered on at least one of the 15 days prior to 

a failure in 29 of the 37 HPFP failures. Gantt charts were prepared for each of the top 4 most 

frequent alarms (in ascending order) to visually represent their occurrence prior to a failure. The 

X-axis of the Gantt charts represent days leading to a failure and each instance of failure is 

represented along the Y-axis. Figure 4.2 presents the time-event chart for fuel pump delivery 
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pressure alarms prior to a HPFP failure. For example, low fuel pump delivery pressure alarm was 

present 2 days prior to a failure in failure 1 and failure 2, while a high fuel pump delivery pressure 

was observed 14 days prior to the failure and lasted for 6 days in failure 6. From Figure 4.2 it is 

evident that abnormal fuel pump delivery pressure was observed in 51% of all HPFP failures. An 

analysis of Figure 4.2 shows that low fuel pump delivery pressure was observed 2 days prior to a 

failure in 25% of all 37 failures and a high fuel pump delivery pressure alarm was observed at least 

12 days prior to a failure in 25% of all 37 failures.  

 
Figure 4.2. Time-event chart for fuel pump delivery pressure alarms 

Figure 4.3 represents the time-event chart for injector rail pressure alarms prior to a HPFP failure. 

Injector rail pressure alarms were only observed in 51% of the failures, with half of them being 

low injector rail pressure alarm and the other half being high injector rail pressure alarms.  
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Figure 4.3.Time-event chart for injector rail pressure alarms 

Figure 4.4 represents the time-event chart for high blowby or crankcase pressure alarms leading to 

a HPFP failure. There were two different priorities of high blowby pressure alarms that were 

observed, priority 2 alarms are less severe and are triggered when the blowby pressure increases 

to 1.5 kPa, and the most severe priority 1 alarms are triggered when the blowby pressure raises to 

2.25 kPa. High blowby pressure alarms were observed in 54% of all 37 HPFP failures and only 

one of these failures did not have a priority 1 high blowby pressure alarm recorded within 15 days 

prior to a failure. An analysis of Figure 4.4 shows that 75% of all failures that had high blowby 

pressure alarms, had the alarm at least 10 days prior to a failure, and 50% of the alarms were 

present in the 14 days prior to a failure.  
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Figure 4.4. Time-event chart for high blowby pressure alarms 

Figure 4.5 represents the time-event chart for low engine horsepower alarms of two different 

priorities: priority 3 being the least severe alarms and priority 1 being the most severe. Compared 

to the 3 alarm types discussed earlier, low horsepower alarms are the most frequently alarms 

observed within the 14 days prior to a failure. A low horsepower alarm was observed in 78% of 

all HPFP failures, and a priority 1 alarm was present in 62% of the total failures. Of all the trucks 

that had low horsepower alarms prior to a HPFP failure, 34% of them had a low horsepower at 

least 10 days prior to the failure.  
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Figure 4.5. Time-event charts for low horsepower alarms 

Figure 4.2 through Figure 4.5 indicate that although the alarms were observed prior to a failure in 

a majority of the HPFP failures, most alarms were triggered only within 7 days prior to a failure. 

Thus, they may serve as good condition indicators for fault prognosis, but since the objective of 

the fault diagnostic models is to have a significant lead time of at least 2-3 weeks prior to a failure, 

an alternative approach is needed for developing fault diagnostic models. 

The following sections describe a methodology proposed to detect gerotor failures in HPFP in a 

haul truck using engine oil sample analysis and the various steps associated with it. 

 



 

 84 

 Fault Diagnostic Methods 

 Fault Detection Based on Engine Oil Sample Analysis  

The engine oil sample dataset being used for fault diagnosis does not have any labelled data for 

the target value, resulting in an unlabeled structured dataset. Although the application of DL-based 

fault diagnostic models on unlabeled structured datasets are not very common, some researchers 

have proposed an approach to build AEs and DBNs by choosing a target variable from the 

multivariate dataset and build a model to map all other variables to the chosen target variable.  

It is generally expected that contamination of fuel by engine oil leak could result in a change in 

viscosity of the engine oil, which serves as an obvious indicator of gerotor failures in HPFP. Hence 

engine oil viscosity was chosen as the target variable for building DL-based fault diagnostic 

models. But assessing the viscosity of engine oil samples revealed that not all samples with a HPFP 

failure had viscosity outside the desired operating range. Figure 4.6 shows the probability density 

function (PDF) plot of engine oil viscosity at 40°C (in cSt) for all engine oil samples collected. 

The blue line corresponds to the kernel density estimation (KDE) of viscosity of haul trucks that 

had a HPFP failure, and the orange line shows the KDE of oil viscosity in trucks that did not 

encounter a HPFP failure between the dates for which failure data was collected. The viscosity of 

oil samples analyzed from trucks without a HPFP failure lie between 95-120 cSt and the viscosity 

of points that were associated with a HPFP failure had viscosity ranging from 25 to 175 cSt. 

Despite such a large variation in the viscosity for points associated with failures, the majority of 

them still had viscosity between 100-125 cSt, which was similar to the viscosity of normal samples. 

Hence engine oil viscosity alone cannot be used as a target variable for developing DL-based 

models to identify a HPFP failure, and a similar trend was observed with other components of the 

engine oil analysis. 
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Figure 4.6. PDF plot of engine oil viscosity in centistokes (cSt) 

Since the conditions required to implement DL-based methods such as AEs and DBNs were not 

satisfied by the unlabeled structured data, outlier detection methods based on unsupervised 

learning techniques were used to identify points (samples) in the dataset that deviate significantly 

(outliers) from the other closely related points (inliers) to classify faults. 

 Outlier Detection Methods 

Hawkins defined outlier as “an observation which deviates so much from the other observations 

as to arouse suspicions that it was generated by a different mechanism” (Hawkins 1980). 

According to Aggarwal (2017), outliers are also commonly referred to as anomalies, abnormalities, 

or deviants in the data mining and statistical literature (Aggarwal 2017). Outlier detection or 

anomaly detection is an unsupervised learning technique that was traditionally applied to 
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preprocessed CM data for fault diagnosis (Du et al. 2014), (Costa, Angelov, and Guedes 2015), 

(Zhu, Mei, and Zheng 2017). Based on existing literature, unsupervised methods for outlier 

detection can be classified as statistical, proximity-based, density-based, and cluster-based 

methods (Han, Pei, and Kamber 2011). Statistical outlier detection methods are based on the 

assumption that distribution of data is known in advance (Swersky 2018), and is not an ideal 

candidate for the dataset used in this research. Proximity-based techniques such as k-NN are based 

on the calculation of distances between points and do not make any prior assumptions about the 

data, but are not suited for datasets with high dimensionality or large number of records (Hodge 

and Austin 2004). 

Density-based outlier detection methods are based on the assumption that outliers typically occur 

in low density regions (H. P. Kriegel et al. 2011), an  example of density-based methods include 

Density-Based Spatial Clustering for Applications with Noise (DBSCAN), Local Outlier Factor 

(LOF), Local Correlation Integral (LOCI), and Angle-Based Outlier Detection (ABOD). Cluster-

based methods are similar to density-based methods and classify the points that do not fit well into 

a cluster as outliers. A popular cluster-based outlier detection algorithm is Global-Local Outlier 

Score from Hierarchies (GLOSH) which is based on hierarchical DBSCAN (HDBSCAN) 

(Campello, Moulavi, and Sander 2013). LOF and LOCI identify outliers with respect to local 

neighborhood rather than with respect to the global data and thus, this research primarily 

implements DBSCAN for outlier detection. DBSCAN is also the most popular and one of the most 

cited outlier detection algorithm because of its superior performance over other algorithms (Behera 

and Rani 2016). 

Local Outlier Factor (LOF) is an unsupervised outlier detection algorithm that computes the local 

density deviation of a data point with respect to its neighbors (Breuniq et al. 2000). A local density-
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based LOF score is estimated for each point using distances to its k-nearest neighbors. The density 

of each point in the database is compared with the density of its k-nearest neighbors, and a LOF 

value less than or closer to 1 indicates a higher probability of the corresponding point belonging 

to a cluster. Regions of similar density can be identified using the local density, and the points that 

have a substantially lower density than their neighbors, represented by LOF values greater than 1, 

are considered as outliers. The outlier factor in LOF is local since the calculated score is restricted 

to small neighborhood around each point. The trainable hyperparameter of LOF is MinPts, which 

represents the number of nearest neighbors used to define the local neighborhood of the point.  

Angle Based Outlier Detection (ABOD) algorithm uses both distance between points in a vector 

space and the direction of distance vectors (H.-P. Kriegel, Schubert, and Zimek 2008). The 

underlying principle of ABOD is that outliers in a database can be identified by comparing the 

angles between a pair of distance vectors to other points. For points in the database that belong to 

a cluster, the angles between difference vectors to pairs of other points are large and differ widely. 

The variance of points tends to get smaller as the point is located away from a cluster, and for 

outliers in the database, the angles between difference vectors to pairs of other points are smaller 

with low variance. The ABOD algorithm assigns an angle-based outlier factor to each point in the 

database and the points are ranked in the order of their outlier factor scores. The highest ranked 

points are the outliers in the dataset, and the lower ranks are assigned to points within a cluster. 

An advantage of ABOD algorithm over other unsupervised outlier detection algorithms is the 

ability to train ABOD algorithm without the need of hyperparameters. 

 DBSCAN 

DBSCAN is a non-parametric density-based clustering algorithm that groups together the closely 

packed points and marks the points in low density regions as outliers. DBSCAN requires two 
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parameters: an arbitrary distance measure (epsilon radius) ∈ %&	'(), and minimum number of 

points (MinPts). As shown in Figure 4.7, the two parameters can be used to group the points into 

one of the following categories: 

• Core Point: Any point that contains at least MinPts within an imaginary circle of radius ∈ 

around it. 

• Border Point: Any point that contains at least one but less than MinPts within an imaginary 

circle of radius ∈ around it. 

• Noise Point: A point which does not contain any other point within an imaginary circle of 

radius ∈ around it. Noise points are also referred to as outliers. 

 

Figure 4.7. DBSCAN algorithm  (Behera and Rani 2016) © 2016 IEEE 

The intuition of DBSCAN is to find outliers (noise points), which are not as densely packed as the 

core points or border points (Schubert et al. 2017). The main advantage of DBSCAN over k-means 

clustering is its ability to isolate outliers unlike k-means clustering which tries to group all points 

including outliers into one of the clusters and k-means clustering also requires the minimum 

number of clusters to be specified in advance (G. Guo et al. 2003). 
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 Data Preprocessing 

 Addressing Missing Values and Duplicate Rows 

ML and DL-based methods cannot handle missing values and hence it is necessary to address 

missing values in the input features. There are several ways to address missing values in a dataset, 

with the most common techniques being replacing the missing values with a value of 0; replacing 

them with mean or median value of the corresponding feature; using linear interpolation to fill in 

the missing values or simply omitting the missing data points from the dataset. There were no 

missing values in the dataset but there were a few duplicate rows that were removed from the input 

dataset. All the input features with low variance were removed from the dataset prior to subsequent 

analysis since they do not add any value in detecting outliers. 

 Feature Selection through Correlation Analysis 

Once the missing values were dealt with, the next step was to perform a correlation analysis to 

identify if there is a high correlation between any of the input features. This step is performed to 

eliminate any redundant features that have high correlation with other input features since training 

a model with more input features is computationally expensive. The most common correlation 

tests conducted are Pearson’s correlation, Spearman’s correlation and Kendall Tau’s correlation 

test and are defined as follows: (Akoglu 2018).  

• Pearson correlation coefficient between x and y (&#$): 

&#$ =
,∑.!/! 	− 	∑ .! ∑/!

1,∑.!% 	− 	(∑ .!)%1,∑/!% 	− 	(∑ /!)%
 

Where, n = number of observations, 

xi = value of x (for ith observation), and 
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yi = value of y (for ith observation). 

 

• Spearman’s Rank Correlation Coefficient (4): 

4 = 1 −
6∑7!

%

,(,% − 1) 

Where di = the difference between the ranks of corresponding variables, and 

N = number of observations. 

 

• Kendall Tau’s Rank correlation (8): 

8 = 	
,& − ,'
1
2,(, − 1)

 

Where ,& = number of concordant pairs, and 

,' = number of discordant pairs. 

 

The Figure 4.8 shows the correlation coefficients determined by performing a Pearson’s 

correlation test because of its ability to measure the degree of linear relationships, and the 

following features have a high correlation coefficient greater than 0.75: 

• Viscosity at 40℃ and Viscosity at 100℃ have a high positive Pearson’s correlation 

coefficient of 0.95, thus Viscosity at 100℃ was dropped from the set of input features. 

• Nitration with Oxidation have a high positive Pearson’s correlation coefficient of 0.92, thus 

Oxidation was dropped from the set of input features. 

• Viscosity at 40℃ and Fuel % have a high negative Pearson’s correlation coefficient of -

0.82, but given the significance of the two features, they were both retained in the set of 

input features used to train the outlier detection algorithm. 
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Figure 4.8. Pearson correlation coefficients for the input features used for fault diagnosis 

 Feature Transformation 

Feature transformation is an essential step of the DM process that rescales the input features to a 

smaller range and is crucial where the values of input features do not have the same order of 
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magnitude. The most popular choices for rescaling the input features in the ML community are 

min-max scaler and standard scaler, which are defined below: 

Min-max scaler .; = 	 #()*+	(#)
)/0(#)()*+	(#) 

Standard scaler .; = #(1
2  

where < is the mean and = is the standard deviation of an input feature. 

Min-max scaler rescales the values of input features to be between 0 and 1 while standard scaler 

transforms the data to have a mean of 0 and a standard deviation of 1. Since standard scaler is 

influenced by the presence of outlier and cannot guarantee balanced feature scales in the presence 

of outliers, Min-max scaler was applied to the dataset to transform all resultant input features in 

the range [0,1] (Géron 2019). 

 Dimensionality Reduction 

Although density-based outlier detection techniques can distinguish between different fault types, 

distinguishing between fault types tends to get difficult in the presence of a lot of features in the 

input data (high dimensionality). In order to deal with the issue of dimensionality, higher 

dimensional data is compressed into a lower dimensional representation prior to training the outlier 

detection algorithm (Yoon et al. 2017), (Chao, Adey, and Fink 2019).  

Principal component analysis (PCA) is a simple and widely used dimensionality reduction method 

that facilitates the classification, visualization and storage of high dimensional data by finding the 

directions of greatest variance in the dataset and representing each data point by its coordinates 

along each of these directions (G. E. Hinton and Salakhutdinov 2006). The use of dimensionality 

reduction techniques such as PCA can highly support the feature extraction process and improve 
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the accuracy of the fault diagnostic algorithms (Safizadeh and Latifi 2014), (S. Yin, Wang, and 

Gao 2016), (S. Yin, Wang, and Gao 2016).  

PCA was applied to the resultant dataset after removing correlated features, and the higher 

dimensional input dataset with 15 features was converted into a 2-dimensional dataset to facilitate 

faster computations and easier projection for viewing the outcomes of the outlier detection 

algorithm.  

 Hyperparameter Tuning 

A hyperparameter is a parameter that controls the learning process, and in ML and DL 

terminology, hyperparameter tuning is the process of finding a set of optimal hyperparameters for 

the chosen learning algorithm. Various techniques are available for tuning hyperparameters and 

the most fundamental approach is by hand tuning that requires intensive manual efforts. In order 

to overcome the drawbacks of manual hyperparameter tuning, automated hyperparameter tuning 

frameworks such as grid search and random search were proposed (Bergstra and Bengio 2012). 

Grid search involves exploring different hyperparameter value combinations in the space of a grid 

specified by the user. Random search randomly samples values from distributions for each 

hyperparameter until a maximum number of iterations specified by the user is reached. The Grid 

search and random search algorithms perform an exhaustive search by going through various 

combination of hyperparameter values to calculate the error on a validation set and chooses the 

combination of parameters that produces minimum error as the optimal hyperparameters. There 

are other hyperparameter tuning algorithms available, but grid search and random search are the 

most widely used algorithms (Hewamalage, Bergmeir, and Bandara 2021). 
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Eps and MinPts are the two hyperparameters considered in the DBSCAN algorithm. According to 

(Helfmann et al. 2018), “DBSCAN is very sensitive to its hyperparameters, but if they are well 

chosen, it is capable of detecting highly non-convex, densely connected structures in the data.” 

Researchers have proposed various approaches to find the optimal hyperparameter values for 

DBSCAN algorithm (Smiti and Elouedi 2012), (Karami and Johansson 2014), (Akbari and Unland 

2016). One of the most widely used technique for determining the Eps proposed by (Akbari and 

Unland 2016) is adopted in this research. In this approach, the optimal value of Eps can be obtained 

by calculating the distance from each point to its nearest k -nearest neighbors, sorting the obtained 

distances and plotting them as ‘k-NN distance plot’. The Eps value is chosen to be the point on the 

plot that represents the most pronounced change in the slope. The general consensus for choosing 

the optimal value for MinPts is to use domain expertise and the rule of thumb is to use a larger 

value for large datasets. The hyperparameters chosen using this approach was further validated by 

using a grid search technique, similar to the approach proposed by Darong and Peng 2012. 

 Performance Evaluation Metrics for Fault Diagnostic Model 

There are two possible types of outcome when using outlier detection models to classify a point in 

the dataset: the point can either be classified as an inlier or outlier; or it will be assigned an outlier 

score depending on how the model is trained to perceive outliers (Swersky 2018). Based on the 

outlier score assigned to each point, a threshold can be defined to classify the points as outliers or 

inliers. This section introduces some of the commonly used performance evaluation metrics for 

unsupervised outlier detection algorithms. 

(Craswell 2009a) defined one of the simplest performance measures for unsupervised outlier 

detection techniques, precision at n (denoted by P@n), as the proportion of the outliers that are 
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correctly classified. For a database (DB) of size N which consists of a number of outliers (O), and 

the number of target outliers (n) is specified in advance, P@n can be calculated by the following 

formula: 

>@, =
|% ∈ A|
,  

However, the choice for selecting the number of target outliers is not very obvious and in such 

cases, R-Precision measure can be calculated by setting , = |A| (Craswell 2009b). A prominent 

issue with these scores is that, if the number of outliers, , = |A| is low, P@n and R-Precision 

values are very low and vice-versa. In order to overcome this issue, (G. O. Campos et al. 2016) 

suggested an adjusted P@n score, which is used in this research and is calculated as follows: 

B7CD)EF7	>@, = 	
>@, − G|A| HI J

1 − G|A| HI J
 

For larger ,, 1 in the denominator should be replaced by |A| ,I  in the above equation. 

(Marques et al. 2020) proposed an index called IREOS (Internal, Relative Evaluation of Outlier 

Solutions) to evaluate and compare the performance of multiple unsupervised outlier detection 

algorithms but is very computationally expensive and is not used in this research. 

 Results and Discussion 

In order to guarantee professional modelling and adoptability, Python programming language was 

used and toolkits such as NumPy, Pandas, MatPlotLib, Seaborn and Scikit-Learn were employed 

to develop the fault diagnostic models in this research. The python code for the outlier detection 
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algorithms is open-source, and the necessary modifications that were made to utilize this code for 

developing fault diagnostic models in this chapter can be found in Appendix B.  

 Preliminary Analysis 

Prior to developing fault diagnostic models, a preliminary analysis was performed to depict any 

obvious variations in the input features. It is important to identify such changes and consider them 

while detecting the outliers so that they are not misclassified as outliers by outlier detection 

algorithms used to diagnose faults. 

The preliminary analysis indicated that there was a change in the chemical formulation of engine 

oil at the mine in the last quarter of 2019. Figure 4.9 through Figure 4.11 show the composition of 

certain additives (boron, calcium and magnesium) used in the engine oil before and after the 

change in formulation. Blue bars represent the composition prior to the change in formulation and 

the orange bars represent the composition of a particular additive after the change in formulation. 

Similarly, the blue lines correspond to the KDE of additive composition prior to the change in 

formulation and the orange lines represent the KDE of additive composition after the change in 

formulation. The composition of calcium as an additive in the engine oil has decreased with the 

new formulation whereas the composition of magnesium and boron as additives have increased in 

the new formulation.  
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Figure 4.9. PDF plot of boron (B) content in engine oil (ppm) 

 
Figure 4.10. PDF plot of calcium (Ca) content in engine oil (ppm) 
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Figure 4.11. PDF plot of magnesium (Mg) content in engine oil (ppm) 

 Results of Outlier Detection Algorithms 

Prior to running the outlier detection algorithms, the highly correlated features were removed from 

the preprocessed dataset and PCA was applied to reduce the dimensionality of the input dataset 

and convert the higher dimensional input dataset with 15 features was converted into a 2-D dataset. 

The two resulting features named principal component 1 (PC1) and principal component 2 (PC2) 

accounted for over 90% of the variability in the total dataset. This 2-dimensional dataset is used 

as input to outlier detection algorithms and the results of such algorithms are presented in the 

following sections. 

 Results of DBSCAN Algorithm 

The preprocessed input data is used to plot a k-NN distance plot by setting k = 2 to determine the 

optimal hyperparameter value, Eps to be used in DBSCAN algorithm. Figure 4.12 shows the k-
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NN distance plot (k=2) to choose the optimal value for the hyperparameter, Eps. The slope of the 

plot changes drastically when the k-NN (k=2) distance is around 0.70, and hence Eps value is set 

to be equal to 0.70. 

 
Figure 4.12. k-NN distance plot for choosing optimal Eps value 

Figure 4.13 presents a 2-D plot of outliers generated by the DBSCAN algorithm using Eps = 0.70 

and MinPts was set to 15 based on the number of features in the preprocessed dataset. The points 

in grey are part of a larger densely populated cluster and denote the inliers, whereas the outliers 

are denoted by red points. On a closer look, the grey points appear to be forming 2 clusters, which 

is a result of the change in oil formulation at the mine.  
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Figure 4.13. 2-D plot of outliers generated by DBSCAN model 

The objective of outlier detection algorithms is to minimize the occurrence of type I errors and 

type II errors. Type I errors (high false positive rate) are a resultant of a large number of input 

samples flagged as outliers, where some of the input samples are misclassified. On the other hand, 

type II errors (high false negative rate) occur when fewer input points are flagged as outliers, where 

not all outliers are detected by the algorithm. Type I errors result in misused maintenance time and 

efforts, while type II errors result in a missed diagnosis of a potential failure. The trade-off between 

type I and type II errors varies based on the problem and application domain. For diagnosing HPFP 

failures, it is heuristically determined and subsequently confirmed empirically that roughly 10% 

of the points can be classified as outliers by an outlier detection algorithm with an objective of 

minimizing type II errors. 
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The choice of hyperparameters for DBSCAN algorithm are further validated by performing a Grid 

Search over a range of values. The range of possible values considered for the Grid Search 

technique are presented in Table 4.3. 

Table 4.3. Hyperparameter value combinations for Grid Search 

Hyperparameter Lower Bound Upper Bound Increment Value Combinations 

Eps 0.5 4.0 0.1 35 

MinPts 5 25 1 20 

 

A total of 700 combinations were evaluated using the Grid Search technique and the results are 

presented in Figure 4.14 and Figure 4.15. The X-axis in Figure 4.14 and Figure 4.15 represent the 

values of a specific hyperparameter used in the DBSCAN algorithm and the Y-axis in Figure 4.14 

and Figure 4.15 represent the number of outliers generated by the DBSCAN algorithm using a 

particular combination of hyperparameters. Figure 4.14 presents a scatterplot showing the effect 

of varying Eps on the number of outliers. Each column of points in the scatterplot represents the 

number of outliers generated by a particular value of hyperparameter Eps and the number of 

clusters formed with a particular combination of hyperparameters can be identified by the color of 

a corresponding point in the scatterplot. Consistent with the results obtained in Figure 4.12, it can 

be observed that an Eps value of around 0.70 results in around 10% of the points being classified 

as outliers i.e., around 100 points being classified as outlier from an input dataset consisting of 997 

points (indicated by the red horizontal and vertical lines).  
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Figure 4.14. Scatterplot showing the effect of varying Eps on number of outliers 

Figure 4.15 represents the scatterplot showing the effect of varying MinPts on the number of 

outliers. Each column of points in the scatterplot represents the number of outliers generated by a 

particular value of hyperparameter MinPts and the number of clusters formed with a particular 

combination of hyperparameters can be identified by the color of a corresponding point in the 

scatterplot. From Figure 4.15, it can be observed that a few configurations with MinPts between 

7.5 and 25 will result in around 10% of point being classified as outliers i.e., around 100 points 

being classified as outlier from an input dataset consisting of 997 points.  
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Figure 4.15. Scatterplot showing the effect of varying MinPts on number of outliers 

Of the 997 points sampled, 95 points were flagged as outliers by using the DBSCAN algorithm 

with Eps = 0.70 and MinPts = 15. The next step was to manually identify any major work orders 

associated with the outliers identified by the DBSCAN algorithm. The oil analysis report consists 

of equipment ID, date at which the sample was collected along with the concentrations of all the 

features. The dates on which those 95 samples were collected were then compared to the work 

order history to identify any major work order in the vicinity of the oil analysis sample date.  The 

95 outliers corresponded to 45 unique failures and 7 out of the 45 failures did not have any 

description associated with them in the work order history. Table 4.4 shows the frequency of the 

remaining 38 points, of which 17 outlier points are associated with coolant related work order and 

15 outliers associated with HPFP failures.  

 



 

 104 

Table 4.4. Frequency of failures classified based on outliers generated by DBSCAN algorithm 

Failure Category Count 

Coolant Leaks 17 

Fuel Pump 15 

Other Failures 6 

 

Although historical alarm log data was available from July 2018, engine oil analysis samples were 

only available from January 2019. A total of 37 HPFP failures occurred at mine A from July 2019 

and all of them were considered for developing condition indicators and only 28 of those failures 

occurred after January 2019 for which the engine oil analysis samples were available. Of the 28 

HPFP failures at mine A between January 2019 and August 2020, 14 of those were gerotor failures. 

Of the 14 gerotor failures, the developed DBSCAN model was able to successfully identify 11 

failures, resulting in a P@n score of 0.79. The adjusted P@n score considers the performance of 

the diagnostic model with respect to the total number of outliers, and the adjusted P@n score for 

this model is 0.77. An interesting observation is that the same model was capable of detecting fuel 

injector failures with a P@n score of 0.54 and an adjusted P@n score of 0.49 and by tuning the 

hyperparameters, the model could also detect fuel injector failures with a higher accuracy. 

Although DBSCAN algorithm is a renowned outlier detection algorithm and performed well on 

the tested dataset, an inherent limitation of the DBSCAN algorithm is its inability to generate a 

score (or a probability measure) associated with the points in the dataset. The following section 

presents the results of using a variant of DBSCAN algorithm, called Hierarchical Density-based 

Spatial Clustering of Applications with Nosie (HDBSCAN) on this dataset. 
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 Results of HDBSCAN Algorithm 

HDBSCAN is a hierarchical clustering algorithm that is based on DBSCAN. In addition to 

classifying a point in the dataset as an outlier or an inlier, HDBSCAN is also capable of generating 

an ‘outlier score’ associated with each point in the dataset. The outlier score for a point in the 

dataset ranges between 0 and 1, and a higher score indicates that the point is more likely to be an 

outlier. 

Since the DBSCAN algorithm was able identify outliers that represent multiple failures such as 

HPFP, fuel injectors, coolant leaks etc., the objective of using the outlier scores generated by 

HDBSCAN algorithm is to assess the possibility of classifying the outliers into their exact failure 

type based on the outlier score. 

Figure 4.16 shows the density plot of outlier scores generated by implementing HDBSCAN on the 

preprocessed input dataset of engine oil sample analysis. Unlike DBSCAN, HDBSCAN does not 

require the value of Eps to be specified, so the only trainable hyperparameter used is MinPts. The 

value of MinPts was set to be equal to 15, to be consistent with the value used in DBSCAN 

algorithm. 
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Figure 4.16. Density plot of outlier scores generated by HDBSCAN model 

The outlier scores generated for each point by the HDBSCAN model were arranged in increasing 

order and the 90th-percentile outlier score for the developed HDBSCAN algorithm was determined 

to be 0.546 which indicates that 10% of the outliers have an outlier score above 0.546. Figure 4.17 

represents a 2-dimentional plot of outliers generated by the HDBSCAN algorithm and the points 

with outlier score greater than or equal to 0.546 are plotted in red. In comparison to DBSCAN, 

some of the outliers generated by HDBSCAN are not distinct from the remaining points in the 

main cluster representing the inliers. Furthermore, the outlier scores used in an attempt to classify 

the outliers into various failures did not provide satisfactory results, indicating the need for a more 

robust approach which could be a topic for future research. 
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Figure 4.17. 2-D plot of outliers generated by HDBSCAN model 

The P@n score for detecting gerotor failures in HPFP using the HDBSCAN model is 0.71 and the 

adjusted P@n score is 0.68, which indicates that the DBSCAN model slightly outperforms the 

HDBSCAN model in detecting gerotor failures in HPFP at this mine.  

 Validation of DBSCAN Algorithm at other mine sites 

Since the results presented in the previous section indicate that DBSCAN performed slightly better 

than the HDBSCAN model for diagnosing gerotor failures in HPFP, it was tested at other mine 

sites to determine the ability of the algorithm to generalize to new or unseen input data. Figure 

4.18 and Figure 4.19 show the effect of varying the hyperparameters Eps and MinPts on the 

number of clusters and outliers generated by DBSCAN algorithm at Mine B. It can be observed 

that the same set of hyperparameters result in one large cluster and classify nearly 10% of the 
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samples as outliers i.e., around 135 points being classified as outlier from an input dataset 

consisting of 1,349 points.  

 
Figure 4.18. Scatterplot showing the effect of varying Eps on number of outliers at mine B 
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Figure 4.19. Scatterplot showing the effect of varying MinPts on number of outliers at mine B 

Figure 4.20 presents a 2-dimensional plot of outliers generated by the DBSCAN algorithm at Mine 

B. The hyperparameters are set to Eps = 0.70 and MinPts = 17 to produce 133 outliers in a dataset 

containing 1,349 samples. 



 

 110 

 
Figure 4.20. 2-D Plot of outliers generated by DBSCAN model at mine B 

Table 4.5 presents the P@n score and adjusted P@n score of the DBSCAN model for detecting 

gerotor failures in HPFP and fuel injector failures at mine B. 

Table 4.5. Performance evaluation metrics at mine B 

 P@n Score Adjusted P@n Score 

Gerotor Failures in HPFP 0.75 0.72 

Fuel Injector Failures 0.51 0.46 

 

Figure 4.21 and Figure 4.22 show the effect of varying the hyperparameters Eps and MinPts on 

the number of clusters and outliers generated by DBSCAN algorithm at Mine C. Unlike the 

DBSCAN models tested at Mine A and Mine B, the value of hyperparameter Eps was set to 0.8 to 

produce a single cluster and classify nearly 10% of the samples as outliers i.e., around 92 points 

being classified as outlier from an input dataset consisting of 924 points.  
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Figure 4.21. Scatterplot showing the effect of varying Eps on number of outliers at mine C 

 
Figure 4.22. Scatterplot showing the effect of varying MinPts on number of outliers at mine C 
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Figure 4.23 presents a 2-dimensional plot of outliers generated by the DBSCAN algorithm at Mine 

C. The hyperparameters are set to Eps = 0.8 and MinPts = 15 to produce 90 outliers in a dataset 

containing 924 samples.  

 
Figure 4.23. 2-D Plot of outliers generated by DBSCAN model at mine C 

Table 4.6 presents the P@n score and adjusted P@n score of the DBSCAN model for detecting 

gerotor failures in HPFP and fuel injector failures at mine C. 

Table 4.6. Performance evaluation metrics at mine C 

 P@n Score Adjusted P@n Score 

Gerotor Failures in HPFP 0.71 0.68 

Fuel Injector Failures 0.45 0.39 
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The above results indicate that the developed DBSCAN model is consistent in detecting gerotor 

failures in HPFP at various mine sites by using a similar set of hyperparameters. The same model 

also produced mediocre results for detecting fuel injector failures at all three sites. 

 Comparison of DBSCAN and HDBSCAN with other Algorithms 

In addition to the DBSCAN and HDBSCAN models, a few other popular techniques such as k-

NN based outlier detection model, LOF and ABOD were tested for detecting gerotor failures in 

HPFP at the three mine sites. Table 4.7 shows the P@n scores for the five fault diagnostic models 

at all three mine sites, and Table 4.8 shows the adjusted P@n score for the models. 

Table 4.7. P@n score of various fault diagnostic models at multiple mine sites 

 DBSCAN HDBSCAN k-NN Based LOF ABOD 

Mine A 0.79 0.71 0.64 0.43 0.64 

Mine B 0.75 0.75 0.38 0.50 0.50 

Mine C 0.71 0.71 0.29 0.43 0.43 

 

Table 4.8. Adjusted P@n score of various fault diagnostic models at multiple mine sites 

 DBSCAN HDBSCAN k-NN Based LOF ABOD 

Mine A 0.77 0.68 0.60 0.37 0.60 

Mine B 0.72 0.72 0.31 0.44 0.44 

Mine C 0.68 0.68 0.21 0.37 0.37 

 

Based on the results presented in Table 4.7 and Table 4.8, it can be concluded that the performance 

of DBSCAN and HDBSCAN is similar, with the DBSCAN model outperforming HDBSCAN at 

Mine A. The performance of the other three models was subpar for detecting gerotor failures in 

HPFP as can be observed in the form of low P@n and adjusted P@n scores. Appendix C presents 
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the 2-dimensional plots of outliers generated by the different models at all mine sites for 

diagnosing gerotor failures in HPFP. 

 Summary and Conclusion 

This chapter presents an overview of the approach developed to diagnose gerotor failures in HPFP 

using data-driven techniques. Two types of structured data were evaluated in this chapter, alarm 

log database and engine oil sample analysis. An assessment of the occurrence of the alarms 

indicated that majority of the alarms were triggered within 7 days prior to a HPFP failure which is 

not a sufficient lead time for diagnosing the failures. Hence engine oil sample analysis dataset was 

chosen to be used as the input for building data-driven techniques for diagnosing HPFP failures.  

Since the engine oil sample analysis data was unlabeled, in order to implement DL-based 

approaches such as AE and DBN, a target variable needed to be identified that could be used to 

distinguish normal operating points from HPFP failures with high accuracy. But a preliminary 

analysis indicated that none of the variables in the multivariate dataset could be used as a target 

variable to classify HPFP failures with high accuracy. Hence various ML-based outlier detection 

techniques were employed to identify outliers and separate them from normal operating conditions.  

The DBSCAN algorithm was implemented at Mine A which resulted in P@n score of 79% and 

adjusted P@n scored of 77% for detecting gerotor failures in HPFP. Unlike HDBSCAN algorithm, 

DBSCAN algorithm does not output the outlier score associated with each outlier which makes it 

difficult to separate gerotor failures in HPFP from other failures such as fuel injector failures, 

coolant leaks etc. from the outliers generated by the algorithm without extensive manual work. In 

an attempt to overcome this issue, HDBSCAN algorithm was implemented to generate the outlier 

scores associated with each outlier and further use these scores to classify the outliers as separate 



 

 115 

failures. Although the P@n score and adjusted P@n score of outliers generated by HDBSCAN 

algorithm are similar to the DBSCAN algorithm, the outlier scores generated by HDBSCAN did 

not produce satisfactory results for classifying the outliers into multiple failures.  

In order to validate the performance and test the generalization capabilities of the DBSCAN 

algorithm, it was tested at two additional mines that resulted in similar performance. HDBSCAN 

algorithm was also evaluated at these two mines and the performance of HDBSCAN algorithm 

was similar to the DBSCAN algorithm at each mine respectively. This implies that either 

DBSCAN or HDBSCAN algorithms can be used to detect gerotor failures in HPFP with a 

significant accuracy using engine oil sample analysis as the input data. Finally, the results 

produced by DBSCAN and HDBSCAN were compared with other outlier detection algorithms 

such as k-NN based outlier detection, LOF and ABOD algorithms. Results from the three mines 

indicate that density-based outlier detection algorithms such as DBSCAN and HDBSCAN have 

consistently outperformed other outlier detection algorithms for diagnosing gerotor failures in 

HPFP.  
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Chapter 5: FAULT PROGNOSTICS USING DATA-

DRIVEN TECHNIQUES 

 

 

This chapter presents an approach to develop fault prognostic models using deep learning-based 

data-driven approaches. This chapter presents a detailed overview of the various steps involved 

in prognosing failures such as data collection, extracting condition indicators, data pre-

processing, building data-driven models, hyperparameter tuning and evaluating the performance 

of models. Finally, this chapter presents various supervised learning approaches for predicting 

the RUL of a critical failure diagnosed in the previous chapter, and the results obtained by 

validating the fault prognostic models on multiple haul trucks. 
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 Background Information 

The objective of this chapter is to develop an approach to predict RUL for the gerotor failures in 

HPFP with significant accuracy. Figure 5.1 presents a flowchart with the steps involved in 

predicting RUL for gerotor failures in HPFP.  

 

Figure 5.1. Flowchart detailing the steps involved in predicting the RUL of gerotor failures in HPFP 
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The following sections of this chapter present a detailed overview of the various steps involved in 

predicting RUL for gerotor failures in HPFP such as data collection, extracting condition 

indicators, data pre-processing, building data-driven models, hyperparameter tuning and 

evaluating the performance of models. The model performance is also validated by testing it on 

multiple trucks and is described in this chapter. 

 Data Collection 

As noted in the Chapter 2, the most common types of input data for developing fault prognostic 

models are vibration data and time-series data. Although there is no vibration data available for 

predicting RUL of gerotor failures in HPFP, multivariate time-series data obtained through sensor 

readings is available for numerous trucks.  

Hundreds of sensors are mounted on these trucks to measure the performance of various 

components, and the sensors are capable of generating alarms if a value measured by any sensor 

is outside its predefined threshold. An embedded computer system is mounted in the operators cab 

of the haul trucks and runs a datalogger software to record signals from several sensors mounted 

on the trucks. The signals from the various sensors are obtained by the datalogger and are stored 

in the embedded computer’s memory and packets of data are regularly transmitted to an external 

database over the mine’s wireless network. The packets of data transmitted from the computer are 

received and stored in InfluxDB, an open-source time-series database optimized for real-time 

analytics (Naqvi, Yfantidou, and Zimányi 2017). InfluxDB downsamples the high resolution time-

series data by averaging it to generate lower resolution time-series data that will be stored in the 

database to reduce overall disk usage and to improve performance of the database (Dotis-Georgiou 

2020). Data stored in InfluxDB was accessed via Grafana, which is an open-source analytics and 
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interactive visualization application that enables graphing and downloading of sensor data from 

the time-series database (Grafana Labs 2020).  

Figure 5.2 shows a schematic of dataflow from a haul truck to the end user. The list of important 

engine related sensors and the frequency at which they are recorded is presented in Appendix D. 

 

Figure 5.2. Dataflow from a haul truck to end user (adapted from (CSS-Electronics 2020)) 

 Selection of Condition Indicators 

Although the condition indicators discussed in Chapter 4 proved insufficient for developing fault 

diagnostic models, they can also be used for developing fault prognostic models. Based on domain 

expertise and empirical knowledge, high blowby pressure was replaced with fuel pump inlet 

pressure as a condition indicator for fault prognosis. In addition to sensor readings from fuel pump 

1. Embedded Computer 

2. 4G/ Wi-Fi Module 

3. InfluxDB Database 

4. Grafana Visualization 
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inlet pressure, readings from fuel pump delivery pressure, injector (common) rail pressure, engine 

horsepower and engine oil pressure were used as condition indicators for the fault prognostic 

models. Based on the empirical knowledge, gerotor failures in HPFP result in a gradual loss of 

engine oil pressure which is used a lubricant in HPFPs. Hence engine oil pressure was chosen to 

be the dependent (target) variable and the RUL of a truck experiencing HPFP failure can be 

expressed as a function of its engine oil pressure. 

Based on the existing literature, RNNs are the most versatile and efficient algorithms for predicting 

RUL using sequential time-series data. Though there are three widely used RNN architectures in 

the literature, vanilla RNN suffers from the problem of exploding and vanishing gradient and was 

not used in this research. The performance of LSTM and GRU networks highly depend on the type 

of input data, hence both networks were used to predict RUL of gerotor failures in HPFP in this 

research. The following sections present an overview of LSTM and GRU cell structure and outline 

the procedure to predict RUL using LSTM and GRU networks. 

 Fault Prognostic Methods 

 LSTM Architecture 

LSTM is a gated memory unit with three gates to manage the contents of the memory, where the 

gates are simple logistic functions of weighted sums and the weights could be learnt by back 

propagation. Figure 5.3 shows the basic structure of a LSTM cell. The long-term memory 

represented by cell state (K3) is a function of the input gate (L3) and the forget gate (M3) while the 

output gate (%3) produces hidden state (ℎ3) which corresponds to the short-term memory 

component (Hochreiter and Schmidhuber 1997). In an LSTM network, the cell output (!3)	is equal 

to the value of the hidden state (ℎ3).  
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Figure 5.3. Basic LSTM cell structure1 

The following are key equations that define the gates and states in the LSTM network: 

L3 = 	=(O! 	. .3 +R! 	. ℎ3(4 + S!) 

M3 = 		=TO5	. .3 +R5	. ℎ3(4 + S5U 

%3 = 	=(O6	. .3 +R6	. ℎ3(4 + S6) 

KV3 = EW,ℎ	(O&	. .3 +R& 	. ℎ3(4 + S&) 

K3 = L3 ⊙KV3 + M3 ⊙K3(4 

ℎ3 = %3 ⊙ tanh(K3) 

!3 = ℎ3 

 
1 Reprinted from (Hewamalage, Bergmeir, and Bandara 2021), Copyright (2021) with permission from Elsevier 
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Where, 

R ∈ Rd X d represents the weight matrices of the corresponding gate or cell state, 

O ∈ Rd X d represents the input matrices of the corresponding gate or cell state, 

S ∈ Rd represents the bias vectors of the corresponding gate or cell state, 

.3 ∈ Rm denotes the input of the cell at time E and ] is the size of the input, 

!3 ∈ Rd denotes the output of the cell at time E and 7 is the cell dimension, 

ℎ3 ∈ Rd is a vector that denotes the hidden cell state, 

KV3 ∈ Rd is the candidate cell state at time E that captures important information to be retained, 

tanh is the hyperbolic tangent activation function that outputs values in the range [-1, 1], 

= is the activation function that outputs values in the range [0, 1] and 

⊙ denotes the Hadamard product (element wise multiplication). 

The amount of past (historic) data to be retained in the cell state and current context to be 

propagated to future time steps is determined by the input and forget gates. A value of zero in the 

gates indicate that previous cell state should be completely discarded in the current cell state and 

a value of one indicates that the previous cell state should be completely retained. Any other value 

between zero and one ensures that only important information from the previous cell state and 

current candidate cell state are being propagated to the current cell state (Hewamalage, Bergmeir, 

and Bandara 2021).  
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 GRU Architecture 

GRU is another variant of RNN which is comparatively simpler than LSTM since it has only two 

gates, update gate (D3)	and reset gate (&3), instead of the three gates present in the LSTM cell’s 

internal gating mechanism. Figure 5.4 shows the basic structure of a GRU cell. The update gate in 

a GRU cell plays the role of input gate and forget gate combined. Unlike LSTM cell that has two 

states, GRU cells have only one state, the hidden state (ℎ3). The fewer number of gates and states 

makes a GRU network computationally less expensive than a LSTM network (K. Cho et al. 2014).  

 

Figure 5.4. Basic GRU cell structure2 

The following are key equations that define the gates and states in the GRU network: 

D3 = 	=(O7	. .3 +R7	. ℎ3(4 + S7) 

 
2 Reprinted from (Hewamalage, Bergmeir, and Bandara 2021), Copyright (2021) with permission from Elsevier 
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&3 = 		=(O8 	. .3 +R8 	. ℎ3(4 + S8) 

ℎ̂3 = EW,ℎ	(O9	. .3 +R9	. &3	. ℎ3(4 + S9) 

ℎ3 = D3 ⊙ ℎ̂3 + (1 − D3) ⊙ ℎ3(4 

!3 = ℎ3 

Where, 

R ∈ Rd X d represents the weight matrices of the corresponding gate or cell state, 

O ∈ Rd X d represents the input matrices of the corresponding gate or cell state, 

S ∈ Rd represents the bias vectors of the corresponding gate or cell state, 

.3 ∈ Rm denotes the input of the cell at time E and ] is the size of the input, 

!3 ∈ Rd denotes the output of the cell at time E and 7 is the cell dimension, 

ℎ̂3 ∈ Rd indicates the candidate hidden state at time E, 

tanh is the hyperbolic tangent activation function that outputs values in the range [-1, 1], 

= is the activation function that outputs values in the range [0, 1] and 

⊙ denotes the Hadamard product (element wise multiplication). 

The reset gate determines what proportion of the previous hidden state needs to be propagated to 

the candidate hidden state of the current time step and the function of the forget gate is replaced 

by the update gate in calculating the hidden state value. 
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 Stacked MIMO Architecture 

A stacked architecture was adopted by several researchers to obtain optimal performance while 

implementing RNN architectures (Bandara, Bergmeir, and Smyl 2020). Figure 5.5 show the folded 

version of RNN (left) and unfolded version through time (right). The feedback loop of the RNN 

cell enables the propagation of the hidden state and cell state values from the current cell to a future 

timestep, thereby sharing the same weights and biases (Hewamalage, Bergmeir, and Bandara 

2021). _3 denotes the vector of input sequence at timestep t and à3 denotes the corresponding 

output vector at timestep t.  

 

 

 

     

Figure 5.5. Folded (left); and unfolded RNN structure (adapted from (Hewamalage, Bergmeir, and Bandara 2021)) 

A basic RNN architecture has only a single layer, but multiple layers can be stacked on top of each 

other resulting in a multi-layer stacked architecture as shown in  

Figure 5.6. 
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Figure 5.6. Stacked multi-layer RNN architecture (adapted from (Yu et al. 2019)) 

The error per timestep E (F3) during the model training process is given as follows: 

F3 = 3̀ − à3 

where, 

3̀ is the actual output (vector) at timestep t and 

à3 is the predicted output (vector) at timestep t. 

The error at each timestep is accumulated until the end of the time-series and is back propagated 

through time to update the network’s weights and biases in accordance with the chosen 

optimization algorithm. The accumulated error (') is defined as follows: 
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Th Multi-Input Multi-Output (MIMO) strategy with a moving window approach is adopted for 

multi-step forecasting in this research (Ben Taieb et al. 2012). MIMO preserves the stochastic 

dependencies between predicted values by allowing the output of an RNN cell to be used as a part 

of the input vector for the subsequent timestep. Using MIMO strategy for predicting values allows 

RNNs to operate with lagged input values and eliminates the need for internal state of the RNN to 

memorize all relevant information (Bandara, Bergmeir, and Smyl 2020). The benefits of using 

MIMO strategy over one-step-ahead forecasts were discussed by (Smyl and Kuber 2016) and (R. 

Wen et al. 2017), and researchers have advocated the use of MIMO for multi-step forecasting 

using RNNs because of their superior performance (Petersen, Rodrigues, and Pereira 2019). 

 Data Preprocessing 

 Addressing Missing Values 

An analysis of the readings from the five sensors used as input features over a period of 18 months 

from March 2019 to August 2020 indicated that 36.9% of the data was missing. This was due to 

the frequent connectivity issues encountered at the mine and needs to be addressed quickly as the 

usage of sensor data becomes frequent for fault diagnosis and prognosis. Given the large volume 

of missing data, interpolation was not a good choice and hence, all missing data was removed from 

the dataset before any further processing. 
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 Feature Selection through Correlation Analysis 

Figure 5.7 shows the correlation coefficients determined by performing a Pearson’s correlation 

test, and since none of the input features are highly correlated, all the input features can be used to 

predict the RUL. 

 

Figure 5.7. Pearson correlation coefficients for the input features used in fault prognosis 

 Modelling Seasonality 

While earlier studies suggested that NNs are capable of modeling underlying seasonality and 

cyclical patterns in time-series data (Z. Tang, de Almeida, and Fishwick 1991), (Marseguerra et 

al. 1992), (Sharda and Patil 1992), recent studies argue that de-seasonalizing of time-series data is 

essential prior to using it for forecasting to obtain better prediction accuracy (G. P. Zhang and Qi 

2005), (G. P. Zhang and Kline 2007), (Ben Taieb et al. 2012), (Claveria, Monte, and Torra 2017), 

(Smyl 2020). 
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Numerous techniques were proposed by researchers to decompose time-series signals and 

determine the seasonality. Early works were either model-based or based on the autocorrelation 

function(ACF), and were not very efficient with non-parametric setup or non-linear data (Bandara, 

Bergmeir, and Smyl 2020). The most popular technique is Seasonal and Trend decomposition 

using Loess (STL decomposition), which uses a sequence of Loess smoothers for robust 

decomposition of a time-series signal into trend, seasonal and residual components, and is very 

efficient even for long time-series datasets (Hyndman and Athanasopoulos 2018). (Bandara, 

Bergmeir, and Smyl 2020), (Hewamalage, Bergmeir, and Bandara 2021) noted that the STL 

decomposition technique requires at least two full seasonal periods to determine the seasonality 

component in the time-series signal.  

The time-series data from the mine sites was not available for the required 2 years (2 full seasonal 

periods) as required by the STL decomposition technique, however, the PDF plots for all the input 

features were presented in Appendix E to show the distribution of sensor values over different 

seasons of the year and by the time of the day. From those PDF plots, it can be observed that there 

was no apparent seasonality in the input features and the time of the day did not have any 

significant effect on the values of the input features. 

 Feature Transformation 

It is beneficial to rescale features prior to training a LSTM and GRU network to deal with issues 

caused by input features of varying magnitudes (Smyl and Kuber 2016). All the input features 

were transformed using min-max scaler prior to being trained and the output of the RNN was 

transformed back to the original feature space for predicting RUL.   
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 Splitting the dataset into training and test sets 

The last step of data preprocessing involves splitting the processed dataset into different subsets – 

namely training set, validation set and test set. The training set consists of the data that would be 

fed to the model for learning relationships from the data in order to be able to predict the RUL. 

The validation set is usually a part of the training set and is used to validate the trained model and 

forms the basis for model evaluation. The validation dataset will be used to fine tune the model 

hyperparameters in order to minimize the loss and improve model accuracy. Finally, the test set 

contains the data that the model has not seen before and is used to evaluate the trained and validated 

model using a number of performance evaluation metrics presented in section 5.8 of this chapter. 

(Yun Xu and Goodacre 2018) and (Medar, Rajpurohit, and Rashmi 2018) noted that there is no 

fixed ratio of the training/ validation/ test set that performs best for all problems, and the choice of 

the ratio is dependent of the choice of the input data and model being trained. For the LSTM and 

GRU models used in this research, training/ validation/ test set ratio of 80/20/20 was adopted, 

which is the most widely used ratio in the data mining community by the practitioners. 

 Hyperparameter Tuning 

The following hyperparameters were used to train the LSTM and GRU models for predicting the 

RUL of trucks diagnosed with gerotor failures in HPFP.  

 Number of Hidden Layers 

A trainable hyperparameter of the LSTM and GRU models is the number of hidden layers in the 

model architecture. Researchers established that most non-linear complex problems can be solved 

with the application of two or three hidden layers and have established a set guidelines to be 
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followed for determining the number of nodes in each hidden layer, which were adopted in this 

research (Stathakis 2009), (Karsoliya 2012), (Sheela and Deepa 2013).  

 Lag Value 

In time-series forecasting applications, lagging is shifting back in time, and lagged values of the 

input are often used to predict a future value. Since the time-series data used for forecasting in this 

research is sampled hourly, a lag value of ‘n’ indicates that the input values from the past ‘n’ hours 

are used to make a prediction for the next hour. Lagged values of all the input features were used 

to predict the RUL of a gerotor failure in HPFP. 

 Batch Size 

Training the RNN model with all the samples available in a training set could result in a significant 

usage of computing memory and hinders the computational efficiency of the algorithm. This can 

be addressed by splitting the training set into smaller batches and the size of each batch is a 

trainable hyperparameter of the LSTM and GRU models. 

 Number of Epochs 

Epoch or iteration denotes a full forward and backward pass across the entire training dataset which 

constitutes of several smaller batches. The number of epochs is a trainable hyperparameter for 

LSTM and GRU models and denotes the number of times the network should iterate though the 

entire training dataset before making a prediction. 

 Number of Nodes 

This hyperparameter is used to set the number of nodes in each hidden layer of the LSTM and 

GRU models. Increasing the number of nodes in the hidden layers enables the network to learn 

complex relationships but can get computationally expensive. Another issue with increasing the 
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number of nodes is overfitting, a phenomenon that occurs when the model performs well on the 

training set but performs poorly on the validation and test sets. This is often caused when the model 

fits the training data well but has lost its generalization capability to unseen data. 

 Dropout Regularization Ratio 

A common way of addressing overfitting is by the use of a dropout regularization hyperparameter 

which specifies a portion of input to be left out from training after each iteration. For example, a 

dropout regularization value of 0.2 indicates that 20% of the input data is dropped out from the 

training set before next iteration.  

The grid search algorithm was used to find the optimal values of hyperparameters for the LSTM 

and GRU model architectures (model architecture refers to the combination of number of hidden 

layers, lag value, batch size, number of epochs, number of nodes and dropout regularization ratio). 

 RNN Model Configuration 

Apart from the hyperparameters used to train the model, there are other parameters that should be 

configured for the implementation of LSTM and GRU models with Keras API in Python (Chollet 

and others 2015). This section presents the configurable parameters for both LSTM and GRU 

models that were trained to predict the RUL of gerotor failures in HPFP.  

According to (Kingma and Ba 2015), Adam optimizer is computationally efficient and requires 

less memory compared to other optimizers. Both LSTM and GRU models were trained using the 

Adam optimization algorithm with a default learning rate of 0.001.  

For the LSTM and GRU models, the error for the current state of the model must be estimated 

repeatedly. This requires the choice of an error function, conventionally called a loss function, that 

can be used to estimate the loss of the model so that the weights can be updated to reduce the loss 
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on the next evaluation. Based on existing studies, mean squared error (MSE) was chosen to be 

used as the loss function in this model, and is calculated as the average of the squared differences 

between the predicted and actual values. The LSTM and GRU models were also configured to 

terminate when the MSE from training the model did not decrease by at least 0.001 for every 3 

epochs.  

 Performance Evaluation Metrics for Fault Prognostic Model 

There is no general agreement as to an appropriate and acceptable set of metrics that can be 

effectively employed to assess the performance of fault prognostic models. Researchers have used 

various metrics for evaluating the performance of fault prognostic models because of varied end-

user requirements with respect to their specific requirements (Liangwei Zhang et al. 2019). 

(Saxena, Celaya, et al. 2008) described some of the most commonly used terminology in fault 

prognosis to reduce ambiguities that may arise from non-standardized use of some of the key terms 

by several researchers. It is relatively easier to evaluate the performance of prognostic models by 

comparing the predicted values in cases where sufficient historical data is available or can be 

experimentally generated for both normal operating conditions and failure conditions. However, 

in cases where very little to no failure data is available, it becomes extremely difficult and tricky 

to assess the performance of fault prognostics models due to the absence of knowledge about future 

values (outcome). In such cases, fault prognostic models are trained and tested on experimental or 

simulated data and are expected to perform well in real world, but unfortunately model 

performance does not always translate meaningfully from one dataset to another or one domain to 

another (Saxena, Celaya, et al. 2008).  

Several factors such as reliability, validity, sensitivity and resistance to outliers determine the 

choice of a particular performance evaluation metric and no single metric will capture all the 
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complexities of a prognostic model, making it necessary to consider multiple performance 

evaluation metrics for each problem. The most common loss function used for training and 

evaluating the performance of a prognostic model are Mean Absolute Percentage Error (MAPE) , 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) (Deutsch and He 2018), 

(Yuting Wu et al. 2018), (Xiang Li, Zhang, and Ding 2019).  

In this research, all models were run ten times to compensate for the random initialization 

parameter used by the LSTM and GRU models and the following metrics were calculated using 

the Scikit-learn library in Python (Pedregosa et al. 2011) and subsequently used to compare the 

performance of several model architectures, and to compare the performance of DL-based methods 

with traditional ML-based methods for predicting RUL of gerotor failures in HPFP. The metrics 

used to evaluate and compare the performance of various DL-based and ML-based algorithms are 

presented in the following subsections. 

 Mean Absolute Error 

Mean absolute error (MAE) is a metric that corresponds to the sum of absolute differences between 

the actual and predicted values of a variable. MAE considers only the absolute values and measures 

the average magnitude of errors in a set of predictions. A lower value of MAE indicates better 

performance of the model. 

cFW,	BS)%dDEF	'&&%&	(cB') = 	
1
,b|/;! − /!|

<

!;4
 

Where, 

/! is the true RUL value and 
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/;! is the predicted RUL value. 

 Root Mean Squared Error 

Root mean squared error (RMSE) computes the standard deviation of the residual values 

(difference between actual values and predicted values) and is a measure of the spread of residual 

values. A lower value of RMSE indicates that the actual values are concentrated around the 

predicted values, which is a characteristic of a good model. 

e%%E	cFW,	fgDW&F	'&&%&	(ecf') = 	h
1
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Where, 

/! is the true RUL value and 

/;! is the predicted RUL value. 

 Explained Variance Score 

Explained variance score (EVS) measures the proportion of variation of the dataset that is 

accounted for by the model. A higher value of EVS indicates that the model is able to account for 

more variation in the original dataset and the maximum possible value of EVS is 1.00. 

'.(dWL,F7	OW&LW,iF	fi%&F	('Of) = 1 −
OW&{/! − /;!}
OW&{/!}

 

Where, 

/! is the true RUL value and 

/;! is the predicted RUL value. 
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 Maximum Error 

Maximum error (MaxE) or maximum residual error is a metric that captures the largest difference 

between the actual value and the predicted value of the variable being forecasted.  

cW.L]D]	'&&%&	(cW.') = max	(|/! − /;!|) 

Where, 

/! is the true RUL value and 

/;! is the predicted RUL value. 

 Coefficient of Determination 

Coefficient of determination (R2 score) represents the proportion of the variance of the target value 

that is explained by the input features in the model. R2 score is a measure of how well the model 

can predict unseen samples and provides an indication of goodness of fit of the model. 

The maximum value of R2 score is 1.00 and R2 score can be negative if the predictions made by 

the model do not follow the trend of the data. R2 score of 0.00 indicates that the model always 

generates a constant output regardless of the input or dependent features. 

K%FMMLiLF,E	%M	nFEF&]L,WEL%,	(e%) = 1 −
∑ (/! − /;!)%<
!;4

∑ (/! − /o!)%<
!;4

 

Where, 

, is the number of samples (training dataset), 

/! is the true RUL value, 

/;! is the predicted RUL value and 
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/o! is the mean value of the output feature (target value) in the training dataset. 

 Results and Discussion 

In order to guarantee professional modelling and adoptability, Python programming language was 

used and toolkits such as NumPy, Pandas, MatPlotLib, Seaborn, Scikit-Learn and Keras (built on 

top of TensorFlow) were employed in to develop the fault prognostic models in this research. The 

python code for the time-series prediction algorithms is open-source, and the necessary 

modifications that were made to utilize this code for developing fault prognostic models in this 

chapter can be found in Appendix F.  

 Preliminary Analysis 

Data from the sensors was initially obtained from Grafana at a frequency of 1 sample per second, 

and since the data from the past 2 months was used to make predictions, this resulted in over 5 

million data points from each sensor. Such large amounts of data posed challenges during the data 

retrieval stage, and hence it was required to collect the samples at a larger interval.  

Appendix G shows the readings from engine oil pressure sensor sampled at several frequencies 

such as 1 sample per second, 10 seconds, 1 minute, 10 minutes and 1 hour. Since the RUL 

predictions are based on the value of engine oil pressure, the most logical choice of frequency was 

to obtain the data at a frequency of 1 sample per hour and forecast the engine oil pressure every 

hour. As the RUL predictions for every second or minute do not add much value and data from 

the sensors collected at any of the above-mentioned frequencies followed a very similar trend, a 

frequency of 1 sample per hour was used for developing the fault prognostic models. Each data 

point in the resultant dataset represents the average sensor value over the hour prior to the 

corresponding time stamp for all sensor readings. Figure 5.8 shows the readings from the condition 
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indicators prior to a HPFP failure in a haul truck #1. The data presented was for a duration of 75 

days from May 1st, 2019 to July 15th, 2019. Sensor data was collected to investigate the behavior 

of various sensors and to establish a relation between them to be able to develop a model to 

successfully predict the RUL of gerotor failures in HPFP. In this particular case, the failure 

occurred on July 11th, 2019 that resulted in a gradual reduction in engine oil pressure (represented 

by the purple line in Figure 5.8) starting two weeks prior to the failure. In order to validate the 

results and to determine the generalization capabilities of the DL-based LSTM and GRU models, 

they were tested on an additional 9 haul trucks that encountered gerotor failures in HPFP during 

different times of the year. 
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Figure 5.8. Sensor data from condition indicators prior to a HPFP failure 
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 Results of Fault Prognostic Algorithms 

LSTM and GRU models were built using data from haul truck sensors that were averaged to down 

sample the input data to a frequency of 1 reading per hour as mentioned in the previous section, 

and the results are presented in the following subsections.  

Table 5.1 shows the combination of hyperparameters that were trained with the LSTM and GRU 

models using Grid Search technique. A total of 288 LSTM model architectures (model architecture 

refers to the combination of number of hidden layers, lag value, batch size, number of epochs, 

number of nodes and dropout regularization ratio) were tested with combinations of the parameters 

shown in Table 5.1, and each combination was run for 10 iterations and the average accuracy 

metrics were recorded. Each of the 288 model architectures were then ranked based on the highest 

R2 score and the lowest root mean squared error. 

Table 5.1. Hyperparameter combinations for the DL-based fault prognostic models 

Hyperparameter Combination 

Number of Hidden Layers [1, 2, 3] 

Lag Value [48, 72, 96, 120] 

Batch Size [25, 50] 

Number of Epochs [15, 25] 

Number of Nodes [25, 50, 100] 

Dropout Regularization Ratio [0.2, 0.3] 
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 Results of LSTM Algorithm 

Figure 5.9 represents the PDF plot of average R2 score over 10 iterations for each combination of 

hyperparameters in Table 5.1 tested using a Grid Search approach. The x-axis of the plot represents 

the average R2 score, and the y-axis represents the density of the distribution of the R2 scores. The 

plot is sorted based on the number of hidden layers used in the LSTM model architecture: the 

average R2 score of models with 1 hidden layer are represented in blue, models with 2 hidden 

layers are represented in orange and the models with 3 hidden layers are represented in green. The 

blue line, orange line and green line correspond to the KDE of R2 score of the LSTM model 

architecture with a single hidden layer, two hidden layers and three hidden layers respectively. 

 
Figure 5.9. PDF plot of average coefficient of determination for LSTM architectures 



 

 142 

Figure 5.10 shows a boxplot of the average R2 score for LSTM models sorted by the number of 

hidden layers. Boxplots combined with swarm plots show the distribution of the data points within 

each class, identify any outliers in the data and give an overview of the basic descriptive statistics 

such as the median, 25th percentile, 75th percentile, minimum and maximum value after discarding 

the outliers. For instance, the boxplot on the extreme left in Figure 5.10 represents the average R2 

score of LSTM models with 1 hidden layer. The median value of R2 score is around 0.50 with the 

highest R2 score value being 0.873. The upper boundary of the box represents the value below 

which 75% of the data points lie and the lower boundary represents the value below which 25% 

of the data points exist. The upper and lower bars denote the maximum and minimum values of 

the R2 score respectively, and all points present outside these lines are considered outliers.  
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Figure 5.10. Boxplot of average coefficient of determination for LSTM architectures 

From Figure 5.10, the maximum R2 score of an LSTM model with 2 hidden layers is 0.699 and 

although some model architectures resulted in a R2 score above 0.50, the median value of R2 score 

is negative indicating that more than half of the LSTM models with 2 hidden layers failed to 

determine the trend and predict the RUL for gerotor failures in HPFP (negative value of R2 score). 

Similarly, the maximum R2 score of LSTM models with 3 hidden layers is 0.549 and the median 

value of R2 score is less than 0 with only 3 out of 96 LSTM models producing a positive R2 score. 

From Figure 5.9 and Figure 5.10, it can be concluded that the LSTM model performance degrades 

with the increase in number of hidden layers, and hence for the rest of this research, LSTM models 
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with only one hidden layer are considered. In addition to performing better, using a single hidden 

layer is also computationally less expensive. The rest of this section presents the results of LSTM 

model that resulted in the highest R2 score using 1 hidden layer and the other hyperparameters as 

listed in Table 5.1. 

Table 5.2 shows the optimal model architecture using the LSTM model that resulted in the highest 

averaged R2 score and the lowest averaged root mean squared error for predicting the RUL of 

gerotor failure in HPFP in haul truck #1. 

Table 5.2. Optimal hyperparameter combination for LSTM model 

Hyperparameter Value 

Lag Value 120 

Batch Size 25 

Number of Epochs 15 

Number of Nodes 100 

Dropout Regularization Ratio 0.2 

Table 5.3 shows the average values of model performance evaluation metrics over 10 iterations. 

The results indicate that the best performing LSTM model was able to predict the values of engine 

oil pressure with an average R2 score of 87.3%. 

Table 5.3. Performance evaluation metrics for LSTM model 

Accuracy Metric Value 

Average Root Mean Squared Error 12.894 

Average Mean Absolute Error 10.641 

Average Maximum Error 22.891 
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Average Explained Variance Score 0.957 

Average R2 Score 0.873 

 

Figure 5.11 shows the loss encountered during the training and testing phases of the LSTM model 

with the architecture shown in Table 5.2. The loss value is represented on the y-axis along with 

the number of epochs on the x-axis. Training loss is calculated on the validation dataset and test 

loss is calculated on the test dataset. The MSE on the training data (represented by the cyan line in 

Figure 5.11) seemed to be relatively constant at 0.01 after 3 epochs indicating that the model 

adapted well to the training data and the MSE on the test data set (represented by the dotted purple 

line in Figure 5.11) indicates that the model performed well on unseen test data set too. 
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Figure 5.11. Training and test loss for the LSTM model to predict RUL of gerotor failures in HPFP 

Figure 5.12 shows the predicted engine oil pressure values from the developed LSTM model 

compared to the actual values for haul truck #1. The y-axis represents the value of engine oil 

pressure (in kPa) and the x-axis represents the prediction time (in Hours). The actual values of 

engine oil pressure are represented by the green line and the predictions made by the LSTM model 

are represented by the purple line. In this case, the model uses data from the past 60 days to make 

predictions for the next 360 hours (15 days). The purple band around the predicted values at each 

timestep represent a region of 5 kPa above the predicted values and 5 kPa below the predicted 

value. The confidence bands for fault prognostic models in this research were empirically chosen 

to be 5 kPa, but as the field of uncertainty propagation evolves, more complex confidence bounds 

can be employed. From Figure 5.12, it can be observed that the engine oil pressure values predicted 
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by the LSTM model are within a range of 5 kPa for up to 120 hours (5 days) from the start of 

prediction. The RUL of a truck with potential HPFP failure can be obtained by reading the x-axis 

value in Figure 5.12 when the predicted engine oil pressure drops below a pre-determined critical 

threshold (350 kPa). 

 
Figure 5.12. Forecasting RUL for gerotor failures in HPFP using LSTM Model 

The difference between the actual values and predicted values of engine oil pressure increases with 

time, which an expected behavior of the LSTM and GRU models as the temporal dependencies 

captured by the RNN models are usually unable to make longer predictions with significant 

accuracy.  
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For validating the developed model and to demonstrate the generalization capabilities, the model 

is tested on 9 other haul trucks that experienced gerotor failures in HPFP at different times of the 

year. The optimal hyperparameter combinations for the best LSTM models tested on all the haul 

trucks, including the haul truck described earlier in this section (haul truck #1) are presented in 

Table 5.4.  

Table 5.4. Optimal hyperparameter combinations for the LSTM models 

Truck ID R2 Score Lag Value Batch Size Number of 
Epochs 

Number of 
Nodes 

Dropout 
Ratio 

1 0.873 120 25 15 100 0.2 

2 0.832 48 25 15 25 0.3 

3 0.786 120 25 25 100 0.2 

4 0.427 48 25 25 50 0.2 

5 0.617 48 50 25 25 0.2 

6 0.842 120 50 15 25 0.2 

7 0.813 72 50 25 25 0.2 

8 0.821 48 25 25 25 0.3 

9 0.772 48 25 25 25 0.2 

10 0.621 48 25 25 100 0.2 

 

From Table 5.4, it can be observed that the same hyperparameter combinations cannot be used to 

build a fault prognostic model to produce the best R2 score for all haul trucks that had a gerotor 

failures in HPFP. Although the majority of the LSTM models produced an R2 score greater than 

0.75, models build to predict RUL for failures associated with truck #4, #5 and #10 produced R2 
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score below 0.75. This could be because the optimal hyperparameter combinations for the three 

trucks stated above were not present in the list of hyperparameters evaluated using the Grid Search 

technique. Possibly, a higher value of R2 score could be achieved for the three trucks by using a 

broader range of hyperparameters. The following section presents the results of the fault prognosis 

performed by using the GRU model, which is similar to LSTM model but uses fewer internal gates. 

 Results of GRU Algorithm 

Figure 5.13 represents the PDF plot of average R2 score over 10 iterations for each combination 

of hyperparameters in Table 5.1 tested using a Grid Search approach. The x-axis of the plot 

represents the average R2 score, and the y-axis represents the density of the distribution of the R2 

scores. The plot is sorted based on the number of hidden layers used in the GRU model 

architecture: the average R2 score of models with 1 hidden layer are represented in blue, models 

with 2 hidden layers are represented in orange and the models with 3 hidden layers are represented 

in green. The blue line, orange line and green line correspond to the KDE of R2 score of the GRU 

model architecture with a single hidden layer, two hidden layers and three hidden layers 

respectively. 
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Figure 5.13. PDF plot of average coefficient of determination for GRU models 

Figure 5.14 shows a boxplot of the average R2 score for GRU models sorted by the number of 

hidden layers. Boxplots combined with swarm plots show the distribution of the data points within 

each class, identify any outliers in the data and give an overview of the basic descriptive statistics 

such as the median, 25th percentile, 75th percentile, minimum and maximum value after discarding 

the outliers. For instance, the boxplot on the extreme left in Figure 5.14 represents the average R2 

score of GRU models with 1 hidden layer. The median value of R2 score is around 0.70 with the 

highest R2 score value being 0.908.  



 

 151 

 
Figure 5.14. Boxplot of average coefficient of determination for GRU models 

From Figure 5.14, the maximum R2 score of GRU model with 2 hidden layers is 0.745 and some 

model architectures resulted in a R2 score above 0, but the median value of R2 score is negative. 

The same trend is observed with LSTM models with 2 hidden layers and indicates that more than 

half of the GRU models with 2 hidden layers failed to determine the trend and predict the RUL for 

gerotor failures in HPFP (negative value of R2 score). Similarly, the maximum R2 score of GRU 

models with 3 hidden layers is 0.564 and the median value of R2 score is less than 0 with only 3 

out of 96 GRU models producing positive R2 score. 

From Figure 5.13 and Figure 5.14, it can be concluded that performance of the GRU model 

degrades with the increase in number of hidden layers. Hence, similar to LSTM models, GRU 
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models with only one hidden layer and hyperparameters as listed in Table 5.1 are considered for 

the rest of this research. Table 5.5 shows the optimal model architecture using the GRU model that 

resulted in the highest averaged R2 score and the lowest averaged root mean squared error for 

predicting the RUL of gerotor failures in HPFP. Both GRU and LSTM model produced the optimal 

performance (highest average R2 score) using the same set of hyperparameter combination for 

predicting the RUL of the failure for haul truck #1. 

Table 5.5. Optimal hyperparameter combination for GRU model 

Hyperparameter Value 

Lag Value 120 

Batch Size 25 

Number of Epochs 15 

Number of Nodes 100 

Dropout Regularization Ratio 0.2 

 

Table 5.6 shows the average values of model performance evaluation metrics over 10 iterations. 

The results indicate that the best performing GRU model was able to predict the values of engine 

oil pressure with an average R2 score of 90.8%. 

Table 5.6. Performance evaluation metrics for GRU model 

Accuracy Metric Value 

Average Root Mean Squared Error 11.021 

Average Mean Absolute Error 8.580 

Average Maximum Error 23.613 
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Average Explained Variance Score 0.943 

Average R2 Score 0.908 

 

Figure 5.15 shows the loss encountered during the training and testing phases of the GRU model 

with the architecture shown in Table 5.5. The loss value is represented on the y-axis along with 

the number of epochs on the x-axis. The MSE on training data (represented by the cyan line in 

Figure 5.15) seemed to be relatively constant at 0.005 after 8 epochs indicating that the model 

adapted well to the training data and the MSE on the test dataset (represented by the dotted purple 

line in Figure 5.15) indicates that the model performed well on unseen test dataset resulting in an 

MSE of 0.01. 

 

Figure 5.15. Training and test loss for the GRU Model to predict RUL of gerotor failures in HPFP 
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Figure 5.16 shows the predicted oil pressure values from the GRU model compared to the actual 

values and it can be observed that the engine oil pressure values predicted by the GRU model are 

within a range of 5 kPa for up to 160 hours (~ 7 days) from the start of prediction for haul truck 

#1. The engine oil pressure values predicted using GRU model are with ±5 kPa for 160 hours from 

the start of prediction whereas the values predicted using LSTM model are within ±5 kPa for 120 

hours from the start of prediction. This indicates that the GRU model outperformed the LSTM 

model for fault prognosis of HPFP failure in haul truck #1 and this can also be confirmed by the 

higher R2 score achieved by using the GRU model. 

 
Figure 5.16. Forecasting RUL for gerotor failures in HPFP using GRU Model 
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The optimal hyperparameter combinations for the best GRU models tested on all the ten haul 

trucks are presented in Table 5.7.  

Table 5.7. Optimal hyperparameter combinations for the GRU models 

Truck ID R2 Score Lag Value Batch Size Number of 
Epochs 

Number of 
Nodes 

Dropout 
Ratio 

1 0.908 120 25 15 100 0.2 

2 0.848 72 50 15 25 0.3 

3 0.864 72 25 25 100 0.3 

4 0.681 48 25 15 100 0.2 

5 0.800 48 25 25 100 0.2 

6 0.882 72 50 15 25 0.3 

7 0.879 120 25 25 25 0.3 

8 0.862 72 50 15 25 0.3 

9 0.823 120 25 25 100 0.3 

10 0.801 48 50 25 100 0.2 

 

Similar to the LSTM models, it can be observed that the same hyperparameter combinations cannot 

be used to build a fault prognostic model to produce the best R2 score for predicting the RUL of 

gerotor failures in HPFP in all haul trucks. Unlike fault prognosis with LSTM models that resulted 

in 3 haul trucks having an R2 score below 0.75, all GRU models with the exception of haul truck 

#4 resulted in an average R2 score value greater than 0.80. The individual R2 score achieved for 

each haul truck using the GRU model is higher than the R2 score achieved by the LSTM model 
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indicating that the GRU model outperformed the LSTM model for fault prognosis of gerotor 

failures in HPFP. 

A paired-samples T-test was conducted to determine if the difference between the R2 scores of the 

GRU model differ significantly from the R2 scores generated by the LSTM model. A T-test statistic 

value of -18.197 and a p-value of 4.131e-49 indicate that there was a significant difference in the 

R2 scores of LSTM and GRU models. These results suggest that the GRU models performed better 

than the LSTM models for predicting the RUL of gerotor failures in HPFP. 

 Comparison of DL and ML Algorithms for prognostics 

DL-based methods such as LSTM and GRU models have gained popularity for fault prognosis 

recently, but prior to the wide scale adaptation of DL-based methods, researchers used ML-based 

techniques such as SVM and MLP for fault prognosis. In order to implement SVM and MLP for 

fault prognosis, Python programming language was used and toolkits such as NumPy, Pandas, 

MatPlotLib, Seaborn and Scikit-Learn were employed in to develop the fault prognostic models 

in this research. 

Table 5.8 presents the average values of R2 score achieved by using DL-based methods such as 

LSTM and GRU, and ML-based methods such as SVM and MLP. In addition to ML-based and 

DL-based methods, R2 score achieved by using simple linear regression (LR) are also presented in 

Table 5.8. 
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Table 5.8. Average R2 score for DL-based and ML-based methods 

Truck ID LSTM GRU SVM MLP LR 

1 0.873 0.908 0.876 -0.50 0.698 

2 0.832 0.848 0.239 -0.549 0.160 

3 0.786 0.864 0.594 0.178 0.580 

4 0.427 0.681 0.489 -0.06 0.403 

5 0.617 0.800 0.582 -0.497 0.589 

6 0.842 0.882 0.559 -0.087 0.357 

7 0.814 0.879 0.627 -0.908 0.494 

8 0.821 0.861 0.644 -0.005 0.628 

9 0.772 0.823 0.420 -0.12 0.348 

10 0.621 0.801 0.709 0.061 0.519 

 

From the results presented in Table 5.8, MLP models have the lowest R2 score compared to other 

models. With the exception of MLP, ML-based method (SVM) performed better than the LR 

model, and the performance of the DL-based methods are better than ML-based methods and LR. 

Within DL-based methods, the GRU model consistently performed better than the LSTM model 

and the comparison of the R2 score achieved using each model is visually represented in Figure 

5.17.  
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Figure 5.17. Graphical representation of average R2 score for various fault prognostic models 

From Figure 5.17, it is evident that with the exception of haul truck #4, the R2 score achieved by 

GRU models is consistent unlike other models that produced a wider range of R2 scores. The 

results presented so far confirm the superiority of DL-based methods over ML-based methods for 

fault prognosis, and the GRU model can consistently outperform other DL-based and ML-based 

methods for prognosing gerotor failures in HPFP of haul trucks. 

 Summary and Conclusion 

This chapter presents an overview of the approach developed for fault prognosis of gerotor failures 

in HPFP of haul trucks using data-driven techniques. Time-series signals in the form of sensor 

readings from several key components related to HPFP were used as condition indicators. Engine 

oil pressure was chosen as the target value to predict the RUL of haul trucks diagnosed with gerotor 

failures in HPFP based on empirical knowledge and the importance of engine oil pressure in 

predicting the RUL of engine related failures. 
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The high-resolution data generated from the sensors are typically downsampled to a lower 

resolution (1 sample every second) by averaging the values prior to storing them in the form of a 

time-series data in the InfluxDB database. Although the time-series data was available at a 

resolution of 1 reading per second, predicting the RUL of a haul truck diagnosed with gerotor 

failures in HPFP ‘in seconds’ is not a reasonable practice. Hence the input time-series data was 

resampled to a much lower resolution of 1 reading per hour by averaging the original data to predict 

the RUL of gerotor failures in HPFP ‘in hours’ and to reduce the computational burden on the 

system while performing fault prognosis. 

The pre-processed time-series data at a resolution of 1 reading per hour was used as input to predict 

the RUL using two DL-based methods, LSTM and GRU models. Grid Search technique was used 

to optimize the values of several hyperparameters used in the DL models to obtain a high model 

accuracy. Each model was run for 10 iterations using several combinations of hyperparameters 

and the performance evaluation metrics were computed as an average of the corresponding metric 

over the 10 iterations. The R2 score achieved by the LSTM model for predicting the RUL of haul 

truck #1 is 0.867, while the GRU model achieved an accuracy of .908 for predicting the RUL of 

the same haul truck. In order to further validate the results and to determine the generalization 

capabilities of the DL-based methods, the LSTM and GRU models were tested on an additional 9 

haul trucks, and the results from all the 10 haul trucks that experienced gerotor failures in HPFP 

indicated that the GRU model performed better than the LSTM model for predicting the RUL of 

gerotor failures in HPFP. However, the same set of hyperparameters did not produce the best 

accuracy for RUL prediction and hence to overcome this issue, the DL-based methods were 

adjusted to evaluate and compare the accuracy of the LSTM and GRU models using a range of 

hyperparameter values to automatically choose the optimal hyperparameters. 
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The performance of DL-based methods was also compared with ML-based methods such as SVM 

and MLP, and also with LR. The results indicated that DL-based methods performed better that 

ML-based methods and LR for predicting RUL of gerotor failures in HPFP. Of all the models 

tested, MLP had the least accuracy for all trucks and SVM performed better than the LR model. 

In addition to outperforming the other models, GRU model also produced more consistent R2 

scores across all haul trucks, with the exception of one haul truck indicating that GRU model is a 

better choice for predicting the RUL of gerotor failures in HPFP for haul trucks. 
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Chapter 6: CONCLUSIONS 

 

 

This chapter presents the summary and conclusions of this research. This chapter also discusses 

the significance and novel contributions of this research. In addition, this chapter contains 

recommendations for future work using approaches such as natural language processing and 

convolutional neural networks for fault diagnosis and prognosis.  
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 Summary of the research 

Mining companies are preferring to invest in fewer but larger equipment, and downtime associated 

with larger equipment now represents a higher percentage of operational capacity loss. Large 

mining equipment, especially haul trucks are critical to a mine’s success and require their health 

condition to be frequently and accurately monitored to avoid unscheduled breakdowns and costly 

repairs (Sander 2011). Modern mining is facilitated by the use of sensors for real-time monitoring 

of equipment operating parameters, external environment and various KPIs. Although this data 

has existed within some companies for years, it was vastly underutilized until recently (Young and 

Rogers 2019). This research built an integrated system that identified HPFP failures as a critical 

failure, diagnosed gerotor failures in HPFP in haul trucks and predicted the RUL of haul trucks 

diagnosed with gerotor failures in HPFP using data from several existing sources that are 

associated with a haul truck by leveraging various DM techniques. 

An extensive literature review of several fault diagnostic and prognostic models using ML-based 

and DL-based methods and their application in the mining industry have been presented in Chapter 

2. In summary, the major shortcomings revealed by the literature are as follows:  

• The use of fabricated or simulated data for diagnosis and prognosis of failures that may not 

account for all complex scenarios in the real world. 

• Several researchers have addressed the same failures by using different DM techniques on 

some of the easily accessible popular datasets rather than trying to identify and address 

novel failures. 
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• Existing work on fault diagnosis and prognosis of mining equipment is primarily focused 

on knowledge-driven approaches (model-based and statistical-based) and traditional ML-

based data-driven approaches. 

• There is a need for an integrated engineering methodology which can be used for 

identifying critical failures in mining equipment and developing various data-driven 

approaches for fault diagnosis and prognosis using data from several sources associated 

with the equipment. 

This research aimed to develop an integrated engineering methodology utilizing a combination of 

various DM techniques reviewed in the previous chapters, incorporating the advantage of various 

techniques available. The development, implementation and validation of this integrated 

engineering methodology has been conducted in four major stages: 

i. Identifying critical failures in haul trucks that have the highest frequency of failure using 

data obtained from multiple databases associated with a haul truck. 

ii. Developing and implementing fault diagnostic models using unsupervised ML-based 

approaches (DBSCAN and HDBSCAN models) for diagnosing the failure of interest. 

iii. Developing and implementing fault prognostic models using supervised DL-based 

approaches (LSTM and GRU models) for predicting the remaining RUL for the failure of 

interest.  

iv. Verifying the performance of fault diagnostic and prognostic models developed in this 

research against traditional models and validating the performance of the models developed 

in this research by implementing them on multiple trucks and at two other mines. 

 The remaining sections in this chapter highlight the research conclusions, present a summary of 

the novel contributions achieved through this research and a brief prospect for potential future 
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work to address certain challenges faced in this research. Figure 6.1 presents a visual summary of 

the workflow used for this research. 

 

Figure 6.1. Workflow showing all the steps involved in this research. 
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 Research Conclusions 

Through this research, an integrated methodology has been developed using DM techniques (such 

as supervised learning and unsupervised learning approaches; ML and DL models) to detect 

gerotor failures in HPFP in haul trucks and to predict their RUL. Both supervised learning 

techniques and unsupervised learning techniques were explored and a framework to develop fault 

diagnostic and prognostic models was presented without the use of any fabricated or simulated 

data. All the research objectives outlined in Chapter 1 have been achieved and the following 

conclusions were drawn from the implementation of the methodology developed in this research: 

• In this research, a novel approach was proposed to identify critical failures in haul trucks 

using data from various historical maintenance databases such as the frequency of failures, 

duration of downtime, alarm logs and work order reports. HPFP failures were identified to 

be the critical failure of interest because of their high frequency of occurrence and tendency 

to fail prematurely.  

• Another major aspect of this study was to identify several unscheduled mechanical failures 

(specifically engine related failures) in haul trucks, which could be ideal candidates for 

future research. In addition to HPFP failures, other failures such as coolant leaks, exhaust 

leaks, turbo charger failures and fuel injectors were identified to have a high failure 

frequency indicating the need for future research to address these issues. 

• Through this research (Chapter 4), unsupervised ML-based approaches such as DBSCAN 

and HDBSCAN (density-based outlier detection algorithms) were developed and 

implemented to diagnose gerotor failures in HPFP using engine oil sample analysis data as 

input. 
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• The fault diagnostic models developed in this research were validated by implementing 

them at two other mines. The P@n score ranged between 0.71 to 0.79 using the DBSCAN 

model and between 0.71 to 0.75 using the HDBSCAN model with a similar set of 

hyperparameters. This demonstrates the capability of the fault diagnostic model as a 

reliable tool to detect gerotor failures in HPFP with a sufficient lead time of 2 to 3 weeks 

prior to a failure and was tested at multiple mines. 

• A comparison between the accuracy of several unsupervised outlier detection algorithms 

used for fault diagnosis of gerotor failures in HPFP of haul trucks indicated that the density-

based outlier detection models implemented in this research resulted in an average P@n 

accuracy scores of 0.74 and consistently outperformed the other outlier detection models 

that produced an average P@n accuracy score of 0.49.  

• Through this research (Chapter 5), supervised DL-based approaches such as LSTM and 

GRU models (RNN-based models) were developed and implemented to predict the RUL 

of haul trucks diagnosed with gerotor failures in HPFP using sensor data from the condition 

indicators identified in this research. 

• A comparison between the accuracy of the DL-based fault prognostic models and the 

traditional ML-based approaches used to predict the RUL of gerotor failures in HPFP of 

haul trucks demonstrated that the DL-based models implemented in this research have 

resulted in a higher average accuracy (measure by R2 score) of 0.80 and consistently 

outperformed the traditional approaches that resulted in an average accuracy of 0.50. 

Among the DL-based approaches implemented in this research, the GRU model produced 

more consistent results across all haul trucks compared to the LSTM model. 
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• The fault prognostic models developed in this research were validated by implementing 

them on multiple trucks at a mine (total of ten haul trucks) with varying operating 

conditions. Although consistent results were obtained using the GRU model, varying 

operating conditions for each truck meant that the hyperparameters had to be tuned 

individually to achieve the highest accuracy in each case. In order to address this issue, 

Python code was developed to automatically search through a wide range of 

hyperparameters and select the ideal combination of hyperparameters for the GRU model 

in each case.  

In summary, this research developed an integrated methodology to use DM techniques such as ML 

and DL models to detect gerotor failures in HPFP as well as predict their RUL in haul trucks. The 

results presented in this research show that several DM techniques can be successfully utilized for 

fault diagnosis and prognosis of haul trucks. In addition, the code developed by using Python in 

this research can be employed to diagnose critical failures in haul trucks such as gerotor failures 

in HPFP at various mines and predicting the RUL of several trucks diagnosed with such failures. 

Highlights of the code developed for fault diagnosis is presented in Appendix B and highlights of 

the code developed for fault prognosis is presented in Error! Reference source not found.. 

 Novel contributions 

The main contribution of this research was the development and implementation of an integrated 

methodology for diagnosing a critical failure in haul trucks and estimating its RUL using several 

DM techniques. This provided a better understanding of the applicability of several ML and DL 

models on various types of data and facilitated a more reliable detection of faults and prediction 

of their RUL.  
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This research resulted in knowledge in both the area of application of DM techniques to mining 

equipment failures and specific knowledge on how to diagnose and predict the remaining useful 

life of gerotor failures in HPFP. 

With respect to specific knowledge about gerotor failures in HPFP, the following contributions 

have been demonstrated: 

• Through this research, a better understanding of HPFP failures (specifically gerotor failures 

in HPFP) in haul trucks was presented in terms of the condition indicators that could be 

used for diagnosing and prognosing gerotor failures in HPFP. This research also created 

an understanding of the applicability of various ML-based and DL-based models for fault 

diagnostics and prognostics of gerotor failures in HPFP. 

• A novel approach was proposed to identify the condition indicators that could be used for 

developing the fault diagnostic and prognostic models by assessing the occurrence pattern 

of historical alarms related to HPFP failures. Using this approach, common rail injector 

pressure, fuel delivery pressure, fuel pump inlet pressure, engine horsepower and engine 

oil pressure were identified as the potential condition indicators for diagnosing and 

predicting the RUL of HPFP failures. 

• The analysis used to identify condition indicators for HPFP failures using historical alarm 

log data can be employed to develop condition indicators for other critical failures; 

especially in cases where knowledge of a failure is very limited or unavailable. 

• The methodology developed for fault diagnosis in this research demonstrated that various 

components of engine oil sample analysis such as the concentration of contaminants, 

additives, wear metals and physical properties can be used to diagnose gerotor failures in 

HPFP with an average P@n accuracy score of 0.74. 
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• The methodology developed for fault prognosis in this research demonstrated the use of 

condition indicators identified in this research to successfully predict the RUL of haul 

trucks diagnosed with gerotor failures in HPFP with an average R2 accuracy score of 0.80.   

With respect to the application of DM techniques for fault diagnosis and prognosis of haul trucks, 

the following contributions have been demonstrated: 

• Unsupervised ML-based approaches such as DBSCAN and HDBSCAN (density-based 

outlier detection algorithms) were developed and implemented to diagnose gerotor failures 

in HPFP using engine oil sample analysis data as input. This successfully demonstrated the 

capabilities of unsupervised learning techniques for earlier detection of up to 2 to 3 weeks 

leading to a gerotor failure in HPFP, and also indicated the ability of the fault diagnostic 

models developed using such techniques to diagnose multiple failures (such as fuel injector 

failures, coolant leaks etc.) by tuning the model hyperparameters. 

• Supervised DL-based approaches such as LSTM and GRU (RNN-based models) were 

developed and implemented to predict the RUL of haul trucks diagnosed with gerotor 

failures in HPFP using sensor data from the condition indicators developed in this research. 

This demonstrated the capabilities of supervised learning techniques for accurate and 

reliable prediction of RUL for haul trucks diagnosed with a gerotor failure in HPFP with 

an average R2 score of 0.80. 

• A better understanding of the performance of fault prognostic models was achieved by 

investigating the effect of hyperparameters on model performance. This led to an 

understanding that although DL-based fault prognostic models were consistent in their 

performance as demonstrated by the results produced in Chapter 5 of this thesis, a generic 

model architecture cannot be used for predicting RUL of gerotor failures in HPFP. This 
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emphasizes the need for individually tuning the model hyperparameters in future research 

adapting a similar framework. 

• The fault diagnostic models implemented in this research resulted in an average P@n 

accuracy scores of 0.74 compared to other outlier detection models that produced an 

average P@n accuracy score of 0.49. The fault prognostic models implemented in this 

research resulted in a higher average R2 score of 0.80 compared to other prognostic models 

that resulted in an average accuracy of 0.50. These results indicate that the performance of 

fault diagnostic and prognostic models developed and implemented in this research have 

superior performance and consistently outperformed the traditional models. Thus, the 

methodology presented in this research can act as a framework for future research on fault 

diagnosis and prognosis of other critical failures in haul trucks. 

• Until now, the use of DM techniques for fault diagnosis and prognosis of haul trucks have 

not been widespread but based on the results obtained in this research, various DM 

techniques can be confidently employed for fault diagnosis and prognosis in haul trucks. 

In addition, the following contributions to the general body of knowledge and future research 

have also been demonstrated: 

• Investigating the influence of temperature and seasonality on the sensor data obtained for 

each condition indicator determined that temperature and seasonality do not have a 

significant effect on the condition indicators used for fault prognosis of gerotor failures in 

HPFP as can be seen from Appendix E. Since all the trucks are of the same make, model, 

age group and operate in similar environmental conditions, it could be inferred that 

operator variability plays a vital role in understanding the difference in behavior of trucks 

prior to a failure, indicating the need for future research in this area. 
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• Finally, with the data available only for a limited number of failures, a database was created 

that contains the distribution of condition indicators prior to a failure. Such distributions 

can be used by the DM models to make predictions if real-time data is unavailable at critical 

times. As the data continues to be collected and made available, the relations between 

various operating parameters and external parameters can be better understood. 

 Challenges and Limitations 

The usage of data from actual operations and maintenance poses certain challenges that need to be 

overcome prior to adopting the framework proposed in this research. Such challenges include, but 

are not limited to the following: 

• Incomplete observability of condition indicators of interest: The choice of good condition 

indicators improves the accuracy of fault diagnostic and prognostic models, but the 

availability of data from such condition indicators may be limited at times due to various 

reasons. In such cases, model accuracy may be impacted by the use of fewer condition 

indicators or alternative data needs to be used. 

• Paucity of maintenance history: As mining equipment, such as haul trucks tend to become 

more reliable, fewer failures are observed during the life of the equipment. This results in 

a scarcity of failure data in the maintenance history to develop data-driven fault diagnostic 

and prognostic models. Collecting significant amounts of failure data for certain critical 

failures is a time-consuming process and is thus one of the major bottlenecks for research 

works that are based on actual failure data. 

• Possible errors in maintenance history: The accuracy of fault diagnostic and prognostic 

models are also impacted by possible errors in maintenance history records that are a result 

of human error or negligence. In certain cases, the work order history reports logged by 
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maintenance personnel tend to be too generic and provide very little to no information on 

the actual source of the failure or the specific details of the repairs performed.  

Based on the results presented in this research and the key challenges listed in this section, the 

availability and choice of data along with the choice of a suitable algorithm will have a significant 

impact on the outcome of all future work based on the framework suggested in this research. 

 Recommendations for Future Work 

The fault diagnostic models developed in this research were able to detect failures with a sufficient 

lead-time and high accuracy, and the fault prognostic models were proven to be capable of 

predicting the RUL of haul trucks experiencing HPFP failure with significant accuracy. The 

generalization capabilities of both fault diagnostic and prognostic models have produced consistent 

results across different trucks and mines with some hyperparameter tuning. However, there is still 

a need for continued investigations and improvements, which could be accomplished by exploring 

the following tasks.  

• In this research, one of the most time-consuming process was to manually inspect the work 

order reports to identify whether a point classified as an outlier by the outlier detection 

algorithm was associated with a failure or not. In the future, DL techniques such as natural 

language processing (NLP) can assist in automating this process to gain additional insight 

and to avoid any potential errors. RNNs can capture both short term and long-term 

relationships within the text, making them a popular choice for use in NLP to identify key 

words in maintenance records or failure logs. 

• Due to the limited number of occurrences of gerotor failures in HPFP, the fault patterns 

from several trucks (operated by different operators resulting in dissimilar operating 

conditions) within the fleet need to be studied to extract relevant patterns across the entire 
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fleet. Existing approaches for RUL prediction assume that all equipment in a fleet have 

similar operating conditions and parts of degradation trajectories can be transferred within 

equipment across the fleet. But this assumption does not hold true for complex industrial 

equipment under varying operational and environmental conditions, and poses a significant 

challenge on transferring knowledge across several units in the fleet (Michau, Palmé, and 

Fink 2018). In this research, all DM models for fault prognosis had to be trained separately 

for each haul truck, but domain adaption and transfer learning could be used to eliminate 

the need for retraining the models to perform similar tasks. 

• Data augmentation is a technique that mitigates the increasing risk of overfitting and 

improves the performance of DL models in cases where insufficient data is available and 

the models fail to generalize well (Jason Wang and Perez 2017). However, research for 

data augmentation on time-series data is limited and one of the potential future research 

directions could be to investigate the application of data augmentation techniques to fault 

diagnosis and prognosis, particularly for time-series data. 

• Effective and efficient composition and selection of datasets is an issue in environments 

with highly varying operating conditions where the training dataset is not fully 

representative of the full range of expected operating conditions. Generative neural 

networks have been recently used by several researchers to generate faulty samples or fault 

features of vibration data, and an interesting research direction could be to evaluate the 

transferability of such approaches to time-series data and more complex data. 
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Appendix A: Sample Work Order Records 

Table A.1. Top 10 rows of work order history 
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Appendix B: Highlights of the Python Script 

Developed for Fault Diagnosis 

Highlights of the Python script for performing various steps involved in fault diagnosis as 

described in Chapter 4 are presented below. 

# Give Google Colab access to Google Drive 

from google.colab import drive 

drive.mount('/content/drive') 

 

# Import necessary libraries and packages 

import pandas as pd 

import numpy as np 

import datetime as dt 

import seaborn as sns 

import statsmodels.api as sm 

import matplotlib 

import matplotlib.pyplot as plt 

get_ipython().run_line_magic('matplotlib', 'inline') 

from sklearn.feature_selection import VarianceThreshold 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.decomposition import PCA 

from sklearn.neighbors import NearestNeighbors 

import warnings 

import itertools 

warnings.filterwarnings("ignore") 

 

data = pd.read_csv('Inputdata.csv’) 
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data.head() 

 

# Data Pre-processing  

# Remove all features whose variance does not meet the defined threshold 

threshold = 0.90 

var_thres = VarianceThreshold(threshold = (threshold * (1 - threshold))) 

var_thres.fit_transform(data) 

dropped_columns = [column for column in data.columns 

                    if column not in data.columns[var_thres.get_support()]] 

data.drop(dropped_columns, axis =1, inplace = True) 

 

# Create a correlation matrix and heatmap to show the Pearson's correlation index for all independent 
features 

corrmat = data.corr() 

top_corr_features = corrmat.index 

 

# Select appropriate figure size based on the number of features 

plt.figure(figsize = (20,20)) 

plt.title('Pearson Correlation Coefficients for Input Features') 

 

# Plot heat map 

G = sns.heatmap(data[top_corr_features].corr(), 

              annot=True, 

              cmap="RdBu_r") 

 

# Define a function to select highly correlated feature and 

# Remove the first feature that is highly correlated with any other feature 

def correlation(dataset, threshold): 

    col_corr = set()  # Set of all the names of correlated columns 
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    corr_matrix = dataset.corr() 

    for i in range(len(corr_matrix.columns)): 

        for j in range(i): 

            if abs(corr_matrix.iloc[i, j]) > threshold: #Calculate absolute values 

                colname = corr_matrix.columns[i] #Obtain the respective column names 

                col_corr.add(colname) 

    return col_corr 

 

# Call the function and pass the training set and threshold. 

corr_features = correlation(data, 0.75) 

 

# Drop all the highly correlated features 

data.drop(corr_features, axis =1, inplace = True) 

 

# Feature Transformation using Min-Max Scaler 

scaler = MinMaxScaler()  

data = pd.DataFrame(scaler.fit_transform(data),  

                    columns = data.columns) 

 

# Principal component analysis  

# Apply PCA to reduce the dimensionality of the input dataset 

pca = PCA(n_components=2) 

pca_result = pca.fit_transform(data) 

data_PCA['PC1'] = pca_result[:,0] 

data_PCA['PC2'] = pca_result[:,1]  

 

# Chossing hyperparameters for DBSCAN 

# Calculate k-NN distance plot values to choose Epsilon value for DBSCAN 

neigh = NearestNeighbors(n_neighbors=2) 
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nbrs = neigh.fit(data_PCA) 

distances, indices = nbrs.kneighbors(data_PCA) 

distances = np.sort(distances, axis=0) 

distances = distances[:,1] 

 

# Plot k-NN distance values to choose Epsilon value for DBSCAN 

# Set image properties 

fig = plt.figure(dpi = 1200) 

plt.figure(figsize = (12,8)) 

plt.title('k-NN Distance Plot (k = 2)') 

plt.ylim(0,1) 

plt.yticks(np.arange(0, 2, step = 0.1))  

plt.ylabel('k-NN Distance (k = 2)') 

plt.xlabel('Input samples sorted by distance') 

#Plot the values 

plt.plot(distances, linewidth = 2, color = 'r') 

 

# Grid Search for hyperparameter tuning  

# Function to iterate through a wide range of hyperparameter values 

def model_run(rad, mpts): 

    ep = rad/10 

    minpts = mpts 

     

    # Compute DBSCAN 

    db = DBSCAN(eps = ep,  

                min_samples = minpts,  

                metric = 'euclidean',  

                n_jobs = -1).fit(data_PCA) 

    labels = db.labels_ 



 

 214 

     

    # Number of clusters in labels, ignoring noise if present. 

    n_clusters = len(set(labels)) - (1 if -1 in labels else 0) 

    n_noise = list(labels).count(-1) 

    data.append([ep, minpts, n_clusters, n_noise]) 

    df_stats = pd.DataFrame(data,  

                            columns = ['Epsilon',  

                                     'Minimum Points',  

                                     'Number of Clusters',  

                                     'Number of Outliers']) 

 

# Specify the range of hyperparameter values 

configs = list() 

for eps in range (5, 40, 1): 

    for minpts in range (5, 25, 1): 

        cfg = [eps, minpts] 

        configs.append(cfg) 

 

# Run the function 

data = [] 

for cfg in configs: 

    e, m = cfg 

    model_run(e,m) 

 

# Implementation of DBSCAN algorithm  

# Implement DBSCAN algorithm on the 2-dimensional dataset to detect outliers 

from sklearn.cluster import DBSCAN 

 

# Compute DBSCAN 
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db = DBSCAN(eps = 0.7,  

            min_samples = 15,  

            metric = 'euclidean',  

            n_jobs = -1).fit(data_PCA) 

 

clusters = db.fit_predict(data_PCA) 

core_samples_mask = np.zeros_like(db.labels_, dtype = bool) 

core_samples_mask[db.core_sample_indices_] = True 

labels = db.labels_ 

 

# Generating the plot of outliers using DBSCAN algorithm   

# Generate a 2-dimensional plot of the outliers. 

from matplotlib import cm 

cmap = cm.get_cmap('Set1') 

fig = plt.figure(dpi =1200) 

data_PCA.plot.scatter(x = 'PC1',  

                      y = 'PC2',  

                      c = clusters,  

                      cmap = cmap,  

                      colorbar = True,  

                      figsize = (12,8),  

                      sharex = False,  

                      title = '2-D plot of Outliers generated by DBSCAN') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal Component 2') 

 

# Implementation of HDBSCAN algorithm  

# Implement HDBSCAN Algorithm 

import hdbscan 
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clusterer = hdbscan.HDBSCAN(min_cluster_size = 15,  

                            allow_single_cluster = False,  

                            gen_min_span_tree = True) 

clusterer.fit(data_PCA) 

 

# Calculate outlier scores generated by the algorithm. 

scores = clusterer.outlier_scores_[np.isfinite(clusterer.outlier_scores_)] 

fig = plt.figure(dpi =1200) 

plt.figure(figsize = (12,8)) 

plt.xlabel('Outlier Scores') 

plt.ylabel('Density') 

 

# Plot the outlier scores as a distribution plot 

plt.title("Density plot of Cluster Outlier Scores generated by HDBSCAN Algorithm") 

sns.distplot(scores,  

             rug = True,  

             bins = 10) 

 

# Calculate the 90th percentile value and label the points outside this value as outliers. 

threshold = pd.Series(clusterer.outlier_scores_).quantile(0.90) 

outliers = np.where(clusterer.outlier_scores_ > threshold)[0] 

 

data_PCA['Rank'] = 0 

for index in outliers: 

  data_PCA.loc[index,'Rank'] = 1 

 

# Generating the plot of outliers using HDBSCAN algorithm   

# Generate a 2-dimensional plot of the outliers. 

from matplotlib import cm 
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cmap = cm.get_cmap('Set1_r') 

fig = plt.figure(dp i=1200) 

data_PCA.plot.scatter(x = 'PC1', 

                      y = 'PC2',  

                      c = 'Rank',  

                      cmap = cmap,  

                      colorbar = True,  

                      figsize = (12, 8),  

                      sharex = False,  

                      title = '2-D plot of Outliers generated by HDBSCAN') 

plt.xlabel('Principal Component 1') 

plt.ylabel('Principal Component 2') 
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Appendix C: 2-Dimensional Plot of Outliers  

The 2-dimensional plots of outliers generated by various anomaly detection algorithms at the three 

mines are presented in this section. The x-axis represents principal component-1 (PC-1) and the y-

axis represents principal component-2 (PC-2), where PC-1 and PC-2 are obtained by transforming 

the initial dataset into a lower dimensional dataset using PCA. The grey points in each plot 

represent the inliers and the red in each plot represent the points flagged as outlier by the respective 

algorithm 

 
Figure C.1. 2-D plot of outliers generated by k-NN outlier detection algorithm at mine A 
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Figure C.2. 2-D plot of outliers generated by LOF based outlier detection algorithm at mine A 

 
Figure C.3. 2-D plot of outliers generated by ABOD based outlier detection algorithm at mine A 
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Figure C.4. 2-D plot of outliers generated by HDBSCAN outlier detection algorithm at mine B 

 
Figure C.5. 2-D plot of outliers generated by k-NN based outlier detection algorithm at mine B 
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Figure C.6. 2-D plot of outliers generated by LOF based outlier detection algorithm at mine B 

 
Figure C.7.2-D plot of outliers generated by ABOD based outlier detection algorithm at mine B 
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Figure C.8. 2-D plot of outliers generated by HDBSCAN outlier detection algorithm at mine C 

 
Figure C.9. 2-D plot of outliers generated by k-NN based outlier detection algorithm at mine C 
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Figure C.10.2-D plot of outliers generated by LOF based outlier detection algorithm at mine C 

 
Figure C.11. 2-D plot of outliers generated by ABOD based outlier detection algorithm at mine C 
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Appendix D: Engine Sensor Update Frequency 

Table D.1. Sampling frequency of various sensors in a haul truck 

Description Units # Samples per 
second 

Actual Engine - Percent Torque High Resolution % 50 

Battery Potential (Voltage) V 1 

Boost Pressure kPa 2 

Driver Demand Engine - Percent Torque % 50 

Engine Air Inlet Temperature DEGC 1 

Engine Coolant Level % 2 

Engine Coolant Pressure kPa 15 

Engine Crankcase Pressure kPa 15 

Engine Desired Operating Speed rpm 50 

Engine Exhaust Gas Temperature DEGC 4 

Engine Exhaust Gas Temperature - Left Manifold DEGC 4 

Engine Exhaust Gas Temperature - Right Manifold DEGC 4 

Engine Fuel Leakage   1 

Engine Fuel Supply Pump Inlet Pressure kPa 2 

Engine Fuel Temperature DEGC 2 

Engine Injector Metering Rail (Common Rail) Pressure MPa 2 

Engine Oil Temperature DEGC 2 

Engine Pre-filter Oil Pressure kPa 1 

Engine Turbocharger Speed rpm 10 

Estimated Percent Fan Speed % 2 

Extended Crankcase Blow-by Pressure kPa 2 

Injector Timing Rail 1 Pressure MPa 2 
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Turbocharger 1 Compressor Inlet Temperature DEGC 1 

Water in Fuel Indicator   0 

Engine Fan 1 Requested Percent Speed % 0 

Engine Alternate Rating Select   0 

Trip Average Fuel Rate L/HR 0 

Trip Engine Running Time HR 0 

Trip Idle Time HR 0 

Total ECU Run Time HR 0 

Trip Drive Fuel Used L 0 

Trip Vehicle Idle Fuel Used L 0 

Engine Rated Power KW 0 

Engine Total Idle Fuel Used L 0 

Engine Total Idle Hours HR 0 

Total Power Takeoff Hours HR 0 

Engine Charge Air Cooler 1 Outlet Temperature DEGC 1 

Battery Potential / Power Input 1 V 1 

Barometric Pressure kPa 1 

Engine ECU Temperature DEGC 1 

Fan Drive State   1 

Engine Total Revolutions Revs 1 

Engine Turbocharger 1 Compressor Outlet Temperature DEGC 1 

Engine Turbocharger 3 Boost Pressure kPa 2 

Engine Coolant Temperature DEGC 2 

Engine Intercooler Temperature DEGC 2 

Engine Oil Level Remote Reservoir % 2 

Engine Turbocharger 1 Boost Pressure kPa 2 
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Engine Turbocharger 2 Boost Pressure kPa 2 

Engine Total Hours of Operation HR 2 

Engine Total Fuel Used L 2 

Engine Trip Fuel L 2 

Engine Exhaust Gas Port 17 Temperature DEGC 2 

Engine Exhaust Gas Port 18 Temperature DEGC 2 

Engine Exhaust Gas Port 10 Temperature DEGC 3 

Engine Exhaust Gas Port 11 Temperature DEGC 3 

Engine Exhaust Gas Port 12 Temperature DEGC 3 

Engine Exhaust Gas Port 9 Temperature DEGC 3 

Engine Oil Filter Differential Pressure kPa 3 

Engine Auxiliary Coolant Pressure kPa 4 

Engine Exhaust Gas Port 1 Temperature DEGC 4 

Engine Exhaust Gas Port 2 Temperature DEGC 4 

Engine Exhaust Gas Port 3 Temperature DEGC 4 

Engine Exhaust Gas Port 4 Temperature DEGC 4 

Engine Exhaust Gas Port 5 Temperature DEGC 4 

Engine Exhaust Gas Port 6 Temperature DEGC 4 

Engine Exhaust Gas Port 7 Temperature DEGC 4 

Engine Exhaust Gas Port 8 Temperature DEGC 4 

Engine Operating State   4 

Engine Exhaust Gas Port 13 Temperature DEGC 4 

Engine Exhaust Gas Port 14 Temperature DEGC 4 

Engine Exhaust Gas Port 15 Temperature DEGC 4 

Engine Exhaust Gas Port 16 Temperature DEGC 4 

Engine Intake Manifold 1 Temperature DEGC 4 
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Engine Intake Manifold 2 Temperature DEGC 4 

Engine Intake Manifold 4 Temperature DEGC 4 

Engine Intake Manifold 3 Temperature DEGC 4 

Engine Fuel Rate L/HR 10 

Engine Oil Filter Intake Pressure kPa 10 

Power Takeoff Set Speed rpm 10 

Instantaneous Estimated Brake Power kW 10 

Engine Fuel Delivery Pressure kPa 15 

Engine Oil Pressure kPa 15 

Engine Percent Load At Current Speed % 20 

Accelerator Pedal 1 Low Idle Switch   20 

Accelerator Pedal Kickdown Switch   20 

Accelerator Pedal Position 1 % 20 

Actual Maximum Available Engine - Percent Torque % 20 

Engine Torque Mode   50 

Actual Engine - Percent Torque % 50 

Engine Speed rpm 50 

Engine Requested Speed Control Conditions   50 

Override Control Mode Priority   50 

Engine Demand - Percent Torque % 50 

Nominal Friction - Percent Torque % 50 
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Appendix E: Seasonality in Sensor Readings 

 
Figure E.1. PDF plot of engine oil pressure by season 

 

 
Figure E.2. PDF plot of engine oil pressure during day and night 
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Figure E.3.PDF Plot of common rail pressure by season 

 

 
Figure E.4. PDF Plot of common rail pressure during day and night 
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Figure E.5. PDF plot of fuel pump inlet pressure by season 

 

 
Figure E.6. PDF plot of fuel pump inlet pressure during day and night 
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Figure E.7. PDF plot of fuel delivery pressure by season 

 

 
Figure E.8. PDF plot of fuel delivery pressure during day and night 
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Figure E.9. PDF plot of engine horsepower by season 

 

 

 
Figure E.10. PDF plot of engine horsepower during day and night 
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Appendix F: Highlights of the Python Script 

Developed for Fault Prognosis 

Highlights of the Python script for performing various steps involved in fault prognosis as 

described in Chapter 5 are presented below. 

# Give Google Colab access to Google Drive 

from google.colab import drive 

drive.mount('/content/drive') 

 

# Import necessary libraries and packages 

import pandas as pd 

pd.set_option('display.float_format', lambda x: '%.3f' % x) 

import numpy as np 

import datetime as dt 

import seaborn as sns 

import math 

from math import sqrt 

from matplotlib import pyplot 

%matplotlib inline 

import matplotlib 

import matplotlib.pyplot as plt 

import matplotlib.ticker as tkr 

from sklearn import metrics 

from sklearn.metrics import r2_score  

from sklearn.metrics import mean_squared_error  
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from sklearn.metrics import explained_variance_score  

from sklearn.metrics import max_error  

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import mean_squared_log_error 

from sklearn import preprocessing 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import train_test_split  

import keras 

from keras import Sequential 

from keras.layers import LSTM 

from keras.layers import GRU 

from keras.layers import Dense 

from keras.layers import Dropout 

from keras.preprocessing.sequence import TimeseriesGenerator 

from keras.callbacks import EarlyStopping 

import warnings 

import itertools 

warnings.filterwarnings("ignore") 

 

# Read the pre-processed data file 

path ='/content/drive/My Drive/Colab Notebooks/Grafana/HT785_combined.csv' 

data = pd.read_csv(path) 

 

# Data Pre-processing  

# Resample the data 

data = data.resample('H').mean() 
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# Drop all rows with mising data 

data.dropna(axis=1, inplace=True) 

 

# Function to convert series to supervised learning 

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

 n_vars = 1 if type(data) is list else data.shape[1] 

 df = DataFrame(data) 

 cols, names = list(), list() 

  

 # Input sequence (t-n, ... t-1) 

 for i in range(n_in, 0, -1): 

  cols.append(df.shift(i)) 

  names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] 

 

 # Forecast sequence (t, t+1, ... t+n) 

 for i in range(0, n_out): 

  cols.append(df.shift(-i)) 

  if i == 0: 

   names += [('var%d(t)' % (j+1)) for j in range(n_vars)] 

  else: 

   names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] 

 

 # Merge the data 

 agg = concat(cols, axis=1) 

 agg.columns = names 

   

 # Drop rows with missing values 
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 if dropnan: 

  agg.dropna(inplace=True) 

 return agg 

 

# Load the input dataset 

values = data.values 

values = values.astype('float32') 

 

# Feature transformation 

scaler = MinMaxScaler(feature_range=(0, 1)) 

scaled = scaler.fit_transform(values) 

 

# Function containing model hyperparameters 

def model_run(lag, nodes, epochs, batch, dropout): 

# Specify model parameters 

  n_lag = lag 

  n_nodes = nodes 

  n_epochs = epochs 

  n_batch = batch 

  n_dropout = dropout 

  rmse, mae, maxe, evs, r2s = [0, 0 ,0 ,0 ,0] 

  n_train_hours = int(len(df)*0.8) 

  n_iter = 10 

   

  for i in range(n_iter): 

    # Reframe the input data as supervised learning dataset 

    n_features = len(df.columns) 
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    reframed = series_to_supervised(scaled, n_lag, 1) 

 

# Create training and test data sets  

    # Split the data into train and test sets 

    values = reframed.values 

    train = values[:n_train_hours, :] 

    test = values[n_train_hours:, :] 

 

    # Split the data into input and outputs 

    n_obs = n_lag * n_features 

    train_X, train_y = train[:, :n_obs], train[:, -1] 

    test_X, test_y = test[:, :n_obs], test[:, -1] 

 

    # Reshape the input to be 3D [samples, timesteps, features] 

    train_X = train_X.reshape((train_X.shape[0], n_lag, n_features)) 

    test_X = test_X.reshape((test_X.shape[0], n_lag, n_features)) 

  

# Implementation of the LSTM model  

    # Design the RNN Architecture 

    model = Sequential() 

    model.add(LSTM(n_nodes, input_shape = (train_X.shape[1], train_X.shape[2]))) 

    model.add(Dropout(n_dropout)) 

    model.add(Dense(1)) 

 

    # Stop training when a monitored quantity has stopped improving. 

    callback = [EarlyStopping(monitor = "loss",  

                              min_delta = 0.00001,  
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                              patience = 20,  

                              mode = 'auto',  

                              restore_best_weights = True)]  

 

    # Using regression loss function 'MSE' and validation metric 'MAE' 

    model.compile(loss='mse', optimizer='adam', metrics=['mae']) 

 

    # Fit the RNN network 

    history = model.fit(train_X,  

                        train_y,  

                        epochs = n_epochs,  

                        batch_size = n_batch,  

                        validation_data = (test_X, test_y),  

                        callbacks = callback,  

                        verbose = 0, 

                        shuffle = False) 

    model.summary() 

 

    # Predict RUL 

    yhat = model.predict(test_X) 

    test_X = test_X.reshape((test_X.shape[0], n_lag*n_features)) 

 

    # Invert trasnformed data for forecast 

    inv_yhat = concatenate((test_X[:, 1-n_features:], yhat), axis=1) 

    inv_yhat = scaler.inverse_transform(inv_yhat) 

    inv_yhat = inv_yhat[:,n_features-1] 
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    # Invert trasnformed data for actual predictions  

    test_y = test_y.reshape((len(test_y), 1)) 

    inv_y = concatenate((test_X[:, 1-n_features:], test_y), axis=1) 

    inv_y = scaler.inverse_transform(inv_y) 

    inv_y = inv_y[:,n_features-1] 

 

# Evaluating performance of the LSTM model 

    # Calculate Loss functions 

    rmse += sqrt(mean_squared_error(inv_y, inv_yhat)) 

    mae += mean_absolute_error(inv_y, inv_yhat) 

    maxe += max_error(inv_y, inv_yhat) 

    evs += explained_variance_score(inv_y, inv_yhat) 

    r2s += r2_score(inv_y, inv_yhat) 

 

  rmse_avg = rmse/n_iter 

  mae_avg = mae/n_iter 

  maxe_avg = maxe/n_iter 

  evs_avg = evs/n_iter 

  r2s_avg = r2s/n_iter 

   

  if r2s_avg > best: 

    best_parameters = [n_lag, n_nodes, n_epochs, n_batch, n_dropout] 

  return inv_y, inv_yhat 

 

# Tuning model hyperparameters and selecting the best performing model 

# Create the list of hyperparameters 

n_lag = [ 24, 48, 72, 96] 
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n_nodes = [25, 50, 100] 

n_epochs = [15, 25] 

n_batch = [25, 50] 

n_dropout = [0.2, 0.3] 

 

# Loop through each combination of hyperparameters 

configs = list() 

for i in n_lag: 

 for j in n_nodes: 

  for k in n_epochs: 

   for l in n_batch: 

    for m in n_dropout: 

     cfg = [i, j, k, l, m] 

     configs.append(cfg) 

 

best = 0 

data = [] 

for cfg in configs: 

  n_lag, n_nodes, n_epochs, n_batch, n_dropout = cfg 

  model_run(n_lag, n_nodes, n_epochs, n_batch, n_dropout) 

 

# Re-run the model with best Coefficient of determination 

n_lag, n_nodes, n_epochs, n_batch, n_dropout = best_parameters   

actual, predictions = model_run(n_lag, n_nodes, n_epochs, n_batch, n_dropout) 
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Appendix G: Sensor Data Sampled at Various Frequencies 

The figures below show readings from engine oil pressure sensor sampled at various rates such as 1 second, 10 seconds, 1 minute, 10 

minutes and 1 hour. As seen in Figure G.1 through Figure G.5, the overall trend remains the same as engine oil pressure remains 

relatively constant until June 27th followed by a reduction in oil pressure until July 10th (haul truck brought down for repair).  

 

 
Figure G.1. Engine oil pressure sampled at 1 second. 
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Figure G.2. Engine oil pressure sampled at 10 seconds. 
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Figure G.3. Engine oil pressure sampled at 1 minute. 
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Figure G.4. Engine oil pressure sampled at 10 minutes. 
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Figure G.5. Engine oil pressure sampled at 1 hour 

 

 


