

Application of Data Mining Techniques for Fault Diagnosis
and Prognosis of High Pressure Fuel Pump Failures in

Mining Haul Trucks

by

Hemanth Reddy Alla

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mining Engineering

Department of Civil and Environmental Engineering
University of Alberta

© Hemanth Reddy Alla, 2021

 ii

ABSTRACT

Mining companies are investing in fewer but larger equipment, and downtime associated with

larger equipment now represents a higher percentage of operational capacity loss. Thus, it is

essential to frequently and accurately monitor the health of this equipment to avoid unscheduled

breakdowns and expensive repairs. Modern mining is facilitated by the use of sensors for real-time

monitoring of equipment operating parameters, external environmental conditions, and various

key performance indicators. Although this data has existed within some companies for years, it is

vastly underutilized in the mining industry. Thus, the problem statement for this research is: “The

development of fault diagnostic and fault prognostic models using data from multiple sources and

implementation of various data mining techniques to address critical failures in haul trucks”.

In this research, the primary objective is to develop, implement and validate a robust engineering

methodology to identify critical failures, diagnose and predict their remaining useful life in haul

trucks using machine learning-based and deep learning-based data-driven approaches. To address

a major shortcoming of the previous research works, this research does not use any fabricated data

or data generated by simulations in the lab, but instead uses actual data originating from multiple

haul trucks and various mines.

In order to achieve the objectives of this research dissertation, a complete framework for

developing data-driven fault diagnostic and prognostic models has been developed. These models

were able to diagnose a critical failure in haul trucks at various mines and predict the remaining

useful life of haul trucks diagnosed with the critical failure. This research demonstrated the use of

several aspects of data-driven models such as data collection, data pre-processing, implementing

 iii

supervised and unsupervised learning models, hyperparameter tuning, and evaluating model

performance.

The main contribution of this research is the development and implementation of an integrated

methodology for diagnosing critical issues in haul trucks and estimating their remaining useful life

using several data mining techniques. Based on the results obtained in this research, various data

mining techniques can be confidently employed for fault diagnosis and prognosis in haul trucks.

In addition, the performance of several data-driven fault diagnostic and fault prognostic models

are compared to identify the best-performing model for each task. This provides a better

understanding of the applicability of various machine learning-based and deep learning-based

models on various types of data and facilitated a more reliable detection of failures and prediction

of their remaining useful life.

 iv

PREFACE

This dissertation is an original and independent work by Hemanth Reddy Alla. No part of this

thesis has been previously published in any form. This research was led by Professor Robert Hall

at the University of Alberta.

 v

ACKNOWLEDGEMENTS

I would like to take this opportunity to acknowledge all the individuals who gave me their

supervision, guidance, dedication and support to make this research successful.

First, I would like to express my greatest gratitude to my supervisor, Prof. Robert Hall for

providing me with this opportunity to accomplish one of my biggest professional goals. His advice

on both research as well as on my career have been priceless. Without his guidance, time and

continued encouragement, I would not be able to accomplish this research.

I would like to express my gratitude and appreciation to the thesis examining committee members:

Prof. Tim Joseph, Prof. Derek Apel, Prof. Michael Lipsett and Dr. Victor Liu for their valuable

time and constructive criticism and feedback. They were always willing to help to bring out the

best in me.

I am forever in debt of my parents for their sacrifices to give me the best in life. Without them, I

would never have achieved anything in life. I am also indebted to the rest of my family, especially

my aunt, grandparents, and brother, who have been my strength at every important step in my life.

Their encouragement in many ways made me motivated towards making this research a success.

I am especially grateful to the set of friends, or perhaps more aptly put, the family that I am

privileged to have built here. Khyati Gohil, you have been a constant supportive presence since

we met; you are instrumental in making Edmonton my home. Last but not the least, I would like

to thank Isuru Subasinghe and Lalindra Jayaweera for their constant support and encouragement

during my research.

 vi

TABLE OF CONTENTS

ABSTRACT ... II

PREFACE ... IV

ACKNOWLEDGEMENTS .. V

LIST OF TABLES ... XI

LIST OF FIGURES .. XII

LIST OF ABBREVIATIONS ... XVI

CHAPTER 1 : INTRODUCTION ... 1

 GENERAL BACKGROUND ... 2

 RESEARCH OBJECTIVES ... 4

 RESEARCH METHODOLOGY ... 5

 ORGANIZATION OF THESIS .. 6

CHAPTER 2 : LITERATURE REVIEW .. 9

 EVOLUTION OF EQUIPMENT MAINTENANCE STRATEGIES ... 10

 Predictive Maintenance ... 12

 The Future of Maintenance ... 15

 FAULT DIAGNOSIS ... 18

 Knowledge-driven Fault Diagnostic Methods .. 20

 Mechanical Knowledge-driven Fault Diagnostic Methods ... 20

 Empirical Knowledge-driven Fault Diagnostic Methods ... 21

 Data-driven Fault Diagnostic Methods .. 21

 Traditional Data-driven Fault Diagnostic Methods .. 22

 ML-based Data-driven Fault Diagnostic Methods .. 23

2.2.2.2.1 Artificial Neural Networks ... 24

 vii

2.2.2.2.2 Support Vector Machines .. 27

2.2.2.2.3 k-Nearest Neighbour ... 28

 FAULT PROGNOSIS .. 30

 Model-based Fault Prognostic Methods .. 31

 Data-driven Fault Prognostic Methods ... 32

 DEEP LEARNING APPROACHES FOR CBM ... 33

 Auto-Encoder ... 37

 Restricted Boltzmann Machine .. 38

 Convolutional Neural Networks ... 39

 Recurrent Neural Networks ... 40

 DL-BASED FAULT DIAGNOSTIC AND PROGNOSTIC METHODS ... 43

 DL-based Fault Detection Methods ... 43

 Approaches based on Supervised Learning Techniques ... 43

 Approaches based on Unsupervised Learning Techniques .. 47

 DL-based Fault Diagnostic Methods .. 49

 DL-based Fault Prognostic Methods .. 51

 Approaches based on Supervised Learning Techniques ... 51

 Approaches based on Unsupervised Learning Techniques .. 55

 FAULT DIAGNOSTIC AND PROGNOSTIC APPLICATIONS FOR MINING EQUIPMENT .. 56

 Applications based on Statistical-based Methods ... 56

 Applications based on ML-based data-driven Methods .. 57

 SUMMARY OF THE LITERATURE REVIEW ... 59

CHAPTER 3 : IDENTIFYING FAILURE MODES TO INVESTIGATE .. 61

 BACKGROUND INFORMATION .. 62

 EVENT LOG ANALYSIS ... 64

 ALARM LOG ANALYSIS ... 66

 WORK ORDER REPORT ANALYSIS ... 68

 viii

 HIGH PRESSURE FUEL PUMP FAILURES .. 70

 SUMMARY AND CONCLUSIONS ... 72

CHAPTER 4 : FAULT DIAGNOSIS USING DATA-DRIVEN TECHNIQUES .. 73

 BACKGROUND INFORMATION .. 74

 DATA COLLECTION .. 75

 SELECTION OF CONDITION INDICATORS .. 77

 Assessing the Occurrence Patterns of Alarms Related to HPFP Failures ... 78

 FAULT DIAGNOSTIC METHODS ... 84

 Fault Detection Based on Engine Oil Sample Analysis ... 84

 Outlier Detection Methods .. 85

 DBSCAN .. 87

 DATA PREPROCESSING ... 89

 Addressing Missing Values and Duplicate Rows .. 89

 Feature Selection through Correlation Analysis .. 89

 Feature Transformation .. 91

 Dimensionality Reduction .. 92

 HYPERPARAMETER TUNING ... 93

 PERFORMANCE EVALUATION METRICS FOR FAULT DIAGNOSTIC MODEL .. 94

 RESULTS AND DISCUSSION .. 95

 Preliminary Analysis .. 96

 Results of Outlier Detection Algorithms .. 98

 Results of DBSCAN Algorithm ... 98

 Results of HDBSCAN Algorithm .. 105

 Validation of DBSCAN Algorithm at other mine sites .. 107

 Comparison of DBSCAN and HDBSCAN with other Algorithms ... 113

 SUMMARY AND CONCLUSION .. 114

 ix

CHAPTER 5 : FAULT PROGNOSTICS USING DATA-DRIVEN TECHNIQUES ... 116

 BACKGROUND INFORMATION .. 117

 DATA COLLECTION .. 118

 SELECTION OF CONDITION INDICATORS .. 119

 FAULT PROGNOSTIC METHODS .. 120

 LSTM Architecture ... 120

 GRU Architecture ... 123

 Stacked MIMO Architecture .. 125

 DATA PREPROCESSING ... 127

 Addressing Missing Values .. 127

 Feature Selection through Correlation Analysis .. 128

 Modelling Seasonality ... 128

 Feature Transformation .. 129

 Splitting the dataset into training and test sets .. 130

 HYPERPARAMETER TUNING ... 130

 Number of Hidden Layers .. 130

 Lag Value ... 131

 Batch Size .. 131

 Number of Epochs ... 131

 Number of Nodes .. 131

 Dropout Regularization Ratio .. 132

 RNN MODEL CONFIGURATION .. 132

 PERFORMANCE EVALUATION METRICS FOR FAULT PROGNOSTIC MODEL .. 133

 Mean Absolute Error ... 134

 Root Mean Squared Error .. 135

 Explained Variance Score .. 135

 x

 Maximum Error ... 136

 Coefficient of Determination ... 136

 RESULTS AND DISCUSSION .. 137

 Preliminary Analysis .. 137

 Results of Fault Prognostic Algorithms .. 140

 Results of LSTM Algorithm ... 141

 Results of GRU Algorithm ... 149

 Comparison of DL and ML Algorithms for prognostics .. 156

 SUMMARY AND CONCLUSION .. 158

CHAPTER 6 : CONCLUSIONS .. 161

 SUMMARY OF THE RESEARCH ... 162

 RESEARCH CONCLUSIONS .. 165

 NOVEL CONTRIBUTIONS .. 167

 CHALLENGES AND LIMITATIONS .. 171

 RECOMMENDATIONS FOR FUTURE WORK .. 172

BIBLIOGRAPHY ... 174

APPENDIX A : SAMPLE WORK ORDER RECORDS .. 209

APPENDIX B : HIGHLIGHTS OF THE PYTHON SCRIPT DEVELOPED FOR FAULT DIAGNOSIS 210

APPENDIX C : 2-DIMENSIONAL PLOT OF OUTLIERS .. 218

APPENDIX D : ENGINE SENSOR UPDATE FREQUENCY .. 224

APPENDIX E : SEASONALITY IN SENSOR READINGS ... 228

APPENDIX F : HIGHLIGHTS OF THE PYTHON SCRIPT DEVELOPED FOR FAULT PROGNOSIS 233

APPENDIX G : SENSOR DATA SAMPLED AT VARIOUS FREQUENCIES .. 241

 xi

LIST OF TABLES

TABLE 3.1. ALARM PRIORITY COUNT AND FREQUENCY ... 67

TABLE 4.1. INPUT FEATURES OF OIL SAMPLE ANALYSIS REPORT .. 76

TABLE 4.2. FREQUENCY OF TOP 8 ALARMS PRIOR TO A HPFP FAILURE .. 79

TABLE 4.3. HYPERPARAMETER VALUE COMBINATIONS FOR GRID SEARCH .. 101

TABLE 4.4. FREQUENCY OF FAILURES CLASSIFIED BASED ON OUTLIERS GENERATED BY DBSCAN ALGORITHM 104

TABLE 4.5. PERFORMANCE EVALUATION METRICS AT MINE B .. 110

TABLE 4.6. PERFORMANCE EVALUATION METRICS AT MINE C .. 112

TABLE 4.7. P@N SCORE OF VARIOUS FAULT DIAGNOSTIC MODELS AT MULTIPLE MINE SITES .. 113

TABLE 4.8. ADJUSTED P@N SCORE OF VARIOUS FAULT DIAGNOSTIC MODELS AT MULTIPLE MINE SITES .. 113

TABLE 5.1. HYPERPARAMETER COMBINATIONS FOR THE DL-BASED FAULT PROGNOSTIC MODELS ... 140

TABLE 5.2. OPTIMAL HYPERPARAMETER COMBINATION FOR LSTM MODEL ... 144

TABLE 5.3. PERFORMANCE EVALUATION METRICS FOR LSTM MODEL .. 144

TABLE 5.4. OPTIMAL HYPERPARAMETER COMBINATIONS FOR THE LSTM MODELS .. 148

TABLE 5.5. OPTIMAL HYPERPARAMETER COMBINATION FOR GRU MODEL .. 152

TABLE 5.6. PERFORMANCE EVALUATION METRICS FOR GRU MODEL .. 152

TABLE 5.7. OPTIMAL HYPERPARAMETER COMBINATIONS FOR THE GRU MODELS .. 155

TABLE 5.8. AVERAGE R2 SCORE FOR DL-BASED AND ML-BASED METHODS .. 157

TABLE A.1. TOP 10 ROWS OF WORK ORDER HISTORY .. 209

TABLE D.1. SAMPLING FREQUENCY OF VARIOUS SENSORS IN A HAUL TRUCK ... 224

 xii

LIST OF FIGURES

FIGURE 2.1. BASIC MAINTENANCE STRATEGIES (ADAPTED FROM (TOMLINGSON, 2008)) ... 10

FIGURE 2.2. BATHTUB CURVE (ADAPTED FROM (AHMAD AND KAMARUDDIN 2012)) .. 11

FIGURE 2.3. P-F CURVE (ADAPTED FROM (PRAJAPATI, BECHTEL, AND GANESAN 2012)) ... 15

FIGURE 2.4. FRAMEWORK OF A CBM SYSTEM (ADAPTED FROM (BOUSDEKIS ET AL. 2015)) ... 17

FIGURE 2.5. CLASSIFICATION OF FAULT DIAGNOSTIC MODELS (ADAPTED FROM (YAN XU ET AL. 2017)) ... 19

FIGURE 2.6. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORK (CREATED FROM (LENAIL 2019)) ... 25

FIGURE 2.7. OPTIMAL HYPERPLANE FOR BINARY CLASSIFICATION USING SVM (CREATED USING (GREITEMANN 2018)) 27

FIGURE 2.8. FRAMEWORK OF VARIOUS FAULT DIAGNOSTIC AND PROGNOSTIC MODELS (ADAPTED FROM (R. ZHAO ET AL. 2019)) 35

FIGURE 2.9. ARCHITECTURE OF AN AUTO-ENCODER (CREATED FROM (LENAIL 2019)) ... 37

FIGURE 2.10. ARCHITECTURE OF A RESTRICTED BOLTZMANN MACHINE (CREATED FROM (LENAIL 2019)) ... 38

FIGURE 2.11. ARCHITECTURE OF A CONVOLUTIONAL NEURAL NETWORK (CREATED FROM (LENAIL 2019)) .. 40

FIGURE 2.12. COMPARISON OF RNN AND ANN ARCHITECTURES (ELIASY AND PRZYCHODZEN 2020) .. 41

FIGURE 2.13. SAMPLE ENCODING OF TIME-SERIES DATA WITH GAF, MTF AND RP (FINK ET AL. 2020) .. 54

FIGURE 3.1. FLOWCHART DETAILING THE STEPS TO IDENTIFY CRITICAL FAILURES TO INVESTIGATE .. 62

FIGURE 3.2. PARETO ANALYSIS OF DOWN HOURS FOR UNSCHEDULED MECHANICAL FAILURES IN 2018 .. 64

FIGURE 3.3. PARETO ANALYSIS OF NUMBER OF EVENTS FOR UNSCHEDULED MECHANICAL FAILURES IN 2018 65

FIGURE 3.4. PARETO ANALYSIS OF DOWN HOURS FOR UNSCHEDULED MECHANICAL FAILURES IN 2019 .. 65

FIGURE 3.5. PARETO ANALYSIS OF NUMBER OF EVENTS FOR UNSCHEDULED MECHANICAL FAILURES IN 2019 66

FIGURE 3.6. DISTRIBUTION OF MOST FREQUENT UDES ... 68

FIGURE 3.7. FREQUENCY OF FAILURES FOLLOWING LOW ENGINE OIL PRESSURE ALARM .. 69

FIGURE 3.8 FLOW DIAGRAM OF COMMON RAIL FUEL SYSTEM (BOSCH 2021) .. 71

FIGURE 4.1. FLOWCHART DETAILING THE STEPS INVOLVED IN DIAGNOSING GEROTOR FAILURES IN HPFP ... 74

FIGURE 4.2. TIME-EVENT CHART FOR FUEL PUMP DELIVERY PRESSURE ALARMS ... 80

FIGURE 4.3.TIME-EVENT CHART FOR INJECTOR RAIL PRESSURE ALARMS ... 81

 xiii

FIGURE 4.4. TIME-EVENT CHART FOR HIGH BLOWBY PRESSURE ALARMS .. 82

FIGURE 4.5. TIME-EVENT CHARTS FOR LOW HORSEPOWER ALARMS ... 83

FIGURE 4.6. PDF PLOT OF ENGINE OIL VISCOSITY IN CENTISTOKES (CST) .. 85

FIGURE 4.7. DBSCAN ALGORITHM (BEHERA AND RANI 2016) © 2016 IEEE ... 88

FIGURE 4.8. PEARSON CORRELATION COEFFICIENTS FOR THE INPUT FEATURES USED FOR FAULT DIAGNOSIS .. 91

FIGURE 4.9. PDF PLOT OF BORON (B) CONTENT IN ENGINE OIL (PPM) .. 97

FIGURE 4.10. PDF PLOT OF CALCIUM (CA) CONTENT IN ENGINE OIL (PPM) .. 97

FIGURE 4.11. PDF PLOT OF MAGNESIUM (MG) CONTENT IN ENGINE OIL (PPM) ... 98

FIGURE 4.12. K-NN DISTANCE PLOT FOR CHOOSING OPTIMAL EPS VALUE .. 99

FIGURE 4.13. 2-D PLOT OF OUTLIERS GENERATED BY DBSCAN MODEL .. 100

FIGURE 4.14. SCATTERPLOT SHOWING THE EFFECT OF VARYING EPS ON NUMBER OF OUTLIERS .. 102

FIGURE 4.15. SCATTERPLOT SHOWING THE EFFECT OF VARYING MINPTS ON NUMBER OF OUTLIERS ... 103

FIGURE 4.16. DENSITY PLOT OF OUTLIER SCORES GENERATED BY HDBSCAN MODEL .. 106

FIGURE 4.17. 2-D PLOT OF OUTLIERS GENERATED BY HDBSCAN MODEL ... 107

FIGURE 4.18. SCATTERPLOT SHOWING THE EFFECT OF VARYING EPS ON NUMBER OF OUTLIERS AT MINE B 108

FIGURE 4.19. SCATTERPLOT SHOWING THE EFFECT OF VARYING MINPTS ON NUMBER OF OUTLIERS AT MINE B 109

FIGURE 4.20. 2-D PLOT OF OUTLIERS GENERATED BY DBSCAN MODEL AT MINE B .. 110

FIGURE 4.21. SCATTERPLOT SHOWING THE EFFECT OF VARYING EPS ON NUMBER OF OUTLIERS AT MINE C 111

FIGURE 4.22. SCATTERPLOT SHOWING THE EFFECT OF VARYING MINPTS ON NUMBER OF OUTLIERS AT MINE C 111

FIGURE 4.23. 2-D PLOT OF OUTLIERS GENERATED BY DBSCAN MODEL AT MINE C .. 112

FIGURE 5.1. FLOWCHART DETAILING THE STEPS INVOLVED IN PREDICTING THE RUL OF GEROTOR FAILURES IN HPFP 117

FIGURE 5.2. DATAFLOW FROM A HAUL TRUCK TO END USER (ADAPTED FROM (CSS-ELECTRONICS 2020)) 119

FIGURE 5.3. BASIC LSTM CELL STRUCTURE ... 121

FIGURE 5.4. BASIC GRU CELL STRUCTURE ... 123

FIGURE 5.5. FOLDED (LEFT); AND UNFOLDED RNN STRUCTURE (ADAPTED FROM (HEWAMALAGE, BERGMEIR, AND BANDARA 2021)) . 125

FIGURE 5.6. STACKED MULTI-LAYER RNN ARCHITECTURE (ADAPTED FROM (YU ET AL. 2019)) .. 126

FIGURE 5.7. PEARSON CORRELATION COEFFICIENTS FOR THE INPUT FEATURES USED IN FAULT PROGNOSIS .. 128

 xiv

FIGURE 5.8. SENSOR DATA FROM CONDITION INDICATORS PRIOR TO A HPFP FAILURE ... 139

FIGURE 5.9. PDF PLOT OF AVERAGE COEFFICIENT OF DETERMINATION FOR LSTM ARCHITECTURES .. 141

FIGURE 5.10. BOXPLOT OF AVERAGE COEFFICIENT OF DETERMINATION FOR LSTM ARCHITECTURES ... 143

FIGURE 5.11. TRAINING AND TEST LOSS FOR THE LSTM MODEL TO PREDICT RUL OF GEROTOR FAILURES IN HPFP 146

FIGURE 5.12. FORECASTING RUL FOR GEROTOR FAILURES IN HPFP USING LSTM MODEL ... 147

FIGURE 5.13. PDF PLOT OF AVERAGE COEFFICIENT OF DETERMINATION FOR GRU MODELS .. 150

FIGURE 5.14. BOXPLOT OF AVERAGE COEFFICIENT OF DETERMINATION FOR GRU MODELS ... 151

FIGURE 5.15. TRAINING AND TEST LOSS FOR THE GRU MODEL TO PREDICT RUL OF GEROTOR FAILURES IN HPFP 153

FIGURE 5.16. FORECASTING RUL FOR GEROTOR FAILURES IN HPFP USING GRU MODEL .. 154

FIGURE 5.17. GRAPHICAL REPRESENTATION OF AVERAGE R2 SCORE FOR VARIOUS FAULT PROGNOSTIC MODELS 158

FIGURE 6.1. WORKFLOW SHOWING ALL THE STEPS INVOLVED IN THIS RESEARCH. .. 164

FIGURE C.1. 2-D PLOT OF OUTLIERS GENERATED BY K-NN OUTLIER DETECTION ALGORITHM AT MINE A .. 218

FIGURE C.2. 2-D PLOT OF OUTLIERS GENERATED BY LOF BASED OUTLIER DETECTION ALGORITHM AT MINE A 219

FIGURE C.3. 2-D PLOT OF OUTLIERS GENERATED BY ABOD BASED OUTLIER DETECTION ALGORITHM AT MINE A 219

FIGURE C.4. 2-D PLOT OF OUTLIERS GENERATED BY HDBSCAN OUTLIER DETECTION ALGORITHM AT MINE B 220

FIGURE C.5. 2-D PLOT OF OUTLIERS GENERATED BY K-NN BASED OUTLIER DETECTION ALGORITHM AT MINE B 220

FIGURE C.6. 2-D PLOT OF OUTLIERS GENERATED BY LOF BASED OUTLIER DETECTION ALGORITHM AT MINE B 221

FIGURE C.7.2-D PLOT OF OUTLIERS GENERATED BY ABOD BASED OUTLIER DETECTION ALGORITHM AT MINE B 221

FIGURE C.8. 2-D PLOT OF OUTLIERS GENERATED BY HDBSCAN OUTLIER DETECTION ALGORITHM AT MINE C 222

FIGURE C.9. 2-D PLOT OF OUTLIERS GENERATED BY K-NN BASED OUTLIER DETECTION ALGORITHM AT MINE C 222

FIGURE C.10.2-D PLOT OF OUTLIERS GENERATED BY LOF BASED OUTLIER DETECTION ALGORITHM AT MINE C 223

FIGURE C.11. 2-D PLOT OF OUTLIERS GENERATED BY ABOD BASED OUTLIER DETECTION ALGORITHM AT MINE C 223

FIGURE E.1. PDF PLOT OF ENGINE OIL PRESSURE BY SEASON ... 228

FIGURE E.2. PDF PLOT OF ENGINE OIL PRESSURE DURING DAY AND NIGHT ... 228

FIGURE E.3.PDF PLOT OF COMMON RAIL PRESSURE BY SEASON .. 229

FIGURE E.4. PDF PLOT OF COMMON RAIL PRESSURE DURING DAY AND NIGHT .. 229

FIGURE E.5. PDF PLOT OF FUEL PUMP INLET PRESSURE BY SEASON .. 230

 xv

FIGURE E.6. PDF PLOT OF FUEL PUMP INLET PRESSURE DURING DAY AND NIGHT ... 230

FIGURE E.7. PDF PLOT OF FUEL DELIVERY PRESSURE BY SEASON .. 231

FIGURE E.8. PDF PLOT OF FUEL DELIVERY PRESSURE DURING DAY AND NIGHT .. 231

FIGURE E.9. PDF PLOT OF ENGINE HORSEPOWER BY SEASON .. 232

FIGURE E.10. PDF PLOT OF ENGINE HORSEPOWER DURING DAY AND NIGHT .. 232

FIGURE F.1. ENGINE OIL PRESSURE SAMPLED AT 1 SECOND. .. 241

FIGURE F.2. ENGINE OIL PRESSURE SAMPLED AT 10 SECONDS. .. 242

FIGURE F.3. ENGINE OIL PRESSURE SAMPLED AT 1 MINUTE. .. 243

FIGURE F.4. ENGINE OIL PRESSURE SAMPLED AT 10 MINUTES. .. 244

FIGURE F.5. ENGINE OIL PRESSURE SAMPLED AT 1 HOUR ... 245

 xvi

LIST OF ABBREVIATIONS

ABOD Angle Based Outlier Detection

ACF Auto Correlation Function

AI Artificial Intelligence

ANN Artificial Neural Network

ARIMA Auto Regressive Integrated Moving Average

AUC Area Under Curve

BRNN Bi-directional Recurrent Neural Network

CBM Condition Based Maintenance

CBR Case-Based Reasoning

CM Condition Monitoring

CNN Convolutional Neural Network

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DL Deep Learning

DM Data Mining

DNN Deep Neural Network

EVS Explained Variance Score

EWMA Exponentially Weighted Moving Average

FMECA Failure Mode, Effects, and Criticality Analysis

GA Genetic Algorithm

 xvii

GAF Garmin Angular Field

GLOSH Global-Local Outlier Score from Hierarchies

GRU Gated Recurrent Unit

HDBSCAN Hierarchical DBSCAN

HPFP High-Pressure Fuel Pump

ICA Independent Component Analysis

k-NN

KDE

k-Nearest Neighbours

Kernel Density Estimate

KPCA Kernel Principal Component Analysis

KPI Key Performance Indicator

LDA Linear Discriminant Analysis

LHD Load Haul Dumper

LOCI Local Correlation Integral

LOF Local Outlier Factor

LR Linear Regression

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MIMO Multi-Input Multi-Output

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Square Error

MTF Markov Transition Field

 xviii

NN Neural Network

OEM Original Equipment Manufacturer

PCA Principal Component Analysis

PDF Probability Density Function

PGM Probabilistic Graphical Model

PHM Proportional Hazard Method

RBF Radial Bias Function

RBM Restricted Boltzmann Machine

RELU Rectified Linear Unit

RMSE Root Mean Square Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RP Recurrence Plot

RUL Remaining Useful Life

RVR Relevance Vector Regression

SARMA Seasonal Auto-Regressive Moving Average

STL Seasonal and Trend Decomposition using Loess

SVM Support Vector Machine

SVR Support Vector Regression

TE Tennessee Eastman

UDE User Defined Event

 1

Chapter 1: INTRODUCTION

This chapter provides an overview of this research. It presents a brief background to the study,

introduces the problem statement, the objectives of this research, and the proposed methodology.

The organization of this thesis is presented at the end of this chapter.

 2

 General Background

Large mining equipment such as haul trucks are critical to a mine’s success and equipment

downtime has a negative effect on their ability to meet production targets and generate revenue.

Thus, having reliable equipment that performs as intended and operates at the lowest possible cost

is essential and requires equipment health condition to be frequently and accurately monitored to

avoid unscheduled breakdowns and costly repairs (Sander 2011). Mobile equipment maintenance

represents a significant aspect of asset management, thus effective maintenance plays a vital role

in providing a competitive advantage in the global market.

Modern mining is facilitated by the use of sensors for real-time monitoring of equipment operating

parameters, external environment and various key performance indicators (KPIs). Monitoring

equipment condition and failures on a regular basis and making predictions based on the current

conditions and historical data will help minimize maintenance costs and the probability of failure

(Kothamasu, Huang, and Verduin 2006). Improved connectivity coupled with a large number of

sensors mounted on mining equipment made large quantities of data available for use to achieve

various maintenance goals. Although this data has existed within some companies for years, it was

vastly underutilized until recently (Young and Rogers 2019). With the availability of large

quantities of data, researchers are directing their efforts on exploring the use of data mining (DM)

techniques on existing data to get the best value out of the existing data.

DM can be defined as the analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and useful to

the data owner (Hand, Mannila, and Smyth 2001). The use of DM techniques for industrial

applications began in the 1990s and has steadily attracted more attention so that DM is now used

in many different areas in manufacturing to extract useful information for use in predictive

 3

maintenance, quality assurance, design, production, scheduling, and decision support systems

(Baqqar, Ahmed, and Gu 2011). According to Zhang (2014), DM is the process of applying a

computer-based methodology, including new techniques for knowledge discovery from data. It

draws ideas and resources from multiple disciplines, including statistics, database research and

high performance computing (Zhenyou Zhang 2014). On a broader scale, DM utilizes the concepts

of machine learning (ML) and deep learning (DL) to address a variety of problems. By the use of

such sophisticated techniques, there is a possibility to analyze equipment health conditions, to

identify unexpected behaviors and anticipate future faults, thus resulting in sufficient lead time for

planning maintenance tasks.

Although DM techniques have gained a lot of popularity in various engineering domains and have

been successfully implemented to detect faults and to predict the expected life of faulty

components, the application of DM techniques is still not widespread in large mobile mining

equipment such as haul trucks. Thus, the research question that drives this thesis is:

“Is it possible to develop, implement and validate a robust integrated engineering

methodology to identify critical failures in haul trucks, diagnose those failures and

predict their remaining useful life that will result in higher accuracy and provide

longer lead times for maintenance tasks, using a combination of various data mining

techniques, and use this methodology as a reliable tool to address such failures in

similar haul trucks and other mines?”

 4

 Research Objectives

The primary objective of this research is to develop, implement and validate a robust engineering

methodology to identify critical failures, diagnose and predict their remaining useful life (RUL) in

haul trucks using ML-based and DL-based data-driven approaches. Different from previous works

on fault diagnosis and prognosis of haul trucks that are primarily based on knowledge-driven

methods, this thesis presents a novel way to employ ML-based and DL-based approaches for

diagnosing and prognosing faults, which refers to a purely data-driven method. Although some

researchers have used data-driven methods for fault diagnosis and prognosis of mining equipment,

those works used only ML-based approaches and did not explore DL-based approaches to diagnose

faults in equipment.

In summary, the main objectives of this thesis are presented below:

• Identification of the critical failures in haul trucks using a combination of data from

multiple sources.

• Determination of a set of condition indicators that can be used for developing fault

diagnostic and prognostic models to address such failures.

• Exploration of the use of various DM techniques such as ML-based and DL-based methods

for diagnosing critical failures in haul trucks and predicting the RUL of haul trucks

diagnosed with such failures.

• Development of fault diagnostic and fault prognostic models using state-of-the-art DM

techniques and comparison of their performance with traditional methods.

• Verification and validation of the fault diagnostic and prognostic models by implementing

them on multiple trucks and various mines.

 5

 Research Methodology

To achieve the objectives of this research dissertation, a complete framework for developing data-

driven fault diagnostic and prognostic models has been developed. These models were able to

diagnose a critical failure and predict the RUL of the component experiencing critical failure in

haul trucks at different mines.

This thesis demonstrates the use of several aspects of data-driven models such as data collection,

data pre-processing, implementing supervised and unsupervised learning models, hyperparameter

tuning and evaluating model performance. In order to guarantee professional modelling and

adoptability, popular platforms such as Python programming language and toolkits such as

MatPlotLib, Seaborn, Scikit-Learn, TensorFlow, Keras etc. were employed in this research.

In order to achieve the objectives of this research, the following tasks have been completed:

• Literature Review: An extensive literature review of application of relevant ML-based

data-driven approaches for fault diagnostics and fault prognostics have been reviewed for

this task. In addition, theoretical knowledge of various DL-based data driven approaches

along with their application in fault diagnosis and prognosis of equipment have been

reviewed. Finally, an extensive review of the application of ML and DL-based approaches

for fault diagnosis and prognosis of mining equipment has also been reviewed.

• Data Collection: Data was collected first-hand from various sources, and from different

haul trucks and mines. In order to distinguish from existing studies and to accurately model

the real-world scenarios, no simulated or fabricated data was used in this research. In

addition to using the data for developing fault diagnostic and prognostic models, the data

was also used to identify critical failures in haul trucks.

 6

• Developing Fault Diagnostic Models: Different ML-based data-driven models were built

to diagnose a critical failure identified in the research. The objective of this fault diagnostic

model is to detect the critical failures with sufficient lead time to failure and with a

significant accuracy. Several ML-based methods were also compared in order to identify

the best performing model.

• Developing Fault Prognostic Models: Different DL-based data-driven models were

developed to predict the RUL of a haul truck diagnosed with the critical failure. The

objective of the fault prognostic models is to predict the RUL with significant accuracy.

The DL-based methods used in this research were then compared with ML-based methods

to identify the best performing models.

• Verification and Validation of Fault Diagnostic and Prognostic Models: The fault

diagnostic and prognostic models developed using data-driven models were tested at

different mines and various trucks in order to verify and validate the model’s performance

and attest the model’s generalization capabilities.

 Organization of Thesis

This thesis comprises six chapters in total and are titled as follows: Chapter 1 (Introduction);

Chapter 2 (Literature Review); Chapter 3 (Identifying Failures to Investigate); Chapter 4 (Fault

Diagnosis using Data-driven Approaches); Chapter 5 (Fault Prognosis using Data-driven

Approaches) and Chapter 6 (Conclusions).

Chapter 1 provides a general overview and background of this research. It provides an introduction

to the research by discussing the general background of the study, the problem statement,

objectives of this research and the proposed methodology.

 7

Chapter 2 provides a literature review based on the research objectives of this thesis. The major

focuses (foci) are on: (i) evolution of equipment maintenance strategies; (ii) fault diagnostic and

prognostics methods using traditional and ML-based data-driven approaches; (iii) a brief

introduction (theory) to commonly used DL-based data-driven approaches for fault diagnosis and

prognosis; (iv) application of fault diagnostic and prognostic models based on DL-based

approaches and (v) a review of the application of fault diagnostics and prognostic models on

mining equipment.

Chapter 3 presents an approach to identify the critical failures to investigate in this research by

using data from a variety of sources available at the mine. This chapter forms the basis for this

research as the objective of this chapter is to identify a critical failure for which data-driven fault

diagnostic and prognostic models are to be developed. The type of data available and the choice

of data-driven approaches are dependent on the failure identified in this chapter. In addition to the

critical failure investigated in this research, this chapter also identifies other failures that have a

major impact on the reliability and maintainability of haul trucks.

Chapter 4 presents an approach to develop fault diagnostic models using ML-based and DL-based

data-driven approaches. This chapter present a detailed overview of the various steps involved in

diagnosing failures such as data collection, extracting condition indicators, data pre-processing,

building data-driven models, hyperparameter tuning and evaluating the performance of models.

Finally, this chapter presents various unsupervised learning approaches for diagnosing a critical

failure identified in the previous chapter, and the results obtained by validating the performance

of fault diagnostic models at multiple mines.

 8

Chapter 5 presents an approach to develop fault prognostic models using ML-based and DL-based

data-driven approaches. This chapter presents a detailed overview of the various steps involved in

prognosing failures such as data collection, extracting condition indicators, data pre-processing,

building data-driven models, hyperparameter tuning and evaluating the performance of models.

Finally, this chapter presents various supervised learning approaches for predicting the RUL of a

critical failure diagnosed in the previous chapter, and the results obtained by validating the fault

prognostic models on multiple haul trucks.

Chapter 6 presents the summary and conclusions of this research. This chapter also discusses the

significance and novel contributions of this research. In addition, this chapter contains

recommendations for future work using approaches such as natural language processing and

convolutional neural networks for fault diagnosis and prognosis.

 9

Chapter 2: LITERATURE REVIEW

This chapter provides an overview of the evolution of equipment maintenance strategies and

existing research in the field of fault diagnosis and fault prognosis. Several machine learning-

based and deep learning-based approaches for diagnosing and prognosing faults in various

equipment are presented in this chapter. In addition, this chapter also presents a review of the

application of fault diagnostic and prognostic models on mining equipment.

 10

 Evolution of Equipment Maintenance Strategies

Maintenance is defined as a set of tasks or activities required to restore a system (component/

equipment) to a state where it can perform its designated functions (Dhillon 2002). The role of

equipment maintenance has evolved in the last few decades, from merely being a part of production

to an essential strategic element in mining operations. Since early 2000’s, maintenance practices

are recognized as a profit contributor, giving more importance to maintenance practices, and

elevating them to the same level as production (Kobbacy and Murthy 2008). Figure 2.1 illustrates

the three basic maintenance strategies that are widely in practice.

Figure 2.1. Basic maintenance strategies (adapted from (Tomlingson, 2008))

The correct mix of these three can be determined based on evaluating: risk, cost and impact on

environment and health and safety. In the 1940’s, maintenance activities were treated as ‘a

necessary evil’, where repairs and replacements were corrective and addressed only when an

equipment or a component of the equipment failed, also known as a run-to-failure maintenance

strategy. By the 1960’s, equipment maintenance activities started to be regarded as a technical

Overall
Maintenance

Strategy

Corrective
Maintenance

Run-To-Failure

Preventive
Maintenance

Scheduled
Maintenance

Predictive
Maintenance

(CBM)

 11

matter and involved optimizing maintenance solutions and activities. Many companies started to

recognize relations between component failures and the time (or number of cycles) in use, thus

initiating the switch from corrective to scheduled maintenance. Scheduled maintenance strategies

are routine and repetitive as the same set of procedures are repeated at regular intervals determined

based on failure time analysis (J. Lee et al. 2006). Scheduled maintenance relies on the assumption

that failure behavior is predictable based on hazards or failure rate trends, known as bathtub curves.

Figure 2.2 shows a typical bathtub curve where failure rates can be divided into three phases:

break-in phase where systems are assumed to experience decreasing failure rates early in their life

cycle, normal operating phase with near constant failure rate and a wear-out phase with increasing

failure rates that represents the end of their life cycle (Ahmad and Kamaruddin 2012).

Figure 2.2. Bathtub curve (adapted from (Ahmad and Kamaruddin 2012))

The intervals for scheduled maintenance are often recommended by equipment manufacturers

based on bathtub curves, which must be followed to retain warranty rights, but may not be optimal

Fa
ilu

re
 R

at
e

Time (Equipment Operating Hours)

Wear-out Phase
(Increasing
failure rate)

Break-in Phase
(Decreasing
failure rate)

Normal Operating Phase
(Constant failure rate)

 12

because of varying operating conditions thus resulting in excessive maintenance costs (Labib

2004), (Tam, Chan, and Price 2006).

As equipment began to grow more complex towards the late 1970’s, scheduled maintenance was

proven to be ineffective on the more complex equipment due to the lack of knowledge and poor

understanding of the failure characteristics of the newer complex equipment. Another drawback

of scheduled maintenance is when following a fixed schedule, components may not be utilized to

full capacity if the repair is made too early and too long intervals may result in unplanned failures

resulting in additional costs. These limitations of scheduled maintenance led to the gradual

evolution of predictive (periodic and continuous) maintenance strategies (Pintelon and Parodi-

Herz 2008).

The late 1980’s and early 1990’s witnessed the emergence of a new maintenance trend where

maintenance requirements were integrated into the early stages of equipment design and

development. This led to the maintenance strategies being proactive rather than reactive, with

maintenance activities being recognized as profit contributors and better appreciated within the

organization (Pintelon and Parodi-Herz 2008).

 Predictive Maintenance

Predictive maintenance, often-referred to as Condition based maintenance (CBM), uses the

degradation trends and deviation from normal operating behavior based on information collected

through condition monitoring (CM) process to schedule maintenance operations (Jardine, Lin, and

Banjevic 2006). A core component of CBM is the CM process, which uses various sensors to

monitor signals, and the data collected through this process is referred to as CM data (J. Campos

2009). Most failures are preceded by certain signs and indications of an impending failure and the

probability of failure of a system can be estimated based on its condition by using CM data

 13

collected from various sensors and their respective statistical history (Ahmad and Kamaruddin

2012). This optimizes planned maintenance schedules and mitigates premature failures (Gupta and

Lawsirirat 2006).

A variety of tools were developed to monitor the health of a system and the most widely accepted

CBM monitoring techniques were oil analysis, vibration monitoring and temperature monitoring.

But with the advent of technology, CBM has evolved from conventional oil, vibration analysis and

thermography to using modern instrumentation, detailed fluid analysis, ultrasonic analysis that not

only expand the spectrum of data being analyzed but also enables near-real time analysis of all

available data, thus allowing early detection of faults and minimizing the impact of system

downtime (Pintelon and Parodi-Herz 2008).

In order to implement CBM on any system, it is essential to acquire relevant data pertaining to the

characterization of operational faults, contextual information and environmental conditions such

as temperature, pressure and humidity to enrich the modeling process (Braglia et al. 2012). The

main goal of CBM is to avoid costly maintenance interventions and mitigate the consequences

involved with an unexpected failure.

CBM techniques can be broadly classified as periodic or continuous. While periodic monitoring

systems acquire data at selected time intervals, continuous monitoring systems collect data

continuously. Selection of an appropriate CBM technique is a function of hardware and installation

costs, time, availability of resources and implication of the failures (Ahmad and Kamaruddin

2012).

CBM has been widely used in various industrial domains, building structures and medical

equipment. One of the primary focuses of CBM applications is on CM process, which uses CM

 14

data for fault diagnosis and prognosis (Ahmad and Kamaruddin 2012). Fault diagnosis is the

process of finding a fault in the system and its source, while prognosis is the process of estimating

the time to a potential failure (Jeong, Leon, and Villalobos 2007).

One of the most significant benefits of CBM is through maximizing the P-F interval, shown in

Figure 2.3, which increases the window between indicated potential failure and functional failure.

From a maintenance perspective, failures can be classified as: potential failure (P) that denotes an

identifiable physical condition which indicates the start of a failure process; and functional failure

(F) that represents the inability of a system to meet a specified performance standard (Prajapati,

Bechtel, and Ganesan 2012). P1 to Pn represent the points at which potential failure could be

identified by collecting CM data for periodic CBM, with more lead time being available for CM

data collected at P1 compared to the data collected at Pn. While periodic CBM can only detect the

potential failure at designated points on the curve, Px, continuous CBM has the ability to detect the

potential failure at almost any point on the curve. The goal of CBM practices is to detect a fault

closer to its inception that results in a large P-F interval. Increasing the P-F interval gives the

maintenance personnel more time to prioritize, plan, schedule and execute the necessary

maintenance activities to prevent or mitigate the consequences of a failure.

 15

Figure 2.3. P-F curve (adapted from (Prajapati, Bechtel, and Ganesan 2012))

To enable early detection of potential failures and accurately distinguish them from normal

operating conditions, various CBM techniques can be used. These techniques detect failure

conditions much faster and with greater accuracy compared to routine physical inspections.

Because of the ability of continuous CBM approaches to enable near real-time diagnosis, it has

emerged as the most popular choice of maintenance strategy for most applications (Peng, Dong,

and Zuo 2010).

 The Future of Maintenance

Improved connectivity and access to low-cost computational power has led to the start of a new

digital revolution known as ‘Industry 4.0′ (Short and Twiddle 2019) . With the advent of Industry

4.0, an abundance of data, often referred to as big data, is being generated each day, averaging to

about 2.5 quintillion bytes globally each day (Young and Rogers 2019). Big data provides an

P P1 P2 P3 Pn F

Eq
ui

pm
en

t C
on

di
tio

n

Time (Equipment Operating Hours)

P-F Interval

 16

opportunity for mining innovation and the ability to digitally transform the mining industry by

making real-time CM and predictive maintenance more accessible and feasible.

According to Sander (2011), “The sophistication of current technology provides the opportunity

for the analysis of the reams of data available, both current and historical, and to use this to

statistically make predictions about future events” (Sander 2011). Big data is widely available

today making it inexpensive to access and store the data, and some of the unique features of big

data are volume, velocity, variety and value (C. K. M. Lee, Cao, and Ng 2016), (Waller and

Fawcett 2013). Ningyuxin and Liyueling discussed the opportunities and challenges associated

with big data and how to realize its importance (Ningyuxin and Liyueling 2013). There is a strong

interconnection between big data and predictive analytics. According to Lee et al. (2016),

“Without proper analytics, big data is just a deluge of data, while without big data, predictive

analytics, the strength of statistics, modeling, and data mining tools for analyzing current and

historical conditions will be undermined” (C. K. M. Lee, Cao, and Ng 2016). With the advent of

CBM and the availability of big data, researchers are directing their efforts on exploring the use of

DM techniques on existing data to get the best value out of the existing data.

Figure 2.4 shows a holistic framework for an advanced CBM systems that typically incorporates

data acquisition, data pre-processing, fault diagnosis, fault prognosis and decision making in

sequential order (J. W. Sheppard, Kaufman, and Wilmering 2008), (J. Sheppard, Kaufman, and

Wilmer 2009), (Arnaiz et al. 2010), (Bousdekis et al. 2015).

 17

Figure 2.4. Framework of a CBM system (adapted from (Bousdekis et al. 2015))

(Isermann 2006) and (Vachtsevanos et al. 2006) defined some of the key terminology in fault

diagnosis and prognosis as follows.

• Fault. Fault is an abnormal condition or defect at the component, equipment, or sub-system

level which may lead to a failure. A machine fault occurs when the condition of any of its

components is degraded or exhibits an abnormal behavior.

• Malfunction. Malfunction is defined as a sporadic interruption of the execution of a system

due to faults in the system.

• Failure. Failure refers to the state or condition of not meeting a desirable or intended

objective. The failure of a machine occurs when one or more of the principal functions of

the machine are no longer available. This generally happens when one or more of its

components are in a fault condition.

Decision Making
Making decisions based on the predictions and domain knowledge

Fault Prognosis
Predicting the future health based on available data

Fault Diagnosis
Using the pre-processed data to diagnose faults

Data Pre-processing
Pre-processing the data to extract features and condition indicators

Data Acquisition
Obtaining data from the sensors and other external sources

Sensors
Data generated from sensors mounted on the equipment or from external sources

 18

• Fault diagnosis. Fault diagnosis is the process of detecting and identifying an impending

or incipient abnormal equipment operating conditions (fault conditions).

• Fault prognosis. Fault prognosis is the estimation of time to failure and risk for one or

more existing or anticipated fault modes. An alternative definition of prognosis is a point

estimate of the RUL of a system based on one or more condition or performance signals

observed at some point during its life.

The following sections present a detailed overview of the various steps of the CBM framework

such as fault identification, fault diagnosis and fault prognosis along with the survey of prominent

research works in each domain.

 Fault Diagnosis

Fault detection refers to the process of determining the presence of faults in a system (J. Liu 2012)

and fault diagnosis is a comprehensive task that involves fault detection and identification

(Severson, Chaiwatanodom, and Braatz 2016). Fault diagnosis is the process of recognizing,

localizing, and identifying the severity once a fault is detected. Since fault diagnosis could directly

suggest the ensuing maintenance tasks or operation adjustments, the prediction accuracy of fault

diagnostic models needs to be more rigorous than fault detection models (Liangwei Zhang et al.

2019). The occurrence of a fault in a system is usually unknown and faults can be classified as

abrupt, incipient or intermittent based on their time of occurrence (Severson, Chaiwatanodom, and

Braatz 2016). Failures can be classified as random, deterministic or systematic based on their

predictability (Y. J. Park, Fan, and Hsu 2020). Numerous methodologies have been developed for

detecting faults or anomalies, isolate faulty systems and predict potential implications of a failed

component on the overall health of a system. “Fault diagnostic algorithms must have the ability to

 19

detect system performance, degradation levels, and faults (or failures) based on physical property

changes through detectable phenomena” (Vachtsevanos et al. 2006).

Although earlier works classified fault diagnostic techniques into model-based and historical data-

based methods (Venkatasubramanian et al. 2003), the current practice now is to classify fault

diagnostics into model-based, signal-based, data-driven and hybrid approaches (Zhiwei Gao,

Cecati, and Ding 2015), (Zhiwei Gao et al. 2015). A more recent classification proposed by (Yan

Xu et al. 2017) divides fault diagnostic techniques into knowledge-driven, data-driven and value-

driven (DL-based) methods as shown in Figure 2.5.

Figure 2.5. Classification of fault diagnostic models (adapted from (Yan Xu et al. 2017))

Fault Diagnostic
Models

Knowledge-driven

Mechanical
Knowledge

State Estimation

Parameter
Estimation

Empirical
Knowledge

Graph Theory

Expert System

Data-driven

Traditional Data-
driven Methods

Signal Processing

Statistical Analysis

Machine Learning-
based Methods

Neural Networks

Support Vector
Machine

k-Nearest
Neighbour

Value-driven
Deep Learning-
based Methods

Auto-Encoder

Restricted
Boltzmann Machine

Convolutional
Neural Network

Recurrent Neural
Network

 20

The following sections cover knowledge-driven and data-driven methods for fault diagnostics in

detail while value-driven fault diagnostic methods are discussed later in this chapter.

 Knowledge-driven Fault Diagnostic Methods

Knowledge-driven fault diagnostics are based on mechanical principles and empirical knowledge

of systems, and are generally applicable to systems that are easy to model and for systems with

abundant empirical knowledge (Zhiwei Gao et al. 2015). Knowledge-driven fault diagnostic

models employ physical principles, fault mechanisms and domain expertise to realize real-time

fault diagnosis. The accuracy of such models is determined by the precision of the physical or

mathematical models and the richness of domain expertise (Yan Xu et al. 2017). Knowledge-

driven methods are further divided based on the type of knowledge into mechanical knowledge-

driven and empirical knowledge-driven methods.

 Mechanical Knowledge-driven Fault Diagnostic Methods

Mechanical knowledge-driven methods use precise mathematical and physical models to detect

faults by finding inconsistencies between predicted and actual behavior of the system. (Foo,

Zhang, and Vilathgamuwa 2013) proposed a novel algorithm for estimating fault states in

synchronous motors based on physical models by using extended Kalman filters and (W. Chen et

al. 2014) used physical models to estimate the state of Lithium-ion batteries for detecting faults.

(Zhai, Wang, and Ye 2015) proposed a parameter estimation-based fault diagnostic method in

closed-loop systems using reliable mathematical models. Other notable research in mechanical

knowledge-driven fault diagnostic methods include the works of (Odendaal and Jones 2014) for

actuator fault diagnosis and (M. Zhong, Song, and Ding 2015) for diagnosing faults in time-

varying systems. Despite producing satisfactory results, mechanical knowledge-driven models are

difficult to build and may not provide accurate insight for complex systems (Yan Xu et al. 2017).

 21

 Empirical Knowledge-driven Fault Diagnostic Methods

Empirical knowledge-driven fault diagnostic methods use reasoning and decision making based

on empirical knowledge and domain expertise to diagnose faults qualitatively. Although empirical

knowledge-based methods are easy to understand in simple systems, they tend to get extremely

complicated in complex systems and requires massive computational resources to diagnose faults.

A popular empirical knowledge-based method used in fault diagnosis is Case-Based Reasoning

(CBR), which offers a reasoning paradigm that is similar to the way people routinely solve

problems. CBR began to be applied in fault diagnosis in 1990s and became very popular afterwards

(Zhenyou Zhang 2014). The cyclic process of CBR can be described as: when a new problem

occurs, one or more similar cases are retrieved from the database; a solution suggested by the

matching cases is then re-used and tested for success. Unless the retrieved case is a close match,

the solution probably will have to be revised, producing a new case that can be retained in the

database. Currently, this cycle rarely occurs without human intervention and most CBR systems

are used mainly as case retrieval and reuse systems. CBR requires hard coding on a case-by-case

basis, which is tedious and is prone to errors. Researchers also successfully implemented graph

theory to diagnose faults in power grids (Lei Wang et al. 2015) and nuclear power plants (Y. K.

Liu et al. 2016), and expert systems to diagnose gearbox faults in wind turbines (Z.-L. Yang et al.

2012) and gas turbine engines (Ningbo Zhao et al. 2015) using strong domain expertise. Due to

the limitations of knowledge-based methods for fault diagnosis, data-driven fault diagnostic

techniques were developed to provide better alternatives (C. Yang et al. 2019).

 Data-driven Fault Diagnostic Methods

Data-driven fault diagnostic methods use historical data and DM techniques instead of explicit

model-based or experience-based systems to diagnose faults and include techniques such as signal

 22

processing, statistical analysis and ML (Cai et al. 2017). Data-driven fault diagnostic methods can

be further classified as traditional methods which include signal processing techniques and

statistical analysis or ML-based methods that utilize ML techniques.

 Traditional Data-driven Fault Diagnostic Methods

Fault diagnosis using signal processing techniques use various types of input data such as

vibration, current, sound etc. to extract faults in time-domain, frequency-domain and time-

frequency domains (R. Yan, Gao, and Chen 2014). (J. Yan and Lu 2014) developed a novel weak

signal detecting methodology for early fault diagnosis using vibration signals and (J. Chen et al.

2016) used wavelet transformation for diagnosing faults in rotating machinery.

Statistical data-driven analytical methods uses statistical models to describe correlations among

variables for diagnosing faults (S. Yin et al. 2012). (Grbovic et al. 2012) proposed an approach for

diagnosing faults using sparse Principal Component Analysis (PCA) in process monitoring sensor

networks. (S. Yin, Zhu, and Kaynak 2015) used partial least squares to decompose measurable

process variables into KPIs and used them to diagnose faults in Tennessee Eastman (TE)

benchmark process, which simulates actual chemical processes at large-scale process industry.

(Niu and Jiang 2017) proposed a CBM system that uses seasonal autoregressive moving average

(SARMA)-based exponentially weighted moving average (EWMA) to predict wear of railway

braking systems and demonstrated significant improvements over knowledge-based methods.

Traditional data-driven fault diagnostic approaches are computationally expensive and fail to

capture complex relationships between various parameters; thus, limiting the scope of their

applicability for fault diagnosis. These problems are typically overcome by ML-based data-driven

fault diagnostic methods.

 23

 ML-based Data-driven Fault Diagnostic Methods

ML-based data-driven approaches use CM data collected from sensors to train various algorithms

for diagnosing complex faults with very little human intervention (Z. Yin and Hou 2016). With

the recent advances in sensor technology and computational power, ML-based data-driven

methods are becoming increasingly popular in fault diagnosis and prognosis (Dai and Gao 2013),

(Liangwei Zhang, Lin, and Karim 2015), (Liangwei Zhang, Lin, and Karim 2017).

Depending on the availability of labelled data, ML-based data-driven methods can be further

classified as supervised, semi-supervised or unsupervised approaches. A label in fault diagnostic

and prognostic space can constitute either a health indicator (for fault detection tasks), a specific

fault type (for fault diagnostic tasks), or the RUL at each time step of measurement (for fault

prognostics) (Fink et al. 2020).

Supervised learning is the ML technique of learning a function by mapping the input to an output

based on example input-output pairs (Hastie, Tibshirani, and Friedman 2009), (Russell and Norvig

2009), (Goodfellow, Bengio, and Courville 2016). Unsupervised learning methods are typically

used when there is a lack of sufficiently labelled data, and unlike supervised methods,

unsupervised methods output a continuous value representing the abnormality of a particular

sample and the likelihood of the sample being an outlier increases with the increase in this score.

In practical applications, a threshold is used to assist the judgement of the occurrence of faults,

and the threshold value is application dependent with an objective of minimizing both false

positive rate (Type I error) and false negative rate (Type II error) (Liangwei Zhang et al. 2019).

While supervised learning techniques require a sufficient amount of labelled data (both normal

operating conditions and fault conditions) to train and validate the fault diagnostic algorithms,

 24

unsupervised learning techniques use data that does not contain any information about the desired

output (Lo, Flaus, and Adrot 2019).

Artificial neural network (ANN) and support vector machine (SVM) are the most popular

techniques for ML-based data-driven fault diagnosis and prognosis models using supervised

learning approaches and k-nearest neighbour (k-NN) is the most popular technique for ML-based

data-driven fault diagnosis using unsupervised learning approaches (Ademujimi, Brundage, and

Prabhu 2017).

2.2.2.2.1 Artificial Neural Networks

An ANN is a network of computational units linked by directed and weighted connections where

each unit performs some calculation and outputs a value that is propagated as input to other

connected units (Gamboa 2017). The most basic type of ANN is a feed forward neural network

which consists of only forward connections between the neurons while a backpropagation neural

network consists of both forward and backward connections of neurons (Lei et al. 2020).

As shown in Figure 2.6, a simple ANN consists of 3 types of layers: input layer, hidden layer and

output layer. Input layer is the first layer of a neural network (NN) and consists of a set of nodes

that feed the subsequent layers of the network. Output layer is the last layer of a NN and generates

the model output. All other layers encompassed within the input and output layer are called hidden

layers and are responsible for performing the aggregation and activation functions, and to

propagate the resulting output to neurons in the subsequent layers.

 25

Figure 2.6. Architecture of artificial neural network (created from (LeNail 2019))

There are two stages of computation performed by each node: aggregation function corresponds

to calculating the sum of inputs received from all incoming units, and activation function to

transform the value of the aggregation function by using nonlinear activation functions.

Each neuron in the hidden and output layers acts as a computational unit that takes an input from

the input vector, !! ,	and outputs $ as follows (R. Liu et al. 2018):

$ = &(("!) = & *+(!

#

!$%
!! + -.

Where, & is the activation function,

 (! is the vector of weights associated with /&' neuron and

- is the bias (scalar).

The most common activation functions used for ANNs were logistic sigmoid and hyperbolic

tangent, but recently rectified linear unit (RELU) has become increasingly popular (Gamboa

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ⁵ Output Layer ∈ ℝ¹

 26

2017). The weights are obtained and updated by an iterative procedure called training and plays a

crucial role in tuning the ANNs hyperparameters for obtaining maximum accuracy (Hewamalage,

Bergmeir, and Bandara 2021). (G. P. Zhang and Kline 2007) stated that the selection of input

parameters plays a crucial role in determining the accuracy of an ANN.

ANNs tend to perform better than model-based approaches because of their ability to model

unknown and non-linear relationship in the data with minimum apriori assumptions and transfer

learnt relationships to unseen data (Hewamalage, Bergmeir, and Bandara 2021). Because of ANNs

powerful pattern classification and recognition capabilities, it is one of the most commonly used

architecture in fault diagnostics (R. Liu et al. 2018). The most common variant of ANN in this

domain is multi-layer preceptron (MLP), in which the units are arranged in layers with only

forward connections to units in the subsequent layers (Y. H. Hu and Hwang 2001). (Meireles,

Almeida, and Simões 2003) presented a comprehensive review of industrial applications of ANNs

since 1990 and also presented several variations of ANN that were widely used. (Z. Li et al. 2010)

proposed a hybrid fault diagnostic method to identify multiple faults in gears using vibration

signals. (Yaghobi, Mashhadi, and Ansari 2011) presented an ANN approach for detecting internal

faults in a synchronous generator by using samples of magnetic flux linkages. In order to address

the issue of “curse of dimensionality” when dealing with fault diagnsosis of high dimensional

datasets, (K. Zhang et al. 2011) proposed a hybrid model that combines multiple feature selection

algorithms to select the most significant input features to be fed to an ANN. ANN architectures

have shown great results for fault diagnostic applications even in the presence of noise in the input

data, but they are computationally intensive, have a slow rate of convergence and are often prone

to overfitting (Lo, Flaus, and Adrot 2019). In order to achieve better accuracy and to prevent over-

fitting, a regularization term is often added to the ANN architectures (R. Liu et al. 2018).

 27

2.2.2.2.2 Support Vector Machines

SVM is a supervised learning method based on statistical learning theory and is widely used for

classification tasks (Widodo and Yang 2007). SVM classifies data by solving a constrained

quadratic optimization problem that is based on structural risk minimization to build an optimal

separating hyperplane to create a widest margin possible by maximizing distance between the

plane and the nearest data points as shown in Figure 2.7 (Cristianini and Shawe-Taylor 2000),

(Scholkopf and Smola 2018).

Figure 2.7. Optimal hyperplane for binary classification using SVM (created using (Greitemann 2018))

For binary classification, hyperplane &(!) = 0 that separates the data is represented as:

$ = &(!) = ("! + - =+(!!! + -
#

!$%
= 0

Where, (is the n-dimensional input vector, and

- is a scalar that is used to define the position of separating hyperplane.

Class-A
Class-B

Margin

Hyperplane

 28

SVM has excellent generalization capabilites on small datasets and is thus widely used in the field

of fault diagnosis (Z. Yin and Hou 2016). (Y. S. Wang et al. 2014) used SVM to diagnose engine

faults based on engine noise produced during normal operating condition and several fault states.

(Soualhi, Medjaher, and Zerhouni 2015) used a similar approach to diagnose faults in roller

bearings. Semi-supervised learning with SVM was used with satisfactory results for early detection

of faults in an air handling unit of a heating, ventilation and air conditioning (HVAC) system (K.

Yan et al. 2018). SVM can also be used for non-linear classification with the application of kernel

functions like linear, polynomial and Gaussian radial bias function, and the selection of a kernel

function is application dependent (Cristianini and Shawe-Taylor 2000). Choosing the best kernel

function remains a significant bottleneck for successful implementations of SVM in fault diagnosis

(Lo, Flaus, and Adrot 2019). The application of SVM for classification is generally restricted to

small datasets since expressing complex functions in higher-dimensional feature space is

computationally expensive and could also result in overfitting (Widodo and Yang 2007).

2.2.2.2.3 k-Nearest Neighbour

k-NN is an instance-based learning algorithm that can be used for both classification and

regression and has been widely used for diagnosing faults. The underlying principle of a k-NN

algorithm is that all instances (data points) with similar properties in a dataset will generally exist

in a close proximity to each other (Cover and Hart 1967). K-NN is typically applied in combination

with dimensionality reduction methods such as principal component analysis (PCA), kernel

principal component analysis (KPCA) and contribution analysis (CA) to compress the high-

dimensional feature sets into low-dimensional eigenvectors which are then utilized as input to k-

NN algorithm (R. Liu et al. 2018). (Z. Li et al. 2013) proposed a method to diagnose multiple faults

in a gearbox by converting non-stationary vibration signals into a lower dimensional feature vector

 29

and applying k-NN architecture on the resultant feature vector. (Jung and Koh 2015) developed a

method for classifying high-dimensional vibration signals for diagnosing faults in roller bearings

using k-NN architecture. (J. Tian et al. 2016) presented a method that diagnoses multiple bearing

faults and monitors the degradation of bearings in an electric motor using PCA and semi-

supervised k-NN architecture. (Zhou, Wen, and Yang 2016) demonstrated the ability of PCA and

k-NN architecture to be successfully applied to diagnose faults in TE benchmark process with

nonlinear, multimode, and non-gaussian distributed data. Researchers also compared the

performance of various ML-based architectures for fault diagnostics such as k-NN, SVM and ANN

by applying them to the same dataset (Moosavian et al. 2013), (Dou and Zhou 2016). (R. Liu et al.

2018) notes that the key issue with successful application of k-NN is the optimal choice of the

number of classes, usually denoted as parameter ‘k’ since it greatly influences the performance of

a k-NN algorithm.

In addition to the techniques mentioned above, Naïve Bayes classifier has drawn a lot of attention

recently because of its high learning and prediction accuracy (Wan et al. 2016), (Duan et al. 2016).

Other ML-based techniques such as fuzzy neural networks, decision trees and Bayesian networks

were also applied for diagnosing faults in various domains. Researchers also compared and

comprehensively evaluated the performance of various architectures used for diagnosing faults in

several domains (Seshadrinath, Singh, and Panigrahi 2014), (Cunha Palácios et al. 2015), (Flett

and Bone 2016). A detailed survey on the application of several ML-based data-driven approaches

for fault diagnosis can be found in (Yan Xu et al. 2017), (R. Liu et al. 2018).

ML-based data-driven approaches require high quality data as input and require complete datasets

with little to no missing data. The computational complexity of such approaches increases with

the volume of data collected and their shallow structure poses challenges in learning complex

 30

mappings between input data and fault types. Depending on the type of measurement and the type

of system where the fault diagnostic approaches are used, a smaller or larger data set is needed.

An arbitrary increase of the size of the data set will not significantly improve the accuracy of a

fault diagnostic model and it will result in increased computational complexity. The strength

behind data-driven fault diagnostic techniques does not lie in the in the amount of data collected

but in the correct choice of the types of data to use (G. Xu et al. 2019). Another drawback of ML-

based data-driven approaches is that they require manual feature extraction which is time

consuming and relies heavily on domain expertise (G. Xu et al. 2019).

 Fault Prognosis

Fault prognosis refers to the process of predicting a fault before it occurs and estimating the failure

progression to predict the RUL of a system by taking into consideration its degradation trajectory

and future operational usage (G. Xu et al. 2019) (Fink et al. 2020). The primary task of RUL

estimation is to predict the time left before the system fails to perform its intended tasks based on

the historical time-series sensor data obtained by the CM system (Worden et al. 2016), (Lei et al.

2018). The goal of prognosis is to ensure cost-effective operations by protecting the assets from

potential hazards and sudden breakdowns (Hamadache et al. 2019). According to (J. Lee et al.

2014), prognosis can be considered as a holistic approach to an effective and efficient system

health management that focusses on assessing and minimizing the operational impact of failures,

and controlling maintenance costs.

It is always important to have an accurate RUL estimation since early predictions (estimated RUL

is less than the actual RUL) may result in unwanted maintenance while late predictions (estimated

RUL is larger than the actual RUL) could lead to catastrophic failures. RUL estimates need to be

accompanied by a confidence bound to quantify the fluctuations in estimations caused by several

 31

uncertainties in the real world. From a DM point of view, fault prognosis is a regression problem

that aims to learn a relationship between the condition of a system and its RUL estimate. The

dependence of the target value on operating conditions in the future makes it hard, sometimes

impossible to predict the RUL at any given time (Liangwei Zhang et al. 2019).

The criteria defining the occurrence of a failure is application dependent and, in most instances,

the RUL labels are derived using data from run-to-failure tests. In some cases, degradation starts

only after a certain amount of usage, yielding a piece-wise function of RUL that has a constant

RUL followed by a different degradation function. In such cases, prior knowledge of failures can

be used to determine the time point segmenting the piece-wise function (Al-Dulaimi et al. 2019),

(L. Wen, Dong, and Gao 2019). Researchers have also investigated the use of non-linear power

functions and lower-order polynomial functions to understand the degradation function better

(Yuting Wu et al. 2018), (Andre Listou Ellefsen et al. 2019).

RUL predictions are grouped into three categories: model-based methods, data-driven methods

and hybrid methods (G. Xu et al. 2019), (Liangwei Zhang et al. 2019). Model-based methods rely

on statistical or physical models for assessing normal operating conditions and estimating physical

degradation, while data-driven approaches are based on CM data (J. Lee et al. 2014) and hybrid

approaches are typically a combination of model based and data-driven approaches (Chao, Adey,

and Fink 2019).

 Model-based Fault Prognostic Methods

Physics model-based approaches are correlated to material characteristics and stress levels and

utilize finite element analysis or empirical physical models to interpret system damage and

degradation process (Jardine, Lin, and Banjevic 2006), (Hanachi et al. 2015). While physics

 32

model-based methods are highly accurate at the component level, they may not perform well in

modern systems because of complex intra-system interactions that cannot be easily captured

(Liangwei Zhang, Lin, and Karim 2018).

Statistical model-based approaches utilize available past data to fit a probabilistic model without

relying on any physics or engineering assumptions for RUL prediction (Si et al. 2011). Statistical

model-based fault prognostic approaches include statistical measures such as moving average over

a time window, auto regressive integrated moving average (ARIMA), Kalman filter and

cumulative sum (Box, Jenkins, and Reinsel 2011). (Yang Zhang et al. 2020) presented a summary

of various statistical and physics model-based approached used by various researchers in the last

decade.

 Data-driven Fault Prognostic Methods

Although earlier works in RUL prediction have focused on model-based methods, widespread

deployment of low-cost sensors and advances in connectivity have led to the increasing popularity

of data-driven approaches for fault diagnosis and prognosis (Hamadache et al. 2019), (G. Xu et al.

2019), (Fink et al. 2020). Data-driven fault prognostics methods get rid of the complexity of

creating physical or statistical models and attempt to acquire knowledge from empirical data, to

infer current health state of the system and to predict its RUL (Tsui et al. 2015), (Zhiwei Gao,

Cecati, and Ding 2015), (G. Xu et al. 2019). Early works for predicting RUL using ML techniques

involved the use of ANNs and MLP models that used multiple CM measurements as inputs to

predict RUL (R. Huang et al. 2007), (Z. Tian 2009). (Mahamad, Saon, and Hiyama 2010) proposed

an ANN-based RUL prediction method for rotating machinery, (Soualhi et al. 2014) proposed a

RUL prediction method for bearings based on hidden Markov model and neuro-fuzzy inference

system, and (H. Kim et al. 2009) trained a SVM model to estimate the RUL of machines. (Cristaldi

 33

et al. 2016) proposed a NN-based approach for predicting RUL using CM data from previous

timesteps as input. With the advancements in ML-based techniques, it was possible to model

highly nonlinear, complex and multi-dimensional systems without any prior knowledge of the

system (Khan and Yairi 2018). (Diez-Olivan et al. 2019) proposed a technique that uses gaussian

process regression and MLP to model complex and nonlinear dependencies for RUL prediction.

Researchers have also investigated the use of hybrid methods to further improve the performance

of RUL predictions. (Di Maio, Tsui, and Zio 2012) proposed a method by integrating model-based

and data-driven approaches where relevance vector machine was used to select the base function

and exponential regression was used to predict bearing RUL. (P. Baraldi et al. 2013) proposed an

ensemble NN model for RUL prediction by fusing the outputs of several NNs.

Despite their extensive application, traditional ML-based techniques had several limitations in the

field of RUL prediction since they require high levels of expertise, suffer from poor generalization

ability and pose challenges in seeking optimal model configurations (G. Xu et al. 2019). Industrial

big data often tends to be unstructured, decentralized and highly nonlinear, posing significant

challenges to traditional data-driven fault diagnostic and prognostic methods (X. Wu et al. 2014),

but with the advancements in artificial intelligence (AI), DL-based techniques provide a solution

to the challenges posed by big data (Liangwei Zhang et al. 2019).

 Deep Learning approaches for CBM

ML-based methods for fault diagnosis and prognosis usually consist of manual extraction or

selection of the right set of features which are then fed to shallow (single-layered) ML-based

models such as ANN, SVM, Naïve Bayes etc. for model training (R. Zhao et al. 2019). Manually

extracting features for a complex domain requires a significant amount of domain expertise and

 34

the performance of ML-based models is limited by the representation of data that is provided to

them (Bengio, Courville, and Vincent 2013). Another key drawback of traditional shallow ML-

based methods is their inability to jointly optimize feature engineering and the model training

process, which hinders the model performance.

DL-based fault diagnostic and prognostic methods overcome such drawbacks by extracting

hierarchical representations from input data through multiple layers of non-linear transformation

(G. E. Hinton and Salakhutdinov 2006). The use of a single layer can automatically learn

representations of the input and complex representations from raw input can be learnt by stacking

multiple layers. Compared to shallow ML-based methods, DL-based methods do not require

extensive human labor or domain expertise and all model parameters can be trained jointly (R.

Zhao et al. 2019). In addition, DL-based methods also have the ability to scale faster for larger

datasets unlike conventional shallow techniques. Figure 2.8 shows a comparison of different

frameworks for fault diagnosis and prognosis.

 35

Knowledge-driven Methods

Traditional Data-driven Methods

Deep Learning-based Methods

Figure 2.8. Framework of various fault diagnostic and prognostic models (adapted from (R. Zhao et al. 2019))

Sensors and
other data
sources

Data
Acquisition

Mechanical
and

Mathematical
Models

Output

Sensors and
other data
sources

Data
Acquisition

Data Pre-
processing

Feature
Extraction
Methods

Model
Training and

Testing
Output

Sensors and
other data
sources

Data
Acquisition

Automatic Feature Extraction followed by Model Training
and Testing Output

 36

DL originated from ANN as a branch of ML that tries to learn hierarchical representations of data

through multiple non-linear processing layers. According to (Bishop 2006), DL is a concept that

encompasses new variants of a range of established learning models such as NNs. DL is now

commonly referred to as deep neural networks (DNNs) because they have multiple layers of

computational units, whereas traditional NNs usually have only a single layer (Goodfellow,

Bengio, and Courville 2016), (Aston Zhang et al. 2020). Although the early adoption of DL-based

methods took place in the early 1990s, initial attempts proved disadvantageous compared to

shallow networks which resulted in a decline in the interest on DL-based methods (Tesauro 1992).

As computer hardware performance continued to improve with time, new ways of training DL

models were gradually developed (Geoffrey E. Hinton and Osindero 2006), (Bengio et al. 2007).

The development of deep convolutional neural networks (CNNs) and its successful adaptation

resulted in a surge of interest in DL-based methods, and resulted in rapid advancements in their

application (He et al. 2016), (Krizhevsky, Sutskever, and Hinton 2017). The most successful

factors that contributed to the growth of DL-based methods include availability of large CM

datasets, affordable hardware and the development of sophisticated open source software (Fink et

al. 2020). In the last few years, DL-based methods have proven to be very effective in several tasks

such as object recognition and image quality assessment (S. Jia and Zhang 2018), classification

tasks (Krizhevsky, Sutskever, and Hinton 2012) and speech recognition (G. Hinton et al. 2012),

which encouraged researchers to apply such techniques for fault diagnosis and prognosis.

(Liangwei Zhang et al. 2019) did a comprehensive review of the application of DL-based methods

for fault diagnosis and prognosis and identified auto-encoder (AE), restricted Boltzmann machine

(RBM), convolutional neural networks (CNN) and recurrent neural networks (RNN) to be the most

widely used models. Tha data available for training a fault diagnostic and prognostic model also

 37

varied widely and included images, vibration signals and data from multiple sensors which led to

various DL models being used to address different problems. The following sections present a

brief introduction to the most commonly used DL models in the domain of fault diagnosis and

prognosis.

 Auto-Encoder

AE is an unsupervised technique that uses feed-forward network architecture to learn feature

representations and consists of two components; an encoder and a decoder. Figure 2.9 shows the

architecture of an AE, where the input data is compressed into a hidden layer with fewer neurons

by the encoder (combination of input layer and hidden layer) and the decoder (combination of

hidden layer and output layer) tries to generate the output (!! 	 ∈ 	ℝ") by reconstructing the input

while minimizing the average reconstruction loss over the training set (Snoek, Adams, and

Larochelle 2012).

Figure 2.9. Architecture of an auto-encoder (created from (LeNail 2019))

Input Layer ∈ ℝ⁵ Hidden Layer ∈ ℝ³ Hidden Layer ∈ ℝ³ Output Layer ∈ ℝ⁵

Decoder Encoder

 38

Hidden layer

Visible Layer

AE is based on the intuition that the neurons in the hidden layer must preserve the vast majority

of information of the input data for the decoder to obtain a good reconstruction of the input signal.

Complex feature representations can be easily learnt with the aid of nonlinear activation functions

such as RELU, Tanh and Sigmoid, and the hierarchical features can be learnt by increasing the

depth of the AE network. A summary of several variations of AEs can be found in (Liangwei

Zhang et al. 2019).

 Restricted Boltzmann Machine

The RBM network is an undirected Probabilistic Graphical Model (PGM) where all visible and

hidden layers are conditionally independent of each other, but are fully connected without any

intra-layer connection in the graph (Geoffrey E. Hinton 2012). As shown in Figure 2.10, neurons

in the hidden layer are a feature representation of the input data which is accepted by the visible

units. The network weights and bias units are updated iteratively to form a feature representation

of the input in the hidden layer, which is then used to reconstruct the input similar to AEs.

Figure 2.10. Architecture of a restricted Boltzmann machine (created from (LeNail 2019))

Input Layer ∈ ℝ⁵

Output Layer ∈ ℝ⁵

 39

Stacking multiple RBMs on top of each other results in the construction of a deep belief network

(DBN), and is typically trained using unsupervised layer-wise pretraining which provides a good

initialization to the network parameters, and is fine-tuned by back propagation that adjusts the

parameters to fit the target data with higher accuracy (G. E. Hinton and Salakhutdinov 2006). Deep

Boltzmann Machines (DBM) can be created by extending a simple RBM’s single hidden layer to

multiple hidden layers. DBM networks have the ability to learn complex structures and construct

hierarchical feature representations of input data, but they are sophisticated and computationally

expensive (Salakhutdinov and Hinton 2012). Further information on RBMs can be found in (H.

Lee et al. 2009), (Geoffrey E. Hinton 2012), (Salakhutdinov and Hinton 2012) and (K. H. Cho,

Raiko, and Ilin 2013).

 Convolutional Neural Networks

(LeCun et al. 1990) originally proposed CNNs for recognizing handwritten digits and since then

it has been proven to be successful in computer vision, natural language processing and speech

recognition. The two fundamental operators of a CNN model as shown in Figure 2.11 are:

convolution operator that extracts local features from the input data using different filters (kernels),

and the pooling (subsampling) operator that extracts the most significant local features from the

output of a convolutional layer. The final layer of a CNN is constructed with a fully connected

layer, and target prediction is performed by an output layer that follows the fully connected dense

layer (Liangwei Zhang et al. 2019).

 40

Figure 2.11. Architecture of a convolutional neural network (created from (LeNail 2019))

Figure 2.11 shows a two-dimensional (2-D) CNN that uses 2-D filters to conduct convolution

operation in both lateral and longitudinal dimensions of the input, while a 1-D CNN employs 1-D

filters to convolve along single dimension of the input. 1-D CNNs adopt simple array operations

and are computationally less demanding making them ideal candidates for time series signals

(Liangwei Zhang et al. 2019). CNNs can learn hierarchical feature representations of the input data

by stacking multiple convolutional and pooling layers and increasing the depth of the CNN

architecture enables the network to learn more abstract feature representations. Backpropagation

algorithm can be used to train a CNN and the filters (kernels) of a CNN can be learnt automatically

instead of being handcrafted. CNN exploits local correlations by enforcing a local connectivity

pattern, which together with weight sharing mechanism reduces the number of network parameters

significantly. CNN's ability to exploit local correlations combined with the ability of a pooling

layer to reduce the dimensionality of intermediate layers makes CNN less prone to overfitting

(Krizhevsky, Sutskever, and Hinton 2017).

 Recurrent Neural Networks

RNNs are DL models that can generate and address memories of arbitrary-length sequences in

input patterns (Schmidhuber 2015). RNNs benefit from their ability to store the output of its

previous state in the network’s internal state and are increasingly becoming popular for sequential

Input Convolution Convolution Pooling Pooling Fully connected Dense Layer

 41

learning because of their superior performance in speech recognition, machine translation, natural

language processing etc. (Graves, Mohamed, and Hinton 2013). Unlike conventional NNs that can

only map from input data to target vectors, RNNs define unique topological connections between

neurons to encode temporal information in sequential data by allowing the hidden state at time

step t to receive a signal from the input at current time t, and from the output of hidden state at

previous time t-1 which enables memory of the previous input to be maintained in the network’s

internal state (Funahashi and Nakamura 1993), (Jaeger 2008), (Yang Zhang et al. 2020). Thus, the

total number of parameters is greatly reduced while still being able to learn important features

from the input sequence (Jozefowicz, Zaremba, and Sutskever 2015). Figure 2.12 presents the

difference between a conventional NN and an RNN, depicting RNNs ability to use the output of a

previous timestep as an input to the current timestep.

Figure 2.12. Comparison of RNN and ANN architectures (Eliasy and Przychodzen 2020)

For supervised learning tasks, RNNs use sequential input data and are trained via backpropagation

through time to produce target (output) values. Similar to other DL models, stacking multiple

 42

hidden layers enables the RNN to learn more hierarchical and abstract feature representations.

Depending on the specific application, the number of neurons in the output layer of an RNN will

vary in size (Liangwei Zhang et al. 2019).

Simple RNNs (vanilla RNNs) need to have deep recurrent architecture to maintain long temporal

dependencies in sequential data, but during the backpropagation phase of model training, they may

not be able to capture the long-term dependencies from the sequential input signal due to the

problem of exploding or vanishing gradients (Gers, Schmidhuber, and Cummins 1999), (Gers,

Schraudolph, and Schmidhuber 2003), (Kolen and Kremer 2010), (Pascanu, Mikolov, and Bengio

2013). In order to overcome the problem of exploding or vanishing gradients, researchers proposed

two variants of RNN: Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)

and Gated Recurrent Unit (GRU) (Chung et al. 2014), which consist of a gating mechanism that

allows important information and features in the input stream to be maintained instead of being

overwritten and enable each recurrent unit to adaptively capture dependencies of different time

scales (R. Zhao et al. 2019). Similar to RNNs, LSTM and GRU networks have proven to be

successful for speech recognition and machine translation since they can capture long-term

temporal dependencies and non-linear dynamics in a sequential signal and have become a suitable

candidate for use in fault prognosis for RUL prediction (Yonghui Wu et al. 2016). Bidirectional

RNN (BRNN) is another variant of RNN that attempts to exploit temporal information in

sequential data by encoding information in both forward and backward directions, i.e., the hidden

states in a BRNN depend on both past and future states (Schuster and Paliwal 1997). Bidirectional

LSTM or bidirectional GRU can be obtained by replacing the basic hidden units in a BRNN with

LSTM or GRU respectively, and these variants allow them to be more flexible and powerful than

a simple RNN.

 43

 DL-based Fault Diagnostic and Prognostic Methods

By applying DL-based approaches to fault diagnosis and prognosis, researchers are trying to solve

complex problems that were otherwise not solvable with traditional approaches or to improve the

performance of traditional approaches through their ability to automatically extract useful features

from higher dimensional data, learn complex functional and temporal relationships between the

time series components of CM signals and the ability to transfer knowledge between different

operating conditions and different units (Fink et al. 2020). The following sections provide a brief

overview of the application of DL-based approaches in fault detection, fault diagnosis and fault

prognosis. Unlike traditional approaches, DL-based fault diagnostic methods are separated into

two sections: fault detection and fault diagnosis due to the extensive availability of research carried

out in each field in the last few years.

 DL-based Fault Detection Methods

The simplest form of fault detection is a binary classification task, whose objective is to classify

whether an item of interest is working well or if something went wrong (Liangwei Zhang et al.

2019). Fault detection applications using DL approaches can be grouped as either supervised or

unsupervised approaches based on the availability of faulty samples.

 Approaches based on Supervised Learning Techniques

The type of input data available and the application domain influence the selection of a particular

DL model for fault detection. The four major categories of input data that affect this decision are:

vibration data, imagery data, time-series data, and structured data. In order to better represent the

patterns in negative samples, all intrinsic features need to be extracted from the data. In vibration

data, such features include time domain features, frequency domain features, time-frequency

domain features and a combination of these; imagery data consists of spatial structural features;

 44

structured data comprises of cross correlations between several features that are not sequential;

and time-series data encompasses temporal dependencies (Liangwei Zhang et al. 2019).

Fault detection using vibration (and acoustic) data is the most researched subject in fault detection

and plays a crucial role in detecting faults in rotating or reciprocating equipment. Vibration data

is typically collected in the form of a time-series signal but has a significantly higher sampling

frequency. For fault detection using vibration data, researchers have used AEs (Luo et al. 2018),

but CNN proved to be more successful for this type of data (Janssens et al. 2016), (Abdeljaber et

al. 2017), (L. Guo, Lei, et al. 2017), (Bach-Andersen, Rømer-Odgaard, and Winther 2018).

The use of imagery data for fault detection is increasing in the last few years because of the

improvements in the field of computer vision and the excellent results obtained by using CNN for

classifying imagery data. Several researchers have successfully used CNN to inspect railway tracks

(Santur, Karaköse, and Akin 2017), (Gibert, Patel, and Chellappa 2017), road pavement crack

detection (Lei Zhang et al. 2016), (R. Fan et al. 2019) and concrete crack detection (Cha, Choi,

and Büyüköztürk 2017), (F. C. Chen and Jahanshahi 2018). Video data has also been used as input

data for fault detection, but since CNN cannot encode temporal information, researchers used CNN

to extract features from video frames and combined it with other techniques such as Naïve Bayes

classifier and Gaussian process to model the dynamics of sequential images (Jha, Srivastav, and

Ray 2016), (Cha, Choi, and Büyüköztürk 2017).

Structured data also constitutes a major part of input data for fault detection and requires

considerable effort in data preprocessing as structured data may be multi-sourced, distributed or

heterogenous. Structured data may originate from several sources such as temperature, pressure,

displacement, speed, voltage, current etc., and hence it would be necessary to perform data fusion

 45

to attain meaningful results (Diez-Olivan et al. 2019). The key to using structured data as an input

for fault detection is to find good feature representations that enable easy separation of faults from

normal operating conditions. Limited research has been conducted using DL approaches and

structured data as input for fault detection, and some of the notable works include developing a

DBN model to detect faults in thermocouple sensors of nuclear power plants (Mandal et al. 2017),

and a CNN-based architecture to learn deep representation of Supervisory Control and Data

Acquisition (SCADA) data to detect icing accretion in wind turbines (L. Chen et al. 2019).

Time-series data is a sequence of data points that are obtained through repeated measurements

over time and indexed in time order. Time-series data encapsulate useful temporal dependencies

and may also contain cross correlations in multivariate data, similar to structured data. Crucial

temporal information could be discarded resulting in poor model performance if the samples at

different timesteps are summed to be independent, and researchers have attempted to tackle this

problem at both data level and algorithm level (Liangwei Zhang et al. 2019). Data-level methods

aim to convert temporal dependencies into cross correlations by generating sequence of data

instances via a fixed length sliding window using phase space embedding representations. It is

however, challenging to determine the window size and the sliding stride size without prior

knowledge or tedious hyperparameter tuning (Qiu et al. 2015), (K. B. Lee, Cheon, and Kim 2017),

(D. Guo et al. 2018), (D. Guo et al. 2018). Algorithm-level methods such as RNN explicitly model

the temporal dependencies in their architectural design and is also the most researched DL

approach for time series data.

When performing fault detection using time-series data, it is essential to capture any temporal

information that reflects the health status of the monitored system. The most popular choice for

supervised fault detection using time series data is RNN, and one of the earliest works in this

 46

domain was to use a simple RNN architecture in software fault detection which outperformed the

conventional feedforward ANN in prediction accuracy (Q. P. Hu et al. 2007). (Obst 2014) built an

RNN to learn spatial-temporal correlations between sensors and used the residuals between actual

sensor readings and the RNN predictions to detect sensor faults in a distributed wireless sensor

network. (S. Zhang et al. 2017) built multiple LSTMs and fed their concatenated outputs to an

SVM classifier to capture long-term dependencies in time-series data and detect line trip faults in

a power system.

In addition to RNN, CNN is also commonly adopted for fault detection using time series data.

(Ince et al. 2016) used the raw current signal as input to a 1-D CNN to detect motor faults by

capturing the temporal information in a time-series data. (M. F. Guo et al. 2018) applied continuous

wavelet transformation to the raw current signal into time-frequency images in greyscale and used

the resultant images as an input to construct a CNN for detecting faulty feeders in power

distribution systems.

Despite numerous applications being reported in the literature, the challenge in obtaining data on

fault conditions is still the limiting factor for the use of supervised data for fault detection. In order

to overcome this, most researchers use data from simulations or laboratory tests, but such data

does not account for all scenarios in the real world. The other limitation of supervised approaches

is the poor generalization capability of the models to unseen faults that are not present in the

training dataset (Liangwei Zhang, Lin, and Karim 2018).

Although the choice of DL model for fault detection depends on the type of data available and the

application domain, some common practices are widely accepted across all models. This includes

the use of regularization techniques like dropout and weight decay to prevent overfitting and the

 47

amount of regularization is a hyperparameter that needs tuning to obtain optimal performance. The

other common practice is to evaluate the model accuracy using techniques such as precision, recall,

F-score, Receiver Operating Characteristics (ROC) curve, and Area Under the Curve (AUC) for

classification problems, and R2 score, Root Mean Square Error (RMSE) for regression problems

(Liangwei Zhang et al. 2019).

 Approaches based on Unsupervised Learning Techniques

Similar to fault detection with supervised approaches, vibration signals are the major source of

input data for fault detection approaches based on unsupervised learning techniques with AEs

being the most researched DL technique in this domain (Oh and Yun 2018), (Y. H. Park and Yun

2018), (Lu et al. 2018), (Principi et al. 2019). Some researchers have used AEs to extract features

from vibration signals and used these extracted features as an input to LSTM network to explicitly

model the temporal dependencies in bearing vibration data (Lu et al. 2018). (Sun et al. 2014)

developed an encoder-decoder like DBN and applied greedy-layer wise training to detect defective

electro-motors using vibration signals.

Unlike the extensive application of imagery data for fault detection using supervised techniques,

research on fault detection using unsupervised approaches is extremely limited because of the

complex nature of imagery data which makes annotating images a very labor intensive task. (Kang

et al. 2019) developed an approach to detect defective catenary insulators by using CNN to localize

the insulator in an image and performing the fault detection using an AE.

Applications of fault detection using unsupervised structured data has also been limited to a very

few works conducted in the last few years. Researchers used SCADA data to build AEs to detect

faults in wind turbines and nuclear power plants by using only samples of normal condition to

 48

conduct layer-wise pretraining and fine-tuning to train the networks (Shaheryar et al. 2016),

(Hongshan Zhao et al. 2018). A common strategy dealing with structured data is to choose a target

variable from the multivariate measurements and build a prediction model to map all other

variables to this target. The unsupervised problem can be converted into a supervised problem by

training the prediction model with samples of normal condition, and residual error can be

calculated as the difference between the target prediction and actual measurement (Liangwei

Zhang et al. 2019). Using this approach, (Long Wang et al. 2017) built a feedforward neural

network to detect faults in a wind turbine gearbox by selecting lubricant pressure as the target

variable, and (H. Wang et al. 2019) built a DBN for detecting faults in wind turbines using the

main bearing temperature as the target variable.

The most complex data type for unsupervised fault detection is time-series data because they

contain temporal dependencies that need to be modeled either explicitly or implicitly. (Jiang et al.

2018) proposed a sliding window strategy that involves dividing a multivariate time-series data

into chunks of fixed length along the time-axis to model temporal information for detecting faults

in wind turbines and (C. Fan et al. 2018) adopted a similar idea to detect anomalies in building

energy usage data. (André Listou Ellefsen, Bjørlykhaug, Æesøy, et al. 2019) proposed an

unsupervised reconstruction-based fault detection algorithm for maritime components which takes

in one vector at a time as input and forms a new time series from the chronological ordered residual

error instead of slicing data along the time axis. (C. Kim et al. 2018) took an alternate approach

and proposed a model named DeepNAP which consists of two modules: prediction and detection.

The prediction module tries to predict a sequence of output with minimum reconstruction error

and consists of AE and LSTM as its building blocks. The detection module is a fully-connected

MLP that accepts only a part of the output sequence from previous step and projects it to the

 49

remaining part of the sequence. (Fengming et al. 2017) adopted a similar approach to detect

anomalies in power demand of smart grids and observed superior accuracy by training the two

modules together. (Piero Baraldi et al. 2015) compared the ability of signal reconstruction methods

such as vanilla RNN, auto-associative kernel regression and fuzzy similarity for fault detection

based on time-series temperature measurements. In order to overcome the drawbacks of each

individual methods and to improve accuracy and robustness of the model, (Piero Baraldi et al.

2015) proposed an ensemble of the three models and reported satisfactory results.

 DL-based Fault Diagnostic Methods

Similar to fault detection using DL-based methods, vibration data is one of the most significant

sources for fault diagnosis and thus the majority of research in the field of fault diagnosis used

vibration (or acoustic) data as the input data and employed CNN for fault diagnosis, followed by

AEs as the second most widely used DL-based method. Although some researchers have

demonstrated the use of RBMs, RNNs and a combination of RNNs and CNNs, very limited work

exists using these techniques when using vibration data as input for fault diagnosis (Liangwei

Zhang et al. 2019).

Despite the recent advancements in DL theory and the development of CNN, the availability of

sufficient labelled samples remains a bottleneck to the application of DL-based methods for fault

diagnosis using imagery data. Most of the research in the domain of fault diagnosis using imagery

data used CNN, with some differences in the network depth, training depth or choice of the

regularization method. Some researchers have successfully demonstrated the ability of CNN to

produce satisfactory results even with the availability of very limited amount of input data.

(Janssens et al. 2018) used a well-known pretrained CNN architecture and replaced the last layer

with a soft-max layer to build a fault diagnostic model that yields an accuracy of over 95% by

 50

using only 40 infrared thermal videos of 10 minutes long each. (Tao et al. 2018) trained a CNN to

diagnose metallic surface defects by using only 50 raw images and without the use of transfer

learning. Similarly a few other researchers were able to successfully train CNNs to perform multi-

class fault diagnosis with highly accurate results by using very limited input data (Xiaoxia Li et al.

2019), (Z. Jia et al. 2019).

For fault diagnosis using structured data as input, RBM-based and AE-based DL approaches are

most researched since they resemble feedforward neural networks, allowing cross correlation in

the input to be learnt and do not impose any topological or sequential relations from input data

unlike CNN and RNN. Several researchers built DBNs and AEs for fault diagnosis with structured

data as input by using layer-wise pretraining, and fine-tuned the network’s hyperparameters by

stacking previously learnt layers (Jun Ma et al. 2017), (Y. Guo et al. 2018), (Chaolong Zhang et

al. 2018), (Chaolong Zhang et al. 2018). Layer-wise pretraining is typically unsupervised and the

number of required labelled data can be reduced by using the pretrained network which serves as

an initialization to the model. This also greatly boosts the convergence speed of the model (Zehan

Zhang et al. 2019). (S. Wang et al. 2018) took an alternative approach and used CNN to tackle

structured data with spatial topology for diagnosing system faults in a power system. In real-world

applications, data may be subject to numerous problems such as incompleteness, heterogeneity,

low signal to noise ratio etc. (D. Chen, Yang, and Zhou 2019) proposed a framework by using

transfer learning to tackle incomplete data problem caused by multi-rate sampling.

Several researchers have used RNN for fault diagnosis using time-series data as input because of

its ability to learn varying lengths of temporal dependencies via its memory retention mechanism

(De Bruin, Verbert, and Babuska 2017), (Haitao Zhao, Sun, and Jin 2018), (Z. Wu et al. 2018), (J.

Yang and Kim 2018), (Appiah et al. 2019). Some researchers have used DL models to learn feature

 51

representations and combined it with other models such as deep quantum NN (Zehai Gao et al.

2017), multi-grained cascade forest (G. Hu et al. 2018) and Fischer discriminative sparse

representation (Q. Tang et al. 2018) to increase the model classification accuracy.

 DL-based Fault Prognostic Methods

 Approaches based on Supervised Learning Techniques

In contrast to traditional methods, DL-based methods have a superior ability to learn representative

features from raw signal data, and are thus widely adopter for RUL prediction in the recent past

(Yuan, Wu, and Lin 2016), (Malhotra et al. 2016), (R. Zhao et al. 2017), (Yuting Wu et al. 2018).

The most researched areas using DL-based approaches in fault prognosis are to predict the RUL

of machining tools, batteries, turbofan engines, and rotating bearings. RUL prediction using

vibration data is one of the most researched areas in fault prognosis and vibration data acquired

from an accelerated aging platform, PROGNOSTIA, was used to predict the RUL of bearings with

truncated monitoring data (Nectoux et al. 2012). Vibration and force signals are also typically used

to monitor and predict wear in machining tools. (Aghazadeh, Tahan, and Thomas 2018) proposed

a standard CNN for estimating wear of tools in milling. (Jinjiang Wang et al. 2017) proposed

bidirectional GRU architecture to capture temporal dependencies and better model the degradation

trend for tool wear prediction. (R. Zhao et al. 2017) used CNN to extract features and combined it

with bidirectional LSTM for sequential modelling of wear prediction in tools.

Multivariate time-series data has been used to predict the RUL of turbofan engines with the help

of several DL models such as AE (Jian Ma et al. 2018), CNN (Xiang Li, Ding, and Sun 2018),

LSTM (J. Zhang et al. 2018). (Gugulothu et al. 2017) proposed a technique that uses time-series

embeddings based on RNN to predict RUL independent of the assumptions of degradation trends.

(Hsu and Jiang 2018) employed a simple LSTM for RUL prediction of NASA C-MAPSS dataset

 52

and (Jiujian Wang et al. 2019) proposed a bidirectional LSTM network for predicting RUL of C-

MAPSS dataset. (Ansi Zhang et al. 2018) used bidirectional LSTM to study the problem of

transferability among different operating conditions and noted negative transfer when transferring

from a dataset of multiple operating conditions to a dataset of single operating condition. (C. G.

Huang, Huang, and Li 2019) proposed a bidirectional LSTM method for systems under multiple

operating conditions where the fully connected layers in LSTM network are combined with a linear

regression model to predict RUL.

Another area that sparked interest recently is to map multivariate time-series measurements

(current, voltage, temperature etc.) to estimate battery capacity retention which is used as a

common indicator to signify battery life. Some notable works in this field include the use of

feedforward LSTM architectures as function approximators to predict RUL of lithium-ion

batteries, most commonly used in electric vehicles (You, Park, and Oh 2017), (Yongzhi Zhang et

al. 2018), (Ren et al. 2018), (Khumprom and Yodo 2019).

Fault prognosis based on CNN and DBN were also used by some researchers. (Xiang Li, Ding,

and Sun 2018) designed a CNN to use normalized input signal data to predict RUL of aero engines.

(Deutsch and He 2018) presented a method that uses feed forward DBN to predict RUL of rotating

components. (Chong Zhang et al. 2017) proposed a technique that integrates multi-objective

evolutionary algorithm with traditional DBN to address the performance issues and maximize

prediction accuracy and diversity for RUL prediction. Conventional DBNs were combined with

an evolutionary algorithm to establish an ensemble method called Multi-objective DBN ensemble,

which was used for RUL estimation (Saxena, Goebel, et al. 2008), (Chong Zhang et al. 2017).

 53

As both RNNs and CNNs have proven applicability in fault diagnosis and prognosis, some

researchers adopted a sequential approach, which first extracts local features using CNNs and then

feeds them to LSTM network for temporal understanding (Canizo et al. 2019), (Zheng et al. 2019).

(Malhotra et al. 2016) proposed a LSTM based AE structure that transforms a multivariate input

raw sequence into a fixed length vector which is then used to produce the target sequence by the

decoder. (R. Zhao et al. 2017) demonstrated a hybrid DL model combining CNN and bidirectional

LSTM, where a CNN is employed for extracting local features and bidirectional LSTM network

is built on CNN network to output temporal information encoding and representation learning.

Similar architectures were employed by other researchers, where the outputs from the LSTM and

CNN network are summed and fed into a subsequent LSTM layer (Al Dulaimi et al. 2019), (Jialin

Li, Li, and He 2019).

However, these hybrid network architectures may not be practical because they require a large

number of network hyperparameters for tuning, resulting in a larger model (Yang Zhang et al.

2020). An emerging trend in the field of fault prognosis is to understand the time-series data by

translating them into images and taking advantage of the existing knowledge on image

representation learning such as ImageNet (pre-trained image classification models) for fault

diagnosis (Cao, Zhang, and Tang 2018), (Shao et al. 2019). (Krummenacher et al. 2018) proposed

an intuitive approach to convert the natural plot of 1-D time series data to 2-D image. (Z. Wang

and Oates 2015) and (Hatami, Gavet, and Debayle 2018) proposed several encoding approaches

for converting time-series signals into images such as Garmin Angular Fields (GAF), Markov

Transition Fields (MTF) and Recurrence Plots (RP), which were adopted for failure detection

using vibration signals (Gecgel et al. 2019). Figure 2.13 shows sample encoding of time series data

with GAF, MTF and RP. Current research in this field is focused on evaluating the benefits of

 54

different time-series to image encoding techniques and then comparing their performance for

different time-series data and different fault types (Garcia et al. 2020).

Figure 2.13. Sample encoding of time-series data with GAF, MTF and RP (Fink et al. 2020)

Some researchers have taken an alternative approach to leverage the benefits from recent

advancement in convolutional operations and use them for fault diagnosis and prognosis (Ince et

al. 2016), (Jing et al. 2017), (Q. Wang, Michau, and Fink 2019). (Babu, Zhao, and Li 2016)

proposed a CNN with two convolutional layers, two average pooling layers and a fully connected

dense layer to estimate the RUL of airplane engines based on time-series data and reported that

the proposed CNN method outperformed regression methods such as MLP, Support Vector

Regression (SVR) and Relevance Vector Regression (RVR). Some of the research works that

adopted CNN for fault prognosis include using a deep CNN architecture for RUL estimation by

using time window approach for sample preparation (Xiang Li, Ding, and Sun 2018) and using

Short-time Fourier transformation and multi-scale feature extraction with CNN to enhance

network learning capability (X Li, Zhang, and Ding 2019).

Despite the popularity of CNN for fault prognosis, (Liangwei Zhang et al. 2019) noted the lack of

existing research using imagery data in the field of fault prognosis unlike fault detection and fault

diagnosis. They also identified the need for researchers to properly address their efforts towards

 55

building confidence bounds associated with a RUL prediction and highlighted the need for unified

evaluation metrics for assessing fault prognostic models to make comparing various models easier.

 Approaches based on Unsupervised Learning Techniques

As it is not always feasible to collect labelled data, unsupervised and semi-supervised learning

techniques can come to aid in situations where data is sparce. Signal reconstruction is one of the

most popular unsupervised learning approaches in the field of fault prognosis using DL-based

approaches that involve defining a model to learn normal system behavior. The model is then used

to distinguish normal system behavior from dissimilar system states under normal operating

conditions, a technique commonly known as novelty or anomaly detection (Fink et al. 2020). AEs

are typically used for signal reconstruction, and deep AEs have the potential to capture more

complex relationships to be able to detect more subtle deviations from the representative system

conditions (Bengio et al. 2007).

Semi-supervised techniques have also been tested for fault prognosis, to deal with large datasets

where only a subset of the samples are labelled (Oliver et al. 2018), (Shi 2018), (André Listou

Ellefsen, Bjørlykhaug, Æsøy, et al. 2019). Semi-supervised techniques such as self-training (Yoon

et al. 2017), graph based methods (Y. Zhao et al. 2015) and co-training methods (C. Hu, Youn,

and Kim 2011) were commonly used for RUL predictions. MixUp method (H. Zhang et al. 2017)

involves mixing labelled and unlabeled data and is found to be a promising semi-supervised

learning approach, motivated by its successful use in other domains such as image classification

(Berthelot et al. 2019), (Verma et al. 2019), (Q. Wang, Li, and Van Gool 2019).

Despite the superior adaptability and performance of DL-based models for fault diagnosis and

prognosis, they are generally restricted to use with only laboratory data because of insufficient

 56

labelled data in real-world applications. Furthermore, the generalization capability of the models

to predict faults that were not present in the training dataset are poor, resulting in low testing

accuracy in real world applications (Tidriri et al. 2016), (A. Kumar, Shankar, and Thakur 2018),

(Liangwei Zhang et al. 2019).

 Fault Diagnostic and Prognostic Applications for Mining Equipment

This section provides a comprehensive review of existing literature on fault diagnostics and

prognostic models for mining equipment from 2012 to 2020. The most common methods used for

fault diagnosis and prognosis of mining equipment are Statistical-based and ML-based data-driven

approaches.

 Applications based on Statistical-based Methods

(Page et al. 2012) developed a method to diagnose faults and predict RUL of Caterpillar vehicles

by identifying the most important elements of an oil analysis and constructing a statistical model

in conjunction with the historical maintenance database. (Ghodrati, Ahmadzadeh, and Kumar

2012) used a Weibull proportional hazards method (PHM) to compute the RUL and develop

optimal scheduled maintenance schedule for hydraulic jacks of load haul dumper (LHD) machines

by taking into consideration the operating conditions. (Balaba, Ibrahim, and Gunawan 2012)

investigated the use of analytical tools such as Failure Mode and Effect and Criticality Analysis

(FMECA) and Weibull analysis to understand the failure characteristics and improve the scheduled

maintenance schedule of a shearer loader in underground mining. (Ho and Hodkiewicz 2013) used

traditional data-driven approaches to understand the failure behavior of hydraulic cylinders in two

different classes of haul trucks at various sites and to assess the influence of physical properties of

ore on component failures. (Carstens and Vlok 2012) used a statistical approach, PHM, to predict

 57

the RUL of Caterpillar 793D haul truck engines using data obtained from a South African mine

and reported that RUL predicted by the developed models is very accurate.

(Mohammad Hajizadeh 2014) applied a hybrid model-based (interacting multiple model) fault

detection approach for diagnosing faults in mining haul truck suspension struts. (M Hajizadeh and

Lipsett 2015) presented a wavelet-based analytical technique in parallel with an autoregressive

model-based method to detect suspension strut faults in haul trucks and reported favorable results.

(J. J. Wu, Wu, and You 2014) developed a method that incorporates an optimal multivariate

Bayesian model to address critical issues with PHM for complex mining equipment and

demonstrated the superior performance of the developed model with an example of jaw crushers.

A similar Bayesian network was constructed by creating a mapping between the Bayesian network

and a fault tree for diagnosing faults in a scraper conveyor at a coal mine in China (Xue, Li, and

Xu 2016). (Groenewald, Kleingeld, and Cloete 2018) used a statistical-based autoregressive model

for fault diagnosis of large three-phase induction motors in electrical machines in deep

underground mines in South Africa. (Rahimdel, Ghodrati, and Vahed 2020) analyzed the failure

behavior of critical subsystems of railcars in a Swedish mining company and developed a

statistical-based PHM model to predict the RUL of railcars by considering the effect of various

operational factors.

 Applications based on ML-based data-driven Methods

(P. Kumar and Srivastava 2012) built an expert system that uses mathematical and ML-based data

driven approaches such as genetic algorithms and ANNs to detect various faults in an excavator

and its components by using historical maintenance database. (Dindarloo and Siami-Irdemoosa

2017) applied ML-based data-driven approaches to diagnose faults in a fleet of ten shovels using

data from a historical maintenance database during a one-year period. They used k-means

 58

clustering to classify shovels into four categories and used SVM to classify impending failures

with a classification accuracy of over 75%. (Nixon et al. 2018) used a hybrid ML-based data-

driven approach by using linear discriminant analysis classification technique in combination with

Naïve Bayes classifier to diagnose faults in diesel engine components. After extensive

experimentation, they concluded that SVM outperforms the hybrid linear discriminant analysis

(LDA)-Naïve Bayes classifier and also emphasized on the importance of domain expertise for fault

diagnostics. (Andrejiova and Grincova 2018) applied Naïve Bayes classifier to classify various

types of impact damages occurring in conveyor belts by studying the influence of different types

of conveyor belts, drop height and type of impacting material under laboratory conditions.

(Juanli Li et al. 2018), (Juanli Li et al. 2019) and (Juanli Li et al. 2020) proposed a fault diagnosis

method for braking system in mine hoists using ML-based data-driven methods such as MLP and

decision tree using real-time data and reported satisfactory model accuracy. (G. Zhong, Dong, and

Ye 2018) proposed a ML-based data-driven approach for diagnosing faults in shearer equipment

used in underground mines by using PCA for dimensionality-reduction and constructing an ANN

architecture with backpropagation. They also reported greater generalization ability and higher

accuracy by combining the ANN architecture with an ensemble learning method, Adaboost.

(Paithankar and Chatterjee 2018) proposed a hybrid ML-based data-driven method using NN and

genetic algorithm (GA) using data from historical maintenance database to predict the RUL of

LHD machines with satisfactory prediction accuracy that outperformed other traditional methods

such as lifetime distribution models and Markov models. (M. Liu et al. 2019) developed a unique

approach that uses an online diagnosis method based on incremental sparse kernel extreme

learning machine (ISKELM) for classifying faults. They applied ISKELM to classify faults in

 59

diesel engines and realized a high classification accuracy and faster online diagnosis compared to

other existing online diagnostic methods.

(Taghizadeh Vahed, Ghodrati, and Hossienie 2019) applied a ML-based data-driven method called

enhanced k-NN (combination of k-NN and GA) to diagnose faults in draglines using data obtained

from a historical maintenance database and reported better classification accuracy compared to

conventional k-NN and ANN models applied to the same dataset. (Ding et al. 2019) applied radial

bias function (RBF) classifier with linear independent component analysis (ICA) to extract fault

features for diagnosing faults in shearers using vibration signals measured by with an

accelerometer. The results showed a higher accuracy of fault detection for the developed method

compared to other traditional methods. (Xiangong Li et al. 2020) proposed an approach that

combines PCA for dimensionality reduction and SVM for diagnosing faults in a conveyor belt

used in underground mines using data collected by various sensors and achieved an accuracy of

over 97%. (Nanyang Zhao et al. 2020) proposed a method based on variational mode

decomposition for reducing the dimensionality of the feature set and random forest for diagnosing

valve train clearance faults in diesel engines effectively. (Sahu and Palei 2020) developed an

approach that used real-time data from various sensors as input to a Bayesian Network for

classifying faults in draglines in an Indian mine.

 Summary of the Literature Review

The above literature review summarized the major contributions of previous researchers seeking

to better understand and implement various DM techniques for diagnosing and prognosing faults

in various equipment including mining equipment. Researchers have implemented numerous ML-

based and DL-based models and achieved satisfactory results for fault diagnosis and prognosis in

various industries.

 60

The literature review also shows that several researchers have addressed the same failures by using

different DM techniques on some of the easily accessible and popular datasets rather than trying

to identify and address novel failures. In addition, some researchers tend to use fabricated or

simulated data for diagnosis and prognosis of failures which may not account for all complex

scenarios in the real world. Although fault diagnostic and prognostic models are not novel to

mining industry and mining equipment, existing works on mining equipment are primarily focused

on knowledge-driven approaches (model-based and statistical-based) and traditional ML-based

approaches. Despite the popularity and successful application of DL-based approaches in other

domains, no such work related to mining equipment has been reported so far. Thus, there is a need

for an integrated engineering methodology which can be used for identifying critical failures in

mining equipment and developing various ML-based and DL-based data-driven approaches for

fault diagnosis and prognosis using data from several sources associated with the equipment.

 61

Chapter 3: IDENTIFYING FAILURE MODES TO

INVESTIGATE

This chapter presents an approach to identify the critical failure modes to investigate in this

research by using data from a variety of sources. This chapter forms the basis for this research as

the objective of this chapter is to identify a critical failure for which data-driven fault diagnostic

and prognostic models are to be developed. The type of data available and the choice of data-

driven approaches are dependent on the failure identified in this chapter.

 62

 Background Information

The objective of this phase was to identify a suitable candidate for developing fault diagnostic and

prognostic models using ML and DL algorithms. Since haul trucks are complex equipment with

several components, the following sections describe a systematic methodology adopted to identify

a key component of haul trucks for which the fault diagnostic and prognostic models need to be

developed. Figure 3.1 presents a flowchart detailing the steps involved in identifying the key

failures of interest through a unique and robust approach that utilizes data from various

components of historical maintenance database such as downtime reports, alarm log database and

work order reports.

Figure 3.1. Flowchart detailing the steps to identify critical failures to investigate

 63

The historical maintenance database consists of the following components:

• Downtime Reports: Data on frequency of failures and the down time associated with each

failure (or repair) is stored in this database and can be grouped by site, equipment type,

failure category such as electrical, mechanical, hydraulic systems etc.

• Alarm Log Database: Alarms generated when a specific component of a truck operates

outside the desired operating range are stored in alarm logs. These alarm logs consist of

information such as equipment ID, alarm code and description, date and time at which the

alarm was triggered and ended, alarm priority etc.

Alarms can be broadly classified into two types:

o Original Equipment Manufacturer (OEM) defined alarms: These alarms are logged

when a truck or a specific component of the truck are operating outside a desired range

and are defined by OEMs.

o User Defined Events (UDEs): These alarm conditions are defined by the maintenance

personnel after thoroughly investigating the performance of various components in a

haul truck and are customized to meet the unique conditions at each mine site.

• Work Order reports: All maintenance work carried out on any equipment on site is logged

into the work order history. A typical work order consists of essential information such as

a unique ID associated with each work order, equipment ID, the date on which repair work

has started and ended and a brief description of the work completed along with other

information. A sample work order history is presented in Appendix A.

Figure 3.1 shows how data from the three components of the historical maintenance database are

used in series to identify the ideal candidate for developing fault diagnostics and prognostics

models, and the same framework is elaborated in the following sections.

 64

 Event Log Analysis

Equipment failure frequency and downtime records for haul trucks were obtained from the

downtime reports for a period of 24 months (January 2018 to December 2019) at a mine (mine A).

The data collected was then filtered to include only unscheduled mechanical failures with the

objective to identify the most problematic categories whose failures are hard to predict. The top

ten categories of unscheduled mechanical failures were then selected, and a Pareto analysis was

performed to identify the categories that contributed towards the highest down hours and frequency

of failure as shown in Figure 3.2 through Figure 3.5. The X-axis on these figures represents the

failure category and the Y-axis represents the percentage of down hours or number of events for

each failure category.

Figure 3.2. Pareto analysis of down hours for unscheduled mechanical failures in 2018

 65

Figure 3.3. Pareto analysis of number of events for unscheduled mechanical failures in 2018

Figure 3.4. Pareto analysis of down hours for unscheduled mechanical failures in 2019

 66

Figure 3.5. Pareto analysis of number of events for unscheduled mechanical failures in 2019

Figure 3.2 through Figure 3.5 indicate that engine related failures are by far the most frequent

failures at the mine and also accounted for the highest downtime in both years. With the primary

focus narrowed down to engines, further analysis was carried out as detailed to identify a specific

problem area within engine related failures.

 Alarm Log Analysis

This section presents how historic alarms stored in the alarm log database were used to identify

the failure(s) of interest by analyzing the frequency of alarms. The idea behind the analysis

performed in this section is to narrow down the broader spectrum of engine related failures by

identifying and analyzing only the alarms (related to engine failures) with the highest frequency.

 67

The large number of alarms triggered in a short period of time remain one of the limiting factors

for using alarm logs for failure analysis. This makes them almost unmanageable, and difficult to

extract relevant component related information without the use of sophisticated data filtering

techniques. For instance, 1,518,636 alarms were logged in 2018 and 1,496,681 alarms were logged

in 2019. This results in an average of over 4000 alarms per day, and an average 141 alarms per

each truck in a day. A preliminary analysis of the alarm log database indicated the presence of

duplicate rows and rows with missing timestamps, all such events were deleted prior to using the

alarm log for further analysis. Table 3.1 shows the count of unique alarms codes of priorities 1, 2

and 3 recorded, with priority 1 alarms being the most severe alarms that require immediate

attention.

Table 3.1. Alarm priority count and frequency

 2018 2019

Alarm
Priority

Unique Alarm
Types

Alarm
Frequency

Unique Alarm
Types

Alarm
Frequency

Priority 3 455 85.6% 455 86.2%

Priority 2 334 8.5% 334 7.5%

Priority 1 329 5.9% 329 6.3%

Although the truck generates both OEM and UDE alarms, the UDE alarms are more representative

of potential engine failures. Thus, the primary focus of this approach was to investigate the most

frequently occurring engine related UDEs. Figure 3.6 shows the distribution of the most frequent

UDEs with low engine oil pressure contributing to 39.2% of the total UDE count over the two

years.

 68

Figure 3.6. Distribution of most frequent UDEs

There were two types of engine oil pressure alarms, priority 1 representing the high priority alarms

requiring immediate attention and a less severe priority 3 alarm. Due to the high amount of low

engine oil pressure alarms, only alarms with the highest priority (priority 1) were considered for

this analysis. By filtering the alarm log database for high priority low engine oil pressure alarms,

a new dataset was created consisting of equipment ID and the date and time of the alarm. The high

priority engine oil pressure alarms may contain a few false alarms (false positives), and the

following section describes a procedure to use the results of this section to further narrow down

the scope for identifying the key component to be investigated.

 Work Order Report Analysis

After identifying low engine oil pressure as the alarm of interest, work order history from January

2018 to December 2019 was obtained and investigated for all the haul trucks at this mine. The

rationale for performing this analysis using work order reports is the intuition that most true

39.20 %

32.20 %

16.80 %

11.80 %

UDE Alarm Frequency

Low Engine Oil Pressure

High Strut Pressure

High Coolant Temperature

Other Alarms

 69

positive high priority low engine oil pressure alarms would be followed by a repair. All engine

related work orders within a week following a low engine oil pressure alarm were identified and

Figure 3.7 shows the frequency of several failures that occurred within a week following a low

engine oil pressure alarm in a truck.

Figure 3.7. Frequency of failures following low engine oil pressure alarm

Figure 3.7 illustrates that 40% of all the work orders created (repairs performed) within a week of

a high priority low engine oil pressure alarm were related to high-pressure fuel pump (HPFP)

failures, followed by 16% work orders related to coolant leaks and exhaust leaks each. Other

failures include engine oil leaks, truck not starting, fuel injector failures, low horsepower etc.

constitutes 19% of work orders. In addition, majority of the HPFPs at the three mines (Mine A,

Mine B and Mine C) failed prematurely at about 5,000 – 6,000 hours lasting on average only a

40%

16%

16%

9%

19%

Frequency of Failures

Fuel Pump Failures

Coolant Leaks

Exhaust Leaks

Turbo Charger

Other Failures

 70

third of their expected life. Based on these results, HPFPs were chosen to be the ideal candidates

for developing fault diagnostic and prognostic models.

 High Pressure Fuel Pump Failures

HPFP is one of the primary components of the diesel injection system and is responsible for two

primary functions: injecting certain amount of fuel under the designated pressure and regulating

the required injection timing. The electric priming pump pulls fuel from the fuel tank and passes

it though a fuel filter (shown in grey) before sending fuel into the HPFP (part E). Low pressure

fuel entering the HPFP is pressurized before being delivered to the solenoid controlled electronic

injectors (part D) that are mounted on the high-pressure rail (part A). Fuel injection pressure and

timing can be accurately controlled by the electronic engine control unit (part C) and the solenoid

controlled electronic injectors. The common rail pressure is measured by the rail pressure sensor

(part F) mounted on the high-pressure rail. An electronic actuator located at the inlet of the HPFP

called inlet metering valve (IMV) controls the fuel pressure and this pressure is measure by a

sensor mounted on top of the HPFP. The manufacturers bulletin states that the HPFP is lubricated

by engine oil for longevity of the pump.

 71

Figure 3.8 Flow diagram of common rail fuel system (Bosch 2021)

There are three major types of HPFP failures: cavitation failure, gerotor failure and particle

ingression failure. Cavitation failure is caused when air or water gets entrained into the fuel causing

localized bubbles that implode and eventually damage the surfaces in the HPFP. Gerotor failures

are caused when the gerotor pump in the HPFP cracks (or breaks) due to excessive stress causing

a slow and gradual ingress of engine oil (which is used as a lubricant) into the fuel thereby resulting

in contamination of the fuel. Particle ingression is caused either by manufacturing debris (such as

weld spatters and abrasives), ingested particles (such as pulverized coal and ore dust) or generated

particle (caused by corrosion and mechanical wear). Particle ingression can lead to contact fatigue

which under repeated stress reversal cycles may ultimately result in spalling of HPFP components.

Because of the issues surrounding the availability of data for developing fault diagnostic and fault

 72

prognostic models for cavitation and particle ingression failure, only gerotor failures were

researched for developing fault diagnostic and prognostic models.

 Summary and Conclusions

In this research, a novel approach was proposed to identify critical failures in haul trucks using

data from various historical maintenance databases such as the frequency of failures, duration of

downtime, alarm logs and work order reports. The analysis performed in this chapter was focussed

on using frequency of failures and average downtime duration from the unscheduled mechanical

failures at the mine in 2018 and 2019. The results of Pareto analysis indicate that engine related

failures are the most frequent failures and account for the highest percentage of downtime in 2018

and 2019. With the primary focus on engines, historical alarm logs were analyzed to identify

engine related alarms with the highest frequency. Due to the large number of alarms generated at

the mine, only UDE alarms of priority 1 (highest priority) were used and low engine oil pressure

was identified to occur the most with a frequency of 39.20%. Since low engine oil pressure could

be caused due to a variety of reasons, work order reports were investigated to identify major

failures following a high priority low engine oil pressure alarm. HPFP failures were eventually

identified to be the critical failure of interest because of their high frequency of occurrence and

tendency to fail prematurely. In addition to HPFP failures, other failures such as coolant leaks,

exhaust leaks, turbo charger failures and fuel injectors fuel injectors were identified to have a high

failure frequency indicating the need for future research to address these issues. The rest of this

thesis was focused on developing data-driven fault diagnostic and fault prognostic models to

address gerotor failures in HPFP.

 73

Chapter 4: FAULT DIAGNOSIS USING DATA-

DRIVEN TECHNIQUES

This chapter presents an approach to develop fault diagnostic models using machine learning-

based and deep learning-based data-driven approaches. This chapter present a detailed overview

of the various steps involved in diagnosing failures such as data collection, extracting condition

indicators, data pre-processing, building data-driven models, hyperparameter tuning and

evaluating the model performance. This chapter also presents the results of validating various

unsupervised approaches implemented to diagnose a critical failure identified in the previous

chapter, by testing them at multiple mines.

 74

 Background Information

The objective of this chapter is to develop an approach to diagnose gerotor failures in HPFP with

significant accuracy and sufficient lead time of at least 2-3 weeks prior to a potential failure. Figure

4.1 presents a flowchart with the steps involved in diagnosing gerotor failures in HPFP.

Figure 4.1. Flowchart detailing the steps involved in diagnosing gerotor failures in HPFP

The following sections of this chapter present a detailed overview of the various steps involved in

diagnosing gerotor failures in HPFP such as data collection, extracting condition indicators, data

pre-processing, building data-driven models, hyperparameter tuning and evaluating the

performance of models. The model performance was validated by testing it at two other mines and

is presented in this chapter.

 75

 Data Collection

As mentioned in the Chapter 2, the most common types of input data used for building fault

diagnostic models are vibration data, imagery data, time-series data and structured data. Although

some researchers have successfully applied DL-based approaches such as CNN and RNN to

diagnose faults using time-series data, such models cannot be adopted in this research due to the

lack of availability of labelled and high-frequency time-series data. Because of the unavailability

of vibration and imagery data, the rest of this chapter focuses on developing fault diagnostic

models using time-series data and unlabeled structured data as input.

Time-series data is available in the form of sensor readings from several sensors mounted on the

haul trucks, and these signal readings are used to generate alarms that are subsequently stored as

alarm log database, as described in Chapter 3. The rationale for using the alarm log database to

diagnose gerotor failures in HPFP is to assess the occurrence of high priority alarms to identify

common occurrence patterns prior to a failure. The choice of the second dataset (unlabeled

structured dataset) is based on the empirical knowledge that a gerotor failure results in the

contamination of engine oil that is used to lubricate fuel pumps. This is a slow process, and the

contamination of engine oil should theoretically alter the concentrations of additives and other

physical properties of engine oil such as the viscosity. Therefore, it could be possible to identify

the specific samples whose concentration of additives or physical properties are outside the desired

range by analyzing engine oil samples.

Typically, engine oil samples are collected at an interval of 750 hours and if the results of the

analysis indicate the presence of an abnormality, the necessary repairs are performed, and oil

samples are collected following the repair to ensure the haul trucks are restored to normal operating

conditions. The output of the engine oil analysis for each sample consists of the concentrations of

 76

various contaminants, additives and wear metals. Table 4.1 shows all the features (contents) that

are obtained by analyzing an engine oil sample. There are a total of 36 features including several

additives, contaminants and wear metals. A total of 997 oil samples were collected and analyzed

from all the haul trucks at this mine (mine A) between January 2019 to August 2020.

Table 4.1. Input features of oil sample analysis report

The following sections describe the procedure adopted in this research to identify condition

indicators and develop fault diagnostic models to diagnose gerotor failures in HPFP.

 77

 Selection of Condition Indicators

Feature selection is the process of selecting specific features from the input dataset that contribute

most to predicting the target (output) value and is dependent on knowledge of the possible

degradation types and past observations of failures. Selecting too few features may result in missed

alarms and too many features may result in an excessive number of false alarms reducing the

credibility of the developed model. Thus, feature selection plays an important role in developing

fault diagnostic models and must contribute to minimizing false alarm rates and maximizing the

detection rate (Fink et al. 2020).

Feature selection assists in the selection of condition indicator, which is “a feature of condition

monitoring system whose behavior changes in a predictable way as the system degrades or

operates in different operational modes”, enabling the distinction between normal operation from

fault conditions (Sharma and Parey 2016). (Y. Hu, Palmé, and Fink 2016) discussed some of the

desired characteristics such as monotonicity, robustness and adaptability that the condition

indicators should possess, and (L. Guo, Li, et al. 2017) proposed several ways to design condition

indicators and use them for fault prognostics. Due to the possibility of multiple fault types in a

system, it may be challenging to design a set of condition indicators that are able to classify all the

fault types. The performance of ML and DL-based methods is highly dependent on the quality of

the condition indicators, and as the number of CM features increase it becomes arduous to extract

quality condition indicator(s). Hence it is essential to perform manual pre-processing of the raw

data to derive more useful representations of the data. This process is known as feature

engineering, and feature engineering typically involves the following steps: transforming raw data,

signal processing, reducing the dimensionality of the data (Forman 2003).

 78

Although a lot of researchers have proposed numerous condition indicators for developing fault

diagnostic and prognostic models for various failures, the research on condition indicators for

HPFP failures in large diesel engines still does not exist. Although the focus of this research is on

addressing gerotor failures in HPFP, the following section proposes an empirical way of

determining condition indicators by assessing the occurrence pattern of existing HPFP related

alarms and determining the feasibility of using the most frequent alarms as potential condition

indicators for all types of HPFP failures.

 Assessing the Occurrence Patterns of Alarms Related to HPFP Failures

The objective of this phase was to assess the relationship between various alarms and HPFP

failures, and to identify potential condition indicators for developing fault diagnostic models.

Currently there are no existing UDE alarms to predict a HPFP failure, so this section focuses on

OEM alarms.

Although the fault diagnostic and prognostic models were being developed only for gerotor

failures in HPFP, historical alarm log data was obtained for all types of HPFP failures in order to

extract as many condition indicators as possible. There were a total of 37 HPFP failures at the mine

starting from July 2018 to August 2020, and alarm log data was collected for up to 15 days prior

to each failure. Each failure was given a unique identification number from 1 to 37, and the

occurrence of various HPFP related alarms (excluding low engine oil pressure alarms) prior to

each failure were recorded. Since the objective of this phase was to assess the occurrence of various

alarms prior to a HPFP failure, the alarm dataset was reduced by considering only one alarm of

each type per haul truck in a day and if the same alarm was triggered with different priorities, only

the alarm with highest priority during the day was considered. For example, if there were multiple

 79

low fuel alarms of priority 1 and priority 3 registered in a day prior to a failure, only one low fuel

alarm of priority 1 was considered.

The most frequent alarms in the 15 days prior to each HPFP failure were manually analyzed to

identify their pattern of occurrence, and to identify potential candidates for developing condition

indicators. Table 4.2 shows the frequency of the top 8 alarms that occurred 15 days prior to a HPFP

failure.

Table 4.2. Frequency of top 8 alarms prior to a HPFP failure

Alarm Code Frequency

Low Horsepower 29

High Blow-By Pressure 20

Injector Metering Rail Pressure Low 19

Fuel Pump Delivery Pressure Low/High 19

Low Fuel 16

Fuel Pump Delivery Pressure Low 13

Fuel Pump Delivery Pressure High 12

Engine Fuel Delivery Pressure High 5

Table 4.2 shows that a low horsepower alarm was triggered on at least one of the 15 days prior to

a failure in 29 of the 37 HPFP failures. Gantt charts were prepared for each of the top 4 most

frequent alarms (in ascending order) to visually represent their occurrence prior to a failure. The

X-axis of the Gantt charts represent days leading to a failure and each instance of failure is

represented along the Y-axis. Figure 4.2 presents the time-event chart for fuel pump delivery

 80

pressure alarms prior to a HPFP failure. For example, low fuel pump delivery pressure alarm was

present 2 days prior to a failure in failure 1 and failure 2, while a high fuel pump delivery pressure

was observed 14 days prior to the failure and lasted for 6 days in failure 6. From Figure 4.2 it is

evident that abnormal fuel pump delivery pressure was observed in 51% of all HPFP failures. An

analysis of Figure 4.2 shows that low fuel pump delivery pressure was observed 2 days prior to a

failure in 25% of all 37 failures and a high fuel pump delivery pressure alarm was observed at least

12 days prior to a failure in 25% of all 37 failures.

Figure 4.2. Time-event chart for fuel pump delivery pressure alarms

Figure 4.3 represents the time-event chart for injector rail pressure alarms prior to a HPFP failure.

Injector rail pressure alarms were only observed in 51% of the failures, with half of them being

low injector rail pressure alarm and the other half being high injector rail pressure alarms.

 81

Figure 4.3.Time-event chart for injector rail pressure alarms

Figure 4.4 represents the time-event chart for high blowby or crankcase pressure alarms leading to

a HPFP failure. There were two different priorities of high blowby pressure alarms that were

observed, priority 2 alarms are less severe and are triggered when the blowby pressure increases

to 1.5 kPa, and the most severe priority 1 alarms are triggered when the blowby pressure raises to

2.25 kPa. High blowby pressure alarms were observed in 54% of all 37 HPFP failures and only

one of these failures did not have a priority 1 high blowby pressure alarm recorded within 15 days

prior to a failure. An analysis of Figure 4.4 shows that 75% of all failures that had high blowby

pressure alarms, had the alarm at least 10 days prior to a failure, and 50% of the alarms were

present in the 14 days prior to a failure.

 82

Figure 4.4. Time-event chart for high blowby pressure alarms

Figure 4.5 represents the time-event chart for low engine horsepower alarms of two different

priorities: priority 3 being the least severe alarms and priority 1 being the most severe. Compared

to the 3 alarm types discussed earlier, low horsepower alarms are the most frequently alarms

observed within the 14 days prior to a failure. A low horsepower alarm was observed in 78% of

all HPFP failures, and a priority 1 alarm was present in 62% of the total failures. Of all the trucks

that had low horsepower alarms prior to a HPFP failure, 34% of them had a low horsepower at

least 10 days prior to the failure.

 83

Figure 4.5. Time-event charts for low horsepower alarms

Figure 4.2 through Figure 4.5 indicate that although the alarms were observed prior to a failure in

a majority of the HPFP failures, most alarms were triggered only within 7 days prior to a failure.

Thus, they may serve as good condition indicators for fault prognosis, but since the objective of

the fault diagnostic models is to have a significant lead time of at least 2-3 weeks prior to a failure,

an alternative approach is needed for developing fault diagnostic models.

The following sections describe a methodology proposed to detect gerotor failures in HPFP in a

haul truck using engine oil sample analysis and the various steps associated with it.

 84

 Fault Diagnostic Methods

 Fault Detection Based on Engine Oil Sample Analysis

The engine oil sample dataset being used for fault diagnosis does not have any labelled data for

the target value, resulting in an unlabeled structured dataset. Although the application of DL-based

fault diagnostic models on unlabeled structured datasets are not very common, some researchers

have proposed an approach to build AEs and DBNs by choosing a target variable from the

multivariate dataset and build a model to map all other variables to the chosen target variable.

It is generally expected that contamination of fuel by engine oil leak could result in a change in

viscosity of the engine oil, which serves as an obvious indicator of gerotor failures in HPFP. Hence

engine oil viscosity was chosen as the target variable for building DL-based fault diagnostic

models. But assessing the viscosity of engine oil samples revealed that not all samples with a HPFP

failure had viscosity outside the desired operating range. Figure 4.6 shows the probability density

function (PDF) plot of engine oil viscosity at 40°C (in cSt) for all engine oil samples collected.

The blue line corresponds to the kernel density estimation (KDE) of viscosity of haul trucks that

had a HPFP failure, and the orange line shows the KDE of oil viscosity in trucks that did not

encounter a HPFP failure between the dates for which failure data was collected. The viscosity of

oil samples analyzed from trucks without a HPFP failure lie between 95-120 cSt and the viscosity

of points that were associated with a HPFP failure had viscosity ranging from 25 to 175 cSt.

Despite such a large variation in the viscosity for points associated with failures, the majority of

them still had viscosity between 100-125 cSt, which was similar to the viscosity of normal samples.

Hence engine oil viscosity alone cannot be used as a target variable for developing DL-based

models to identify a HPFP failure, and a similar trend was observed with other components of the

engine oil analysis.

 85

Figure 4.6. PDF plot of engine oil viscosity in centistokes (cSt)

Since the conditions required to implement DL-based methods such as AEs and DBNs were not

satisfied by the unlabeled structured data, outlier detection methods based on unsupervised

learning techniques were used to identify points (samples) in the dataset that deviate significantly

(outliers) from the other closely related points (inliers) to classify faults.

 Outlier Detection Methods

Hawkins defined outlier as “an observation which deviates so much from the other observations

as to arouse suspicions that it was generated by a different mechanism” (Hawkins 1980).

According to Aggarwal (2017), outliers are also commonly referred to as anomalies, abnormalities,

or deviants in the data mining and statistical literature (Aggarwal 2017). Outlier detection or

anomaly detection is an unsupervised learning technique that was traditionally applied to

 86

preprocessed CM data for fault diagnosis (Du et al. 2014), (Costa, Angelov, and Guedes 2015),

(Zhu, Mei, and Zheng 2017). Based on existing literature, unsupervised methods for outlier

detection can be classified as statistical, proximity-based, density-based, and cluster-based

methods (Han, Pei, and Kamber 2011). Statistical outlier detection methods are based on the

assumption that distribution of data is known in advance (Swersky 2018), and is not an ideal

candidate for the dataset used in this research. Proximity-based techniques such as k-NN are based

on the calculation of distances between points and do not make any prior assumptions about the

data, but are not suited for datasets with high dimensionality or large number of records (Hodge

and Austin 2004).

Density-based outlier detection methods are based on the assumption that outliers typically occur

in low density regions (H. P. Kriegel et al. 2011), an example of density-based methods include

Density-Based Spatial Clustering for Applications with Noise (DBSCAN), Local Outlier Factor

(LOF), Local Correlation Integral (LOCI), and Angle-Based Outlier Detection (ABOD). Cluster-

based methods are similar to density-based methods and classify the points that do not fit well into

a cluster as outliers. A popular cluster-based outlier detection algorithm is Global-Local Outlier

Score from Hierarchies (GLOSH) which is based on hierarchical DBSCAN (HDBSCAN)

(Campello, Moulavi, and Sander 2013). LOF and LOCI identify outliers with respect to local

neighborhood rather than with respect to the global data and thus, this research primarily

implements DBSCAN for outlier detection. DBSCAN is also the most popular and one of the most

cited outlier detection algorithm because of its superior performance over other algorithms (Behera

and Rani 2016).

Local Outlier Factor (LOF) is an unsupervised outlier detection algorithm that computes the local

density deviation of a data point with respect to its neighbors (Breuniq et al. 2000). A local density-

 87

based LOF score is estimated for each point using distances to its k-nearest neighbors. The density

of each point in the database is compared with the density of its k-nearest neighbors, and a LOF

value less than or closer to 1 indicates a higher probability of the corresponding point belonging

to a cluster. Regions of similar density can be identified using the local density, and the points that

have a substantially lower density than their neighbors, represented by LOF values greater than 1,

are considered as outliers. The outlier factor in LOF is local since the calculated score is restricted

to small neighborhood around each point. The trainable hyperparameter of LOF is MinPts, which

represents the number of nearest neighbors used to define the local neighborhood of the point.

Angle Based Outlier Detection (ABOD) algorithm uses both distance between points in a vector

space and the direction of distance vectors (H.-P. Kriegel, Schubert, and Zimek 2008). The

underlying principle of ABOD is that outliers in a database can be identified by comparing the

angles between a pair of distance vectors to other points. For points in the database that belong to

a cluster, the angles between difference vectors to pairs of other points are large and differ widely.

The variance of points tends to get smaller as the point is located away from a cluster, and for

outliers in the database, the angles between difference vectors to pairs of other points are smaller

with low variance. The ABOD algorithm assigns an angle-based outlier factor to each point in the

database and the points are ranked in the order of their outlier factor scores. The highest ranked

points are the outliers in the dataset, and the lower ranks are assigned to points within a cluster.

An advantage of ABOD algorithm over other unsupervised outlier detection algorithms is the

ability to train ABOD algorithm without the need of hyperparameters.

 DBSCAN

DBSCAN is a non-parametric density-based clustering algorithm that groups together the closely

packed points and marks the points in low density regions as outliers. DBSCAN requires two

 88

parameters: an arbitrary distance measure (epsilon radius) ∈ %&	'(), and minimum number of

points (MinPts). As shown in Figure 4.7, the two parameters can be used to group the points into

one of the following categories:

• Core Point: Any point that contains at least MinPts within an imaginary circle of radius ∈

around it.

• Border Point: Any point that contains at least one but less than MinPts within an imaginary

circle of radius ∈ around it.

• Noise Point: A point which does not contain any other point within an imaginary circle of

radius ∈ around it. Noise points are also referred to as outliers.

Figure 4.7. DBSCAN algorithm (Behera and Rani 2016) © 2016 IEEE

The intuition of DBSCAN is to find outliers (noise points), which are not as densely packed as the

core points or border points (Schubert et al. 2017). The main advantage of DBSCAN over k-means

clustering is its ability to isolate outliers unlike k-means clustering which tries to group all points

including outliers into one of the clusters and k-means clustering also requires the minimum

number of clusters to be specified in advance (G. Guo et al. 2003).

 89

 Data Preprocessing

 Addressing Missing Values and Duplicate Rows

ML and DL-based methods cannot handle missing values and hence it is necessary to address

missing values in the input features. There are several ways to address missing values in a dataset,

with the most common techniques being replacing the missing values with a value of 0; replacing

them with mean or median value of the corresponding feature; using linear interpolation to fill in

the missing values or simply omitting the missing data points from the dataset. There were no

missing values in the dataset but there were a few duplicate rows that were removed from the input

dataset. All the input features with low variance were removed from the dataset prior to subsequent

analysis since they do not add any value in detecting outliers.

 Feature Selection through Correlation Analysis

Once the missing values were dealt with, the next step was to perform a correlation analysis to

identify if there is a high correlation between any of the input features. This step is performed to

eliminate any redundant features that have high correlation with other input features since training

a model with more input features is computationally expensive. The most common correlation

tests conducted are Pearson’s correlation, Spearman’s correlation and Kendall Tau’s correlation

test and are defined as follows: (Akoglu 2018).

• Pearson correlation coefficient between x and y (&#$):

&#$ =
,∑.!/! 	− 	∑ .! ∑/!

1,∑.!% 	− 	(∑ .!)%1,∑/!% 	− 	(∑ /!)%

Where, n = number of observations,

xi = value of x (for ith observation), and

 90

yi = value of y (for ith observation).

• Spearman’s Rank Correlation Coefficient (4):

4 = 1 −
6∑7!

%

,(,% − 1)

Where di = the difference between the ranks of corresponding variables, and

N = number of observations.

• Kendall Tau’s Rank correlation (8):

8 = 	
,& − ,'
1
2,(, − 1)

Where ,& = number of concordant pairs, and

,' = number of discordant pairs.

The Figure 4.8 shows the correlation coefficients determined by performing a Pearson’s

correlation test because of its ability to measure the degree of linear relationships, and the

following features have a high correlation coefficient greater than 0.75:

• Viscosity at 40℃ and Viscosity at 100℃ have a high positive Pearson’s correlation

coefficient of 0.95, thus Viscosity at 100℃ was dropped from the set of input features.

• Nitration with Oxidation have a high positive Pearson’s correlation coefficient of 0.92, thus

Oxidation was dropped from the set of input features.

• Viscosity at 40℃ and Fuel % have a high negative Pearson’s correlation coefficient of -

0.82, but given the significance of the two features, they were both retained in the set of

input features used to train the outlier detection algorithm.

 91

Figure 4.8. Pearson correlation coefficients for the input features used for fault diagnosis

 Feature Transformation

Feature transformation is an essential step of the DM process that rescales the input features to a

smaller range and is crucial where the values of input features do not have the same order of

 92

magnitude. The most popular choices for rescaling the input features in the ML community are

min-max scaler and standard scaler, which are defined below:

Min-max scaler .; = 	 #()*+	(#)
)/0(#)()*+	(#)

Standard scaler .; = #(1
2

where < is the mean and = is the standard deviation of an input feature.

Min-max scaler rescales the values of input features to be between 0 and 1 while standard scaler

transforms the data to have a mean of 0 and a standard deviation of 1. Since standard scaler is

influenced by the presence of outlier and cannot guarantee balanced feature scales in the presence

of outliers, Min-max scaler was applied to the dataset to transform all resultant input features in

the range [0,1] (Géron 2019).

 Dimensionality Reduction

Although density-based outlier detection techniques can distinguish between different fault types,

distinguishing between fault types tends to get difficult in the presence of a lot of features in the

input data (high dimensionality). In order to deal with the issue of dimensionality, higher

dimensional data is compressed into a lower dimensional representation prior to training the outlier

detection algorithm (Yoon et al. 2017), (Chao, Adey, and Fink 2019).

Principal component analysis (PCA) is a simple and widely used dimensionality reduction method

that facilitates the classification, visualization and storage of high dimensional data by finding the

directions of greatest variance in the dataset and representing each data point by its coordinates

along each of these directions (G. E. Hinton and Salakhutdinov 2006). The use of dimensionality

reduction techniques such as PCA can highly support the feature extraction process and improve

 93

the accuracy of the fault diagnostic algorithms (Safizadeh and Latifi 2014), (S. Yin, Wang, and

Gao 2016), (S. Yin, Wang, and Gao 2016).

PCA was applied to the resultant dataset after removing correlated features, and the higher

dimensional input dataset with 15 features was converted into a 2-dimensional dataset to facilitate

faster computations and easier projection for viewing the outcomes of the outlier detection

algorithm.

 Hyperparameter Tuning

A hyperparameter is a parameter that controls the learning process, and in ML and DL

terminology, hyperparameter tuning is the process of finding a set of optimal hyperparameters for

the chosen learning algorithm. Various techniques are available for tuning hyperparameters and

the most fundamental approach is by hand tuning that requires intensive manual efforts. In order

to overcome the drawbacks of manual hyperparameter tuning, automated hyperparameter tuning

frameworks such as grid search and random search were proposed (Bergstra and Bengio 2012).

Grid search involves exploring different hyperparameter value combinations in the space of a grid

specified by the user. Random search randomly samples values from distributions for each

hyperparameter until a maximum number of iterations specified by the user is reached. The Grid

search and random search algorithms perform an exhaustive search by going through various

combination of hyperparameter values to calculate the error on a validation set and chooses the

combination of parameters that produces minimum error as the optimal hyperparameters. There

are other hyperparameter tuning algorithms available, but grid search and random search are the

most widely used algorithms (Hewamalage, Bergmeir, and Bandara 2021).

 94

Eps and MinPts are the two hyperparameters considered in the DBSCAN algorithm. According to

(Helfmann et al. 2018), “DBSCAN is very sensitive to its hyperparameters, but if they are well

chosen, it is capable of detecting highly non-convex, densely connected structures in the data.”

Researchers have proposed various approaches to find the optimal hyperparameter values for

DBSCAN algorithm (Smiti and Elouedi 2012), (Karami and Johansson 2014), (Akbari and Unland

2016). One of the most widely used technique for determining the Eps proposed by (Akbari and

Unland 2016) is adopted in this research. In this approach, the optimal value of Eps can be obtained

by calculating the distance from each point to its nearest k -nearest neighbors, sorting the obtained

distances and plotting them as ‘k-NN distance plot’. The Eps value is chosen to be the point on the

plot that represents the most pronounced change in the slope. The general consensus for choosing

the optimal value for MinPts is to use domain expertise and the rule of thumb is to use a larger

value for large datasets. The hyperparameters chosen using this approach was further validated by

using a grid search technique, similar to the approach proposed by Darong and Peng 2012.

 Performance Evaluation Metrics for Fault Diagnostic Model

There are two possible types of outcome when using outlier detection models to classify a point in

the dataset: the point can either be classified as an inlier or outlier; or it will be assigned an outlier

score depending on how the model is trained to perceive outliers (Swersky 2018). Based on the

outlier score assigned to each point, a threshold can be defined to classify the points as outliers or

inliers. This section introduces some of the commonly used performance evaluation metrics for

unsupervised outlier detection algorithms.

(Craswell 2009a) defined one of the simplest performance measures for unsupervised outlier

detection techniques, precision at n (denoted by P@n), as the proportion of the outliers that are

 95

correctly classified. For a database (DB) of size N which consists of a number of outliers (O), and

the number of target outliers (n) is specified in advance, P@n can be calculated by the following

formula:

>@, =
|% ∈ A|
,

However, the choice for selecting the number of target outliers is not very obvious and in such

cases, R-Precision measure can be calculated by setting , = |A| (Craswell 2009b). A prominent

issue with these scores is that, if the number of outliers, , = |A| is low, P@n and R-Precision

values are very low and vice-versa. In order to overcome this issue, (G. O. Campos et al. 2016)

suggested an adjusted P@n score, which is used in this research and is calculated as follows:

B7CD)EF7	>@, = 	
>@, − G|A| HI J

1 − G|A| HI J

For larger ,, 1 in the denominator should be replaced by |A| ,I in the above equation.

(Marques et al. 2020) proposed an index called IREOS (Internal, Relative Evaluation of Outlier

Solutions) to evaluate and compare the performance of multiple unsupervised outlier detection

algorithms but is very computationally expensive and is not used in this research.

 Results and Discussion

In order to guarantee professional modelling and adoptability, Python programming language was

used and toolkits such as NumPy, Pandas, MatPlotLib, Seaborn and Scikit-Learn were employed

to develop the fault diagnostic models in this research. The python code for the outlier detection

 96

algorithms is open-source, and the necessary modifications that were made to utilize this code for

developing fault diagnostic models in this chapter can be found in Appendix B.

 Preliminary Analysis

Prior to developing fault diagnostic models, a preliminary analysis was performed to depict any

obvious variations in the input features. It is important to identify such changes and consider them

while detecting the outliers so that they are not misclassified as outliers by outlier detection

algorithms used to diagnose faults.

The preliminary analysis indicated that there was a change in the chemical formulation of engine

oil at the mine in the last quarter of 2019. Figure 4.9 through Figure 4.11 show the composition of

certain additives (boron, calcium and magnesium) used in the engine oil before and after the

change in formulation. Blue bars represent the composition prior to the change in formulation and

the orange bars represent the composition of a particular additive after the change in formulation.

Similarly, the blue lines correspond to the KDE of additive composition prior to the change in

formulation and the orange lines represent the KDE of additive composition after the change in

formulation. The composition of calcium as an additive in the engine oil has decreased with the

new formulation whereas the composition of magnesium and boron as additives have increased in

the new formulation.

 97

Figure 4.9. PDF plot of boron (B) content in engine oil (ppm)

Figure 4.10. PDF plot of calcium (Ca) content in engine oil (ppm)

 98

Figure 4.11. PDF plot of magnesium (Mg) content in engine oil (ppm)

 Results of Outlier Detection Algorithms

Prior to running the outlier detection algorithms, the highly correlated features were removed from

the preprocessed dataset and PCA was applied to reduce the dimensionality of the input dataset

and convert the higher dimensional input dataset with 15 features was converted into a 2-D dataset.

The two resulting features named principal component 1 (PC1) and principal component 2 (PC2)

accounted for over 90% of the variability in the total dataset. This 2-dimensional dataset is used

as input to outlier detection algorithms and the results of such algorithms are presented in the

following sections.

 Results of DBSCAN Algorithm

The preprocessed input data is used to plot a k-NN distance plot by setting k = 2 to determine the

optimal hyperparameter value, Eps to be used in DBSCAN algorithm. Figure 4.12 shows the k-

 99

NN distance plot (k=2) to choose the optimal value for the hyperparameter, Eps. The slope of the

plot changes drastically when the k-NN (k=2) distance is around 0.70, and hence Eps value is set

to be equal to 0.70.

Figure 4.12. k-NN distance plot for choosing optimal Eps value

Figure 4.13 presents a 2-D plot of outliers generated by the DBSCAN algorithm using Eps = 0.70

and MinPts was set to 15 based on the number of features in the preprocessed dataset. The points

in grey are part of a larger densely populated cluster and denote the inliers, whereas the outliers

are denoted by red points. On a closer look, the grey points appear to be forming 2 clusters, which

is a result of the change in oil formulation at the mine.

 100

Figure 4.13. 2-D plot of outliers generated by DBSCAN model

The objective of outlier detection algorithms is to minimize the occurrence of type I errors and

type II errors. Type I errors (high false positive rate) are a resultant of a large number of input

samples flagged as outliers, where some of the input samples are misclassified. On the other hand,

type II errors (high false negative rate) occur when fewer input points are flagged as outliers, where

not all outliers are detected by the algorithm. Type I errors result in misused maintenance time and

efforts, while type II errors result in a missed diagnosis of a potential failure. The trade-off between

type I and type II errors varies based on the problem and application domain. For diagnosing HPFP

failures, it is heuristically determined and subsequently confirmed empirically that roughly 10%

of the points can be classified as outliers by an outlier detection algorithm with an objective of

minimizing type II errors.

 101

The choice of hyperparameters for DBSCAN algorithm are further validated by performing a Grid

Search over a range of values. The range of possible values considered for the Grid Search

technique are presented in Table 4.3.

Table 4.3. Hyperparameter value combinations for Grid Search

Hyperparameter Lower Bound Upper Bound Increment Value Combinations

Eps 0.5 4.0 0.1 35

MinPts 5 25 1 20

A total of 700 combinations were evaluated using the Grid Search technique and the results are

presented in Figure 4.14 and Figure 4.15. The X-axis in Figure 4.14 and Figure 4.15 represent the

values of a specific hyperparameter used in the DBSCAN algorithm and the Y-axis in Figure 4.14

and Figure 4.15 represent the number of outliers generated by the DBSCAN algorithm using a

particular combination of hyperparameters. Figure 4.14 presents a scatterplot showing the effect

of varying Eps on the number of outliers. Each column of points in the scatterplot represents the

number of outliers generated by a particular value of hyperparameter Eps and the number of

clusters formed with a particular combination of hyperparameters can be identified by the color of

a corresponding point in the scatterplot. Consistent with the results obtained in Figure 4.12, it can

be observed that an Eps value of around 0.70 results in around 10% of the points being classified

as outliers i.e., around 100 points being classified as outlier from an input dataset consisting of 997

points (indicated by the red horizontal and vertical lines).

 102

Figure 4.14. Scatterplot showing the effect of varying Eps on number of outliers

Figure 4.15 represents the scatterplot showing the effect of varying MinPts on the number of

outliers. Each column of points in the scatterplot represents the number of outliers generated by a

particular value of hyperparameter MinPts and the number of clusters formed with a particular

combination of hyperparameters can be identified by the color of a corresponding point in the

scatterplot. From Figure 4.15, it can be observed that a few configurations with MinPts between

7.5 and 25 will result in around 10% of point being classified as outliers i.e., around 100 points

being classified as outlier from an input dataset consisting of 997 points.

 103

Figure 4.15. Scatterplot showing the effect of varying MinPts on number of outliers

Of the 997 points sampled, 95 points were flagged as outliers by using the DBSCAN algorithm

with Eps = 0.70 and MinPts = 15. The next step was to manually identify any major work orders

associated with the outliers identified by the DBSCAN algorithm. The oil analysis report consists

of equipment ID, date at which the sample was collected along with the concentrations of all the

features. The dates on which those 95 samples were collected were then compared to the work

order history to identify any major work order in the vicinity of the oil analysis sample date. The

95 outliers corresponded to 45 unique failures and 7 out of the 45 failures did not have any

description associated with them in the work order history. Table 4.4 shows the frequency of the

remaining 38 points, of which 17 outlier points are associated with coolant related work order and

15 outliers associated with HPFP failures.

 104

Table 4.4. Frequency of failures classified based on outliers generated by DBSCAN algorithm

Failure Category Count

Coolant Leaks 17

Fuel Pump 15

Other Failures 6

Although historical alarm log data was available from July 2018, engine oil analysis samples were

only available from January 2019. A total of 37 HPFP failures occurred at mine A from July 2019

and all of them were considered for developing condition indicators and only 28 of those failures

occurred after January 2019 for which the engine oil analysis samples were available. Of the 28

HPFP failures at mine A between January 2019 and August 2020, 14 of those were gerotor failures.

Of the 14 gerotor failures, the developed DBSCAN model was able to successfully identify 11

failures, resulting in a P@n score of 0.79. The adjusted P@n score considers the performance of

the diagnostic model with respect to the total number of outliers, and the adjusted P@n score for

this model is 0.77. An interesting observation is that the same model was capable of detecting fuel

injector failures with a P@n score of 0.54 and an adjusted P@n score of 0.49 and by tuning the

hyperparameters, the model could also detect fuel injector failures with a higher accuracy.

Although DBSCAN algorithm is a renowned outlier detection algorithm and performed well on

the tested dataset, an inherent limitation of the DBSCAN algorithm is its inability to generate a

score (or a probability measure) associated with the points in the dataset. The following section

presents the results of using a variant of DBSCAN algorithm, called Hierarchical Density-based

Spatial Clustering of Applications with Nosie (HDBSCAN) on this dataset.

 105

 Results of HDBSCAN Algorithm

HDBSCAN is a hierarchical clustering algorithm that is based on DBSCAN. In addition to

classifying a point in the dataset as an outlier or an inlier, HDBSCAN is also capable of generating

an ‘outlier score’ associated with each point in the dataset. The outlier score for a point in the

dataset ranges between 0 and 1, and a higher score indicates that the point is more likely to be an

outlier.

Since the DBSCAN algorithm was able identify outliers that represent multiple failures such as

HPFP, fuel injectors, coolant leaks etc., the objective of using the outlier scores generated by

HDBSCAN algorithm is to assess the possibility of classifying the outliers into their exact failure

type based on the outlier score.

Figure 4.16 shows the density plot of outlier scores generated by implementing HDBSCAN on the

preprocessed input dataset of engine oil sample analysis. Unlike DBSCAN, HDBSCAN does not

require the value of Eps to be specified, so the only trainable hyperparameter used is MinPts. The

value of MinPts was set to be equal to 15, to be consistent with the value used in DBSCAN

algorithm.

 106

Figure 4.16. Density plot of outlier scores generated by HDBSCAN model

The outlier scores generated for each point by the HDBSCAN model were arranged in increasing

order and the 90th-percentile outlier score for the developed HDBSCAN algorithm was determined

to be 0.546 which indicates that 10% of the outliers have an outlier score above 0.546. Figure 4.17

represents a 2-dimentional plot of outliers generated by the HDBSCAN algorithm and the points

with outlier score greater than or equal to 0.546 are plotted in red. In comparison to DBSCAN,

some of the outliers generated by HDBSCAN are not distinct from the remaining points in the

main cluster representing the inliers. Furthermore, the outlier scores used in an attempt to classify

the outliers into various failures did not provide satisfactory results, indicating the need for a more

robust approach which could be a topic for future research.

 107

Figure 4.17. 2-D plot of outliers generated by HDBSCAN model

The P@n score for detecting gerotor failures in HPFP using the HDBSCAN model is 0.71 and the

adjusted P@n score is 0.68, which indicates that the DBSCAN model slightly outperforms the

HDBSCAN model in detecting gerotor failures in HPFP at this mine.

 Validation of DBSCAN Algorithm at other mine sites

Since the results presented in the previous section indicate that DBSCAN performed slightly better

than the HDBSCAN model for diagnosing gerotor failures in HPFP, it was tested at other mine

sites to determine the ability of the algorithm to generalize to new or unseen input data. Figure

4.18 and Figure 4.19 show the effect of varying the hyperparameters Eps and MinPts on the

number of clusters and outliers generated by DBSCAN algorithm at Mine B. It can be observed

that the same set of hyperparameters result in one large cluster and classify nearly 10% of the

 108

samples as outliers i.e., around 135 points being classified as outlier from an input dataset

consisting of 1,349 points.

Figure 4.18. Scatterplot showing the effect of varying Eps on number of outliers at mine B

 109

Figure 4.19. Scatterplot showing the effect of varying MinPts on number of outliers at mine B

Figure 4.20 presents a 2-dimensional plot of outliers generated by the DBSCAN algorithm at Mine

B. The hyperparameters are set to Eps = 0.70 and MinPts = 17 to produce 133 outliers in a dataset

containing 1,349 samples.

 110

Figure 4.20. 2-D Plot of outliers generated by DBSCAN model at mine B

Table 4.5 presents the P@n score and adjusted P@n score of the DBSCAN model for detecting

gerotor failures in HPFP and fuel injector failures at mine B.

Table 4.5. Performance evaluation metrics at mine B

 P@n Score Adjusted P@n Score

Gerotor Failures in HPFP 0.75 0.72

Fuel Injector Failures 0.51 0.46

Figure 4.21 and Figure 4.22 show the effect of varying the hyperparameters Eps and MinPts on

the number of clusters and outliers generated by DBSCAN algorithm at Mine C. Unlike the

DBSCAN models tested at Mine A and Mine B, the value of hyperparameter Eps was set to 0.8 to

produce a single cluster and classify nearly 10% of the samples as outliers i.e., around 92 points

being classified as outlier from an input dataset consisting of 924 points.

 111

Figure 4.21. Scatterplot showing the effect of varying Eps on number of outliers at mine C

Figure 4.22. Scatterplot showing the effect of varying MinPts on number of outliers at mine C

 112

Figure 4.23 presents a 2-dimensional plot of outliers generated by the DBSCAN algorithm at Mine

C. The hyperparameters are set to Eps = 0.8 and MinPts = 15 to produce 90 outliers in a dataset

containing 924 samples.

Figure 4.23. 2-D Plot of outliers generated by DBSCAN model at mine C

Table 4.6 presents the P@n score and adjusted P@n score of the DBSCAN model for detecting

gerotor failures in HPFP and fuel injector failures at mine C.

Table 4.6. Performance evaluation metrics at mine C

 P@n Score Adjusted P@n Score

Gerotor Failures in HPFP 0.71 0.68

Fuel Injector Failures 0.45 0.39

 113

The above results indicate that the developed DBSCAN model is consistent in detecting gerotor

failures in HPFP at various mine sites by using a similar set of hyperparameters. The same model

also produced mediocre results for detecting fuel injector failures at all three sites.

 Comparison of DBSCAN and HDBSCAN with other Algorithms

In addition to the DBSCAN and HDBSCAN models, a few other popular techniques such as k-

NN based outlier detection model, LOF and ABOD were tested for detecting gerotor failures in

HPFP at the three mine sites. Table 4.7 shows the P@n scores for the five fault diagnostic models

at all three mine sites, and Table 4.8 shows the adjusted P@n score for the models.

Table 4.7. P@n score of various fault diagnostic models at multiple mine sites

 DBSCAN HDBSCAN k-NN Based LOF ABOD

Mine A 0.79 0.71 0.64 0.43 0.64

Mine B 0.75 0.75 0.38 0.50 0.50

Mine C 0.71 0.71 0.29 0.43 0.43

Table 4.8. Adjusted P@n score of various fault diagnostic models at multiple mine sites

 DBSCAN HDBSCAN k-NN Based LOF ABOD

Mine A 0.77 0.68 0.60 0.37 0.60

Mine B 0.72 0.72 0.31 0.44 0.44

Mine C 0.68 0.68 0.21 0.37 0.37

Based on the results presented in Table 4.7 and Table 4.8, it can be concluded that the performance

of DBSCAN and HDBSCAN is similar, with the DBSCAN model outperforming HDBSCAN at

Mine A. The performance of the other three models was subpar for detecting gerotor failures in

HPFP as can be observed in the form of low P@n and adjusted P@n scores. Appendix C presents

 114

the 2-dimensional plots of outliers generated by the different models at all mine sites for

diagnosing gerotor failures in HPFP.

 Summary and Conclusion

This chapter presents an overview of the approach developed to diagnose gerotor failures in HPFP

using data-driven techniques. Two types of structured data were evaluated in this chapter, alarm

log database and engine oil sample analysis. An assessment of the occurrence of the alarms

indicated that majority of the alarms were triggered within 7 days prior to a HPFP failure which is

not a sufficient lead time for diagnosing the failures. Hence engine oil sample analysis dataset was

chosen to be used as the input for building data-driven techniques for diagnosing HPFP failures.

Since the engine oil sample analysis data was unlabeled, in order to implement DL-based

approaches such as AE and DBN, a target variable needed to be identified that could be used to

distinguish normal operating points from HPFP failures with high accuracy. But a preliminary

analysis indicated that none of the variables in the multivariate dataset could be used as a target

variable to classify HPFP failures with high accuracy. Hence various ML-based outlier detection

techniques were employed to identify outliers and separate them from normal operating conditions.

The DBSCAN algorithm was implemented at Mine A which resulted in P@n score of 79% and

adjusted P@n scored of 77% for detecting gerotor failures in HPFP. Unlike HDBSCAN algorithm,

DBSCAN algorithm does not output the outlier score associated with each outlier which makes it

difficult to separate gerotor failures in HPFP from other failures such as fuel injector failures,

coolant leaks etc. from the outliers generated by the algorithm without extensive manual work. In

an attempt to overcome this issue, HDBSCAN algorithm was implemented to generate the outlier

scores associated with each outlier and further use these scores to classify the outliers as separate

 115

failures. Although the P@n score and adjusted P@n score of outliers generated by HDBSCAN

algorithm are similar to the DBSCAN algorithm, the outlier scores generated by HDBSCAN did

not produce satisfactory results for classifying the outliers into multiple failures.

In order to validate the performance and test the generalization capabilities of the DBSCAN

algorithm, it was tested at two additional mines that resulted in similar performance. HDBSCAN

algorithm was also evaluated at these two mines and the performance of HDBSCAN algorithm

was similar to the DBSCAN algorithm at each mine respectively. This implies that either

DBSCAN or HDBSCAN algorithms can be used to detect gerotor failures in HPFP with a

significant accuracy using engine oil sample analysis as the input data. Finally, the results

produced by DBSCAN and HDBSCAN were compared with other outlier detection algorithms

such as k-NN based outlier detection, LOF and ABOD algorithms. Results from the three mines

indicate that density-based outlier detection algorithms such as DBSCAN and HDBSCAN have

consistently outperformed other outlier detection algorithms for diagnosing gerotor failures in

HPFP.

 116

Chapter 5: FAULT PROGNOSTICS USING DATA-

DRIVEN TECHNIQUES

This chapter presents an approach to develop fault prognostic models using deep learning-based

data-driven approaches. This chapter presents a detailed overview of the various steps involved

in prognosing failures such as data collection, extracting condition indicators, data pre-

processing, building data-driven models, hyperparameter tuning and evaluating the performance

of models. Finally, this chapter presents various supervised learning approaches for predicting

the RUL of a critical failure diagnosed in the previous chapter, and the results obtained by

validating the fault prognostic models on multiple haul trucks.

 117

 Background Information

The objective of this chapter is to develop an approach to predict RUL for the gerotor failures in

HPFP with significant accuracy. Figure 5.1 presents a flowchart with the steps involved in

predicting RUL for gerotor failures in HPFP.

Figure 5.1. Flowchart detailing the steps involved in predicting the RUL of gerotor failures in HPFP

 118

The following sections of this chapter present a detailed overview of the various steps involved in

predicting RUL for gerotor failures in HPFP such as data collection, extracting condition

indicators, data pre-processing, building data-driven models, hyperparameter tuning and

evaluating the performance of models. The model performance is also validated by testing it on

multiple trucks and is described in this chapter.

 Data Collection

As noted in the Chapter 2, the most common types of input data for developing fault prognostic

models are vibration data and time-series data. Although there is no vibration data available for

predicting RUL of gerotor failures in HPFP, multivariate time-series data obtained through sensor

readings is available for numerous trucks.

Hundreds of sensors are mounted on these trucks to measure the performance of various

components, and the sensors are capable of generating alarms if a value measured by any sensor

is outside its predefined threshold. An embedded computer system is mounted in the operators cab

of the haul trucks and runs a datalogger software to record signals from several sensors mounted

on the trucks. The signals from the various sensors are obtained by the datalogger and are stored

in the embedded computer’s memory and packets of data are regularly transmitted to an external

database over the mine’s wireless network. The packets of data transmitted from the computer are

received and stored in InfluxDB, an open-source time-series database optimized for real-time

analytics (Naqvi, Yfantidou, and Zimányi 2017). InfluxDB downsamples the high resolution time-

series data by averaging it to generate lower resolution time-series data that will be stored in the

database to reduce overall disk usage and to improve performance of the database (Dotis-Georgiou

2020). Data stored in InfluxDB was accessed via Grafana, which is an open-source analytics and

 119

interactive visualization application that enables graphing and downloading of sensor data from

the time-series database (Grafana Labs 2020).

Figure 5.2 shows a schematic of dataflow from a haul truck to the end user. The list of important

engine related sensors and the frequency at which they are recorded is presented in Appendix D.

Figure 5.2. Dataflow from a haul truck to end user (adapted from (CSS-Electronics 2020))

 Selection of Condition Indicators

Although the condition indicators discussed in Chapter 4 proved insufficient for developing fault

diagnostic models, they can also be used for developing fault prognostic models. Based on domain

expertise and empirical knowledge, high blowby pressure was replaced with fuel pump inlet

pressure as a condition indicator for fault prognosis. In addition to sensor readings from fuel pump

1. Embedded Computer

2. 4G/ Wi-Fi Module

3. InfluxDB Database

4. Grafana Visualization

 120

inlet pressure, readings from fuel pump delivery pressure, injector (common) rail pressure, engine

horsepower and engine oil pressure were used as condition indicators for the fault prognostic

models. Based on the empirical knowledge, gerotor failures in HPFP result in a gradual loss of

engine oil pressure which is used a lubricant in HPFPs. Hence engine oil pressure was chosen to

be the dependent (target) variable and the RUL of a truck experiencing HPFP failure can be

expressed as a function of its engine oil pressure.

Based on the existing literature, RNNs are the most versatile and efficient algorithms for predicting

RUL using sequential time-series data. Though there are three widely used RNN architectures in

the literature, vanilla RNN suffers from the problem of exploding and vanishing gradient and was

not used in this research. The performance of LSTM and GRU networks highly depend on the type

of input data, hence both networks were used to predict RUL of gerotor failures in HPFP in this

research. The following sections present an overview of LSTM and GRU cell structure and outline

the procedure to predict RUL using LSTM and GRU networks.

 Fault Prognostic Methods

 LSTM Architecture

LSTM is a gated memory unit with three gates to manage the contents of the memory, where the

gates are simple logistic functions of weighted sums and the weights could be learnt by back

propagation. Figure 5.3 shows the basic structure of a LSTM cell. The long-term memory

represented by cell state (K3) is a function of the input gate (L3) and the forget gate (M3) while the

output gate (%3) produces hidden state (ℎ3) which corresponds to the short-term memory

component (Hochreiter and Schmidhuber 1997). In an LSTM network, the cell output (!3)	is equal

to the value of the hidden state (ℎ3).

 121

Figure 5.3. Basic LSTM cell structure1

The following are key equations that define the gates and states in the LSTM network:

L3 = 	=(O! 	. .3 +R! 	. ℎ3(4 + S!)

M3 = 		=TO5	. .3 +R5	. ℎ3(4 + S5U

%3 = 	=(O6	. .3 +R6	. ℎ3(4 + S6)

KV3 = EW,ℎ	(O&	. .3 +R& 	. ℎ3(4 + S&)

K3 = L3 ⊙KV3 + M3 ⊙K3(4

ℎ3 = %3 ⊙ tanh(K3)

!3 = ℎ3

1 Reprinted from (Hewamalage, Bergmeir, and Bandara 2021), Copyright (2021) with permission from Elsevier

 122

Where,

R ∈ Rd X d represents the weight matrices of the corresponding gate or cell state,

O ∈ Rd X d represents the input matrices of the corresponding gate or cell state,

S ∈ Rd represents the bias vectors of the corresponding gate or cell state,

.3 ∈ Rm denotes the input of the cell at time E and] is the size of the input,

!3 ∈ Rd denotes the output of the cell at time E and 7 is the cell dimension,

ℎ3 ∈ Rd is a vector that denotes the hidden cell state,

KV3 ∈ Rd is the candidate cell state at time E that captures important information to be retained,

tanh is the hyperbolic tangent activation function that outputs values in the range [-1, 1],

= is the activation function that outputs values in the range [0, 1] and

⊙ denotes the Hadamard product (element wise multiplication).

The amount of past (historic) data to be retained in the cell state and current context to be

propagated to future time steps is determined by the input and forget gates. A value of zero in the

gates indicate that previous cell state should be completely discarded in the current cell state and

a value of one indicates that the previous cell state should be completely retained. Any other value

between zero and one ensures that only important information from the previous cell state and

current candidate cell state are being propagated to the current cell state (Hewamalage, Bergmeir,

and Bandara 2021).

 123

 GRU Architecture

GRU is another variant of RNN which is comparatively simpler than LSTM since it has only two

gates, update gate (D3)	and reset gate (&3), instead of the three gates present in the LSTM cell’s

internal gating mechanism. Figure 5.4 shows the basic structure of a GRU cell. The update gate in

a GRU cell plays the role of input gate and forget gate combined. Unlike LSTM cell that has two

states, GRU cells have only one state, the hidden state (ℎ3). The fewer number of gates and states

makes a GRU network computationally less expensive than a LSTM network (K. Cho et al. 2014).

Figure 5.4. Basic GRU cell structure2

The following are key equations that define the gates and states in the GRU network:

D3 = 	=(O7	. .3 +R7	. ℎ3(4 + S7)

2 Reprinted from (Hewamalage, Bergmeir, and Bandara 2021), Copyright (2021) with permission from Elsevier

 124

&3 = 		=(O8 	. .3 +R8 	. ℎ3(4 + S8)

ℎ̂3 = EW,ℎ	(O9	. .3 +R9	. &3	. ℎ3(4 + S9)

ℎ3 = D3 ⊙ ℎ̂3 + (1 − D3) ⊙ ℎ3(4

!3 = ℎ3

Where,

R ∈ Rd X d represents the weight matrices of the corresponding gate or cell state,

O ∈ Rd X d represents the input matrices of the corresponding gate or cell state,

S ∈ Rd represents the bias vectors of the corresponding gate or cell state,

.3 ∈ Rm denotes the input of the cell at time E and] is the size of the input,

!3 ∈ Rd denotes the output of the cell at time E and 7 is the cell dimension,

ℎ̂3 ∈ Rd indicates the candidate hidden state at time E,

tanh is the hyperbolic tangent activation function that outputs values in the range [-1, 1],

= is the activation function that outputs values in the range [0, 1] and

⊙ denotes the Hadamard product (element wise multiplication).

The reset gate determines what proportion of the previous hidden state needs to be propagated to

the candidate hidden state of the current time step and the function of the forget gate is replaced

by the update gate in calculating the hidden state value.

 125

 Stacked MIMO Architecture

A stacked architecture was adopted by several researchers to obtain optimal performance while

implementing RNN architectures (Bandara, Bergmeir, and Smyl 2020). Figure 5.5 show the folded

version of RNN (left) and unfolded version through time (right). The feedback loop of the RNN

cell enables the propagation of the hidden state and cell state values from the current cell to a future

timestep, thereby sharing the same weights and biases (Hewamalage, Bergmeir, and Bandara

2021). _3 denotes the vector of input sequence at timestep t and à3 denotes the corresponding

output vector at timestep t.

Figure 5.5. Folded (left); and unfolded RNN structure (adapted from (Hewamalage, Bergmeir, and Bandara 2021))

A basic RNN architecture has only a single layer, but multiple layers can be stacked on top of each

other resulting in a multi-layer stacked architecture as shown in

Figure 5.6.

LSTM
Cell

Input Vector (Xt)

Output (!"!)

LSTM
Cell-1

LSTM
Cell-2

LSTM
Cell-3

LSTM
Cell-t

LSTM
Cell-T

X1

!"" !"# !"$!"! !"%

X2 X3 Xt XT

 126

Figure 5.6. Stacked multi-layer RNN architecture (adapted from (Yu et al. 2019))

The error per timestep E (F3) during the model training process is given as follows:

F3 = 3̀ − à3

where,

3̀ is the actual output (vector) at timestep t and

à3 is the predicted output (vector) at timestep t.

The error at each timestep is accumulated until the end of the time-series and is back propagated

through time to update the network’s weights and biases in accordance with the chosen

optimization algorithm. The accumulated error (') is defined as follows:

LSTM
(1,1)

LSTM
(1,2)

LSTM
(1,3)

LSTM
(1,t)

LSTM
(1,T)

LSTM
(2,1)

LSTM
(2,2)

LSTM
(2,3)

LSTM
(2,t)

LSTM
(2,T)

X1 X2 X3 Xt XT

LSTM
(n,1)

LSTM
(n,2)

LSTM
(n,3)

LSTM
(n,t)

LSTM
(n,T)

!"" !"# !"$!"! !"%

 127

' =bF3

:

3;4
	

Th Multi-Input Multi-Output (MIMO) strategy with a moving window approach is adopted for

multi-step forecasting in this research (Ben Taieb et al. 2012). MIMO preserves the stochastic

dependencies between predicted values by allowing the output of an RNN cell to be used as a part

of the input vector for the subsequent timestep. Using MIMO strategy for predicting values allows

RNNs to operate with lagged input values and eliminates the need for internal state of the RNN to

memorize all relevant information (Bandara, Bergmeir, and Smyl 2020). The benefits of using

MIMO strategy over one-step-ahead forecasts were discussed by (Smyl and Kuber 2016) and (R.

Wen et al. 2017), and researchers have advocated the use of MIMO for multi-step forecasting

using RNNs because of their superior performance (Petersen, Rodrigues, and Pereira 2019).

 Data Preprocessing

 Addressing Missing Values

An analysis of the readings from the five sensors used as input features over a period of 18 months

from March 2019 to August 2020 indicated that 36.9% of the data was missing. This was due to

the frequent connectivity issues encountered at the mine and needs to be addressed quickly as the

usage of sensor data becomes frequent for fault diagnosis and prognosis. Given the large volume

of missing data, interpolation was not a good choice and hence, all missing data was removed from

the dataset before any further processing.

 128

 Feature Selection through Correlation Analysis

Figure 5.7 shows the correlation coefficients determined by performing a Pearson’s correlation

test, and since none of the input features are highly correlated, all the input features can be used to

predict the RUL.

Figure 5.7. Pearson correlation coefficients for the input features used in fault prognosis

 Modelling Seasonality

While earlier studies suggested that NNs are capable of modeling underlying seasonality and

cyclical patterns in time-series data (Z. Tang, de Almeida, and Fishwick 1991), (Marseguerra et

al. 1992), (Sharda and Patil 1992), recent studies argue that de-seasonalizing of time-series data is

essential prior to using it for forecasting to obtain better prediction accuracy (G. P. Zhang and Qi

2005), (G. P. Zhang and Kline 2007), (Ben Taieb et al. 2012), (Claveria, Monte, and Torra 2017),

(Smyl 2020).

 129

Numerous techniques were proposed by researchers to decompose time-series signals and

determine the seasonality. Early works were either model-based or based on the autocorrelation

function(ACF), and were not very efficient with non-parametric setup or non-linear data (Bandara,

Bergmeir, and Smyl 2020). The most popular technique is Seasonal and Trend decomposition

using Loess (STL decomposition), which uses a sequence of Loess smoothers for robust

decomposition of a time-series signal into trend, seasonal and residual components, and is very

efficient even for long time-series datasets (Hyndman and Athanasopoulos 2018). (Bandara,

Bergmeir, and Smyl 2020), (Hewamalage, Bergmeir, and Bandara 2021) noted that the STL

decomposition technique requires at least two full seasonal periods to determine the seasonality

component in the time-series signal.

The time-series data from the mine sites was not available for the required 2 years (2 full seasonal

periods) as required by the STL decomposition technique, however, the PDF plots for all the input

features were presented in Appendix E to show the distribution of sensor values over different

seasons of the year and by the time of the day. From those PDF plots, it can be observed that there

was no apparent seasonality in the input features and the time of the day did not have any

significant effect on the values of the input features.

 Feature Transformation

It is beneficial to rescale features prior to training a LSTM and GRU network to deal with issues

caused by input features of varying magnitudes (Smyl and Kuber 2016). All the input features

were transformed using min-max scaler prior to being trained and the output of the RNN was

transformed back to the original feature space for predicting RUL.

 130

 Splitting the dataset into training and test sets

The last step of data preprocessing involves splitting the processed dataset into different subsets –

namely training set, validation set and test set. The training set consists of the data that would be

fed to the model for learning relationships from the data in order to be able to predict the RUL.

The validation set is usually a part of the training set and is used to validate the trained model and

forms the basis for model evaluation. The validation dataset will be used to fine tune the model

hyperparameters in order to minimize the loss and improve model accuracy. Finally, the test set

contains the data that the model has not seen before and is used to evaluate the trained and validated

model using a number of performance evaluation metrics presented in section 5.8 of this chapter.

(Yun Xu and Goodacre 2018) and (Medar, Rajpurohit, and Rashmi 2018) noted that there is no

fixed ratio of the training/ validation/ test set that performs best for all problems, and the choice of

the ratio is dependent of the choice of the input data and model being trained. For the LSTM and

GRU models used in this research, training/ validation/ test set ratio of 80/20/20 was adopted,

which is the most widely used ratio in the data mining community by the practitioners.

 Hyperparameter Tuning

The following hyperparameters were used to train the LSTM and GRU models for predicting the

RUL of trucks diagnosed with gerotor failures in HPFP.

 Number of Hidden Layers

A trainable hyperparameter of the LSTM and GRU models is the number of hidden layers in the

model architecture. Researchers established that most non-linear complex problems can be solved

with the application of two or three hidden layers and have established a set guidelines to be

 131

followed for determining the number of nodes in each hidden layer, which were adopted in this

research (Stathakis 2009), (Karsoliya 2012), (Sheela and Deepa 2013).

 Lag Value

In time-series forecasting applications, lagging is shifting back in time, and lagged values of the

input are often used to predict a future value. Since the time-series data used for forecasting in this

research is sampled hourly, a lag value of ‘n’ indicates that the input values from the past ‘n’ hours

are used to make a prediction for the next hour. Lagged values of all the input features were used

to predict the RUL of a gerotor failure in HPFP.

 Batch Size

Training the RNN model with all the samples available in a training set could result in a significant

usage of computing memory and hinders the computational efficiency of the algorithm. This can

be addressed by splitting the training set into smaller batches and the size of each batch is a

trainable hyperparameter of the LSTM and GRU models.

 Number of Epochs

Epoch or iteration denotes a full forward and backward pass across the entire training dataset which

constitutes of several smaller batches. The number of epochs is a trainable hyperparameter for

LSTM and GRU models and denotes the number of times the network should iterate though the

entire training dataset before making a prediction.

 Number of Nodes

This hyperparameter is used to set the number of nodes in each hidden layer of the LSTM and

GRU models. Increasing the number of nodes in the hidden layers enables the network to learn

complex relationships but can get computationally expensive. Another issue with increasing the

 132

number of nodes is overfitting, a phenomenon that occurs when the model performs well on the

training set but performs poorly on the validation and test sets. This is often caused when the model

fits the training data well but has lost its generalization capability to unseen data.

 Dropout Regularization Ratio

A common way of addressing overfitting is by the use of a dropout regularization hyperparameter

which specifies a portion of input to be left out from training after each iteration. For example, a

dropout regularization value of 0.2 indicates that 20% of the input data is dropped out from the

training set before next iteration.

The grid search algorithm was used to find the optimal values of hyperparameters for the LSTM

and GRU model architectures (model architecture refers to the combination of number of hidden

layers, lag value, batch size, number of epochs, number of nodes and dropout regularization ratio).

 RNN Model Configuration

Apart from the hyperparameters used to train the model, there are other parameters that should be

configured for the implementation of LSTM and GRU models with Keras API in Python (Chollet

and others 2015). This section presents the configurable parameters for both LSTM and GRU

models that were trained to predict the RUL of gerotor failures in HPFP.

According to (Kingma and Ba 2015), Adam optimizer is computationally efficient and requires

less memory compared to other optimizers. Both LSTM and GRU models were trained using the

Adam optimization algorithm with a default learning rate of 0.001.

For the LSTM and GRU models, the error for the current state of the model must be estimated

repeatedly. This requires the choice of an error function, conventionally called a loss function, that

can be used to estimate the loss of the model so that the weights can be updated to reduce the loss

 133

on the next evaluation. Based on existing studies, mean squared error (MSE) was chosen to be

used as the loss function in this model, and is calculated as the average of the squared differences

between the predicted and actual values. The LSTM and GRU models were also configured to

terminate when the MSE from training the model did not decrease by at least 0.001 for every 3

epochs.

 Performance Evaluation Metrics for Fault Prognostic Model

There is no general agreement as to an appropriate and acceptable set of metrics that can be

effectively employed to assess the performance of fault prognostic models. Researchers have used

various metrics for evaluating the performance of fault prognostic models because of varied end-

user requirements with respect to their specific requirements (Liangwei Zhang et al. 2019).

(Saxena, Celaya, et al. 2008) described some of the most commonly used terminology in fault

prognosis to reduce ambiguities that may arise from non-standardized use of some of the key terms

by several researchers. It is relatively easier to evaluate the performance of prognostic models by

comparing the predicted values in cases where sufficient historical data is available or can be

experimentally generated for both normal operating conditions and failure conditions. However,

in cases where very little to no failure data is available, it becomes extremely difficult and tricky

to assess the performance of fault prognostics models due to the absence of knowledge about future

values (outcome). In such cases, fault prognostic models are trained and tested on experimental or

simulated data and are expected to perform well in real world, but unfortunately model

performance does not always translate meaningfully from one dataset to another or one domain to

another (Saxena, Celaya, et al. 2008).

Several factors such as reliability, validity, sensitivity and resistance to outliers determine the

choice of a particular performance evaluation metric and no single metric will capture all the

 134

complexities of a prognostic model, making it necessary to consider multiple performance

evaluation metrics for each problem. The most common loss function used for training and

evaluating the performance of a prognostic model are Mean Absolute Percentage Error (MAPE) ,

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) (Deutsch and He 2018),

(Yuting Wu et al. 2018), (Xiang Li, Zhang, and Ding 2019).

In this research, all models were run ten times to compensate for the random initialization

parameter used by the LSTM and GRU models and the following metrics were calculated using

the Scikit-learn library in Python (Pedregosa et al. 2011) and subsequently used to compare the

performance of several model architectures, and to compare the performance of DL-based methods

with traditional ML-based methods for predicting RUL of gerotor failures in HPFP. The metrics

used to evaluate and compare the performance of various DL-based and ML-based algorithms are

presented in the following subsections.

 Mean Absolute Error

Mean absolute error (MAE) is a metric that corresponds to the sum of absolute differences between

the actual and predicted values of a variable. MAE considers only the absolute values and measures

the average magnitude of errors in a set of predictions. A lower value of MAE indicates better

performance of the model.

cFW,	BS)%dDEF	'&&%&	(cB') = 	
1
,b|/;! − /!|

<

!;4

Where,

/! is the true RUL value and

 135

/;! is the predicted RUL value.

 Root Mean Squared Error

Root mean squared error (RMSE) computes the standard deviation of the residual values

(difference between actual values and predicted values) and is a measure of the spread of residual

values. A lower value of RMSE indicates that the actual values are concentrated around the

predicted values, which is a characteristic of a good model.

e%%E	cFW,	fgDW&F	'&&%&	(ecf') = 	h
1
,b

(/;! − /!)%
<

!;4

Where,

/! is the true RUL value and

/;! is the predicted RUL value.

 Explained Variance Score

Explained variance score (EVS) measures the proportion of variation of the dataset that is

accounted for by the model. A higher value of EVS indicates that the model is able to account for

more variation in the original dataset and the maximum possible value of EVS is 1.00.

'.(dWL,F7	OW&LW,iF	fi%&F	('Of) = 1 −
OW&{/! − /;!}
OW&{/!}

Where,

/! is the true RUL value and

/;! is the predicted RUL value.

 136

 Maximum Error

Maximum error (MaxE) or maximum residual error is a metric that captures the largest difference

between the actual value and the predicted value of the variable being forecasted.

cW.L]D]	'&&%&	(cW.') = max	(|/! − /;!|)

Where,

/! is the true RUL value and

/;! is the predicted RUL value.

 Coefficient of Determination

Coefficient of determination (R2 score) represents the proportion of the variance of the target value

that is explained by the input features in the model. R2 score is a measure of how well the model

can predict unseen samples and provides an indication of goodness of fit of the model.

The maximum value of R2 score is 1.00 and R2 score can be negative if the predictions made by

the model do not follow the trend of the data. R2 score of 0.00 indicates that the model always

generates a constant output regardless of the input or dependent features.

K%FMMLiLF,E	%M	nFEF&]L,WEL%,	(e%) = 1 −
∑ (/! − /;!)%<
!;4

∑ (/! − /o!)%<
!;4

Where,

, is the number of samples (training dataset),

/! is the true RUL value,

/;! is the predicted RUL value and

 137

/o! is the mean value of the output feature (target value) in the training dataset.

 Results and Discussion

In order to guarantee professional modelling and adoptability, Python programming language was

used and toolkits such as NumPy, Pandas, MatPlotLib, Seaborn, Scikit-Learn and Keras (built on

top of TensorFlow) were employed in to develop the fault prognostic models in this research. The

python code for the time-series prediction algorithms is open-source, and the necessary

modifications that were made to utilize this code for developing fault prognostic models in this

chapter can be found in Appendix F.

 Preliminary Analysis

Data from the sensors was initially obtained from Grafana at a frequency of 1 sample per second,

and since the data from the past 2 months was used to make predictions, this resulted in over 5

million data points from each sensor. Such large amounts of data posed challenges during the data

retrieval stage, and hence it was required to collect the samples at a larger interval.

Appendix G shows the readings from engine oil pressure sensor sampled at several frequencies

such as 1 sample per second, 10 seconds, 1 minute, 10 minutes and 1 hour. Since the RUL

predictions are based on the value of engine oil pressure, the most logical choice of frequency was

to obtain the data at a frequency of 1 sample per hour and forecast the engine oil pressure every

hour. As the RUL predictions for every second or minute do not add much value and data from

the sensors collected at any of the above-mentioned frequencies followed a very similar trend, a

frequency of 1 sample per hour was used for developing the fault prognostic models. Each data

point in the resultant dataset represents the average sensor value over the hour prior to the

corresponding time stamp for all sensor readings. Figure 5.8 shows the readings from the condition

 138

indicators prior to a HPFP failure in a haul truck #1. The data presented was for a duration of 75

days from May 1st, 2019 to July 15th, 2019. Sensor data was collected to investigate the behavior

of various sensors and to establish a relation between them to be able to develop a model to

successfully predict the RUL of gerotor failures in HPFP. In this particular case, the failure

occurred on July 11th, 2019 that resulted in a gradual reduction in engine oil pressure (represented

by the purple line in Figure 5.8) starting two weeks prior to the failure. In order to validate the

results and to determine the generalization capabilities of the DL-based LSTM and GRU models,

they were tested on an additional 9 haul trucks that encountered gerotor failures in HPFP during

different times of the year.

 139

Figure 5.8. Sensor data from condition indicators prior to a HPFP failure

 140

 Results of Fault Prognostic Algorithms

LSTM and GRU models were built using data from haul truck sensors that were averaged to down

sample the input data to a frequency of 1 reading per hour as mentioned in the previous section,

and the results are presented in the following subsections.

Table 5.1 shows the combination of hyperparameters that were trained with the LSTM and GRU

models using Grid Search technique. A total of 288 LSTM model architectures (model architecture

refers to the combination of number of hidden layers, lag value, batch size, number of epochs,

number of nodes and dropout regularization ratio) were tested with combinations of the parameters

shown in Table 5.1, and each combination was run for 10 iterations and the average accuracy

metrics were recorded. Each of the 288 model architectures were then ranked based on the highest

R2 score and the lowest root mean squared error.

Table 5.1. Hyperparameter combinations for the DL-based fault prognostic models

Hyperparameter Combination

Number of Hidden Layers [1, 2, 3]

Lag Value [48, 72, 96, 120]

Batch Size [25, 50]

Number of Epochs [15, 25]

Number of Nodes [25, 50, 100]

Dropout Regularization Ratio [0.2, 0.3]

 141

 Results of LSTM Algorithm

Figure 5.9 represents the PDF plot of average R2 score over 10 iterations for each combination of

hyperparameters in Table 5.1 tested using a Grid Search approach. The x-axis of the plot represents

the average R2 score, and the y-axis represents the density of the distribution of the R2 scores. The

plot is sorted based on the number of hidden layers used in the LSTM model architecture: the

average R2 score of models with 1 hidden layer are represented in blue, models with 2 hidden

layers are represented in orange and the models with 3 hidden layers are represented in green. The

blue line, orange line and green line correspond to the KDE of R2 score of the LSTM model

architecture with a single hidden layer, two hidden layers and three hidden layers respectively.

Figure 5.9. PDF plot of average coefficient of determination for LSTM architectures

 142

Figure 5.10 shows a boxplot of the average R2 score for LSTM models sorted by the number of

hidden layers. Boxplots combined with swarm plots show the distribution of the data points within

each class, identify any outliers in the data and give an overview of the basic descriptive statistics

such as the median, 25th percentile, 75th percentile, minimum and maximum value after discarding

the outliers. For instance, the boxplot on the extreme left in Figure 5.10 represents the average R2

score of LSTM models with 1 hidden layer. The median value of R2 score is around 0.50 with the

highest R2 score value being 0.873. The upper boundary of the box represents the value below

which 75% of the data points lie and the lower boundary represents the value below which 25%

of the data points exist. The upper and lower bars denote the maximum and minimum values of

the R2 score respectively, and all points present outside these lines are considered outliers.

 143

Figure 5.10. Boxplot of average coefficient of determination for LSTM architectures

From Figure 5.10, the maximum R2 score of an LSTM model with 2 hidden layers is 0.699 and

although some model architectures resulted in a R2 score above 0.50, the median value of R2 score

is negative indicating that more than half of the LSTM models with 2 hidden layers failed to

determine the trend and predict the RUL for gerotor failures in HPFP (negative value of R2 score).

Similarly, the maximum R2 score of LSTM models with 3 hidden layers is 0.549 and the median

value of R2 score is less than 0 with only 3 out of 96 LSTM models producing a positive R2 score.

From Figure 5.9 and Figure 5.10, it can be concluded that the LSTM model performance degrades

with the increase in number of hidden layers, and hence for the rest of this research, LSTM models

 144

with only one hidden layer are considered. In addition to performing better, using a single hidden

layer is also computationally less expensive. The rest of this section presents the results of LSTM

model that resulted in the highest R2 score using 1 hidden layer and the other hyperparameters as

listed in Table 5.1.

Table 5.2 shows the optimal model architecture using the LSTM model that resulted in the highest

averaged R2 score and the lowest averaged root mean squared error for predicting the RUL of

gerotor failure in HPFP in haul truck #1.

Table 5.2. Optimal hyperparameter combination for LSTM model

Hyperparameter Value

Lag Value 120

Batch Size 25

Number of Epochs 15

Number of Nodes 100

Dropout Regularization Ratio 0.2

Table 5.3 shows the average values of model performance evaluation metrics over 10 iterations.

The results indicate that the best performing LSTM model was able to predict the values of engine

oil pressure with an average R2 score of 87.3%.

Table 5.3. Performance evaluation metrics for LSTM model

Accuracy Metric Value

Average Root Mean Squared Error 12.894

Average Mean Absolute Error 10.641

Average Maximum Error 22.891

 145

Average Explained Variance Score 0.957

Average R2 Score 0.873

Figure 5.11 shows the loss encountered during the training and testing phases of the LSTM model

with the architecture shown in Table 5.2. The loss value is represented on the y-axis along with

the number of epochs on the x-axis. Training loss is calculated on the validation dataset and test

loss is calculated on the test dataset. The MSE on the training data (represented by the cyan line in

Figure 5.11) seemed to be relatively constant at 0.01 after 3 epochs indicating that the model

adapted well to the training data and the MSE on the test data set (represented by the dotted purple

line in Figure 5.11) indicates that the model performed well on unseen test data set too.

 146

Figure 5.11. Training and test loss for the LSTM model to predict RUL of gerotor failures in HPFP

Figure 5.12 shows the predicted engine oil pressure values from the developed LSTM model

compared to the actual values for haul truck #1. The y-axis represents the value of engine oil

pressure (in kPa) and the x-axis represents the prediction time (in Hours). The actual values of

engine oil pressure are represented by the green line and the predictions made by the LSTM model

are represented by the purple line. In this case, the model uses data from the past 60 days to make

predictions for the next 360 hours (15 days). The purple band around the predicted values at each

timestep represent a region of 5 kPa above the predicted values and 5 kPa below the predicted

value. The confidence bands for fault prognostic models in this research were empirically chosen

to be 5 kPa, but as the field of uncertainty propagation evolves, more complex confidence bounds

can be employed. From Figure 5.12, it can be observed that the engine oil pressure values predicted

 147

by the LSTM model are within a range of 5 kPa for up to 120 hours (5 days) from the start of

prediction. The RUL of a truck with potential HPFP failure can be obtained by reading the x-axis

value in Figure 5.12 when the predicted engine oil pressure drops below a pre-determined critical

threshold (350 kPa).

Figure 5.12. Forecasting RUL for gerotor failures in HPFP using LSTM Model

The difference between the actual values and predicted values of engine oil pressure increases with

time, which an expected behavior of the LSTM and GRU models as the temporal dependencies

captured by the RNN models are usually unable to make longer predictions with significant

accuracy.

 148

For validating the developed model and to demonstrate the generalization capabilities, the model

is tested on 9 other haul trucks that experienced gerotor failures in HPFP at different times of the

year. The optimal hyperparameter combinations for the best LSTM models tested on all the haul

trucks, including the haul truck described earlier in this section (haul truck #1) are presented in

Table 5.4.

Table 5.4. Optimal hyperparameter combinations for the LSTM models

Truck ID R2 Score Lag Value Batch Size Number of
Epochs

Number of
Nodes

Dropout
Ratio

1 0.873 120 25 15 100 0.2

2 0.832 48 25 15 25 0.3

3 0.786 120 25 25 100 0.2

4 0.427 48 25 25 50 0.2

5 0.617 48 50 25 25 0.2

6 0.842 120 50 15 25 0.2

7 0.813 72 50 25 25 0.2

8 0.821 48 25 25 25 0.3

9 0.772 48 25 25 25 0.2

10 0.621 48 25 25 100 0.2

From Table 5.4, it can be observed that the same hyperparameter combinations cannot be used to

build a fault prognostic model to produce the best R2 score for all haul trucks that had a gerotor

failures in HPFP. Although the majority of the LSTM models produced an R2 score greater than

0.75, models build to predict RUL for failures associated with truck #4, #5 and #10 produced R2

 149

score below 0.75. This could be because the optimal hyperparameter combinations for the three

trucks stated above were not present in the list of hyperparameters evaluated using the Grid Search

technique. Possibly, a higher value of R2 score could be achieved for the three trucks by using a

broader range of hyperparameters. The following section presents the results of the fault prognosis

performed by using the GRU model, which is similar to LSTM model but uses fewer internal gates.

 Results of GRU Algorithm

Figure 5.13 represents the PDF plot of average R2 score over 10 iterations for each combination

of hyperparameters in Table 5.1 tested using a Grid Search approach. The x-axis of the plot

represents the average R2 score, and the y-axis represents the density of the distribution of the R2

scores. The plot is sorted based on the number of hidden layers used in the GRU model

architecture: the average R2 score of models with 1 hidden layer are represented in blue, models

with 2 hidden layers are represented in orange and the models with 3 hidden layers are represented

in green. The blue line, orange line and green line correspond to the KDE of R2 score of the GRU

model architecture with a single hidden layer, two hidden layers and three hidden layers

respectively.

 150

Figure 5.13. PDF plot of average coefficient of determination for GRU models

Figure 5.14 shows a boxplot of the average R2 score for GRU models sorted by the number of

hidden layers. Boxplots combined with swarm plots show the distribution of the data points within

each class, identify any outliers in the data and give an overview of the basic descriptive statistics

such as the median, 25th percentile, 75th percentile, minimum and maximum value after discarding

the outliers. For instance, the boxplot on the extreme left in Figure 5.14 represents the average R2

score of GRU models with 1 hidden layer. The median value of R2 score is around 0.70 with the

highest R2 score value being 0.908.

 151

Figure 5.14. Boxplot of average coefficient of determination for GRU models

From Figure 5.14, the maximum R2 score of GRU model with 2 hidden layers is 0.745 and some

model architectures resulted in a R2 score above 0, but the median value of R2 score is negative.

The same trend is observed with LSTM models with 2 hidden layers and indicates that more than

half of the GRU models with 2 hidden layers failed to determine the trend and predict the RUL for

gerotor failures in HPFP (negative value of R2 score). Similarly, the maximum R2 score of GRU

models with 3 hidden layers is 0.564 and the median value of R2 score is less than 0 with only 3

out of 96 GRU models producing positive R2 score.

From Figure 5.13 and Figure 5.14, it can be concluded that performance of the GRU model

degrades with the increase in number of hidden layers. Hence, similar to LSTM models, GRU

 152

models with only one hidden layer and hyperparameters as listed in Table 5.1 are considered for

the rest of this research. Table 5.5 shows the optimal model architecture using the GRU model that

resulted in the highest averaged R2 score and the lowest averaged root mean squared error for

predicting the RUL of gerotor failures in HPFP. Both GRU and LSTM model produced the optimal

performance (highest average R2 score) using the same set of hyperparameter combination for

predicting the RUL of the failure for haul truck #1.

Table 5.5. Optimal hyperparameter combination for GRU model

Hyperparameter Value

Lag Value 120

Batch Size 25

Number of Epochs 15

Number of Nodes 100

Dropout Regularization Ratio 0.2

Table 5.6 shows the average values of model performance evaluation metrics over 10 iterations.

The results indicate that the best performing GRU model was able to predict the values of engine

oil pressure with an average R2 score of 90.8%.

Table 5.6. Performance evaluation metrics for GRU model

Accuracy Metric Value

Average Root Mean Squared Error 11.021

Average Mean Absolute Error 8.580

Average Maximum Error 23.613

 153

Average Explained Variance Score 0.943

Average R2 Score 0.908

Figure 5.15 shows the loss encountered during the training and testing phases of the GRU model

with the architecture shown in Table 5.5. The loss value is represented on the y-axis along with

the number of epochs on the x-axis. The MSE on training data (represented by the cyan line in

Figure 5.15) seemed to be relatively constant at 0.005 after 8 epochs indicating that the model

adapted well to the training data and the MSE on the test dataset (represented by the dotted purple

line in Figure 5.15) indicates that the model performed well on unseen test dataset resulting in an

MSE of 0.01.

Figure 5.15. Training and test loss for the GRU Model to predict RUL of gerotor failures in HPFP

 154

Figure 5.16 shows the predicted oil pressure values from the GRU model compared to the actual

values and it can be observed that the engine oil pressure values predicted by the GRU model are

within a range of 5 kPa for up to 160 hours (~ 7 days) from the start of prediction for haul truck

#1. The engine oil pressure values predicted using GRU model are with ±5 kPa for 160 hours from

the start of prediction whereas the values predicted using LSTM model are within ±5 kPa for 120

hours from the start of prediction. This indicates that the GRU model outperformed the LSTM

model for fault prognosis of HPFP failure in haul truck #1 and this can also be confirmed by the

higher R2 score achieved by using the GRU model.

Figure 5.16. Forecasting RUL for gerotor failures in HPFP using GRU Model

 155

The optimal hyperparameter combinations for the best GRU models tested on all the ten haul

trucks are presented in Table 5.7.

Table 5.7. Optimal hyperparameter combinations for the GRU models

Truck ID R2 Score Lag Value Batch Size Number of
Epochs

Number of
Nodes

Dropout
Ratio

1 0.908 120 25 15 100 0.2

2 0.848 72 50 15 25 0.3

3 0.864 72 25 25 100 0.3

4 0.681 48 25 15 100 0.2

5 0.800 48 25 25 100 0.2

6 0.882 72 50 15 25 0.3

7 0.879 120 25 25 25 0.3

8 0.862 72 50 15 25 0.3

9 0.823 120 25 25 100 0.3

10 0.801 48 50 25 100 0.2

Similar to the LSTM models, it can be observed that the same hyperparameter combinations cannot

be used to build a fault prognostic model to produce the best R2 score for predicting the RUL of

gerotor failures in HPFP in all haul trucks. Unlike fault prognosis with LSTM models that resulted

in 3 haul trucks having an R2 score below 0.75, all GRU models with the exception of haul truck

#4 resulted in an average R2 score value greater than 0.80. The individual R2 score achieved for

each haul truck using the GRU model is higher than the R2 score achieved by the LSTM model

 156

indicating that the GRU model outperformed the LSTM model for fault prognosis of gerotor

failures in HPFP.

A paired-samples T-test was conducted to determine if the difference between the R2 scores of the

GRU model differ significantly from the R2 scores generated by the LSTM model. A T-test statistic

value of -18.197 and a p-value of 4.131e-49 indicate that there was a significant difference in the

R2 scores of LSTM and GRU models. These results suggest that the GRU models performed better

than the LSTM models for predicting the RUL of gerotor failures in HPFP.

 Comparison of DL and ML Algorithms for prognostics

DL-based methods such as LSTM and GRU models have gained popularity for fault prognosis

recently, but prior to the wide scale adaptation of DL-based methods, researchers used ML-based

techniques such as SVM and MLP for fault prognosis. In order to implement SVM and MLP for

fault prognosis, Python programming language was used and toolkits such as NumPy, Pandas,

MatPlotLib, Seaborn and Scikit-Learn were employed in to develop the fault prognostic models

in this research.

Table 5.8 presents the average values of R2 score achieved by using DL-based methods such as

LSTM and GRU, and ML-based methods such as SVM and MLP. In addition to ML-based and

DL-based methods, R2 score achieved by using simple linear regression (LR) are also presented in

Table 5.8.

 157

Table 5.8. Average R2 score for DL-based and ML-based methods

Truck ID LSTM GRU SVM MLP LR

1 0.873 0.908 0.876 -0.50 0.698

2 0.832 0.848 0.239 -0.549 0.160

3 0.786 0.864 0.594 0.178 0.580

4 0.427 0.681 0.489 -0.06 0.403

5 0.617 0.800 0.582 -0.497 0.589

6 0.842 0.882 0.559 -0.087 0.357

7 0.814 0.879 0.627 -0.908 0.494

8 0.821 0.861 0.644 -0.005 0.628

9 0.772 0.823 0.420 -0.12 0.348

10 0.621 0.801 0.709 0.061 0.519

From the results presented in Table 5.8, MLP models have the lowest R2 score compared to other

models. With the exception of MLP, ML-based method (SVM) performed better than the LR

model, and the performance of the DL-based methods are better than ML-based methods and LR.

Within DL-based methods, the GRU model consistently performed better than the LSTM model

and the comparison of the R2 score achieved using each model is visually represented in Figure

5.17.

 158

Figure 5.17. Graphical representation of average R2 score for various fault prognostic models

From Figure 5.17, it is evident that with the exception of haul truck #4, the R2 score achieved by

GRU models is consistent unlike other models that produced a wider range of R2 scores. The

results presented so far confirm the superiority of DL-based methods over ML-based methods for

fault prognosis, and the GRU model can consistently outperform other DL-based and ML-based

methods for prognosing gerotor failures in HPFP of haul trucks.

 Summary and Conclusion

This chapter presents an overview of the approach developed for fault prognosis of gerotor failures

in HPFP of haul trucks using data-driven techniques. Time-series signals in the form of sensor

readings from several key components related to HPFP were used as condition indicators. Engine

oil pressure was chosen as the target value to predict the RUL of haul trucks diagnosed with gerotor

failures in HPFP based on empirical knowledge and the importance of engine oil pressure in

predicting the RUL of engine related failures.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Average R2 score using several methods for fault prognosis

LSTM GRU SVM LR

 159

The high-resolution data generated from the sensors are typically downsampled to a lower

resolution (1 sample every second) by averaging the values prior to storing them in the form of a

time-series data in the InfluxDB database. Although the time-series data was available at a

resolution of 1 reading per second, predicting the RUL of a haul truck diagnosed with gerotor

failures in HPFP ‘in seconds’ is not a reasonable practice. Hence the input time-series data was

resampled to a much lower resolution of 1 reading per hour by averaging the original data to predict

the RUL of gerotor failures in HPFP ‘in hours’ and to reduce the computational burden on the

system while performing fault prognosis.

The pre-processed time-series data at a resolution of 1 reading per hour was used as input to predict

the RUL using two DL-based methods, LSTM and GRU models. Grid Search technique was used

to optimize the values of several hyperparameters used in the DL models to obtain a high model

accuracy. Each model was run for 10 iterations using several combinations of hyperparameters

and the performance evaluation metrics were computed as an average of the corresponding metric

over the 10 iterations. The R2 score achieved by the LSTM model for predicting the RUL of haul

truck #1 is 0.867, while the GRU model achieved an accuracy of .908 for predicting the RUL of

the same haul truck. In order to further validate the results and to determine the generalization

capabilities of the DL-based methods, the LSTM and GRU models were tested on an additional 9

haul trucks, and the results from all the 10 haul trucks that experienced gerotor failures in HPFP

indicated that the GRU model performed better than the LSTM model for predicting the RUL of

gerotor failures in HPFP. However, the same set of hyperparameters did not produce the best

accuracy for RUL prediction and hence to overcome this issue, the DL-based methods were

adjusted to evaluate and compare the accuracy of the LSTM and GRU models using a range of

hyperparameter values to automatically choose the optimal hyperparameters.

 160

The performance of DL-based methods was also compared with ML-based methods such as SVM

and MLP, and also with LR. The results indicated that DL-based methods performed better that

ML-based methods and LR for predicting RUL of gerotor failures in HPFP. Of all the models

tested, MLP had the least accuracy for all trucks and SVM performed better than the LR model.

In addition to outperforming the other models, GRU model also produced more consistent R2

scores across all haul trucks, with the exception of one haul truck indicating that GRU model is a

better choice for predicting the RUL of gerotor failures in HPFP for haul trucks.

 161

Chapter 6: CONCLUSIONS

This chapter presents the summary and conclusions of this research. This chapter also discusses

the significance and novel contributions of this research. In addition, this chapter contains

recommendations for future work using approaches such as natural language processing and

convolutional neural networks for fault diagnosis and prognosis.

 	

 162

 Summary of the research

Mining companies are preferring to invest in fewer but larger equipment, and downtime associated

with larger equipment now represents a higher percentage of operational capacity loss. Large

mining equipment, especially haul trucks are critical to a mine’s success and require their health

condition to be frequently and accurately monitored to avoid unscheduled breakdowns and costly

repairs (Sander 2011). Modern mining is facilitated by the use of sensors for real-time monitoring

of equipment operating parameters, external environment and various KPIs. Although this data

has existed within some companies for years, it was vastly underutilized until recently (Young and

Rogers 2019). This research built an integrated system that identified HPFP failures as a critical

failure, diagnosed gerotor failures in HPFP in haul trucks and predicted the RUL of haul trucks

diagnosed with gerotor failures in HPFP using data from several existing sources that are

associated with a haul truck by leveraging various DM techniques.

An extensive literature review of several fault diagnostic and prognostic models using ML-based

and DL-based methods and their application in the mining industry have been presented in Chapter

2. In summary, the major shortcomings revealed by the literature are as follows:

• The use of fabricated or simulated data for diagnosis and prognosis of failures that may not

account for all complex scenarios in the real world.

• Several researchers have addressed the same failures by using different DM techniques on

some of the easily accessible popular datasets rather than trying to identify and address

novel failures.

 163

• Existing work on fault diagnosis and prognosis of mining equipment is primarily focused

on knowledge-driven approaches (model-based and statistical-based) and traditional ML-

based data-driven approaches.

• There is a need for an integrated engineering methodology which can be used for

identifying critical failures in mining equipment and developing various data-driven

approaches for fault diagnosis and prognosis using data from several sources associated

with the equipment.

This research aimed to develop an integrated engineering methodology utilizing a combination of

various DM techniques reviewed in the previous chapters, incorporating the advantage of various

techniques available. The development, implementation and validation of this integrated

engineering methodology has been conducted in four major stages:

i. Identifying critical failures in haul trucks that have the highest frequency of failure using

data obtained from multiple databases associated with a haul truck.

ii. Developing and implementing fault diagnostic models using unsupervised ML-based

approaches (DBSCAN and HDBSCAN models) for diagnosing the failure of interest.

iii. Developing and implementing fault prognostic models using supervised DL-based

approaches (LSTM and GRU models) for predicting the remaining RUL for the failure of

interest.

iv. Verifying the performance of fault diagnostic and prognostic models developed in this

research against traditional models and validating the performance of the models developed

in this research by implementing them on multiple trucks and at two other mines.

 The remaining sections in this chapter highlight the research conclusions, present a summary of

the novel contributions achieved through this research and a brief prospect for potential future

 164

work to address certain challenges faced in this research. Figure 6.1 presents a visual summary of

the workflow used for this research.

Figure 6.1. Workflow showing all the steps involved in this research.

 165

 Research Conclusions

Through this research, an integrated methodology has been developed using DM techniques (such

as supervised learning and unsupervised learning approaches; ML and DL models) to detect

gerotor failures in HPFP in haul trucks and to predict their RUL. Both supervised learning

techniques and unsupervised learning techniques were explored and a framework to develop fault

diagnostic and prognostic models was presented without the use of any fabricated or simulated

data. All the research objectives outlined in Chapter 1 have been achieved and the following

conclusions were drawn from the implementation of the methodology developed in this research:

• In this research, a novel approach was proposed to identify critical failures in haul trucks

using data from various historical maintenance databases such as the frequency of failures,

duration of downtime, alarm logs and work order reports. HPFP failures were identified to

be the critical failure of interest because of their high frequency of occurrence and tendency

to fail prematurely.

• Another major aspect of this study was to identify several unscheduled mechanical failures

(specifically engine related failures) in haul trucks, which could be ideal candidates for

future research. In addition to HPFP failures, other failures such as coolant leaks, exhaust

leaks, turbo charger failures and fuel injectors were identified to have a high failure

frequency indicating the need for future research to address these issues.

• Through this research (Chapter 4), unsupervised ML-based approaches such as DBSCAN

and HDBSCAN (density-based outlier detection algorithms) were developed and

implemented to diagnose gerotor failures in HPFP using engine oil sample analysis data as

input.

 166

• The fault diagnostic models developed in this research were validated by implementing

them at two other mines. The P@n score ranged between 0.71 to 0.79 using the DBSCAN

model and between 0.71 to 0.75 using the HDBSCAN model with a similar set of

hyperparameters. This demonstrates the capability of the fault diagnostic model as a

reliable tool to detect gerotor failures in HPFP with a sufficient lead time of 2 to 3 weeks

prior to a failure and was tested at multiple mines.

• A comparison between the accuracy of several unsupervised outlier detection algorithms

used for fault diagnosis of gerotor failures in HPFP of haul trucks indicated that the density-

based outlier detection models implemented in this research resulted in an average P@n

accuracy scores of 0.74 and consistently outperformed the other outlier detection models

that produced an average P@n accuracy score of 0.49.

• Through this research (Chapter 5), supervised DL-based approaches such as LSTM and

GRU models (RNN-based models) were developed and implemented to predict the RUL

of haul trucks diagnosed with gerotor failures in HPFP using sensor data from the condition

indicators identified in this research.

• A comparison between the accuracy of the DL-based fault prognostic models and the

traditional ML-based approaches used to predict the RUL of gerotor failures in HPFP of

haul trucks demonstrated that the DL-based models implemented in this research have

resulted in a higher average accuracy (measure by R2 score) of 0.80 and consistently

outperformed the traditional approaches that resulted in an average accuracy of 0.50.

Among the DL-based approaches implemented in this research, the GRU model produced

more consistent results across all haul trucks compared to the LSTM model.

 167

• The fault prognostic models developed in this research were validated by implementing

them on multiple trucks at a mine (total of ten haul trucks) with varying operating

conditions. Although consistent results were obtained using the GRU model, varying

operating conditions for each truck meant that the hyperparameters had to be tuned

individually to achieve the highest accuracy in each case. In order to address this issue,

Python code was developed to automatically search through a wide range of

hyperparameters and select the ideal combination of hyperparameters for the GRU model

in each case.

In summary, this research developed an integrated methodology to use DM techniques such as ML

and DL models to detect gerotor failures in HPFP as well as predict their RUL in haul trucks. The

results presented in this research show that several DM techniques can be successfully utilized for

fault diagnosis and prognosis of haul trucks. In addition, the code developed by using Python in

this research can be employed to diagnose critical failures in haul trucks such as gerotor failures

in HPFP at various mines and predicting the RUL of several trucks diagnosed with such failures.

Highlights of the code developed for fault diagnosis is presented in Appendix B and highlights of

the code developed for fault prognosis is presented in Error! Reference source not found..

 Novel contributions

The main contribution of this research was the development and implementation of an integrated

methodology for diagnosing a critical failure in haul trucks and estimating its RUL using several

DM techniques. This provided a better understanding of the applicability of several ML and DL

models on various types of data and facilitated a more reliable detection of faults and prediction

of their RUL.

 168

This research resulted in knowledge in both the area of application of DM techniques to mining

equipment failures and specific knowledge on how to diagnose and predict the remaining useful

life of gerotor failures in HPFP.

With respect to specific knowledge about gerotor failures in HPFP, the following contributions

have been demonstrated:

• Through this research, a better understanding of HPFP failures (specifically gerotor failures

in HPFP) in haul trucks was presented in terms of the condition indicators that could be

used for diagnosing and prognosing gerotor failures in HPFP. This research also created

an understanding of the applicability of various ML-based and DL-based models for fault

diagnostics and prognostics of gerotor failures in HPFP.

• A novel approach was proposed to identify the condition indicators that could be used for

developing the fault diagnostic and prognostic models by assessing the occurrence pattern

of historical alarms related to HPFP failures. Using this approach, common rail injector

pressure, fuel delivery pressure, fuel pump inlet pressure, engine horsepower and engine

oil pressure were identified as the potential condition indicators for diagnosing and

predicting the RUL of HPFP failures.

• The analysis used to identify condition indicators for HPFP failures using historical alarm

log data can be employed to develop condition indicators for other critical failures;

especially in cases where knowledge of a failure is very limited or unavailable.

• The methodology developed for fault diagnosis in this research demonstrated that various

components of engine oil sample analysis such as the concentration of contaminants,

additives, wear metals and physical properties can be used to diagnose gerotor failures in

HPFP with an average P@n accuracy score of 0.74.

 169

• The methodology developed for fault prognosis in this research demonstrated the use of

condition indicators identified in this research to successfully predict the RUL of haul

trucks diagnosed with gerotor failures in HPFP with an average R2 accuracy score of 0.80.

With respect to the application of DM techniques for fault diagnosis and prognosis of haul trucks,

the following contributions have been demonstrated:

• Unsupervised ML-based approaches such as DBSCAN and HDBSCAN (density-based

outlier detection algorithms) were developed and implemented to diagnose gerotor failures

in HPFP using engine oil sample analysis data as input. This successfully demonstrated the

capabilities of unsupervised learning techniques for earlier detection of up to 2 to 3 weeks

leading to a gerotor failure in HPFP, and also indicated the ability of the fault diagnostic

models developed using such techniques to diagnose multiple failures (such as fuel injector

failures, coolant leaks etc.) by tuning the model hyperparameters.

• Supervised DL-based approaches such as LSTM and GRU (RNN-based models) were

developed and implemented to predict the RUL of haul trucks diagnosed with gerotor

failures in HPFP using sensor data from the condition indicators developed in this research.

This demonstrated the capabilities of supervised learning techniques for accurate and

reliable prediction of RUL for haul trucks diagnosed with a gerotor failure in HPFP with

an average R2 score of 0.80.

• A better understanding of the performance of fault prognostic models was achieved by

investigating the effect of hyperparameters on model performance. This led to an

understanding that although DL-based fault prognostic models were consistent in their

performance as demonstrated by the results produced in Chapter 5 of this thesis, a generic

model architecture cannot be used for predicting RUL of gerotor failures in HPFP. This

 170

emphasizes the need for individually tuning the model hyperparameters in future research

adapting a similar framework.

• The fault diagnostic models implemented in this research resulted in an average P@n

accuracy scores of 0.74 compared to other outlier detection models that produced an

average P@n accuracy score of 0.49. The fault prognostic models implemented in this

research resulted in a higher average R2 score of 0.80 compared to other prognostic models

that resulted in an average accuracy of 0.50. These results indicate that the performance of

fault diagnostic and prognostic models developed and implemented in this research have

superior performance and consistently outperformed the traditional models. Thus, the

methodology presented in this research can act as a framework for future research on fault

diagnosis and prognosis of other critical failures in haul trucks.

• Until now, the use of DM techniques for fault diagnosis and prognosis of haul trucks have

not been widespread but based on the results obtained in this research, various DM

techniques can be confidently employed for fault diagnosis and prognosis in haul trucks.

In addition, the following contributions to the general body of knowledge and future research

have also been demonstrated:

• Investigating the influence of temperature and seasonality on the sensor data obtained for

each condition indicator determined that temperature and seasonality do not have a

significant effect on the condition indicators used for fault prognosis of gerotor failures in

HPFP as can be seen from Appendix E. Since all the trucks are of the same make, model,

age group and operate in similar environmental conditions, it could be inferred that

operator variability plays a vital role in understanding the difference in behavior of trucks

prior to a failure, indicating the need for future research in this area.

 171

• Finally, with the data available only for a limited number of failures, a database was created

that contains the distribution of condition indicators prior to a failure. Such distributions

can be used by the DM models to make predictions if real-time data is unavailable at critical

times. As the data continues to be collected and made available, the relations between

various operating parameters and external parameters can be better understood.

 Challenges and Limitations

The usage of data from actual operations and maintenance poses certain challenges that need to be

overcome prior to adopting the framework proposed in this research. Such challenges include, but

are not limited to the following:

• Incomplete observability of condition indicators of interest: The choice of good condition

indicators improves the accuracy of fault diagnostic and prognostic models, but the

availability of data from such condition indicators may be limited at times due to various

reasons. In such cases, model accuracy may be impacted by the use of fewer condition

indicators or alternative data needs to be used.

• Paucity of maintenance history: As mining equipment, such as haul trucks tend to become

more reliable, fewer failures are observed during the life of the equipment. This results in

a scarcity of failure data in the maintenance history to develop data-driven fault diagnostic

and prognostic models. Collecting significant amounts of failure data for certain critical

failures is a time-consuming process and is thus one of the major bottlenecks for research

works that are based on actual failure data.

• Possible errors in maintenance history: The accuracy of fault diagnostic and prognostic

models are also impacted by possible errors in maintenance history records that are a result

of human error or negligence. In certain cases, the work order history reports logged by

 172

maintenance personnel tend to be too generic and provide very little to no information on

the actual source of the failure or the specific details of the repairs performed.

Based on the results presented in this research and the key challenges listed in this section, the

availability and choice of data along with the choice of a suitable algorithm will have a significant

impact on the outcome of all future work based on the framework suggested in this research.

 Recommendations for Future Work

The fault diagnostic models developed in this research were able to detect failures with a sufficient

lead-time and high accuracy, and the fault prognostic models were proven to be capable of

predicting the RUL of haul trucks experiencing HPFP failure with significant accuracy. The

generalization capabilities of both fault diagnostic and prognostic models have produced consistent

results across different trucks and mines with some hyperparameter tuning. However, there is still

a need for continued investigations and improvements, which could be accomplished by exploring

the following tasks.

• In this research, one of the most time-consuming process was to manually inspect the work

order reports to identify whether a point classified as an outlier by the outlier detection

algorithm was associated with a failure or not. In the future, DL techniques such as natural

language processing (NLP) can assist in automating this process to gain additional insight

and to avoid any potential errors. RNNs can capture both short term and long-term

relationships within the text, making them a popular choice for use in NLP to identify key

words in maintenance records or failure logs.

• Due to the limited number of occurrences of gerotor failures in HPFP, the fault patterns

from several trucks (operated by different operators resulting in dissimilar operating

conditions) within the fleet need to be studied to extract relevant patterns across the entire

 173

fleet. Existing approaches for RUL prediction assume that all equipment in a fleet have

similar operating conditions and parts of degradation trajectories can be transferred within

equipment across the fleet. But this assumption does not hold true for complex industrial

equipment under varying operational and environmental conditions, and poses a significant

challenge on transferring knowledge across several units in the fleet (Michau, Palmé, and

Fink 2018). In this research, all DM models for fault prognosis had to be trained separately

for each haul truck, but domain adaption and transfer learning could be used to eliminate

the need for retraining the models to perform similar tasks.

• Data augmentation is a technique that mitigates the increasing risk of overfitting and

improves the performance of DL models in cases where insufficient data is available and

the models fail to generalize well (Jason Wang and Perez 2017). However, research for

data augmentation on time-series data is limited and one of the potential future research

directions could be to investigate the application of data augmentation techniques to fault

diagnosis and prognosis, particularly for time-series data.

• Effective and efficient composition and selection of datasets is an issue in environments

with highly varying operating conditions where the training dataset is not fully

representative of the full range of expected operating conditions. Generative neural

networks have been recently used by several researchers to generate faulty samples or fault

features of vibration data, and an interesting research direction could be to evaluate the

transferability of such approaches to time-series data and more complex data.

 174

BIBLIOGRAPHY

Abdeljaber, Osama et al. 2017. “Real-Time Vibration-Based Structural Damage Detection Using

One-Dimensional Convolutional Neural Networks.” Journal of Sound and Vibration 388:

154–70.

Ademujimi, Toyosi Toriola, Michael P. Brundage, and Vittaldas V. Prabhu. 2017. “A Review of

Current Machine Learning Techniques Used in Manufacturing Diagnosis.” In IFIP Advances

in Information and Communication Technology, Springer New York LLC, 407–15.

Aggarwal, Charu C. 2017. “An Introduction to Outlier Analysis.” In Outlier Analysis, Springer

International Publishing, 1–34.

Aghazadeh, Fatemeh, Antoine Tahan, and Marc Thomas. 2018. “Tool Condition Monitoring

Using Spectral Subtraction Algorithm and Artificial Intelligence Methods in Milling

Process.” International Journal of Mechanical Engineering and Robotics Research 7(1): 30–

34.

Ahmad, Rosmaini, and Shahrul Kamaruddin. 2012. “An Overview of Time-Based and Condition-

Based Maintenance in Industrial Application.” Computers and Industrial Engineering 63(1):

135–49.

Akbari, Zohreh, and Rainer Unland. 2016. “Automated Determination of the Input Parameter of

DBSCAN Based on Outlier Detection.” In IFIP Advances in Information and Communication

Technology, Thessaloniki, Greece, 280–91.

Akoglu, Haldun. 2018. “User’s Guide to Correlation Coefficients.” Turkish Journal of Emergency

Medicine 18(3): 91–93.

Al-Dulaimi, Ali, Soheil Zabihi, Amir Asif, and Arash Mohammadi. 2019. “A Multimodal and

Hybrid Deep Neural Network Model for Remaining Useful Life Estimation.” Computers in

Industry 108: 186–96.

Andrejiova, Miriam, and Anna Grincova. 2018. “Classification of Impact Damage on a Rubber-

Textile Conveyor Belt Using Naïve-Bayes Methodology.” Wear 414–415: 59–67.

 175

Appiah, Albert Yaw, Xinghua Zhang, Ben Beklisi Kwame Ayawli, and Frimpong Kyeremeh.

2019. “Long Short-Term Memory Networks Based Automatic Feature Extraction for

Photovoltaic Array Fault Diagnosis.” IEEE Access 7: 30089–101.

Arnaiz, Aitor et al. 2010. “Information and Communication Technologies within E-Maintenance.”

In E-Maintenance, Springer London, 39–60.

Babu, Giduthuri Sateesh, Peilin Zhao, and Xiao Li Li. 2016. “Deep Convolutional Neural Network

Based Regression Approach for Estimation of Remaining Useful Life.” In Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), Springer Verlag, 214–28.

Bach-Andersen, Martin, Bo Rømer-Odgaard, and Ole Winther. 2018. “Deep Learning for

Automated Drivetrain Fault Detection.” Wind Energy 21(1): 29–41.

Balaba, Benhur, M. Yousef Ibrahim, and Indra Gunawan. 2012. “Utilisation of Data Mining in

Mining Industry: Improvement of the Shearer Loader Productivity in Underground Mines.”

In IEEE International Conference on Industrial Informatics (INDIN), Institute of Electrical

and Electronics Engineers (IEEE), 1041–46.

Bandara, Kasun, Christoph Bergmeir, and Slawek Smyl. 2020. “Forecasting across Time Series

Databases Using Recurrent Neural Networks on Groups of Similar Series: A Clustering

Approach.” Expert Systems with Applications 140: 112896.

Baqqar, M., M. Ahmed, and F. Gu. 2011. “Data Mining for Gearbox Condition Monitoring.” In

Proceedings of 2011 17th International Conference on Automation and Computing, ICAC

2011, , 138–42.

Baraldi, P., M. Compare, S. Sauco, and E. Zio. 2013. “Ensemble Neural Network-Based Particle

Filtering for Prognostics.” Mechanical Systems and Signal Processing 41(1–2): 288–300.

Baraldi, Piero, Francesco Di Maio, Davide Genini, and Enrico Zio. 2015. “Comparison of Data-

Driven Reconstruction Methods for Fault Detection.” IEEE Transactions on Reliability

64(3): 852–60.

Behera, Sourajit, and Rinkle Rani. 2016. “Comparative Analysis of Density Based Outlier

 176

Detection Techniques on Breast Cancer Data Using Hadoop and Map Reduce.” In

Proceedings of the International Conference on Inventive Computation Technologies, ICICT

2016, Institute of Electrical and Electronics Engineers Inc.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. 2013. “Representation Learning: A Review

and New Perspectives.” IEEE Transactions on Pattern Analysis and Machine Intelligence

35(8): 1798–1828.

Bengio, Yoshua, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. 2007. “Greedy Layer-Wise

Training of Deep Networks.” Advances in Neural Information Processing Systems (1): 153–

60.

Bergstra, James, and Yoshua Bengio. 2012. “Random Search for Hyper-Parameter Optimization.”

The Journal of Machine Learning Research 13(1): 281–305.

Berthelot, David et al. 2019. “MixMatch: A Holistic Approach to Semi-Supervised Learning.” In

33rd Conference on Neural Information Processing Systems, Vancouver, Canada.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. First. eds. Michael

Jordan, Jon Kleinberg, and Bernhard Schölkopf. Singapore: Springer Science+Business

Media, LLC.

Bosch. 2021. “Modular Common-Rail System for Commercial Vehicles (CRSN).”

Bousdekis, Alexandros, Babis Magoutas, Dimitris Apostolou, and Gregoris Mentzas. 2015. “A

Proactive Decision Making Framework for Condition-Based Maintenance.” Industrial

Management and Data Systems 115(7): 1225–50.

Box, George E P, Gwilym M Jenkins, and Gregory C Reinsel. 2011. 734 Time Series Analysis:

Forecasting and Control. John Wiley & Sons.

Braglia, Marcello, Gionata Carmignani, Marco Frosolini, and Francesco Zammori. 2012. “Data

Classification and MTBF Prediction with a Multivariate Analysis Approach.” Reliability

Engineering and System Safety 97(1): 27–35.

Breuniq, Markus M., Hans Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. “LOF:

 177

Identifying Density-Based Local Outliers.” SIGMOD Record (ACM Special Interest Group

on Management of Data) 29(2): 93–104.

De Bruin, Tim, Kim Verbert, and Robert Babuska. 2017. “Railway Track Circuit Fault Diagnosis

Using Recurrent Neural Networks.” IEEE Transactions on Neural Networks and Learning

Systems 28(3): 523–33.

Cai, Baoping, Yubin Zhao, Hanlin Liu, and Min Xie. 2017. “A Data-Driven Fault Diagnosis

Methodology in Three-Phase Inverters for PMSM Drive Systems.” IEEE Transactions on

Power Electronics 32(7): 5590–5600.

Campello, Ricardo J.G.B., Davoud Moulavi, and Joerg Sander. 2013. “Density-Based Clustering

Based on Hierarchical Density Estimates.” In Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Springer, Berlin, Heidelberg, 160–72.

Campos, Guilherme O. et al. 2016. “On the Evaluation of Unsupervised Outlier Detection:

Measures, Datasets, and an Empirical Study.” Data Mining and Knowledge Discovery 30(4):

891–927.

Campos, Jaime. 2009. “Development in the Application of ICT in Condition Monitoring and

Maintenance.” Computers in Industry 60(1): 1–20.

Canizo, Mikel, Isaac Triguero, Angel Conde, and Enrique Onieva. 2019. “Multi-Head CNN–RNN

for Multi-Time Series Anomaly Detection: An Industrial Case Study.” Neurocomputing 363:

246–60.

Cao, Pei, Shengli Zhang, and J Tang. 2018. “Preprocessing-Free Gear Fault Diagnosis Using Small

Datasets With Deep Convolutional Neural Network-Based Transfer Learning.” IEEE Access

6: 26241–53.

Carstens, W. A., and P. J. Vlok. 2012. “Regression Analysis of Caterpillar 793D Haul Truck

Engine Data and Through-Life Diagnostic Information Using the Proportional Hazards

Model.” South African Journal of Industrial Engineering 24(2): 59–68.

Cha, Young Jin, Wooram Choi, and Oral Büyüköztürk. 2017. “Deep Learning-Based Crack

 178

Damage Detection Using Convolutional Neural Networks.” Computer-Aided Civil and

Infrastructure Engineering 32(5): 361–78.

Chao, Manuel Arias, Bryan T. Adey, and Olga Fink. 2019. “Implicit Supervision for Fault

Detection and Segmentation of Emerging Fault Types with Deep Variational Autoencoders.”

Chen, Danmin, Shuai Yang, and Funa Zhou. 2019. “Transfer Learning Based Fault Diagnosis with

Missing Data Due to Multi-Rate Sampling.” Sensors (Switzerland) 19(8): 1826.

Chen, Fu Chen, and Mohammad R. Jahanshahi. 2018. “NB-CNN: Deep Learning-Based Crack

Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion.” IEEE

Transactions on Industrial Electronics 65(5): 4392–4400.

Chen, Jinglong et al. 2016. “Wavelet Transform Based on Inner Product in Fault Diagnosis of

Rotating Machinery: A Review.” Mechanical Systems and Signal Processing 70–71: 1–35.

Chen, Longting, Guanghua Xu, Qing Zhang, and Xun Zhang. 2019. “Learning Deep

Representation of Imbalanced SCADA Data for Fault Detection of Wind Turbines.”

Measurement: Journal of the International Measurement Confederation 139: 370–79.

Chen, Wen et al. 2014. “Simultaneous Fault Isolation and Estimation of Lithium-Ion Batteries via

Synthesized Design of Luenberger and Learning Observers.” IEEE Transactions on Control

Systems Technology 22(1): 290–98.

Cho, Kyung Hyun, Tapani Raiko, and Alexander Ilin. 2013. “Gaussian-Bernoulli Deep Boltzmann

Machine.” In Proceedings of the International Joint Conference on Neural Networks,.

Cho, Kyunghyun et al. 2014. “Learning Phrase Representations Using RNN Encoder-Decoder for

Statistical Machine Translation.” In EMNLP 2014 - 2014 Conference on Empirical Methods

in Natural Language Processing, Proceedings of the Conference, Association for

Computational Linguistics (ACL), 1724–34.

Chollet, François, and others. 2015. “Keras.”

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014. “Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.” In NIPS 2014

 179

Deep Learning and Representation Learning Workshop,.

Claveria, Oscar, Enric Monte, and Salvador Torra. 2017. “Data Pre-Processing for Neural

Network-Based Forecasting: Does It Really Matter?” Technological and Economic

Development of Economy 23(5): 709–25.

Costa, Bruno Sielly Jales, Plamen Parvanov Angelov, and Luiz Affonso Guedes. 2015. “Fully

Unsupervised Fault Detection and Identification Based on Recursive Density Estimation and

Self-Evolving Cloud-Based Classifier.” Neurocomputing 150(Part A): 289–303.

Cover, T. M., and P. E. Hart. 1967. “Nearest Neighbor Pattern Classification.” IEEE Transactions

on Information Theory 13(1): 21–27.

Craswell, Nick. 2009a. “Precision at N.” In Encyclopedia of Database Systems, Springer US,

2127–28.

———. 2009b. “R-Precision.” In Encyclopedia of Database Systems, ed. Nick Craswell. Springer

US, 2453–2453.

Cristaldi, Loredana et al. 2016. “A Comparative Study on Data-Driven Prognostic Approaches

Using Fleet Knowledge.” In Conference Record - IEEE Instrumentation and Measurement

Technology Conference, Institute of Electrical and Electronics Engineers Inc.

Cristianini, Nello, and John Shawe-Taylor. 2000. An Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods. Cambridge university press.

CSS-Electronics. 2020. “Case Studies.” CSS Electronics.

Cunha Palácios, Rodrigo H., Ivan Nunes Da Silva, Alessandro Goedtel, and Wagner F. Godoy.

2015. “A Comprehensive Evaluation of Intelligent Classifiers for Fault Identification in

Three-Phase Induction Motors.” Electric Power Systems Research 127: 249–58.

Dai, Xuewu, and Zhiwei Gao. 2013. “From Model, Signal to Knowledge: A Data-Driven

Perspective of Fault Detection and Diagnosis.” IEEE Transactions on Industrial Informatics

9(4): 2226–38.

Darong, Huang, and Wang Peng. 2012. “Grid-Based DBSCAN Algorithm with Referential

 180

Parameters.” Physics Procedia 24: 1166–70.

Deutsch, Jason, and David He. 2018. “Using Deep Learning-Based Approach to Predict

Remaining Useful Life of Rotating Components.” IEEE Transactions on Systems, Man, and

Cybernetics: Systems 48(1): 11–20.

Dhillon, B.S. 2002. Engineering Maintenance: A Modern Approach . First. Florida: CRC Press.

Diez-Olivan, Alberto, Javier Del Ser, Diego Galar, and Basilio Sierra. 2019. “Data Fusion and

Machine Learning for Industrial Prognosis: Trends and Perspectives towards Industry 4.0.”

Information Fusion 50: 92–111.

Dindarloo, Saeid R., and Elnaz Siami-Irdemoosa. 2017. “Data Mining in Mining Engineering:

Results of Classification and Clustering of Shovels Failures Data.” International Journal of

Mining, Reclamation and Environment 31(2): 105–18.

Ding, Hua, Yiliang Wang, Zhaojian Yang, and Olivia Pfeiffer. 2019. “Nonlinear Blind Source

Separation and Fault Feature Extraction Method for Mining Machine Diagnosis.” Applied

Sciences (Switzerland) 9(9).

Dotis-Georgiou, Anais. 2020. “Downsampling with InfluxDB v2.0.” InfluxData.

Dou, Dongyang, and Shishuai Zhou. 2016. “Comparison of Four Direct Classification Methods

for Intelligent Fault Diagnosis of Rotating Machinery.” Applied Soft Computing Journal 46:

459–68.

Du, Zhimin, Bo Fan, Xinqiao Jin, and Jinlei Chi. 2014. “Fault Detection and Diagnosis for

Buildings and HVAC Systems Using Combined Neural Networks and Subtractive Clustering

Analysis.” Building and Environment 73: 1–11.

Duan, Lixiang et al. 2016. “Segmented Infrared Image Analysis for Rotating Machinery Fault

Diagnosis.” Infrared Physics and Technology 77: 267–76.

Al Dulaimi, Ali, Soheil Zabihi, Amir Asif, and Arash Mohammadi. 2019. “Hybrid Deep Neural

Network Model for Remaining Useful Life Estimation.” In ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical

 181

and Electronics Engineers Inc., 3872–76.

Eliasy, Ashkan, and Justyna Przychodzen. 2020. “The Role of AI in Capital Structure to Enhance

Corporate Funding Strategies.” Array 6.

Ellefsen, André Listou, Emil Bjørlykhaug, Vilmar Æsøy, et al. 2019. “Remaining Useful Life

Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture.”

Reliability Engineering and System Safety 183: 240–51.

Ellefsen, André Listou, Emil Bjørlykhaug, Vilmar Æesøy, and Houxiang Zhang. 2019. “An

Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components.”

IEEE Access 7: 16101–9.

Ellefsen, Andre Listou, Sergey Ushakov, Vilmar Aesoy, and Houxiang Zhang. 2019. “Validation

of Data-Driven Labeling Approaches Using a Novel Deep Network Structure for Remaining

Useful Life Predictions.” IEEE Access 7: 71563–75.

Fan, Cheng, Fu Xiao, Yang Zhao, and Jiayuan Wang. 2018. “Analytical Investigation of

Autoencoder-Based Methods for Unsupervised Anomaly Detection in Building Energy

Data.” Applied Energy 211: 1123–35.

Fan, Rui et al. 2019. “Road Crack Detection Using Deep Convolutional Neural Network and

Adaptive Thresholding.” In IEEE Intelligent Vehicles Symposium, Proceedings, Institute of

Electrical and Electronics Engineers Inc., 474–79.

Fengming, Zheng et al. 2017. “Anomaly Detection in Smart Grid Based on Encoder-Decoder

Framework with Recurrent Neural Network.” Journal of China Universities of Posts and

Telecommunications 24(6): 67–73.

Fink, Olga et al. 2020. “Potential, Challenges and Future Directions for Deep Learning in

Prognostics and Health Management Applications.” Engineering Applications of Artificial

Intelligence 92(April): 103678.

Flett, Justin, and Gary M. Bone. 2016. “Fault Detection and Diagnosis of Diesel Engine Valve

Trains.” Mechanical Systems and Signal Processing 72–73: 316–27.

 182

Foo, Gilbert Hock Beng, Xinan Zhang, and D. M. Vilathgamuwa. 2013. “A Sensor Fault Detection

and Isolation Method in Interior Permanent-Magnet Synchronous Motor Drives Based on an

Extended Kalman Filter.” IEEE Transactions on Industrial Electronics 60(8): 3485–95.

Forman, George. 2003. “An Extensive Empirical Study of Feature Selection Metrics for Text

Classification.” Journal of Machine Learning Research 3: 1289–1305.

Funahashi, Ken ichi, and Yuichi Nakamura. 1993. “Approximation of Dynamical Systems by

Continuous Time Recurrent Neural Networks.” Neural Networks 6(6): 801–6.

Gamboa, John. 2017. “Deep Learning for Time-Series Analysis.” arXiv.

Gao, Zehai, Cunbao Ma, Dong Song, and Yang Liu. 2017. “Deep Quantum Inspired Neural

Network with Application to Aircraft Fuel System Fault Diagnosis.” Neurocomputing 238:

13–23.

Gao, Zhiwei et al. 2015. “A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II:

Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches.” IEEE Transactions

on Industrial Electronics 62(6): 3768–74.

Gao, Zhiwei, Carlo Cecati, and Steven X. Ding. 2015. “A Survey of Fault Diagnosis and Fault-

Tolerant Techniques-Part I: Fault Diagnosis with Model-Based and Signal-Based

Approaches.” IEEE Transactions on Industrial Electronics 62(6): 3757–67.

Garcia, Gabriel Rodriguez et al. 2020. “Time Series to Images: Monitoring the Condition of

Industrial Assets with Deep Learning Image Processing Algorithms.” arXiv.

Gecgel, Ozhan et al. 2019. “Gearbox Fault Diagnostics Using Deep Learning with Simulated

Data.” 2019 IEEE International Conference on Prognostics and Health Management,

ICPHM 2019.

Géron, Aurélien. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.

Second. eds. Rachel Roumeliotis and Nicole Tache. Sebastopol: O’Reilly Media, Inc.

Gers, Felix A., Jurgen Schmidhuber, and Fred Cummins. 1999. “Learning to Forget: Continual

Prediction with LSTM.” In IEE Conference Publication, IEE, 850–55.

 183

Gers, Felix A, Nicol N Schraudolph, and Jürgen Schmidhuber. 2003. “Learning Precise Timing

with LSTM Recurrent Networks.” Journal of Machine Learning Research 3(1): 115–43.

Ghodrati, B, F Ahmadzadeh, and U Kumar. 2012. “Remaining Useful Life Estimation of Mining

Equipment – A Case Study.” Proceedings of the International Symposium on Mine Planning

and Equipment (MPES ’12).

Gibert, Xavier, Vishal M. Patel, and Rama Chellappa. 2017. “Deep Multitask Learning for

Railway Track Inspection.” IEEE Transactions on Intelligent Transportation Systems 18(1):

153–64.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

Grafana Labs. 2020. “What Is Grafana?” Grafana Labs.

Graves, Alex, Abdel Rahman Mohamed, and Geoffrey Hinton. 2013. “Speech Recognition with

Deep Recurrent Neural Networks.” In ICASSP, IEEE International Conference on Acoustics,

Speech and Signal Processing - Proceedings, , 6645–49.

Grbovic, Mihajlo et al. 2012. “Decentralized Fault Detection and Diagnosis via Sparse PCA Based

Decomposition and Maximum Entropy Decision Fusion.” Journal of Process Control 22(4):

738–50.

Greitemann, Jonas. 2018. “Interactive Demo of Support Vector Machines (SVM).”

Groenewald, H J, M Kleingeld, and G J Cloete. 2018. “An Autoregressive Fault Model for

Condition Monitoring of Electrical Machines in Deep-Level Mines.” In 2018 International

Conference on the Industrial and Commercial Use of Energy (ICUE), , 1–6.

Gugulothu, Narendhar et al. 2017. “Predicting Remaining Useful Life Using Time Series

Embeddings Based on Recurrent Neural Networks.” In 2nd ML for PHM Workshop at Special

Interest Group on Knowledge Discovery and Data Mining, Canada.

Guo, Dingfei et al. 2018. “A Hybrid Feature Model and Deep Learning Based Fault Diagnosis for

Unmanned Aerial Vehicle Sensors.” Neurocomputing 319: 155–63.

Guo, Gongde et al. 2003. “KNN Model-Based Approach in Classification.” Lecture Notes in

 184

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 2888: 986–96.

Guo, Liang, Naipeng Li, et al. 2017. “A Recurrent Neural Network Based Health Indicator for

Remaining Useful Life Prediction of Bearings.” Neurocomputing 240: 98–109.

Guo, Liang, Yaguo Lei, Naipeng Li, and Saibo Xing. 2017. “Deep Convolution Feature Learning

for Health Indicator Construction of Bearings.” In 2017 Prognostics and System Health

Management Conference, PHM-Harbin 2017 - Proceedings, Institute of Electrical and

Electronics Engineers Inc.

Guo, Mou Fa, Xiao Dan Zeng, Duan Yu Chen, and Nien Che Yang. 2018. “Deep-Learning-Based

Earth Fault Detection Using Continuous Wavelet Transform and Convolutional Neural

Network in Resonant Grounding Distribution Systems.” IEEE Sensors Journal 18(3): 1291–

1300.

Guo, Yabin et al. 2018. “Deep Learning-Based Fault Diagnosis of Variable Refrigerant Flow Air-

Conditioning System for Building Energy Saving.” Applied Energy 225: 732–45.

Gupta, Aparna, and Chaipal Lawsirirat. 2006. “Strategically Optimum Maintenance of

Monitoring-Enabled Multi-Component Systems Using Continuous-Time Jump Deterioration

Models.” Journal of Quality in Maintenance Engineering 12(3): 306–29.

Hajizadeh, M, and M G Lipsett. 2015. “Anomaly Detection in Mining Haul Truck Suspension

Struts.” International Journal of Condition Monitoring 5(1): 9–19.

Hajizadeh, Mohammad. 2014. “Fault Detection and Diagnosis in Nonlinear Systems, with a Focus

on Mining Truck Suspension Strut.” University of Alberta.

Hamadache, Moussa, Joon Ha Jung, Jungho Park, and Byeng D. Youn. 2019. “A Comprehensive

Review of Artificial Intelligence-Based Approaches for Rolling Element Bearing PHM:

Shallow and Deep Learning.” JMST Advances 1(1–2): 125–51.

Han, Jiawei, Jian Pei, and Micheline Kamber. 2011. Data Mining: Concepts and Techniques.

Elsevier.

 185

Hanachi, Houman et al. 2015. “A Physics-Based Modeling Approach for Performance Monitoring

in Gas Turbine Engines.” IEEE Transactions on Reliability 64(1): 197–205.

Hand, David, Heikki Mannila, and Padhraic Smyth. 2001. MIT Press Principles of Data Mining.

First Edit. Massachusetts: The MIT Press.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, New York, NY.

Hatami, Nima, Yann Gavet, and Johan Debayle. 2018. “Classification of Time-Series Images

Using Deep Convolutional Neural Networks.” In Tenth International Conference on Machine

Vision (ICMV 2017), eds. Antanas Verikas, Petia Radeva, Dmitry Nikolaev, and Jianhong

Zhou. SPIE, 242–49.

Hawkins, Douglas M. 1980. 11 Identification of Outliers. Springer.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual Learning for

Image Recognition.” Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition 2016-Decem: 770–78.

Helfmann, Luzie, Johannes von Lindheim, Mattes Mollenhauer, and Ralf Banisch. 2018. “On

Hyperparameter Search in Cluster Ensembles.” arXiv.

Hewamalage, Hansika, Christoph Bergmeir, and Kasun Bandara. 2021. “Recurrent Neural

Networks for Time Series Forecasting: Current Status and Future Directions.” International

Journal of Forecasting 37(1): 388–427.

Hinton, G. E., and R. R. Salakhutdinov. 2006. “Reducing the Dimensionality of Data with Neural

Networks.” Science 313(5786): 504–7.

Hinton, Geoffrey et al. 2012. “Deep Neural Networks for Acoustic Modeling in Speech

Recognition: The Shared Views of Four Research Groups.” IEEE Signal Processing

Magazine 29(6): 82–97.

Hinton, Geoffrey E. 2012. “A Practical Guide to Training Restricted Boltzmann Machines.” In

Springer, Berlin, Heidelberg, 599–619.

 186

Hinton, Geoffrey E., and Simon Osindero. 2006. “A Fast Learning Algorithm for Deep Belief

Nets.” Neural Computation 18: 1527–1554.

Ho, Mark, and Melinda Hodkiewicz. 2013. “Factors That Influence Failure Behaviour and

Remaining Useful Life of Mining Equipment Components.” Advances in Mechanical

Engineering 2013: 913048.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural

Computation 9(8): 1735–80.

Hodge, Victoria J., and Jim Austin. 2004. “A Survey of Outlier Detection Methodologies.”

Artificial Intelligence Review 22(2): 85–126.

Hsu, Che Sheng, and Jehn Ruey Jiang. 2018. “Remaining Useful Life Estimation Using Long

Short-Term Memory Deep Learning.” In Proceedings of 4th IEEE International Conference

on Applied System Innovation 2018, ICASI 2018, Institute of Electrical and Electronics

Engineers Inc., 58–61.

Hu, Chao, Byeng D. Youn, and Taejin Kim. 2011. “Semi-Supervised Learning with Co-Training

for Data-Driven Prognostics.” In Proceedings of the ASME Design Engineering Technical

Conference, American Society of Mechanical Engineers Digital Collection, 1297–1306.

Hu, Guangzheng, Huifang Li, Yuanqing Xia, and Lixuan Luo. 2018. “A Deep Boltzmann Machine

and Multi-Grained Scanning Forest Ensemble Collaborative Method and Its Application to

Industrial Fault Diagnosis.” Computers in Industry 100: 287–96.

Hu, Q. P., M. Xie, S. H. Ng, and G. Levitin. 2007. “Robust Recurrent Neural Network Modeling

for Software Fault Detection and Correction Prediction.” Reliability Engineering and System

Safety 92(3): 332–40.

Hu, Yang, Thomas Palmé, and Olga Fink. 2016. “Deep Health Indicator Extraction: A Method

Based on Autoencoders and Extreme Learning Machines.” Proceedings of the Annual

Conference of the Prognostics and Health Management Society, PHM 2016-Octob: 446–52.

Hu, Yu Hen, and Jenq Neng Hwang. 2001. 111 Handbook of Neural Network Signal Processing

Handbook of Neural Network Signal Processing.

 187

Huang, Cheng Geng, Hong Zhong Huang, and Yan Feng Li. 2019. “A Bidirectional LSTM

Prognostics Method Under Multiple Operational Conditions.” IEEE Transactions on

Industrial Electronics 66(11): 8792–8802.

Huang, Runqing et al. 2007. “Residual Life Predictions for Ball Bearings Based on Self-

Organizing Map and Back Propagation Neural Network Methods.” Mechanical Systems and

Signal Processing 21(1): 193–207.

Hyndman, Rob J, and George Athanasopoulos. 2018. Forecasting: Principles and Practice.

Second. OTexts.

Ince, Turker et al. 2016. “Real-Time Motor Fault Detection by 1-D Convolutional Neural

Networks.” IEEE Transactions on Industrial Electronics 63(11): 7067–75.

Isermann, Rolf. 2006. Springer Science & Business Media Fault-Diagnosis Systems: An

Introduction from Fault Detection to Fault Tolerance. First. London, UK.

Jaeger, Herbert. 2008. ReVision A Tutorial on Training Recurrent Neural Networks , Covering

BPPT , RTRL , EKF and the " Echo State Network " Approach.

Janssens, Olivier et al. 2016. “Convolutional Neural Network Based Fault Detection for Rotating

Machinery.” Journal of Sound and Vibration 377: 331–45.

Janssens, Olivier, Rik Van De Walle, Mia Loccufier, and Sofie Van Hoecke. 2018. “Deep

Learning for Infrared Thermal Image Based Machine Health Monitoring.” IEEE/ASME

Transactions on Mechatronics 23(1): 151–59.

Jardine, Andrew K.S., Daming Lin, and Dragan Banjevic. 2006. “A Review on Machinery

Diagnostics and Prognostics Implementing Condition-Based Maintenance.” Mechanical

Systems and Signal Processing 20(7): 1483–1510.

Jeong, I. J., V. J. Leon, and J. R. Villalobos. 2007. “Integrated Decision-Support System for

Diagnosis, Maintenance Planning, and Scheduling of Manufacturing Systems.” International

Journal of Production Research 45(2): 267–85.

Jha, Devesh K, Abhishek Srivastav, and Asok Ray. 2016. “Temporal Learning in Video Data

 188

Using Deep Learning and Gaussian Processes.” International Journal of Prognostics and

Health Management 7(022): 11.

Jia, Sen, and Yang Zhang. 2018. “Saliency-Based Deep Convolutional Neural Network for No-

Reference Image Quality Assessment.” Multimedia Tools and Applications 77(12): 14859–

72.

Jia, Zhen, Zhenbao Liu, Chi Man Vong, and Michael Pecht. 2019. “A Rotating Machinery Fault

Diagnosis Method Based on Feature Learning of Thermal Images.” IEEE Access 7: 12348–

59.

Jiang, Guoqian, Ping Xie, Haibo He, and Jun Yan. 2018. “Wind Turbine Fault Detection Using a

Denoising Autoencoder with Temporal Information.” IEEE/ASME Transactions on

Mechatronics 23(1): 89–100.

Jing, Luyang, Ming Zhao, Pin Li, and Xiaoqiang Xu. 2017. “A Convolutional Neural Network

Based Feature Learning and Fault Diagnosis Method for the Condition Monitoring of

Gearbox.” Measurement 111: 1–10.

Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. 2015. “An Empirical Exploration of

Recurrent Network Architectures.” In 32nd International Conference on Machine Learning,

ICML 2015, , 2332–40.

Jung, Uk, and Bong Hwan Koh. 2015. “Wavelet Energy-Based Visualization and Classification of

High-Dimensional Signal for Bearing Fault Detection.” Knowledge and Information Systems

44(1): 197–215.

Kang, Gaoqiang, Shibin Gao, Long Yu, and Dongkai Zhang. 2019. “Deep Architecture for High-

Speed Railway Insulator Surface Defect Detection: Denoising Autoencoder with Multitask

Learning.” IEEE Transactions on Instrumentation and Measurement 68(8): 2679–90.

Karami, Amin, and Ronnie Johansson. 2014. “Choosing DBSCAN Parameters Automatically

Using Differential Evolution.” International Journal of Computer Applications 91(7): 1–11.

Karsoliya, Saurabh. 2012. “Approximating Number of Hidden Layer Neurons in Multiple Hidden

Layer BPNN Architecture.” International Journal of Engineering Trends and Technology

 189

3(6): 714–17.

Khan, Samir, and Takehisa Yairi. 2018. “A Review on the Application of Deep Learning in System

Health Management.” Mechanical Systems and Signal Processing 107: 241–65.

Khumprom, Phattara, and Nita Yodo. 2019. “A Data-Driven Predictive Prognostic Model for

Lithium-Ion Batteries Based on a Deep Learning Algorithm.” Energies 12(4): 660.

Kim, Chunggyeom et al. 2018. “DeepNAP: Deep Neural Anomaly Pre-Detection in a

Semiconductor Fab.” Information Sciences 457–458: 1–11.

Kim, Hack et al. 2009. “Machine Prognostics Based on Health State Estimation Using SVM.” In

3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems

Conference, Springer-Verlag, 25–27.

Kingma, Diederik P., and Jimmy Lei Ba. 2015. “Adam: A Method for Stochastic Optimization.”

In 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track

Proceedings, International Conference on Learning Representations, ICLR.

Kobbacy, Khairy A.H., and D.N. Prabhakar Murthy. 2008. Complex System Maintenance

Handbook Complex System Maintenance Handbook. Springer London.

Kolen, John F., and Stefan C. Kremer. 2010. “Gradient Flow in Recurrent Nets: The Difficulty of

Learning LongTerm Dependencies.” In A Field Guide to Dynamical Recurrent Networks,

IEEE.

Kothamasu, Ranganath, Samuel H. Huang, and William H. Verduin. 2006. “System Health

Monitoring and Prognostics - A Review of Current Paradigms and Practices.” International

Journal of Advanced Manufacturing Technology 28(9): 1012–24.

Kriegel, Hans-Peter, Matthias Schubert, and Arthur Zimek. 2008. Angle-Based Outlier Detection

in High-Dimensional Data.

Kriegel, Hans Peter, Peer Kröger, Jörg Sander, and Arthur Zimek. 2011. “Density-Based

Clustering.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(3):

231–40.

 190

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. “ImageNet Classification with

Deep Convolutional Neural Networks.” Communications of the ACM 60(6): 84–90.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. 25 Advances in Neural

Information Processing Systems ImageNet Classification with Deep Convolutional Neural

Networks.

Krummenacher, Gabriel et al. 2018. “Wheel Defect Detection With Machine Learning.” IEEE

Transactions on Intelligent Transportation Systems 19(4): 1176–87.

Kumar, Ajay, Ravi Shankar, and Lakshman S. Thakur. 2018. “A Big Data Driven Sustainable

Manufacturing Framework for Condition-Based Maintenance Prediction.” Journal of

Computational Science 27: 428–39.

Kumar, Prakash, and R. K. Srivastava. 2012. “An Expert System for Predictive Maintenance of

Mining Excavators and Its Various Forms in Open Cast Mining.” International Conference

on Recent Advances in Information Technology: 658–61.

Labib, Ashraf W. 2004. “A Decision Analysis Model for Maintenance Policy Selection Using a

CMMS.” Journal of Quality in Maintenance Engineering 10(3): 191–202.

LeCun, Yann et al. 1990. “Handwritten Digit Recognition with a Back-Propagation Network.” :

396–404.

Lee, C. K.M., Yi Cao, and K. K.H. Ng. 2016. “Big Data Analytics for Predictive Maintenance

Strategies.” Supply Chain Management in the Big Data Era (January): 50–74.

Lee, Honglak, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009. “Convolutional Deep

Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations.” In

Proceedings of the 26th International Conference On Machine Learning, ICML 2009, New

York, New York, USA: ACM Press, 609–16.

Lee, Jay et al. 2006. “Intelligent Prognostics Tools and E-Maintenance.” Computers in Industry

57(6): 476–89.

———. 2014. “Prognostics and Health Management Design for Rotary Machinery Systems -

 191

Reviews, Methodology and Applications.” Mechanical Systems and Signal Processing 42(1–

2): 314–34.

Lee, Ki Bum, Sejune Cheon, and Chang Ouk Kim. 2017. “A Convolutional Neural Network for

Fault Classification and Diagnosis in Semiconductor Manufacturing Processes.” IEEE

Transactions on Semiconductor Manufacturing 30(2): 135–42.

Lei, Yaguo et al. 2018. “Machinery Health Prognostics: A Systematic Review from Data

Acquisition to RUL Prediction.” Mechanical Systems and Signal Processing 104: 799–834.

———. 2020. “Applications of Machine Learning to Machine Fault Diagnosis: A Review and

Roadmap.” Mechanical Systems and Signal Processing 138: 106587.

LeNail, Alexander. 2019. “NN-SVG: Publication-Ready Neural Network Architecture

Schematics.” Journal of Open Source Software 4(33): 747.

Li, Jialin, Xueyi Li, and David He. 2019. “A Directed Acyclic Graph Network Combined With

CNN and LSTM for Remaining Useful Life Prediction.” IEEE Access 7: 75464–75.

Li, Juanli et al. 2019. “A Remote Monitoring and Diagnosis Method Based on Four-Layer IoT

Frame Perception.” IEEE Access 7: 144324–38.

Li, Juanli, Shuo Jiang, Menghui Li, and Jiacheng Xie. 2020. “A Fault Diagnosis Method of Mine

Hoist Disc Brake System Based on Machine Learning.” Applied Sciences (Switzerland)

10(5): 1768.

Li, Juanli, Jiacheng Xie, Zhaojian Yang, and Junjie Li. 2018. “Fault Diagnosis Method for a Mine

Hoist in the Internet of Things Environment.” Sensors (Switzerland) 18(6): 1–16.

Li, X, W Zhang, and Q Ding. 2019. “Cross-Domain Fault Diagnosis of Rolling Element Bearings

Using Deep Generative Neural Networks.” IEEE Transactions on Industrial Electronics

66(7): 5525–34.

Li, Xiang, Qian Ding, and Jian Qiao Sun. 2018. “Remaining Useful Life Estimation in Prognostics

Using Deep Convolution Neural Networks.” Reliability Engineering and System Safety

172(November 2017): 1–11.

 192

Li, Xiang, Wei Zhang, and Qian Ding. 2019. “Deep Learning-Based Remaining Useful Life

Estimation of Bearings Using Multi-Scale Feature Extraction.” Reliability Engineering and

System Safety 182: 208–18.

Li, Xiangong et al. 2020. “Fault Diagnosis of Belt Conveyor Based on Support Vector Machine

and Grey Wolf Optimization.” Mathematical Problems in Engineering 2020.

Li, Xiaoxia, Qiang Yang, Zhuo Lou, and Wenjun Yan. 2019. “Deep Learning Based Module

Defect Analysis for Large-Scale Photovoltaic Farms.” IEEE Transactions on Energy

Conversion 34(1): 520–29.

Li, Zhixiong et al. 2010. “A Fault Diagnosis Approach for Gears Using Multidimensional Features

and Intelligent Classifier.” Noise & Vibration Worldwide 41(10): 76–86.

———. 2013. “Blind Vibration Component Separation and Nonlinear Feature Extraction Applied

to the Nonstationary Vibration Signals for the Gearbox Multi-Fault Diagnosis.”

Measurement: Journal of the International Measurement Confederation 46(1): 259–71.

Liu, Jialin. 2012. “Fault Diagnosis Using Contribution Plots without Smearing Effect on Non-

Faulty Variables.” Journal of Process Control 22(9): 1609–23.

Liu, Min, Yingtang Zhang, Zhining Li, and Hongbo Fan. 2019. “Diesel Engine Fault Online

Diagnosis Method Based on Incremental Sparse Kernel Extreme Learning Machine.”

Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University 53(2): 217–24.

Liu, Ruonan, Boyuan Yang, Enrico Zio, and Xuefeng Chen. 2018. “Artificial Intelligence for Fault

Diagnosis of Rotating Machinery: A Review.” Mechanical Systems and Signal Processing

108: 33–47.

Liu, Yong Kuo et al. 2016. “A Fault Diagnosis Method Based on Signed Directed Graph and

Matrix for Nuclear Power Plants.” Nuclear Engineering and Design 297: 166–74.

Lo, Ndeye Gueye, Jean Marie Flaus, and Olivier Adrot. 2019. “Review of Machine Learning

Approaches in Fault Diagnosis Applied to IoT Systems.” In 2019 International Conference

on Control, Automation and Diagnosis, ICCAD 2019 - Proceedings, Institute of Electrical

and Electronics Engineers Inc.

 193

Lu, Weining et al. 2018. “Early Fault Detection Approach with Deep Architectures.” IEEE

Transactions on Instrumentation and Measurement 67(7): 1679–89.

Luo, Bo et al. 2018. “Early Fault Detection of Machine Tools Based on Deep Learning and

Dynamic Identification.” IEEE Transactions on Industrial Electronics 66(1): 509–18.

Ma, Jian, Hua Su, Wan Lin Zhao, and Bin Liu. 2018. “Predicting the Remaining Useful Life of an

Aircraft Engine Using a Stacked Sparse Autoencoder with Multilayer Self-Learning.”

Complexity 2018.

Ma, Jun, Shihong Ni, Wujie Xie, and Wenhan Dong. 2017. “Deep Auto-Encoder Observer

Multiple-Model Fast Aircraft Actuator Fault Diagnosis Algorithm.” International Journal of

Control, Automation and Systems 15(4): 1641–50.

Mahamad, Abd Kadir, Sharifah Saon, and Takashi Hiyama. 2010. “Predicting Remaining Useful

Life of Rotating Machinery Based Artificial Neural Network.” Computers and Mathematics

with Applications 60(4): 1078–87.

Di Maio, Francesco, Kwok Leung Tsui, and Enrico Zio. 2012. “Combining Relevance Vector

Machines and Exponential Regression for Bearing Residual Life Estimation.” Mechanical

Systems and Signal Processing 31: 405–27.

Malhotra, Pankaj et al. 2016. “Multi-Sensor Prognostics Using an Unsupervised Health Index

Based on LSTM Encoder-Decoder.”

Mandal, Shyamapada et al. 2017. “Nuclear Power Plant Thermocouple Sensor-Fault Detection and

Classification Using Deep Learning and Generalized Likelihood Ratio Test.” IEEE

Transactions on Nuclear Science 64(6): 1526–34.

Marques, Henrique O., Ricardo J.G.B. Campello, Jürg Sander, and Arthur Zimek. 2020. “Internal

Evaluation of Unsupervised Outlier Detection.” ACM Transactions on Knowledge Discovery

from Data 14(4).

Marseguerra, M., S. Minoggio, A. Rossi, and E. Zio. 1992. “Neural Networks Prediction and Fault

Diagnosis Applied to Stationary and Non Stationary ARMA Modeled Time Series.” Progress

in Nuclear Energy 27(1): 25–36.

 194

Medar, Ramesh, Vijay S. Rajpurohit, and B. Rashmi. 2018. “Impact of Training and Testing Data

Splits on Accuracy of Time Series Forecasting in Machine Learning.” 2017 International

Conference on Computing, Communication, Control and Automation, ICCUBEA 2017

(August): 1–6.

Meireles, Magali R.G., Paulo E.M. Almeida, and Marcelo Godoy Simões. 2003. “A

Comprehensive Review for Industrial Applicability of Artificial Neural Networks.” IEEE

Transactions on Industrial Electronics 50(3): 585–601.

Michau, Gabriel, Thomas Palmé, and Olga Fink. 2018. “Fleet PHM for Critical Systems: Bi-Level

Deep Learning Approach for Fault Detection.” Phm 2018 4(1): 1–10.

Moosavian, A., H. Ahmadi, A. Tabatabaeefar, and M. Khazaee. 2013. “Comparison of Two

Classifiers; K-Nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main

Engine Journal-Bearing.” Shock and Vibration 20(2): 263–72.

Naqvi, Syeda Noor Zehra, Sofia Yfantidou, and Esteban Zimányi. 2017. Time Series Databases

and InfluxDB. Brussels.

Nectoux, Patrick et al. 2012. “PRONOSTIA : An Experimental Platform for Bearings Accelerated

Degradation Tests.” In IEEE International Conference on Prognostics and Health

Management, PHM’12, IEEE Catalog Number : CPF12PHM-CDR, 1–8.

Ningyuxin, and Liyueling. 2013. “How We Could Realize Big Data Value.” In International

Symposium on Instrumentation and Measurement, Sensor Network and Automation, IEEE,

425–27.

Niu, Gang, and Junjie Jiang. 2017. “Prognostic Control-Enhanced Maintenance Optimization for

Multi-Component Systems.” Reliability Engineering and System Safety 168: 218–26.

Nixon, Steve, Ryan Weichel, Karl Reichard, and James Kozlowski. 2018. “A Machine Learning

Approach to Diesel Engine Health Prognostics Using Engine Controller Data.” In

Proceedings of the Annual Conference of the Prognostics and Health Management Society,.

Obst, Oliver. 2014. “Distributed Fault Detection in Sensor Networks Using a Recurrent Neural

Network.” Neural Processing Letters 40(3): 261–73.

 195

Odendaal, Hendrik M., and Thomas Jones. 2014. “Actuator Fault Detection and Isolation: An

Optimised Parity Space Approach.” Control Engineering Practice 26(1): 222–32.

Oh, Dong Yul, and Il Dong Yun. 2018. “Residual Error Based Anomaly Detection Using Auto-

Encoder in SMD Machine Sound.” Sensors (Switzerland) 18(5): 1308.

Oliver, Avital et al. 2018. “Realistic Evaluation of Deep Semi-Supervised Learning Algorithms.”

CoRR abs/1804.0.

Page, Christopher et al. 2012. “Remaining Useful Life Estimation of Caterpillar Vehicle

Compartments.” In CEED Seminar Proceedings 2012, , 49–54.

Paithankar, Amol, and Snehamoy Chatterjee. 2018. “Forecasting Time-to-Failure of Machine

Using Hybrid Neuro-Genetic Algorithm–a Case Study in Mining Machinery.” International

Journal of Mining, Reclamation and Environment 32(3): 182–95.

Park, Yeong Hyeon, and Il Dong Yun. 2018. “Fast Adaptive RNN Encoder–Decoder for Anomaly

Detection in SMD Assembly Machine.” Sensors (Switzerland) 18(10): 3573.

Park, You Jin, Shu Kai S. Fan, and Chia Yu Hsu. 2020. “A Review on Fault Detection and Process

Diagnostics in Industrial Processes.” Processes 8(9).

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. 2013. On the Difficulty of Training

Recurrent Neural Networks.

Pedregosa, F et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine

Learning Research 12: 2825–30.

Peng, Ying, Ming Dong, and Ming Jian Zuo. 2010. “Current Status of Machine Prognostics in

Condition-Based Maintenance: A Review.” International Journal of Advanced

Manufacturing Technology 50(1–4): 297–313.

Petersen, Niklas Christoffer, Filipe Rodrigues, and Francisco Camara Pereira. 2019. “Multi-

Output Bus Travel Time Prediction with Convolutional LSTM Neural Network.” Expert

Systems with Applications 120: 426–35.

Pintelon, Liliane, and Alejandro Parodi-Herz. 2008. “Maintenance: An Evolutionary Perspective.”

 196

In Complex System Maintenance Handbook. Springer Series in Reliability Engineering,

London: Springer London, 21–30.

Prajapati, Ashok, James Bechtel, and Subramaniam Ganesan. 2012. “Condition Based

Maintenance: A Survey.” Journal of Quality in Maintenance Engineering 18(4): 384–400.

Principi, Emanuele, Damiano Rossetti, Stefano Squartini, and Francesco Piazza. 2019.

“Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders.” IEEE/CAA

Journal of Automatica Sinica 6(2): 441–51.

Qiu, Jingwei et al. 2015. “The Early-Warning Model of Equipment Chain in Gas Pipeline Based

on DNN-HMM.” Journal of Natural Gas Science and Engineering 27: 1710–22.

Rahimdel, Mohammad Javad, Behzad Ghodrati, and Amir Taghizadeh Vahed. 2020. “Prediction

of Mining Railcar Remaining Useful Life.” In Springer Series in Geomechanics and

Geoengineering, Springer, 281–88.

Ren, Lei et al. 2018. “Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning

Approach.” IEEE Access 6: 50587–98.

Russell, Stuart J, and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach. 3rd ed.

Pearson.

Safizadeh, M. S., and S. K. Latifi. 2014. “Using Multi-Sensor Data Fusion for Vibration Fault

Diagnosis of Rolling Element Bearings by Accelerometer and Load Cell.” Information

Fusion 18(1): 1–8.

Sahu, Atma Ram, and Sanjay Kumar Palei. 2020. “Real-Time Fault Diagnosis of HEMM Using

Bayesian Network: A Case Study on Drag System of Dragline.” Engineering Failure Analysis

118(August): 104917.

Salakhutdinov, Ruslan, and Geoffrey Hinton. 2012. “A Better Way to Pretrain Deep Boltzmann

Machines.” In Advances in Neural Information Processing Systems, , 2447–55.

Sander, Donald. 2011. “Using Technology in Mobile Equipment Maintenance at Teck Coal to

Create a Competitive Advantage.” Simon Fraser University.

 197

Santur, Yunus, Mehmet Karaköse, and Erhan Akin. 2017. “A New Rail Inspection Method Based

on Deep Learning Using Laser Cameras.” In IDAP 2017 - International Artificial Intelligence

and Data Processing Symposium, Institute of Electrical and Electronics Engineers Inc.

Saxena, Abhinav, Jose Celaya, et al. 2008. “Metrics for Evaluating Performance of Prognostic

Techniques.” 2008 International Conference on Prognostics and Health Management, PHM

2008.

Saxena, Abhinav, Kai Goebel, Don Simon, and Neil Eklund. 2008. “Damage Propagation

Modeling for Aircraft Engine Run-to-Failure Simulation.” In 2008 International Conference

on Prognostics and Health Management, PHM 2008,.

Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks: An Overview.” Neural

Networks 61: 85–117.

Scholkopf, Bernhard, and Alexander J Smola. 2018. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine

Learning series.

Schubert, Erich et al. 2017. “DBSCAN Revisited, Revisited.” ACM Transactions on Database

Systems 42(3): 1–21.

Schuster, Mike, and Kuldip K. Paliwal. 1997. “Bidirectional Recurrent Neural Networks.” IEEE

Transactions on Signal Processing 45(11): 2673–81.

Seshadrinath, Jeevanand, Bhim Singh, and B. K. Panigrahi. 2014. “Vibration Analysis Based

Interturn Fault Diagnosis in Induction Machines.” IEEE Transactions on Industrial

Informatics 10(1): 340–50.

Severson, Kristen, Paphonwit Chaiwatanodom, and Richard D. Braatz. 2016. “Perspectives on

Process Monitoring of Industrial Systems.” Annual Reviews in Control 42: 190–200.

Shaheryar, Ahmad et al. 2016. “A Denoising Based Autoassociative Model for Robust Sensor

Monitoring in Nuclear Power Plants.” Science and Technology of Nuclear Installations 2016.

Shao, Siyu, Stephen McAleer, Ruqiang Yan, and Pierre Baldi. 2019. “Highly Accurate Machine

 198

Fault Diagnosis Using Deep Transfer Learning.” IEEE Transactions on Industrial

Informatics 15(4): 2446–55.

Sharda, Ramesh, and Rajendra B Patil. 1992. “Connectionist Approach to Time Series Prediction:

An Empirical Test.” Journal of Intelligent Manufacturing 3(5): 317–23.

Sharma, Vikas, and Anand Parey. 2016. “A Review of Gear Fault Diagnosis Using Various

Condition Indicators.” Procedia Engineering 144: 253–63.

Sheela, K. Gnana, and S. N. Deepa. 2013. “Review on Methods to Fix Number of Hidden Neurons

in Neural Networks.” Mathematical Problems in Engineering 2013.

Sheppard, John, Mark Kaufman, and Timothy Wilmer. 2009. “IEEE Standards for Prognostics and

Health Management.” IEEE Aerospace and Electronic Systems Magazine 24(9): 34–41.

Sheppard, John W., Mark A. Kaufman, and Timothy J. Wilmering. 2008. “IEEE Standards for

Prognostics and Health Management.” In AUTOTESTCON (Proceedings), , 97–103.

Shi, Zhe. 2018. “Semi-Supervised Ensemble Learning Methods for Enhanced Prognostics and

Health Management.” University of Cincinnati.

Short, Michael, and John Twiddle. 2019. “An Industrial Digitalization Platform for Condition

Monitoring and Predictive Maintenance of Pumping Equipment.” Sensors (Switzerland)

19(17).

Si, Xiao Sheng, Wenbin Wang, Chang Hua Hu, and Dong Hua Zhou. 2011. “Remaining Useful

Life Estimation - A Review on the Statistical Data Driven Approaches.” European Journal

of Operational Research 213(1): 1–14.

Smiti, Abir, and Zied Elouedi. 2012. “DBSCAN-GM: An Improved Clustering Method Based on

Gaussian Means and DBSCAN Techniques.” In INES 2012 - IEEE 16th International

Conference on Intelligent Engineering Systems, Proceedings, , 573–78.

Smyl, Slawek. 2020. “A Hybrid Method of Exponential Smoothing and Recurrent Neural

Networks for Time Series Forecasting.” International Journal of Forecasting 36(1): 75–85.

Smyl, Slawek, and Karthik Kuber. 2016. “Data Preprocessing and Augmentation for Multiple

 199

Short Time Series Forecasting with Recurrent Neural Networks.” In 36th International

Symposium on Forecasting, Spain.

Snoek, Jasper, Ryan P Adams, and Hugo Larochelle. 2012. “Nonparametric Guidance of

Autoencoder Representations Using Label Information.” Journal of Machine Learning

Research 13: 2567–88.

Soualhi, Abdenour, Kamal Medjaher, and Noureddine Zerhouni. 2015. “Bearing Health

Monitoring Based on Hilbert-Huang Transform, Support Vector Machine, and Regression.”

IEEE Transactions on Instrumentation and Measurement 64(1): 52–62.

Soualhi, Abdenour, Hubert Razik, Guy Clerc, and Dinh Dong Doan. 2014. “Prognosis of Bearing

Failures Using Hidden Markov Models and the Adaptive Neuro-Fuzzy Inference System.”

IEEE Transactions on Industrial Electronics 61(6): 2864–74.

Stathakis, D. 2009. “How Many Hidden Layers and Nodes?” International Journal of Remote

Sensing 30(8): 2133–47.

Sun, Jianwen, Reto Wyss, Alexander Steinecker, and Philipp Glocker. 2014. “Automated Fault

Detection Using Deep Belief Networks for the Quality Inspection of Electromotors.”

Technisches Messen 81(5): 255–63.

Swersky, Lorne. 2018. “A Study of Unsupervised Outlier Detection for One-Class Classification.”

University of Alberta.

Taghizadeh Vahed, A., B. Ghodrati, and H. Hossienie. 2019. “Enhanced K-Nearest Neighbors

Method Application in Case of Draglines Reliability Analysis.” Proceedings of the 27th

International Symposium on Mine Planning and Equipment Selection - MPES 2018: 481–88.

Ben Taieb, Souhaib, Gianluca Bontempi, Amir F. Atiya, and Antti Sorjamaa. 2012. “A Review

and Comparison of Strategies for Multi-Step Ahead Time Series Forecasting Based on the

NN5 Forecasting Competition.” Expert Systems with Applications 39(8): 7067–83.

Tam, A. S.B., W. M. Chan, and J. W.H. Price. 2006. “Optimal Maintenance Intervals for a Multi-

Component System.” Production Planning and Control 17(8): 769–79.

 200

Tang, Qiu, Yi Chai, Jianfeng Qu, and Hao Ren. 2018. “Fisher Discriminative Sparse

Representation Based on DBN for Fault Diagnosis of Complex System.” Applied Sciences

(Switzerland) 8(5): 795.

Tang, Zaiyong, Chrys de Almeida, and Paul A. Fishwick. 1991. “Time Series Forecasting Using

Neural Networks vs. Box-Jenkins Methodology.” Simulation 57(5): 303–10.

Tao, Xian et al. 2018. “Automatic Metallic Surface Defect Detection and Recognition with

Convolutional Neural Networks.” Applied Sciences (Switzerland) 8(9): 1575.

Tesauro, Gerald. 1992. “Practical Issues in Temporal Difference Learning.” Reinforcement

Learning 277: 33–53.

Tian, Jing, Carlos Morillo, Michael H. Azarian, and Michael Pecht. 2016. “Motor Bearing Fault

Detection Using Spectral Kurtosis-Based Feature Extraction Coupled with K-Nearest

Neighbor Distance Analysis.” IEEE Transactions on Industrial Electronics 63(3): 1793–

1803.

Tian, Zhigang. 2009. “An Artificial Neural Network Approach for Remaining Useful Life

Prediction of Equipments Subject to Condition Monitoring.” In Proceedings of 2009 8th

International Conference on Reliability, Maintainability and Safety, ICRMS 2009, , 143–48.

Tidriri, Khaoula, Nizar Chatti, Sylvain Verron, and Teodor Tiplica. 2016. “Bridging Data-Driven

and Model-Based Approaches for Process Fault Diagnosis and Health Monitoring: A Review

of Researches and Future Challenges.” Annual Reviews in Control 42: 63–81.

Tsui, Kwok L. et al. 2015. “Prognostics and Health Management: A Review on Data Driven

Approaches.” Mathematical Problems in Engineering 2015.

Vachtsevanos, George et al. 2006. Intelligent Fault Diagnosis and Prognosis for Engineering

Systems. Wiley.

Venkatasubramanian, Venkat, Raghunathan Rengaswamy, Kewen Yin, and Surya N. Kavuri.

2003. “A Review of Process Fault Detection and Diagnosis Part I: Quantitative Model-Based

Methods.” Computers and Chemical Engineering 27(3): 293–311.

 201

Verma, Vikas et al. 2019. “Interpolation Consistency Training for Semi-Supervised Learning.” In

IJCAI International Joint Conference on Artificial Intelligence, , 3635–41.

Waller, Matthew A., and Stanley E. Fawcett. 2013. “Data Science, Predictive Analytics, and Big

Data: A Revolution That Will Transform Supply Chain Design and Management.” Journal

of Business Logistics 34(2): 77–84.

Wan, Xiang et al. 2016. “A Critical Study of Different Dimensionality Reduction Methods for

Gear Crack Degradation Assessment under Different Operating Conditions.” Measurement:

Journal of the International Measurement Confederation 78: 138–50.

Wang, Hong et al. 2019. “Early Fault Detection of Wind Turbines Based on Operational Condition

Clustering and Optimized Deep Belief Network Modeling.” Energies 12(6): 984.

Wang, Jason, and Luis Perez. 2017. “The Effectiveness of Data Augmentation in Image

Classification Using Deep Learning.” arXiv.

Wang, Jinjiang et al. 2017. “Machine Health Monitoring Using Local Feature-Based Gated

Recurrent Unit Networks.” IEEE Transactions on Industrial Electronics 65(2): 1539–48.

Wang, Jiujian, Guilin Wen, Shaopu Yang, and Yongqiang Liu. 2019. “Remaining Useful Life

Estimation in Prognostics Using Deep Bidirectional LSTM Neural Network.” In Proceedings

- 2018 Prognostics and System Health Management Conference, PHM-Chongqing 2018,

Institute of Electrical and Electronics Engineers Inc., 1037–42.

Wang, Lei et al. 2015. “Knowledge Representation and General Petri Net Models for Power Grid

Fault Diagnosis.” IET Generation, Transmission and Distribution 9(9): 866–73.

Wang, Long et al. 2017. “Wind Turbine Gearbox Failure Identification with Deep Neural

Networks.” IEEE Transactions on Industrial Informatics 13(3): 1360–68.

Wang, Qin, Wen Li, and Luc Van Gool. 2019. “Semi-Supervised Learning by Augmented

Distribution Alignment.”

Wang, Qin, Gabriel Michau, and Olga Fink. 2019. “Domain Adaptive Transfer Learning for Fault

Diagnosis.” Proceedings - 2019 Prognostics and System Health Management Conference,

 202

PHM-Paris 2019: 279–85.

Wang, Songyan et al. 2018. “Deep-Learning Based Fault Diagnosis Using Computer-Visualised

Power Flow.” IET Generation, Transmission and Distribution 12(17): 3985–92.

Wang, Y. S. et al. 2014. “An Intelligent Approach for Engine Fault Diagnosis Based on Hilbert-

Huang Transform and Support Vector Machine.” Applied Acoustics 75(1): 1–9.

Wang, Zhiguang, and Tim Oates. 2015. “Encoding Time Series as Images for Visual Inspection

and Classification Using Tiled Convolutional Neural Networks.” AAAI Workshop - Technical

Report WS-15-14: 40–46.

Wen, Long, Yan Dong, and Liang Gao. 2019. “A New Ensemble Residual Convolutional Neural

Network for Remaining Useful Life Estimation.” Mathematical Biosciences and Engineering

16(2): 862–80.

Wen, Ruofeng, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. 2017. “A

Multi-Horizon Quantile Recurrent Forecaster.” arXiv.

Widodo, Achmad, and Bo Suk Yang. 2007. “Support Vector Machine in Machine Condition

Monitoring and Fault Diagnosis.” Mechanical Systems and Signal Processing 21(6): 2560–

74.

Worden, Keith, Tara Baldacchino, Jennifer Rowson, and Elizabeth J. Cross. 2016. “Some Recent

Developments in SHM Based on Nonstationary Time Series Analysis.” Proceedings of the

IEEE 104(8): 1589–1603.

Wu, J. J., S. L. Wu, and X. X. You. 2014. “PHM for Complex Mining and Metallurgy Equipment

Multi-State System Based Optimal Multivariate Bayesian Model.” In IEEE International

Conference on Industrial Engineering and Engineering Management, IEEE Computer

Society, 1042–46.

Wu, Xindong, Xingquan Zhu, Gong Qing Wu, and Wei Ding. 2014. “Data Mining with Big Data.”

IEEE Transactions on Knowledge and Data Engineering 26(1): 97–107.

Wu, Yonghui et al. 2016. “Google’s Neural Machine Translation System: Bridging the Gap

 203

between Human and Machine Translation.”

Wu, Yuting et al. 2018. “Remaining Useful Life Estimation of Engineered Systems Using Vanilla

LSTM Neural Networks.” Neurocomputing 275: 167–79.

Wu, Zhenyu et al. 2018. “A Weighted Deep Representation Learning Model for Imbalanced Fault

Diagnosis in Cyber-Physical Systems.” Sensors (Switzerland) 18(4): 1096.

Xu, Gaowei et al. 2019. “Data-Driven Fault Diagnostics and Prognostics for Predictive

Maintenance: A Brief Overview.” IEEE International Conference on Automation Science

and Engineering 2019-Augus(1): 103–8.

Xu, Yan et al. 2017. “Industrial Big Data for Fault Diagnosis: Taxonomy, Review, and

Applications.” IEEE Access 5: 17368–80.

Xu, Yun, and Royston Goodacre. 2018. “On Splitting Training and Validation Set: A Comparative

Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the

Generalization Performance of Supervised Learning.” Journal of Analysis and Testing 2(3):

249–62.

Xue, Si-sheng, Xin-chun Li, and Xiang-yu Xu. 2016. “Fault Tree and Bayesian Network Based

Scraper Conveyer Fault Diagnosis.” In Proceedings of the 22nd International Conference on

Industrial Engineering and Engineering Management 2015, Atlantis Press, 783–95.

Yaghobi, Hamid, Habib Rajabi Mashhadi, and Kourosh Ansari. 2011. “Artificial Neural Network

Approach for Locating Internal Faults in Salient-Pole Synchronous Generator.” Expert

Systems with Applications 38(10): 13328–41.

Yan, Jihong, and Lei Lu. 2014. “Improved Hilbert-Huang Transform Based Weak Signal

Detection Methodology and Its Application on Incipient Fault Diagnosis and ECG Signal

Analysis.” Signal Processing 98: 74–87.

Yan, Ke, Chaowen Zhong, Zhiwei Ji, and Jing Huang. 2018. “Semi-Supervised Learning for Early

Detection and Diagnosis of Various Air Handling Unit Faults.” Energy and Buildings 181:

75–83.

 204

Yan, Ruqiang, Robert X. Gao, and Xuefeng Chen. 2014. “Wavelets for Fault Diagnosis of Rotary

Machines: A Review with Applications.” Signal Processing 96(PART A): 1–15.

Yang, Chunzhen, Jingquan Liu, Yuyun Zeng, and Guangyao Xie. 2019. “Real-Time Condition

Monitoring and Fault Detection of Components Based on Machine-Learning Reconstruction

Model.” Renewable Energy 133: 433–41.

Yang, Jaemin, and Jonghyun Kim. 2018. “An Accident Diagnosis Algorithm Using Long Short-

Term Memory.” Nuclear Engineering and Technology 50(4): 582–88.

Yang, Zhi-Ling, Wang Bin, Dong Xing-Hui, and Liu Hao. 2012. “The 2 Nd Expert System of

Fault Diagnosis for Gear Box in Wind Turbine.” In The Second International Conference on

Complexity Science & Information Engineering, , 189–95.

Yin, Shen et al. 2012. “A Comparison Study of Basic Data-Driven Fault Diagnosis and Process

Monitoring Methods on the Benchmark Tennessee Eastman Process.” Journal of Process

Control 22(9): 1567–81.

Yin, Shen, Guang Wang, and Huijun Gao. 2016. “Data-Driven Process Monitoring Based on

Modified Orthogonal Projections to Latent Structures.” IEEE Transactions on Control

Systems Technology 24(4): 1480–87.

Yin, Shen, Xiangping Zhu, and Okyay Kaynak. 2015. “Improved PLS Focused on Key-

Performance-Indicator-Related Fault Diagnosis.” IEEE Transactions on Industrial

Electronics 62(3): 1651–58.

Yin, Zuyu, and Jian Hou. 2016. “Recent Advances on SVM Based Fault Diagnosis and Process

Monitoring in Complicated Industrial Processes.” Neurocomputing 174: 643–50.

Yoon, Andre S. et al. 2017. “Semi-Supervised Learning with Deep Generative Models for Asset

Failure Prediction.” arXiv.

You, Gae Won, Sangdo Park, and Dukjin Oh. 2017. “Diagnosis of Electric Vehicle Batteries Using

Recurrent Neural Networks.” IEEE Transactions on Industrial Electronics 64(6): 4885–93.

Young, Aaron, and Pratt Rogers. 2019. “A Review of Digital Transformation in Mining.” Mining,

 205

Metallurgy and Exploration 36(4): 683–99.

Yu, Lu, Jianling Qu, Feng Gao, and Yanping Tian. 2019. “A Novel Hierarchical Algorithm for

Bearing Fault Diagnosis Based on Stacked LSTM.” Shock and Vibration 2019.

Yuan, Mei, Yuting Wu, and Li Lin. 2016. “Fault Diagnosis and Remaining Useful Life Estimation

of Aero Engine Using LSTM Neural Network.” In 2016 IEEE International Conference on

Aircraft Utility Systems (AUS), Beijing,China, 135–40.

Zhai, Shouchao, Wei Wang, and Hao Ye. 2015. “Fault Diagnosis Based on Parameter Estimation

in Closed-Loop Systems.” IET Control Theory and Applications 9(7): 1146–53.

Zhang, Ansi et al. 2018. “Transfer Learning with Deep Recurrent Neural Networks for Remaining

Useful Life Estimation.” Applied Sciences (Switzerland) 8(12): 2416.

Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola. 2020. Dive Into Deep Learning.

Zhang, Chaolong, Yigang He, Lifeng Yuan, and Sheng Xiang. 2018. “Analog Circuit Incipient

Fault Diagnosis Method Using DBN Based Features Extraction.” IEEE Access 6: 23053–64.

Zhang, Chong, Pin Lim, A. K. Qin, and Kay Chen Tan. 2017. “Multiobjective Deep Belief

Networks Ensemble for Remaining Useful Life Estimation in Prognostics.” IEEE

Transactions on Neural Networks and Learning Systems 28(10): 2306–18.

Zhang, G. Peter, and Douglas M. Kline. 2007. “Quarterly Time-Series Forecasting with Neural

Networks.” IEEE Transactions on Neural Networks 18(6): 1800–1814.

Zhang, G. Peter, and Min Qi. 2005. “Neural Network Forecasting for Seasonal and Trend Time

Series.” In European Journal of Operational Research, North-Holland, 501–14.

Zhang, Hongyi, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017. “Mixup: Beyond

Empirical Risk Minimization.” arXiv.

Zhang, Jianjing, Peng Wang, Ruqiang Yan, and Robert X. Gao. 2018. “Long Short-Term Memory

for Machine Remaining Life Prediction.” Journal of Manufacturing Systems 48: 78–86.

Zhang, Kui, Yuhua Li, Philip Scarf, and Andrew Ball. 2011. “Feature Selection for High-

 206

Dimensional Machinery Fault Diagnosis Data Using Multiple Models and Radial Basis

Function Networks.” Neurocomputing 74(17): 2941–52.

Zhang, Lei, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. 2016. “Road Crack Detection

Using Deep Convolutional Neural Network.” In Proceedings - International Conference on

Image Processing, ICIP, IEEE Computer Society, 3708–12.

Zhang, Liangwei et al. 2019. “A Review on Deep Learning Applications in Prognostics and Health

Management.” IEEE Access 7: 162415–38.

Zhang, Liangwei, Jing Lin, and Ramin Karim. 2015. “An Angle-Based Subspace Anomaly

Detection Approach to High-Dimensional Data: With an Application to Industrial Fault

Detection.” Reliability Engineering and System Safety 142: 482–97.

———. 2017. “Sliding Window-Based Fault Detection From High-Dimensional Data Streams.”

IEEE Transactions on Systems, Man, and Cybernetics: Systems 47(2): 289–303.

———. 2018. “Adaptive Kernel Density-Based Anomaly Detection for Nonlinear Systems.”

Knowledge-Based Systems 139: 50–63.

Zhang, Senlin, Yixing Wang, Meiqin Liu, and Zhejing Bao. 2017. “Data-Based Line Trip Fault

Prediction in Power Systems Using LSTM Networks and SVM.” IEEE Access 6: 7675–86.

Zhang, Yang, Paul Hutchinson, Nicholas A.J. Lieven, and Jose Nunez-Yanez. 2020. “Remaining

Useful Life Estimation Using Long Short-Term Memory Neural Networks and Deep Fusion.”

IEEE Access 8: 19033–45.

Zhang, Yongzhi, Rui Xiong, Hongwen He, and Michael G. Pecht. 2018. “Long Short-Term

Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion

Batteries.” IEEE Transactions on Vehicular Technology 67(7): 5695–5705.

Zhang, Zehan, Shuanghong Li, Yawen Xiao, and Yupu Yang. 2019. “Intelligent Simultaneous

Fault Diagnosis for Solid Oxide Fuel Cell System Based on Deep Learning.” Applied Energy

233–234: 930–42.

Zhang, Zhenyou. 2014. “Data Mining Approaches for Intelligent Condition-Based Maintenance-

 207

A Framework of Intelligent Fault Diagnosis and Prognosis System (IFDPS).” Norwegian

University of Science and Technology.

Zhao, Haitao, Shaoyuan Sun, and Bo Jin. 2018. “Sequential Fault Diagnosis Based on LSTM

Neural Network.” IEEE Access 6: 12929–39.

Zhao, Hongshan, Huihai Liu, Wenjing Hu, and Xihui Yan. 2018. “Anomaly Detection and Fault

Analysis of Wind Turbine Components Based on Deep Learning Network.” Renewable

Energy 127: 825–34.

Zhao, Nanyang et al. 2020. “Fault Diagnosis of Diesel Engine Valve Clearance Based on

Variational Mode Decomposition and Random Forest.” Applied Sciences (Switzerland)

10(3).

Zhao, Ningbo, Shuying Li, Yunpeng Cao, and Hui Meng. 2015. “Remote Intelligent Expert

System for Operation State of Marine Gas Turbine Engine.” In Proceedings of the World

Congress on Intelligent Control and Automation (WCICA), Institute of Electrical and

Electronics Engineers Inc., 3210–15.

Zhao, Rui et al. 2019. “Deep Learning and Its Applications to Machine Health Monitoring.”

Mechanical Systems and Signal Processing 115: 213–37.

Zhao, Rui, Ruqiang Yan, Jinjiang Wang, and Kezhi Mao. 2017. “Learning to Monitor Machine

Health with Convolutional Bi-Directional LSTM Networks.” Sensors (Switzerland) 17(2): 1–

18.

Zhao, Ye et al. 2015. “Graph-Based Semi-Supervised Learning for Fault Detection and

Classification in Solar Photovoltaic Arrays.” IEEE Transactions on Power Electronics 30(5):

2848–58.

Zheng, L et al. 2019. “A Fault Prediction Of Equipment Based On CNN-LSTM Network.” In 2019

IEEE International Conference on Energy Internet (ICEI), , 537–41.

Zhong, Guiping, Lihong Dong, and Ou Ye. 2018. “Fault Diagnosis Method for Shearer Equipment

of PCA-BP-Adaboost.” In Proceedings - 2018 11th International Symposium on

Computational Intelligence and Design, ISCID 2018, Institute of Electrical and Electronics

 208

Engineers Inc., 128–31.

Zhong, Maiying, Yang Song, and Steven X. Ding. 2015. “Parity Space-Based Fault Detection for

Linear Discrete Time-Varying Systems with Unknown Input.” Automatica 59: 120–26.

Zhou, Zhe, Chenglin Wen, and Chunjie Yang. 2016. “Fault Isolation Based on κ-Nearest Neighbor

Rule for Industrial Processes.” IEEE Transactions on Industrial Electronics 63(4): 2578–86.

Zhu, Kedong, Fei Mei, and Jianyong Zheng. 2017. “Adaptive Fault Diagnosis of HVCBs Based

on P-SVDD and P-KFCM.” Neurocomputing 240: 127–36.

 209

Appendix A: Sample Work Order Records

Table A.1. Top 10 rows of work order history

 210

Appendix B: Highlights of the Python Script

Developed for Fault Diagnosis

Highlights of the Python script for performing various steps involved in fault diagnosis as

described in Chapter 4 are presented below.

Give Google Colab access to Google Drive

from google.colab import drive

drive.mount('/content/drive')

Import necessary libraries and packages

import pandas as pd

import numpy as np

import datetime as dt

import seaborn as sns

import statsmodels.api as sm

import matplotlib

import matplotlib.pyplot as plt

get_ipython().run_line_magic('matplotlib', 'inline')

from sklearn.feature_selection import VarianceThreshold

from sklearn.preprocessing import MinMaxScaler

from sklearn.decomposition import PCA

from sklearn.neighbors import NearestNeighbors

import warnings

import itertools

warnings.filterwarnings("ignore")

data = pd.read_csv('Inputdata.csv’)

 211

data.head()

Data Pre-processing

Remove all features whose variance does not meet the defined threshold

threshold = 0.90

var_thres = VarianceThreshold(threshold = (threshold * (1 - threshold)))

var_thres.fit_transform(data)

dropped_columns = [column for column in data.columns

 if column not in data.columns[var_thres.get_support()]]

data.drop(dropped_columns, axis =1, inplace = True)

Create a correlation matrix and heatmap to show the Pearson's correlation index for all independent
features

corrmat = data.corr()

top_corr_features = corrmat.index

Select appropriate figure size based on the number of features

plt.figure(figsize = (20,20))

plt.title('Pearson Correlation Coefficients for Input Features')

Plot heat map

G = sns.heatmap(data[top_corr_features].corr(),

 annot=True,

 cmap="RdBu_r")

Define a function to select highly correlated feature and

Remove the first feature that is highly correlated with any other feature

def correlation(dataset, threshold):

 col_corr = set() # Set of all the names of correlated columns

 212

 corr_matrix = dataset.corr()

 for i in range(len(corr_matrix.columns)):

 for j in range(i):

 if abs(corr_matrix.iloc[i, j]) > threshold: #Calculate absolute values

 colname = corr_matrix.columns[i] #Obtain the respective column names

 col_corr.add(colname)

 return col_corr

Call the function and pass the training set and threshold.

corr_features = correlation(data, 0.75)

Drop all the highly correlated features

data.drop(corr_features, axis =1, inplace = True)

Feature Transformation using Min-Max Scaler

scaler = MinMaxScaler()

data = pd.DataFrame(scaler.fit_transform(data),

 columns = data.columns)

Principal component analysis

Apply PCA to reduce the dimensionality of the input dataset

pca = PCA(n_components=2)

pca_result = pca.fit_transform(data)

data_PCA['PC1'] = pca_result[:,0]

data_PCA['PC2'] = pca_result[:,1]

Chossing hyperparameters for DBSCAN

Calculate k-NN distance plot values to choose Epsilon value for DBSCAN

neigh = NearestNeighbors(n_neighbors=2)

 213

nbrs = neigh.fit(data_PCA)

distances, indices = nbrs.kneighbors(data_PCA)

distances = np.sort(distances, axis=0)

distances = distances[:,1]

Plot k-NN distance values to choose Epsilon value for DBSCAN

Set image properties

fig = plt.figure(dpi = 1200)

plt.figure(figsize = (12,8))

plt.title('k-NN Distance Plot (k = 2)')

plt.ylim(0,1)

plt.yticks(np.arange(0, 2, step = 0.1))

plt.ylabel('k-NN Distance (k = 2)')

plt.xlabel('Input samples sorted by distance')

#Plot the values

plt.plot(distances, linewidth = 2, color = 'r')

Grid Search for hyperparameter tuning

Function to iterate through a wide range of hyperparameter values

def model_run(rad, mpts):

 ep = rad/10

 minpts = mpts

 # Compute DBSCAN

 db = DBSCAN(eps = ep,

 min_samples = minpts,

 metric = 'euclidean',

 n_jobs = -1).fit(data_PCA)

 labels = db.labels_

 214

 # Number of clusters in labels, ignoring noise if present.

 n_clusters = len(set(labels)) - (1 if -1 in labels else 0)

 n_noise = list(labels).count(-1)

 data.append([ep, minpts, n_clusters, n_noise])

 df_stats = pd.DataFrame(data,

 columns = ['Epsilon',

 'Minimum Points',

 'Number of Clusters',

 'Number of Outliers'])

Specify the range of hyperparameter values

configs = list()

for eps in range (5, 40, 1):

 for minpts in range (5, 25, 1):

 cfg = [eps, minpts]

 configs.append(cfg)

Run the function

data = []

for cfg in configs:

 e, m = cfg

 model_run(e,m)

Implementation of DBSCAN algorithm

Implement DBSCAN algorithm on the 2-dimensional dataset to detect outliers

from sklearn.cluster import DBSCAN

Compute DBSCAN

 215

db = DBSCAN(eps = 0.7,

 min_samples = 15,

 metric = 'euclidean',

 n_jobs = -1).fit(data_PCA)

clusters = db.fit_predict(data_PCA)

core_samples_mask = np.zeros_like(db.labels_, dtype = bool)

core_samples_mask[db.core_sample_indices_] = True

labels = db.labels_

Generating the plot of outliers using DBSCAN algorithm

Generate a 2-dimensional plot of the outliers.

from matplotlib import cm

cmap = cm.get_cmap('Set1')

fig = plt.figure(dpi =1200)

data_PCA.plot.scatter(x = 'PC1',

 y = 'PC2',

 c = clusters,

 cmap = cmap,

 colorbar = True,

 figsize = (12,8),

 sharex = False,

 title = '2-D plot of Outliers generated by DBSCAN')

plt.xlabel('Principal Component 1')

plt.ylabel('Principal Component 2')

Implementation of HDBSCAN algorithm

Implement HDBSCAN Algorithm

import hdbscan

 216

clusterer = hdbscan.HDBSCAN(min_cluster_size = 15,

 allow_single_cluster = False,

 gen_min_span_tree = True)

clusterer.fit(data_PCA)

Calculate outlier scores generated by the algorithm.

scores = clusterer.outlier_scores_[np.isfinite(clusterer.outlier_scores_)]

fig = plt.figure(dpi =1200)

plt.figure(figsize = (12,8))

plt.xlabel('Outlier Scores')

plt.ylabel('Density')

Plot the outlier scores as a distribution plot

plt.title("Density plot of Cluster Outlier Scores generated by HDBSCAN Algorithm")

sns.distplot(scores,

 rug = True,

 bins = 10)

Calculate the 90th percentile value and label the points outside this value as outliers.

threshold = pd.Series(clusterer.outlier_scores_).quantile(0.90)

outliers = np.where(clusterer.outlier_scores_ > threshold)[0]

data_PCA['Rank'] = 0

for index in outliers:

 data_PCA.loc[index,'Rank'] = 1

Generating the plot of outliers using HDBSCAN algorithm

Generate a 2-dimensional plot of the outliers.

from matplotlib import cm

 217

cmap = cm.get_cmap('Set1_r')

fig = plt.figure(dp i=1200)

data_PCA.plot.scatter(x = 'PC1',

 y = 'PC2',

 c = 'Rank',

 cmap = cmap,

 colorbar = True,

 figsize = (12, 8),

 sharex = False,

 title = '2-D plot of Outliers generated by HDBSCAN')

plt.xlabel('Principal Component 1')

plt.ylabel('Principal Component 2')

 218

Appendix C: 2-Dimensional Plot of Outliers

The 2-dimensional plots of outliers generated by various anomaly detection algorithms at the three

mines are presented in this section. The x-axis represents principal component-1 (PC-1) and the y-

axis represents principal component-2 (PC-2), where PC-1 and PC-2 are obtained by transforming

the initial dataset into a lower dimensional dataset using PCA. The grey points in each plot

represent the inliers and the red in each plot represent the points flagged as outlier by the respective

algorithm

Figure C.1. 2-D plot of outliers generated by k-NN outlier detection algorithm at mine A

 219

Figure C.2. 2-D plot of outliers generated by LOF based outlier detection algorithm at mine A

Figure C.3. 2-D plot of outliers generated by ABOD based outlier detection algorithm at mine A

 220

Figure C.4. 2-D plot of outliers generated by HDBSCAN outlier detection algorithm at mine B

Figure C.5. 2-D plot of outliers generated by k-NN based outlier detection algorithm at mine B

 221

Figure C.6. 2-D plot of outliers generated by LOF based outlier detection algorithm at mine B

Figure C.7.2-D plot of outliers generated by ABOD based outlier detection algorithm at mine B

 222

Figure C.8. 2-D plot of outliers generated by HDBSCAN outlier detection algorithm at mine C

Figure C.9. 2-D plot of outliers generated by k-NN based outlier detection algorithm at mine C

 223

Figure C.10.2-D plot of outliers generated by LOF based outlier detection algorithm at mine C

Figure C.11. 2-D plot of outliers generated by ABOD based outlier detection algorithm at mine C

 224

Appendix D: Engine Sensor Update Frequency

Table D.1. Sampling frequency of various sensors in a haul truck

Description Units # Samples per
second

Actual Engine - Percent Torque High Resolution % 50

Battery Potential (Voltage) V 1

Boost Pressure kPa 2

Driver Demand Engine - Percent Torque % 50

Engine Air Inlet Temperature DEGC 1

Engine Coolant Level % 2

Engine Coolant Pressure kPa 15

Engine Crankcase Pressure kPa 15

Engine Desired Operating Speed rpm 50

Engine Exhaust Gas Temperature DEGC 4

Engine Exhaust Gas Temperature - Left Manifold DEGC 4

Engine Exhaust Gas Temperature - Right Manifold DEGC 4

Engine Fuel Leakage 1

Engine Fuel Supply Pump Inlet Pressure kPa 2

Engine Fuel Temperature DEGC 2

Engine Injector Metering Rail (Common Rail) Pressure MPa 2

Engine Oil Temperature DEGC 2

Engine Pre-filter Oil Pressure kPa 1

Engine Turbocharger Speed rpm 10

Estimated Percent Fan Speed % 2

Extended Crankcase Blow-by Pressure kPa 2

Injector Timing Rail 1 Pressure MPa 2

 225

Turbocharger 1 Compressor Inlet Temperature DEGC 1

Water in Fuel Indicator 0

Engine Fan 1 Requested Percent Speed % 0

Engine Alternate Rating Select 0

Trip Average Fuel Rate L/HR 0

Trip Engine Running Time HR 0

Trip Idle Time HR 0

Total ECU Run Time HR 0

Trip Drive Fuel Used L 0

Trip Vehicle Idle Fuel Used L 0

Engine Rated Power KW 0

Engine Total Idle Fuel Used L 0

Engine Total Idle Hours HR 0

Total Power Takeoff Hours HR 0

Engine Charge Air Cooler 1 Outlet Temperature DEGC 1

Battery Potential / Power Input 1 V 1

Barometric Pressure kPa 1

Engine ECU Temperature DEGC 1

Fan Drive State 1

Engine Total Revolutions Revs 1

Engine Turbocharger 1 Compressor Outlet Temperature DEGC 1

Engine Turbocharger 3 Boost Pressure kPa 2

Engine Coolant Temperature DEGC 2

Engine Intercooler Temperature DEGC 2

Engine Oil Level Remote Reservoir % 2

Engine Turbocharger 1 Boost Pressure kPa 2

 226

Engine Turbocharger 2 Boost Pressure kPa 2

Engine Total Hours of Operation HR 2

Engine Total Fuel Used L 2

Engine Trip Fuel L 2

Engine Exhaust Gas Port 17 Temperature DEGC 2

Engine Exhaust Gas Port 18 Temperature DEGC 2

Engine Exhaust Gas Port 10 Temperature DEGC 3

Engine Exhaust Gas Port 11 Temperature DEGC 3

Engine Exhaust Gas Port 12 Temperature DEGC 3

Engine Exhaust Gas Port 9 Temperature DEGC 3

Engine Oil Filter Differential Pressure kPa 3

Engine Auxiliary Coolant Pressure kPa 4

Engine Exhaust Gas Port 1 Temperature DEGC 4

Engine Exhaust Gas Port 2 Temperature DEGC 4

Engine Exhaust Gas Port 3 Temperature DEGC 4

Engine Exhaust Gas Port 4 Temperature DEGC 4

Engine Exhaust Gas Port 5 Temperature DEGC 4

Engine Exhaust Gas Port 6 Temperature DEGC 4

Engine Exhaust Gas Port 7 Temperature DEGC 4

Engine Exhaust Gas Port 8 Temperature DEGC 4

Engine Operating State 4

Engine Exhaust Gas Port 13 Temperature DEGC 4

Engine Exhaust Gas Port 14 Temperature DEGC 4

Engine Exhaust Gas Port 15 Temperature DEGC 4

Engine Exhaust Gas Port 16 Temperature DEGC 4

Engine Intake Manifold 1 Temperature DEGC 4

 227

Engine Intake Manifold 2 Temperature DEGC 4

Engine Intake Manifold 4 Temperature DEGC 4

Engine Intake Manifold 3 Temperature DEGC 4

Engine Fuel Rate L/HR 10

Engine Oil Filter Intake Pressure kPa 10

Power Takeoff Set Speed rpm 10

Instantaneous Estimated Brake Power kW 10

Engine Fuel Delivery Pressure kPa 15

Engine Oil Pressure kPa 15

Engine Percent Load At Current Speed % 20

Accelerator Pedal 1 Low Idle Switch 20

Accelerator Pedal Kickdown Switch 20

Accelerator Pedal Position 1 % 20

Actual Maximum Available Engine - Percent Torque % 20

Engine Torque Mode 50

Actual Engine - Percent Torque % 50

Engine Speed rpm 50

Engine Requested Speed Control Conditions 50

Override Control Mode Priority 50

Engine Demand - Percent Torque % 50

Nominal Friction - Percent Torque % 50

 228

Appendix E: Seasonality in Sensor Readings

Figure E.1. PDF plot of engine oil pressure by season

Figure E.2. PDF plot of engine oil pressure during day and night

 229

Figure E.3.PDF Plot of common rail pressure by season

Figure E.4. PDF Plot of common rail pressure during day and night

 230

Figure E.5. PDF plot of fuel pump inlet pressure by season

Figure E.6. PDF plot of fuel pump inlet pressure during day and night

 231

Figure E.7. PDF plot of fuel delivery pressure by season

Figure E.8. PDF plot of fuel delivery pressure during day and night

 232

Figure E.9. PDF plot of engine horsepower by season

Figure E.10. PDF plot of engine horsepower during day and night

 233

Appendix F: Highlights of the Python Script

Developed for Fault Prognosis

Highlights of the Python script for performing various steps involved in fault prognosis as

described in Chapter 5 are presented below.

Give Google Colab access to Google Drive

from google.colab import drive

drive.mount('/content/drive')

Import necessary libraries and packages

import pandas as pd

pd.set_option('display.float_format', lambda x: '%.3f' % x)

import numpy as np

import datetime as dt

import seaborn as sns

import math

from math import sqrt

from matplotlib import pyplot

%matplotlib inline

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.ticker as tkr

from sklearn import metrics

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

 234

from sklearn.metrics import explained_variance_score

from sklearn.metrics import max_error

from sklearn.metrics import mean_absolute_error

from sklearn.metrics import mean_squared_log_error

from sklearn import preprocessing

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

import keras

from keras import Sequential

from keras.layers import LSTM

from keras.layers import GRU

from keras.layers import Dense

from keras.layers import Dropout

from keras.preprocessing.sequence import TimeseriesGenerator

from keras.callbacks import EarlyStopping

import warnings

import itertools

warnings.filterwarnings("ignore")

Read the pre-processed data file

path ='/content/drive/My Drive/Colab Notebooks/Grafana/HT785_combined.csv'

data = pd.read_csv(path)

Data Pre-processing

Resample the data

data = data.resample('H').mean()

 235

Drop all rows with mising data

data.dropna(axis=1, inplace=True)

Function to convert series to supervised learning

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

 n_vars = 1 if type(data) is list else data.shape[1]

 df = DataFrame(data)

 cols, names = list(), list()

 # Input sequence (t-n, ... t-1)

 for i in range(n_in, 0, -1):

 cols.append(df.shift(i))

 names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]

 # Forecast sequence (t, t+1, ... t+n)

 for i in range(0, n_out):

 cols.append(df.shift(-i))

 if i == 0:

 names += [('var%d(t)' % (j+1)) for j in range(n_vars)]

 else:

 names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]

 # Merge the data

 agg = concat(cols, axis=1)

 agg.columns = names

 # Drop rows with missing values

 236

 if dropnan:

 agg.dropna(inplace=True)

 return agg

Load the input dataset

values = data.values

values = values.astype('float32')

Feature transformation

scaler = MinMaxScaler(feature_range=(0, 1))

scaled = scaler.fit_transform(values)

Function containing model hyperparameters

def model_run(lag, nodes, epochs, batch, dropout):

Specify model parameters

 n_lag = lag

 n_nodes = nodes

 n_epochs = epochs

 n_batch = batch

 n_dropout = dropout

 rmse, mae, maxe, evs, r2s = [0, 0 ,0 ,0 ,0]

 n_train_hours = int(len(df)*0.8)

 n_iter = 10

 for i in range(n_iter):

 # Reframe the input data as supervised learning dataset

 n_features = len(df.columns)

 237

 reframed = series_to_supervised(scaled, n_lag, 1)

Create training and test data sets

 # Split the data into train and test sets

 values = reframed.values

 train = values[:n_train_hours, :]

 test = values[n_train_hours:, :]

 # Split the data into input and outputs

 n_obs = n_lag * n_features

 train_X, train_y = train[:, :n_obs], train[:, -1]

 test_X, test_y = test[:, :n_obs], test[:, -1]

 # Reshape the input to be 3D [samples, timesteps, features]

 train_X = train_X.reshape((train_X.shape[0], n_lag, n_features))

 test_X = test_X.reshape((test_X.shape[0], n_lag, n_features))

Implementation of the LSTM model

 # Design the RNN Architecture

 model = Sequential()

 model.add(LSTM(n_nodes, input_shape = (train_X.shape[1], train_X.shape[2])))

 model.add(Dropout(n_dropout))

 model.add(Dense(1))

 # Stop training when a monitored quantity has stopped improving.

 callback = [EarlyStopping(monitor = "loss",

 min_delta = 0.00001,

 238

 patience = 20,

 mode = 'auto',

 restore_best_weights = True)]

 # Using regression loss function 'MSE' and validation metric 'MAE'

 model.compile(loss='mse', optimizer='adam', metrics=['mae'])

 # Fit the RNN network

 history = model.fit(train_X,

 train_y,

 epochs = n_epochs,

 batch_size = n_batch,

 validation_data = (test_X, test_y),

 callbacks = callback,

 verbose = 0,

 shuffle = False)

 model.summary()

 # Predict RUL

 yhat = model.predict(test_X)

 test_X = test_X.reshape((test_X.shape[0], n_lag*n_features))

 # Invert trasnformed data for forecast

 inv_yhat = concatenate((test_X[:, 1-n_features:], yhat), axis=1)

 inv_yhat = scaler.inverse_transform(inv_yhat)

 inv_yhat = inv_yhat[:,n_features-1]

 239

 # Invert trasnformed data for actual predictions

 test_y = test_y.reshape((len(test_y), 1))

 inv_y = concatenate((test_X[:, 1-n_features:], test_y), axis=1)

 inv_y = scaler.inverse_transform(inv_y)

 inv_y = inv_y[:,n_features-1]

Evaluating performance of the LSTM model

 # Calculate Loss functions

 rmse += sqrt(mean_squared_error(inv_y, inv_yhat))

 mae += mean_absolute_error(inv_y, inv_yhat)

 maxe += max_error(inv_y, inv_yhat)

 evs += explained_variance_score(inv_y, inv_yhat)

 r2s += r2_score(inv_y, inv_yhat)

 rmse_avg = rmse/n_iter

 mae_avg = mae/n_iter

 maxe_avg = maxe/n_iter

 evs_avg = evs/n_iter

 r2s_avg = r2s/n_iter

 if r2s_avg > best:

 best_parameters = [n_lag, n_nodes, n_epochs, n_batch, n_dropout]

 return inv_y, inv_yhat

Tuning model hyperparameters and selecting the best performing model

Create the list of hyperparameters

n_lag = [24, 48, 72, 96]

 240

n_nodes = [25, 50, 100]

n_epochs = [15, 25]

n_batch = [25, 50]

n_dropout = [0.2, 0.3]

Loop through each combination of hyperparameters

configs = list()

for i in n_lag:

 for j in n_nodes:

 for k in n_epochs:

 for l in n_batch:

 for m in n_dropout:

 cfg = [i, j, k, l, m]

 configs.append(cfg)

best = 0

data = []

for cfg in configs:

 n_lag, n_nodes, n_epochs, n_batch, n_dropout = cfg

 model_run(n_lag, n_nodes, n_epochs, n_batch, n_dropout)

Re-run the model with best Coefficient of determination

n_lag, n_nodes, n_epochs, n_batch, n_dropout = best_parameters

actual, predictions = model_run(n_lag, n_nodes, n_epochs, n_batch, n_dropout)

 241

Appendix G: Sensor Data Sampled at Various Frequencies

The figures below show readings from engine oil pressure sensor sampled at various rates such as 1 second, 10 seconds, 1 minute, 10

minutes and 1 hour. As seen in Figure G.1 through Figure G.5, the overall trend remains the same as engine oil pressure remains

relatively constant until June 27th followed by a reduction in oil pressure until July 10th (haul truck brought down for repair).

Figure G.1. Engine oil pressure sampled at 1 second.

 242

Figure G.2. Engine oil pressure sampled at 10 seconds.

 243

Figure G.3. Engine oil pressure sampled at 1 minute.

 244

Figure G.4. Engine oil pressure sampled at 10 minutes.

 245

Figure G.5. Engine oil pressure sampled at 1 hour

