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ABSTRACT

This thesis is devoted to the numerical analysis of multidimensional Euler equa-
tions. The physics of one-dimensional system of Euler equations is simple and well
established, and many efficient numerical procedures are available for their soln
tions. Two-dimensional problems however are much more complex, in particular,
acoustic waves can propagate in infinitely many directions rather thau just two as
in a one-dimensional problem. In dealing with multidimensional systems, the com-
mutativity of the coefficient inatrices plays a very important role. Unfortunately,
these coefficient matrices do not commute for multidimensional Fuler equations.

The main contributions of this thesis are summarised as follows. Exponential
numerical algorithms are derived for one-dimensional systems. The concept of a
“weakly coupled system” is then introduced for the multidimensional hyperbolic
systems. It is shown that the system of two-dimensional Euler equations is a w.akly
coupled system if and only if the flow conditions are supersonic, which implics
that for the two-dimensional Euler equations, the weakly coupling property is the
characteristi~ for supersonic flows. A preconditioning technique is presented, in
which the coefficient matrices of the corresponding preconditioned two-dimensional
Euler systems are commutative. For a preconditioned system of Euler equations,
we performed the stability analysis for the upwinding , the Lax-Friedrichs and the
fractional step methods. Numerical experiments are reported for steady solutions

of Euler equations.
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Chapter 1

INTRODUCTION

The fact that mathematics i» useful in gas dynamics has now been widely
accepted. In the late 19th century, it was stated in the 14th Annual Report of
the ASGBJ[1] that “Mathematics up fo the present day have been quite useless to
us in regard to flying”. Nevertheless considerable progress has been made in the
past fifty years. In 1954, Theodore von Karman wrote: “Mathematical theories
from the happy hunting grounds of pure mathematicians are found suitable to
describe the airflow produced by aircraft with such ezcellent accuracy that they
can be applied directly to airplane design ”[1]. Moreover, with the advance in
modern computer technology, it has been shown that mathematics is a basic
tool in the study of problems in gas dynamics. Computational fluid dynamizs
(CFD) is an active research topic attracting many mathematicians, physicists,

engineers, and computer scientists.
The basic model in CFD is concerned with multidimensional Euler and
Navier-Stokes systems. There are, however, no rigorous stability analys:s, error

estimate or convergence proof available for these equations. In CFD, researchers
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depend heavily on rigorous mathematical analysis for simpler and linearised
problems.

In establishing numerical simulations for a real physical problem. there
are usually four steps:

A) Set up a mathematical model! e, present a partial differential equation
(PDE) or a system of partial differential equations (PDEs) with ay propriate
boundary conditions. Depending on the properties of a given problem, it can be
classified as linear or nonlinear problem, scalar or system, and one dimensional
(1D) or multidimensional problem. The most challenging problem is certainly
that of solving multidimensional nonlinear systems.

B) Design numerical schemes for the solutions of PDEs, and if possible
provide the analysis of the proposed schemes. Usually one needs to consider
routine questions such as “consistency”, “stability”, and “convergence’.

C) Develop efficient linear solvers to solve the discrete equations resulting
from Step B; Multigrid methods, conjugate-gradient like methods (including
the CGS method |51]) and domain decomposition methods[32] are very often
applied.

D) Interpret the numerical results for the corresponding real physical prob-

1.

For a given problem, both theoretical and experimental results are impor-
tant, but they are often very hard or impossible to obtain. Thus, it is necessary
to consider numerical simulations. This Ph.D. thesis is devoted to the study
of solving PDEs numeric:ily. Our goal is to study multidimensional systems of
Euler equations. There are three parts to this thess:

(1) study artificial viscosity methcds;

(2) introduce the concept of a weakly coupled system;



(3) study Euler solutions numerically.

if the model is either a one-dimensional system or a multidimensional
scalar equation. there are many successful discretization schemes([9], [13], [14],
(15]. 18], [19]. [21]. [26], [27], {34], [36], [40], [43]. and etc.). This is because
of their simplicity and the availability of relatively complete theoretical results
on their solution  Comparatively much less is known about multidimensional
systems of PDEs, e.g. two-dimensional or three-dimensional Euler and Navier-
Stokes equations. Even for a simple two-dimensional linear system with constant
cocfficients, we do not know very much about its solutions.

There are two approaches to consider multidimensional systems: (1) gener-
alise results which are available from one-dimensional system or scalar equations;
(2) develop genuinely multidimensional methods directly . There are many so-
phisticated methods available for one-dimensional systems, e.g. total variation
diminishing (TVD), the characteristic method, flux splitting, etc.({22], [40], [44],
(48], [54]). It will be useful to study and understand them thoroughly when we
consider the development of multidimensional methods. Hence we begin by list-
ing some of the facts regarding numerical methods for one-dimensional systems
and scalar equations.

One popular approach in the recent development of CFD is the use of
“upwinding”. To study upwinding methods we have to deal with artificial vis-
cosity methods which were first developed by von Neumann and Richtmyer[51].
Adding an artificial term into a numerical scheme provides a smoothing effect
on the solutions (it is well-known that nonlinear hyj;erbolic equations can de-
velop discontinuous solutions) and it also leads to an easy design for a stable
numerical algorithm. On this topic, we will study an artificial viscosity method

for the Burgers equation and the shock tube problems. Some of these numerical



schemes are called exponential algorithms.

Multidimensional systems are essentially different from one dimensional
systems.  The physies of one-dimensional flows is especially simple and well
understood. and they can be ecasily simulated by numerical processes. Two
dimensional flows however are more complex: i particular. acoustic waves
can propagate in infinitely many directions rather than just two as in a one-
dimensional problem. Moreover, the existence of vorticity presents a uew phe
nomenon. On the other hand, from the mathematical point of view, one-
dimensional systems are much stinpler than dealing with multidimensional sys
tems with respect to the analysis of the equations ([13], [14], [15], and [56], etc.).
It has been ccnjectured that solving a two-dimensional problem is blocked by
the complexity of the “two-dimensional Riemann solver™, by which we mean an
algorithm for computing the breakdown of initial conditions which are piece
wise constant in two-dimensional cells[41]. Due to the results of Rauch(39], the
commutativity of the coefficient matrices for quasi-linear hyperbolic systems in
dimensions greater than one plays a very important role. Unfortunately for
the Euler equations, their coefficient matrices do not satisty such commutativ-
ity. Therefore simply extending the cne-dimensional work does not guarantee
convergence. There are some works available for developing genuinely multidi-
mensional methods([41], [49], and [55]).

In this thesis, we try toc make contributions to the understanding of multi-
dimensional Euler solutions. In this respect, we first introduce a concept called
a “weakly coupled system”. For a general weakly coupled system, we develop a
semi-discretization scheme for which the stability condition is proved. We then
show that Euler equations are weakly coupled if and only if the flow condi-

tions are supersonic. or the numerical simulations, we compute steady state



solutions of the shock refle tion problems and supersonic channel flows.

The main contributions of this thesis on the numerical analysis of multi-
dimensional Euler equations are as follows:

(1) The idea 1s new;

(2) The method is genuinely multidimensioual;

(3) The implementation of the resulting numerical schemes are much eas-
ier and simpler than the upwinding methods. It works very well for very large
Courant-Friedrichs-Levy (CFL) numbers when it is used in implicit computa-
trons.

(4) The analysis is simple. The stability conditions for the well-known
Lax-Friedrichs scheme, the upwinding scheme and the fractional step scheme
can be casily derived. It is shown numerically that the Lax-Friedrichs scheme
works when using our algorithm but it fuils when simply extending the one-
dimensional results to the original two-dimensional quasi-linear Euler equations.

Finally we will make some comments and discuss some issues regarding

possible future investigations.



Chapter 11

MODEL PROBLEMS

2.1. Introduction

Model problems play a crucial role in numerical simulations of physical

problems. There are several reasons:

1. They are the standard problems which describe some real physical
problems under special circumstances;

2. Their solution’s structures are known and theoretical and numerical

analysis are available;

3. They are used as guidelines to design and test numerical schemes for

more complicated problems.

Our model problems are the hyperbolic wave equations, and they include

the following model problems:
(1) Linear scalar equation;
(2) Nonlinear scalar equation: Burgers’ equation;

(3) Linear one-dimensional systems;
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(4) Nomnlinear one-dimensional system: 1D Euler equations.

2.2. Linear scalar equation

The simplest wave equation is the linear scalar equation:

(2.2.1) ug +cuy =0,

(2.2.2) u(z,0) = f(z).

It is well-known th - the the solution of the Cauchy problem (2.2.1) and (2.2.2)

is given by

(2.2.3) u(z,t) = f(z — ct).

The physical inter; retation for this solution is that a wave prcpagates with
speed ¢ in the sign(c)z-direction. Note that the smoothness of f is required.
If f does not have the required smoothness, e.g. f € L%*(R), one may not be
comfortable with the expression given in (2.2.3). Modified equations of (2.2.1)
and {2.2.2) can be derived by the following two regularizations, i.e. either reg-
ularising equation (2.2.1) or smoothing the initial condition (2.2.2). Here we
consider the first kind of regularization, and it leads to a parabolic perturba-

tion of (2.2.1) and (2.2.2):

(2.2.4) u; + cuf = eul,,

(2.2.5) u‘(z,0) = uo(z).



The solutiva is well-known [42] and is given by the following theoren.
Theorem 2.2.1. If [ uo(s)ds = o(x?), then the solution of (2.2 1} and (2.2.5)

18

1 .
(2.2.6) u(r ¢V ug(r — et — \/If-fy)u’y.

r.t) = —=
V)

Proof. This is derived from the solution of a parabolic equation.
Corollary. If ug € LP(R), 1 < p < oo, then

u‘(-,t) € LP(R),

(2.2.7)
G O)llp < lluollp,
and
(2.2.8) lu(-,t) —ul-, )], =0, as € — 0.

For a multidimensional scalar equation

(2.2.9) ue + aug +buy =0,

(2.2.10) u(z,y,0) = uo(z,y),

we have the following theorem.

Theorem 2.2.2. The solution of (2.2.9) and (2.2.10) is

(2.2.11) u(z,y,t) = ug(x — at,y — bt),



and

1 [ [ 2
(2.2.12) u(r.y,t) = —/ / e ¢ “ﬂzun(x—at—véletf,y—bt—\/4etn)d§d77

T e @) — >

s the solution of

uy + auf + buy = e(uz, +uy,),
(2.2.14)
"((f,y,o) = Uo(.’l‘,y),

where ug s such that fOI uo(s,y)ds = o(z?) and foy ug(z,s)ds = o(y?).

2.3 Linear System with Constant Coefficients

Consider the linear one-dimensional system with constant coefficients:

(2.3.1) | U, + AU, =0,

(2.3.2) U(z,0) = Uo(z).

Here, we assume A is hyperbolic, i.e. A has a complete eigen-system, which
means that all eigenvalues are real and the eigenvectors are linearly independent.
So there exists a nonsingular matrix P such that A = PAP™!, where A is a

diagonal real matrix. Then V = P~!U satisfies the relation
(2.3.3) Vi+ AV, =0,
which is a decoupled system. The corresponding parabolic regularization is

(2.3.4) Vi + AV, = V..
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Another parabolic regularization is one applied directly to (2.3.1) which is equiv-

aient to (2.3.4) and is given by:

(2.3.5) U+ AUy = el

2.4 Nonlinear Scalar Equation: Burgers’ Equation

Using the linear scalar equation as a model is too simple to explore more
sophisticated phenomena such as shock waves. A well-known nonlinear model

problem is described by the Burgers’ equation:

(2.4.1) uy + uug = 0.

With a small viscous term, this becomes

(2.4.2) U + UUp = €Uss.

This is the simplest model that includes the nonlinear and viscous effects of
fluid dynamics. Burgers’ equation is a special case of the nonlinear scalar con-

servation law

(2.4.3) ue + flu)z =0,

where f(u) is a nonlinear function of u. Usually we assume that f(u) ix a
convex function of u, i.e. f'(u) >0 for all u.

There is another reason why Burgers’ equation has received a lot ¢ «t-
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tention. If we are only considering a smooth solution of (2.4.3) and set

(2.4.4) v = f'(u),

vy + vvz =0,

i.c. every nonlincar scalar conservation law with a convex flux can always be
changed to the Burgers’ equation at least in the smooth region of the solutions.
The Burgers’ equation allows discontinuous solutions. Using the Hopf-

Cole transformation one can use (2.4.2) to approximate (2.4.1). The solution

of (2.4.2) [24] is

© 7 1
|2 el Pl g0 de
(2.4.6) u(z,t) = s 1 ,
[ eapl-zFe 0l
where
(2.4.7) F(z&t)—-(x—_g—)z-i—/ff()d
. 18 - 2t o n 7,
and

f(=z) = u(z,0).



2.5 Nonlinear System: 1D Euler Equations

Now consider a nonlinear system in conservation form:

(2.5.1) U+ F(U), =0,

where U and F' are vectors in R". Its matrix form can be written as

(2.5.2) U+ AU U, =0,
where A = gg = (g—g—: axn Here, we assume (2.5.1) is a hyperbolic sys-

tem. The main difference between nonlinear and lincar systems, 1.¢. (2.5.1) and
(2.3.1) is their eigen-systems; one depends on the variable vector U while the
other does not. For a nonlinear system it is not necessary to get the charac-
teristic variables or the Riemann invariants, i.e. one may not be able to find
P and V, such that A(U) = PA(U)P~?, and g% = P!, Even though we can

successfully find the characteristic variables,
(2.5.3) Vi+ AUV, =0,

there is another difference, namely the following two systems

(2.5.4) Ui+ A(UYU, = eUgy,
and
(2.5.5) Vi+ AUV, = €V,

are equivalent if A(U) is constant and different if A(U) is varying, because

in the later case, P is not a constant matrix. Under the assumption of the
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equivalence of (2.5.2) and (2.5.3), we could construct a new artificial viscosity
for (2.5.1).

We will consider the well-known shock tube problem below. The one-
dimensional Euler equations can be expressed in the form[42]:

(2.5.0)
pt+ (pu): =0, (conservation of mass),

(pu); -~ (pu* + P), =0, (conservation of momentum),

2 1.
[n( %- +p)e + [pu(su‘ + ¢ +v/p)]: =0, (conservation lax of energy)

where p is the density, u the velocity, P the pressure, e the energy per unit
mass and v the ratio of specific heats. The shock tube problem is the Riemnann
problem for one-dimensional Euler equations. Their weak solution is well-known

([42], [43]) and they serve as a good test problem for testing numerical methods.



Chapter 111

Finite Difference Methods

3.1. Introduction

To solve OEs numerically many numerical methods are available, e.g.,
finite difference, finite element, and finite volume methods. According to the
accuracy of the methods, they can be classified as first-order, second-order, and
higher-order schemes, including TVD(total variation diminishing), ENO (essen-
tially non-oscillatory) and monotone methods. We may also construct conserva-
tion and non-conservation methods. A naive objective of developing numerical
methods is to find a reliable convergent method. The fundamental theorem on

numerical approximations of PDEs is given by the Lex equivalence theorem[22]:

Theorem 3.1.1. For a well-posed linear initial value problem and a consis-

tent discretisation scheme, stability is the necessary and sufficient condition for

convergence.

Hence, to study numerical schemes, one needs to perform the following tasks:



(1) Analyse the consistency condition:
(2) Analyse the stability conditions.
The first task can be achieved casily through space discretisations. The second!
task is hard  but it is an important cousideration in numerical analysis.
In this chapter we list some of the facts about firite difference Approxi-

mations and some well-known schemes.

3.2. Finite Difference Discretisation Methods

In this thesis we only consider finite difference schemes. The concept of
finite difference approximations is based on the properties of Taylor expansiouns.
Even though we are mainly interested in two-dimensional problems, for sim-
plicity we first consider the finite difference approximations for functions of one

variable. Applying Taylor series expansion to u(z + Az) we get

(Az)?

(3.2.1) w(x + Az) = u(z) + Arug(z) + —

ug(z)+....

Therefore,

u(z + Az) — u(z)
Az

(3.2.2) ur(z) = + O(Axz).

Denoting z = iz, i = 0,£1,%2,..., and u; = (W)r=z;, (Uz)i = (Ou/0z)z=x;,

we can derive

o Uit T U
(3.2.3) (ug)i = s + O(Axz),



16

for the forward difference:

Uy — Uy
3.2.4 ;= —————— + O(Ar).
( ) (ur) Ar + (AI )
for the backward difference; and
(3.2.5) (wr)i = LM 4 (A2,

2AT

for the central difference. The forward and backward difference formulace for

(uz)i can be considered as a central difference with respect to the midpoint

(3.2.6) op1je = “_% and 21y = ‘““; i
So

(3.2.7) (us)irjz =~ +O(Az)",
and

(3.2.8) (us)imjs = =5t +O(Ba)”

This is a key idea in developing numerical algorithms.

The following one-sided formulas are also used and they are second order accu-

rate:
Ju; — du,;_ i
e
(3.2.9)
—3ui +4uity — u;
(up)s = 2t 2';’; 17542 | o(Az).

These formulae are used especially in treating the boundary conditions.
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For higher order derivatives finite difference : nproximations can also be
derived in a similar way, e.g. a second-order approximation to the second de-

rivative (uzz)e:

i1 — 2uy ie :
(3.2.10) (tap)i = L AI;;L“ L 4 0(Az)2.

which can be viewed as

(3.2.11) (urs)i = (uz)i+l/2A—$(uI)i—1/2 +0(Az)2.

The same technique can be extended to two dimensional cases. For example, a

central difference for (u;) and (us.) at (zi,y;) are

Uitl,j —Ui-1,j ;
(3.2.12) (ug)ij = AT L +0(Az)?,

u.+l,._2u.,.+u‘._1,. 2
(3.2.13) e v G

3.3. Upwinding Methods

The family of upwind schemes, which was first proposed by Courant, Isaac-
son and Reeves [8], is directed towards introducing physical properties of the
flow equations into the discretized formulations. They have many applications
in CFD. The family of techniques known as upwinding covers a variety of ap-
proaches, such as flux vector splitting, flux difference splitting and various ‘flux

controlling’ methods.



IR

The original scheme of Courant et al. [8] was based on the characteristic
for . of the equation uy + auy = 0 and a discretisation depending on the sign

of the eigenvalue a.

With a first-order forward difference in time, it has been noted that the
central difference of uy leads to an unstable scheme, However, with a one-sided
differencing the following scheme can be considered for a > 0:

n+l _ .. n n n
(3.3.1) ul "t = ul = o(ul —uj_)
where o = ‘% It is stable for values of the CFL number o:

(3.3.2) 0<o<1.

The truncation error er is

alAz

(3.3.3) er = (1 —0)ugr-
which indicates that the scheme is first-order accurate.

For a negative propagation speed, a < 0, the following one-sided scheme
is stable
(3.3.4) uftl = ol —o(uly, —uf),
for —1 < 0 < 0. Therefore an upwind scheme such as (3.3.1) or (3.3.4) cannot

be simultaneously stable for both positive and negative eigervalues. But if we

introduce positive and negative projections of the eigenvalues, the above two
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cquations can be combined into a compact form. Let

1
at =max(a.0) = g(a + |a|) .
(3.3.5) -
(a —|al).

a” =minfa,) =

(VAR

The general form for the first-order accurate upwind scheme written for the

linearised scalar form of the wave equation can be written as
(33.6) Wt =l =l (uf ) + e (uly — )L
The stability limit is

(3.3.7) lo| = rla| <1,

T = ﬁ—;. The general form (3.3.6) can be used to develop the up\.inding schemes
for 1D system or 2D system by replacing at by At etc.
For one-dimensional Euler equations we can always diagonalise the coeffi-

cient matrix A. Suppose A = LAL™!. We define

|A| = LIA|L™,
1
(3.3.8) AT = S(A+]4)]),
A= %(A _14)).

|A| is a diagonal matrix with absolute value of A. So for 1D quasi-linear system

U oU
(3.3.9) - TAU)5- =0,

the corresponding upwinding scheme is

(3.3.10) Urtt = Uf —r[AT (U] - ULy) + A™(US, - UD))
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Note that it can be written as

m ™m ‘At n V
(3.3.100) UMt =07 -~ NS AU, U+ —~|4| (U, =20 1 UM ).

The last term |A| Sy =207 - UlL)) can thus be viewed as a numerical

artificial viscosxty. The stability condition 1s {hat

At
(3.3.11) — max |\ <1,

Az <i<n

where ); are the eigenvalues of A(U).

For a two-dimensional quasi-linear system

ou ou ou
B + AU)— + B(U)—+— 9

Oz =0,

(3.3.12)

we can diagonalise A and B separately but in general not simultancously. Like
the one-dimensional upwinding scheme, the two-dimensional upwinding scheme
is
Ut = UL - m[AY (U] - ULy ;) + AU, 5 - UR)
(3.3.13)
— ny[BY(US = U520) + B™ (Ul — UL
The stability condition is more complicated than in the 1D case. But if A

and B commute (which is not the case for the Euler equations), we have the

following stability condition:

At At
x |A f|+— max |A¥] <1,

(3.3.14) Az 1<ien Ay 1<j<n

where A7 and A} are the eigenvalues of A(U) and B(U), respectively. Note
that, for 2D Euler equations A and B do not commute. Hence even if the

condition (3.3.14) is satisfied, convergence is not guaranteed.
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We now go back to the scheme (3.3.6), and for simplicity rewrite it as

(3.3.15) wtt =l - %(u?H —uly) + Slal(ulyy - 2ul +uly),
which shows the presence of a numerical viscosity term of the form Az?lofuzg/2
added to the central discretized scheme. Hence, an upwind finite difference
scheme is equivalent to the combination of a central difference and a dissipation
operator which is similar to the viscosity terms in the Navier-Stokes equations.
Hence there are two possibie interpretations corresponding to the two forms
(3.3.6) and (3.3.15). In order to properly take into account the propagation
properties of a hyperbolic equation, either one applies an upwind, directionally
biased space discretisation, or one uses a central difference discretisation with-
out paying attention to the direction of propagation of the wave, but introduces
a numerical artificial viscosity term. It has been noted that the second inter-
pretation is much broader. Many schemes also share this interpretation, e.g.,

the Lax-Friedrichs scheme.
3.4. Lax-Friedrichs Scheme

The schemes of Lax or Lax-Friedrichs [27] are very important and inter-
esting. They are simple and many theoretical results are available([4, 6, and
7]). Here we state some well-known results of the Lax-Friedrichs schemes.

The basic idea behind the one-dimensional Lax-Friedrichs scheme is to sta-
bilize the explicit, unstable central scheme obtained from a central differencing

applied to the first derivative of the flux term.



It is known that
o
(3.4.1) ut =l - —(ulyy —ully).

is unstable for the linearised convection equation uy + au, = 0, where a is the

Courant number, also called the CFL number:
(3.4.2) o= ——".

But if we replace u” in the right-hand side by the average value (ujy,+u;, )/2.

we get a stable Lax-Friedrichs scheme:

b 7 o n
(3.4.3) wltl = —(uly, +uil) - 3(”?-“ - Up_y).

3=

Comparing with (3.4.1), we can see that the Lax-Friedrichs scheme is nothing
more than adding a linear stabiliser to the explicit, unstable central scheme.

o 1
(3.4.4) "?H =uj — ‘2‘(“?+1 —ui )+ §(u?+1 —2u} +ui_y).

2
The linear stabiliser 3 (uf,; —2uf4ul’,) is equivalent to g-A—:f)—(u,,c),‘. Therefore
the Lax-Friedrichs scheme introduces a numerical artificial viscosity term.

The generalization to a one-dimensional quasi-linear system (3.3.9) is

At

(34:5) Urtt = S(U + UL = 55, AR, - ULy,

N =

Also, for a two-dimensional quasi-linear system

(3.4.6) U, + AU, + BU, = 0,
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we }I?LV(‘
rn 1 rm Tn ™ \
(Jl,;‘ :Z(b'_*l.]"*'(/ +L J+|+(JlJ 1)
(3.4.7) At . At
- ‘2_—'_’&1*'4( 41,3 7 U:‘—l,J) - TB(U: i+ U’] 1)

The stability of the Lax-Friedrichs schemc is given in the following well-

known theoremi.

Theorem 3.4.1. (1) The scheme (3.4.3) 1s stable if
(3.4.8) “1<o<1;
(2) The scheme (3.4.5) is stable if

At At
4. -1< ——,\, =)<
(3.4.9) 1< min Z2Ai < max oA <l

($) If A and B commute, the scheme (3.4.7) 1is stabie if

1 At At
—— < mi < —_—
2 < 20, AN = 2 Z M S

IN

1
2’
(3.4.10)

1 At At

~= < min -——A i(B) € max —\i{(B) <

1
2 ~ 1<i<n Az 1<i<n Az 2’

The proof is straight forward and wil' not be presented here. See [22].



Chapter IV

Artificial Viscosity Methods

4.1. Introduction

It is well-known that the entropy condition plays a crucial role in the
study of conservation laws. Lax[27] applied the artificial viscosity method to
get an entropy condition. Another example is due to Krujkov[26] in which the
existence and uniqueness of the Cauchy problem for a quasi-lincar hyperbolie

equation. in several variables were proved by using the artificial viscosity method.

It was von Neumann and Richtmyer[51] who first developed the concept,
of the artificial viscosity method. The goal of the artificial viscosity is to reduce
the oscillation while allowing the shock transition to occupy only a few mesh

points and having negligible effect in the smooth regions.

In many numerical schemes, e.g. the methods of Godunov, MacCormack,
and Lax-Friedrichs, an artificial viscosity term was added. W. . ..~ Lax-Friedrichs

as an example.
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The Lax-Friedrichs scheme for

aUu oU
(4.1.1) o+ Ag =0
is given by
7 1 n n At n ™m
(4.1.2) UMt = 5( UL - EA(U;'H - ULy

It can be rewritten as

vrtt -ur ro=Ur, (AP (UL, 207 + UL
(4.1.3) A AT 9Ar T 2ar . (Bey

The right hand side of the above equation is a numerical viscosity term. A sim-
ilar numerical viscosity term is also included in the 2D Lax-Friedrichs scaeme.

The viscosity method has its theoretical importance in the study of solv-
ability of transonic flow problems, conservation laws and nonlinear hyperbolic
systemns,(see {16]).

4.2, Linear Scalar Wave Equation — Exponential Schemes

Consider the linear scalar wave equation

(4.2.1) ug + aug =0.

It can be approximated by

(4.2.

o
o
e

U + AUy = €Ugy.
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This parabolic regularization is largely considered because its solutions con
verge to the original cquation ([14]. [15] and [26]). Also from the numerical
computation point of view this parabolic regularization 1s useful in anadysing
a particular numerical scheme. Here the idea behind our considerations is to

discretize (4.2.2) directly. Now rewrite (4.2.2) into a compact form:

(4.2.3) Uy = f(rxp(ﬂ)[oxp(—g—{)u,]r.
€ €

This form, called the exponential form, is useful because it is casily shown that

the solution is decreasing in a weighted L, norm.

Theorem 4.2.1. Let u be a nonzero solution of (4.2.3). If

. ar
lim exp(——)u,u =0,
z—-+too €

then

d azr

(4.2.4) a(exp(— Yu,u) < 0,

e
where the inner product is defined as (u,v) = ffooou(:n,t)v(z,t)d;r.
Procf. From (4.2.3) we have

ar ar

(4.2.5) exp(—T)m = e[exp(——e—)ur]z.
So

(exp(— = Jur, u) = elfexp(~ = Juzls, u)
(4.2.6)

ar
= —e(exp(—-e—)u,, Uz).
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Therefore

d ar
g4 Y — (v ————
(4.2.7) dt(( xp( - yu,u) < 0.

Let u? denote the approximation of u(zq,t"). We consider the discretized

form of (4.2.3).

(4.2.8)
ah +1/2 n+1/2 ah +i/2 n--1/2
Wit g exp(—g)(u.:zr] e _ u, / )—exp(;);—)(u? /2 ul / )
= € - = s
. n?
where
n+1 n
(4.2.9) w12 — u 9+ u

The discretized form of Theorem 4.2.1 is also true.

Theorem 4.2.2. Let u? be a non-constant solution of (4.2.8). If

. +1/2 n+1/2
aih u; — Uy
ll_lzlolo exp(——:—) 141 h 1 u:l+l/2 — 0

b

and

. 2

. _ain i~1 r}+1/2___
Jlim exp(= ) F == =0

9

then

(4.2.10) Z exp(—%’l)(u?H);; (uf)” <0.



Proof:.

4.3.

Z aih (N2 — ()?

exp(==7)

(l(i “i" 1/2)}1,)(11"*_]/2 _

n+1/2y n+1/2
u, Ju,

—¢ E[ € }i:l

n+1/2 un+l/2

1]

a(z —1/2)h
exp(__(.__(/_)_)(ru!
B h?
) — 9 .
exp(- L1y e

€

n

1

+1/2)2

h?

<0.

Burgers Equation

)-u'-'“/z

-1

Apply the idea discussed in the previous section to the Burgers equation:

(4.3.1)

Uy + UUz = €Ugg



We get the following scheme:

: (371? + u? )h n n
“:1+l . U:l [pr(—'——__—s—(‘— s )(uiﬁ-l - U )
———— — == € o
(1.3.2) 7 n
(3“:1 + utn—l )h n n
exp( Se Nuy —uy_y)
T h2 I
Suppose

m < min u? < maxul < M.
Then we have the following theorem for the stability of the algorithm (4.3.2).
Theorem 4.3.1. The algorithm (4.5.2) is stable if

h2
(4.3.3) T < —

e(exp(—Tz—E-) + erp(A—geﬁ))'

For e=h,m=0and M =1, (4.3.4) becomes

h
T< 1+exp(1/2)

Proof. The proof is straightforward. We can write (4.3.2) into

(434) W = auly o+ buf o+ eulyy,
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with
T (Bul +ul_ M )
a = X expl Y :
h=1—a-c.
€7 3u™ +u, )h
¢ =— oxp(— f___ _.___"*:.’)_ ).
1= Se

Then we only need to note that the condition (4.3.3) implies a > 0,h >

0 and ¢ >0 (see {29]).

Next. we implement numerically the algorithm (4.3.2) with the nitial con-

dition:

The solutions at t = 0.25 and 1.0 are given in Figure 4.1 and 4.2, where 7 =
0.0025, h = 0.01, € = h. The theoretical shock locations for t = 0.5 and ¢t = 1.0

are r = 0.25 and z = 0.5, respectively.
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FIGURE 4.1. At t=0.5

0 1 1 M

0 0.2 0.4 06 08 1

FIGURE 4.2. At t=1.0
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4.4. 1D Euler Equation-Shock Tube Problem

4.4.1. The Shock Tube Problem

The shock tube problem of gas dynamics is a simple example that illus-
trates the interesting behaviour of the solutions to a system of conservation
laws. The physical set up is a tube filled with gas, initially divided by a mem
brane into two sections. The gas has a higher density and pressure in one half
of the tube than in the other half, with zero velocity everywhere. At time
¢t = 0, the membrane is suddenly removed or broken, and the gas allowed to
flow. We expect a net motion in the direction of lower pressure. Assuming the

flow is uniform across the tube, there is variation in only one direction.
4.4.2. 1D Euler Equations

The mathematical set up is known as the Riemann problem, because it

was Riemann who first studied this problem. The corresponding PDEs are

af°r E) pu
(4.4.1) el W + P2 pu? +P | =0,
E T \uE +P)

where p = p(z,t) is the density, u is the velocity, pu is the momentum, E is

the energy per unit mass, and P is the pressure.

The initial conditions at ¢t =0 are

P=PL;s
(4.4.2.2) u=ug,

P=Pln



33

for x < ry. and

P = PR,
(442])) U =upg,
P = PRv

for £ > zo, with Pr < Py,.

4.4.3 Finite Diffcrence Schemes
We generalise the idea used in section 4.2 to the system of 1D Euler

equations. Eq. (4.4.1) can be rewritten as

Ui = AU,,

P U p 0

where U={ u )}, A=AWU)=|0 u 1/p |and c is the speed of sound.
P 0 pc® u

Considering a system analogue of (4.2.8), we have the following schemes:

upt —up _ e(Uh, —UP) —AUR - UL

(4.4.3) - =
with
_ (347 + Afy )R
a = exp( 8€ )’
(4.4.4)

3AT + AT )Rk
ﬂ=exp(( i ';E 1—1) )

The implicit form is

upt - Up _ eUES -0 - pUi T - Ui )
T h? '

(4.4.5)
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with

rn + lfyx-'rl

(446) Lrn+l/2 — 5

If we use the first two terms of the Taylor expansions for o and J in the

expressions (4.4.3) and (4.4.5), we obtain the following algorithms,

Ut - Up U, =207 + UL
(447) T n ln n n n n n n
CBAY A+ AL UL, U BATH AL U UL,
8 h 8 h '
and
(4.4.8)
Urt o _ U our i Ay g an, U Ut
_5( 5 ) —_ e
T h 8 h
3AT 4 AM, UNTIE _prA
- 3 i .
More general form for a and 8 in (4.4.6) are
2+ 0)AT + (2—-6)A% )R
a=exp(—(( + ) 1 +( ) t+l) ),
8e
(4.4.9)

((2+6)A? + (2 -0)AY, )h)
8e ’

B = exp(

where -2 <0 <2.
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4.4.4. Numerical Results

We applied the above two algorithms (4.4.3) and (4.4.7) to the shock tube

problem:

u=up,P=Pr,p=pL,z < z0,t =0

(4.4.10)
u=upr,P = Pgr,p=pr,x > 10,t =0.

with Pp < Pp. Here we consider the test problem with the following data:

P, =1.0,p, =1;Pr =0.1,pr = 0.125;

(4.4.11)
uy =ugr =0.

When implementing the implicit algorithm, we use exact tri-diagonal block LU
factorisation.

The theoretical shock location [43] is = = 0.75 at the time 0.14154. Tak-
ing h = 0.00125, Fig.4.3 give the numerical results using the algorithm (4.4.3)
with CFL = 0.65. Fig. 4.4 are obtained by (4.4.7) with CFL = 0.90. Fig.4.5
illustrate the implicit solution of (4.4.5) with CFL = 2.14, Fig. 4.6 are the
results using (4.4.8) with CFL = 2.14.



y
0.8
0.6
04
0.2

0

| | ! | 1 1 1 1

0 01 0.2030.40506070809 1

FIGURE 4.3A. Density at t=0.14154

| i I i 1 | 1 1 1

-

R YR

| | i

01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 4.3B. Velocity at t=0.14154

| i | i | 1 1 1 !

0 0.1 0.20304 0506070809 1

FIGURE 4.3C. Pressure at t=0.14154

36



| i | 1 1 1 | | 1

0
0 0.1 020304 0.5 0.6 0.7 0.8 0.9 1
FIGURE 4.4A. Density at t=0.14154

0.8 I

04

‘o,
*
.
p7
0.2 % -
. 55

0 -
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
FIGURE 4.4B. Velocity at t=0.14154

1 ] R 1

0.6 |-
04

i | 1 i 1 | ! ] 1

0
0 0.1 0.20.3 04 0506070809 1

FIGURE 4.4C. Pressure at t=0.14154



O 1 i 1 1 i 1 | 1
0 0.1 0203040506 0.7 08 0.9 1
FIGURE 4.5A. Density at t=0.14154
1 i i 1

0 0.1 0.2 03 04 050.607 0809 1
FIGURE 4.5B. Velocity at t=0.14154

1 T T 1 T

i 1 i 1 ] | 1 1 1

0
0 0.1 0.2 0.3 040506 0C7 0.8 09 1

FIGURE 4.5C. Pressure at t=0.14154



0
0 0.1 0.203040506070809 1

0.8
0.6
0.4

0.2

0.8
0.6
04
0.2

0

i | ! 1

FIGURE 4.6A.

Density at t=0.14154

1 | { i I

| I

FIGURE 4.6B.

0 0.1 0.2 0.3040506070809 1

Velocity at t=0.14154

I i 1 ] 1

0 0.1 0.2 03040506 0.7 08 09 1
Pressure at t=0.14154

FIGURE 4.6C.




A0

Chapter V

Weakly Coupled Hyperbolic Systems

5.1. Introduction

The majority of unsolved problems in CFD research are governed by non-
linear systems of partial differential equations. One of the  reat challenges in

CFD is to solve a multidimensional nonlinear system:

(5.1.1) U+ F(U)z + G(U), =0,
or
(5.1.2) Uy + A(U)U, + B(U)U, = 0.

Because of the lack of mathematical analysis, there has been little progress
as yet. From the mathematical point of view some negative results on multi-
dimensional systems are known. “Bounded variation estimates fail for most

quasi-linear hyperbolic systems in dimensions greater than one”, according to
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Rauch(39]. Note that the commutativity of the cocfficients of the quasi-linear
systern plays a key role, because for commutative matrices we can diagonalise
thein simultanceously. Hence the main problem or difficulty is the “coupling”,

which is caused by non-commmutativity of A and B. In fact, for 2D Euler equa-

tions the commutator [A(U), B(U)] = AB — BA # 0 for every state U.

In this chapter we consider 2D linear or quasi-linear system

(5.1.3) U, + AU, + BU, =0,

where A and B are n x n matrices. Here the main idea is to introduce a
preconditioning approach applied to the PDEs, so that the coefficient matrices

of the preconditioned system are commutative.

5.2. Definition and Examples

Our goal is to study muitidimensional Euler equations, and we first con-
sider a general 2-D linear system. The following definition then is not re-
stricted to 2-D Euler equations. In order to help our understanding of this
new concept—“weakly coupled system”, we provide some examples of 2-D lin-

ear systems with 2 x 2 constant coefficient matrices.

Definition 1. Given two n x n matrices A and B, they are said to be weakly
coupled if there erists an n x n matriz K such that

(1) K is positive definite;

(2) KA and KB are commutative.

Definition 2. The system (5.1.8) is said to be hyperbolic if Va,aA + (1 —
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has a complete real eigen-system. i.e. it has n real eigenvalues, which are not

necessary distinct. and n dimensional eigenspaces.

Definition 3. The system (5.1.3) is said to be weakly coupled if 1t 1s hyperbolic
and 3K such that

(1) K 1is positive definite;

(2) KA and KB are hyperbolic and commutative.
For a quasi-linear system, it is said to be weakly coupled if it is weakly coupled

for every frozen state.

The condition of hyperbolicity for the system in our definition is due to

the following result on Euler equations.
Theorem 5.2.1. The 2-D Euler equations are hyperbolic.
Proof. This result is well-known. For the proof see Spekreijse|45].

A detailed discussion of the Euler equations is given in the next chapter.
We present some simple examples here.

Regu:dless of the hyperbolicity condition, the concept of a weakly coupled
system produces the following algebraic question:

Given two n X n matrices A and B, determine whether there czists an
n x n positive definite matriz K such that [KA,KB] = 0.
The solution is in fact not trivial. Generally speaking the analysis of the couple-
matrices (A, B) will be helpiil for the understanding of general 2-D systems
such as the Navier-Stokes equations.

Here we give some examples of we:tly coupled systems with 2 x2 constant

coefficient matrices.

Theorem 5.2.2. Given A= 21 % , B= b b . If there ezists & and
az a4 by by
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- such that

day 4+ ~hy > 0.

and  3(8ay + by )(Bas + by > (8lay —ay = ~thy + hy)is.
then A and B are weakly coupled.

Proof. Define

K = day + by —(daz + b2)
T\ —(baz + b3) day + by '

Then we can show that AKB = BKA. and K is a positive definite matrix.

The conditions given in Theorem 3.2.2 are only sufficient. For the follow-

ing simple matrices, we give the necessary and sufficient conditions.

Theorem 5.2.3. Given A = 10 ,B = b b2 if b2 4+ b3 # 0. they
0 -1 by by

are weakly coupled if and only f

(9.2.9) (bl +b4)2 > (bz + bg)z.

Proof. Without lose of generality, we assume that b, # 0. By solving AKB =

BK A for the 2 x 2 matrix K, we get

by + b4
—-my — 5 ma Mo
K = b3 2
Emg my

It is easy to see that K can be chosen to be positive definite if and only if the

condition (5.2.3) holds.



4+
Using the above two theorems we can construct many examples of 2 <2

systems which are either weakly coupled or not weakly coupled. This concept

is important in the applications to 2D Euler systems,
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Chapter VI

2D Euler Equations

6.1. Introduction

The two-dimensional Euler equations can be expressed as

0 , 0 2/’“ 0 -

0 | pu 0| pu"+P g puUv _

(6.1.1) 5t | pv + 5z puv 5y | o2+ P 0,
E (E + P)u (E+ P

where p is the density, u and v are the velocities, E is the total energy per
unit mass, and P is the pressure. Over the past four decades, numerous meth-
ods have been devised for the solutions of these equations. Relatively speaking,
theory for one dimensional problems is essentially completed (see [27], [42], [43],
(14] and [15]). Because of their physical complexity and the lack of mathemat-
ical analysis, our understanding of two-dimensional nonlinear systems is still
very limited. Simply extending one dimensional metheds is not enough and it
is necessary to develop genuinely multidimensional methods([6], [12], [41] and
[49)).
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From the mathematical point of view, one essential multidimensional char

acteristic 1s as follows. If we rewrite (6.1.1) in its quasi-linear form

U oU  _oU
o A% g%t _y
o v T B, 70

(6.1.2)

then in general, A and B do not commute, i.e., AB # BA, for every state U.

In this cha, : - consider the mechanism of commutativity and we show
that the two dime: ..al Euler system for supersonic flows is a weakly coupled
system. We also consider the Euler equations in conservation form and the

special case of constant total enthalpy.

6.2. 2D Euler Equations

The two-dimensional Euler equations consists of four conservation laws,
namely, the conservation of mass, the conservation of momentums (in the x-
and y-directions), and the conservation of energy. These equations are valid for
a non-viscous, non-heat-conducting fluid without body forces. There are five
unknowns in the four equations, and in order to complete the systemn we need

an equation called the state equation, which can be written in general as

(6.2.1) P=P(pe),

where e is the internal energy per unit mass. For a perfect gas the thermody-



namic equation of state gives

r= B—p(;

Cy

(6.2.2) = (v - 1)pe

= (v~ 1(E = 5ol + %)),

where R is gas constant, ¢, is the specific heat at constant volume, and ~ 1is
a constant, the ratio of specific heats, and v = 1.4 for air.
In the primitive variables U = (p,u,v,P)T, the two dimensional Euler

equations take the following form:

o ou L oU U _

where
(u p 0 0\
0 u 0 1/
4= 0 0 « O ,
\0 pct 0 u)
(6.2.4)

(vOp 0\

0 v 0 O

0 0 v 1/p

\0 0 pc’ v)

where ¢ = ,/Jpﬁ is the speed of sound.

Theorem 6.2.1. A system of the two dimensional Euler equations is a weakly
u? + v2
c2

coupled system if and only if > 1, t.e. it ts supersonic.
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Proof. The proof will be completed by using the following several lemas.

Lemma 1. Let K = (kij)ixa. and consider the matrir equation

(6.2.5) AKB = BK A.

The general solution of (6.2.5) is

v p%v .
(kll tl —-tl - '—f;; + pzt(; tg \
Uu u
u
'T;‘t4 ka2 kay ty
(6.2."»} K =
ty ka3 ts te
plu . .
0 p2C2t3 + Tt,; /)zt4 + /)2(‘2t(; k.M /
where
2 2
u“ +v
ki1 =— cty — puty — BLE—*)-Q — putg,

2 2 2 2 2\( A2 2 2 2
u{c“ —u“+v uc —v){cc —u® —-v u
Y GL'ak ' WY )t )iy - %,
v ctv v
2 2 2 2 2
u® —c u(u® +v° —c u
ka3 =B‘(‘—v“—)ts+p ( g2 )t4+;t5 + puts,
u? 4 v?
k44=—Put3—p—(W—lt4—pvts,

in which t1,...,ts are parameters.

We need only consider the first two eigenvalues of KA and KB in order

to establish the necessary condition for Theorem 6.2.1.
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Lemma %. (1) Thr first two eigenvalues of KA are

pu(u? 4+ v% — )ty

Mpa(R Gy =plc? —u*)ty 2

— puvtg
ve

1.2 2 __ 2
+ pVvuc+ v c (t4 n C2t5).
c

(II) The first two eiger-velues of KB are

M 2(KB) = — puvis + pc2(c® —u? — vty + p( — vP)te

pVu? + v — c?

ve

+ (vetts + uty).

The remaining three lemmas are used to establish the sufficient condition
for Theorem 6.2.1. The following K is a particular choice of K defined by
(6.2.6).

Lemma 3. Let

2 2
0 1-Set e n
(6.2.9) K= v o ¢ Pe
0 s 1 é-{—sg-z- Y
9 ¢ ¢ 9
u v
0 —pct— —pct— 1
\ e s )
\P 2 2 .
where ¢*> = u® +v? and ¢* = e If M= \/u :;v > 1, then K is positive-

definite for some s.

Lemma 4. The K defined by (6.2.9) commutes A and B, i.e. [KA,KB]=0.



Lemma 5. Let K be defined by (6.2.9).

KB are as follows

(1) The eigenvalue matriz of KA 1s

(6.2.10)
K 0
2¢2
0 '(1(1 - ‘q;‘ + é)
Ara =
0 0 u(l —
0 0

(2) The eigenvalue matriz of KB 1s

(6.2.11)
v 0
22
0 v(1- Z + s)
Ak =
0 0 v(1—
0 0

- 1
! sq? — 2c?
0 X
2
(6.2.12) L= e
0 v
pg?
0 0

Then the eigen
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-systems for KA and

0 0 !
0 0
C2 (‘21’() !
=)= 0
q* q°
0 4 (1 (‘2 ) + (‘21‘(1'
! q* g
0 0 1
C 0
c? cua ;
=)+ — 0
2 q2
2 2
0 o(1-5) - 228
q q-
1 1]
2¢? 2c?
u + va v — u
2pq? 2pq*
uax - v uatv
2pq? 2p¢?
1 1
2 2 -




i ;2 + v
where o = VM? 1 = \/ — — L. L™ is given by
¢

( 1 — pu pv ¢ - s¢? \
sq% — 2¢? sq2 —2c?  c%(sq® — 2c?)
] 0 pu pu 1
(6.2.13) L™ =
o = ~ 1
a a
v
\0 i P 1 }
a o

First note the above five lemmas implies Theorem € 2.© From Lemma 2,
if KA and KB are hyperbolic, a necessary condition is that both A\;(KA) and
A (K B) must be real. If u? 4+ 9% — ¢ <0, we have to have

ta + *t = 0,

(6.2.14)
velts + uty =0,

from (6.2.9) and (6.2.10). But thi: condition (6.2.14) implies that all coefficients
in the last row of the matrix K defined by (6.2.7) are zero and hence K is
singular. Therefore we conclude that u?+v%—c? > 0. The ‘if’ part of Theorem
6.2.1 is proved by using Lemma 3 to Lemma 5.
Now we give the proofs for the above five lemmas.

Proof of Lemma 1. Denote

(ku kiz ki3 k14\
k21 ka2 ka3 koa

K =
k31 ka2 ksz kaa

\kay kiz Ko kea/

Cousider AKB = BK A where A and B are defined by (6.2.3). We get a linear

homogeneous system for k;; as follows.



Pl’]\'Zl — puk;n = 0
—pl’l\‘” — pl'(‘2k1.1 + pl‘l\‘-z-z — ;)2}\‘3| he pllk;w - pz('zk;“ = 0,
pukyy + puctkis + pkay + prkay + p*cPkay — pukyy = 0,
v u
——klz + —]\’]3 + k23 + [)UI\‘;H - A‘32 - plll\‘;x.g = 0.
p p
kdl = 07
v
—pvkyy — pclvkay + ;k«az =0,

A v
pukay + pctukyy + kg1 + ;km + c?kyy = 0,

v u 1 v
—=kao + —ka3 + S kaz + —kgq =0,
P P P P

—puksy — pctvksg — kg ~ Ekn ~ kg =0,
pukss + petuksy — ~kis =0,
%kaz + %kss - %ku - %ku =0,
vko1 — uks; =0,
pCZ’ngz — p2cPk3y — pctukzz — p?cthyy — pvkyy — pclukgy = 0,
p2c?ka1 + pctvkas + pPcthag — pctukss + pukqy + pctukgy =0,
c?ka3 + pctvkay — c?ksz — pctuksy — %k«;z + %k«az =f.
With the aid of the software Maple, we find the general solutions K which

are given by (6.2.6).

Proof of Lemma 2. Let KA = (aij)axa. Then

t
( o1 a12 vt — pzvt3 + pzuts ;l + utg\
u2t4
6.2.15) KA=]| v o e s
uty 32 uts 34
\ 0 —pzv(t4 + C2t6) p2u(t4 + Czts) 244 }

p(u? 4 v%)t4

_ 2
where a;; = (—c“ty — puts —
( P 0C?

— putg)u



v
ayy = uty — p Zuty — I——(—t—) — p2vt6
,vC
plu? + u?v? — u?c? + vicd)ty pu( ut — u? — vt + 202ty
a2 = 2 3.2
» (2 )V 2 4 )y vic
udts  pu(u® — v 5
TR ‘
v 2 Z)t v '2( 2 + 2 Z)t 'Zt
u{u® — ¢ u“(u~ VT —C u a
(vpy = pu 140 ; s ,5 + pu‘ts
v 1?2{_‘2 , (A
w(u? — ety (u? = ) (u? +v? = )ty
a4 = 2 + 302
2t v ( 2 + 2 2)t vee
u“t; u? +v° — ¢t
n 25 n 6
pv v
pu(u? — Bty plut +u?(v? — ) + vty
gy = _!_ 292
,, Y vic
u‘t:
+—;1 + p(u? + P)ts
2 _ 2 2 4 .2 _ .2
uc — c°)t; u(u® +v° —c)t uts
0342( )3+ ( )4+ + 2utg
v v2c? v2c?
2.2 2
g 2 u(u” +v° = c*)ty
i = plc® —u)tz ~ — uvts.
a; =p(c )3 > (vt

Again with aid of the software Maple, we can show that A; (K A) given by
(6.2.7) satisfy
det(A\] — KA) = 0.
Similarly we can show that A 2(K B) given by (6.2.8) satisfy
det(A\] - KB) =0.

Proof of Lemma 3. Consider

. K+ KT
K, = —
(1 0 0 0 \
c? u? uv 14+ p2c?
2 2. 1 2.2
0 s= 1-S 42 —2EPe,
q q q 2pq
1 2.2 1 2.2
2pq 2p¢?

By the definition, in or.er to show K is positive-definite we need to show that



K, is positive-definite and that is

() 1> 0;
1 o
(11) det c 1-— C_')_*_S?% > 0;
¢ 2
1 0 0
c? u? uv
(iii) det | 0 1—75 4875 S > 0,
uv c? v?
0 S$— l1—-—+4 s—3
\ 7 ¢
(iv) det(h:) > 0.
Note, (1) is - 1. If M > 1, (ii) is satisfied provided that s > 0. Now
1 0 0
02 uz uv
det | O l——2+8q? Sq—z
uv c? v?
0 Sq_2 1— ? + SE?
c? u? c? v? s uto?
=(1—;2‘+Sq—2)(]—“q—2+632—)—.5 q4
c? c?
-5 sl - 5).
So again if we choose s > 0, (iii) is satisfied.
c? u? c? v? 1+ p2c? , suv?
det(K,) = (1 — q—7 + s~q—;)(1 — q_2 + s;};) +2( 0 ) 7
_ (1 + p?c? Pu?(1 — L ’_’9) _ 32“2”2
2p¢ ¢ 7 ¢t
1+ p%c? ., , L T
_( 2pq2 ) k) (1 q2 +Sq—,z)
c? c? 1+ p2c?
=(1- (-1;)2 (1 'q‘g)( - q%( S )
2 (14 p2c?)? 2
(1 - EE)( - 4P2q2 T ;I'E)



If

(1 4 ptet) c?

-\2"_—'—_‘—_1"‘}‘—2—.

4p2¢* q

(iv) is satisfied. Since M > 1, we could take

(14 p?c?)?
4p%c?

Therefore the proof is completed.

Proof of Lemma 4. By choosing

tl =0;
t2=0;
t u
3= 5
pq?’
t4=0;
t q2—c2+sv2
5 = )
qz
‘ v
6 = ——>%
pg*’
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the matrix KA is given in (6.2.6). Using Lemma 1, AKB = BKA. Since K

is positive-definite, K is also nonsingular. One can check directly if AKB =

BK A instead of checking [KA,KB] =0. Here A and B can be rewritten as



H6

A=ul+ 4, and B = vl + B; respectively, where

/0 p 0 0\

0 0 0 1/p

A =
0 0 0 0
\0 pct 00 )
(6.2.7)
(0 0 p 0
00 O 0
B] =
00 0 1/p

\o 0 p 0/

Therefore, it is equivalent to show that

(628) UKBI + ’UA]I\" + AII\’BI = ‘UI\’AI + ’UB]I\’ + Bll\’Al .

Since KA;, KB,, A1K, B1K, A KB;, and BjKA; are given by

K P 0 0 i
(‘2 ’
c*u (1- ;:7) su?
0 -5 0 —
KA, = q2 P rq ,
c‘v suv
0 - 0 —
q pPq
2
LO pc2 0 _c_z;
Pq 4
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r0 0 P 0 )
('2“ S?
0 0 —-—
q* Pq°
KB, = c?
P e =) o
0 0 ——f R
¢* p 2
2
00 pc -
L. pq -
0 =)t spuvla® —ulg? T
0 —ctu/q —c2v/q? 1/p
A]I\’ = 3
0 0 0 0
L0 pct(1 = c2/q?) +spctut/q? spctur/q? —c*u/q? |
0 spuwv/g®  p(1—c?/¢?) +spv?/gt —uv/q* ]
0 0 0 0
Bll\’ = ’
0 —clu/¢? —ctu/g? 1/p
L0 spctuv/q® pc2(1 = c?/q?) + spctuv/q® —c*v/q .
0 0 —pctu/q®  svv/g
0 0 c? —c*v/pq?
A KB, = ,
00 0 0
L0 0 —pctu/q® scPuv/q? ]




and

0 —pcte/gt 0 sur/ql

0 0 | G
Bi1K4, =
0 ¢ 0 —clu/pg?

L0 —pctv/q® 0 sctuv/gt

ulkB, +vA K + A N B,

Py

(s = pluv

[ 2 spu’ 2 2
0 p(l — C_o)"‘ + bpu.,—l" p(1 — f—z—)u + apuﬂv
q" q— (1 (1;.
(,‘2uv
0 - 0
- ¢
' ctuv
(0 0 _ 7
c? spctu®v c? spctun?
0 pef(1- q—z)” L pct(l— = )u+ "

= UKA] +uB1K+BlKA1

Proof of Lemma 5. The proof is straightforward. Since

(6.2.17)
N 0
0 u(g? — 2¢? + su?) sulv q*
g2 ¢
KA= 0 sulv — v u(q® — c* + sv?)

9 ¢

u? uv

0 pC2(1 - —pcz___.

\ 7 7




and

(6" 18)
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(" 0 p 0
0 v(g? — % 4 su?) u(sv? — c?) (s — uv
, q* q? pg?
K = suv? v(g? — 2¢2 4+ 5v?) g% - %+ (s — 1)?
0 a2 v 2 2
q q pq z
2 2 2 1
2 2 27 YV u(q® —¢*)
\() pcfuv /q pci(l q2) 7 )
With L given in (6.2.12), we have
(1 + )" —2¢?) um — ctva um + c2va
(“ q%(sq* — 2c?) 2c%q? 2¢2¢?
0 u?((1 4+ s)¢* — 2¢%) (u 4+ va)lum — c®va]  (va — u){um + cfva]
cAT pq* 2pq* 2pq*
KAL = 2 2 2 2
0 wuv((1 + s)g? = 2¢?)  (ua + v)[um — c®va] (ua + v)[um + c*va]j
rq* 2pq* 2pq*
\0 0 um — 2f2voz um + fzva
2q 2g
= LAKa;
and
( v(g®  2¢ + sq?) vm + ctue vm ~ ctua
v : ALl Bl vm — cua
@( £ - 2¢2) 2c2q? 2c2q?
0 uv(q? — 2¢2 + sq¢*) (u + va)fvm + tua]  (va —u)[vm — ua]
— rq* 2p¢* 2pq*
KBL = 2 2 2 2
0 Y (1 +3s)g® —2¢%) (va+v)vm+ cfua] (ua + v)[vm — cua]
rq* 2pq* 2pq*
0 0 vm + ctua vm — —c*ua
\ 2q? 2¢?

= LAI\'Ba

where m = ¢* — c*.
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From the proof of Theorem 6.2.1. we get the following result.

Corollary. For the system of two-dimensional Euier equations (6.2.2), there er-

ists a nonsingular matriz K such that K Aand KB commute and are hyperbolic
if and only if M > 1 (i.e. for supersonic flows).

The complete eigen-systems of A defined by (6.2.9) is given in the fol-
lowing theorem.

Theorem 6.2.2. The eigenvalues of K are

A](I\’) :1’
o P et AP
Yo(K) u? + v? ¢
A K _(2+S)(u2+v2)_02+_\/4?(u2+v2)+(5(uz+v2)_(.2)2
(6.2.18) 3(K) = 2(u? 4 v?)
| S C2 [cz C2 )
= 5= 551 — +0.25(s — = )%,
1+2 2q2~r\,‘/q2+ (s q2)
(K (24 s)(ut +v?) = ¢? = (/4 (u? + v?) + (s(u? 4 v?) ~ 2)?
4( )—' 2(7.12 + ,02)
=1 S c? C_Z_+02r( c_’.‘;
_+2-_2q2 P .25(s "

and the four corrcsponding eigenvectors are
L, =(1,0,0,0)7,
L2 = (Ga —v,u, O)Ta
(6.2.19) s
Ly = (0,u,v,p((s + 1 = M (K))(u? +v?) - )7,

Ly = (0,u,v,p((s + 1 = }a(K))(u® + %) = &))"
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Proof. Denote 1) = p((s +1 = X3)g* —c*) and I, = p((s +1 - A1)g® — ). Then

KL =

=LAg.

The inverse matrix

(1
0

0

\()
(1

0

oo

0
2
1- :17 + s—=
uw
G
q
et
0
2
¢
—v(l = =)
u(l — =)
0
0 0 0
—v U u
u v v
0 L I

ro—1

P

SO O =
(=]

0 \ {1 ¢ 0 O \
—;:_:]? 0 —v u u
___1)2_ 0 v v v

q
A3 0
0 M\

is given in Theorem 6.2.3.



Theorem 6.2.3. The wnverse of K is given by

K'=
/1 0 0 0 w
o Tl +s) - e+ ) Juelsg =) u
r xr yp
0 uv(sa? —c?) Gsu? + @)~ e (i + ¢7) o
T ' x 2p
0 upc pcte (s + 1)¢* = ¢ )
y y Y

z:=u! +u4s+‘.2.sv'2 u? =3t u? ~ul st +2ut 0t — 30t et 4ot 420
+ st - c? 5ot

2 2 2
y o= W +sut s —20% 08

Proof. It is easy to check AR ~! =1

6.3 Euler Equations in Conservative Variables

The two-dimensional Euler equations in conservation form are

p pu pu
0 | pu d | pu’+P 5 puv
(6.3.1) ol B ol I 50 | poip | =
E (E+ P)u (E+ P)v

The Jacobian matrix of the transformation from the non-conservative variables

to the conservative variables is given by

Q
<

(6.3.2) M=

=)
J



where Vo= " and 7 = pu
v pr
r E
Henee
( ! 0 0 0 \
—u/p 1/p 0 0
(6.3.3) M =
ule 0 1/p 0
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\ Gl 4u2) (g - —(y— 1)r
If we define A, = M™'AM, B, = M 1BM, we set

au
Jy

?__U_
or

U | a,

(6.3.4) T + B,

=0,

which is the quasi-linear form of the two-dimensional Euler equations in con-

servation form. The matrices M~1, A., and B, are defined as follows.

/ 1 0 O 0 \
u p 0 c
(6.3.5) M~ = ;
v 0 » 0
u2 + .02 " 1
\T2 " T
(6.3.6)
( 0 1 0
=3 5, ~v—1_.
—Q—u‘! + ——2—v2 (3 —7)u —(y—1)
A =
—Uuv v u
uE E -1, .
\ T (- Du ) T2 -0t e (- w

")

~v-1




and

(6.3.7)
( 0 0
—ur 1
BC - —_ 3 5 0 Sl 1 9
7 5 e - 5 u* ~‘(") - 1)“
vE ) E
- 2E - ) (- e 2
/)

1]

(3-1)e

- 5t 4 3v%)

Corollary. Let K. = M~'KM, where K s defined in (6.2.9), i.c.

6

.

0

)

(6.3.8)
/ 1 0 0 0
e (o
% q? q q* q*
Yo c? taun thao? ¢t (1 =90 |’
’U[—'— - t1] ; : 2
¢ q* q* q¢*
3—7 2 >
\(—5———(1+s—t3)p)q u(ty — t3) u(ty — ty) 2-v
-1 2
where t = (v 5 ) —s,ta=s+v—1 and t3 = (—1%)—_ Then K. A.and K DB,
—1i)q

are commutative.

Proof. Since K commmutes A and B, i.e. KAKB = KBKA, hence

K.A.K.B.= M 'KAKBM
=M YKBKAM

= K.B.K A..
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6.4 Two-Dimensional Steady Euler Equations

Reeall that the 2D Euler equations (6.1.1) is:

P pu pv \
X d | pu Jd pu’ + P . puv
(6.1.1) sl v g | "o || wrar |7
E (E + Plu (E+ P)v

If we are only interested in the steady state solutions. it becomes

pu pv
0 pul + P d puv
(641) E" puv ay pv2 +P 0.
(E + P)u (E+ P)v

To solve this directly is difficult because we do not know the exact information
on the boundary. Time-marching methods are often applied. In this section, we
first show that the system (6.1.1) can be reduced to a system with only three

variables. Then we consider weak coupling for the resulting reduced system.

6.4.1 Total Enthalpy

Let the total enthalpy H be

(6.4.2) H = ,

the energy equation then can be written as

oP

(6.4.3) gt—(pH) + Ea;(puH) + gg(va) =3

Combining this equation with the continuity equation, Equation (6.4.3) can be
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written as

OH _OH _ OH 1P

6.4.4 o tor
( ) ot * Or * gy p Ot

For steady flows, we get

., D 0 + 0 + 0
with — = — fu— + v
Dt ot or Jy
Thus, in the case of steady flows, the total enthalpy H is constant along
the streamlines. One can show that the total enthalpy remains also constant
when a streamline passes a discontinuity (shock wave)([45]). When we consider

steady Euler equations with uniform inflow, the total enthalpy H is uniformly

constant.

Theorem 6.4.1. The Euler equations with the total enthalpy H uniformly con-

stant can be written in the following quasi-linear form:

(6.4.4)
u p 0 v 0 p
I @ u l—~ o (° 0 v ol @ P
— _— - —_— — = {).
En u | + 4 > v 9z u} + iz_ 1 -~ ol 3y u )
v 0 0 u . v u v
P v v

Proof. Suppose H = Hy, i.e.
P L oo, 2y
——— + —(u° + v*) = Ho,
(r-Dp T2 V)=
from which we get a relation

~1 1
P=2""p(Hy— =(u® + v%)).
~ 2

Applying this relation to the Euler equation (6.4.1), (6.4.4) is derived.
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When one calculates the steady solutions for the 2D Euler equations, it is
very often to apply this idea to reduce the number of independent variables(e.g.

Ni [38]). We will now discuss the “weak coupledness” of the system (6.4.4).

6.4.2 3 x3 system (6.4.4)

Our main theorem ir “his section is given in the following theorem.

Theorem 6.4.2. The system (6.4.4) is weakly coupled only if u? +v* > 2, ie.,

only if the flow condition for system (6.4.4) is supersonic.

Proof. The proof - given by proving the following three lemmas.

Lemma 1. Suppose K = (kij)3x3 and AKB = BKA, then K has the following

form:

_p(utl +’012)_ kip ki3

K= 13} kay ko3

iy kaz 13



where t;.ty and t3 are parameters and

N

_pr((y = DuPm? +v%c?) Py — Du(qg* + ¢*
kiq = - t + :
cio? e
(h —1)pug?®
M
— 1)p2um? 2(yq® — m? = 1)py*
kyp = 3/) 14 2P (*rq4 )4, 4+ O Dea
ctv c cto
R i PR U e VY W
c2y? o v
pm? — ypv? vpu u
ka3 = 7 t + —5ta + —t3,
c?v ¢ v
2 _ .2
u®—c u u
S et P LT
c?v c v

and ¢* = u* +v?% and m? = ¢* — %

Lemma 2. The eigenvalues of KA are

_ p((u? =)t — (uv — cvu? + 02 — 2)ty)

)

t.'h

M(KA) = 5 ,
- p((u2 —Cz)tl "(uv+cvu2+v2 —Cz)tz)

A(KA) == = ’

gk A) <22 = M+ uoly(u? +07) - (v = )t + ued(u? + vty

c2y?

)



69

and the eigenvalues of KB are

M(KB) _pl=(un — eVt + 02 — )ty — (v? - (:z)tQ’

c?

/ar2 2 2 2 2
N ue 4+ evuc 4+ v c)t v ce)t
/\Z(I\B) ::[')( (l' Y ) - ( ) 2a

c?

plu(u? — )ty + v(v(u? + v?) — (v — 2))ta) + 2 (u? + v?)t;
c2v )

Lemma 3. If \;(KA) and A\{(KB) are all real for i =1,2,3, then K can be

chosen to be non-singular provided that u® +v? —c? > 0.

The proofs are similar to the proofs of Theorem 6.2.1. However we are

unable to show that K is a positive definite matrix.

6.5 On Symmetric Preconditionning Matrices

Now consider the quasi-linear systems (6.2.3) and (6.4.4). First recall that

ou ou ov
(6.2.3) B + A?)? + BFy- =0,

where A and B are given by (6.2.4). The problem under consideration here is
that if there exists a symmetric positive definite matrix K such that [KA, KB] =
0 and KA and KB are hyperbolic, then the stability analysis can be estab-
lished.
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Theorem 6.5.1. The system (6.2.3) 1s weakly coupled with a positive symmetric

matriz K if and only if 1t is supersonic.

Proof. Let

(kn ki kys ki

k12 ko2 k‘zs ]\"24
K

kiz  hos  kyy Ry

\km k24 A‘:m ka4

and solve the matrix equation AKB = BKA. Applying Lemma 1 of section

6.4 to determine the parameters t;,...,tg we get

v 2'U
ty =—1t; — p—-t;; + pzt(;,
u u

(6.5.1) tp =0,

2
u
t3 =p2cits + E‘v“tm

te =p’ts + p*c’ts.



There are six unknowns and five equations. By choosing t5 free. we have

_ u(l — /)2(,2)

t) = C 4,
v p?
t-z = U
(6.5.2)
U
t3 = —tg
v
O St
4 = 5 6
2

Then withont loss of generabity, we may assume

kll = 1*,
u? 4+ v? - 22 5
kaz =t5 = EECE + sv°.
Thus
( ) uc’r vetr 0 \
pq’ pq?
uctr  m? 3 puc?
pye ?— + su suv ———(;2—
6.5.3 K =
( ) ver " 2 + 02 pve? |’
S 1 . —
Pq’ q° q°
0 puc? pvc? ;
\ T F o,

where r = p%? — 1, ¢* = u* + v2, and m? = ¢* — ¢*. We can find s such that

K is symmetric positive-definite. The value of s is determined by assuring



=1
re

det(A;} > 0 for alt /.

) uesr
i
( Y-

det( ) = det , . ~{).
k uesr e N

W E
uetr vetr
o ey
(6:5-4) Py’ Py
det(A'y) = det l—l—(—.f- T; + su” suv > (),
I q-
ve'r m* ,
5 S - EEEEY A
6q- q-
and det{K) > 0.
. u- -+ v —c° ) (p"("——l)"("
det(h) = — +u(s — —5— =~ ).
( 2) 112+’L‘2 { (5 p2(ul+1'2)2)
. (7 +v? = c?)? s 2 o (p*c* — 1)1
det( A = ut+ v —c)s — —m——m—5—),
(Ks3) (u? + v2)? + (u i P2 (i 4 v2)? )
) (u? + 02 — ¢?)? s 2 o p2ed (pPc? — 1)2 !
det(K) = + (v —c")(s— TS T T ~
(A) (u? + 02)2 ( )(s (W2 £ o) pP(u? + v)2

Hence let s be

—_——~—
(o)
(1)
(V2]

N’

Then X becomes positive definite.

p2 A ( /)"" 21 )‘1‘,.4
Next we need to show that we can find s > —- —— 4 - e
(u? + v2)? p2(u? + v?)2

and KA and KB are hyperbolic. Witl the aid of the softerware Maple, the




cigenvaliues of KA are given by
(6.5.6)

- _,?;.

MIKA) = u

uc? vevu? + v — ¢

M{KNA) = u— —~
HNA) = u i NCII ,
S ('2
M(KA)=u(l+ = - =-)
2 g
LT 1y
g7 \[ (0"~ 2% = Bea)loq? = 26 4 2cq) 4t (I 1);
- & (72
/\4(]\ {1) = U(l + ;2‘ - (1_2)
u . . 2.2 __ 1 2
— o5 \/(5q2 — 202 — 2¢q)(sq* — 2¢2 + 2¢q) +4,,4q2((_f_)_c_5__l. +1).



Similarly the eigenvalues of K'B are
(6.3 7)
AM(KB) = v —

0 - S
vt . wer u v = 2

u? A r? u? 4 p?

\M(KB) = —
2R B) = u? + v? u? 4 v?
] s c?
As(KB) = v(1 + 5~ q_z)
v N (PPt 1)
53 (8% — 2¢% = 2¢q)(sq* — 2¢% 4 20q) + detg?(—- - f 1)
24 N
2
M(KB) = v(1+ =~ =)
- q
v 2 2 2 2 f a2 1)
= 571/ (8¢ — 20 = 2¢q)(s¢® — 2¢* + 2eq) 4 At (o 4 1),
...q . /)

Therefore if
(6.5.8)

Then A, (KA) and M\;(KB) are all real for ¢ =1,2,3,4. So combining the con-

ditions (6.5.5) and (6.5.8), for the supersonic fiows,

2

1 1. » . 1 .
(6.5.9) s> max(2(—M—2— + }\_/I—)’ M;{] + (¢* - ;);)Z]).

Therefore we have completed the proof.

Next for (6.4.4; we have the following theorem.
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Theorem 6.5.2. T'¢ 3 »3 system (6.4.4) 15 weakly coupled with a syminetric

positive preconditioning matrz I only of

2

w4 0% -t >0.

Proof. The proof can be completed by proving the fellowing two lemmas.

lLemma 1. Let

B

pq* pg:
- . Uu (‘2 C2 SU;, SUY
(6.5.10) K=|-25 1-5+— . ’
Pq- q g~ q
k el Sur . 2 N spl
Pq’ q* gt )
2y —1 et

where s =4 — 1+ 5 = .
(y - M2 (y—1)p%¢
Then K s the symmetric solution of AKB = BK A with the first entry 1.

Proof. Using Lemma 1 of §6.4 and solving

kll = 1 3
kg = ’»‘-21,
ki3 = kay.
We get
‘o uc?
P p(u? 02y
vee
1y = —
? p(u? +v?)
sv? - ¢*
ty3 =1 -



where s 1s given in the lemma. And also we get Rpy < hgo =

is a solution of ANB = BK A due to Lemma 1 in §6.-1

Lemma 2. NA and KB are hyperbolic if and only of

¢ = u? + v > 0.

Proof. This is a consequence of Theorem 6.4.2.

6.6 On the Three-Dimensional Euler Equations

Here, we attempt to extend the results established for 2D Euler equations

to 3D Euler equations. Unfortunately, the following theorem indicates that a

non-singular matrix K does not exist which makes all K4, KB, and KC com-

mrite.

Theorem 6.6.1. Consider the 8D Euler equations in the quasi-linear form.

oU  9U  _aU | dU
Bt A By tC, =0



-~
-1

with U - (p.ou v, rr.

( u o p 0 0 0

v

\Opc'“OO u/

(1)0;)00\

—
(o2
(=2}
o

A
&

1l
[l
[on]
<
(]
[
~
©

\OOOpc2 w}

There does not erist a nonsingular matriz K making A, B and C all ccmmu-



tative. 1.e.

(A, KB} =0.

(6.6.3) [KAKC) =0,

[KB,KC] =0.

Proof. If K is nonsingular and (6.6.3) holds, then K must satisfy the following

relations

AKB = BHKA,

(6.6.4) AKC =CKA,

BKC =CKB.

Suppose K = (k;j)sx5. Expanding (6.6.4) one gets a 75x25 hmear homogencous
system of ki;. From the first equation of (6.6.4) we get
ks; = 0 and ksq = 0.
From the second equation of (6.6.4)
ks; =0 and k53 = 0.
Similarly, from the last equation of (6.6.4)
ks; =0 and ks; = 0.

The last two relations from (6.6.4) lead to kss = 0. Hence K s singular.

However, a nonsingular matrix A can be found to satisfv two of the three

conditions in (6.6.4) but not all three.
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6.7 On Stability Analysis

It is very important to study the stability analysis for a given numerical
algorithm. Because of the non-commutativity of the coefficient matrices, there
is no stability analysis for the initial value problems of the 2D or 3D Euler
equations(see Bernner (3], (4]). However some classical works on this topic re-
garding numerical sche nies are available (Kreiss et al [20], Lax 29]). The von
Nemmann stability anal’ #s is often used. It is successful for some problems
with certain restrictions. “or two-dimensicnal or three-dimensional quasi-linear
equations, we usually need the coefficient matrices A and B to be commutative,
i.c., AB = BA. But it is in general not possible for the Euler equations. For
two-dimensional problems, if we are only concerned with the steady solutions,
we can apply the results obtained in the sections 6.2 to 6.5 and perform the

stability analysis as follows.

Consider

oU ou aUu
(6.7.1) '?GT-FAE;-FBE;—O,

where A and B commute. This system can be viewed from a time-marching

scheme applied to the preconditioned steady Euler equations obtained in §6.2.

6.7.1 Semi-Discretization



hiY
Suppose the system (6.7.1) 1s a weakly coupled system. Freezing the coef
ficient matrices and using the characteristic variables W= L~ we have the

following form

W+ AW+ Al =0,
(6.7.2)

W(r,0) = Wy(r).
where L is the comuon ecigenvector matrix of A and £ Using an upwinding
technique to discretize the equation, we get the following linear system of QODEs:

dWw
dt

(6.7.3) =HW +b.

The dimensions of vector W and b arc nN Ny, where nois the dimensions
of A and B, and N, and Ny, arec numbers of grids in the r — and y

directions respectively.

Theorem 6.7.1.

1. The operator H 1is non-positive,

(674) H < 0, Z@(HU, br) < O,V Ue RnN;N,'

2. If 6=0, we have the monotonicity property for the solutions of (6.7.9):

(6.7.5) (W(t),W(t)) < (W(s),W(s)) fort >s >0.

Therefore, the following estimates for U

(6.7.6) U@l < Cluo),

is obtained, where U(t) is an approzimation of the solution of (6.7.2).
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4. The general solution has the form

t
(6.7.8) W(t) = S(t)Wo +/ S(t — s)bds.

¢}

where S(t) s the scinigroup A,

The proof is straightforward and will not be presented here.

6.7.2 The von Neumann Method for Stability Analysis

In this seetion we apply the von Neumann stability analysis to the up-

winding scheme, the Lax-Friedrichs scheme and the fractional step method.

A. Upwinding Method

For the upwinding method, we require A and B to be hyperbolic and
commute, so that there exists a matrix L which simultaneously diagonalizes
Aand B.

Let |Aj = AalL7Y AT = LA;’;L"I, A~ =LA L™, and similar definition
for |B|, B*, and B~. Then
AU + AT (Ui ; — Uicy,j) + A= (Uigs,; — Ui )

T h,

BY(U;; — Ui j—1)+ B~ (Ui j+1 — Ui ;)
hy

(6.7.9)
+

=0.



Equation (¢.7.9) can be rewritten into the following form

Upt = (I~ o, ]A] = a i BNUE, + o, BYUS | 4o, ATUT

—rrn -~ 7R
=0, ATU = oy BTUY 4

(6.7.10)
= (I —o0.|A| —oy|B| + cfyB*'S;‘f +o, 4TS
—0,A7S5] — ayB"Si)U,-’:J,
T T _
where o, = —, 0, = —, and S, S§ arc the shift operators, c.g.,

he' Y hy

SiUk‘j:(]k.}_]'j, Silfkd :L,k—l,]

The amplification matrix is give by
G =1~ 0,|A|(1 = 0s@,) — ay|Bl(1 — cos )

(6.7.11)
—i(Asingg . Bsingy).

The von Neumann stability condition requires that ||G"|| is bounded, henee
(1= | A (A)(1 — cos p;) — ay| M (B)|(1 — cos ¢, ))*
+ (02 Ak (4) sin ¢, + oy Ak (B)singy ) < 1.

Theorem 6.7.2. The condition (6.7.12) holds if and only if

(6.7.13) 1?1?%(4(UIIAIC(A)I +oy|A(B)]) < 1.
Proof. 1t is sufficient to consider only the following case:

a = M (A) and b = A (B) and cos ¢y, cosdy, sing; and sing, are all pos-
itive.

Then the proof is completed by the following lemma.
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Lemma. Let
floy) - (1 - a—btar+by)*+ (a\/—l —r? 4 b\/Fl—;—y—z)z.

Then f(r,y) <1 ff a+b< 1

Proof.

/] — r? J1 — y2
%:2(1,(1-(1—b+az+by)—2(1w9—1 f/l_t_l;_zl Y
of aV1— 22 +by/1 — 32

9l o1 —a — ) — 2
3y 20(1 —a — b+ ax + Ly) — 2by \/_1_—y2

('
Let 9 _ ?—f- = (0. Then r = y and 9, = 2a(l — a — b) > 0. Therefore

dr Jy ' or
flr,y) < f(1,1) = 1.
On the other hand, if a +b = 1 + € for some € > 0. Then f(1,1) =

(1=(a+b)?+(a+b)?>(a+b>1"=->1

The implicit form of (6.7.9) is

(6.7.14)
Uk'.'j‘ = (I + og|A| +0y|B| —0yBYSY ~ 0, A% S5 + 0:A™S] +0yB~ syy~tur,

which is unconditionally stable because

1
<1,
(14 0| AD](1 = cos ¢z) + 0y |AP|(1 — cos@y))? + (oA sindy + oy AP singy)? ~

where A = Ai(A), and A = M (B).



B.

hB|

Lax-Friedrichs Method

For the Lax-Friedrichs scheme, recall that (3.4.7)

1
n-1 1. n n rn
l/'x,j :E(Ui+l,j+(-’i~~l,j+Ui,j+l +£‘,,J—1)

At . At )
B ?EEA(L/"“J ~Uisi) -~ 5&;3((’.‘.]4! = U0 ).

The amplification matrix beeomes

1 . . .
G = S(ms Gr +cospyy — (o Asing, + oy Bsingy).

The von Ne-:mann stability condition is then equivalent to

(6.7.

Th..

(6.7.17)

+ s py)? + {o:p(A) sin ¢y + ayp(B)sin g, )* < 1.

~eessary and sufficient condition but with an indirect

. vleinentary proof.

«.7.3. The condition (6.7.16) holds if and only if

(02p(A))? + (oyp(B))* <

N =

Proof. The proof is completed by proving the following lemma.



Lemma 2. Let
. 1 T »
flr.y) = 1\\/1 —-r* ot \/1 — Y)Y 4 {ar + by).

Then f(r.y) <1 iff o> +b° <

to fo—

Proof. First we show that f(0.y) < 1. Note that

(14 V1~ y2)* + b2y
1+\/_—1/ ;
142 l—(/ +1-—l/ )+

(4= (1-y")+2V/1- 42~ 1)
(V1—y* = 1))

f(0.y) =

te

] f
= .IAI‘-‘»I—-I'-‘J-\U—‘ J-al'—' »1-1'-‘
(ul\

/-\
N
l

A

Next, g(y) = f(1,y) <1.

(1-9y*)+ (a+by)*
(1 —y?®) +a® + 2aby + by

P
==+ a +2aby+(b2—z)y2

e S e

1.
g'(y) = 2ab +2(6* — Z)y.

Therc are two cases, i.e. b* > 1/4 and b < 1/4. If b* > 1/4, ¢'(y) > 0 and
hence g(y) < g(1) = (a + b)? < 2(a® +b%) < 1. On the other hand, if b* < 1/4,

then

!
= t = e—————
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If yy - 1. we have gly) < g(1) < 1. So assuming y, < 1. then

2 ! )
+ a4 ub—/?”i——b—z -+ (b*

a?l?

1/4 — b2

. ; )( -

1/4 - b?

1 ab )
qlyo) 3 )

+a’ +

+a® + ab

a’?  (a+b)?
t5

a? + b (a +b)?
. > + 2

<

AN

IA
O b e s ] e s e a—
.

IA

IA

Similarly we can show that f(2,0) < land f(x,1) < 1. Now consider (z.y) €
(0,1)%.

of _ 1\\/1-—32+\/1—J )
or 9./1 — 22

(ax + by);

of _ y(WT=22+/1-¢?)
dy 2./1 - y?

Let g{ = () and ;—]; = (), then

+ 2b(azx + by).

bz
Yy = .
y \/(12 + (b2 _ az)zz

L 0
Substituting it into ——'i =0 we have

Ox
- a 1/4 — a?
(6.7.18) \Ez+(b2—a2)z‘2 - b2 —1/4
%;{4—_—1% < 0, then (6 7.18) is violated and hence —Q-— # 0a d 7(: 0.

Therefore f can never rcach «: maxima in the interior of D So assumlng



1/4—a” :
g_{—_—l——/a: > (1. using the relation (6.7.18)0 we have
cp g0 N 1/4 - a*
if b= — = > 0. then —/,—” <
b —1/4
T y 1/4 - a°
if b2 —a® < 0. then ~/~ a > 1.

b2 - 1/4

Each case will lead to o + b > 1/2 which is a contradiction. The other

e s 1 ) . oy 0
possibility is b* — ¢ = 0 which will imply that :,)i < 0. Thus we get
r

flr.y) <max ' f(0,y). f(Ly). f(r 0) fla, 1)} < L.

On the other hand, if a? 4+ b* > 1/2, say a® + b* = 1/2 4 ¢ for some

¢ > 0, then max f(z,y) > 1. Note that f(V2€ — €2, V/2e — €2) > 1 + 2¢3 Henee

we complete the proof.

Note that for the Lax-Friedrichs scheme we do not require that A and B
are hyperbolic. For the general Euler equations, A and B are not commute,
and our numerical experiments in §7.4 verify that even if the condition (6.7.16)

is satisfied, the Lax-Friedrichs scheme fails to converge.

C. Fractional Step Method

Fractional methods are applied widely in the area of CFD([44]). It is
interesting to note that in [25] an approximate factorisation method for the un-
preconditioned Euler equations is unstable for flows with Mach number hetween

0.8 to 2 and with large CFL numbers [25]. The only explanation is that A
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and I3 do not commute for the 2D Euler equations. In this section, we consider
(6.7.1) when A and B oare commutative.

" he fractional step method is given as follows. Solving

oau o 1

DI S [ ‘O1 o / — )

5 “'101 or t & [nAt(n+ ‘2)At),
(6.7.19)

ou ou

b 235{-’—, fort € {(n+ é)At,(n + 1)At).

The explicit forms are

/vn+l/2 _In n __ frn n ~[n
(;’_'1____.__(/_1’_]_ =~ 2(A4 v ._g‘;l_i + A U_“H__J__g'_i)
At)2 Az Az ’
(6.7.20)
n41 /,n+1/2 r+1/2  pent1/2 n+1/2 n+1/2
Ul U T g Y ZC g Y 20y
At/2 Ay Ay '

Denote ST and SY be the shift operators. Then (6.7.20) can be rewritten as
U,",I;Ll =(I — 0y|B| + 0yB, 5! — 0y B_SY)

The corresponding amplification matrix is given by
G = (I — 0|B|(1 — cosdy) + ayBsind,)(I — oz|A|(1 — cos ¢z} + 0z Asinéz).

Because A and B are commutative and hyperbolic, it can be shown that ||G"||
is bounded if and only if max(c.|\(A)|, oy (B)]) < 1. Note that if A and
B do not commmute, one cannot obtain the stability condition.

The implicit form is

U =(I + 0y|B| - 0, B+ SL + 0, B_SY) ™!
(6.7.22)
(I +0.]lA|—0:A455 — o,A_S_f_)—lU'."‘J._



b

The algorithm (6.7.22) is unoonditionally stable because

i
N R T Y - 1.
(14 o I\ (AT = cos o))+ (ap Me(A) sino,)?
1
. e e K] 1

(1 ¥ oy M (B)](1 = cos 0,))? 4 (0y Me(B)sin ¢,)?
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Chapter VII

Numerical Solutions for 2D Steady Euler Equations

7.1 Iniroduction

Supersonic steady fow problems are importart in CFD applications([35],
[50]). As carly as 1947, Theodore von Karman wrote [1] that “I believe we have
now arrived at the stage where knowledge of supersonic aerodynamics should be
considered by the . ronautical engineer as a necessary pre-requisite to his art.” In
1948, Couraat and Friedrichs’ book [7] on supersonic flow was published. Today
the aerospace world is seeing renewed interest in the utilisation of supersonic
and hypersonic systems. Multiple activities are cngoing in the United States,

Europe, Russia, and Japan to explore new vehicle technologies and systems [50].

From section 6.1 the two-dimensional Euler equations in quasi-linear form

are

(7.1.1) - + AU, + BU, = 0.
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Introducing a preconditioner K. (7.1.1) 15 then equivalent to

- ot .
(7.1.2) N——+ NAU, + KBU, = 0.
ot ‘
If we are only interested m steady-state computations. we may consider the

preconditioned PDE:

ov . .
(713) -‘5’— + A Al'r, + A Blfy = ().
The above three equations (7.1.1), (7.1.2) and (7.1.3) have the same steady
state solutions if the systems with boundary conditions are well-posed. Our
computations will be based on the equations (7.1.3), and for simplicity we just
write (7.1.3) as

ou ou ou
( ) ot Oz Oy

If we can successfullv define (for the linearised equations we can do that) the

characteristic variables W [22]:

(7.1.5) oW = L7'aU,
then
(7.1.6) Wi+ AaW, + AgW, = 0.

This is a fully decoupled system if we freeze the eigenvalues. Therefore une can

easily develop a stable numerical algorithm by using an upwinding technique.
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Let Al = L

AAIL7V AT = LARL ' A = LATL7'. ete.. a general nu-

merical algorithm for the solution of (7.1.4) can be expressed as

AU AN, -UL i+ A7 (U, - UE)

o . hy
(7.1.7) X B, - U )+ B (Ul —U7)) 0
hy o

where AU = U{";’l - Ul,. The algorithm is explicit if * = n, and becomes
implicit if * =n + 1.

In this chapter we present numerical experiments for some supersonic
steady flow problems. One is the shock reflection problem and another is the

4% bump channel problem.

7.2 Shock Reflection Problem

The physical domain for the shock reflection problem is [0,4.1] x [0, 1].
The pressures at the freestream and upper boundary are prescribed as follows
P, = 0.714286,
(7.2.1)
Py:l == 1-52819.
Moreover the Mach number at free stream is Mo = 2.9. According to the

jump conditions and the incident angle @ = 29° we gev

Poo 1 Py=1 1.6996
(7.2.2) oo | _ 2.9 | ug=1 | _ | 2619343
Voo 0.0 " | vy ~0.506178

P, 0.714286 Py 1.52819

-
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Numerical experiments are performed by using both explicit and implicit algo
rithms. The numerical results show that Jarge CFL numbers in the range of
100 to 1000 can be used i implicit computations.  Therefore the theoretical
results in section 6.7 are numerically verified.

The resulting hinear svstem is solved by conjuzate gradient method applied
to the normal equation.

The computational grids are 60 < 20 (Fig. 7.1) and 120 x 40 (Fig. 7.2).
Figures 7.3 to 7.6 arc the numerical results performed on the grid 60 %20, while
Figures 7.7 and 7.8 are on the grid 120 x 40.

Fig.7.3 are the numerical results using the explicit versic ot (7.1.7) with
hy = 4.1/60, hy = 1.0/20, and + = 0.25h,. Fig.7.4 to 7.6 arc the numerical
results using implicit version of (7.1.7) with 7 = 100h,, 7 = 500k, and 7 -
1000k, respectively. Results for a finer mesh are given in Figs. 7.7 and 7.8,
where Fig.7.7 gives the solutions using explicit scheme with 7 = 0.25h,. The

solutions using implicit scheme with 7 = 100k, are illustrated in Fig.7.8.
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7.3 Supersonic Channel Steady Flow

Next consider supersonic flows in a channel with a 4% thick circular arve
bump. This is a standard test problem considered in [45]. The geometry of
the channel is given by the following mapping from the (&,1) — computational
space to the (z,y) — physical space with (£.7) € [—1,2] x [0,1]. The mapping

is given by

1.
lsfs - =00+ 1)/3,
— 1 o5 -
(7.3.1) 7 SEs 8= (4€ +1)/6,
5 .
25532,6‘—‘(45-2)/3
. e~ P )
~1<E<0e = -1+ ——5——,
(7.3.2) 0<é< 1z =§,
- 6131(5-—2)_.1
18822 =2~ ——F—7-
_ Ban _ 1
(7.3.3) =t
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- 1
yo i (1 'i))(\/;89105 ~(zr~5)2=3.105) for 0 < 7 < 1.

7

y =1 forr <0 or r 2 1.

with i) = 1.26 and /4, = 1.01.

Init:al Conditions

At the inflow boundary (z = —1) we prescribe Minier = 1.4. Then we use

(735) Pinlet = 1.4, ninter = Minters Pinter = 1.0.

Boundary Conditions

The outflow boundary conditions are derived from the first order interpo-
lation. At the lower and upper rigid boundaries, a normal condition is imposed,
ie., Uri =0, where U= (u,v), the velocity vector, and 7 is the normal vector
to the rigid boundary.

We apply a first-order upwinding method and Lax-Friedrichs method for

the supersonic channel flow problem.

7.3.1 First Order Upwinding Method

Here, the first order upwinding method (7.1.7) is applied to the supersonic
channel steady flow problem. First the problem is solved with the computa-

tional grid 48 x 16 (Fig. 7.9). The method works very well. Fig. 7.11 shows
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the computational results using the explicit method with = = 0.25 while Fug.
7.12 uses the implicit method with ;= = 100. When the computational grid ix

refined to 96 x 32 (Fig. 7.10) there is some problem for both explicit and im
plicit methods due to M = 1. But using the results from the coarse grid A8~ 16
as an initial approximation, no difficulty is observed in the computations (Fig.
7.13) using implicit method with ;= =100.

The same problems with M, = 1.5 or 2 can casily be computed by

applying implicit method with grid 96 x 32 and & = 100 (Fy. 7.14, Fig.
7.15).
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7.3.2 Lax-Friedrichs Method

Now the Lax-Friedrichs scheme (3.4.7) is applied to the modified equations

(7.1.3) of the 2D Euler equations (7.1.1). We recall that (3.4.7)

n 1 n Tt n
Uz',j+l :Z(Ui-}—l,j +UL U + U )

(3.1.7) N A
- QA.’I,‘A(U:;-]‘] ~Uiliy) - iZAyB(Uirfj-c-l ~Ul0)

The interesting observation is that (3.4.7) fails to converge when applied to the
original system (7.1.1). The numerical results with Mjnier = 1.4, grid 96 x 32
and ;& == 0.25 and ;& = 0.275 are shown in Fig. 7.16. Fig. 7.16a are residues

for (7.1.1) and Fig. 7.16b are residues for our preconditioned system (7.1.3).

Here the residue is defned as |JU™ — U]
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Chapter VIII

Conclusion

In this chapter. we summarise our work and make some remarks. In
summary. the following contributions are made in the thesis.

i Numerical schemes (see (4.3.2). (4.4.3) and (4.4.4)) which are called the
exponential schemes are derived for one-dimensional hyperbolic systems.
For the Burgers' ecuation, the stability analysi (see Thecrem 4.3.1) is
presented for the algorithm (4.3.2). The numerical results for the Burgers’
equation show that the speed of the wave propagation is equal to the one
obtained theoretically.

2 The concept of a weakly coupled system is introduced for multidimensional
hyperbolic systems. Theoretical results show that the coupledness property
of the coefficient matrices for the two-dimensional and three-dimensional
Euler equ« ons causes difficulties in developing numerical methods for
their solu .ons.

3 We have shown that the system of the two-dimensional Euler equations
is a weakly coupled system if and only if the flow conditions are super-

sonic(Theorem 6.2.1). The interesting fact is that if KA and KB are
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commutative where A is nonsingular. then K4 and KB are hyporbolie
if and only if u®+ 2 > ¢, This fact implies that for the two dimensional
Euler equations. the weakly coupling property is characteristic for super
sonic Hows. Moreover. it is proven ‘hat K can be chosen to be symmetnie
and positive defimte.

4 From the Theorem 6.6.1. it is shown that the system of the three dimen-
sional Euler equations can not be weakiy coupled. Hence. there does not
exist a A such that KA. KB, and A'C are mutually commutative,

5 For the following svstem

oU at ot

E+.~15;+Ba/‘:().

with A and B commutative, we performed the stability analysis for the
upwinding method (Theorem 6.7.2), for the Lax-Friedrichs method ( The-
orem 6.7.3) and for the fractional step method. The implicit form of the
upwinding method and the fractional step method are unconditionally sta-
ble.

6 Numerical experiments are shown in Chapter 7 for several steady Euler
solutions.

7 Although the numerical experiments are performed using a simple first or-
der scheme, higher order numerical algorithms can be applied in a straight-
forward manner to the preconditioned Euler equations.

Next, we list several problems which require further investigations.

1 Well-posedness problem. This is the most important cpen problem for the

mathematical analysis of multidimensional Euler equations. We hope to

make some contributions to the study of steady supersonic flow problems.
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9 Unsteady solutions of the two-dimensional Euler equations. It is of interest
to find a preconditioning matrix A such that LK L™' is symmetric and
positive-definite, where L is the common eigenvector matrix of KA and
KB. If such K exists, a stable semi-discretization (like Theorem 6.7.1)
scheme can be established.

3 Genuinely multidimensional methods. We need to explore multidimen-
sional properties in order to develop genuinely multidimensional methods.
We considered the commutativity of the coefficient matrices in the the-
sis. Considering the wave decompositions could be another direction of
investigation.

4 Effects of boundary conditions. We can not hope to prc-e the well-
posedness of the Cauchy problem for a general system ({3, [4]). Con-
sidering the effects of boundary conditions on well-pe odness is very im-
portant. Le. it is important to study what boundary conditions imposed

on a given problem make the problem well-posed.
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