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Abstract

This thesis contains the following three parts:

Part 1(Chapters 1-5): Spherical h-harmonic analysis.

Part 2: Reverse Hölder’s inequality for spherical harmonics.

Part 3: Multivariate Lagrange and Hermite approximation and pointwise

limits of interpolants.

The main results of Part 1 are included in two journal papers, one long joint

paper with Prof. F. Dai submitted to Adv. Math., and one single-authored

paper to appear in Bull. Can. Math. Soc. Results of Part 2 are contained

in a joint paper with Prof. F. Dai and Prof. S. Tikhonov to appear in Pro.

AMS, and results of Part 3 are from a joint paper with Prof. M. Buhmann

submitted to J. Math. Anal. Appl.

Part 1 consists of 5 chapters and is organized as follows. Chapter 1 is devot-

ed to a brief description of some background information and main results for

Part 1. Chapter 2 contains some preliminary materials on the Dunkl spherical

h-harmonic analysis. After that in Chapter 3 the analogues of the classical
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Hardy-Littlewood-Sobolev (HLS) inequality for the spherical h-harmonics with

respect to general reflection groups on the sphere is established. A critical in-

dex for the validity of the HLS inequality is obtained and is expressed explicitly

involving in the multiplicity function and the structure of the reflection group,

which allows us to compute the critical indexes for most known examples of

reflection groups. One of the main difficulties in our proofs lies in the fact that

an explicit formula for the Dunkl intertwining operator is unknown in the case

of general reflection groups, and therefore, closed forms of the reproducing ker-

nels for the spaces of spherical h-harmonics are not available. A novel feature

in our argument is to apply weighted Christoffel functions to establish new

sharp pointwise estimates of some highly localized kernel functions associated

to the spherical h-harmonic expansions. In Chapter 4, we introduce Riesz

transforms for the spherical h-harmonic expansions, which are motivated by a

new elegant decomposition of the Dunkl-Laplace-Beltrami operator involving

the tangent gradient and the difference operators. These Riesz transforms are

shown to have properties similar to those of the classical Riesz means. In

particular, the Lp boundedness of these operators is proved. The proof of the

main result in this chapter uses the Calderon-Zygmund decomposition, but the

main difficulty is to establish some sharp kernel estimates related to the Riesz

transforms. Finally, it is worthwhile to point out that the decomposition of the

Dunkl-Laplace-Beltrami operator, discovered in this thesis, seems to be of in-
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dependent interest. Indeed, as an application of this decomposition, in the last

section of this chapter we establish the uncertainty principle with respect to

the spherical h-harmonic expansions on the weighted spheres. Finally, we close

this part by extending the results in preceding chapters to the corresponding

weighted orthogonal expansions on the unit balls and the simplices. These re-

sults, in particular, generalize a classical inequality of Muckenhoupt and Stein

[Trans. Amer. Math. Soc. 118(1965), 17–92] on conjugate ultraspherical

polynomial expansions.

In Part 2 our aim is to determine the sharp asymptotic order of the fol-

lowing reverse Hölder inequality for spherical harmonics Yn of degree n on the

unit sphere Sd−1 of Rd as n→ ∞:

‖Yn‖Lq(Sd−1) ≤ Cnα(p,q)‖Yn‖Lp(Sd−1), 0 < p < q ≤ ∞.

It is shown that, in many cases, these sharp estimates are significantly bet-

ter than the corresponding estimates in the Nikolskii inequality for spherical

polynomials. These inequalities allow us to improve a result on the restric-

tion conjecture of Fourier transform, as well as the sharp constant in the Pitt

inequalities on Rd.

Finally, Part 3 studies various approaches to multivariate interpolation.

Precisely, we analyse interpolation and the reproduction of polynomials and

other functions by linear combinations of shifts of radial basis functions and
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cardinal interpolants. We also consider gridded data Hermite interpolation. Of

particular interest in practice is a class of radial basis functions which contains

the celebrated multiquadrics and inverse multiquadrics for instance. For those,

we provide new results on the asymptotic limits of the aforementioned cardinal

interpolants when the parameter in the generalised multiquadric function (r2+

c2)γ diverges.
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Symbols and Notation

Rd d-dimensional Euclidean space

Sd−1 (d− 1)-dimensional unite sphere in Rd

Bd d-dimensional unite ball in Rd

Td d-dimensional simplex in Rd

〈·, ·〉 Euclidean inner product in Rd

‖ · ‖ Euclidean norm in Rd

| · | `1 norm in Rd, |x| = |x1|+ |x2|+ · · ·+ |xd|
x̄ absolute form in Rd, x̄ = (|x1|, · · · , |xd|)
Lp(w; Sd−1) Lp space on Sd−1 with respect to the weighted Lebegue measure

w(x)dσ(x)

‖ · ‖w,p Lp norm on Lp(w; Sd−1)

Zd
2 the Abelian reflection group identified with the set {±1}d

σv reflection in Rd, σv : x 7→ x− 2 〈x,v〉
‖v‖2 v, v ∈ Rd

A ∼ B asymptotical equivalence, c1A ≤ B ≤ c2A for some constants c1, c2 > 0

A . B asymptotically less relationship, A ≤ cB for some constant c > 0
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Part I

Spherical h-Harmonic analysis
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Chapter 1

Introduction

The classical Hardy-Littlewood-Sobolev (HLS) fractional integration the-

orem states that if 0 < α < d and 1 < p ≤ q <∞, then the HLS inequality,

‖(−∆)−α/2f‖Lq(Rd) ≤ C‖f‖Lp(Rd), ∀f ∈ Lp(Rd), (1.0.1)

holds if and only if α = d(1
p
− 1

q
) (see [St1, Chapter V]), where ∂j = ∂

∂xj

and (−∆)β denotes the fractional power of the Laplacian ∆ =
∑d

j=1 ∂
2
j .

This theorem implies the Sobolev embedding theorem essentially by the re-

lationship between the Riesz transforms Rj = ∂j(−∆)−
1
2 , j = 1, 2 · · · , d

and the fractional integral operators (−∆)−α/2 (i.e. the Riesz potentials).

The HLS inequality and the Riesz transforms on Rd have been extended to

many different settings with fractional integration being mostly defined via

orthogonal expansions or distributional Fourier transform (see, for instance,

[AsWa, ArLi, AuHoLa, BoTh, ChWh, NoSt, SaWh, St1, SaSuTa, ThXu]).

In this part, we will study the HLS inequality and the Riesz transforms for

fractional integration associated to weighted orthogonal polynomial expansions

(WOPEs) on the sphere Sd−1 := {x ∈ Rd : ‖x‖ = 1}, on the ball Bd := {x ∈
Rd : ‖x‖ ≤ 1} and on the simplex Td := {x ∈ Rd : x1, · · · , xd ≥ 0, |x| ≤ 1}
with weights being invariant under a general finite reflection group on Rd.

Here and throughout the part, ‖ · ‖ denotes the Euclidean norm in Rd, and

|x| :=
∑d

j=1 |xj| denotes the `1-norm of Rd. In this introduction we shall

describe our main results for WOPEs on the sphere Sd−1 with a “ minimum”

of definitions. Necessary details and appropriate definitions will be given in
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the next section.

Let G ⊂ O(d) be a finite reflection group on Rd. For v ∈ Rd \ {0}, we
denote by σv the reflection with respect to the hyperplane perpendicular to v;

that is,

σvx = x− 2〈x, v〉
‖v‖2 v, x ∈ Rd,

where 〈·, ·〉 denotes the Euclidean inner product on Rd. Let R be the root

system of G, normalized so that 〈v, v〉 = 2 for all v ∈ R, and fix a positive

subsystem R+ of R. It is known that (see, for instance, [Ro2]) the set of

reflections in G coincides with the set {σv : v ∈ R+}, which also generates

the group G. The dimension of the linear subspace of Rd spanned by all

elements from the root system R is called the rank of R and is denoted by

rank(R). Let κ : R → [0,∞), v 7→ κv = κ(v) be a nonnegative multiplicity

function on R (i.e., a nonnegative G-invariant function on R). Let hκ denote

the weight function on Rd defined by

hκ(x) :=
∏

v∈R+

|〈x, v〉|κv , x ∈ Rd. (1.0.2)

The function hκ is G-invariant and homogeneous of degree |κ| :=∑v∈R+
κv.

The weight function we shall consider on the sphere Sd−1 is h2κ(x), which

can also be written as h2κ(x) =
∏

v∈R |〈x, v〉|κv . We denote by dσ(x) the usual

Haar measure on Sd−1, Lp(h2κ; S
d−1) the Lp-space defined with respect to the

measure h2κ(x) dσ(x) on Sd−1, and ‖·‖κ,p the norm of Lp(h2κ; S
d−1). A spherical

polynomial on Sd−1 is the restriction to Sd−1 of an algebraic polynomial in d

variables, whereas a spherical h-harmonic of degree n on Sd−1 is a spherical

polynomial of degree n that is orthogonal to spherical polynomials of lower

degree with respect to the inner product of L2(h2κ; S
d−1). We denote by Hd

n(h
2
κ)

the space of all spherical h-harmonic polynomials of degree n on Sd−1. Each

f ∈ L2(h2κ; S
d−1) then has an orthogonal expansion in spherical h-harmonics,

f =
∞∑

n=0

projn(h
2
κ; f), (1.0.3)

converging in the norm of L2(h2κ; S
d−1), where projn(h

2
κ; f) denotes the orthog-

onal projection of f onto Hd
n(h

2
κ).
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The theory of spherical h-harmonics was developed by Dunkl in [Du1,

Du2, Du4]. It has applications in physics for the analysis of quantum many

body systems of Calogero-Moser-Sutherland type (see, for instance, [Ro2] and

[DuXu, pp. 360-370]). From the mathematical analysis point of view, the

importance of spherical h-harmonics lies in the fact that they generalize the

theory of ordinary spherical harmonics. There is a vast literature related to

spherical h-harmonics and Dunkl analysis, see for instance [BoTh, BoRoTh,

DaXu, Du1, Du2, Du6, Du4, DuXu, deJ, Ro2, Ro1, RoCo, ThXu, Xu, Xu2].

The spaces Hd
n(h

2
κ) of spherical h-harmonics can also be characterized as

eigenfunction spaces of a second order differential-difference operator ∆κ,0 on

Sd−1, which we shall call the Dunkl-Laplace-Beltrami operator. Indeed,

Hd
n(h

2
κ) =

{
f ∈ C2(Sd−1) : ∆κ,0f = −n(n+ 2λκ)f

}
, n = 0, 1, · · · ,

where

λκ :=
d− 2

2
+ |κ| = d− 2

2
+
∑

v∈R+

κv. (1.0.4)

As a matter of fact, we may define the fractional power (−∆κ,0)
α of (−∆κ,0)

for α ∈ R in a distributional sense by

projn(h
2
κ; (−∆κ,0)

αf) = (n(n+ 2λκ))
α projn(h

2
κ; f), n = 0, 1, · · · . (1.0.5)

Our first main result determines the optimal power α of the operator ∆κ,0

for which the following HLS inequality holds:

‖(−∆κ,0)
−α/2f‖κ,q ≤ Cp,q,κ‖f‖κ,p, 1 < p < q <∞, (1.0.6)

where Cp,q,κ > 0 is a constants depending only on p, q, κ.p

Theorem 1.0.1. Let 1 < p < q < ∞ and α > 0. Then the inequality (1.0.6)

holds for all f ∈ Lp(h2κ; S
d−1) if and only if α ≥ sκ(

1
p
− 1

q
), where

sκ =





d− 1 + 2|κ|, if rank(R) ≤ d− 1;

d− 1 + 2max
Xd−1

∑
v∈R+∩Xd−1

κv, if rank(R) = d
(1.0.7)

with the maximum being taken over all (d− 1)-dimensional subspaces Xd−1 of

Rd spanned by d− 1 elements from R+.
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It turns out that the optimal index sκ in (1.0.7) can be written explicitly

for many typical examples of finite reflection groups. Below we include the

results for the examples given in [DaXu2, p.168], with details of calculations

being sketched in the appendix. Throughout the part , we set

e1 = (1, 0, · · · , 0), · · · , ed = (0, · · · , 0, 1) ∈ Rd.

Example 1.0.2. The case G = Zd
2 (the Abelian group). Here the group G has

a positive root system R+ = {e1, · · · , ed}, the associated weight function can

be written in the form

hκ(x) =
d∏

j=1

|xj|κj , κej = κj ≥ 0,

and the index sκ is given by sκ = 2σκ + 1 with

σκ := λκ − min
1≤j≤d

κj =
d− 2

2
+

d∑

j=1

κj − min
1≤j≤d

κj. (1.0.8)

It is worthwhile to point out that in this case, σκ = sκ−1
2

corresponds to the crit-

ical index for the Cesàro summability of the spherical h-harmonic expansions,

see [DaXu1, DaXu5, LiXu].

Example 1.0.3. The case G = Ad−1 (the symmetric group on d elements).

Here the group G has a positive root system R+ = {ei − ej : 1 ≤ i < j ≤ d},
the weight function can be written as

hκ(x) =
∏

1≤i<j≤d

|xi − xj|κ0 , κ0 ≥ 0,

and the associated index sκ is given by

sκ = d− 1 + d(d− 1)κ0.

Example 1.0.4. The case G = Bd (the hyperoctahedral group). Here the

group G is the symmetric group of {±e1, · · · ,±ed}, for which

R+ = {ei ± ej : 1 ≤ i < j ≤ d} ∪ {ei : 1 ≤ i ≤ d}
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and

hκ(x) =
( d∏

i=1

|xi|κ1

)( ∏

1≤i<j≤d

|x2i − x2j |κ2

)
, κ1, κ2 ≥ 0.

The associated index sκ is given by

sκ =





2 + max{6κ2, 4κ1 + 4κ2}, if d = 3;

d− 1 + 2κ1(d− 1) + 2κ2(d− 1)(d− 2), if d ≥ 4.

(1.0.9)

Of particular interest is the case when α = 1, where Theorem 1.0.1 can be

formulated equivalently as follows: if f ∈ C1(Sd−1) and
∫
Sd−1 f(y)h

2
κ(y) dσ(y) =

0, then for 1 < p < q <∞ with (2sk + 1)(1
p
− 1

q
) ≤ 1,

‖f‖κ,q ≤ C‖(−∆κ,0)
1/2f‖κ,p. (1.0.10)

However, (−∆κ,0)
1/2 here is not a local operator, and hence, more difficult to

compute in practice. Our next main result gives an equivalent estimate of the

norm ‖(−∆κ,0)
1/2f‖κ,p in terms of the tangential gradient ∇0 on Sd−1,

∇0f = ∇F
∣∣∣
Sd−1

with F (x) = f(x/‖x‖), x ∈ Rd \ {0},

and the operators

Evf(x) =
f(x)− f(σvx)

〈x, v〉 , v ∈ Rd \ {0}. (1.0.11)

Theorem 1.0.5. If 1 < p <∞ and f ∈ C1(Sd−1), then

‖(−∆κ,0)
1/2f‖κ,p ∼ ‖∇0f‖κ,p + max

v∈R+

κv‖Evf‖κ,p, (1.0.12)

where A ∼ B means that there exists an inessential positive constants c such

that cA ≤ B ≤ c−1B. Furthermore, if p = 2, then we have the following

equality:

‖(−∆κ,0)
1/2f‖2κ,2 = ‖∇0f‖2κ,2 +

∑

v∈R+

κv‖Evf‖2κ,2. (1.0.13)

Combining Theorem 1.0.1 with Theorem 1.0.5, we obtain

Corollary 1.0.6. If 1 < p < q < ∞, sκ(
1
p
− 1

q
) ≤ 1, f ∈ C1(Sd−1) and
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∫
Sd−1 f(y) dσ(y) = 0, then

‖f‖κ,q ≤ C‖∇0f‖κ,p + C max
v∈R+

κv‖Evf‖κ,p. (1.0.14)

Remark 1.0.1. A straightforward calculation shows that if p > maxα∈R+ 2κα+

1, then the weight function h2κ(x) satisfies the Ap condition on Sd−1. Hence, by

the Poincaré inequality on the sphere it follows that for p > maxα∈R+ 2κα+1,

‖Evf‖κ,p ≤ C‖∇0f‖κ,p.

This means that the second term maxv∈R+ κv‖Evf‖κ,p on the right hand sides

of (1.0.12) and (1.0.14) can be dropped when p > maxα∈R+ 2κα + 1.

The proof of Theorem 1.0.5 requires delicate pointwise estimates of cer-

tain kernel functions in spherical h-harmonic expansions, which turn out to

be rather involved. A main difficulty comes from the fact that explicit in-

tegral representations of the reproducing kernels for the spaces of spherical

h-harmonics are not available except in the case of the Abelian group, G = Zd
2

(see [Xu2]).

As an application of Theorem 1.0.5, we shall introduce and study the Riesz

transforms for spherical h-harmonic expansions on Sd−1. Indeed, by Equation

(2.2.11) in Section 2, we can rewrite the formula (1.0.13) in Theorem 1.0.5 e-

quivalently as the following new decomposition of the Dunkl-Laplace-Beltrami

operator −∆κ,0:

−∆κ,0 =
∑

1≤i<j≤d

D∗
i,jDi,j +

∑

α∈R+

καE
∗
αEα, (1.0.15)

where Di,j = xi∂j − xj∂i denotes the angular derivative in the xixj-plane, D
∗
i,j

and E∗
α denote the adjoint operators of Di,j and Eα in the space L2(h2κ; S

d−1)

respectively. The operators D∗
i,jDi,j and E∗

αEα can be expressed explicitly as

follows (see Section 7 for details):

D∗
i,jDi,j = −(h2κ(x))

−1Di,jh
2
κ(x)Di,j, E∗

αEα = 2Eα/〈α, x〉. (1.0.16)

It is worthwhile to point out that the angular derivatives Di,j play an impor-

tant role in ordinary spherical harmonic analysis (see, for instance, [DaXu2,

Chapter 1] and [DaXu4]). By the decomposition (1.0.15), we may define the
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Riesz transforms for the spherical h-harmonic expansions as follows:

Definition 1.0.7. For 1 ≤ i < j ≤ d and v ∈ R+, define

Ri,jf = Di,j(−∆κ,0)
−1/2f, Rv =

√
κvEv(−∆κ,0)

−1/2f. (1.0.17)

In the unweighted case (i.e., κ = 0), the Riesz transforms for the ordinary

spherical harmonic expansions were introduced and studied in [ArLi].

As a consequence of (1.0.15), we have the following identity that is well-

known for the classical Riesz transform on Rd:

∑

1≤i<j≤d

R∗
i,jRi,j +

∑

v∈R+

R∗
vRv = I, (1.0.18)

where I is the identity operator on the space {f ∈ L1(h2κ; S
d−1) :

∫
Sd−1 f(y)h

2
κ(y) dσ(y) =

0}.
The Lp-boundedness of these Riesz transforms follows directly from Theo-

rem 1.0.5:

Corollary 1.0.8. For 1 < p < ∞, there exists a constant Cp > 0 such that

for all f ∈ Lp(h2κ; S
d−1),

max
i,j

‖Ri,jf‖κ,p + max
v∈R+

‖Rvf‖κ,p ≤ Cp‖f‖κ,p.

If, in addition,
∫
Sd−1 f(x)h

2
κ(x) dσ(x) = 0, then

max
i,j

‖Ri,jf‖κ,p + max
v∈R+

‖Rvf‖κ,p ∼ ‖f‖κ,p.

Finally, we will also establish similar results for WOPEs with respect to

the weight function

WB
κ,µ(x) := h2κ(x)(1− ‖x‖2)µ−1/2, µ ≥ 0, x ∈ Bd (1.0.19)

on the unit ball Bd, and for WOPEs with respect to the weight function

W T
κ,µ(x) :=

h2κ(
√
x1, · · · ,

√
xd)√

x1 · · · xd
(1− |x|)µ−1/2, µ ≥ 0, x ∈ Td, (1.0.20)

on the simplex Td, where in the case of Td we assume additionally that the

weight h2κ(x) is also Zd
2-invariant (see, for instance, the weights in Examples
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1.2 and 1.4). These results, in particular, extend a classical inequality of

Muckenhoupt and Stein [MuSt, p. 43, Corollary 1] on conjugate ultraspherical

polynomial expansions.

Throughout this part, all functions will be assumed real-valued and Lebesgue

measurable, and the letter C,C1, . . . denotes generic (positive) constants, which

may differ on each occurrence, even within the same formula.
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Chapter 2

Preliminaries

To better describe our results, in the chapter we shall introduce some need-

ed preliminaries and standard notion which will be valid throughout the rest

of this thesis.

2.1 The Jacobi polynomials

For parameters α, β > −1, the Jacobi polynomials are defined by

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β d

n

dxn
(
(1− x)α+n(1 + x)β+n

)
, (2.1.1)

where x ∈ [−1, 1] and n = 0, 1, · · · . They are mutually orthogonal with respect

to the weight function wα,β(x) = (1 − x)α(1 + x)β on [−1, 1] and satisfy that

([Sz, (7.32.5) and (4.1.3)])

∣∣P (α,β)
n (cos θ)

∣∣ ≤ cn− 1
2 (n−1 + θ)−α− 1

2 (n−1 + π − θ)−β− 1
2 , θ ∈ [0, π]. (2.1.2)

For a smooth function ϕ : [0,∞) → C, we define

B
(α,β)
N,ϕ (t) :=

∞∑

k=0

ϕ(
k

N
)P

(α,β)
k (t). (2.1.3)

We will use the following known estimates of the kernels B
(α,β)
N,ϕ and their

derivatives (see, for instance, [BrDa, Lemma 3.3] and [IvPe, Theorem 2.6]):

Lemma 2.1.1. Let ϕ be a C∞-function on [0,∞) with compact support that
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is constant in a neighborhood of 0, and let BN ≡ B
(α,β)
N,ϕ be the function defined

by (2.1.3) with α ≥ β ≥ −1/2. Then for any ` ∈ N and θ ∈ [0, π],

|B(i)
N (cos θ)| ≤ C`,i,α‖ϕ(3`−1)‖L∞[0,∞)N

2α+2i+2(1+Nθ)−`, i = 0, 1, · · · , (2.1.4)

where N ∈ N, B
(0)
N (t) = B

(α,β)
N,ϕ (t) and B

(i)
N (t) =

(
d
dt

)i {B(α,β)
N,ϕ (t)} for i ≥ 1.

For λ > 0, the ultraspherical polynomials Cλ
n are defined by

Cλ
n(x) =

(2λ)n(
λ+ 1

2

)
n

P (λ−1/2,λ−1/2)
n (x). (2.1.5)

They satisfy

Cλ
n(1) =

(2λ)n
n!

(2.1.6)

where (a)n =
∏n−1

j=0 (a− j).

2.2 Dunkl operators, intertwining operator and

angular derivatives

A finite set R ⊂ Rd \ {0} is called a root system if σvR = R and R∩{tv :

t ∈ R} = {±v} for all v ∈ R. The subgroup G ⊂ O(d) that is generated by

the reflections σv, v ∈ R is called the reflection group associated with R. The

dimension of the subspace of Rd that is spanned by all elements in R is called

the rank of R and is denoted by rank(R). Each root system R can be written

as a disjoint union R = R+ ∪ (−R+), where R+ and −R+ are separated by a

hyperplane through the origin. Such a set R+ is called a positive subsystem

of R. A function κ : R → [0,∞) on the root system R is called a multiplicity

function on R if it is invariant under the action of G; that is, κgv = κv for all

v ∈ R and g ∈ G, where κv = κ(v).

Let R be a fixed root system in Rd normalized so that 〈v, v〉 = 2 for all

v ∈ R, and G the associated reflection group. Let κ : R → [0,∞) be a

multiplicity function on R and hκ the weight function defined by (1.0.2). We

denote by Pd
n the space of homogeneous polynomials of degree n on Rd, and

Πd := Π(Rd) the algebra of algebraic polynomials on Rd.
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The Dunkl operators associated with G and κ are defined by

Dif(x) = ∂if(x) +
∑

v∈R+

κv〈v, ei〉Evf(x), i = 1, · · · , d, f ∈ C1(Rd), (2.2.1)

where R+ is a fixed positive subsystem of R and Ev is given by (1.0.11). This

definition does not depend on the special choice of the positive subsystem

R+, thanks to the G-invariance of κ. The operators Di were introduced and

first studied by C. F. Dunkl [Du1, Du2, Du4, Du5], and can be considered as

perturbations of the usual partial derivatives by reflection parts. They enjoy

properties similar to those of partial derivatives. In particular, they mutually

commute and map Pd
n to Pd

n−1.

One of the most important results in the Dunkl theory states that associ-

ated with a reflection group G and multiplicity κ there exists a unique linear

operator Vκ : Πd → Πd, called the Dunkl intertwining operator, such that

Vκ(P
d
n) = Pd

n, Vκ(1) = 1, and DiVκ = Vκ∂i, 1 ≤ i ≤ d. (2.2.2)

The intertwining operator Vκ commutes with theG-action; that is, g−1◦Vκ◦g =
Vκ for all g ∈ G. Here and throughout, we use the notation g ◦ f(x) :=

f(gx) for g ∈ G, f ∈ C(Sd−1) and x ∈ Sd−1. An explicit “closed” form for

the intertwining operator is known so far only in the case of G = Zd
2 ( see

[Du4, Xu2]) and the case of G = S3 (see [Du6]). However, the explicit integral

formula of Vκ given in [Du6] for G = S3 does not seem to be in a form strong

enough for carrying out further analysis. At the moment, little information is

known on the intertwining operator for general finite reflection groups other

than Zd
2, except the following important result of Rösler [Ro1]:

Theorem 2.2.1. [Ro1, Th. 1.2 and Cor. 5.3] For every x ∈ Rd, there exists

a unique probability measure µκ
x on the Borel σ-algebra of Rd such that

VκP (x) =

∫

Rd

P (ξ) dµκ
x(ξ), P ∈ Πd. (2.2.3)

Furthermore, the representing measures µκ
x are compactly supported in the con-

vex hull Ĝx := co{gx : g ∈ G} of the orbit of x under G, and satisfy

µκ
rx(E) = µκ

x(r
−1E), and µκ

gx(E) = µκ
x(g

−1E) (2.2.4)
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for all r > 0, g ∈ G and each Borel subset E of Rd.

In particular, Theorem 2.2.1 shows that the intertwining operator Vκ is

positive, and can be extended to the space C(Rd) of continuous functions on

Rd, which we denote again by Vκ. The intertwining operator also has the

following property:

Vκ

[
f(〈x, ·〉)

]
(y) = Vκ

[
f(〈y, ·〉)

]
(x), x, y ∈ Sd−1, f ∈ C[−1, 1]. (2.2.5)

The Dunkl κ-Laplacian on Rd is defined by ∆κ :=
∑d

j=1 D2
j . It is G-

invariant; that is, g ◦ ∆κ = ∆κ ◦ g for all g ∈ G, and has the following

explicit expression ( see [Ro2, pp. 99] and [DuXu, Theorem 4.4.9])

∆k = ∆+ 2
∑

v∈R+

κvδv with δvf(x) =
〈∇f(x), v〉

〈v, x〉 − Evf(x)

〈v, x〉 , (2.2.6)

where ∆ =
∑d

j=1 ∂
2
j . It is worthwhile to recall the normalization 〈v, v〉 = 2,

v ∈ R+ in this last formula.

Finally, we record the following useful identity on the operators Ev (see,

for instance, [Ro2, Lemma 2.3]):

∑

v,v′∈R+

κvκv′〈v, v′〉EvEv′ = 0. (2.2.7)

Particularly, we will focus on its restriction ∆κ,0 on the sphere, which is

called Dunkl-Laplace-Beltrami operator. The precise definition of ∆κ,0 is given

as follows:

∆κ,0f(x) := ∆κF (z)|z=x, ∀ x ∈ Sd−1 (2.2.8)

where F (z) = f( z
‖z‖).

We end this subsection with a brief description of the angular derivatives

Di,j = xi∂j − xj∂i, 1 ≤ i < j ≤ d, which play a very important role in

the ordinary spherical harmonic analysis ([DaXu2, pp. 23-27], [DaXu4]). For

simplicity, in the case of κ ≡ 0, we write Hd
n for Hd

n(h
2
κ) and ∆0 for ∆κ,0. Thus,

Hd
n is the space of ordinary spherical harmonics of degree n on Sd−1, and ∆0

is the usual Laplace-Beltrami operator on Sd−1. We collect some useful facts

on the operators Di,j in the following lemma, whose proof can be found in

[DaXu2, pp. 23-27].
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Lemma 2.2.2. The following statements hold true:

• Di,jf is independent of the C1-extension of f ∈ C1(Sd−1); that is, if

F1, F2 are two C
1-functions in an open neighborhood of Sd−1 that coincide

on Sd−1, then

Di,jF1

∣∣∣
Sd−1

= Di,jF2

∣∣∣
Sd−1

.

• The Laplace-Beltrami operator ∆0 on Sd−1 can be decomposed as

∆0 =
∑

1≤i<j≤d

D2
i,j (2.2.9)

• For f, g ∈ C1(Sd−1),

∫

Sd−1

f(x)Di,jg(x)dσ(x) = −
∫

Sd−1

(
Di,jf(x)

)
g(x)dσ(x). (2.2.10)

• The operator Di,j is invariant on the space Hd
n; that is, it maps Hd

n to

itself.

• For f, g ∈ C1(Sd−1),

〈∇0f(ξ),∇0g(ξ)〉 =
∑

1≤i<j≤d

Di,jf(ξ)Di,jg(ξ), ξ ∈ Sd−1. (2.2.11)

2.3 Spherical h-harmonic expansions

Recall that

‖f‖κ,p :=
(∫

Sd−1

|f(y)|ph2κ(y)dσ(y)
)1/p

, 1 < p <∞,

where hκ given in (1.0.2). We denote by Πd
n the space of all spherical poly-

nomials of degree at most n on Sd−1, and Hd
n(h

2
κ) the space of all spherical

h-harmonics of degree n on Sd−1. Hd
n(h

2
κ) is the orthogonal complement of

Πd
n−1 in the space Πd

n with respect to the inner product

〈f, g〉L2(h2
κ)
:=

∫

Sd−1

f(x)g(x)h2κ(x) dσ(x),
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and each function f ∈ L2(h2κ; S
d−1) has a spherical h-harmonic expansion f =∑∞

n=0 projn(h
2
κ; f) converging in the norm of L2(h2κ; S

d−1). Here, projn(h
2
κ) :

L2(h2κ; S
d−1) → Hd

n(h
2
κ) is the orthogonal projection which has an integral

representation

projn(h
2
κ; f, x) :=

∫

Sd−1

f(y)P κ
n (x, y)h

2
κ(y) dσ(y), x ∈ Sd−1, (2.3.1)

where P κ
n (x, y) is the reproducing kernel of Hd

n(h
2
κ). A crucial point in the

theory of spherical h-harmonics is the fact that P κ
n (x, y) can be expressed in

terms of the intertwining operator Vκ as (see [Xu, Theorem 3.2, (3.1)]):

P κ
n (x, y) =

n+ λk
λκ

Vκ
[
Cλk

n (〈x, ·〉)
]
(y), x, y ∈ Sd−1 (2.3.2)

with λκ := d−2
2
+|κ|. By means of (2.3.1) and (2.3.2), the projection projn(h

2
κ; f)

can be extended to all f ∈ L1(h2κ; S
d−1).

The space Hd
n(h

2
κ) can also be seen as an eigenfunction space of the Dun-

kl Laplace-Beltrami operator ∆κ,0(defined as (2.2.8)), corresponding to the

eigenvalue −n(n+ 2λκ); that is,

Hd
n(h

2
κ) =

{
f ∈ C2(Sd−1) : ∆κ,0f = −n(n+ 2λκ)f

}
, n = 0, 1, . . . .

Definition 2.3.1. Given a compactly supported continuous function θ : [0,∞) →
R, we define a sequence of operators Lθ,j, j = 0, 1, · · · , by Lθ,0(f) = proj0(h

2
κ; f),

and

Lθ,j(f) :=
∞∑

n=0

θ
( n
2j

)
projn(h

2
κ; f), j = 1, 2, · · · .

The following Littlewood-Paley type inequality is a direct consequence of

the Marcinkiewitcz multiplier theorem for spherical h-harmonic expansions,

which was proved in [DaXu] (see also [DaXu2, pp. 67-71]):

Theorem 2.3.2. If θ is a compactly supported function in C∞[0,∞) with

supp θ ⊂ (a, b) for some 0 < a < b < ∞, then for all f ∈ Lp(h2κ; S
d−1) with

1 < p <∞, ∥∥∥∥∥

( ∞∑

j=0

∣∣Lθ,jf
∣∣2
)1/2∥∥∥∥∥

κ,p

≤ Cp‖f‖κ,p, (2.3.3)
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where the constant Cp is independent of f . If, in addition,

0 < A1 ≤
∞∑

j=0

|θ(2−jt)|2 ≤ A2 <∞, ∀t > 0, (2.3.4)

for some positive constants A1, A2, then for f ∈ Lp(h2κ; S
d−1) with

∫

Sd−1

f(x)h2κ(x) dσ(x) = 0,

we have that

∥∥∥∥∥

( ∞∑

j=0

∣∣Lθ,jf
∣∣2
)1/2∥∥∥∥∥

κ,p

∼ ‖f‖κ,p, 1 < p <∞. (2.3.5)

Besides, the following Nikolskii type inequality holds true and will be need-

ed in our proof.

Theorem 2.3.3 (Weighted Nikolskii’s Inequalities [DaWa],Lemma 2.3). Let

0 < p < q ≤ ∞, then for any g ∈∏d
n

‖g‖κ,q ≤ Cn(2σκ+1)( 1
p
− 1

q
)‖g‖κ,p,

where C depends only on p, q and κ.

2.3.1 Cesàro means

In this subsection, we will talk about some facts about Cesàro means in

terms of the spherical h-harmonic, which will be a key tool of our following

proof. For more details, one can refer to [DaXu2].

Definition 2.3.4. For δ > 0, the Cesàro means of the spherical function f

are defined by

Sδ
n(h

2
κ; f) :=

1

Aδ
n

n∑

j=0

Aδ
n−jPκ

j f,

where Aδ
j denotes as

Aδ
j =

(
δ + j

j

)
=

(δ + j)(δ + j − 1) · · · (δ + 1)

j!
.
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Theorem 2.3.5 ([DaXu2],corollary 8.1.2). If δ > σκ, then for f ∈ Lp(hκ, S
d−1)

and 1 ≤ p <∞, or f ∈ C(Sd−1) when p = ∞,

sup
n

‖Sδ
n(h

2
κ; f)‖p,κ ≤ c‖f‖p,κ.

Consider Sδ
n(h

2
κ; f) as a convolution:

Sδ
n(h

2
κ; f) = f ∗Kδ

n(h
2
κ),

then the kernel Kδ
n(h

2
κ; x, y) is the Cesàro means of Zλκ

j (x, y)

Kδ
n(h

2
κ; x, y) :=

1

Aδ
n

n∑

j=0

Aδ
n−kZ

λκ
j (x, y),

which has the following pointwise estimate.

Theorem 2.3.6 ([DaXu2], Theorem 8.1.1). For any x, y ∈ Sd−1,

|Kδ
n(h

2
κ; x, y)h

2
κ(y)| ≤ cnd−1(1 + nρ(x̄, ȳ))−β(δ),

where β(δ) := min{d+ 1, δ − σκ + d}.
Further more, for any δ > σκ

∫

Sd−1

|Kδ
n(h

2
κ; x, y)|h2κ(y)dσ(y) ≤ C, (2.3.6)

where C is a constant independent of n.

Theorem 2.3.7 ([DaXu2],B.1.13). Let

S`
n(u) :=

1

Aδ
n

n∑

j=0

Aδ
n−j

j + λ

λ
Cλ

j (u),

then for ` > 2λ+ 1,

0 ≤ S`
n(u) ≤ cn−1(1− u+ n−2)λ+1.

2.4 Singular integrals on homogeneous Spaces

In this section, we shall extent some well-known classical results of har-

monic analysis to the more general setting of homogeneous spaces, which are
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guaranteed on the weighted unit sphere as a consequence. For more detail of

proof below, one can refer to [St1] and [Da].

Definition 2.4.1. Given a measure space (X,B, µ) with a metric ρ, it is called

homogeneous space, if all open balls B(x, r) := {y ∈ X : ρ(x, y) < r}, x ∈
X, r > 0 are measurable with positive finite measure, and that one has the

doubling property there exists a positive constant C such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)),

for any x ∈ X, r > 0. In addition, the best constant C for which this last

inequality holds is called the doubling constant of µ.

Theorem 2.4.2. Let T be an operator in the form

(Tf)(x) =

∫

X

K(x, y)f(y)dµ(y),

and bounded on Lq(X) with norm A; that is

‖Tf‖Lq(X) ≤ A‖f‖Lq(x), ∀ f ∈ Lq(X).

Moreover, if K satisfies that for some constant c > 1,

∫

B(z,cδ)c
|K(x, y)−K(x, z)|dµ(x) ≤ A, ∀ y ∈ B(z, δ), (2.4.1)

for all y, z ∈ X, δ > 0. Then the operator T is bounded in Lp norm on Lp∩Lq

for 1 < p < q; that is

‖Tf‖p ≤ A‖f‖p, for f ∈ Lp ∩ Lq.

In addition, it is necessary to point out the following remarks.

(i) T can be extended to Lq uniquely and keep the boundedness, since Lp∩Lq

is dense in Lq;

(ii) If there is an upper bound for the radius of all of balls in X, then the

condition

“ for any δ > 0” can be deduced to “ for 0 < δ < δ0 with some δ0 > 0”;

18



(iii) The domain in the integral of (2.4.1) can be replaced as well by a mea-

surable set Dc with µ(D) ≤ c
∑

j µ(Bj).

The sphere Sd−1 is a metric space with geodesic metric ρ(x, y) := arccos 〈x, y〉,
x, y ∈ Sd−1. We denote by Br(x) the spherical cap {y ∈ Sd−1 : ρ(x, y) <

r} with center x ∈ Sd−1 and radius r ∈ (0, π), and write measκ(E) :=∫
E
h2κ(x) dσ(x) for a set E ⊂ Sd−1. Given a spherical cap B = Br(x) ⊂ Sd−1

and a scaling c > 0, we write cB for the spherical cap Bcr(x) with the same

center as that of B but c times the radius of B. More generally, given a weight

function w on Sd−1, we write w(E) :=
∫
E
w(x) dσ(x) for E ⊂ Sd−1. A weight

function w on Sd−1 is called a doubling weight if there exists a constant L > 0

such that

w(2B) ≤ Lw(B) for all spherical caps B ⊂ Sd−1, (2.4.2)

where the least constant L is called the doubling constant of w. The following

lemma collects some useful properties on doubling weights (see [Da]):

Lemma 2.4.3. Let w be a doubling weight on Sd−1 with the doubling constant

L. Then the following statements hold:

• There exists a positive number s such that

w(2mB) ≤ C2msw(B), ∀m ∈ N, ∀ spherical caps B ⊂ Sd−1, (2.4.3)

where the constant C is independent of m and B.

• For 0 < r < t, and x ∈ Sd−1,

w(Bt(x)) ≤ C
( t
r

)s
w(Br(x)), (2.4.4)

where s is a positive number satisfying (2.4.3).

• For 0 < r < π, and x, y ∈ Sd−1,

w(Br(x)) ≤ C(1 + r−1ρ(x, y))sw(Br(y)), (2.4.5)

where s is a positive number satisfying (2.4.3).
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Many of the weights on Sd−1 that appear in analysis satisfy the doubling

condition (2.4.2); in particular, all weights of the form

wα,v(x) =
m∏

j=1

|〈x, vj〉|αj , x ∈ Sd−1, m ∈ N, (2.4.6)

where α = (α1, . . . , αm), αj > −1, v = (v1, v2, · · · , vm) and vj ∈ Sd−1. Indeed,

a slight modification of the proof in [Da, (5.3)] shows that for t ∈ (0, π) and

x ∈ Sd−1, ∫

Bt(x)

wα,v(x) dσ(x) ∼ td−1

m∏

j=1

(|〈x, vj〉|+ t)αj . (2.4.7)

The weighted Hardy-Littlewood (HL) maximal function Mw with respect

to a weight function w on Sd−1 is defined by

Mwg(x) = sup
0<r≤π

1

w(Br(x))

∫

Br(x)

|g(y)|w(y) dσ(y), x ∈ Sd−1. (2.4.8)

As is well known, if w has the doubling property (2.4.2), then Mw satisfies

that

‖Mwg‖p,w ≤ cp‖g‖p,w, 1 < p ≤ ∞, (2.4.9)

where ‖·‖p,w denotes the Lp norm defined with respect to the measure w(x)dσ(x)

on Sd−1, and the following Fefferman-Stein inequalty:

Theorem 2.4.4 (Fefferman-Stein). If 1 < p, q <∞ and {fj} is a sequence of

functions on X, then

‖
( ∞∑

j=0

|Mµfj|q
)1/q

‖p . ‖
( ∞∑

j=0

|fj|q
)1/q

‖p,

where (X, dµ) is a measurable space and Mµ is the Hardy-Littlewood maximum

function correspondingly.
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Chapter 3

Hardy-Littlewood-Sobolev

inequality on unite sphere

In this chapter, we shall first formulate auxiliary results, including a char-

acterization of the critical index sκ and pointwise estimates of kernel functions,

that will be indispensable in much of our future work. Next, the first main re-

sult, HLS inequality and its necessary conditions, on the weighted unit sphere

will be introduced and proved in detail.

3.1 A characterization of the critical index sκ

Recall that, (2.4.6) and (2.4.7) give that with hκ as in (1.0.2), for a spherical

cap B := Bθ(x) with center x ∈ Sd−1 and radius θ ∈ (0, 1),

measκ(B) ∼ θd−1
∏

v∈R+

(|〈x, v〉|+ θ)2κv , (3.1.1)

where measκ(B) =
∫
B
h2κ(x) dσ(x). This, in particular, implies that h2κ is a

doubling weight on Sd−1.

The main purpose of this section is to give an equivalent characterization

of the index sκ given in (1.0.7) in terms of the doubling property of the weight

function h2κ. Such a characterization will be used repeatedly in the next two

sections.

Our main result in this section can be stated as follows.
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Theorem 3.1.1. The index sκ given in (1.0.7) is the smallest positive number

s for which there exists a general constant C > 0 such that for all spherical

caps B ⊂ Sd−1 and all m ∈ N,

measκ(2
mB) ≤ C2ms measκ(B). (3.1.2)

Furthermore,

sκ = lim
m→∞

1

m
log2 sup

B

measκ(2
mB)

measκ(B)
, (3.1.3)

where the supremum supB is taken over all spherical caps B ⊂ Sd−1 with radius

≤ 2−m.

Proof. Our proof will be under the aid of following two terms.

s′κ = lim sup
m→∞

1

m
log2 sup

B

measκ(2
mB)

measκ(B)
,

s′′κ = lim inf
m→∞

1

m
log2 sup

B

measκ(2
mB)

measκ(B)
,

where the supremums supB are still taken over all spherical caps B ⊂ Sd−1

with radius ≤ 2−m. Then if s is a positive number such that (3.1.2) holds for

all spherical caps B and all m ∈ N, then s′κ ≤ s. To complete the proof, it

suffices to show that sκ ≤ s′′κ and (3.1.2) holds with s = sκ for all spherical

caps.

Notice that by (3.1.1),

s′′κ = d− 1 + lim inf
m→∞

1

m
log2

[
sup

x∈Sd−1

sup
θ∈(0,2−m)

∏
v∈R+

(|〈x, v〉|+ 2mθ)2κv

∏
v∈R+

(|〈x, v〉|+ θ)2κv

]
. (3.1.4)

When rank (R) ≤ d− 1, sκ = 2λκ + 1 with λk =
d−2
2

+
∑

v∈R+
kv and we can

take x0 ∈ Sd−1 such that 〈x0, v〉 = 0 for all v ∈ R+. Then, making x to be x0

in (3.1.4), we have that

s′′κ ≥ d− 1 + lim
m→∞

1

m
log2

[
sup

θ∈(0,2−m)

∏
v∈R+

(2mθ)2κv

∏
v∈R+

θ2κv

]
= 2λκ + 1 = sκ.

On the other hand, (3.1.2) holds for sκ can be easily verified by using (3.1.1).
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When rank(R) = d, recall that

sκ = d− 1 + 2 max
v∈Xd−1∩R+

kv,

where Xd−1 is taken over all d − 1 dimensional subspaces. Given any fixed

x ∈ Sd−1 we define

c1 := min
v1,...,vd

min
x∈Sd−1

( d∑

j=1

|〈x, vj〉|2
)1/2

,

where the first minimum on the right hand side is taken over all d linearly

independent elements v1, · · · , vd from R+. Clearly, c1 is well defined and

positive since rank(R) = d. Next, let v1, . . . , vN be all the distinct elements of

R+ ordered so that

|〈x, vN〉| ≥ . . . ≥ |〈x, v1〉|.

If we let n = nx ≥ d − 1 be the largest integer such that the linear space

Xd−1 := span{v1, · · · , vn} has dimension d− 1, then

|〈x, vj〉| ≥ c1/
√
d > 0, forn+ 1 ≤ j ≤ N,

and hence for 2mθ ∈ (0, 1)

∏
v∈R+

(|〈x, v〉|+ 2mθ)2κv

∏
v∈R+

(|〈x, v〉|+ θ)2κv
∼
∏n

j=1(|〈x, vj〉|+ 2mθ)2κvj

∏n
j=1(|〈x, vj〉|+ θ)2κvj

. 2
2m

∑
v∈Xd−1∩R+

kv

which combining with (3.1.4) implies that (3.1.2) holds with s = sκ.

Finally, it remains to show that sκ ≤ s′′k. Let Y denote the (d − 1)-

dimensional subspace of Rd spanned by certain elements from R+ such that

sκ = d− 1 + 2
∑

v∈R+∩Y
κv,

and a point x0 ∈ Sd−1 such that 〈x0, v〉 = 0 for all v ∈ Y ∩R+. Then for any
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m ∈ N and 0 < θ ≤ 2−m,

s′′κ ≥ d− 1 + lim inf
m→∞

1

m
log2 sup

θ∈(0,2−m)

∏
v∈R+

(|〈x0, v〉|+ 2mθ)2κv

∏
v∈R+

(|〈x0, v〉|+ θ)2κv

≥ d− 1 + 2
∑

v∈Y ∩R+

κv = sκ,

which completes the proof.

3.2 Kernel estimates and weighted Christoffel

Functions

In this section, we shall establish some pointwise estimates of a class of

kernel functions concerning Dunkl intertwining operator.

Theorem 3.2.1. Let Ψn, n = 1, 2, · · · be a sequence of continuous functions

on [−1, 1] satisfying that

|Ψn(cos θ)| ≤ Cn2λκ+1(1 + nθ)−`, θ ∈ [0, π] (3.2.1)

for some positive number ` > 2λκ + 1. Let `0 be an arbitrarily given positive

number smaller than `− 2λκ − 1. Then for any x, y ∈ Sd−1,

∣∣∣Vκ
[
Ψn(〈y, ·〉)

]
(x)
∣∣∣ ≤ C

nd−1(1 + nρ̃(x, y))−`0+3sκ/2−d+1

∏
v∈R+

(|〈x, v〉|+ |〈g0y, v〉|+ ρ̃(x, y) + n−1)2κv
,

(3.2.2)

where Vκ is Dunkl intertwining operator defined as (2.2.2), ρ̃(x, y) := ming∈G ρ(gx, y),

x, y ∈ Sd−1, and g0 ∈ G is the one such that ρ(g0x, y) = ρ̃(x, y).

Remark that

ρ̃(g1x, g2y) = ρ̃(x, y) = ρ̃(y, x), ∀g1, g2 ∈ G, ∀x, y ∈ Sd−1.

Together with Lemma 2.1.1, we deduce the following useful corollary by

Theorem 3.2.1.

Corollary 3.2.2. Let η be a compactly supported C∞-function on R which is
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constant near the origin, and let

Φn(x, y) :=
∞∑

j=0

η(
j

n
)
j + λκ
λκ

Vκ

[
Cλκ

j (〈x, ·〉)
]
(y), x, y ∈ Sd−1, n ∈ N.

Then for any ` ∈ N and x, y ∈ Sd−1,

|Φ(x, y)| ≤ C`‖η(3`−1)‖L∞(R)
nd−1(1 + nρ̃(x, y))−`

∏
v∈R+

(|〈x, v〉|+ |〈g0y, v〉|+ n−1 + ρ̃(x, y))2κv
,

where g0 ∈ G is such that ρ(g0x, y) = ρ̃(x, y) and the constant C` only depends

on `.

The main tool for the proof of Theorem 3.2.1 is the weighted Christoffel

function defined for a weight function w on Sd−1 by

λn(w, x) := inf
Pn(x)=1

∫

Sd−1

|Pn(z)|2w(z) dσ(z), n = 0, 1, 2, · · · ,

where the infimum is taken over all spherical polynomials of degree n on Sd−1

that take the value 1 at the point x ∈ Sd−1. The following lemma illustrates

the connection between weighted Christoffel functions and weighted orthogonal

polynomial expansions.

Lemma 3.2.3. Let Pn,1, · · · , Pn,an be an orthornormal basis of the space Πd
n

of all spherical polynomials of degree at most n on Sd−1, with respect to the

inner product

〈f, g〉w :=

∫

Sd−1

f(x)g(x)w(x) dσ(x).

Then

λn(w, x) =
( an∑

j=1

|Pn,j(x)|2
)−1

, x ∈ Sd−1.

Lemma 3.2.3 is a well known result in approximation theory (see, for in-

stance, [DuXu]), but for the sake of completeness, we include a proof here.
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Proof. For P ∈ Πd
n with P (x) = 1, we have

1 = P (x) =

∫

Sd−1

( an∑

j=1

Pn,j(x)Pn,j(y)
)
P (y)w(y) dσ(y)

≤
(∫

Sd−1

|
an∑

j=1

Pn,j(x)Pn,j(y)|2w(y) dσ(y)
) 1

2
(∫

Sd−1

|P (y)|2w(y) dσ(y)
) 1

2

=
( an∑

j=1

|Pn,j(x)|2
) 1

2
(∫

Sd−1

|P (y)|2w(y) dσ(y)
) 1

2
. (3.2.3)

This, in particular, implies that

an∑

j=1

|Pn,j(x)|2 > 0, ∀x ∈ Sd−1.

Thus, taking infimum over all P ∈ Πd
n with P (x) = 1 in (3.2.3) , we obtain

the lower estimate

λn(w, x) ≥
( an∑

j=1

|Pn,j(x)|2
)−1

.

To obtain the desired upper estimate, we fix a vector x ∈ Sd−1, and set

Pn(y) :=

∑an
j=1 Pn,j(x)Pn,j(y)∑an

j=1 |Pn,j(x)|2
.

Clearly, Pn ∈ Πd
n, and Pn(x) = 1. Thus,

λn(w, x) ≤
∫

Sd−1

|Pn(y)|2w(y) dσ(y) =
1∑an

j=1 |Pn,j(x)|2
.

In the case when w is a doubling weight on Sd−1, we have the following

pointwise estimate of λn(w, x):

Lemma 3.2.4. If w is a doubling weight on Sd−1, then for x ∈ Sd−1 and

n ∈ N,

λn(w, x) ∼
∫

Bn−1 (x)

w(y) dσ(y), (3.2.4)

where Bn−1(x) is the spherical cap with center x and radius 1/n, and the

constant of equivalence is independent of x and n.

26



In the case of d = 2, Lemma 3.2.4 for doubling weights on the unit circle

was first established in the work of Mastroianni and Totik [MT]. Our proof

here is however different from that of [MT].

Proof. We start with the lower estimate of (3.2.4). Let Λ be a finite subset of

Sd−1 which contains the point x ∈ Sd−1 and has the properties min{ρ(ω, ω′) :

ω, ω′ ∈ Λ, ω 6= ω′} ≥ δ/n and Sd−1 =
⋃

ω∈ΛBδ/n(ω) for some δ > 0. By

Theorem 4.1 of [Da], we may find a constant δ ∈ (0, 1) depending only on the

doubling weight of w for which there exists a sequence of positive numbers νω,

ω ∈ Λ such that νω ∼
∫
Bn−1 (ω)

w(x) dσ(x), and

∫

Sd−1

g(y)w(y) dσ(y) =
∑

ω∈Λ
νωg(ω), ∀g ∈ Πd

2n.

Since x ∈ Λ, it follows that for f ∈ Πd
n with f(x) = 1,

∫

Sd−1

|f(y)|2w(y) dσ(y) =
∑

ω∈Λ
νω|f(ω)|2 ≥ νx|f(x)|2

= νx ∼
∫

Bn−1 (x)

w(y) dσ(y).

Taking infimum over all f ∈ Πd
n with f(x) = 1 yields the desired lower esti-

mate:

λn(w, x) ≥ c

∫

B1/n(x)

w(y) dσ(y).

Next, we show the upper estimate of (3.2.4). Set

wn(x) := nd−1

∫

B1/n(x)

w(y) dσ(y), x ∈ Sd−1, n = 1, 2, · · · .

By the doubling property of w, we have that ([Da, 2.3])

wn(y) ≤ C(1 + nρ(x, y))swn(x), ∀x, y ∈ Sd−1, ∀n ∈ N, (3.2.5)

where s = log2 L with L being the doubling constant of w. We will also use

the following result from [Da, Cor. 3.4]: If 1 ≤ p <∞ and f ∈ Πd
n, then

‖f‖p,w ∼ ‖f‖p,wn , (3.2.6)
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where ‖f‖p,w denotes the Lp-norm defined with respect to the measure w(x) dσ(x)

on Sd−1.

Now by Lemma 2.1.1, there exists an algebraic polynomial g of degree at

most n on [−1, 1] such that g(1) = 1 and

|g(cos θ)| ≤ C(1 + nθ)−`, ∀θ ∈ [0, π], ∀` > 0.

For a fixed point x ∈ Sd−1, let f(y) := g(〈x, y〉) for y ∈ Sd−1. Clearly, f ∈ Πd
n

and f(x) = 1. Hence, by (3.2.5) and (3.2.6),

λn(w, x) ≤
∫

Sd−1

|g(〈x, y〉)|2w(y) dσ(y) ∼
∫

Sd−1

|g(〈x, y〉)|2wn(y) dσ(y)

≤ Cwn(x)

∫

Sd−1

(1 + nρ(x, y))−`+sdσ(y) ∼
∫

B1/n(x)

w(z)dσ(z),

where ` is taken to be greater than s+d. This shows the desired upper estimate

of λn(w, x).

The proof of Theorem 3.2.1 also relies on the following lemma.

Lemma 3.2.5. Let δ > 2λκ+1. Then for each positive integer n, there exists

a nonnegative algebraic polynomial of degree n of the form

Pn(t) =
n∑

j=0

cn,j
j + λκ
λκ

Cλκ
j (t), t ∈ [−1, 1], (3.2.7)

which satisfies that supn,j |cn,j| ≤ C <∞, and

Pn(cos θ) ∼ n2λκ+1(1 + nθ)−δ, θ ∈ (0, π). (3.2.8)

Proof. By Lemma 4.6 of [Da], there exists a nonnegative algebraic polyno-

mial Pn of degree at most n which satisfies (6.1.2) . Let the ultraspherical

polynomial expansion of Pn be given by (3.2.7). It remains to show that

supn,j |cn,j| ≤ C <∞. Recall that (see [Sz])

‖Cλκ
j ‖22,λκ

=
c

j + λκ
Cλκ

j (1) =
c′

j + λκ

Γ(2λκ + j)

Γ(j + 1)
∼ j2λκ−2,

and

max
θ∈[0,π]

|Cλκ
j (cos θ)| = Cλκ

j (1) ∼ j2λκ−1,
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here ‖ · ‖2,λκ denotes the L2-norm computed with respect to the measure (1−
t2)λκ− 1

2 dt on [−1, 1]. By orthogonality of the ultraspherical polynomials, we

have

j2λκ−1|cn,j| ∼ |cn,j|
j + λκ
λκ

‖Cλκ
j ‖22,λκ

= c
∣∣∣
∫ π

0

Pn(cos θ)C
λκ
j (cos θ)(sin θ)2λκ dθ

∣∣∣

≤ Cn2λκ+1j2λκ−1

∫ π

0

(1 + nθ)−δ(sin θ)2λκ dθ ≤ Cj2λκ−1,

provided that δ > 2λκ + 1. It then follows that |cj,k| ≤ C.

We are now in a position to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Using Theorem 2.2.1, we have that

Vκ

[
Ψn(〈·, y〉)

]
(x) =

∫

Ĝx

Ψn(〈y, z〉) dµx(z), (3.2.9)

where Ĝx denotes the convex hull of the orbit Gx := {gx : g ∈ G} of x under

the group G. Since the group G has finite order, it follows that every element

z ∈ Ĝx can be written in the form z =
∑

g∈G tg,z · gx for some tg,z ∈ [0, 1]

satisfying
∑

g∈G tg,z = 1. This implies that

〈z, y〉 =
∑

g∈G
tg,z〈gx, y〉 ≤ max

g∈G
〈gx, y〉, ∀z ∈ Ĝx,

and hence

ρ(z, y) ≥ min
g∈G

ρ(gx, y) =: ρ̃(x, y), ∀z ∈ Ĝx. (3.2.10)

Thus, using (3.2.1), (3.2.9) and (3.2.10), we deduce that for ` ≥ δ > 2λκ + 1,

∣∣∣Vκ
[
Ψn(〈y, ·〉)

]
(x)
∣∣∣ ≤ C(1 + nρ̃(x, y))−`+δn2λκ+1

∫

Ĝx

(1 + nρ(y, z))−δ dµx(z)

≤ C(1 + nρ̃(x, y))−`+δVκ

[
Pn(〈y, ·〉)

]
(x), (3.2.11)

where Pn is the polynomial as given in Lemma 3.2.5, and the last step uses

the positivity of Vκ (i.e., Theorem 2.2.1).

We claim that

Vκ

[
Pn(〈y, ·〉)

]
(x) ≤ C

(1 + nρ̃(x, y))sκ/2

measκ(Bn−1(x))
, (3.2.12)
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which, combined with (3.2.11), will show that

∣∣∣Vκ
[
Ψn(〈y, ·〉)

]
(x)
∣∣∣ ≤ C

(1 + nρ̃(x, y))−`+δ+sκ/2

measκ(Bn−1(x))
. (3.2.13)

To show (3.2.12), let pj,1, · · · , pj,aj be an orthonormal basis of the space

Hd
j (h

2
κ) with respect to the inner product of L2(h2κ; S

d−1). Then (2.3.2) implies

aj∑

k=1

pj,k(x)pj,k(y) =
λκ + j

λκ
Vκ

[
Cλκ

j (〈·, y〉)
]
(x), x, y ∈ Sd−1. (3.2.14)

It, combining with Lemma 3.2.5 and positivity of Vκ, yields that

0 ≤Vκ
[
Pn(〈·, y〉)

]
(x) =

n∑

j=0

cn,j

aj∑

k=1

pj,k(x)pj,k(y) ≤ C
n∑

j=0

aj∑

k=1

|pj,k(x)pj,k(y)|

≤ C
( n∑

j=0

aj∑

k=1

|pj,k(x)|2
)1/2( n∑

j=0

aj∑

k=1

|pj,k(y)|2
) 1

2
,

which is bounded above by a constant multiple of

(∫

Bn−1 (x)

h2κ(z) dσ(z)
)− 1

2
(∫

Bn−1 (y)

h2κ(z) dσ(z)
)− 1

2
(3.2.15)

by Lemma 3.2.3 and Lemma 3.2.4. However, since the weight h2κ is invariant

under the group G,

∫

Bn−1 (x)

h2κ(z) dσ(z) =

∫

Bn−1 (g0x)

h2κ(z) dσ(z)

≤ C(1 + nρ(g0x, y))
sκ

∫

Bn−1 (y)

h2κ(z) dσ(z),

where the last step follows from (2.4.5). Hence, (3.2.15) can be dominated by

a constant multiple of

(1 + nρ(g0x, y))
sκ/2
(∫

Bn−1 (x)

h2κ(z) dσ(z)
)−1

and thereby this shows (3.2.12).
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Next, we show that

∣∣∣Vκ
[
Ψn(〈y, ·〉)

]
(x)
∣∣∣ ≤ C

nd−1(1 + nρ̃(x, y))−`+δ+3sκ/2−d+1

∏
v∈R+

(|〈x, v〉|+ ρ̃(x, y) + n−1)2κv
. (3.2.16)

To see this, we let m ∈ N be such that 2mn−1 ∼ n−1 + ρ̃(x, y), and then use

(3.1.2) to obtain

meask(Bn−1+ρ̃(x,y)(x)) ≤ C2msκ measκ(Bn−1(x))

≤ C(1 + nρ̃(x, y))sκ measκ(Bn−1(x)).

The estimate (3.2.16) then follows from (3.2.13) and (3.1.1).

Finally, (3.2.2) follows from (3.2.16). To see this, note that

|〈x, v〉 − 〈g0y, v〉| ≤ 2‖x− g0y‖ ≤ 2ρ̃(x, y), ∀v ∈ R+.

Hence, if |〈x, v〉| ≤ 4ρ̃(x, y), then |〈g0y, v〉| ≤ cρ̃(x, y) and

|〈x, v〉|+ |〈g0y, v〉|+ ρ̃(x, y) + n−1 ∼ ρ̃(x, y) + n−1 ∼ ρ̃(x, y) + n−1 + |〈x, v〉|;

if |〈x, v〉| ≥ 4ρ̃(x, y), then |〈x, v〉| ∼ |〈g0y, v〉| and

|〈x, v〉|+ |〈g0y, v〉|+ ρ̃(x, y) + n−1 ∼ ρ̃(x, y) + n−1 + |〈x, v〉|.

Thus, the RHS of (3.2.2) is equivalent to the RHS of (3.2.16). �

3.3 Proof of HLS inequality

This section is devoted to the proof of Theorem 1.0.1. The proof relies on

pointwise estimates of the kernel function Kα, defined by

Kα(x, y) :=
∞∑

j=1

(j(j + 2λκ))
−α/2λκ + j

λκ
Vκ

[
Cλκ

j (〈x, ·〉)
]
(y), (3.3.1)

for α > 0 and x, y ∈ Sd−1. Recalling that fractional power of (−∆κ,0) given by

(1.0.5), we have that

(−∆κ,0)
−α/2f(x) =

∫

Sd−1

f(y)Kα(x, y)h
2
κ(y) dσ(y), x ∈ Sd−1. (3.3.2)
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Lemma 3.3.1. For any x, y ∈ Sd−1 and α > 0, we have

|Kα(x, y)| ≤ C
ρ̃(x, y)α−d+1

∏
v∈R+

(|〈x, v〉|+ |〈g0y, v〉|+ ρ̃(x, y))2κv
, (3.3.3)

where g0 ∈ G is such that ρ(g0x, y) = ρ̃(x, y).

Proof. Let θ be a C∞-function on [0,∞) which is supported in [1
2
, 2] and has

the property that
∑∞

n=0 θ(2
−nx) = 1 for all x ≥ 1. We decompose the kernel

Kα as follows:

Kα(x, y) =
∞∑

n=0

Dn,α(x, y), (3.3.4)

where

Dn,α(x, y) =
∞∑

j=0

θ(
j

2n
)

1

(j(j + 2λκ))α/2
j + λκ
λκ

Vκ

[
Cλκ

j (〈x, ·〉)
]
(y) (3.3.5)

= 2−nα
∑

2n−1≤j≤2n

ϕn(
j

2n
)
j + λκ
λκ

Vκ

[
Cλκ

j (〈x, ·〉)
]
(y)

with

ϕn(t) =
θ(t)

(t(t+ 2−n+1λκ))α/2
. (3.3.6)

Clearly,

Dn,α(x, y) = 2−nαVκ

[
Ψϕn,n(〈x, ·〉)

]
(y),

with

Ψϕn,n(t) =
∞∑

j=0

ϕn(2
−nj)

j + λκ
λκ

Cλκ
j (t).

Since ϕn is a C∞ function supported in [1
2
, 2] and satisfying

sup
n

‖ϕ(j)
n ‖∞ ≤ Cj <∞, j = 0, 1, · · · ,

it follows by Lemma 2.1.1 that

|Ψϕn,n(cos t)| ≤ C2n(2λκ+1)(1 + 2nt)−`, ∀` > 0, ∀t ∈ [0, π].

By Theorem 3.2.1, this yields that for any ` > 0,

|Dn,α(x, y)| ≤ C
2n(d−1−α)(1 + 2nρ̃(x, y))−`

∏
v∈R+

(|〈x, v〉|+ |〈g0y, v〉|+ 2−n + ρ̃(x, y))2κv
. (3.3.7)
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Thus, by (3.3.4), it follows that for ` > d,

|Kα(x, y)| ≤
∞∑

n=0

|Dn,α(x, y)| ≤ C

∞∑

n=0

2n(d−1−α)(1 + 2nρ̃(x, y))−`

∏
v∈R+

(|〈x, v〉|+ |〈g0y, v〉|+ ρ̃(x, y))2κv

≤ Cρ̃(x, y)α−d+1

∏
v∈R+

(|〈x, v〉|+ |〈g0y, v〉|+ ρ̃(x, y))2κv
.

Proof of Theorem 1.0.1. Sufficiency. Assume that α ≥ sκ and set

U(x, y) := measκ

(
Bρ̃(x,y)(x)

)
, x, y ∈ Sd−1.

It is easily seen that U(gx, y) = U(x, y) for all x, y ∈ Sd−1 and g ∈ G. Noticing

(2.4.7), by (3.3.2) and Lemma 3.3.1, we have

∣∣∣(−∆κ,0)
−α/2f(x)

∣∣∣ ≤ C

∫

Sd−1

|f(y)| ρ̃(x, y)
α

U(x, y)
h2κ(y) dσ(y). (3.3.8)

Let δ ∈ (0, π] be a temporarily fixed positive constant to be specified later.

We split the integral in (3.3.8) into two parts: I1(x) + I2(x), where

I1(x) : =

∫

ρ̃(x,y)<δ

|f(y)|ρ̃(x, y)α
U(x, y)

h2κ(y)dσ(y),

I2(x) : =

∫

ρ̃(x,y)≥δ

|f(y)|ρ̃(x, y)α
U(x, y)

h2κ(y)dσ(y).

A straightforward calculation shows that

I1(x) ≤
∞∑

k=0

(2−kδ)α

measκ(B2−k−1δ(x))

∫

2−k−1δ≤ρ̃(x,y)<2−kδ

|f(y)|h2κ(y)dσ(y)

≤ Cδα max
g∈G

Mκf(gx), (3.3.9)

where Mκ denotes the weighted HL maximal function defined as (2.4.7) with

weight w = h2κ.

For the term I2(x), we use Hölder’s Inequality to obtain

I2(x) ≤ ‖f‖κ,p
{∫

ρ̃(x,y)≥δ

ρ̃(x, y)αp
′

U(x, y)p′
h2κ(y) dσ(y)

} 1
p′

. (3.3.10)
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where p′ = p
p−1

. Let m be the integer such that 2mδ ≤ π ≤ 2m+1δ. Splitting

the integral
∫
ρ̃(x,y)≥δ

· · · in (3.3.10) into a sum
∑m

k=0

∫
2kδ≤ρ̃(x,y)≤2k+1δ

· · · , we
obtain

∫

ρ̃(x,y)≥δ

ρ̃(x, y)αp
′

U(x, y)p′
h2κ(y) dσ(y) ≤

m∑

k=0

(2k+1δ)αp
′

measκ(B2kδ(x))p
′

∑

g∈G
measκ(B2k+1δ(gx)).

Using the G-invariance and doubling property of h2κ(x), we have

measκ(B2k+1δ(gx)) = measκ(B2k+1δ(x)) ≤ Cmeasκ(B2kδ(x)),

and

0 < c = measκ(S
d−1) = meask(Bπ(x)) ≤ C(2kδ)−sκ measκ(B2kδ(x)).

These yield that when α ≥ sκ(
1
p
− 1

q
),

∫

ρ̃(x,y)≥δ

ρ̃(x, y)αp
′

U(x, y)p′
h2κ(y) dσ(y) ≤ C

m∑

k=0

(2kδ)αp
′−sκ(p′−1) ≤ C ′δ−sκp′/q

where C,C ′ are constants independent of δ, x, y. It follows from (3.3.10) that

I2(x) ≤ C‖f‖κ,pδ−
sκ
q . (3.3.11)

Now combining the estimates (3.3.9) and (3.3.11), we obtain that for any

0 < δ ≤ π and x ∈ Sd−1,

∣∣∣(−∆κ,0)
−α/2f(x)

∣∣∣ ≤ Cδsκ(
1
p
− 1

q
) max

g∈G
Mκf(gx) + C‖f‖κ,pδ−

sκ
q . (3.3.12)

By optimizing the parameter δ, for instance, setting

δ := min
{( ‖f‖κ,p

maxg∈GMκf(gx)

) p
sκ
, π
}
,

we obtain that,

∣∣∣(−∆κ,0)
−α/2f(x)

∣∣∣ ≤ C‖f‖1−
p
q

κ,p

(
max
g∈G

Mκf(gx)

) p
q

+ C‖f‖κ,p,
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for x ∈ Sd−1. This, using the boundedness of the operator Mκ, yields that

‖(−∆κ,0)
−α/2f‖qq,κ ≤ C‖f‖qκ,p (3.3.13)

with constant C > 0 being independent of f .

Necessity. We now turn to the proof of the optimality of the index sκ. By

(2.3.2), (3.2.4), Lemma 3.2.3, we have that

n∑

j=0

j + λκ
λκ

Vκ

[
Cλκ

j 〈x, ·〉
]
(x) ∼ 1

measκ(Bn−1(x))
, x ∈ Sd−1. (3.3.14)

Thus, if m = [εn] + 1 for some ε ∈ (0, 1), then for some absolute constants

c1, c2 > 0,

n∑

j=m+1

j + λκ
λκ

Vκ

[
Cλκ

j (〈x, ·〉)
]
(x) ≥ c1

1

measκ(Bn−1(x))
− c2

1

measκ(Bm−1(x))

= c1
1

measκ(Bn−1(x))

[
1− c2

c1

measκ(Bn−1(x))

measκ(Bm−1(x))

]
, (3.3.15)

which, by (3.1.1), is not smaller than

c1
1

measκ(Bn−1(x))

[
1− c′

(m
n

)d−1]
≥ c1

measκ(Bn−1(x))
(1− c′εd−1).

Thus, there exists a general constant δ0 ∈ (0, 1) such that for n ∈ N,

∑

δ0n≤j≤n

j + λκ
λκ

Vκ

[
Cλκ

j (〈x, ·〉)
]
(x) ≥ c′

1

measκ(Bn−1(x))
, x ∈ Sd−1. (3.3.16)

Now let Y denote the (d− 1)-dimensional subspace of Rd spanned by certain

elements from R+ such that

sκ = d− 1 + 2
∑

α∈R+∩Y
κα.

Then there exists a vector x0 ∈ Sd−1 such that 〈x0, α〉 = 0 for all α ∈ Y ∩R+.

This also implies that

min{|〈x0, v〉| : v ∈ R+, v /∈ Y } = c > 0,
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and hence

measκ(Bt(x0)) ∼ td−1
∏

v∈R+∩Y
t2κv = tsκ , t ∈ (0, 1).

Let η ∈ C∞(R) be such that χ[δ0,1] ≤ η ≤ χ[δ0/2,2], and define

fn(x) =
∞∑

j=1

η(
j

n
)
j + λκ
λκ

Vκ

[
Cλκ

j (〈x0, ·〉)
]
(x).

Clearly, fn ∈ Πd
2n, by (3.3.14) and (3.3.16),

fn(x0) ∼
1

measκ(Bn−1(x0))
∼ nsκ

and by Cauchy-Swarchz inequality and (3.3.14),

|fn(x)| ≤
( ∞∑

j=1

η(
j

n
)
j + λκ
λκ

Vκ

[
Cλκ

j (〈x0, ·〉)
]
(x0)

) 1
2

×
( ∞∑

j=1

η(
j

n
)
j + λκ
λκ

Vκ

[
Cλκ

j (〈x, ·〉)
]
(x)
) 1

2

≤ Cnsκ/2
( 1

measκ(Bn−1(x))

) 1
2
,

which yields that |fn(x)| ≤ Cnsκ for x ∈ Sd−1. Thus, by the Bernstein in-

equality for trigonometric polynomials, there exists δ1 ∈ (0, 1) such that

|fn(x)| ≥
1

2
|fn(x0)| ≥ cnsκ , ∀x ∈ Bδ1n−1(x0).

This implies that for 1 < p <∞,

‖fn‖κ,p ≥ Cnsκ
(
measκ(Bn−1(x0))

) 1
p ∼ nsκ(1− 1

p
).

On the other hand, the Cesàro summability of the spherical h-harmonics also

implies that

‖fn‖κ,1 ≤ C,

which by the log-convexity of the Lp-norm leads to

‖fn‖κ,p ≤ ‖fn‖
1
p

κ,1‖fn‖
1− 1

p
κ,∞ ≤ Cnsκ(1− 1

p
).
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Summing up, we obtain that

‖fn‖κ,p ∼ nsκ(1− 1
p
). (3.3.17)

By summation by parts and the Cesàro summability of the spherical h-harmonics,

this also implies that

‖(−∆κ,0)
−α

2 fn‖κ,p ≥ Cn−α‖fn‖κ,p ∼ nsκ(1− 1
p
)−α. (3.3.18)

Thus, if the HLS inequality (1.0.6) holds for some α > 0 and 1 < p < q <

∞, then

C ′n−αnsκ(1− 1
q
) ≤ ‖(−∆κ,0)

−α
2 fn‖κ,q ≤ C‖fn‖κ,p ∼ nsκ(1− 1

p
), ∀n ∈ N,

which implies −α + sκ(1− 1
q
) ≤ sκ(1− 1

p
), and hence α ≥ sκ(

1
p
− 1

q
).

3.4 Examples of the critical index sκ

In this section, we show how to calculate the index sκ for the examples

of reflection groups G and weights h2κ(x) given in the first section. We will

not consider the simpler case of G = Zd
2 here. Recall that sκ is the smallest

positive number s such that (3.1.2) holds.

Example 3.4.1. The case G = Bd, the hyperoctahedral group. In this case, G

has a positive root system

R+ = {ei ± ej : 1 ≤ i < j ≤ d} ∪ {ei : 1 ≤ i ≤ d},

and the root system R has a full rank d and the following two orbits under

the group G:

orbitG(e1) : = {ge1 : g ∈ G} = {±ei, i = 1, 2, · · · , d},
orbitG(e2 − e1) : = {g(e2 − e1) : g ∈ G} = {±(ei ± ej) : 1 ≤ i 6= j ≤ d}.

This means that each product weight h2κ invariant under the group G is of the

form

h2κ(x) =
( d∏

i=1

|xi|2κ1

)( ∏

1≤i<j≤d

|x2i − x2j |2κ2

)

37



for some nonnegative constants κ1, κ2. We claim that

sκ =





2 + max{6κ2, 4κ1 + 4κ2}, if d = 3;

d− 1 + 2κ1(d− 1) + 2κ2(d− 1)(d− 2), if d ≥ 4.

(3.4.1)

Proof. It is enough to show that sκ given in (3.4.1) is the smallest number s

for which the following inequality holds at all x ∈ Sd−1 with the constant C

independent of x, θ and n:

measκ(B(x, 2nθ)) ≤ C2ns measκ(B(x, θ)), ∀θ ∈ (0, π), (3.4.2)

n ∈ N, 2nθ ≤ π.

Let x = (x1, · · · , xd) ∈ Sd−1 and assume that {x∗j}dj=1 is a decreasing rear-

rangement of {|xj|}dj=1:

x∗1 ≥ x∗2 ≥ · · · ≥ x∗d.

By (3.1.1), we have, for θ ∈ (0, π),

measκ(B(x, θ)) ∼ θd−1
( d∏

j=1

(|xj|+ θ)2κ1

)
×

×
( ∏

1≤i<j≤d

(|xi|+ |xj|+ θ)2κ2

)( ∏

1≤i<j≤d

∣∣|xi| − |xj|+ θ
∣∣2κ2
)

∼ θd−1
( d∏

i=1

(x∗i + θ)2κ1+2(d−i)κ2

)( ∏

1≤i<j≤d

∣∣x∗i − x∗j + θ
∣∣2κ2
)
.

(3.4.3)

Fix for the moment x ∈ Sd−1 and consider the following two cases:

Case 1. x∗d ≥ 1
2
x∗1.

In this case, x∗j ∼ 1 for all 1 ≤ j ≤ d, and hence, (3.4.3) implies that (3.4.2)

holds at the point x with

s = d− 1 + κ2d(d− 1),

and this index s is sharp if |x1| = · · · = |xd| = 1√
d
.
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Case 2. x∗d ≤ 1
2
x∗1.

In this case,

x∗1 − x∗d =
d−1∑

j=1

(x∗j − x∗j+1) ≥
1

2
x∗1 ≥

1

2
√
d
,

hence, there exists 1 ≤ j0 ≤ d− 1 such that

x∗j0 − x∗j0+1 ≥ cd :=
1

2(d− 1)
√
d
. (3.4.4)

We denote by m the largest integer j0 ∈ [1, d−1] for which (3.4.4) holds. Then

x∗1 ≥ · · · ≥ x∗m ≥ cd > 0

and for 1 ≤ i ≤ m and m < j ≤ d,

x∗i − x∗j ≥ x∗m − x∗m+1 ≥ cd.

Thus, (3.4.3) implies that the inequality (3.4.2) holds at the point x with

s = d− 1 + 2
d∑

j=m+1

(κ1 + κ2(d− j)) + κ2d(d− 1)− 2κ2(d−m)m

= d− 1 + κ2d(d− 1) + (d−m)
[
(d− 1− 3m)κ2 + 2κ1

]
. (3.4.5)

Furthermore, this index sharp at x for any 1 ≤ m ≤ d if

x∗1 = · · · = x∗m =
1√
m
, x∗m+1 = · · · = x∗d = 0.

Now, combining the results proved in the above two cases, and setting

n = d−m in (4.4.7), we obtain

sκ = d− 1 + κ2d(d− 1) + max
0≤n≤d−1

n[2κ1 + (3n− 2d− 1)κ2]

= d− 1 + κ2d(d− 1) + max
0≤n≤d−1

[
3κ2n

2 + n
(
2κ1 − (2d+ 1)κ2

)]
.

Since 3κ2 ≥ 0, the above maximum is attained at either n = 0 or n = d − 1.

39



Thus,

sκ = d− 1 + max
{
κ2d(d− 1), 2κ1(d− 1) + 2κ2(d− 1)(d− 2)

}
.

A straightforward calculation then shows that for d ≥ 4,

sκ = d− 1 + 2κ1(d− 1) + 2κ2(d− 1)(d− 2),

while for d = 3,

sκ = 2 +max{6κ2, 4κ1 + 4κ2}.

Example 3.4.2. The case G = Ad−1 (the symmetric group on d elements).

Here the group G has a positive root system R+ = {ei − ej : 1 ≤ i < j ≤ d},
and the root system R has rank d − 1 and one orbit orbitG(e2 − e1) = R.

Hence, every product weight h2κ(x) in this case can be written in the following

form for some κ0 ≥ 0:

h2κ(x) =
∏

1≤i<j≤d

|xi − xj|2κ0 .

Furthermore, by (1.0.7),

sκ = d− 1 + 2
∑

α∈R+

κα = d− 1 + d(d− 1)κ0.
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Chapter 4

Riesz transforms

In the HLS theory, it is most concerned to people when α = 1. In partic-

ular, at this moment, the inequality can be rewritten as

‖f‖κ,p ≤ C‖(−∆κ,0)
1/2f‖κ,q,

for certain proper p, q. Motivated by this discussion, in this chapter, we shall

introduce two versions of decomposition of Laplace-Beltramic operator, ∆κ,0.

These lead to a practical replacement of (−∆κ,0)
1/2 in the sense of the equiv-

alence of the Lp(h2κ) norm.

4.1 Weighted analogue of the angular deriva-

tives

The angular derivatives Di,j = xi∂j − xj∂i, 1 ≤ i < j ≤ d described in

Section 2 have been playing an important role in the theory of ordinary spher-

ical harmonics. These operators are invariant on spaces of ordinary spherical

harmonics, and commute with the Laplace-Beltrami operator ∆0 (see Lemma

2.2.2). Recently, Yuan Xu [Xu3] considered a weighted analogue of these an-

gular derivatives in the Dunkl setting, replacing the partial derivatives ∂i with

the Dunkl operators Dj:

Di,j = xiDj − xjDi = Di,j + Ei,j, 1 ≤ i < j ≤ d, (4.1.1)
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where

Ei,j =
∑

v∈R+

[
xi〈v, ej〉 − xj〈v, ei〉

]
κvEv (4.1.2)

and ej is the jth standard vector. These operators were used to study the

uncertainty principle for the spherical h-harmonic expansions and to decom-

pose the Dunkl Laplace-Beltrami operator ∆κ,0 in [Xu3]. The decomposition

of ∆κ,0 in [Xu3, Lemma 3.2] can be written equivalently as follows:

∆κ,0 =
∑

1≤i<j≤d

D2
i,j + T , (4.1.3)

with

T : = (d− 2)
∑

α∈R+

κα(I − σα) +
∑

α,β∈R+

κακβ(I − σασβ). (4.1.4)

Here we recall that σαf(x) = f(σαx) and I denotes the identity operator.

Unlike the decomposition (2.2.9) of the classical Laplace-Beltrami operator

∆0 on Sd−1, the decomposition (4.1.3) contains an extra difference term T ,

which causes difficulties in applications (see, for instance, [Xu3]).

It was shown in [Xu3] that the operators Di,j enjoy several important prop-

erties similar to those of Di,j, including the following useful formula of inte-

gration by parts:

∫

Sd−1

Di,jf(x)g(x)h
2
κ(x) dσ(x) = −

∫

Sd−1

f(x)Di,jg(x)h
2
κ(x) dσ(x), (4.1.5)

for f, g ∈ C1(Sd−1), and 1 ≤ i < j ≤ d.

One of the most important properties of the operators Di,j is the fact that

they are invariant on each space of spherical h-harmonics, that is, Di,jHd
n(h

2
κ) ⊂

Hd
n(h

2
κ) for each n, which, in particular, implies that the Di,j commute with all

multiplier operators for the spherical h-harmonic expansions. This property

is a simple consequence of (4.1.1), (4.1.2) and (4.1.5). Indeed, it is easily

seen from (4.1.1) and (4.1.2) that Di,jΠ
d
n ⊂ Πd

n. Thus, by (4.1.5) and the

orthogonality of spherical h-harmonics, we have that for any f ∈ Hd
n(h

2
κ) and
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g ∈ Πd
n−1,

∫

Sd−1

Di,jf(x)g(x)h
2
κ(x) dσ(x) = −

∫

Sd−1

f(x)Di,jg(x)h
2
κ(x) dσ(x) = 0,

which implies that Di,jf is in the space Hd
n(h

2
κ), the orthogonal complement

of Πd
n−1 in the Hilbert space Πd

n with the inner product of L2(h2κ; S
d−1).

Our goal in this section is to show the following result, which will be needed

in the next section.

Theorem 4.1.1. If 1 < p <∞ and f ∈ C1(Sd−1), then

‖(−∆κ,0)
1
2f‖κ,p ∼ max

1≤i<j≤d
‖Di,jf‖κ,p. (4.1.6)

The proof of Theorem 4.1.1 relies on several lemmas.

Lemma 4.1.2. Let f ∈ C1[−1, 1], and define, for a fixed y ∈ Sd−1,

F (x) := Vκ[f(〈·, y〉)](x), x ∈ Sd−1.

Then for 1 ≤ i < j ≤ d,

Di,jF (x) = (xiyj − xjyi)Vκ

[
f ′(〈·, y〉)

]
(x).

Proof. Setting ϕ(z) = f(〈z, y〉), we deduce from (2.2.2) that

Di,jF (x) = xiDjVκϕ(x)− xjDiVκϕ(x) = xiVκ∂jϕ(x)− xjVκ∂iϕ(x)

= xiyjVκ

[
f ′(〈·, y〉)

]
(x)− xjyiVκ

[
f ′(〈·, y〉)

]
(x).

Lemma 4.1.3. Let fn ∈ C1[−1, 1] be a sequence of functions satisfying that

|f ′
n(cos t)| ≤ C`n

2λκ+1(1 + nt)−`, t ∈ [0, π] ∀` > 0.

If we let

Fn(x, y) := Vκ

[
fn(〈·, y〉)

]
(x), x, y ∈ Sd−1,
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then for x, y ∈ Sd−1 and 1 ≤ i < j ≤ d,

|D(x)
i,j Fn(x, y)| ≤ C`

nd−1ρ(x, y)(1 + nρ̃(x, y))−`

∏
v∈R+

(
|〈x, v〉|+ 〈g0y, v〉|+ ρ̃(x, y) + n−1

)2κv
, ∀` > 0.

where g0 ∈ G is such that ρ(x, g0y) = ρ̃(x, y). Here and throughout, D(x)
i,j

means that the operator Di,j is acting on the variable x.

Proof. The stated estimate follows from Lemma 4.1.2, Theorem 3.2.1 and the

fact that

|xiyj − xjyi| ≤ 2ρ(x, y).

Lemma 4.1.4. For f ∈ C1(Sd−1),

∑

1≤i<j≤d

‖Di,jf‖2κ,2 (4.1.7)

=‖(−∆κ,0)
1/2f‖2κ,2 +

d− 2

2

∑

α∈R+

κα

∫

Sd−1

|f(x)− f(σαx)|2h2κ(x) dσ(x)

+
1

2

∑

α,β∈R+

κακβ

∫

Sd−1

∣∣∣f(x)− f(σβσαx)
∣∣∣
2

h2κ(x) dσ(x).

Proof. Using (4.1.5) and the decomposition (4.1.3), we have that

‖(−∆κ,0)
1/2f‖2κ,2 =

∫

Sd−1

(−∆κ,0f)(x)f(x)h
2
κ(x) dσ(x)

=
∑

1≤i<j≤d

‖Di,jf‖2κ,2 −
∫

Sd−1

T f(x)f(x)h2κ(x) dσ(x). (4.1.8)

Since the measure h2κ(x) dσ(x) is G-invariant, and since for each g ∈ G, we

may write

f(x) =
f(x)− f(gx)

2
+
f(x) + f(gx)

2
,

it follows that for each g ∈ G,

∫

Sd−1

f(x)(f(x)− f(gx))h2κ(x) dσ(x) =
1

2

∫

Sd−1

|f(x)− f(gx)|2h2κ(x) dσ(x).
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Thus,

∫

Sd−1

(∑

α∈R+

κα(I − σα)f(x)
)
f(x)h2κ(x) dσ(x)

=
1

2

∑

α∈R+

κα

∫

Sd−1

|f(x)− f(σαx)|2h2κ(x) dσ(x). (4.1.9)

On the other hand, clearly,

∫

Sd−1

(∑

α∈R+

∑

β∈R+

κακβ(I − σασβ)f(x)
)
f(x)h2κ(x) dσ(x)

=
1

2

∑

α∈R+

∑

β∈R+

κακβ

∫

Sd−1

∣∣∣f(x)− f(σβσαx)
∣∣∣
2

h2κ(x) dσ(x). (4.1.10)

Now substituting (4.1.9) and (4.1.10) into (4.1.4) and (4.1.8) yield the

desired identity (4.1.7). This completes the proof.

We are now in a position to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Let θ ∈ C∞[0,∞) be supported in the interval

[1
2
, 2] and satisfy

∑∞
j=0 θ(2

−jx) = 1 for all x ≥ 1. Let θ̃ ∈ C∞[0,∞) be such

that χ[ 1
2
,2](t) ≤ θ̃(t) ≤ χ[ 1

4
,4](t) for t ≥ 0. Define Ln = Lθ,n and L̃n = Lθ̃,n as

in Definition 2.3.1. Clearly, Ln = LnL̃n = L̃nLn, and the operators Ln, L̃n,

(−∆κ,0)
γ and Di,j are all commutative.

Next, we show that for 1 ≤ i < j ≤ d,

‖Di,j(−∆κ,0)
− 1

2f‖κ,p ≤ C‖f‖κ,p, 1 < p <∞, (4.1.11)

which will imply the inequality

‖Di,jf‖κ,p ≤ C‖(−∆κ,0)
1
2f‖κ,p.

Indeed, using the Littlewood-Paley inequality (2.3.5), and setting fn = L̃nf ,
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we have

‖Di,j(−∆κ,0)
− 1

2f‖κ,p ∼
∥∥∥
( ∞∑

n=0

|LnDi,j(−∆κ,0)
− 1

2f |2
)1/2∥∥∥

κ,p

=
∥∥∥
( ∞∑

n=0

|Di,j(−∆κ,0)
− 1

2Lnfn|2
)1/2∥∥∥

κ,p
.

For each nonnegative integer n, we may write

Di,j(−∆κ,0)
− 1

2Lnfn(x) : =

∫

Sd−1

fn(y)D(x)
i,j

(
Vκ

[
Gn(〈·, y〉)

]
(x)
)
h2κ(y) dσ(y),

(4.1.12)

with

Gn(t) = 2−n

∞∑

k=0

ϕn(2
−nk)

k + λκ
λκ

Cλκ
k (t)

and ϕn(s) = θ(s)(s(s+ 2−n+1λκ))
− 1

2 . Since supn ‖ϕ(j)
n ‖∞ ≤ Cj <∞, it follows

by Lemma 2.1.1 that

|G′
n(cosu)| ≤ 2n(2λκ+2)(1 + 2nu)−`, ∀` > 0, u ∈ (0, π),

which, using Lemma 4.1.3, in turn implies that for any ` > 0,

∣∣∣Di,jVκ

[
Gn(〈·, y〉)

]
(x)
∣∣∣ ≤ C

2n(d−1)(2nρ(x, y))(1 + 2nρ̃(x, y))−`

∏
v∈R+

(
|〈x, v〉|+ ρ̃(x, y) + 2−n

)2κv
. (4.1.13)

Thus, combining (4.1.13) with (4.1.12), we obtain by a straightforward calcu-

lation that ∣∣∣(Di,j(−∆κ,0)
− 1

2Lnfn(x)
∣∣∣ ≤ Cmax

g∈G
Mκfn(gx),

where Mκ denotes the weighted HL maximal function given in (2.4.8) with

w = h2κ. Since dµ(x) = h2κ(x)dσ(x) is a doubling Radon measure on Sd−1, it

follows by (2.3.5) and the Fefferman-Stein inequality that

∥∥∥
( ∞∑

n=0

|(Di,j(−∆κ,0)
− 1

2Lnfn)|2
)1/2∥∥∥

κ,p
≤ C

∥∥∥
( ∞∑

n=0

|Mκfn|2
)1/2∥∥∥

κ,p

≤ C
∥∥∥
( ∞∑

n=0

|fn|2
)1/2∥∥∥

κ,p
≤ C‖f‖κ,p.
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Finally, we show the inverse inequality

‖(−∆κ,0)
1
2f‖κ,p ≤ C max

1≤i<j≤d
‖Di,jf‖κ,p. (4.1.14)

This can be deduced from (4.1.11) and (4.1.7) via a duality argument. Indeed,

let g ∈ Lp′(h2κ; S
d−1) be such that ‖g‖κ,p′ ≤ C and

‖(−∆κ,0)
1
2f‖κ,p =

∫

Sd−1

[
(−∆κ,0)

1
2f(y)

]
g(y)h2κ(y) dσ(y).

Here and elsewhere, 1
p
+ 1

p′
= 1. Without loss of generality, we may assume that∫

Sd−1 g(y)h
2
κ(y) dσ(y) = 0, replacing g with g̃(x) = g(x)−

∫
Sd−1 g(y)h

2
κ(y) dσ(y)

otherwise. It then follows by (4.1.3) and (4.1.5) that

‖(−∆κ,0)
1
2f‖κ,p =

∫

Sd−1

[
(−∆κ,0)f(y)

][
(−∆κ,0)

− 1
2 g(y)

]
h2κ(y) dσ(y)

=
∑

1≤i<j≤d

∫

Sd−1

Di,jf(y)
[
Di,j(−∆κ,0)

− 1
2 g(y)

]
h2κ(y) dσ(y)

−
∫

Sd−1

T f(y)
[
(−∆κ,0)

− 1
2 g(y)

]
h2κ(y) dσ(y),

which, using Hölder’s inequality, (4.1.11) and that fact that ‖(−∆κ,0)
− 1

2 g‖κ,p′ ≤
C‖g‖κ,p′ ≤ C , is bounded above by

∑

1≤i<j≤d

‖Di,jf‖κ,p‖Di,j(−∆κ,0)
− 1

2 g‖κ,p′ + ‖T f‖κ,p‖(−∆κ,0)
− 1

2 g‖κ,p′

≤ C max
1≤i<j≤d

‖Di,jf‖κ,p + C‖T f‖κ,p.

To estimate the term ‖T f‖κ,p, let η ∈ C∞[0,∞) be such that η(x) = 1 for

x ∈ [0, 1] and η(x) = 0 for x ≥ 2, and define

Lκ
nf :=

2n∑

j=0

η(n−1j) projj(h
2
κ; f).

It is well known that (see [DaXu4, Lemma 10.2.4])

‖f − Lκ
nf‖κ,p ≤ Cn−r‖(−∆κ,0)

r/2f‖κ,p, r > 0. (4.1.15)

Without loss of generality, we may assume that
∫
Sd−1 f(x)h

2
κ(x) dσ(x) = 0.
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Since T is bounded on Lp(h2κ; S
d−1), it follows that for each n0 ∈ N,

‖T f‖κ,p ≤ C‖f − Lκ
n0
f‖κ,p + C‖Lκ

n0
f‖κ,p ≤ Cn−1

0 ‖(−∆κ,0)
1
2f‖κ,p + C‖Lκ

n0
f‖κ,p

≤ Cn−1
0 ‖(−∆κ,0)

1
2f‖κ,p + Cn0‖Lκ

n0
f‖κ,2,

where we used the equivalence of different norms in a finite-dimensional vector

space in the last step. To estimate the term ‖Lκ
n0
f‖κ,2, we use Lemma 4.1.4

and obtain

‖Lκ
n0
f‖κ,2 ≤ ‖(−∆κ,0)

1
2Lκ

n0
f‖κ,2 ≤

∑

1≤i<j≤d

‖Di,jLκ
n0
f‖κ,2

≤ C max
1≤i<j≤d

‖Lκ
n0
Di,jf‖κ,2 ≤ C max

1≤i<j≤d
‖Lκ

n0
Di,jf‖κ,p ≤ C max

1≤i<j≤d
‖Di,jf‖κ,p,

where we used the equivalence of different norms in the finite-dimensional

space Πd
2n0

in the fourth step, and the boundedness of the operator Lκ
n0

in the

last step.

Putting the above together, we deduce

‖(−∆κ,0)
1
2f‖κ,p ≤ Cn−1

0 ‖(−∆κ,0)
1
2f‖κ,p + Cn0 max

1≤i<j≤d
‖Di,jf‖κ,p.

Now choosing n0 ∈ N large enough so that 1
4
≤ Cn−1

0 ≤ 1
2
, we obtain the

desired inverse inequality (4.1.14).

4.2 A new decomposition of Dunkl-Laplace-

Beltrami operator

It turns out that the decomposition (4.1.3) of ∆κ,0 obtained in [Xu3] is not

enough for the proof of our main result, Theorem 1.0.5. Our main goal in this

section is to prove the following new decomposition of ∆κ,0, which will play a

crucial role in the next section when we prove Theorem 1.0.5.

Theorem 4.2.1. For x ∈ Sd−1,

∆κ,0 =
∑

1≤i<j≤d

Di,jh
2
κ(x)Di,j

h2κ(x)
− 2

∑

α∈R+

κα
〈α, x〉Eα. (4.2.1)
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Furthermore, if f, g ∈ C2(Sd−1), then

〈(−∆κ,0)f, g〉L2(h2
κ)
=

∫

Sd−1

〈∇0f,∇0g〉h2κ(x) dσ(x) +
∑

α∈R+

κα〈Eαf, Eαg〉L2(h2
κ)
,

(4.2.2)

where 〈·, ·〉L2(h2
κ)

denotes the inner product of L2(h2κ; S
d−1). In particular, this

implies

‖(−∆κ,0)
1
2f‖2κ,2 = ‖∇0f‖2κ,2 +

∑

α∈R+

κα‖Eαf‖2κ,2. (4.2.3)

The significance of the decomposition (4.2.1) lies in the fact that each term

on the right hand side of (4.2.1) is self-adjoint in L2(h2κ; S
d−1) and relatively

easier to deal with.

Proof. We start with the proof of the decomposition (4.2.1). A straightforward

calculation shows that

Di,jh
2
κ(x)Di,j

h2κ(x)
=

(Di,jh
2
κ(x))Di,j

h2κ(x)
+D2

i,j

= D2
i,j +

∑

α∈R+

2κα
〈x, α〉

[
x2jαi∂i − xixjαi∂j − xixjαj∂i + x2iαj∂j

]
.

Hence, by (2.2.9), it follows that for x ∈ Sd−1

∑

1≤i<j≤d

Di,jh
2
κ(x)Di,j

h2κ(x)
=

1

2

d∑

i=1

d∑

j=1

Di,jh
2
κ(x)Di,j

h2κ(x)

= ∆0 + 2
∑

α∈R+

κα〈α,∇〉
〈x, α〉 − 2|κ|〈x,∇〉,

where ∇ = (∂1, · · · , ∂d), and |κ| =∑v∈R+
κv.

Now let f ∈ C2(Sd−1) and define F (z) = f(z/‖z‖) for ‖z‖ > 0. Since F is

a radial function,

〈x,∇〉F (x) = DxF (x) = 0, x ∈ Sd−1,

where Dx denotes the directional derivative in the direction of x ∈ Sd−1. Thus,
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by Lemma 2.2.2 (i),

∑

1≤i<j≤d

Di,jh
2
κ(x)Di,jf(x)

h2κ(x)
= ∆0f(x) + 2

∑

α∈R+

κα〈α,∇〉F (x)
〈x, α〉 , x ∈ Sd−1.

(4.2.4)

Now using (2.2.6) and (2.2.8), we obtain that for x ∈ Sd−1,

∆κ,0f(x) = ∆κF (x) = ∆0f(x) + 2
∑

α∈R+

κα

[〈∇F (x), α〉
〈x, α〉 − Eαf(x)

〈x, α〉
]
,

which, together with (4.2.4), yields the desired decomposition (4.2.1).

Finally, we show the identity (4.2.2). First, we observe that by (4.4),

〈h−2
κ Di,jh

2
κDi,jf, g〉L2(h2

κ)
= −〈Di,jf,Di,jg〉L2(h2

κ)
. (4.2.5)

Next, writing

g(x) =
g(x) + g(σαx)

2
+
g(x)− g(σαx)

2
,

and using symmetry, we get that for any ε ∈ (0, 1),

∫

{x∈Sd−1:|〈x,α〉|≥ε}

f(x)− f(σαx)

〈x, α〉2
g(x)h2κ(x) dσ(x)

=
1

2

∫

{x∈Sd−1:|〈x,α〉|≥ε}

f(x)− f(σαx)

〈x, α〉
g(x)− g(σax)

〈x, α〉 h2κ(x) dσ(x).

Letting ε→ 0 yields

∫

Sd−1

2Eαf(x)

〈α, x〉 g(x)h2κ(x) dσ(x) = 〈Eαf, Eαg〉L2(h2
κ)
. (4.2.6)

Substituting (4.2.5) and (4.2.6) into (4.2.1), and using (2.2.11), we deduce the

identity (4.2.2).

4.3 Riesz transform operators and their bound-

edness

Throughout this section, the letter v denotes a fixed element in R+ with

κv > 0. For simplicity, we write T = Ev(−∆κ,0)
− 1

2 . To prove Theorem 1.0.5,
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by (4.1.1), and Theorem 4.1.1, it suffices to show that for 1 < p <∞,

‖Tf‖κ,p ≤ Cp‖f‖κ,p. (4.3.1)

We start with the case of 1 < p ≤ 2. For p = 2, the inequality (4.3.1)

follows directly from (4.2.3). Thus, to prove (4.3.1) for 1 < p < 2, by the

Riesz-Thorin theorem, it suffices to show that

measκ

{
x ∈ Sd−1 : |Tf(x)| > α

}
≤ C

‖f‖κ,1
α

, ∀α > 0. (4.3.2)

The proof of (4.3.2) relies on the Calderon-Zygmund decomposition. Indeed,

by the integral representation (3.3.2) , we may write

Tf(x) =

∫

Sd−1

f(y)K(x, y)h2κ(y) dσ(y), (4.3.3)

where

K(x, y) =
K1(x, y)−K1(σvx, y)

2〈x, v〉 , x, y ∈ Sd−1 (4.3.4)

andK1(x, y) is given in (3.3.1) with α = 1. Recall that ρ̃(x, y) = ming∈G ρ(gx, y)

for x, y ∈ Sd−1. For a spherical cap B(x, t) ⊂ Sd−1, we write

B̃(x, t) =
⋃

g∈G
B(gx, t),

whereas for E ⊂ Sd−1, write cE := Sd−1 \ E.
The following integral estimates of the kernel K(x, y) will play a crucial

role in the proof of (4.3.1) and (4.3.2) :

Proposition 4.3.1. Let K(x, y) be the kernel given in (7.1.6) with v ∈ R+

and κv > 0. Then for all y ∈ Sd−1 and t ∈ (0, π),

∫
c
B̃(y,2t)

|K(x, y)−K(x, y′)|h2κ(x)dσ(x) ≤ A, ∀y′ ∈ B(y, t) (4.3.5)

and
∫

c
B̃(y,2t)

|K(y, x)−K(y′, x)|h2κ(x)dσ(x) ≤ A, ∀y′ ∈ B(y, t), (4.3.6)

where A is a constant independent of y, y′ and t.
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The proof of Proposition 4.3.1 is long and technical, so we postpone it until

next two subsections.

Once Proposition 4.3.1 is proved, then (4.3.2) can be deduced by slightly

modifying the standard technique of the Calderon-Zygmund decomposition.

For completeness, we sketch the proof of (4.3.2) as follows. Without loss of

generality, we may assume that
∫
Sd−1 f(x)h

2
κ(x) dσ(x) = 0. We then apply the

Calderon-Zygmund decomposition of f at the height α > 0:

f = g + b = g +
∞∑

j=1

bj,

where the following conditions are satisfied:

• |g(x)| ≤ Cα for a.e. x ∈ Sd−1;

• For j = 1, 2, · · · , we have that supp bj ⊂ Bj := B(yj, tj),
∫
Bj
bj(y)h

2
κ(y) dσ(y) =

0 and
1

measκ(Bj)

∫

Bj

|bj(y)|h2κ(y) dσ(y) ≤ Cα;

• ∞∑

j=1

measκ(Bj) ≤ C
‖f‖κ,1
α

.

Set

B∗
j = B̃(yj, 2tj) =

⋃

g∈G
B(gyj, 2tj), j = 1, 2, · · · ,

and let Ω :=
⋃∞

j=1B
∗
j . Then by the G-invariance and the doubling property of

the weight h2κ(x), we have

measκ(Ω) ≤ C
∞∑

j=1

measκ(Bj) ≤ C
‖f‖κ,1
α

.

On the other hand, however, using (4.3.5), we obtain

∫

cB∗
j

|Tbj(x)|h2κ(x) dµ(x) =
∫

cB∗
j

∣∣∣
∫

Bj

bj(y)
(
K(x, y)−K(x, yj)

)
h2κ(y) dσ(y)

∣∣∣h2κ(x) dσ(x)

≤
∫

Bj

|bj(y)|
[∫

cB∗
j

∣∣K(x, y)−K(x, yj)
∣∣h2κ(x) dσ(x)

]
h2κ(y) dσ(y)

≤ Cαmeasκ(Bj).
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Thus,

measκ{x ∈ Sd−1 : |Tf(x)| > α} ≤ measκ{x ∈ Sd−1 : |Tg(x)| > α/2}
+measκ{x ∈ cΩ : |Tb(x)| > α/2}+measκ(Ω)

≤ C
‖g‖2κ,2
α2

+ C
1

α

∞∑

j=1

∫

cB∗
j

|Tbj(x)|h2κ(x) dσ(x) + C
‖f‖κ,1
α

≤ C
‖f‖κ,1
α

.

This proves (4.3.2), and hence (4.3.1) for 1 < p ≤ 2.

Finally, we show (4.3.1) for 2 < p <∞. Let T ∗ be the dual operator of T .

Then by (4.3.3),

T ∗f(x) =

∫

Sd−1

K(y, x)f(y)h2κ(y) dσ(y).

Repeating the above argument, and using (4.3.6) rather than (4.3.5), we obtain

‖T ∗f‖κ,p ≤ C‖f‖κ,p, 1 < p < 2,

which, by duality, implies (4.3.1) for 2 < p <∞.

4.3.1 Proof of Proposition 4.3.1: the estimate (4.3.6)

This subsection is devoted to the proof of (4.3.6). Let ϕ be a C∞-function

on [0,∞) supported in [1
2
, 2] and satisfying

∑∞
n=0 ϕ(2

−nx) = 1 for all x ≥ 1.

Set

An(t) = 2−n

∞∑

j=1

ϕn(
j

2n
)
λκ + j

λκ
Cλκ

j (t) with ϕn(x) =
ϕ(x)√

x(x+ 2−n+1λκ)
.

We then decompose the kernel K(x, y) as follows:

K(x, y) =
∞∑

n=0

Kn,v(x, y), (4.3.7)

where

Kn,v(x, y) =
Vκ
[
An(〈y, ·〉)

]
(x)− Vκ

[
An(〈y, ·〉)

]
(σvx)

2〈x, v〉 . (4.3.8)
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Obviously, by (2.2.4),

Kn,v(x, y) =
Vκ

[
An(〈x, ·〉)− An(〈σvx, ·〉)

]
(y)

2〈x, v〉 , (4.3.9)

whereas by Lemma 2.1.1,

|A(j)
n (cos θ)| ≤ C2n(2λκ+2j)(1 + 2nθ)−`, j = 0, 1, 2, t ∈ [0, π], ∀` > 0,

(4.3.10)

The proof of (4.3.6) relies on several lemmas.

Lemma 4.3.2. For x, y ∈ Sd−1,

|Kn,v(x, y)| ≤ C
2n(d−1)(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα
, ∀` > 0.

Proof. We consider the following three cases.

Case 1. |〈x, v〉| ≤ ρ̃(x,y)
12π2 .

In this case, we first claim that for z ∈ Ĝy, θ := arccos 〈x, z〉 and θ′ :=

arccos 〈σvx, z〉, one has

| cos θ − cos θ′| ≤ 4θ|〈x, v〉|, and θ ∼ θ′. (4.3.11)

For the moment, we take the claim (4.3.11) for granted and proceed with

the proof of (4.3.6). By the mean value theorem, for each fixed z ∈ Ĝy, there

exists a number t between θ := arccos 〈x, z〉 and θ′ := arccos 〈σvx, z〉, such
that

An(〈x, z〉)− An(〈σvx, z〉)
〈x, v〉 =

An(cos θ)− An(cos θ
′)

〈x, v〉

= A′
n(cos t)

cos θ − cos θ′

〈x, v〉 = 2A′
n(cos t)〈z, v〉.

It then follows by (4.3.10) and (4.3.11) that for any ` > 0,

|An(〈x, z〉)− An(〈σvx, z〉)|
≤ C2n(2λκ+2)(1 + 2nθ)−`−1θ|〈x, v〉| ≤ C2n(2λκ+1)(1 + 2nθ)−`|〈x, v〉|.
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In other words, for each z ∈ Ĝy, we have

|An(〈x, z〉)− An(〈σvx, z〉)|
|〈x, v〉| ≤ CNn,`(〈x, z〉), ∀` > 0.

where

Nn,`(cos θ) = 2n(2λκ+1)(1 + 2nθ)−`.

The stated estimate in this case then follows by (3.2.2) and Theorem 2.2.1.

It remains to show the claim (4.3.11). Since

max{cos θ, cos θ′} ≤ max
g∈G

〈x, gy〉 = cos ρ̃(x, y),

we have θ, θ′ ≥ ρ̃(x, y). Without loss of generality, we may assume that θ, θ′ >

0, since otherwise, 〈x, v〉 = ρ̃(x, y) = 0, θ = θ′ and (4.3.11) holds trivially.

Since

‖z − x‖2 = 1 + ‖z‖2 − 2〈z, x〉 ≤ 2(1− cos θ) ≤ θ2,

it follows that

|〈z, v〉| ≤ |〈x, v〉|+ ‖z − x‖ ≤ 2θ. (4.3.12)

Thus,

| cos θ − cos θ′| = |〈x, z〉 − 〈σvx, z〉|
= 2|〈x, v〉||〈z, v〉| ≤ 4θ|〈x, v〉|.

This proves the first part of (4.3.11). Finally, to show that θ ∼ θ′, without

loss of generality, we may assume that θ + θ′ ≤ 3π
2
, since otherwise θ, θ′ ≥ π

2

and there’s nothing to prove. Using the inequality sin t ≥ 2t
3π

for 0 ≤ t ≤ 3π
4
,

we have

| cos θ − cos θ′| = 2 sin
θ + θ′

2

∣∣∣ sin θ − θ′

2

∣∣∣

≥ 2θ

3π2
|θ − θ′|.

This combined with (4.3.11) yields that

|θ − θ′| ≤ 6π2|〈x, v〉| ≤ 1

2
ρ̃(x, y) ≤ 1

2
θ.

It then follows that θ ∼ θ′.
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Case 2. |〈x, v〉| ≥ ρ̃(x,y)
12π2 and |〈x, v〉| ≥ 2−n.

In this case, we apply Theorem 3.2.1 directly to obtain that

|Kn,v(x, y)| : ≤ C

∣∣∣Vκ
[
An(〈x, ·〉)

]
(y)
∣∣∣+
∣∣∣Vκ
[
An(〈σvx, ·〉)

]
(y)
∣∣∣

ρ̃(x, y) + 2−n

≤ C
1

ρ̃(x, y) + 2−n

2(d−2)n(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα

≤ C
2(d−1)n(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα
.

Case 3. ρ̃(x,y)
12π2 ≤ |〈x, v〉| ≤ 2−n.

Following the notation in Case 1, we set θ∗ = min{θ, θ′} for a fixed z ∈ Ĝy,

where θ = arccos(x · z) and θ′ = arccos(σvx · z). By the mean value theorem,

there exists t between θ and θ′ such that

|An(〈x, z〉)− An(〈σvx, z〉)| = |A′
n(cos t)|| cos θ − cos θ′|

≤ C2n(2λκ+2)(1 + 2nθ∗)−`−1|〈z, v〉||〈x, v〉|. (4.3.13)

Since |〈z, v〉| ≤ |〈x, v〉|+ θ and |〈z, v〉| ≤ |〈σvx, v〉|+ θ′ = |〈x, v〉|+ θ′, it follows
that |〈z, v〉| ≤ |〈x, v〉| + θ∗. Thus, the term on the right hand side of (4.3.13)

is bounded above by a constant multiple of

2n(2λκ+2)(1 + 2nθ∗)−`−1(2−n + θ∗)|〈x, v〉| ≤ 2n(2λκ+1)(1 + 2nθ∗)−`|〈x, v〉|.

Putting the above together, we obtain in this case that for any z ∈ Ĝy,

|An(〈x, z〉)− An(〈σvx, z〉)|
|〈x, v〉| ≤ CNn(〈x, z〉) + CNn(〈σvx, z〉).

The stated estimate in this case follows again from Theorem 3.2.1 and Theorem

2.2.1.

In the sequel, we use the notation D(x) to mean that an operator D is

acting on the variable x.
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Lemma 4.3.3. For x, y ∈ Sd−1, and any ` > 0,

∣∣∣∇(x)
0

[
Vκ

[
An(〈x, ·〉)

]
(y)
∣∣∣ ≤ C

2(d−1)n(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα
. (4.3.14)

Proof. By (2.2.11), it suffices to show the estimate (4.3.14) with the tangential

gradient ∇(x)
0 being replaced by the angular derivatives D

(x)
i,j , 1 ≤ i < j ≤ d .

Without loss of generality, we may assume that i = 1 and j = 2.

Using Theorem 2.2.1, we have

D
(x)
1,2

[
Vκ

[
An(〈x, ·〉)

]
(y) =

∫

Ĝy

A′
n(〈x, z〉)(x2z1 − x1z2) dµy(z). (4.3.15)

However, for each fixed z ∈ Ĝy,

|x2z1 − x1z2| ≤ 2‖x− z‖ ≤ 2θ := 2 arccos 〈x, z〉,

and hence, by (4.3.10),

∣∣∣A′
n(〈x, z〉)(x2z1 − x1z2)

∣∣∣ ≤ C2n(2λκ+2)(1 + 2nθ)−`−1θ

≤ C2n(2λκ+1)(1 + 2nθ)−` = CNn,`(〈x, z〉).

It follows that

∣∣∣D(x)
1,2

[
Vκ

[
An(〈x, ·〉)

]
(y)
∣∣∣ ≤ CVκ

[
Nn,`(〈x, ·〉)

]
(y), ∀` > 0,

which, by Theorem 3.2.1, implies the stated estimate.

Lemma 4.3.4. Let x ∈ Sd−1 and z ∈ Bd. If f ∈ C2[−1, 1], then

D
(x)
1,2

[f(〈x, z〉)− f(〈σvx, z〉)
2〈x, v〉

]

= 〈z, v〉
∫ 1

0

f ′′
(
〈x, α(z, s, v)〉

)[
x1α2(z, s, v)− x2α1(z, s, v)

]
ds, (4.3.16)

where αj(z, s, v) denotes the j-th component of the vector

α(z, s, v) := sz + (1− s)σvz. (4.3.17)
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Proof. A straightforward calculation shows that for f ∈ C1[−1, 1],

f(〈x, z〉)− f(〈σvx, z〉)
2〈x, v〉 = 〈z, v〉

∫ 1

0

f ′
(
〈x, α(z, s, v)〉

)
ds.

(4.3.16) then follows directly from this last equation and the definition of

D1,2.

Lemma 4.3.5. For x, y ∈ Sd−1,

|∇(x)
0 Kn,v(x, y)| ≤ C

2nd(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα
, ∀` > 0.

Proof. Again, by (2.2.11), it suffices to show the stated estimate for the angular

derivative D
(x)
1,2 instead of the tangential gradient ∇(x)

0 . By (4.3.16) and (4.3.9),

D
(x)
1,2Kn,v(x, y) =

∫

Ĝy

D
(x)
1,2

(An(〈x, z〉)− An(〈σvx, z〉)
2〈x, v〉

)
dµy(z)

=

∫

Ĝy

S(A′′
n)(x, z) dµy(z), (4.3.18)

where

S(A′′
n)(x, z) := 〈z, v〉

∫ 1

0

A′′
n

(
〈x, α(z, s, v)〉

)[
x1α2(z, s, v)− x2α1(z, s, v)

]
ds.

As in the proof of Lemma 4.3.2, we consider the following three cases:

Case 1. |〈x, v〉| ≤ ρ̃(x,y)
12π2 .

For a fixed z ∈ Ĝy, we set θ = arccos 〈x, z〉, and θ′ = arccos 〈σvx, z〉. From
the proof of Lemma 4.3.2, we know that |〈z, v〉| ≤ 2θ, ‖x− z‖ ≤ θ, and θ ∼ θ′.

Let θ′′ = θ(x, z, s) = arccos 〈x, α(z, s, v)〉. Then

cos θ′′ = s〈x, z〉+ (1− s)〈x, σvz〉 = s cos θ + (1− s) cos θ′.

This means that cos θ′′ is between cos θ and cos θ′. It follows that θ ∼ θ′′, and

‖x−α(z, s, v)‖ ≤ θ′′ ≤ Cθ. Thus, using (4.3.10), we obtain that for any ` > 0,

|SA′′
n(x, z)| ≤ C2n(2λκ+4)(1 + 2nθ)−`−2θ2 ≤ C2n(2λκ+2)(1 + 2nθ)−`.
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The stated estimate in this case then follows by (4.3.18) and (3.2.2).

Case 2. |〈x, v〉| ≥ ρ̃(x,y)
12π2 and |〈x, v〉| ≥ 2−n.

For simplicity, we set

Bn(x, y) = Vκ

[
An(〈x, ·〉)− An(〈σvx, ·〉)

]
(y).

By product rule, it follows that

|D(x)
1,2Kn,v(x, y)| ≤ |Kn,v(x, y)|

|x2v1 − x1v2|
|〈x, v〉| +

|D(x)
1,2Bn(x, y)|
|〈x, v〉| . (4.3.19)

By Lemma 4.3.2, the first term on the right hand side of (4.3.19) is bounded

above by a constant multiple of

2(d−1)n(1 + 2nρ̃(x, y))−`−1

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα

1

ρ̃(x, y) + 2−n
,

whereas the second term on the right hand side of (4.3.19) is bounded above

by

∣∣∣D(x)
1,2Vκ

[
An(〈x, ·〉)

]
(y)
∣∣∣+
∣∣∣D(x)

1,2Vκ

[
An(〈x, ·〉)

]
(σvy)

∣∣∣
|〈x, v〉| ,

which, using Lemma 4.3.3, is in turn estimated above by

C
2(d−1)j(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα

1

ρ̃(x, y) + 2−n
.

Putting the above together, we deduce the desired estimate in this second case.

Case 3. ρ̃(x,y)
12π2 ≤ |〈x, v〉| ≤ 2−n.

Given a fixed z ∈ Ĝy, let θ := arccos 〈x, z〉, θ′ =: arccos 〈σvx, z〉, and set

θ∗ = min{θ, θ′}. Let θ′′ = arccos 〈x, α(z, s, v)〉 for s ∈ [0, 1]. Then cos θ′′ =

s cos θ + (1− s) cos θ′, and hence θ′′ ≥ θ∗. Since

∣∣x1α2(z, s, v)− x2α1(z, s, v)
∣∣ ≤ 2‖x− α(z, s, v)‖ ≤ 2θ′′,
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it follows that

|A′′
n(〈x, α(z, s, v)〉)|

∣∣x1α2(z, s, v)− x2α1(z, s, v)
∣∣

≤ C2n(2λκ+4)(1 + 2nθ′′)−`−2θ′′ ≤ C2n(2λκ+3)(1 + 2nθ′′)−`−1

≤ C2n(2λκ+3)(1 + 2nθ∗)−`−1.

Also, note that in this case

|〈z, v〉| ≤ 2−n + θ∗.

Therefore, we conclude in this case that for any z ∈ Ĝy, and any ` > 0,

|SA′′
n(x, z)| ≤ C(2−n + θ∗)2n(2λκ+3)(1 + 2nθ∗)−`−1

≤ C2n(2λκ+2)(1 + 2nθ∗)−`

≤ C2n
[
Nn,`(〈x, z〉) + CNn,`(〈σvx, z〉)

]
.

The stated estimate in this case then follows by (4.3.18) and Theorem 3.2.1.

Now substituting the estimates in Lemma 4.3.6 into the decomposition

(4.3.7) , we deduce the following estimate:

Lemma 4.3.6. If x, y ∈ Sd−1 and ρ̃(x, y) 6= 0, then

|∇(x)
0 K(x, y)| ≤ C

ρ̃(x, y)d
∏

α∈R+
(|〈x, α〉|+ ρ̃(x, y))2κα

.

We are now in a position to prove the estimate (4.3.6).

Proof of (4.3.6). Assume that y ∈ Sd−1, y′ ∈ B(y, t) and x ∈ Sd−1\B̃(y, 2t).

By the mean value theorem, there exists y′′ ∈ B(y, t) such that

|K(y, x)−K(y′, x)| ≤ |∇(y′′)
0 K(y′′, x)|ρ(y, y′),

which, using Lemma 4.3.6, is estimated above by a constant multiple of

ρ(y, y′)

ρ̃(x, y′′)d
∏

α∈R+
(|〈y′′, α〉|+ ρ̃(x, y′′))2κα

∼ ρ(y, y′)

ρ̃(x, y′′)d
∏

α∈R+
(|〈x, α〉|+ ρ̃(x, y′′))2κα

.
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However, since x /∈ B̃(y, 2t), we have

ρ(x, gy′′) ∼ ρ(x, gy) ≥ 2t, ∀g ∈ G.

Thus,

ρ̃(x, y′′) ∼ ρ̃(x, y),

and

|K(y, x)−K(y′, x)| ≤ Ct

ρ̃(x, y)d
∏

α∈R+
(|〈x, α〉|+ ρ̃(x, y))2κα

. (4.3.20)

It follows that the integral on the left hand side of (4.3.6) can be estimated

above by a constant multiple of

t
∑

g∈G

∫

ρ(x,gy)≥2t

h2κ(x) dσ(x)

ρ(x, gy)d
∏

α∈R+
(|〈x, α〉|+ ρ(x, gy))2κα

≤ C(#G)t

∫

ρ(x,y)≥2t

1

ρ(x, y)d
dσ(x) ≤ A <∞.

4.3.2 Proof of Proposition 4.3.1: the estimate (4.3.5)

This subsection is devoted to the proof of (4.3.5). We will keep the nota-

tions of the last subsection.

Lemma 4.3.7. If x, y ∈ Sd−1, then

|∇(y)
0 Kn,v(x, y)| ≤ C

2(d−1)n(1 + 2nρ̃(x, y))−`

|〈x, v〉|∏α∈R+
(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα

. (4.3.21)

If , in addition, |〈x, v〉| ≥ c2−n, then for any ` > 0,

|∇(y)
0 Kn,v(x, y)| ≤ C

2nd(1 + 2nρ̃(x, y))−`

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα
, (4.3.22)

Proof. Without loss of generality, we may assume ρ̃(x, y) = ρ(x, y), since oth-

erwise we may replace x by g0x for some g0 ∈ G.

First, assuming |〈x, v〉| ≥ c2−n, we prove the estimate (4.3.22). It is enough

to show this estimate with the tangential gradient ∇0 being replaced by the

angular derivative D1,2. Using Lemma 4.3.6 and the fact that Kn,v(x, y) =
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Kn,v(y, x), we have

∣∣∣D(y)
1,2

(Kn,v(x, y)〈x, v〉
〈y, v〉

)∣∣∣ ≤ C
2nd(1 + 2nρ̃(x, y))−`−1

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα
. (4.3.23)

It then follows by the product rule and Lemma 4.3.2 that

|D(y)
1,2Kn,v(x, y)|

≤
∣∣∣D(y)

1,2

(Kn,v(x, y)〈x, v〉
〈y, v〉

)∣∣∣ |〈y, v〉||〈x, v〉| +
∣∣∣Kn,v(x, y)〈x, v〉

〈y, v〉
∣∣∣ |y2v1 − y1v2|

|〈x, v〉|

≤ C2n(d−1)(1 + 2nρ̃(x, y))−`−1

∏
α∈R+

(|〈x, α〉|+ ρ̃(x, y) + 2−n)2κα

[
2n

|〈y, v〉|
|〈x, v〉| +

|y2v1 − y1v2|
|〈x, v〉|

]
.

On the other hand, however, recalling that ρ̃(x, y) = ρ(x, y) and |〈x, v〉| ≥
c2−n, we have

|〈y, v〉|
|〈x, v〉 ≤ |〈x, v〉|+ ρ̃(x, y)

|〈x, v〉| ≤ C(1 + 2nρ̃(x, y)),

and
|y1v2 − y2v1|

|〈x, v〉| ≤ C
1

|〈x, v〉| ≤ C2n.

Therefore, putting the above estimates together, we obtain the desired

estimate (4.3.22) under the assumption |〈x, v〉| ≥ c2−n.

Finally, we prove (4.3.21). Indeed, by (4.3.8), we have

|D(y)
1,2Kn,v(x, y)| ≤

∣∣∣D(y)
1,2Vκ

[
An(〈y, ·〉)

]
(x)
∣∣∣+
∣∣∣D(y)

1,2Vκ
[
An(〈y, ·〉)

]
(σvx)

∣∣∣
2|〈x, v〉| ,

which, using Lemma 4.3.3, yields the desired estimate (4.3.21).

As a direct consequence of Lemma 4.3.7 , we have

Lemma 4.3.8. For x, y ∈ Sd−1,

|∇(y)
0 K(x, y)| ≤ C

ρ̃(x, y)d−1|〈x, v〉|∏α∈R+
(|〈x, α〉|+ ρ̃(x, y))2κα

. (4.3.24)

If, in addition, |〈x, v〉| ≥ cρ̃(x, y) for some c > 0, then

|∇(y)
0 K(x, y)| ≤ C

ρ̃(x, y)d
∏

α∈R+
(|〈x, α〉|+ ρ̃(x, y))2κα

. (4.3.25)
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We are now in a position to prove (4.3.5) .

Proof of (4.3.5) . Assume for the moment that x, y ∈ Sd−1, y′ ∈ B(y, t)

and x ∈ Sd−1 \ B̃(y, 2t). By the mean value theorem, there exists y′′ ∈ B(y, t)

such that

|K(x, y)−K(x, y′)| ≤ ‖∇(y)
0 K(x, y′′)‖ρ(y, y′).

Since x /∈ B̃(y, 2t), ρ(x, y) ∼ ρ̃(x, y′′). Thus, if |〈x, v〉| ≥ cρ̃(x, y), then

|〈x, v〉| ≥ cρ̃(x, y′′), and hence, (4.3.25) is applicable to obtain

|K(x, y)−K(x, y′)| ≤ Cρ(y, y′)

ρ̃(x, y)d
∏

α∈R+
(|〈x, α〉|+ ρ̃(x, y))2κα

. (4.3.26)

Similarly, if |〈x, v〉| ≤ cρ̃(x, y), then we may use (4.3.24) to get

|K(x, y)−K(x, y′)| ≤ Cρ(y, y′)

ρ̃(x, y)d−1|〈x, v〉|∏α∈R+
(|〈x, α〉|+ ρ̃(x, y))2κα

.

(4.3.27)

Now write
∫

c
B̃(y,2t)

|K(x, y)−K(x, y′)|h2κ(x)dσ(x)

=

∫
{

x∈c
B̃(y,2t): |〈x,v〉|≥cρ̃(x,y)

} · · ·+
∫
{

x∈c
B̃(y,2t): |〈x,v〉|<cρ̃(x,y)

} · · ·

= I + II.

For the first integral I, as in the proof of (4.3.6), it is straightforward to

deduce from (4.3.26) that I ≤ A. For the second integral II, we use (4.3.27)

to obtain

II ≤ Ct
∑

g∈G

∫

ρ(x,gy)≥max{2t,c|〈x,v〉|}

ρ(x, gy)−d+1h2κ(x) dσ(x)

|〈x, v〉|∏α∈R+
(|〈x, α〉|+ ρ(x, gy))2κα

≤ Ct sup
z∈Sd−1

∫

ρ(x,z)≥max{2t,c|〈x,v〉|}

|〈x, v〉|2κv−1

ρ(x, z)d−1+2κv
dσ(x). (4.3.28)
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Here, we recall that κv > 0. Fix for the moment z ∈ Sd−1, and set

Jj := {x ∈ Sd−1 : 2jt ≤ ρ(x, z) ≤ 2j+1t, |〈x, v〉| ≤ C2jt}, j = 1, 2, · · · .

Note that if Jj 6= ∅ and x ∈ Jj, then

|〈z, v〉| ≤ |〈x, v〉|+ ρ(x, z) ≤ C2jt,

and hence, by (2.4.7),

∫

Jj

|〈x, v〉|2κv−1 dσ(x) =

∫

B(z,2j+1t)∩Jj
|〈x, v〉|2κv−1 dσ(x) ≤ C(2jt)2κv+d−2.

It follows that for each z ∈ Sd−1,

∫

ρ(x,z)≥max{2t,c|〈x,v〉|}

|〈x, v〉|2κv−1

ρ(x, z)d−1+2κv
dσ(x) ≤ C

∞∑

j=1

(2jt)−(d−1+2κv)

∫

Jj

|〈x, v〉|2κv−1 dσ(x)

≤ C

∞∑

j=1

(2jt)−(d−1+2κv)(2jt)2κv+d−2 ≤ Ct−1,

which together with (4.3.28) implies that II ≤ A. This competes the proof of

(4.3.5).

4.4 Uncertainty principle on the weighted sphere

1 In this section, motivated by the new decomposition of the Dunkl-Laplace-

Beltrami operator in section 4.2 , we study the uncertainty principle for spher-

ical h-harmonic expansions, which is in full analogy with the classical Heisen-

berg inequality.

The uncertainty principle is a fundamental result in quantum mechanics,

and it can be formulated in the Euclidean space Rd, in the form of the classical

Heisenberg inequality, as

inf
a∈Rd

∫

Rd

‖x− a‖2|f(x)|2dx
∫

Rd

|∇f(x)|2dx ≥ d2

4

(∫

Rd

|f(x)|2dx
)2

, (4.4.1)

where ∇ is the gradient operator. There are many papers devoted to the

1A version of this section has been accepted for publication [Fe].
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study of this inequality and its various generalizations, for instance [FoSi],

[Ro1], [DaXu6].

In particular, on the unit sphere, F. Dai and Y. Xu [DaXu6] established the

analogue result, which states that: if f : Sd−1 → R satisfying
∫
Sd−1 f(x) dσ(x) =

0 and
∫
Sd−1 |f(x)|2dσ(x) = 1,

(
min

y∈Sd−1

∫

Sd−1

(1− 〈x, y〉)|f(x)|2 dσ(x)
)(∫

Sd−1

|∇0f |2dσ(x)
)
≥ Cd > 0, (4.4.2)

where ∇0 is the tangential gradient operator as before.

In another paper by [Xu3], with a weight function h2κ(x) invariant under a

group G, Y. Xu studied the uncertainty principle on the unit sphere Sd−1. By

introducing a weighted analogue ∇κ,0 of the tangential gradient ∇0, he [Xu3,

Theorem 4.1] proved that if f : Sd−1 → R is invariant under the group G and

satisfies that
∫
Sd−1 f(x)h

2
κ(x) dσ(x) = 0 and

∫
Sd−1 |f(x)|2h2κ(x)dσ(x) = 1, then

(
min
1≤i≤d

∫

Sd−1

(1−〈x, ei〉)|f(x)|2h2κ(x) dσ(x)
)(∫

Sd−1

|∇κ,0f |2h2κ(x)dσ(x)
)
≥ Cκ,d > 0.

(4.4.3)

where ei, i = 1, · · · , d, is the standard vector,namely only the ith coordinate

is nonzero 1, and Cκ,d is a constant only depends on parameter κ, d, and 〈·, ·〉
is the inner product in Rd.

Rather than the finite subset {e1, · · · , ed}, we shall show that the inequality

(4.4.3) with minimum being taken over all y ∈ Sd−1 remains true without the

extra assumption that f is G-invariant. Precisely, our main result can be

stated as follows:

Theorem 4.4.1. Let f ∈ C1(Sd−1) be such that
∫
Sd−1 f(x)h

2
κ(x) dσ(x) = 0 and∫

Sd−1 |f(x)|2h2κ(x) dσ(x) = 1. Then

[
min

y∈Sd−1

∫

Sd−1

(1− 〈x, y〉)|f(x)|2h2κ(x) dσ(x)
]
×

×
[∫

Sd−1

|
√

−∆κ,0f(x)|2h2κ(x) dσ(x)
]
≥ Cκ,d > 0. (4.4.4)

As a direct corollary , we obtain the following improvement of Theorem

4.1 and Theorem 4.2 of [Xu3]:

Corollary 4.4.2. If f ∈ C1(Sd−1) satisfies that
∫
Sd−1 f(x)h

2
κ(x) dσ(x) = 0 and
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∫
Sd−1 |f(x)|2h2κ(x) dσ(x) = 1, then

(
min

y∈Sd−1

∫

Sd−1

(1−〈x, y〉)|f(x)|2h2κ(x) dσ(x)
)(∫

Sd−1

|∇κ,0f |2h2κdσ(x)
)
≥ Cκ,d > 0.

(4.4.5)

For the moment, we take Theorem 4.4.1 for granted and proceed with the

proof of Corollary 4.4.2.

Proof. By (4.4.4), it suffices to show

‖
√

−∆κ,0f‖κ,2 ≤ ‖∇κ,0f‖κ,2. (4.4.6)

Indeed, noticing (3.15), (3.13) of [Xu3], we have that

‖
√
−∆κ,0f‖2κ,2 = ‖∇h,0f‖2κ,2−

2λκ
ωκ
d

∫

Sd−1

(ξ ·∇h,0f(ξ))f(ξ)h
2
κ(ξ) dσ(ξ), (4.4.7)

where ωκ
d =

∫
Sd−1 h

2
κ(x) dσ(x). Here it should be pointed that the last two

terms in (3.15) of [Xu3] in fact can be cancelled out by realising that

(I − σv)
2 = 2(I − σv), ∀v ∈ R+.

Furthermore, by (3.3) of [Xu3], we obtain

∫

Sd−1

(ξ · ∇h,0f(ξ))f(ξ)h
2
κ(ξ) dσ(ξ) =

∑

v∈R+

κv

∫

Sd−1

(f(ξ)− f(σvξ))f(ξ)h
2
κ(ξ) dσ(ξ).

However, by the Cauchy-Schwartz inequality,

∫

Sd−1

f(x)f(σvx)h
2
κ(x) dσ(x) ≤ ‖f‖2κ,2, ∀v ∈ R+.

Thus, ∫

Sd−1

(
ξ · ∇h,0)f(ξ)

)
f(ξ)h2κ(ξ) dσ(ξ) ≥ 0.

The desired inequality (4.4.6) then follows by (4.4.7).

Our proof crucially relies on the following lemma.
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Lemma 4.4.3. If f ∈ C1(Sd−1) and y ∈ Sd−1, then

(d− 1

2
+ |κ|

)∫

Sd−1

〈x, y〉|f(x)|2h2κ(x) dσ(x) =
∑

α∈R+

κα〈y, α〉
∫

Sd−1

|f(x)|2h2κ(x)
〈x, α〉 dσ(x)

−
∫

Sd−1

[ d∑

i=1

d∑

j=1

xjyiDi,jf(x)
]
f(x)h2κ(x) dσ(x), (4.4.8)

where xj = 〈x, ej〉 and yj = 〈y, ej〉.

Proof. By noticing that for f, g ∈ C1(Sd−1) and i 6= j,

∫

Sd−1

f(x)Di,jg(x)dσ(x) = −
∫

Sd−1

Di,jf(x)g(x)dσ(x),

we obtain that for 2 ≤ j ≤ d,

∫

Sd−1

[
xjD1,jf(x)

]
f(x)h2κ(x) dσ(x) = −

∫

Sd−1

f(x)
[
D1,jf(x)

]
xjh

2
κ(x) dσ(x)

−
∫

Sd−1

|f(x)|2
[
D1,j

(
xjh

2
κ(x)

)]
dσ(x).

A straightforward calculation shows that

D1,j

(
xjh

2
κ(x)

)
=
(
x1 + x1

∑

α∈R+

2καxjαj

〈x, α〉 − x2j
∑

α∈R+

2καα1

〈x, α〉
)
h2κ(x),

where αj = 〈α, ej〉. Thus,

2

∫

Sd−1

[
xjD1,jf(x)

]
f(x)h2κ(x) dσ(x) =

∫

Sd−1

|f(x)|2x2j
(∑

α∈R+

2καα1

〈x, α〉
)
h2κ(x) dσ(x)

−
∫

Sd−1

|f(x)|2
[
x1 + x1

∑

α∈R+

2καxjαj

〈x, α〉
]
h2κ(x) dσ(x)

Summing this last equation over j = 2, · · · , d yields

∫

Sd−1

[ d∑

j=2

xjD1,jf(x)
]
f(x)h2κ(x) dσ(x) =

∫

Sd−1

|f(x)|2
∑

α∈R+

καα1

〈x, α〉h
2
κ(x) dσ(x)

−
(
|κ|+ d− 1

2

)∫

Sd−1

x1|f(x)|2h2κ(x) dσ(x).
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In general, for 1 ≤ i ≤ d, recalling Di,i = 0, and using symmetry, we obtain

∫

Sd−1

[ d∑

j=1

xjDi,jf(x)
]
f(x)h2κ(x) dσ(x) =

∫

Sd−1

|f(x)|2
∑

α∈R+

κααi

〈x, α〉h
2
κ(x) dσ(x)

−
(
|κ|+ d− 1

2

)∫

Sd−1

xi|f(x)|2h2κ(x) dσ(x)dσ(x). (4.4.9)

Multiplying both sides of (4.4.9) by yi and summing the resulting equation

over i = 1, · · · , d yield the desired identity (4.4.8).

We are now in a position to prove Theorem 4.4.1 .

Proof of Theorem 4.4.1. Let ε ∈ (0, 1) be a small absolute constant to be

specified later. If

∫

Sd−1

〈x, y〉|f(x)|2h2κ(x) dσ(x) ≤ 1− ε,

then ∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dσ(x) ≥ ε,

and (4.4.4) holds trivially as ‖
√
−∆κ,0f‖κ,2 ≥ ‖f‖κ,2 = 1. Thus, without loss

of generality, we may assume that

∫

Sd−1

〈x, y〉|f(x)|2h2κ(x) dσ(x) > 1− ε. (4.4.10)

We will use the identity (4.4.8). Indeed, it will be shown that

J1 :=
∣∣∣
∫

Sd−1

[ d∑

i=1

d∑

j=1

yixjDi,jf(x)
]
f(x)h2κ(x) dσ(x)

∣∣∣

≤C‖∇0f‖κ,2
(∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dx
) 1

2
(4.4.11)
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and that for each α ∈ R+ with κα > 0,

J2(α) : =
∣∣∣〈y, α〉

∫

Sd−1

|f(x)|2h2κ(x)
〈x, α〉 dσ(x)

∣∣∣

≤ 1

1− ε
+
C

ε
‖Eαf‖κ,2

(∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dσ(x)
) 1

2
.

(4.4.12)

Once (4.4.11) and (4.4.12) are proven, then using (4.4.8), (4.4.10) and (1.0.13),

we obtain

(1− ε)
(
|κ|+ d− 1

2

)
≤ C|κ|

ε
‖
√

−∆κ,0f‖κ,2
(∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dσ(x)
) 1

2

+
|κ|

1− ε
.

Thus, choosing ε ∈ (0, 1) small enough so that

(1− ε)
(
|κ|+ d− 1

2

)
− 1

1− ε
|κ| ≥ Cd,κ > 0,

we deduce the desired inequality (4.4.4).

It remains to show (4.4.11) and (4.4.12). For the proof of (4.4.11), we first

note that for x ∈ Sd−1,

d∑

i=1

d∑

j=1

xixjDi,j =
d∑

i=1

d∑

j=1

(x2ixj∂j − xix
2
j∂i) = 0.

Thus,

J1 =
∣∣∣
∫

Sd−1

[ d∑

i=1

d∑

j=1

(yi − xi)xjDi,jf(x)
]
f(x)h2κ(x) dσ(x)

∣∣∣

≤
(∫

Sd−1

|∑d
i,j=1(yi − xi)xjDi,jf(x)|2

1− 〈x, y〉 h2κ(x) dσ(x)
) 1

2×

×
(∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dσ(x)
) 1

2
.
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But, by the Cauchy-Schwartz inequality,

∣∣∣
d∑

i=1

d∑

j=1

(yi − xi)xjDi,jf(x)
∣∣∣
2

≤
[ d∑

i,j=1

|xj|2(yi − xi)
2
][ d∑

i,j=1

|Di,jf(x)|2
]

= 4(1− 〈x, y〉)
[ ∑

1≤i<j≤d

|Di,jf(x)|2
]

It follows that

J1 ≤2
( ∑

1≤i<j≤d

∫

Sd−1

|Di,jf(x)|2h2κ(x) dσ(x)
) 1

2
(∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dσ(x)
) 1

2
,

which proves (4.4.11).

Finally, we prove (4.4.12). Splitting the integral
∫
Sd−1 · · · into two parts,

we get

J2(α) ≤ J2,1(α) + J2,2(α), (4.4.13)

where

J2,1(α) :=
∣∣∣〈y, α〉

∫

|〈x,α〉|>(1−ε)|〈y,α〉|

|f(x)|2h2κ(x)
〈x, α〉 dσ(x)

∣∣∣,

J2,2(α) :=
∣∣∣〈y, α〉

∫

|〈x,α〉|≤(1−ε)|〈y,α〉|

|f(x)|2h2κ(x)
〈x, α〉 dσ(x)

∣∣∣.

A straightforward calculation shows that

J2,1(α) ≤
1

1− ε

∫

Sd−1

|f(x)|2h2κ(x) dσ(x) =
1

1− ε
. (4.4.14)

To estimate the term J2,2(α), we first note that for any t ∈ (0, 1) and

α ∈ R+,

∫

|〈x,α〉|≤t

|f(x)|2
〈x, α〉 h

2
κ(x) dσ(x) =

∫

|〈x,α〉|≤t

(
Eαf(x)

)
f(x)h2κ(x) dσ(x).
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Thus,

J2,2(α) =
∣∣∣|〈y, α〉

∫

|〈x,α〉|≤(1−ε)|〈y,α〉|

(
Eαf(x)

)
f(x)h2κ(x) dσ(x)

∣∣∣

≤ 1

ε

∣∣∣
∫

Sd−1

‖x− y‖
(
Eαf(x)

)
f(x)h2κ(x) dσ(x)

∣∣∣

≤
√
2

ε
‖Eαf‖κ,2

(∫

Sd−1

|f(x)|2(1− 〈x, y〉)h2κ(x) dσ(x)
) 1

2
, (4.4.15)

where the second step uses the fact that if |〈x, α〉| ≤ (1− ε)|〈y, α〉|, then

ε|〈y, α〉| ≤ |〈y, α〉| − |〈x, α〉| ≤ ‖x− y‖.

Now a combination of (4.4.13), (4.4.14) and (4.4.15) yields the estimate (4.4.12).

This completes the proof of Theorem 4.4.1. �
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Chapter 5

Corresponding results on unit

balls and simplices

5.1 Results on unit balls

In this section, we shall show how to deduce similar results on the unit

ball Bd from those already proven results on the unit sphere. Our argument is

based on close connections between WOPEs on Bd and spherical h-harmonic

expansions on the sphere Sd ⊂ Rd+1, as observed by Y. Xu [Xu5, Xu7].

Recall that G is a finite reflection group on Rd with a root system R ⊂ Rd;

κ : R → [0,∞) is a nonnegative multiplicity function on R; the weight func-

tions hκ on Sd−1 and WB
κ,µ on Bd are given in (1.0.2) and (1.0.19) respectively.

For 1 ≤ p ≤ ∞, we denote by Lp(WB
κ,µ;B

d) the Lp-space defined with respect

to the measure WB
κ,µ(x)dx on Bd, and ‖ · ‖Lp(WB

κ,µ)
the norm of Lp(WB

κ,µ;B
d).

Let G̃ be the finite reflection group on Rd+1 associated with the root system

R̃ := {ṽ = (v, 0) ∈ Rd+1 : v ∈ R} ∪ {±ed+1},

and define κ̃ : R̃ → [0,∞) by κ̃(ṽ) = κ(v) for v ∈ R and κ̃(±ed+1) = µ.

Clearly, κ̃ is a G̃-invariant nonnegative multiplicity function on R̃. Let hκ̃ be

the G̃-invariant weight function on Rd+1 associated with the root system R̃
and the multiplicity function κ̃ as defined in (1.0.2); that is,

hκ̃(x, xd+1) = |xd+1|µ
∏

v∈R+

|〈x, v〉|κv , x ∈ Rd, xd+1 ∈ R.
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The weight hκ̃ on Sd is related to the weight function WB
κ,µ on Bd by

h2κ̃(x,
√

1− ‖x‖2) = WB
κ,µ(x)

√
1− ‖x‖2, x ∈ Bd. (5.1.1)

Furthermore, a change of variables y = φ(x) with

φ : Bd → Sd, x ∈ Bd 7→ (x,
√

1− ‖x‖2) ∈ Sd (5.1.2)

shows that
∫

Sd
f(y)h2κ̃(y)dσ(y) (5.1.3)

=

∫

Bd

[
f(x,

√
1− ‖x‖2 ) + f(x,−

√
1− ‖x‖2 )

]
WB

κ,µ(x) dx.

Given a function f : Bd → R, define f̃ : Sd → R by

f̃(x, xd+1) = f(x), x ∈ Bd, (x, xd+1) ∈ Sd.

Then, f̃ ◦ φ = f , and by (5.1.3), the mapping f → f̃ is an isometry from

Lp(WB
κ,µ;B

d) to Lp(Sd;h2κ̃/2). More importantly, the orthogonal structure on

the weighted ball Bd is preserved under the mapping φ : Bd → Sd. To be

precise, let νdn(W
B
κ,µ) denote the space of weighted orthogonal polynomials of

degree n with respect to the measure WB
κ,µ(x) dx on Bd, and let projn(W

B
κ,µ; f)

denote the orthogonal projection of f onto the space νdn(W
B
κ,µ). Then a function

f on Bd belongs to the space νdn(W
B
κ,µ) if and only if f̃ ∈ Hd+1

n (h2κ̃), and

moreover (see [DuXu, Xu5, Xu7]),

projn(W
B
κ,µ; f, x) = projn(W

B
κ,µ; f̃ ◦ φ, x) = projn(h

2
κ̃; f̃ , φ(x)), x ∈ Bd.

(5.1.4)

The second order differential-difference operator ∆B
κ,µ on Bd is defined by

∆B
κ,µ = ∆− (d+ 2|κ|+ 2µ)(x · ∇)− (x · ∇)2

+ 2
∑

α∈R+

κα
〈x, α〉(α · ∇)− 2

∑

α∈R+

κα
〈α, x〉Eα,

where ∆ =
∑d

j=1 ∂
2
j , and ∇ = (∂1, · · · , ∂d). The operator −∆B

κ,µ is self-

adjoint, semi-positive definite on L2(WB
κ,µ;B

d), and more importantly, the s-

pace νdn(W
B
κ,µ) coincides with the eigenfunction space of ∆B

κ,µ corresponding to
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the eigenvalue µn := −n(n+ d− 1 + 2|κ|+ 2µ) (see [DuXu]); that is,

νdn(W
B
κ,µ) =

{
f ∈ C2(Bd) : ∆B

κ,µf = µnf
}
.

As a matter of fact, we may define the fractional power of −∆B
κ,µ in a distri-

butional sense by

projn
(
WB

κ,µ; (−∆B
κ,µ)

αf
)
= (−µn)

α projn(W
B
κ,µ; f), n = 0, 1, · · · .

Finally, the operator ∆B
κ,µ is related to the Dunkl-Laplace-Beltrami operator

∆κ̃,0 on Sd by

(−∆B
κ,µ)

αf(x) = (−∆κ̃,0)
αf̃(φ(x)), x ∈ Bd, α ∈ R. (5.1.5)

The HLS inequality for the fractional integration (−∆B
κ,µ)

−α/2 on the weight-

ed ball can be stated as follows:

Theorem 5.1.1. Let 1 < p < q <∞ and α > 0. Then the inequality

‖(−∆B
κ,µ)

−α/2f‖Lq(WB
κ,µ)

≤ C‖f‖Lp(WB
κ,µ)

, f ∈ Lp(WB
κ,µ;B

d) (5.1.6)

holds if and only if α ≥ sκ,µ(
1
p
− 1

q
), where

sκ,µ = sκ̃ := max{2|κ|+ d, sκ + 2µ+ 1} (5.1.7)

with sκ being given in (1.0.7).

Proof. The sufficiency part of Theorem 5.1.1 follows directly from Theorem

1.0.1, (5.1.3) and (5.1.5), whereas the proof of the necessity part runs along

the same line as that of Theorem 1.0.1.

Our next result on the ball gives a very useful new decomposition of the

operator ∆B
κ,µ. Recall that the tangential gradient operator on Bd is defined

by

∇0f(rξ) = ∇(ξ)
0 f(rξ), f ∈ C1(Bd), 0 ≤ r ≤ 1, ξ ∈ Sd−1,

where ∇(ξ)
0 means that the tangential gradient ∇0 is acting on the variable

ξ ∈ Sd−1. Also, note that Evf(x), given in (1.0.11), is well-defined for each

function f on Bd and each v ∈ Rd\{0} as Bd is rotation-invariant. We shall use

the notation 〈·, ·〉L2(WB
κ,µ)

to denote the inner product of the space L2(WB
κ,µ;B

d).
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Theorem 5.1.2. For f, g ∈ C2(Bd),

〈(−∆B
κ,µ)f, g〉L2(WB

κ,µ)
=〈∇0f,∇0g〉L2(WB

κ,µ)
+
∑

α∈R+

κα〈Eαf, Eαg〉L2(WB
κ,µ)

(5.1.8)

+

∫

Bd

(1− ‖x‖2)
(
∇f · ∇g

)
WB

κ,µ(x)dx.

Furthermore,

∆B
κ,µ =

∑

1≤i<j≤d

WB
κ,µ(x)

−1Di,jW
B
κ,µ(x)Di,j+ (5.1.9)

+
d∑

i=1

WB
κ,µ(x)

−1
√

1− ‖x‖2∂iWB
κ,µ(x)

√
1− ‖x‖2∂i −

∑

α∈R+

2καEα

〈x, α〉 .

The significance of the decomposition (5.1.9) lies in the fact that each

term in the sums on the right hand side of (5.1.9) is self-adjoint with respect

to the inner product of L2(WB
κ,µ;B

d). In the case when κ = 0 and WB
κ,µ(x) =

(1− ‖x‖2)µ− 1
2 , (5.1.9) was previously obtained in [DaXu4, (7.1)].

Proof. For simplicity, we denote by 〈·, ·〉κ̃ the inner product of L2(h2κ̃; S
d).

Recall that given a function f on Bd, f̃ is a function on Sd given by

f̃(x, xd+1) = f(x), x ∈ Bd, (x, xd+1) ∈ Sd.

By (5.1.3) and (5.1.5), it follows that

〈(−∆κ̃,0)f̃ , g̃〉κ̃ = 2〈(−∆B
κ,µ)f, g〉L2(WB

κ,µ)
.

On the other hand, using (4.2.2), (2.2.11) and (5.1.3), we obtain

〈(−∆κ̃,0)f̃ , g̃〉κ̃ =
∑

1≤i<j≤d

〈Di,jf,Di,jg〉κ̃ +
∑

α∈R+

κα〈Eαf, Eαg〉κ̃ +
d∑

i=1

〈Di,d+1f̃ , Di,d+1g̃〉κ̃

= 2〈∇0f,∇0g〉L2(WB
κ,µ)

+ 2
∑

α∈R+

κα〈Eαf, Eαg〉L2(WB
κ,µ)

+ Σ1.

where Σ1 :=
∑d

i=1 〈Di,d+1f̃ , Di,d+1g̃〉κ̃. Thus, to complete the proof of (5.1.8),
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we just need to observe that

Σ1 =
d∑

i=1

∫

Sd
x2d+1∂if̃(x)∂ig̃(x)h

2
κ̃(x) dσ(x) = 2

∫

Bd

(1− ‖x‖)2(∇f · ∇g)WB
κ,µ(x) dx.

Next, we turn to the proof of the decomposition (5.1.9). Setting X =

(x, xd+1) = (x,
√
1− ‖x‖2) for x ∈ Bd, and using (4.2.1) and (5.1.5), we obtain

∆B
κ,µf(x) = ∆κ̃,0f̃(X) =: S1 + S2 −

∑

α∈R+

2καEαf(x)

〈x, α〉 ,

where

S1 : =
∑

1≤i<j≤d

h−2
κ (x)Di,jh

2
κ(x)Di,jf(x)

S2 : =
d∑

i=1

h−2
κ̃ (X)Di,d+1h

2
κ̃(X)Di,d+1f̃(X).

For the first sum S1, recalling that the Di,j = xi∂j − xj∂i are tangential

derivatives,

S1 =
∑

1≤i<j≤d

WB
κ,µ(x)

−1Di,jW
B
κ,µ(x)Di,jf(x).

To handle the sum S2, we note that for each 1 ≤ i ≤ d,

h−2
κ̃ (X)Di,d+1h

2
κ̃(X)Di,d+1f̃(X) = x2d+1h

−2
κ (x)∂i

[
h2κ(x)∂if(x)

]
−

−xi∂if(x)x−2µ
d+1∂d+1

[
x2µ+1
d+1

]
= x2d+1h

−2
κ (x)∂i

[
h2κ(x)∂if(x)

]
− (2µ+ 1)xi∂if(x).

Thus, to complete the proof of (5.1.9), it remains to verify that for all 1 ≤ i ≤
d,

(WB
κ,µ(x))

−1∂iW
B
κ,µ(x)(1− ‖x‖2)∂i = (1− ‖x‖2)h−2

κ (x)∂ih
2
κ(x)∂i − (2µ+ 1)xi∂i,

which follows directly by a straightforward calculation.
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Remark 5.1.1. By (5.1.8), it follows that

−∆B
κ,µ =

∑

1≤i<j≤d

D∗
i,jDi,j +

d∑

i=1

[√
1− ‖x‖2∂i

]∗ [√
1− ‖x‖2∂i

]
(5.1.10)

+
∑

α∈R+

καE
∗
αEα,

where T ∗ denotes the adjoint operator of T in the space L2(WB
κ,µ;B

d). However,

a straightforward calculation shows that

D∗
i,jDi,j = −h−2

κ (x)Di,jh
2
κ(x)Di,j, E∗

αEα =
2Eα

〈x, α〉
[
√
1− ‖x‖2∂i]∗[

√
1− ‖x‖2∂i] = −WB

κ,µ(x)
−1
√

1− ‖x‖2∂iWB
κ,µ(x)

√
1− ‖x‖2∂i.

This means that (5.1.10) and (5.1.9) are in fact equivalent.

Our third result gives an analogue of Theorem 1.0.5 on the ball Bd.

Theorem 5.1.3. If 1 < p <∞ and
∫
Bd f(x)W

B
κ,µ(x) dx = 0, then

‖
√

−∆B
κ,µf‖Lp(WB

κ,µ)
∼‖∇0f‖Lp(WB

κ,µ)
+ max

v∈R+

κv‖Evf‖Lp(WB
κ,µ)

(5.1.11)

+
d∑

i=1

‖ϕ∂if‖Lp(WB
κ,µ)

,

where ϕ(x) =
√

1− ‖x‖2.

Proof. First, using (5.1.3) and (5.1.5), we have

2‖(−∆B
κ,µ)

1
2f‖p

Lp(WB
κ,µ)

= ‖(−∆κ̃,0)
1
2 f̃‖p

Lp(h2
κ̃
;Sd)
.

Second, it follows by Theorem 1.0.5 that

‖(−∆κ̃,0)
1
2 f̃‖Lp(h2

κ̃
;Sd) ∼

∑

1≤i<j≤d+1

‖Di,j f̃‖Lp(h2
κ̃
;Sd) +

∑

α∈R+

κα‖Eαf‖Lp(h2
κ̃
;Sd),

which, using (5.1.3), equals

21/p
∑

1≤i<j≤d

‖Di,jf‖Lp(WB
κ,µ)

+ 21/p
∑

α∈R+

κα‖Eαf‖Lp(WB
κ,µ)

+
d∑

i=1

‖Di,d+1f̃‖Lp(h2
κ̃
;Sd).
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Finally, we note that for each 1 ≤ i ≤ d, and X = (x, xd+1) ∈ Sd,

|Di,d+1f̃(X)| = |xd+1∂if(x)| = |ϕ(x)∂if(x)|,

which, using (5.1.3), implies that

‖Di,d+1f̃‖pLp(h2
κ̃
;Sd)

= 2‖ϕ∂if‖pLp(WB
κ,µ)

.

Putting the above together, we obtain the desired equation (5.1.11).

The decomposition (5.1.10) and Theorem 5.1.3 allow us to introduce the

following Riesz transforms for WOPEs on Bd:

Definition 5.1.4. Define the Riesz transforms for the WOPEs with respect to

the weight WB
κ,µ on Bd by

RB
i,j = Di,j(−∆B

κ,µ)
−1/2, 1 ≤ i < j ≤ d, RB

v =
√
κvEv(−∆B

κ,µ)
−1/2, v ∈ R+,

RB
i,i =

√
1− ‖x‖2∂i(−∆B

κ,µ)
−1/2, i = 1, · · · , d.

It follows by (5.1.10) that

∑

1≤i≤j≤d

(RB
i,j)

∗RB
i,j +

∑

v∈R+

(RB
v )

∗RB
v = I, (5.1.12)

where I is the identity operator on the space

{
f ∈ L1(WB

κ,µ) :

∫

Bd

f(x)WB
κ,µ(x) dx = 0

}
.

Furthermore, the Lp-boundedness of these Riesz transforms follows directly

from Theorem 5.1.3:

Corollary 5.1.5. If 1 < p <∞ and
∫
Bd f(x)W

B
κ,µ(x) dx = 0, then

‖f‖Lp(WB
κ,µ)

∼
∑

1≤i≤j≤d

‖RB
i,jf‖Lp(WB

κ,µ)
+
∑

v∈R+

‖RB
v f‖Lp(WB

κ,µ)
.

Remark 5.1.2. In the case when d = 1 and κ = 0, WOPEs with respect to the

weight WB
κ,µ on B1 = [−1, 1] become the classical ultraspherical polynomial
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expansions on [−1, 1]:

f(x) '
∞∑

k=0

ak(f)C
µ
k (x), x ∈ [−1, 1].

In this case, RB
v = 0, and since d

dx
Cµ

k (x) = 2µCµ+1
k−1 (x), the Riesz transform

RB
1,1f = Rf can be written explicitly as

Rf(cos θ) = sin θ
∞∑

k=1

ak(f)
2µ

(k(k + 2µ))1/2
Cµ+1

k−1 (cos θ), θ ∈ [0, π],

which is essentially equivalent to the conjugate of f introduced by Mucken-

houpt and Stein [MuSt] (see also[Mu]).

Finally, similar argument also guarantees the uncertainty principle Theo-

rem 5.1.1 on unit sphere can be extended to the unit ball immediately by using

the facts (5.1.3) and (5.1.5).

Theorem 5.1.6. Let f ∈ C1(Bd) be such that
∫
Bd f(x)W

B
κ,µ(x) dx = 0 and∫

Bd |f(x)|2WB
κ,µ(x)dx = 1. Then

[
min
y∈Bd

∫

Bd

(1− 〈x, y〉)|f(x)|2WB
κ,µ(x) d(x)

]
×

×
[∫

Bd

|
√

−∆B
κ,µf(x)|2WB

κ,µ(x) d(x)
]
≥ Cd,κ,µ > 0. (5.1.13)

5.2 Results on simplices

In this chapter, we shall show how to deduce similar results in the previous

chapters on the simplex Td from the already proven results on the ball Bd. Our

argument is based on the connections between WOPEs on Bd and WOPEs on

Td, as observed by Y. Xu [Xu7] (see also [DaXu2]).

The weight functionW T
κ,µ we consider on the simplex Td is given in (1.0.20)

with h2κ(x) being invariant under both G and Zd
2. It is related to the weight

WB
κ,µ on Bd through the mapping

ψ : (x1, . . . , xd) ∈ Bd 7→ (x21, . . . , x
2
d) ∈ Td (5.2.1)
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by

W T
κ,µ(ψ(x)) =

WB
κ,µ(x)

|x1 · · · xd|
, x ∈ Bd.

Furthermore, a change of variables shows that

∫

Bd

g
(
ψ(x)

)
WB

κ,µ(x)dx =

∫

Td

g(x)W T
κ,µ(x) dx. (5.2.2)

For 1 ≤ p ≤ ∞, we denote by Lp(W T
κ,µ;T

d) the Lp-space defined with respect

to the measure W T
κ,µ(x)dx on Td, and by ‖ · ‖Lp(WT

κ,µ)
the norm of Lp(W T

κ,µ;T
d).

Note that (5.2.2) particularly implies that the mapping

Lp(W T
κ,µ;T

d) → Lp(WB
κ,µ;B

d), f 7→ f ◦ ψ

is an isometry.

Let νdn(W
T
κ,µ) denote the space of weighted orthogonal polynomials of degree

n with respect to the weightW T
κ,µ on Td. The orthogonal structure is preserved

under the mapping (5.2.1) in the sense that R ∈ Vd
n(W

T
κ,µ) if and only if

R ◦ ψ ∈ Vd
2n(W

B
κ,µ). Furthermore, the orthogonal projection, projn(W

T
κ,µ; f),

of f onto Vd
n(W

T
κ,µ) can be expressed in terms of the orthogonal projection of

f ◦ ψ onto Vd
2n(W

B
κ,µ) as follows (see [DuXu] and [DWY, 5.2]):

projn(W
T
κ,µ; f, ψ(x)) = proj2n(W

B
κ,µ; f ◦ ψ, x), x ∈ Bd. (5.2.3)

The space νdn(W
T
κ,µ) can also be seen as the eigenfunction space of a self-

adjoint, semi-negative definite operator ∆T
κ,µ on L2(WB

κ,µ;B
d) corresponding to

the eigenvalue µT
n := −n(n+ d−1

2
+ |κ|+ µ) (see [DuXu]); that is,

νdn(W
T
κ,µ) =

{
f ∈ C2(Td) : ∆T

κ,µf = µT
nf
}
, n = 0, 1, · · · .

Thus, we may also define the fractional power of −∆T
κ,µ in a distributional

sense by

projn
(
W T

κ,µ; (−∆T
κ,µ)

αf
)
= (−µT

n )
α projn(W

T
κ,µ; f), n = 0, 1, · · · .

The operator (−∆T
κ,µ)

α is related to the operator (−∆B
κ,µ)

α on Bd by

(
(−∆T

κ,µ)
αf
)
◦ ψ(x) = 4−α(−∆B

κ,µ)
α(f ◦ ψ)(x), x ∈ Bd, α ∈ R, (5.2.4)
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where the constant 4−α justifies the fact that ψ is quadratic.

The requirement that the G-invariant weight hκ is also Z
d
2-invariant implies

the reflection group G is a semi-product of Zd
2 and another reflection group.

In the indecomposable case this limits G to two classes: Zd
2 itself and the

hyperoctahedral group Bd (see [DuXu]). As a matter of fact, we will restrict

our attention to the cases of G = Zd
2 and G = Bd for the rest of this section.

According to Example 1.2 and Example 1.4, the weight functions W T
κ,µ(x) ≡

W T
κ,µ(x;G) in (1.0.20) can be written explicitly as follows:

W T
κ,µ(x;Z

d
2) = x

κ1−1/2
1 · · · xκd−1/2

d (1− |x|)µ−1/2, (5.2.5)

W T
κ,µ(x;Bd) = (1− |x|)µ−1/2

( d∏

i=1

x
κ1−1/2
i

)( ∏

1≤i<j≤d

|xi − xj|κ2

)
, (5.2.6)

where |x| = x1 + · · · + xd for x = (x1, · · · , xd) ∈ Td, and µ, κ1, · · · , κd ≥ 0.

Note that |κ| =∑d
j=1 κj in the case of G = Zd

2, and |κ| = d(d−1)
2

κ2+dκ1 in the

case of G = Bd.

The HLS inequality for the fractional integration (−∆T
κ,µ)

−α/2 on the weight-

ed simplex Td can now be stated as follows:

Theorem 5.2.1. Let 1 < p < q <∞ and α > 0. Then the inequality

‖(−∆T
κ,µ)

−α/2f‖Lq(WT
κ,µ)

≤ C‖f‖Lp(WT
κ,µ)

, f ∈ Lp(W T
κ,µ;T

d) (5.2.7)

holds if and only if α ≥ sκ,µ(
1
p
− 1

q
), where sκ,µ = max{2|κ|+ d, sκ + 2µ+ 1},

and sκ is given in Example 1.2 for the case of G = Zd
2 and in (1.0.9) for the

case of G = Bd.

Proof. The sufficiency part of Theorem 5.2.1 follows directly from Theorem

5.1.1, (5.2.2) and (5.2.4), whereas the proof of the necessity part runs along

the same line as that of Theorem 1.0.1.

Next, set ϕi(x) =
√
xi(1− |x|) for i = 1, · · · , d, and

ϕi,j(x) =
√
xixj, ∂i,j = ∂j − ∂i, 1 ≤ i < j ≤ d.

For simplicity, we denote by σi,j, 1 ≤ i < j ≤ d, the reflection σei−ej given by

(x1, · · · , xi · · · , xj, · · · , xd) 7→ σei−ejx = (x1, · · · , xj, · · · , xi, · · · , xd),
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and define

Si,jf(x) :=
f(x)− f(σi,jx)

xi − xj

√
xi + xj, x = (x1, · · · , xd) ∈ Td. (5.2.8)

Also, we write

〈f, g〉L2(WT
κ,µ)

:=

∫

Td

f(x)g(x)W T
κ,µ(x) dx, f, g ∈ L2(W T

κ,µ;T
d).

Finally, we define

a(G) =




0, if G = Zd

2,

1, if G = Bd.

Theorem 5.2.2. For any f, g ∈ C2(Td),

〈 −∆T
κ,µf, g〉L2(WT

κ,µ)
=

d∑

j=1

〈ϕi∂if, ϕi∂ig〉L2(WT
κ,µ)

+
∑

1≤i<j≤d

〈ϕi,j∂i,jf, ϕi,j∂i,jg〉L2(WT
κ,µ)

+ a(G)2−1κ2
∑

1≤i<j≤d

〈Si,jf, Si,jg〉L2(WT
κ,µ)

. (5.2.9)

Furthermore,

∆T
κ,µ =

∑

1≤i≤j≤d

Ui,j;κ,µ − a(G)κ2
∑

1≤i<j≤d

xi + xj
(xi − xj)2

(I − σi,j), (5.2.10)

where I denotes the identity operator, σi,jf(x) = f(σi,jx), and

Ui,i;κ,µ = W T
κ,µ(x)

−1∂i

(
xi(1− |x|)W T

κ,µ(x)
)
∂i, 1 ≤ i ≤ d,

Ui,j;κ,µ = W T
κ,µ(x)

−1∂i,j(xixjW
T
κ,µ(x))∂i,j, 1 ≤ i < j ≤ d.

Proof. We use the notation 〈·, ·〉L2(WB
κ,µ)

to denote the inner product of L2(WB
κ,µ;B

d).

We then use (5.1.8) and (5.2.2) to obtain

4〈 −∆T
κ,µf, g〉L2(WT

κ,µ)
= 〈 −∆B

κ,µ(f ◦ ψ), g ◦ ψ〉L2(WB
κ,µ)

=
∑

1≤i<j≤d

〈Di,j(f ◦ ψ), Di,j(g ◦ ψ)〉L2(WB
κ,µ)

+
d∑

i=1

〈ϕ∂i(f ◦ ψ), ϕ∂i(g ◦ ψ)〉L2(WB
κ,µ)

+
∑

α∈R+

κα〈Eα(f ◦ ψ), Eα(g ◦ ψ)〉L2(WB
κ,µ)

= : Σ1 + Σ2 + Σ3,
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where ϕ(x) =
√
1− ‖x‖2 as above. A straightforward calculation shows that

Di,j(f ◦ ψ)(x) = 2ϕi,j(ψ(x))∂i,jf(ψ(x)), x ∈ Bd,

and

(1− ‖x‖2)∂i(f ◦ ψ)(x)∂i(g ◦ ψ)(x) = 4(ϕi(ψ(x)))
2∂if(ψ(x))∂ig(ψ(x)).

It follows that

Σ1 = 4
∑

1≤i<j≤d

〈ϕi,j∂i,jf, ϕi,j∂i,jg〉L2(WT
κ,µ)

and

Σ2 = 4
d∑

i=1

〈(ϕi∂if) ◦ ψ, (ϕi∂ig) ◦ ψ〉L2(WB
κ,µ)

= 4
d∑

i=1

〈ϕi∂if, ϕi∂ig)〉L2(WT
κ,µ)

.

Next, it is clear that Σ3 = 0 if G = Zd
2. Thus, to complete the proof of

(5.2.9), it remains to show that for G = Bd and W T
κ,µ in (5.2.6),

Σ3 = 2κ2
∑

1≤i<j≤d

〈Si,jf, Si,jg〉L2(WT
κ,µ)

. (5.2.11)

Indeed, if G = Bd, then

Σ3 = κ2
∑

1≤i<j≤d

〈Eei−ej(f ◦ ψ), Eei−ej(g ◦ ψ)〉L2(WB
κ,µ)

(5.2.12)

+ κ2
∑

1≤i<j≤d

〈Eei+ej(f ◦ ψ), Eei+ej(g ◦ ψ)〉L2(WB
κ,µ)

Note that for 1 ≤ i < j ≤ d, σei−ejx = σi,j(x) and

σei+ej(x1, · · · , xi, · · · , xj, · · · , xd) = (x1, · · · ,−xj, · · · ,−xi, · · · , xd).

This implies that for x ∈ Bd,

ψ(σei−ejx) = σi,j(ψ(x)), ψ(σei+ejx) = σi,j(ψ(x)).

It follows that

Eei−ej(f ◦ ψ)(x) = (I − σi,j)f(ψ(x))

xi − xj
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and

Eei+ej(f ◦ ψ)(x) = (I − σi,j)f(ψ(x))

xi + xj
.

Thus,

〈Eei−ej(f ◦ ψ), Eei−ej(g ◦ ψ)〉L2(WB
κ,µ)

+ 〈Eei+ej(f ◦ ψ), Eei+ej(g ◦ ψ)〉L2(WB
κ,µ)

=

∫

Bd

[
(I − σi,j)f(ψ(x))

][
(I − σi,j)g(ψ(x))

][ 1

(xi + xj)2
+

1

(xi − xj)2

]
WB

κ,µ(x) dx

= 2

∫

Bd

[
(I − σi,j)f(ψ(x))

][
(I − σi,j)g(ψ(x))

] x2i + x2j
(x2i − x2j)

2
WB

κ,µ(x) dx

= 2

∫

Td

[
(I − σi,j)f(x)

][
(I − σi,j)g(x)

] xi + xj
(xi − xj)2

W T
κ,µ(x) dx

= 2〈Si,jf, Si,jg〉L2(WT
κ,µ)

.

This together with (5.2.12) implies the desired equation (5.2.11).

Finally, we prove the decomposition (5.2.10). For simplicity, we define

Ai,if(x) := ϕi(x)∂if(x), 1 ≤ i ≤ d, x ∈ Td, (5.2.13)

and

Ai,jf(x) := ϕi,j(x)∂i,jf(x), 1 ≤ i < j ≤ d, x ∈ Td. (5.2.14)

Then (5.2.9) implies that

−∆T
κ,µ =

∑

1≤i≤j≤d

A∗
i,jAi,j + a(G)2−1κ2

∑

1≤i<j≤d

S∗
i,jSi,j, (5.2.15)

where A∗
i,j and S∗

i,j denote the adjoint operators Ai,j and Si,j in the space

L2(W T
κ,µ;T

d) respectively. However, integration by parts yields that A∗
i,jAi,j =

−Ui,j;κ,µ, whereas a straightforward calculation shows that

S∗
i,jSi,jf(x) = 2

[
f(x)− f(σi,jx)

] xi + xj
(xi − xj)2

.

The decomposition (5.2.10) then follows. This completes the proof.

The decomposition (5.2.15) together with (5.2.2) and Theorem 5.1.3 implies
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Theorem 5.2.3. If 1 < p <∞ and
∫
Td f(x)W

T
κ,µ(x) dx = 0, then

∥∥∥
√

−∆T
κ,µf

∥∥∥
Lp(WT

κ,µ)
∼

∑

1≤i≤j≤d

‖Ai,jf‖Lp(WT
κ,µ)

+ a(G)κ2
∑

1≤i<j≤d

‖Si,jf‖Lp(WT
κ,µ)

,

where the Ai,j are given in (5.2.13) and (5.2.14), and the Si,j are defined by

(5.2.8).

We point out that in the case of G = Zd
2, the decomposition (5.2.10) was

previously obtained in [BX, BSX, Dit], whereas Theorem 5.2.3 was proved by

a different method in [DHH]. To the best of our knowledge, our results for the

case of G = Bd are new on Td.

The decomposition (5.2.15) allows us to introduce the following definition

of the Riesz transforms for WOPEs on Td.

Definition 5.2.4. Define the Riesz transforms for the WOPEs on Td by

RT
1;i,jf(x) := Ai,j(−∆T

κ,µ)
− 1

2f(x), 1 ≤ i ≤ j ≤ d,

RT
2;i,jf(x) :=

√
κ2/2Si,j(−∆T

κ,µ)
− 1

2f(x), 1 ≤ i < j ≤ d.

By the decomposition (5.2.15), we have

∑

1≤i≤j≤d

(RT
1;i,j)

∗RT
1;i,j + a(G)

∑

1≤i<j≤d

(RT
2;i,j)

∗RT
2;i,j = I,

where I denotes the identity operator on
{
f ∈ L1(W T

κ,µ;T
d) :

∫
Td f(x)W

T
κ,µ(x) dx =

0
}
, and U∗ denotes the adjoint operator of U on the space L2(W T

κ,µ;T
d). Fur-

thermore, according to Theorem 5.2.3, we have

Corollary 5.2.5. If 1 < p <∞ and
∫
Td f(x)W

T
κ,µ(x) dx = 0, then

‖f‖Lp(WT
κ,µ)

∼
∑

1≤i≤j≤d

‖RT
1;i,jf‖Lp(WT

κ,µ)
+ a(G)

∑

1≤i<j≤d

‖RT
2;i,jf‖Lp(WT

κ,µ)
.

Next, as what we applied to unit ball in preceding section, we also derive

the uncertainty principle on simplex from Theorem 5.1.6 using (5.2.2) and

(5.2.4).
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Theorem 5.2.6. Let f ∈ C1(Td) be such that
∫
Td f(x)W

T
κ,µ(x) dx = 0 and∫

Td |f(x)|2W T
κ,µ(x)dx = 1. Then

[
min
y∈Td

∫

Td

(1− 〈ψ−1(x), ψ−1(y)〉)|f(x)|2W T
κ,µ(x) d(x)

]
×

×
[∫

Td

|
√

−∆T
κ,µf(x)|2W T

κ,µ(x) d(x)
]
≥ Cd,κ,µ > 0, (5.2.16)

where we recall that ψ−1(x) = (
√
x1,

√
x2, · · · ,

√
xd).
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Part II

Reverse Hölder’s inequality for

spherical harmonics 1

1A version of this part has been accepted for publication [DaFeTi].
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6.1 Introduction

Let Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit sphere of Rd endowed with

the usual Haar measure dσ(x), where ‖ · ‖ denotes the Euclidean norm of Rd.

Given 0 < p ≤ ∞, we denote by Lp(Sd−1) the usual Lebesgue Lp-space defined

with respect to the measure dσ(x) on Sd−1, and by ‖ · ‖p the norm of Lp(Sd−1).

Throughout the chapter, unless otherwise stated, all functions on Sd−1 will be

assumed to be real-valued and measurable, and the notation A ∼ B means that

there exists an inessential constant c > 0, called the constant of equivalence,

such that c−1A ≤ B ≤ cA.

Let Πd
n denote the space of all spherical polynomials of degree at most

n on Sd−1 (i.e., restrictions on Sd−1 of polynomials in d variables of total

degree at most n), and Hd
n the space of all spherical harmonics of degree n

on Sd−1. As is well known (see, for instance, [DaXu2, chapter 1]), Hd
n and Πd

n

are all finite dimensional spaces with dim Hd
n ∼ nd−2 and dim Πd

n ∼ nd−1 as

n → ∞. Furthermore, the spaces Hd
k, k = 0, 1, · · · are mutually orthogonal

with respect to the inner product of L2(Sd−1), and each space Πd
n can be written

as a direct sum Πd
n =

⊕n
j=0 Hd

j . Since the space of spherical polynomials is

dense in L2(Sd−1), each f ∈ L2(Sd−1) has a spherical harmonic expansion,

f =
∑∞

k=0 projk f, where projk is the orthogonal projection of L2(Sd−1) onto

the space Hd
k of spherical harmonics. The orthogonal projection projk has an

integral representation:

projk f(x) = Ck,d

∫

Sd−1

f(y)P
( d−3

2
, d−3

2
)

k (x · y) dσ(y), x ∈ Sd−1, (6.1.1)

where

Ck,d :=
Γ(d

2
)Γ(d−1

2
)

2πd/2Γ(d− 1)

(2k + d− 2)Γ(k + d− 2)

Γ(k + d−1
2
)

,

and P
(α,β)
k denotes the usual Jacobi polynomial of degree k and indices α, β,

as defined in [Sz, Chapter IV].

Our goal in this chapter is to find a sharp asymptotic order of the quantity

supYn∈Hd
n

‖Yn‖q
‖Yn‖p for 0 < p < q ≤ ∞ as n→ ∞. The background of this problem
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is as follows. In 1986, Sogge [Sog] proved that for d ≥ 3

sup
Yn∈Hd

n

‖Yn‖Lq(Sd−1)

‖Yn‖L2(Sd−1)

∼




n

d−2
2

( 1
2
− 1

q
), 2 ≤ q ≤ 2d

d−2
,

n(d−2)( 1
2
− 1

q
)− 1

q , 2d
d−2

≤ q ≤ ∞,
(6.1.2)

which confirms a conjecture of Stanton–Weinstein [Sta] in the case of d = 3

and q = 4. Here and throughout the chapter, it is agreed that 0/0 = 0.

De Carli and Grafakos [DeGr, Section 6] proved that if 1 ≤ p ≤ q ≤ 2 and

Yn ∈ Hd
n can be written in the form

Yn(x) = eimd−2xd−1

d−2∏

k=0

(sin xk+1)
mk+1P

(mk+1+
d−2−k

2
,mk+1+

d−2−k
2

)
mk−mk+1

(cos xk+1),

(6.1.3)

with n = m0 ≥ m1 ≥ · · ·md−2 ≥ 0 being integers, then

‖Yn‖Lq(Sd−1)

‖Yn‖Lp(Sd−1)

≤ Cn
d−2
2

( 1
p
− 1

q
), 1 ≤ p < q ≤ 2, (6.1.4)

which was further applied in [DeGr] to prove the restriction conjecture for the

Fourier transform for the class of functions consisting of products of radial

functions and spherical harmonics that are in the form (6.1.3), (see Section

4.1 for more details). Note that the set of functions Yn in (6.1.3) with n =

m0 ≥ m1 ≥ · · ·md−2 ≥ 0 forms a linear basis of the space Hd
n. It is therefore

natural to ask whether or not (6.1.4) holds for all spherical harmonics Yn of

degree n. A related work in this direction was done recently by De Carli,

Gorbachev and Tikhonov in [DeGoTi], where the following weaker estimate of

[Duo] for spherical harmonics was applied to study a sharp Pitt inequality for

the Fourier transform on Rd:

sup
Yn∈Hd

n

‖Yn‖p′
‖Yn‖p

≤ Cn(d−1)( 1
p
− 1

2
),

1

p
+

1

p′
= 1, 1 ≤ p ≤ 2, (6.1.5)

Finally, let us recall the following well-known result of Kamzolov [Kam] on the

Nikolskii inequality for spherical polynomials:

‖Pn‖q ≤ Cn(d−1)( 1
p
− 1

q
)‖Pn‖p, ∀Pn ∈ Πd

n, 0 < p < q ≤ ∞. (6.1.6)

Since Hd
n ⊂ Πd

n, the Nikolskii inequality (6.1.6) is applicable to every spherical
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harmonics Yn ∈ Hd
n. It turns out, however, that the resulting estimates are not

sharp for spherical harmonics in many cases (see, for instance, (6.1.2), (6.1.5)

and (6.1.4)).

We will prove the following result, which, in particular, shows that (6.1.4)

holds for all spherical harmonics Yn ∈ Hd
n, and the upper bound on the right

hand side of (6.1.5) can be improved to be Cn(d−2)( 1
p
− 1

2
).

Theorem 6.1.1. Assume that d ≥ 3 and 1
p
+ 1

p′
= 1 if p ≥ 1.

(i) If either 0 < p ≤ 1 and p < q ≤ ∞, or 1 ≤ p ≤ 2 and p < q ≤ dp′

d−2
, then

sup
Yn∈Hd

n

‖Yn‖q
‖Yn‖p

∼ n
d−2
2

( 1
p
− 1

q
). (6.1.7)

(ii) If either 1 ≤ p ≤ 2 and q ≥ dp′

d−2
, or 2 ≤ p < 2d−2

d−2
and q > 2d−2

d−2
, then

sup
Yn∈Hd

n

‖Yn‖q
‖Yn‖p

∼ n(d−2)( 1
2
− 1

q
)− 1

q .

(iii) If 2d−2
d−2

< p < q ≤ ∞, then

sup
Yn∈Hd

n

‖Yn‖q
‖Yn‖p

∼ n(d−1)( 1
p
− 1

q
).

(iv) If d = 3 and 2 ≤ p < 4, then for q ≥ 3p′,

sup
Yn∈Hd

n

‖Yn‖q
‖Yn‖p

∼ n
1
2
− 2

q ,

whereas for p < q ≤ 3p′,

sup
Yn∈Hd

n

‖Yn‖q
‖Yn‖p

∼ n
1
2
( 1
p
− 1

q
).

Of particular interest is the case when 1 ≤ p ≤ 2 and q = p′, where our

result can be stated as follows:

Corollary 6.1.2. If Yn ∈ Hd
n, 1 ≤ p ≤ 2 and 1

p
+ 1

p′
= 1, then

‖Yn‖p′ ≤ Cn
d−2
2

( 1
p
− 1

p′
)‖Yn‖p, 1 ≤ p ≤ 2. (6.1.8)
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Furthermore, this estimate is sharp.

Several remarks are in order.

Remark 6.1.1. Estimate (6.1.8) for p = pd :=
2d
d+2

follows directly from the well-

known result of Sogge [Sog] on the orthogonal projection projn : L2(Sd−1) →
Hd

n. However, for 1 ≤ p < 2 and p 6= pd, the sharp estimate (6.1.8) in Corollary

6.1.2 is nontrivial and cannot be deduced from the result of Sogge [Sog], who

proved that for 1 ≤ p ≤ pd,

‖ projn f‖2 ≤ Cn
d−2
2

( 1
p
− 1

2
)+ 1

(d+2)p
(pd−p)‖f‖p, ∀f ∈ Lp(Sd−1), (6.1.9)

and this estimate is sharp. Since projn f = f for f ∈ Hd
n, this leads to the

inequality

‖Yn‖2 ≤ Cn
d−2
2

( 1
p
− 1

2
)+ 1

(d+2)p
(pd−p)‖Yn‖p, ∀Yn ∈ Hd

n, 1 ≤ p ≤ pd,

which, according to Corollary 6.1.2, is not sharp unless p = pd.

Remark 6.1.2. Interesting reverse Hölder inequalities for spherical harmonics,

sup
Yn∈Hd

n

‖Yn‖q
‖Yn‖p

≤ C(n, q)

with the constant C(n, q) being independent of the dimension d but dependent

on the degree n of spherical harmonics, were obtained in [Duo] for some pairs of

(p, q), 0 < p < q <∞. The general constants C in this chapter are dependent

on the dimension d, but independent of the degree n.

Remark 6.1.3. For d ≥ 4, it remains open to find the asymptotic estimate of

the supremum on the left hand side of (6.1.7) for 2 < p < d
d−2

and p < q < 2d
d−2

.

This chapter is organized as follows. In Section 2, we construct a sequence

of convolution operators {Tn}∞n=0 on L
1(Sd−1) with the properties that Tnf = f

for f ∈ Hd
n, |Tnf | ≤ C sup0≤j≤d | projn+2j f | and ‖Tnf‖∞ ≤ Cn

d−2
2 ‖f‖1 for all

f ∈ L1(Sd−1). These operators play an indispensable role in the proof of

Theorem 6.1.1, which is given in the third section. Finally, in Section 4, we

give two applications of our main result, improving a recent result of [DeGr]

on restriction conjecture and a result of [DeGoTi] on sharp Pitt’s inequality.
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6.2 A sequence of convolution operators

We start with the following well-known result of Sogge [Sog] on the operator

norms of the orthogonal projections projn : L2(Sd−1) → Hd
n.

Lemma 6.2.1. [Sog] Let n ∈ N and d ≥ 3. Then the following statements

hold:

(i) If 1 ≤ p ≤ pd :=
2d
d+2

, then

‖ projn f‖2 ≤ Cn(d−1)( 1
p
− 1

2
)− 1

2‖f‖p.

(ii) If pd ≤ p ≤ 2, then

‖ projn f‖2 ≤ Cn
d−2
2

( 1
p
− 1

2
)‖f‖p.

(iii) If 2d
d−2

≤ q ≤ ∞, then

‖ projn f‖q ≤ Cn(d−1)( 1
2
− 1

q
)− 1

2‖f‖2.

(iv) If 2 ≤ q ≤ 2d
d−2

, then

‖ projn f‖q ≤ Cn
d−2
2

( 1
2
− 1

q
)‖f‖2.

Here, the letter C denotes a general positive constant independent of n

and f .

As was pointed out in the introduction, Lemma 6.2.1 will not be enough for

the proof of our main result. The crucial step in the proof of Theorem 6.1.1

is to construct a sequence of linear operators {Tn}∞n=0 with the properties

that Tnf = f for f ∈ Hd
n, |Tnf | ≤ C sup0≤j≤d | projn+2j f | and ‖Tnf‖∞ ≤

Cn
d−2
2 ‖f‖1 for all f ∈ L1(Sd−1) .

To define the operators Tn, we need to recall several notations. First, given

h ∈ N, and a sequence {an}∞n=0 of real numbers, define (see, for instance,

[DeLo, 7.1])

4han = an − an+h, 4`+1
h = 4h4`

h, ` = 1, 2, . . . .

92



Next, let

Rn(cos θ) :=
P

( d−3
2

, d−3
2

)
n (cos θ)

P
( d−3

2
, d−3

2
)

n (1)
, θ ∈ [0, π]

denote the normalized Jacobi polynomial, and for a step h ∈ N, define

4`
hRn(cos θ) := 4`

han =
∑̀

j=0

(−1)j
(
`

j

)
Rn+hj(cos θ), ` = 1, 2, . . . , n = 0, 1, · · · ,

with an := Rn(cos θ). Here and throughout, the difference operator in4`
hRn(cos θ)

is always acting on the integer n. In the case when the step h = 1, we have

the following estimate ([DaXu2, Lemma B.5.1], [DaDi]):

∣∣∣4`
1Rn(cos θ)

∣∣∣ ≤ Cθ`(1 + nθ)−
d−2
2 , θ ∈ [0, π/2], ` ∈ N. (6.2.1)

On the other hand, however, the `-th order difference 4`
1Rn(cos θ) with step

h = 1 does not provide a desirable upper estimate when θ is close to π, and

as will be seen in our later proof, estimate (6.2.1) itself will not be enough for

our purpose.

To overcome this difficulty, instead of the difference with step 1, we con-

sider the `-th order difference 4`
2Rn(cos θ) with step h = 2. Since 4`

2an =∑`
j=0

(
`
j

)
4`

1an+j, on one hand, (6.2.1) implies that

∣∣∣4`
2Rn(cos θ)

∣∣∣ ≤ Cθ`(1 + nθ)−
d−2
2 , θ ∈ [0, π/2].

On the other hand, however, since

4`
2Rn(cos θ) =

∑̀

j=0

(−1)j
(
`

j

)
Rn+2j(cos θ),

and sinceRn+2j(−z) = (−1)nRn+2j(z), we have4`
2Rn(cos(π−θ)) = (−1)n4`

2Rn(cos θ).

It follows that

∣∣∣4`
2Rn(cos θ)

∣∣∣ ≤ C




θ`(1 + nθ)−

d−2
2 , θ ∈ [0, π/2],

(π − θ)`(1 + n(π − θ))−
d−2
2 , θ ∈ [π/2, π].

(6.2.2)
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By (6.1.1), we obtain that for every P ∈ Hd
n,

P (x) = cn

∫

Sd−1

P (y)Rn(x · y) dσ(y), x ∈ Sd−1,

where

cn :=
Γ(d

2
)

2πd/2

d+ 2n− 2

d+ n− 2

Γ(d+ n− 1)

Γ(n+ 1)Γ(d− 1)
∼ nd−2,

and x ·y denotes the dot product of x, y ∈ Rd. Since Rj(x·) ∈ Hd
j for any fixed

x ∈ Sd−1, it follows by the orthogonality of spherical harmonics that for any

P ∈ Hd
n, and any ` ∈ N,

P (x) = cn
∑̀

j=0

(−1)j
(
`

j

)∫

Sd−1

P (y)Rn+2j(x · y) dσ(y)

= cn

∫

Sd−1

P (y)4`
2Rn(x · y) dσ(y). (6.2.3)

For the rest of the section, we will choose ` to be an integer bigger than d−2
2

(for instance, we may set ` = d− 2), so that by (6.2.2), we have

∣∣∣4`
2Rn(cos θ)

∣∣∣ ≤ Cn− d−2
2 . (6.2.4)

Now we are in a position to define the operators Tn.

Definition 6.2.2. For f ∈ L1(Sd−1), we define

Tnf(x) :=

∫

Sd−1

f(y)Φn(x · y) dσ(y), x ∈ Sd−1, (6.2.5)

where

Φn(cos θ) := cn

d−2∑

j=0

(−1)j
(
d− 2

j

)
Rn+2j(cos θ).

By (6.2.4), we have

|Φn(cos θ)| ≤ Cn
d−2
2 , θ ∈ [0, π], (6.2.6)

whereas by (6.2.3)

TnP (x) = P (x), ∀P ∈ Hd
n, ∀x ∈ Sd−1. (6.2.7)

The main result of this section can now be stated as follows.
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Theorem 6.2.3. If 1 ≤ p ≤ 2 and p′ ≤ q ≤ dp′

d−2
, then

‖Tnf‖q ≤ Cn
d−2
2

( 1
p
− 1

q
)‖f‖p, ∀f ∈ Lp(Sd−1). (6.2.8)

If 1 ≤ p ≤ 2 and q ≥ dp′

d−2
, then

‖Tnf‖q ≤ Cn
d−2
2

− d−1
q ‖f‖p, ∀f ∈ Lp(Sd−1).

Proof. First, we prove the assertion (i). Note that by definition, for each

f ∈ L2(Sd−1),

Tnf =
d−2∑

j=0

(−1)j
(
d− 2

j

)
cn
cn+2j

projn+2j f, (6.2.9)

which implies that

‖Tnf‖2 ≤ C‖f‖2, ∀f ∈ L2(Sd−1). (6.2.10)

On the other hand, however, using (6.2.6), we have

‖Tnf‖∞ ≤ Cn
d−2
2 ‖f‖1, ∀f ∈ L1(Sd−1). (6.2.11)

Thus, applying the Riesz-Thorin interpolation theorem, and using (6.2.10) and

(6.2.11), we deduce that for 1 ≤ p ≤ 2,

‖Tnf‖p′ ≤ Cn(d−2)( 1
p
− 1

2
)‖f‖p, ∀f ∈ Lp(Sd−1). (6.2.12)

Next, by (iv) of Lemma 6.2.1, and using (6.2.9), we obtain that for 2 ≤
r ≤ 2d

d−2
,

‖Tnf‖r ≤ Cn
d−2
2

( 1
2
− 1

r
)‖f‖2, ∀f ∈ L2(Sd−1). (6.2.13)

Assume that 1 ≤ p ≤ 2 and p′ ≤ q ≤ dp′

d−2
. Let θ = 2

p′
∈ [0, 1], and let

r = θq = 2
p′
q. Then 2 ≤ r ≤ 2d

d−2
, and

1

p
= 1− θ +

θ

2
,

1

q
=

1− θ

∞ +
θ

r
.

Thus, by (6.2.12), (6.2.13) and applying the Riesz-Thorin interpolation theo-

rem, we obtain that

‖Tnf‖q ≤ Cn
d−2
2

(1−θ)n
d−2
2

( 1
2
− 1

r
)θ‖f‖p = Cn

d−2
2

( 1
p
− 1

q
)‖f‖p.
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This completes the proof of the assertion (i).

Assertion (ii) can be proved similarly. Indeed, using (6.2.9) and (iii) of

Lemma 6.2.1, we have that for r ≥ 2d
d−2

,

‖Tnf‖r ≤ Cn(d−2)( 1
2
− 1

r
)− 1

r ‖f‖2, ∀f ∈ L2(Sd−1). (6.2.14)

Assume that 1 ≤ p ≤ 2 and q ≥ dp′

d−2
. Let θ = 2

p′
and r = θq = 2

p′
q. Then

r ≥ 2d
d−2

. Using (6.2.14), (6.2.12) and applying the Riesz-Thorin interpolation

theorem, we deduce that

‖Tnf‖q ≤ Cn
d−2
2

(1−θ)n(d−2)θ( 1
2
− 1

r
)− θ

r ‖f‖p = Cn
d−2
2

− d−1
q ‖f‖p

= Cn(d−2)( 1
2
− 1

q
)− 1

q ‖f‖p.

This completes the proof of (ii).

6.3 Proof of Theorem 6.1.1

The stated lower estimates of Theorem 6.1.1 follow directly from the fol-

lowing two known lemmas.

Lemma 6.3.1. [Sog] Let

fn(x) = (x1 + ix2)
n

for x = (x1, x2, . . . , xd) ∈ Sd−1. Then f ∈ Hd
n and

‖fn‖p ∼ n− d−2
2p , 0 < p <∞.

Lemma 6.3.2. [Sz, p.391] Let

gn(x) = P
( d−3

2
, d−3

2
)

n (x · e)

for a fixed point e ∈ Sd−1. Then gn ∈ Hd
n, and

‖gn‖p ∼





n
d−3
2 n− d−1

p , p > 2(d−1)
d−2

,

n− 1
2 (log n)

1
p , p = 2(d−1)

d−2
,

n− 1
2 , p < 2(d−1)

d−2
.
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For the proof of the upper estimates, we let P ∈ Hd
n. The crucial tool in

our proof is Theorem 6.2.3, where we recall that TnP = P for all P ∈ Hd
n. We

consider the following cases:

Case 1. 1 ≤ p ≤ q ≤ p′.

In this case, 1 ≤ p ≤ 2 ≤ p′, and the stated upper estimate for q = p′

follows directly from Theorem 6.2.3. In general, for p ≤ q ≤ p′, let θ ∈ [0, 1]

be such that 1
q
= θ

p
+ 1−θ

p′
. Then by the log-convexity of the Lp-norm, we have

‖P‖q ≤ ‖P‖θp‖P‖1−θ
p′ ≤ Cn

d−2
2

( 1
p
− 1

p′
)(1−θ)‖P‖p ≤ Cn

d−2
2

( 1
p
− 1

q
)‖P‖p,

which is as desired in this case.

Case 2. 0 < p ≤ 1 and p < q.

In this case, note that

‖P‖1 ≤ ‖P‖pp‖P‖1−p
∞ ≤ Cn

d−2
2

(1−p)‖P‖pp‖P‖1−p
1 .

It follows that

‖P‖1 ≤ Cn
d−2
2

( 1
p
−1)‖P‖p, 0 < p ≤ 1,

which, in turn, implies that for p < q and 1
q
= 1−θ

p
,

‖P‖q ≤ ‖P‖θ∞‖P‖1−θ
p ≤ Cn

d−2
2

θ‖P‖θ1‖P‖1−θ
p ≤ Cn

d−2
2

( 1
p
− 1

q
)‖P‖p.

Case 3. 1 ≤ p ≤ 2 and q ≥ p′.

The desired estimate in this case follows directly from the first and the

second parts of Theorem 6.2.3 since TnP = P for all P ∈ Hd
n.

Case 4. 2 ≤ p ≤ 2d−2
d−2

and q ≥ 2d
d−2

.
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For P ∈ Hd
n, by the already proven cases it follows that

‖P‖q ≤ Cn(d−2)( 1
2
− 1

q
)− 1

q ‖P‖2 ≤ Cn(d−2)( 1
2
− 1

q
)− 1

q ‖P‖p.

Case 5. 2d−2
d−2

< p < q ≤ ∞.

The reverse Hölder inequality in this case follows directly from the corre-

sponding Nikolskii inequality for spherical polynomials given by (6.1.6).

Case 6. d = 3 and 2 ≤ p < 4.

The proof in this case relies on the following result of Sogge [Sog]:

Lemma 6.3.3. If d = 3, 4
3
< p < 4 and q = 3p′, then

‖ projn f‖q ≤ Cn
1
2
− 2

q ‖f‖p.

Now we return to the proof in Case 6. Again, in view of Lemmas 6.3.1 and

6.3.2, it is enough to prove the upper estimates. Assume first that q ≥ 3p′.

Let 2 ≤ p < p1 < 4 and let θ ∈ [0, 1] be such that

1

p
=

1− θ

p1
+
θ

2
.

Set q1 = 3p′1. Then by Lemma 6.3.3,

‖Tf‖q1 ≤ Cn
1
2
− 2

q1 ‖f‖p1 . (6.3.1)

For q ≥ 3p′ > 3p′1 = q1, let q2 ≥ q be such that

1

q
=

1− θ

q1
+
θ

q2
.

Then

1

3
≥ 1

3p
+

1

q
= θ(

1

6
+

1

q2
) +

1

3
(1− θ) = θ(

1

q 2

− 1

6
) +

1

3
.

This implies that q2 ≥ 6, hence by (ii) of Theorem 6.2.3,

‖Tnf‖q2 ≤ Cn
1
2
− 2

q2 ‖f‖2. (6.3.2)
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Thus, using (6.3.1), (6.3.2), and the Riesz-Thorin theorem, we obtain

‖Tnf‖q ≤ Cn
1
2
− 2

q ‖f‖p,

which implies the desired estimate for the case of q ≥ 3p′.

The case of p < q < 3p′ can be treated similarly. In fact, let p1, q1 and θ

be as above. Observing that 1
2
− 2

q1
= 1

2
( 1
p1

− 1
q1
), we may rewrite (6.3.1) as

‖Tf‖q1 ≤ Cn
1
2
( 1
p1

− 1
q1

)‖f‖p1 .

Furthermore, we may choose p1 > p to be very close to p so that q < q1 =

3p′1 < 3p′. Let q3 ≤ q be such that

1

q
=

1− θ

q1
+
θ

q3
.

Then

1

3
<

1

3p
+

1

q
= θ(

1

6
+

1

q3
) +

1

3
(1− θ) = θ(

1

q 3

− 1

6
) +

1

3
.

Hence 2 < q3 < 6, and using (i) of Theorem 6.2.3, we deduce

‖Tnf‖q3 ≤ Cn
1
2
( 1
2
− 1

q3
)‖f‖2.

The stated estimate for p < q < 3p′ then follows by the Riesz-Thorin interpo-

lation theorem. �

6.4 Applications: Fourier inequalities

6.4.1 The restriction conjecture.

One of the most challenging problems in classical Fourier analysis is the

restriction conjecture, which states that if 1 ≤ p < 2d
d+1

and q ≤ d−1
d+1

p′, then

there exists a constant C depending only on p, q, d such that

‖F̂‖Lq(Sd−1)

‖F‖Lp(Rd)

≤ C, ∀F ∈ C∞
0 (Rd), (6.4.1)
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where F̂ (ξ) :=
∫
Rd F (x)e

−2πix·ξ dx, ξ ∈ Rd. This conjecture has been complete-

ly proved only in the case of d = 2. We refer to the book [St2, Chapter IX]

for more background information of this problem.

De Carli and Grafakos [DeGr] recently proved that the restriction conjec-

ture is valid for all functions F that can be expressed in the form

F (x) = f(‖x‖)‖x‖ngn
( x

‖x‖
)
, n = 0, 1, · · ·

with f(‖ · ‖) ∈ C∞
0 (Rd) and gn ∈ Hd

n being given in (6.1.3) . Using Theo-

rem 6.1.1 (i), and following the argument of [DeGr], we may conclude here

that the restriction conjecture holds for a wider class of functions

F ∈
∞⋃

n=0

{
f(‖x‖)‖x‖nYn

( x

‖x‖
)
: f(‖ · ‖) ∈ C∞

0 (Rd), Yn ∈ Hd
n

}
.

Indeed, it was shown in [DeGr] that for F (x) = f(‖x‖)‖x‖nYn(x/‖x‖) with

f ∈ C∞
0 (Rd) and Yn ∈ Hd

n,

‖F̂‖Lq(Sd−1)

‖F‖Lp(Rd)

=

∣∣∣
∫∞
0
f(r)J d

2
−1+n(r)r

d
2
+ndr

∣∣∣
( ∫∞

0
|f(r)|prd−1+npdr

)1/p
‖Yn‖Lq(Sd−1)

‖Yn‖Lp(Sd−1)

≤ Cn
(d−1)( 1

2
− 1

p
)+ 1

p′
‖Yn‖Lq(Sd−1)

‖Yn‖Lp(Sd−1)

, (6.4.2)

where Jn(r) is the Bessel function of the first kind. However, according to (i)

of Theorem 6.1.1 , we obtain that for 1 ≤ p < 2d
d+1

and q ≤ d−1
d+1

p′,

RHS of (6.4.2) ≤ C sup
m≥1

m
(d−1)( 1

2
− 1

p
)+ 1

p′
+ d−2

2
( 1
p
− 1

q
) ≤ C.

6.4.2 The sharp Pitt inequality

The following sharp Pitt inequality has been recently proved in [DeGoTi]:

Theorem 6.4.1. If 1 ≤ p ≤ 2 and s = (d−1)
(

1
2
− 1

p

)
, then for every Yk ∈ Hd

k

and every radial f ∈ S(Rd), the Pitt inequality

‖ |y|−sf̂Yk(y)‖Lp′ (Rd) ≤ C‖ |x|sf(x)Yk(x)‖Lp(Rd) (6.4.3)
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holds with the best constant

C = (2π)
d
2 2

1
2
− 1

p′

p
(2k+d−1)p+2

4p Γ
(

(2k+d−1)p′+2
4

) 1
p′

(p′)
(2k+d−1)p′+2

4p′ Γ
(

(2k+d−1)p+2
4

) 1
p

sup
Yk∈Hd

k

‖Yk‖Lp′ (Sn−1)

‖Yk‖Lp(Sn−1)

. (6.4.4)

According to Theorem 6.1.1, we have

sup
Yk∈Hd

k

‖Yk‖Lp′ (Sn−1)

‖Yk‖Lp(Sn−1)

∼ k(d−2)( 1
p
− 1

2
),

whereas only the weaker estimate (6.1.5) was obtained in [DeGoTi].
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Part III

On the convergence of cardinal

interpolations thought

parametered radial basis

functions2

2A version of this part is submitted for publication.
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7.1 introduction

Approximation and interpolation in multiple (here: d) dimensions of func-

tions and data by computationally simpler expressions is a task that is often

addressed for instance by using linear combinations of shifts of a single kernel

function. This is because the computation of the aforementioned approximant

or interpolant is greatly simplified in this way especially when the said kernel

function has certain symmetries for example. Especially in high dimensions

d � 1, one type of symmetry is resulting from using a radially symmetric

kernel ϕ(‖ · ‖) : Rd → R; here and anywhere else the norm ‖ · ‖ is Euclidean

and the radial part ϕ : R+ → R is called the radial basis function.

Various different approaches to approximate the approximand f may be

taken; when going back to the radial basis functions, for instance one may

work by varying on the positions of the shifts – here called centres because of

the radial symmetry about them – and among them we wish to study cardinal

interpolation on equally spaced data. Indeed, the problem of interpolating

to a multivariate function on an integer grid using the radial basis function

ϕ : R+ → R is formulated classically in the following way: given the continuous

function f : Rd → R (the approximand), find a set of real coefficients {dk}k∈Zd

such that

If(x) =
∑

k∈Zd

dkϕ(‖x− k‖), x ∈ Rd,

is well-defined (the sum converges at a minimum quadratically, thus we may

not in certain cases evaluate pointwise everywhere) and agrees with f every-

where on Zd. Alternatively, and this is our approach here, we may initially try

to find coefficients {ck}k∈Zd such that the so-called cardinal function

χ(x) =
∑

k∈Zd

ckϕ(‖x− k‖), x ∈ Rd, (7.1.1)

is an absolutely convergent sum with the cardinality conditions χ(j) = δ0,j for

all multi-integers j ∈ Zd, where δ is the Dirac functional, that is, δs,t = 1 if

s = t and δs,t = 0 if s 6= t. We then set

If(x) =
∑

k∈Zd

f(k)χ(x− k), x ∈ Rd, (7.1.2)
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whenever the approximant’s sum (7.1.2) converges absolutely or at a minimum

in an L2-sense. In the latter case we may be unable to evaluate pointwise but

may consider the error

‖f − If‖2
nontheless.

This approach provides a useful and flexible family of approximants for

many choices of ϕ. For instance, the famous multiquadric radial basis function

(MQ) ϕ(r) = ϕc(r) =
√
r2 + c2, further inverse multiquadrics (IM)

ϕ(r) =
1√

r2 + c2
,

inverse quadratics (IQ)

ϕ(r) =
1

r2 + c2
,

which all unify and generalise in

ϕcγ(r) =
(
r2 + c2

)γ
, γ 6∈ Z+;

nonnegative integers are forbidden because they force the radial function com-

posed with the Euclidean norm to be simply a polynomial of degree 2γ in d

unknowns. Finally, the popular Gaussians (GA) ϕ(r) = exp(−(cr)2), the Pois-

son kernel ϕ(r) = exp(−cr) and shifted thin-plate spline radial basis function

ϕ(r) = (r2 + c2) log(r2 + c2).

However, in this article we will focus mostly on the multiquadrics ϕc(r) =√
r2 + c2 with real parameter c and its aforementioned generalisation for γ not

a nonnegative integer

ϕcγ(r) =
(
r2 + c2

)γ
.

In this case, the existence of the cardinal function χ = χc defined by (7.1.1)

was confirmed for example by the first author [Buh2], where it is furthermore

proved that for instance beginning in one dimension and for the multiquadrics

proper it is true that at a minimum

|χc(x)| = O(‖x‖−5) = Oc(‖x‖−5) as ‖x‖ → ∞,

with the constant absorbed in O = Oc being dependent on c but not on

x. This is a first indication that the convergence of the infinite series for the
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cardinal interpolants may also be hoped for in the context of some polynomially

increasing approximands f or indeed polynomials p = f of certain degrees

themselves.

Continuing now, from the broad theory in Chapter 4 in [Buh1], and when

c is not zero, it follows that for the generalised multiquadrics function we get

further decay estimates of

|χc(x)| = Oc(‖x‖−4γ−3d), as ‖x‖ → ∞, (7.1.3)

for x ∈ Rd so long as 2γ + d is an even positive integer, and in all other cases

|χc(x)| = Oc(‖x‖−2γ−2d), as ‖x‖ → ∞. (7.1.4)

Then, a frequently occurring question is whether the limits of interpolants

(7.1.2) will recover the original function on the whole space either immediately

or indeed asymptotically when the parameter c tends to infinity – which makes

the radial basis functions “increasingly flat” in a term coined by Fornberg and

Larsson [FoLa]. This aspect of radial basis function interpolation and its nu-

merical solution is useful because it also concerns the numerical problem with

ill-conditioned matrices when solving the mentioned interpolation problems

for extreme parameters and how to solve the interpolation problems for the

interpolation coefficients efficiently in the face of this ill-conditioning.

An earlier paper [Bax] by Baxter gave out certain sufficient conditions on

functions f such that (7.1.2) uniformly converges to f on Rd when the param-

eter c tends to infinity. More precisely, the result is stated in the following

theorem.

Theorem 7.1.1. [Bax] Given a continuous function f ∈ L2(Rd), whose square-

integrable Fourier transform f̂ is compactly supported in [−π, π]d, so that it is

band-limited, then the interpolant

Icf(x) =
∑

k∈Zd

f(k)χc(x− k), x ∈ Rd, (7.1.5)

is well-defined in L2(Rd), where χc denotes the cardinal function for the integer

grid using the classical multiquadric radial function (γ = 1/2) with parameter
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c. Furthermore, it is true that

lim
c→∞

Icf(x) = f(x) (7.1.6)

uniformly for all arguments on Rd.

In another recent article [?] by Ledford, the author established the similar

result (see [?, Theorem2]) with respect to a relatively general family of basis

functions. But in [?] it is still required all approximand functions satisfying

the same conditions. However, Powell [Pow, Section 5] had pointed out that

(7.1.6) holds for f(x) = x2, which, obviously, as an approximand does not in

fact satisfy the conditions of Theorem 7.1.1. Therefore, the central purpose of

this paper is to extend the uniform approximation property (7.1.6) by relaxing

the requirements on the approximands much further.

Our first main result establishes the uniform convergence of (7.1.6) for Lp-

integrable functions, 1 < p < ∞, with limited support of Fourier transforms.

Also, it is shown that such approximation is true under the corresponding

derivatives.

Theorem 7.1.2. Let f ∈ Lp(Rd), 1 < p < ∞, with a Fourier transform f̂ in

the distributional sense. If the radial basis function in use is the generalised

multiquadric function and f̂ is supported in [−π, π]d, we have that

lim
c→∞

Icf(x) = f(x) (7.1.7)

uniformly on Rd. More generally, for any α ∈ Zd
+,

lim
c→∞

∂αIcf(x) = ∂αf(x) (7.1.8)

uniformly on Rd, where ∂α is a short notation for the partial derivative

∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂xαd

d

of order α ∈ Zd
+.

Remarks.

In this sense, χc can be seen as a generalisation of the sinc function which

provided the famous sampling theorem (see [Jer]). However, the sinc
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function decays far too slowly, so it is not very well localised, and it has

to be used employing the tensor product form in the high dimensional

case.

By Paley-Wiener’s theorem, the functions satisfying the conditions in The-

orem 7.1.2 can be extended to entire functions of exponential type at

most π. For details, one can refer to [St3] and [PlPo].

The conclusions of Theorem 7.1.2 are still justified for any radial basis func-

tion with its Fourier transform using the modified Bessel functions Kvj

in the form of

φ̂c(r) =
m∑

j=1

gj(r)c
sj
Kvj(cr)

rvj
,

where for each j = 1, . . . ,m, vj being always positive, sj ∈ R+, and gj

are univariate functions which have continuous derivatives with gj and

g′j possessing at most polynomial growth.

Notice that when p = ∞, (7.1.6) may not be true. To see this, one can

consider f(x) = sin πx as an example, which is nonzero but vanishes at every

integer. In this view, we turn to establish (7.1.6) as well for approximand

functions, which are in some special forms-Fourier transform of Borel measure,

Fourier-Stieltjes integral and multivariate polynomials, respectively.

Theorem 7.1.3. Let f be a multivariate function on Rd which is band-limited

and defined by a Fourier transform of any Borel measure, that is

f(x) =

∫

[−π,π]d
exp(ix · u) dµ(u), (7.1.9)

where µ is a Borel measure on Rd with µ([−π, π]d) < ∞. The · denotes the

usual inner product. Then we still have for the generalised multiquadric radial

basis function

lim
c→∞

Icf(x) = f(x)

uniformly for all x ∈ Rd.

Theorem 7.1.4. Let f be a multivariate function on Rd defined by a Fourier-
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Stieltjes integral, that is

f(x) =

∫

[−π,π]d
exp(ix · u) dα1(u1) · · · dαd(ud), x ∈ Rd, u = (u1, . . . , ud),

(7.1.10)

where each αj(uj), j = 1, . . . , d, is of bounded variation in [−π, π] with αj(−π+
0) − αj(−π) = αj(π) − αj(π − 0). The cardinal interpolation in multiple

dimensions using the aforementioned cardinal function χc with radial basis

functions ϕcγ = (r2 + c2)γ will then in fact satisfy for all γ that are not non-

negative integers

lim
c→∞

Icf(x) = f(x)

uniformly for all x ∈ Rd.

Theorem 7.1.5. If f is a multivariate polynomial on Rd of degree componen-

twise less than 4γ+3d−1 when 2γ+d is even or 2γ+2d−1 for all other cases,

it enjoys for the generalised multiquadric function the identity (7.1.6) point-

wise with an absolutely convergent infinite sum. For a polynomial of degree

componentwise less than 4γ+3d−1/2 when 2γ+d is even or 2γ+2d−1/2 for

all other cases, the same is true in the sense of L2 with a square summable se-

ries. So the L2-error of the difference between approximand and approximant

vanishes.

We remark that the generalisation also could be seen easily by applying The-

orem 7.1.4 to the example f(x) = cosπx as approximand for which therefore

Theorem 7.1.1, Theorem 7.1.3 and Theorem 7.1.5 are not applicable. Also

the observation of Powell [Pow, Section 5] about f(x) = x2 is justified by

Theorem 7.1.5.

In the papers [Bax] and [?], the authors essentially accomplished their

proofs by applying the limit behaviour of χ̂c, the Fourier transform of cardinal

function χc. However, in our cases it is no longer enough for the proofs. Hence,

in the next section after recalling some well known facts we will first establish

some pointwise estimate of χc. Then, in particular, taking into account special

properties of the modified Bessel functions we gave an estimate of a sum of

χc and its derivatives, which are crucial for the proofs of our main results. Fi-

nally, we will complete that section by proving Theorem 7.1.2, Theorem 7.1.3,

Theorem 7.1.4 and Theorem 7.1.5.
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7.2 limit for the parameter of cardinal inter-

polation with RBF

Again, the radial basis function we consider is called the generalised multi-

quadric with a parameter c > 0 and a nonzero parameter γ, not a positive

integer, where incidentally for positive exponent γ also c = 0 is explicitly

allowed,

ϕcγ(r) =
(
r2 + c2

)γ
, r > 0.

As it is well known, the Fourier transform preserves the radial symmetry prop-

erty; that is, if f is a radial function on Rd, its Fourier transform satisfies that

f̂(ξ) = f̂(η), if ‖ξ‖ = ‖η‖, ξ, η ∈ Rd.

So for convenience, given a fixed dimension d, we define

ϕ̂cγ(r) := Φ̂cγ(x), r = ‖x‖, x ∈ Rd,

with Φcγ(x) = ϕcγ(‖x‖). Here and in what follows, we specify the Fourier

transform normalised incidentally as

f̂(ξ) =

∫

Rd

f(x) exp(−ix · ξ) dx, ξ ∈ Rd. (7.2.1)

So long as we have the classical case γ = 1
2
, ϕ̂cγ can be formulated as

ϕ̂cγ(r) = ϕ̂c,1/2(r) = −(2πc)(d+1)/2K(d+1)/2(cr)

πr(d+1)/2
,

where K(d+1)/2 is modified Bessel function with degree (d+1)/2. In particular,

for the one-dimensional case with γ = 1/2, we have the simple expression

ϕ̂cγ(‖x‖) = ϕ̂c,1/2(‖x‖) = −2cK1(c‖x‖)
‖x‖ = −2

∫ ∞

1

exp(−c‖x‖t)(t2 − 1)
1
2dt.

(7.2.2)

Now, in the general d-dimensional case for γ not a nonnegative integer and

c > 0,

ϕ̂cγ(r) = −2Γ(γ + 1)πd/2−1(2c/r)γ+d/2 sin(πγ)Kγ+d/2(cr)
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which has an integral representation as

− 2π(d−1)/2c2γ+dΓ(γ + 1) sin(πγ)

Γ
(
γ + d+1

2

)
∫ ∞

1

exp(−crt)(t2 − 1)γ+
d−1
2 dt, (7.2.3)

and for the case c = 0, γ > 0, not integral,

ϕ̂0γ(r) = −Γ

(
γ +

d

2

)
Γ(1 + γ) sin(πγ)22γ+dπd/2−1r−2γ−d.

For further details of above formulae, one can refer to [Jon] for instance.

Especially the exponential decay of ϕ̂cγ for large argument is essential for

our proofs, that is, for 0 < ‖ξ‖ < ‖η‖ in particular

|ϕ̂cγ(‖η‖)| ≤ exp
[
−c(‖η‖ − ‖ξ‖)

]
|ϕ̂cγ(‖ξ‖)| , (7.2.4)

which is in fact a slight generalisation of Lemma 2.1 in [Bax] and is guaranteed

by an asymptotic behavior of modified Bessel functions (see [AbSt, 9.7.2]); that

is, for any degree v ∈ R+,

Kv(x) ∼
e−x

√
x
, x→ +∞, (7.2.5)

where A ∼ B means there is a constant θ independent of x such that θ−1A ≤
B ≤ θA. Apart from this, we need two more facts on modified Bessel functions.

Namely,

Kv(x) ≥
√
π

2

e−x

√
x
, x > 0, |v| ≥ 1

2
, (7.2.6)

and the formulas for derivatives (see for instance [AbSt, 9.6.28]), that is

d

dz

Kv(z)

zv
= −Kv+1(z)

zv
, z ∈ C. (7.2.7)

Furthermore, due to [Buh2], with respect to the generalised multiquadric radial

function again, the cardinal function defined by (7.1.1) in Rd exists, and its

Fourier transform is given by

χ̂c(x) =
ϕ̂cγ(‖x‖)∑

` ϕ̂cγ(‖x+ 2π`‖) , (7.2.8)

where the sum is taken over all d-dimensional multi-integers `. Based on this,
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the following two lemmas provide us with further details about the cardinal

function χc and its Fourier transform.

Lemma 7.2.1. For any u ∈ (−π, π),

|1− χ̂c(u)| ≤ e−c|π−u|, (7.2.9)

and for u ∈ R \ [−π, π], say u = ζ + 2πk with k ≥ 1 and ζ ∈ (−π, π),

|χ̂c(u)| ≤ e−cπk + e−c|π−ζ|. (7.2.10)

Remarks.

(i) Lemma 7.2.1 can be seen as a deeper characterisation of Proposition 2.2

in [Bax]. For the clarity of presentation, it is convenient to rewrite it as

a lemma.

(ii) This result can be easily extended to any high dimensional case Rd by

replacing |π−ζ| and k in (7.2.9), (7.2.10) by σd(ζ) and |κ|∞ respectively,

here |k|∞ = max |kj| and

σd(ζ) = min{|πε− ζ| : ε ∈ {−1, 0, 1}d, ε 6= 0}, ζ ∈ (−π, π)d. (7.2.11)

(iii) Through the inverse Fourier transform, this lemma immediately implies

that

|∂αχc(x)| ≤ A, α ∈ Zd
+, x ∈ Rd, (7.2.12)

where A is a constant independent of c and x.

Proof. By using (7.2.8),

|χ̂c(2π − u)| ≤ ϕ̂cγ(|2π − u|)
ϕ̂cγ(|u|)

.

Since |2π − u| − |u| ≥ |π − u| for u ∈ [0, π), by (7.2.4) we have (7.2.9) imme-

diately.

Similarly, when k ≥ 2, notice that

|2kπ − u| = |(2k − 1)π + π − u| ≥ (2k − 1)π,
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which means |2kπ − u| − |u| ≥ (2k − 2)π ≥ kπ, and therefore (7.2.10) holds

by (7.2.8) and (7.2.4).

Lemma 7.2.2. For any ε > 0,

∑

j∈Zd

|χc(x+ j)|1+ε < A <∞, (7.2.13)

where A is a constant independent of c and x. Furthermore, for any α ∈ Zd
+,

∑

j∈Zd

|∂αχc(x+ j)|1+ε < A′ <∞, (7.2.14)

where A′ is a constant independent of c and x ∈ Rd.

Proof. It will be instructive to consider first the one dimensional case where

the arguments can be transferred to the higher dimensional situation easily

under a slight change.

By combining (7.2.8), (7.2.2) and (7.2.7), after a straightforward calcula-

tion, we have that

χ̂′
c(ξ) =

c
[
K1(c|ξ|)

|ξ|
∑

`
K2(c|ξ+2π`|)H(ξ+2π`)

|ξ+2π`| − K2(c|ξ|)
|ξ|

∑
`
K1(c|ξ+2π`|)

|ξ+2π`|

]

[∑
`
K1(c|ξ+2π`|)

|ξ+2π`|

]2

=
c
[
K1(c|ξ|)

|ξ|
∑

` 6=0
K2(c|ξ+2π`|)H(ξ+2π`)

|ξ+2π`| − K2(c|ξ|)
|ξ|

∑
` 6=0

K1(c|ξ+2π`|)
|ξ+2π`|

]

[∑
`
K1(c|ξ+2π`|)

|ξ+2π`|

]2 ,

where H(x) = 1 for x ≥ 0 and H(x) = −1 otherwise. Now, suppose that the

parameter c is sufficiently large, by using (7.2.5) and (7.2.6), we have that

|χ̂′
c(ξ)| .

{
ce−c|π−ζ|, |k| ≤ 1;

cke−cπk, |k| > 1,
(7.2.15)

for ξ = ζ + 2πk with ζ ∈ (−π, π) and k ∈ Z and |ξ| > ε. Here and in what

follows we use . to denote that there is an extra constant independent of c in

the proposed upper bound.

Note that in case of choosing ξ = π for example, the first infinite sum in
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the numerator in the pen-ultimate display cancels, that is

∑

`

K2(c|ξ + 2π`|)H(ξ + 2π`)

|ξ + 2π`|

vanishes, which results in a nonzero numerator, because the two series no

longer annul each other asymptotically, and explains the c factor for ±π as

arguments in χ̂′
c(ξ).

Therefore, by symmetry,

∫ ∞

−∞
|χ̂′

c(ξ)|dξ = 2
∞∑

k=0

∫

[−π,π]

|χ̂′
c(ζ + 2πk)|dζ < B <∞, (7.2.16)

where B > 0 is independent of the parameter c. It turns out that

|χc(x)| ≤
1

2π|x|

∣∣∣∣
∫ ∞

−∞
eixξχ̂′

c(ξ)dξ

∣∣∣∣ ≤
B

|x| (7.2.17)

which, by combining with (7.2.12), implies the desired (7.2.13) for d = 1.

Then, for the general dimensional case, using the same argument we can

obtain that for ξ = ζ + 2πk with ζ ∈ (−π, π)d and k ∈ Zd,

|∂1ξ χ̂c(ξ)| .
{
ce−cσd(ζ), |k|∞ ≤ 1;

ce−cπk, |k|∞ > 1,

where ∂1ξ = ∂d

∂ξ1···∂ξd and σd is as defined in (7.2.11) . This immediately implies

that

|χc(x)| ≤
1

2π
∏d

j=1 |xj|

∣∣∣∣
∫

Rd

eix·ξ∂1ξ χ̂c(ξ)dξ

∣∣∣∣ ≤
B′

∏d
j=1 |xj|

with B′ independent of c, x and thus (7.2.13) is justified.

Finally, to prove (7.2.14), when d = 1 we notice that (7.2.15) implies the

analogues of (7.2.15), (7.2.16) and (7.2.17); that is, for any a ∈ Z+, we have

that

|ξaχ̂′
c(ξ)| .

{
ce−c|π−ζ|, |k| ≤ 1;

ckae−cπk, |k| > 1,

for ξ = ζ+2πk with ζ ∈ (−π, π), k ∈ Z, and there is a constant B′′ independent

of c such that ∫ ∞

−∞
|ξaχ̂′

c(ξ)|dξ < B′′ (7.2.18)
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and
∣∣∣∣
da

dxa
χc(x)

∣∣∣∣ ≤
1

2π|x|

∣∣∣∣
∫ ∞

−∞
(iξ)aeixξχ̂′

c(ξ)dξ

∣∣∣∣ ≤
B′′

2π|x| , |x| > 0. (7.2.19)

Consequently, with (7.2.12) we can conclude (7.2.14) for one dimension and

indeed for any higher dimension.

Now we are in the position to prove Theorem 7.1.2.

Proof of Theorem 7.1.2: Suppose that f ∈ Lp(Rd), 1 < p < ∞, with its

Fourier transform supported in [−π, π]d. Let fn ∈ Lp(Rd) ∩ L2(Rd) such that

supp f̂ ⊂ [−π, π] and fn → f in Lp(Rd). Here n ∈ N. For instance, one can

set

fn(x) = f ∗ gn(x)

with gn(x) = (n/π)d/2e−n‖x‖2 . Here, the star denotes the classical convolu-

tion by integrals. Noticing the Nikolskii type inequality for exponential type

obtained by Nessel and Wilmes [NeWi, Theorem 3], fn also converges to f

uniformly as n→ ∞.

Then by Hölder’s inequality, for any x ∈ Rd and p > 1 with p′ = p/(p− 1),

we have

|Ic(fn)(x)− Ic(f)(x)| ≤
(∑

j

|fn(j)− f(j)|p
)1/p(∑

j

|χc(x− j)|p′
)1/p′

,

which, with Lemma 7.2.2 and Plancherel-Pólya’s theorem (see, for instance

[PlPo]), implies that

|Ic(fn)(x)− Ic(f)(x)| ≤ C‖fn − f‖p,

where C is a constant dependent on p but not dependent on x, n and c.

Therefore, since

|Ic(f)(x)− f(x)| ≤ |Ic(f)(x)− Ic(fn)(x)|+ |Ic(fn)(x)− fn(x)|+ |fn(x)− f(x)|,

by applying Theorem 7.1.1 to fn, we conclude (7.1.7), and the same is true

for (7.1.8) by a similar argument using the statement about the sum of partial

derivatives from the previous lemma. �

Next we turn to prove Theorem 7.1.3, Theorem 7.1.4 and Theorem 7.1.5, which
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will be essentially relying on the following Lemma 7.2.4. However, for more

clarity of the presentation, before that we state a corollary of Lemma 7.2.1

since it will be used many times in the proof of Lemma 7.2.4.

Corollary 7.2.3. Let m1,m2 be any two nonnegative integers with m1+m2 =

d. Then for u ∈ (−π, π)d, the series

∑

k1∈A1 or k2∈A2

χ̂c

(
2πk1 + u, πk2

)
. e−cσd(u), as c→ ∞, (7.2.20)

where A1 = Zm1 \ {0} and A2 = Zm2 \ {0,−1, 1}m2.

Lemma 7.2.4. Let χc be the cardinal interpolation function as above, employ-

ing the said generalised multiquadric function ϕcγ. Then for any x = (x1, x2) ∈
Rd with x1 ∈ Rm1, x2 ∈ Rm2, and m1 + m2 = d, m1,m2 being nonnegative

integers, if u ∈ (−π, π)m1,

∣∣∣∣∣
∑

j1∈Zm1

∑

j2∈Zm2

eij1·u(−1)j2χc(x1 − j1, x2 − j2)− eix1·u cos(πx2)

∣∣∣∣∣ . e−cσd(u),

(7.2.21)

as c → ∞, where σd(u) is as defined in (7.2.11). Here and anywhere else we

adopt the convention that for some nonnegative integer m we have (−1)α :=

(−1)α1 · · · (−1)αm if α = (α1, . . . , αm) ∈ Zm and x · y, for x, y ∈ Rm, is

the inner product as before, and cos x denotes the componentwise product

cos x1 · · · cos xd̂ if x = (x1, . . . , xd̂) ∈ Rd̂, any d̂ ∈ N.

In particular, when m2 vanishes, one can simplify (7.2.21) as the estimate

∣∣∣∣∣∣
∑

j∈Zd

eij·uχc(x− j)− eix·u

∣∣∣∣∣∣
. e−cσd(u), u ∈ (−π, π)d, x ∈ Rd. (7.2.22)

Proof. Recall that with the specification of the Fourier transform (7.2.1), the

Poisson summation formula states that, if for example – see e.g. [?] also for

weaker requirements –

|f(x)|+
∣∣f̂(x)

∣∣ = O
(
1 + ‖x‖−d−ε

)
with some ε > 0, (7.2.23)
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then it is true that

∑

j∈Zd

f(x− j) =
∑

k∈Zd

f̂(2πk)e−2πix·k, x ∈ Rd. (7.2.24)

Now, the proof is the same in all dimensions, but the description is simpler for

R2, so first our proof is carried out for R2, and next we indicate the necessary

changes to the desired generalisation to higher dimensions.

Obviously, the decay properties (7.1.3), (7.1.4) and (7.2.4) guarantee the

requirement (7.2.23). Therefore, for fixed x1, x2 ∈ R, since

∑

j1∈Z

∑

j2∈Z
eij1u(−1)j2χc(x1 − j1, x2 − j2)

= eix1u
∑

j1∈Z

∑

j2∈Z
e−i(x1−j1)u

[
χc

(
x1 − j1, 2

(x2
2

− j2

))
− χc

(
x1 − j1, 2

(x2 − 1

2
− j2

))]
,

and by using the stated Poisson summation formula (7.2.24) with

f(x) = e−ix1uχc(x1, 2x2),

we have that

∑

j1∈Z

∑

j2∈Z
eij1u(−1)j2χc(x1 − j1, x2 − j2)

=
eix1u

2

∑

k1∈Z

∑

k2∈Z
χ̂c(2πk1 + u, πk2)e

−2iπk1x1
[
e−iπk2x2 − e−iπk2(x2−1)

]

= I1 + I2,

where

I1 = eix1u
[
χ̂c(u, π)e

−iπx2 + χ̂c(u,−π)eiπx2

]

and

I2 =
eix1u

2

∑

k1 6=0 or |k2|>1

χ̂c(2πk1 + u, πk2)e
−2iπk1x1

[
e−iπk2x2 − e−iπk2(x2−1)

]
.
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Notice that by using the symmetry of (7.2.8),

∣∣χ̂c(u, π)−
1

2

∣∣

=
∣∣χ̂c(u,−π)−

1

2

∣∣

=

∣∣∣∣∣
ϕ̂cγ

(
‖(u, π)‖

)
∑

`1,`2∈Z ϕ̂cγ

(
‖(u+ 2π`1, π + 2π`2)‖

) − 1

2

∣∣∣∣∣ (7.2.25)

=

∣∣∣∣∣


2 +

∑

|`1|≥1
`2 6=0,−1

ϕ̂cγ

(
‖(u+ 2π`1, π + 2π`2)‖

)

ϕ̂cγ

(
‖(u, π)‖

)




−1

− 1

2

∣∣∣∣∣

≤
∣∣∣∣∣


2 +

∑

|`1|≥1
`2 6=0,±1

ϕ̂cγ

(
‖(u+ 2π`1, π`2)‖

)

ϕ̂cγ

(
‖(u, π)‖

)




−1

− 1

2

∣∣∣∣∣

=o(1), (7.2.26)

which uniformly approaches zero as c→ ∞ after a straightforward calculation

by using (7.2.4).

For I2, using (7.2.8) again, we have that

|I2| ≤
∑

k1 6=0 or |k2|>1

χ̂c

(
2πk1 + u, πk2

)
. e−cσ1(u), (7.2.27)

where the last step follows from Corollary 7.2.3.

Then, with a slight modification, the proof works equally well for the re-

maining cases when for instance m1 = 2 and m1 = 0 and therefore we have

completed the proof now for 2-dimensional case.

In the general Rd case, with m1 +m2 = d, m1,m2 being both nonnegative
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integers, and u ∈ (−π, π)m1 ,

∑

j1∈Z
m1

j2∈Z
m2

eij1·u(−1)j2χc(x1 − j1, x2 − j2)

= eix1·u
∑

s2∈{0,1}m2

∑

j1∈Z
m1

j2∈Z
m2

e−i(x1−j1)·u(−1)s2χc(x1 − j1, x2 − s2 − 2j2)

=
eix1·u

2m2

∑

k1∈Z
m1

k2∈Z
m2

χ̂c(2πk1 + u, πk2)e
i2πx1·k1eiπx2·k2

∑

s2∈{0,1}m2

(−1)s2e−iπs2·k2 .

(7.2.28)

Then one can check that for any nonnegative integer m, if k ∈ {1,−1}m,
∑

s∈{0,1}m
(−1)seiπk·s =

∑

s∈{0,1}m
(−1)2s = 2m, (7.2.29)

and if k ∈ {0, 1,−1}m \ {1,−1}m, say ki1 = ki2 = · · · = kit = 0, 1 ≤ i1 < · · · <
it ≤ m with a positive integer 0 < t ≤ m,

∑

s∈{0,1}m
(−1)seiπk·s =

∑

si1 ,...,sit∈{0,1}
(−1)si1+···+sit = 0.

By applying these to (7.2.28), it implies that

∑

j1∈Zm1 ,j2∈Zm2

eij1·u(−1)j2χc(x1 − j1, x2 − j2) = eix1·uχ̂c(u, πe)
∑

k2∈{−1,1}m2

eiπx2·k2 + J2

= 2m2eix1·u cos(πx2)χ̂c(u, πe) + J2.

(7.2.30)

Here recall that e = (1, 1, . . . , 1) ∈ Rm2 and

J2 =
eix1·u

2m2

∑

k1∈A1or k2∈A2


χ̂c(2πk1 + u, πk2)e

i2πx1·k1eiπx2·k2
∑

s2∈{0,1}m2

(−1)s2e−iπs2·k2




satisfying that with A1 = Zm1 \ {0} and A2 = Zm2 \ {0, 1,−1}m2 as before

|J2| ≤
∑

k1∈A1 or k2∈A2

χ̂c

(
2πk1 + u, πk2

)
. e−cσd(u), c→ ∞,

by using Corollary 7.2.3. Moreover, in a similar way as in (7.2.26), we obtain
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that uniformly in u,

lim
c→∞

χ̂c(u, πe) = 2−m2 .

Then consequently (7.2.30) yields the desired (7.2.21).

Now we are in the position to prove Theorem 7.1.3, Theorem 7.1.4 and

Theorem 7.1.5. Beginning by using Lemma 7.2.4 and the dominated conver-

gence theorem, we can obtain Theorem 7.1.3 directly, basically in the same

way as in the following

Proof of Theorem 7.1.4: For the sake of convenience and being concise, we

shall carry out the proof only for d = 2, while the general case follows in a

most similar way.

For each j = 1, 2, let

αj,0(u) =





αj(−π + 0), if u = −π,
αj(u), if −π < u < π,

αj(π − 0), if u = π;

and define furthermore

Aj = αj(−π + 0)− αj(−π), Bj = αj(π)− αj(π − 0) and Cj = Aj +Bj.

Then noticing that Aj = Bj, j = 1, 2,

f(x) =
2∏

j=1

[∫ π

−π

eixjuj dαj,0(uj) + Cj cos(πxj)

]

where u = (u1, u2), x = (x1, x2).

Then, by expanding f(k) for each k = (k1, k2) ∈ Z2, we have
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|Ic(f)(x)− f(x)|
=|
∑

k∈Z2

f(k)χc(x− k)− f(x)|

≤
∫

[−π,π]2

∣∣∣∣
∑

k∈Z2

eik·uχc(x− k)− eix·u
∣∣∣∣ dα1,0(u1)dα2,0(u2)

+ |C1|
∫ π

−π

∣∣∣∣
∑

k∈Z2

(−1)k1eik2u2χc(x− k)− eix2·u2 cos πx1

∣∣∣∣ dα2,0(u2)+

+ |C2|
∫ π

−π

∣∣∣∣
∑

k∈Z2

(−1)k2eik1u1χc(x− k)− eix1u1 cos πx2

∣∣∣∣ dα1,0(u1)+

+ |C1C2||
∑

k∈Z2

(−1)kχc(x− k)− cos(πx)|,

which, by applying Lemma 7.2.4 and the continuity of α1,0, α2,0, allows us to

claim that

lim
c→∞

|f(x)− Ic(f)(x)| = 0

uniformly on x ∈ R2 and therefore – using the analogous arguments in the

general multivariate case – conclude the proof of Theorem 7.1.4. �

In order to prove Theorem 7.1.5, it is sufficient to notice that for example

x2 = 2 lim
u→0+

1− cos(xu)

u2
(7.2.31)

and

x3 = lim
u→0+

2 sin(xu)− sin(2xu)

u3
.

Moreover,

x4 = lim
u→0+

6− 8 cos(xu) + 2 cos(2xu)

u4
,

and similarly for all other powers. Then, by applying Lemma 7.2.4 again and

choosing certain linear combinations, we arrive directly at Theorem 7.1.5. �

We remark that the idea of Theorem 7.1.4 using Fourier-Stieltjes integrals

follows from the work of I.J. Schoenberg in [Sch], where it concerns the spline

interpolation. Moreover, in [RiSc], he also proved the necessity of the condition

(7.1.10). Nonetheless, this problem is still open for our case.

We also remark a straightforward generalisation of the Corollary 7.2.3,
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where the decay property and the existence of the Lagrange functions are

needed and guaranteed by the work in Chapter 4 in [Buh1], and the remaining

part of the proof follows the same lines as above.

Corollary 7.2.5. Let ϕ
c
be any radial basis function, depending on a posi-

tive parameter c, that possesses a generalised Fourier transform ϕ̂
c
which is

positive, decays exponentially with

ϕ̂
c
(r) = O

(
exp(−αcr)

)
, c, r → ∞, (7.2.32)

and

1/ϕ̂
c
(r) = O

(
exp(αcr)

)
, c, r → ∞,

for some positive α, α, and has a singularity of positive order µ at the origin.

Then the identities of the previous Lemmas 2.1 and 2.2 hold. If moreover,

the standard conditions in [Buh1], p. 59, are satisfied, namely for M > d +

µ that ϕ̂
c
∈ CM(R+) with all its derivatives satisfying (7.2.32) and having

singularities

ϕ̂(`)(r) ∼ r−µ−`

at the origin, ` = 0, 1, . . . ,M , then the cardinal function satisfies the decay

estimate that at a minimum

|χc(x)| = O(‖x‖−d−µ)

for large argument. Therefore in particular

∑

j∈Zd

∣∣∣χc(x− j)
∣∣∣

is uniformly convergent and bounded for all arguments.

Note that the proof of Theorem 7.1.4 essentially only relies on the decay

property of radial basis function ϕ
c
given in Corollary 7.2.5. Naturally we

extend our results to this more general class of radial basis functions. A typical

example is the generalised shifted thin-plate spline radial basis function

ϕ
c
(r) = (r2 + c2) log(r2 + c2)
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with Fourier transform

2(2π)d/2
d

dβ
2β/2/Γ(β/2)

∣∣∣∣
β=2

Kd/2+1(cr)(c/r)
d/2+1,

see for example [BuDa] Example 2.7.

Corollary 7.2.6. Let f be an entire multivariate function on Cd defined by a

Fourier-Stieltjes integral, that is

f(x) =

∫

[−π,π]d
exp(ix · u) dα1(u1) · · · dαd(ud), x ∈ Rd, u = (u1, . . . , ud),

where each αj(uj), j = 1, . . . , d, is of bounded variation in [−π, π] with αj(−π+
0)− αj(−π) = αj(π)− αj(π − 0). The cardinal interpolation in d dimensions

using the aforementioned cardinal function χc with radial basis functions ϕ
c
as

given in Corollary 7.2.5 will then in fact satisfy

lim
c→∞

Icf(x) = f(x)

uniformly for all x ∈ Rd.
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