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Abstract

In this thesis, we examine two robust and efficient methods of estimation
in dose-response studies context. In particular, we investigate the minimum
Hellinger distance estimation and symmetric chi-squared distance methods of
estimation. Using these approaches, we obtain estimators which have desirable
robustness properties as well as good asymptotic efficiency properties. We
support our theoretical results with extensive finite sample simulation studies.

For quantal assay problems, logit and probit analysis are used to analyze
binary responses. Based on the minimum Hellinger distance and symmetric
chi-squared distance approaches, new estimators of the regression parameters
are derived for logistic and probit models. Then their asymptotic properties
such as consistency and asymptotic normality are investigated. It is shown
that our minimum Hellinger distance estimator is asymptotically equivalent to
the traditional estimators derived using the maximum likelihood and weighted
least squares approaches. Simulation studies are used to demonstrate that the
new estimators work as good as the traditional estimators and most often
outperforms them when a contamination occurs in the data.

Further, the proposed methods are used to estimate the critical dose, and
the corresponding estimators are again compared with the the maximum like-
lihood and weighted least squares estimators. This is done only numerically.
The final numerical estimates are obtained by performing optimization of the
mean value of 1000 replications. The proposed estimators are comparable to
the benchmark methods and show good robust properties. A real data set is

analyzed as case study to illustrate the performance of the estimators.
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Chapter 1

Introduction

1.1 Parameter Estimation in Dose-Response

Studies

1.1.1 Background

In order to obtain a preliminary efficacy and toxicity of a testing drug, wide-
ranging quantities of doses are used in the pre-clinical studies. The crucial step
is to find the critical dose. Critical dose is a random variable which determines
the minimum amount of drug needed to show a response (e.g. cure in an
efficacy experiment or death in a dosage-mortality study). Due to variation
between individuals in the population, the critical dose is a random variable
and the statistical problem concerns with the estimation of the parameters of
its distribution.

In the usual dose-response experiments, study subjects are randomized to
several subgroups. The outcome of interest is usually measured at several in-

creasing dose levels, denoted as z; (j = 1,2,..., K, i.e. K different increasing



dosages). In each subgroup, the number of individuals who show a response

is observed. Then the ratio 7; = % is an estimate and a sufficient statistic of
J

P(Critical Dose < x;), where m; subjects show responses out of n;. Assume

that
P(Critical Dose < x;) = P(Response at Dose x;) = F (o + fz;),

where F'is a known distribution function and «, # are unknown parameters.

One of the most important quantity of dose is the ‘median effective dose’
(EDsp), which is the dose that produces a response in half of the population
that takes it. The most common choices of F' are the cumulative distribution
functions (CDF) of logistic and normal distributions. For instance, the logistic
CDF is F(z) = (1 + e~ "7 )~!, where p is the location parameter and o is the
scale parameter. The standardized form of the logistic CDF has p = 0 and
o =1land, as z — oo, F(z) 1 1 when ¢ > 0 (we do not consider the case where
o < 0). The model used here is not formulated in terms of the usual location
and scale parameter; the parameters o and [ have another interpretation as
follows.

The dose-response curve is S-shaped and logistic regression model is one

of the most important formulae used to fit this S-shaped pattern:

m(y) = (1.1)

We solve for y and obtain y = log lirgry()y), and we call it logit[m(y)]. Since 7,

is considered as a sufficient statistic for F(a + Bx;), we have y; = F~(7;) =

log 1™ = a + fz;. The plot of y; = F~(x,) against z;, j = 1.2,.... K,

1—



should be approximately a straight line, if our chosen model is appropriate.

1.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is by far the most popular point es-
timation method employed in statistics. If model is correct and the observa-
tions are not contaminated, then parameters can be estimated using the MLE
method effciently. MLEs have many nice properties such as consistency and
asymptotic efficiency in most cases. However, they can be highly unstable if
the model is not totally correct, and they are not robust if the data is slightly
contaminated.

An example of MLE of one-dimensional location parameter is as follows.
Let X be a random variable (r.v.) from a probability density function f(z),
with location parameter 6. For sample of n independent observations {1, ..., z,}
with the same distribution as X, the likelihood function is the joint prob-
ability distribution or density function f(x;#), viewed as a function of the
parameter 6 given the sample. Then the likelihood function is given by
1(0;x) =TI, f(x;;0). The estimated parameter in the maximum likelihood
sense, say é, is the parameter value that maximizes the likelihood function,
and it can be obtained by solving the equation % loes = 0.

For easier calculation, In/, which is called the log-likelihood, is commonly
used instead of [ if any exponential form is shown in the likelihood func-

tion. Therefore, the MLE is defined as: 6 = arg mian(xi; 6), where p =
A

n

—In f(x;;60). Our objective is then to minimize L(f) = ZP(%’% ). To solve
i=1

the optimization problem, the derivative of the objective function was set equal

to zero and solve for 6: % lo—s = 0. If p is an arbitrary function, an implicit



equation Ziﬂ(%; 0) = 0 with ¢¥(z;;0) = W is called an M-estimation e-
i=1

quation (M stands for ‘maximum likelihood type’). The resulting estimator is

called an M-estimator. See Huber (2009) for more details.

In our dose-response problem, let 8y = (g, 8y)7 be the true parameter

value, and @ = (&, 3)7 be the MLE of 8y = (v, )7, then

(@, 5)" = argmaz{ILL [F(a+ Ba)™ [L = Fla + fz;)[" ™} (1.2)

a7/3

We typically use an iterative procedure (e.g. Fisher Scoring or Newton-
Raphson algorithm) to find the maximum likelihood estimate. If we assume

that the following linear logistic model holds
logit[m;] = ap + Boz;

where 7; = Prob(Y; = 1) with Y; = 1 means a positive response is showing,

and the F' to be the CDF of logistic distribution F(ag + fox;j) = e0* 507

1+ea0+ﬁozj 9

then the variance of the predicted probability is given by

Var(logit[r;]) = Var(&) + x?Var(B) + z;Cov(a, ).

A

For maximum likelihood estimators & and [, Var(ol,B) is obtained by

inverting the information matrix. Specifically,

Var(a,f)=E | 7! =t :
Z(Wj%) Z(Wﬂ??)
j=1 j=1

where



- njexp{ao+Boz;}
I/V] - (1—iewp{a0+ﬂox;})2'

In general, for a continuous distribution with CDF F' and probability den-

. . 2 (ao+Box;
sity function (PDF) f, W; o F(ao+,ﬁgm](~)(olffg(£+ﬁozj))‘

1.1.3 Weighted Least Square Estimation

Suppose y; = F~!(7;) against z;, j = 1,2,..., K, is plotted, and if the pos-
tulated model is appropriate then the plotted points should approximately lie
in a straight line. But due to multiple reasons, such as model contamination
or sampling fluctuations in the data, the plotted points usually cannot strictly
follow a straight line. The parameters a and  are the y-intercept and the
slope of this straight line, respectively. Therefore, the problem can be con-
sidered as one of simple linear regression under the assumption that the error
variance is non-homogeneous. For known heteroscedasticity, weighted least
squares (WLS) is a popular method which is used to obtain efficient unbiased
estimates.

In this dose-response problem, consider minimizing the weigl;ting of the

individual measurements in the least squares cost function: V' = anwj (y; —
j=1
o — 695]-)2 with respect to a and 8 to obtain & and . In matrix form:

V = (Y - Z0)"W(Y — Z0), where Y = (y1,¥s,---yx)’, 0 = (o, 8)7,
1 o w1
Z—|: | w=
1 xk Wk
Let 6 = (&, B)T be the WLSE of (ayg, ). This involves solving the equation
2I(Y — Z0)"W(Y — Z8)] = 0 and it results in = (Z7WZ)"'ZTWY. For

calculation in the general form, let f be the density function of F', w; =



f*(y;)/[m;(1 = ;)] and the minimization gives the following estimates:

K
0 =Ty njuwjyZ;, (1.3)

J=1

K K
where Z; = (1,2;)", N = an and I'y = anijijT.
j=1 j=1
By examining (1.3) we note that the weighted least squares estimator is not

robust and could be greatly affected by many types of errors. Some common

eITrors are:

- errors in the measurement or recording of the x; values,

- errors in the 7; values as caused, for example, by subjects showing re-

sponse (e.g. dying) from other causes,
- errors caused by choosing the wrong distribution function,

- errors caused when the inverse function (or matrix) is not exist.

The method of iteratived reweighted least squares (IRLS) is an adjustment
K

of WLSE. One can use this algorithm to minimize Z log(1+ (y; — a— Bz;)?).
j=1
But as shown in Section 2.3.2 later, the results are not very good when com-

pared with other methods.

1.2 Motivation and Organization of The The-
sis

Statisticians stress the importance of robust procedure in statistical inference

over the years. Hampel (1968, 1973) and Huber (1972, 1973) are considered

6



as the landmark papers for finding robust statistics. Although the methods
they proposed are good in dealing with outliers, they are easily suffer from
a loss of efficiency if the assumed model distribution is actually the real one.
Two fundamental ideas in parametric estimation are efficiency and robustness,
but there are contradictions between the aims of achieving both, i.e. a robust
estimator is usually not efficient and vice versa. Hampel (1968) introduced
the influence curve to distinguish these two kinds of estimators. In general,
the influence curve of an efficient estimator will show unboundedness, while a
robust one will be always bounded. In many statistical inference areas, mini-
mum distance approaches yield statistics that are efficient under the case when
the postulated model is true and robust to deviations under the contaminat-
ed model. A popular minimum distance approach is the minimum Hellinger
distance (MHD) approach introduced by Beran (1977). He also proposed a-
influence curve to determine the robustness of an estimator. Various other
distances such as chi-squared distance, symmetric chi-squared distance, total-
variation distance, etc. have been used in the literature, see Lindsay (2004)
for more discussions on these distances and their applications.

This thesis is organized as follows. In Chapter 2, a version of the minimum
Hellinger distance estimation (MHDE) method is employed to estimate the
regression parameters (o, ) by comparing an estimate with the postulated
parametric distribution. Then the asymptotic properties such as consistency
and asymptotic normality of the MHD estimators are studied. Robust prop-
erties of the estimators are investigated using a Monte Carlo study.

In Chapter 3, the parameters (ag, 3y) are estimated using the symmetric
chi-squared distance introduced by Lindsay (2004). In particular, in Section

3.1 we propose estimating oy and Sy by the symmetric chi-squared distance



estimation (SCDE) method. In Section 3.2 we give results on the existence,
uniqueness, consistency and asymptotic distribution of the SCDE. In Section
3.3 we use some Monte Carlo studies to examine the robustness of the SCDE
in comparison with the traditional estimators.

In Chapter 4, the relationship between the predictive dose level and con-
tamination rate is numerically compared using four methods: MLE, WLSE,
MHDE and SCDE. Chapter 5 contains some closing remarks. It contains the
summary and conclusions on the performance of the methods employed. We

also provide some directions for further studies.



Chapter 2

Minimum Hellinger Distance

Estimation Method

2.1 Background

The minimum Hellinger distance (MHD) approach was proposed by Beran
(1977) for independent and identically distributed (iid) continuous random
variables in parametric models. MHD estimators have been shown to have
excellent robustness properties in parametric models such as the resistance to
outliers and robustness with respect to model misspecification (Beran, 1977;
Donoho & Liu, 1988). Since the original work of Beran, MHD estimators
have been developed in the literature for various setups and models including
discrete random variables, some parametric mixture models, semiparametric
models, etc. The literature is too extensive to state a complete listing here.
For recent developments in the area and some important references can be
seen in the recent articles of Wu and Karunamuni (2009, 2012), Karunamuni

and Wu (2011) and Tang and Karunamuni (2013).



There are many versions of mathematical form of Hellinger distance. In

the most general form, Hellinger distance between two probability measures

P and Q, Dy (P,Q), is defined as

D4(P.Q) = ;5 [IVF - Vildn 2.)

for some dominating measure u. The following example shows that the choice

of 1 does not affect the value of Dy (P, Q).

Example 2.1: (Shorack, 2000, p.68). Let P and @ denote probability
measures on (€2, A). Then the choice of dominating measure 1 does not affect
the value of Dy (P, Q).

Solution: For any measure p dominating both P and @, i.e. P << p,
Q <<, andfor Ae A P(A)=[,2 duand@ fA du,wherep—
and ¢ = 7 are Randon-Nikodym derivatives. Substituting p and ¢ in (2. 1)
we get D3 (P, Q) =5 [[\/p— ad)Pdu =5 [ 4 du—l— fdeu [VAPdQdu =
11— v/Pq. The first two integrals are equal to 1 because we are integrating
probability density functions. Hence, the choice of dominating measure p does
not affect the value of Dy (P, Q) and, for a discrete case, the counting measure

can be used as the dominating measure both P and @).

From Example 2.1, we find that minimizing the Hellinger distance is equiva-
lent to maximizing the Bhattacharyya (BC) distance, BC(P, Q) = | /pq since
D}(P.Q) = 5[2(1 - BC(P,Q))].

In a dose-response studies setup, we are dealing with N(= an), K >2

independent Bernoulli random variables, but not all identically distributed;

for a trial at dose x;, the probability of success is F'(a + fz;) and 7; = :’Lﬁ is
J

10



an estimate of this probability, j =1,..., K.
We define an estimator of («, 3) as the value of (&, 3) which minimizes the

sum of Hellinger distances

As(a, B) = an{[\/ﬁ'— Flo+ B + [/1 —m; — \/1 — F(a+ )]}

This is equivalent to maximizing

Boler B) = Y omy{ly/mFla+ Bay) +4/(1 = )1 = Fla + Ba,))}.

Now take w and %‘;’B) and solve the equations aAfgz’ﬁ ) = 0 and

9A(a,8)
op

case, only numerical solutions can be obtained. The same situation occurs for

= 0 to find estimators. However, there are no explicit solutions in this

maximum likelihood estimation in this context.

Let us denote I® = [0,1] x [0,1] x ... x [0,1] (K copies) and define G =
K

{(mr) e INxIK:0<m <L,y rj=1r>01<j< K}
j=1
Definition 2.1: Let © be the parameter space for (a, 3); © C R x (0, 00).
A Hellinger distance functional for estimating ‘true’ unknown parameter value

(v, Bo) is a functional T' : Gk — © such that T'(m,r) is a value of («, )

maximizing

Asfon8) = Y onAlym — \/Flact B+ [T =7 = \JL= Flat Bz}

11



Note that Aq(«, 5)/N can be written as:

Afe,B) = Y orlym — JFla+ Ba)l + VT = — 1= Fla+ Be))]’}

K K
where r; = 3£, with N = an. Thus er = 1. This is also equivalent
o j=1
to maximizing
K
H(a,B) =Y riHj(a,B), (2.2)

Jj=1

where Hj(a, 8) = {/m;F(a + B;) + /(1 - m)(1 = Fla+ B;))}.
For example, suppose F(a + ;) = e*% /(1 + ¢*%), the CDF of the

logistic distribution. Then substituting this F' in (2.2) we have

K
H = ZT’j(l + €a+ﬁwj>_%(\/ﬂ'j€a+ﬁxj —+ A/ 1-— 7Tj).
j=1

Taking logarithm both sides we obtain:

K
1
log H = E logr; — §log(1 + €)1 log(y/mjea P + /1 — ;)]
i=1

Then the derivatives with respect to (w.r.t.) « and § give score values

0 lzea+6xj[ 1 B 1 ]’

Oa 2 —y eatBT; 4 /(1 _ 7T)/7T6(a+bxf)/2 1 + eatBz;
K

oH X

o

]:

;e AT ! — ].
- J eatBr; /(1 _ W)/,/Te(aJrﬁxj)/Q 1 + e thz;

OH
]:

12



Let U; denote the part common to both %—g and %—g. Then the covariance

(Inverse Fisher Information) matrix can be approximated by

2.2 Properties of The MHDE

2.2.1 Consistency

Definition 2.2: An estimator 0 is said to be consistent if § —F 8 as N — 0,

where 0 is considered as the true unknown parameter.

It is well known that MLEs are consistent under fairly general conditions

(see Casella and Berger, 2002). The existence, continuity and consistency of

the MHDE are shown in following three theorems.

Theorem 2.1: Existence

(i) If © is compact and F' is continuous, then T'(7r, r) exists for all (7, r) €

(i) If F is strictly increasing on R and 7; = F(a + fz;), 1 < j < K, with

not all x;’s equal, then T'(w,r) = («, )7 uniquely.

Proof:
(i) From (2.2), H(a, f) = Y rj{y/mFla+ ;) +\/(1 = m)(1 — Fla + fz;))}.

Jj=1

13



For a sequence (au,, 8,)n>1 such that (a,, 8,) — (o, ), we have

|H<C¥n,5n) - H(OJ,BH

K
:er|\/7er(ozn + Bnxj) — \/WjF(CY + B;)|
j=1

Xl (1= m)(1 = Flan + Buy) = /(1 = m)(1 = Fla+ Br))l. (23)

Since F'(a+fz;) is nonnegative and continuous, we have /F(a + fz;) and

V/1— F(a+ pBz;) continuous. Then |\/F(a, + Bx;) — /F(a+ Bz;)|— 0
and |\/1 — F(ay, + Buzj) — /1 — F(a+ Bz;)|— 0 imply that |H(ay, 3,) —

H(a, )= 0. So when 7; is given, H(«, ) is continuous with (o, 8) on a
compact set and attains a maximum there.

(i) H(«,B) is maximized when F(a + fx;) = mj, it is obvious from
A(a, ) > 0. If there exists A(a, b) = 0 for another (a, b), then F'(a+bz;) = 7;,
1 < j < K. Since F is one-to-one this implies that a+bz; = a+fz;,1 < j < K
and (a,b) = (o, 5). Hence the result follows. The proof of Theorem 2.1 is com-
plete.

Theorem 2.2: Continuity

Suppose O is compact, F' is continuous and strictly increasing on R and
(7,r) is such that T'(7,r) is unique with for some 0 < 7; < 1,1 < j < K.
Then T is continuous in the Hellenger metric at (7, r).

Proof: Suppose {(m,,r,) € Gk : n > 1} is a sequence such that
(7p,rn) — (m,r) as n — oo for some (7, r) € Gk. Denote

Hj(a, B) = \/miF (o + Bz;) + /(1 — m)(1 — Fla + Bzy))

and H(, 8) = Y1 Hj(a, B).

Similarly, we define H,(«, ) = Zjilrj,nHj,n(a,ﬁ), where H,,(a, ) =

14



VTinF(a+ Bz;) + /(1 — m,)(1 — F(a+ Bz;)) with 7; and r; replaced by
Tjn and 7j,, respectively, 1 < j < K.
For convenience, let T'(m,r) = (o, )T, T(7,,1,) = (an, Bn)". We want to

show that T'(7,,r,) — T'(m,r) as n — oo, which needs

sup{|H,(a, B) — H(e, B)|: (o, B)F € ©} — 0. (2.4)

To obtain (2.4), first note that

| Hn (v, A< ZIH Alrjm — 7“]\+Z|7’Jn\| ,8) — Hj(e, ).
(2.5)
Since © is compact and F is strictly increasing on R, H;(c, ) is bounded

and so r,, — r implies that the supremum of the first term on the RHS of (2.5)

converges to zero. Let F; = F(a + fxz;) and consider

V(i = V) A VT BT = /T )

1 [1—F;
5\ 1T H(mjm — ) + (V1= mm + /1 — 7). (2.6)
j
Since (Vb — v/a)? = (\/13:/)?) < (b_a“)g for b > 0, a > 0, we have
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djn(a, )-2‘79” 7T]|“ |7TJ” [l \/ \/ 1_71.]

52[ miF; + \/1_7TJ — Fj)]€jn,

where €, = [ = Tl + =]+ T — WP + gl
Now 7;, — m; implies that €;,, — 0 and hence (2.4) is satisfied. Then it
follows that |max{H,(«, )} — max{H (a, )}|— 0, i.e. H,(a,) — H(a, ).

Further, (2.4) also implies that |H,(a, ) — H(a, §)]— 0 and hence

H,(a,p) = H(e, B), asn — 0. (2.8)

The result follows from (2.8) by standard arguments based on the continu-
ity of function H, compactness of © and uniqueness of («, 5). This completes

the proof.

In order to study properties of (&, BA) first we introduce some notation. We
K

have N = an. For 1 < j < K, let mjn = T:—]’ and 7;y = % (previously
m; and 1y, rje:slpectively). Let wx and rn be the K dimensional vectors with
components 7; y and r; v, respectively. Clearly (wy,rn) € Gk.

Theorem 2.3: Consistency

Suppose © is compact, F' is continuous and strictly increasing on R and
we select subjects from a population for which the critical dose of a drug is
a random variable specified by d.f. F with parameters (ao, 5y). To each of

n; (1 < j < K) subjects, a dose x; is applied and m; of these show a response.

Ifrjy =7 >0 1<j<K,as N — oo, then T(my,ry)—=" (a9, Bo)" as

16



N — o0, i.e. the MHDE is consistent.

Proof: As N — oo, 7Tj,]v—>PF(Oé() + Boz;) = mjo since for large value of
N the sample proportion will be expected to form an approximation to the
parent population proportion.

From Theorem 2.2, we have T is continuous at (7,r). Let T'(mg,1o) =
(v, Bo)T. We want to show that lim P(|T(wx,rn) — T(mo,r0)|< €) =1

N—oo

Use the continuity of T to find § > 0 such that
|(7wn,rn) — (o, 10)|< 0 = |T (7N, rn) — T(70,10)|< €.

Then P(’(?TN,I'N) — (7T0,I'0)‘< 6) < P(‘T(WN,I‘N) — T(?T(),I'())‘< 8). Here we
use the fact that if one event can be implied by another, it has a greater proba-
bility. Since the first probability goes to 1 as N — 00, so T(wx, rnx) =" (o, fo)”.

This completes the proof.

2.2.2 Asymptotic Normality

Definition 2.3: An estimator 6 is said to be asymptotically multivariate
normal if vVN(@ — 0) =P N(0,X), where ¥ is the asymptotic covariance
matrix of the estimate 6.

An MLE 6 is asymptotically normal under fairly general conditions (see
Casella and Beger, 2002) with v N (8 —6) —2 N(0,171(0)), where () is the
Fisher information matrix.

Before giving an asymptotic expansion for our functional 7', we introduce

some notations first. Define
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G'(y _ I {\/> 7T]}—fz {r \/1_

o ' IO + 2500 [
a5 =S 7 i Wr)
—7Tj 3f3
WE—FuP) {VFB it

for F'(y )#OandF( ) # 1,

= ZTJZ ZTG (cvg + Boz) and

Aoy, By, 1) = erZjGj(ao + Box;), with Z; = (1, 2;)7T.

Theorem 2.4: j:E‘iuppose © is compact, F' is a continuous, strictly in-
creasing and thrice differentiable function on R with derivatives f, f’ and f"
bounded on C' = {a+ fBz; : (o, )T € ©,1 <j < K} and F(C) C [4,1— 4] for
some positive 0. Let (m,r) € G be such that T'(mg,re) = (g, B)T is unique
and let (wy,ry) — (7o,ro). Let Viy be a 2 X 2 matrix whose components
converge to 0 as N — oo. If ¥ is non-singular then we have as N — oo,

T(wy,rn) — T(mo,1r0) = —X ' Ao, B, 7y, Tw).

Proof: Let T(mwy,ry) = (&N,BN)T. Differentiability of F' implies that

(G, Bn)T satisfies
~ K A
0 = A(an, BN, TN, TN) = ZTj,NZjGj,N(@N + Bnz;), (2.9)

=1

where G; y is defined the same way as G; with 7; y replacing 7;. Expanding
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Gjn(ay + Bij) at ag + fox; by Taylor series we obtain

R A 1
Gjn(an + Bnry) = Gy n(ag + Boxj) + ZJT’YNG;,N(% + Bo;) + §(ZJT’YN)2 TN (R5),

(2.10)

where «; is between ay + fAyz; and ag + foz;, Z; = (1,2;)7 and vy =
(an — ao, BN - 50)T-

Since F' has bounded derivatives and is bounded in the interval [0, 1], G
is continuous in a closed interval, F'(x;) # 0 and F(x;) # 1, function G7 y is

bounded. Also, 7; v — 7; implies that G; y(y) — G;(y) uniformly in y. Then
(2.10) becomes

Gjn(Gn + Bra;) — Gin(ao + Boxj) = Z1 vy G + Boxy) + o(Z] ).
(2.11)

Since Theorem 2.2 implies vy — 0 as (wn,rn) — (mo,ro). Substituting

(2.11) in (2.9) we get

K

K
0=Y rinZ;Gin(ao+ Bors) + > _rinZiZ] {G(n + Bos) + o(1) vy

J=1 J=1

:A(Cl/(), 507 TN, rN) + {Z + VN}ﬁYN’

as rjy — rj. Here Vi is also a 2 X 2 matrix whose component are o(1)

as N — oo. Since {¥ + Vy} will be non-singular for sufficiently large N,
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Y= (24 Vy) ' as N — oo, the result follows, i.e. for large N,

vy =T(my,ry) —T(m,r) = =X X, Bo, T, T ). (2.12)

This completes the proof.

Notes: 1. G;(y) = ny \/ \/ ), so that G;(y) = 0 when 7; =
E(y).

2. G;(y) = G]( f(y) gt y \/ F(y)3 \/ 1 1F7(T so that X is

very complicated in general. However, when 7; = F(y) we have G(y) =

—%, and we can get the following corollary.

Corollary 2.1: Suppose the conditions of Theorem 2.4 hold with 7;y =

F(ap + ﬁox]) 1 <j < K, and let ¥* be the 2 x 2 matrix defined by ¥* =

B . [ (o + Box;)
43 = ZTJZJZJ F(ag + Box;)(1 — F(ao + Box;))

Then we have

YN = T(ﬂ'N, TN) - T(ﬂ'o, 1"0) = 42*_1/\(040,50771'% rN)a (2-13)

as N — oo. We find that ¥* is proportional to F(ao+ﬂﬁ(-?(01t€2(xi())+ﬁox-))’ which
J J

has the same structure as the Information matrix of MLE.

Special case: ¥* is singular only when f(ag + Boz;) = 0 for some j and
x; = x for all other j values. Thus ¥* is not singular except for this special
case.

Finally we state a theorem establishing the asymptotic normality property
of MHDE without a proof. A proof can be found in Chapter 3 of ‘Advanced

Multivariate Statistics with Matrices’ by Kollo and von Rosen (2005).
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Theorem 2.5: Asymptotic Normality
Suppose the conditions in Theorem 2.3 hold and the expansion in Theorem

2.4 holds for T(m N, ry).

K
f? (o0 + o)
Let T'(mg, r0) = (ao, o)  and 8, = Y r2Z,Z7 I .
(ooto) = (€0 ) j;] 7 Fag + Boxy) (1 — Flao + Boxy))
Then, as N — co, we have
VN{T(7y,ry) — T (o, 10)} =P N(0,Xg), where Ly = L5135, %51,

1<

Special case: If all the subgroups are equally weighted, then r; = %,

<K, Sy =Lxt,

2.3 Simulation Study

2.3.1 Influence Function

The idea for the influence function comes from Hampel (1968) and Huber
(1972, 1973). Beran (1977) introduced the a-influence curve to measure the
robustness of an MHDE. As the name implies, the influence function of an
estimator measures the impact that a single observation can have on an esti-
mator. Assume that a sample has n observations (x1, ..., 2, 1,x,), of which
the first n — 1 observations belong to a distribution F' and x, can then take

on any value. The influence function IF,(z) then measure the standard d-

T(z1,22,...,x0)—Tn—1(z1,22,...,Ln—1)
- .

ifference between the two estimators: IF,(z) =
Lindsay (1994) used a bias plot, which is related to the influence function as
bias =~ ¢ x [ F,(x).

For measuring the effect of a single contaminated observation in a sample
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of size n, so € = 1/n. This influence function can then be written as

T -7 ey T - ~
1, () = Tttt T Ibosbont) g, g, ),

The above definition applies to finite samples, but it can be generalized to
the asymptotic case as follows. Under some regularity conditions, the asymp-

totic influence function can be derived from the Gateaux derivative:

where F' is the appropriate distribution and G = ¢,., a point mass distribution
with a mass at x.

Since our responses are binary numbers, either 1 (response) and 0 (no
response), it is hard to see the robustness property of estimators if we are
trying to put a mass at a point. Thus, we use some Monte Carlo studies to

examine the robustness of estimators for departures from the assumed model.

2.3.2 An Algorithm for MHDE Calculation

We discussed algorithms for WLSE and MLE in the introduction. In this

section, we focus on how to obtain MHDE numerically. First introduce two
ripr Ti(1—p1) rg ri(l—q)
K x 2 matrices: A = : : and B =

rxpx Tr(1—pK) rrqr Ti(1 = qK)
where p; = m; and ¢; = F(a+fz;), j=1,..., K. vec(A) is the 2K x 1 vector

formed by stringing the first column of A out followed by the second one.

Definition 2.4: Define two discrete probability distributions
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1P T1q1
KD k{4
P = vec(A) = wos and Q = vec(B) = i :
(1 =p1) ri(l—aq)
rk(1 = pk) i (1 — qx)
K
where p; = 7; and ¢; = F(a + fz;), Z’r’j =1,5=1,..., K. Then the
j=1

Hellinger distance between P and Q is defined as

Du(P,Q) = % Hx/f— \/GHQ (2.14)

Definition 2.5: A Hellinger distance functional for estimating true pa-
rameter value (ap, fp) is a functional 7' : Gx — © such that T'(7r,r) is the
estimator of true parameter value as (&,B) which minimizes the square of

Hellinger distance:
2D%(P, Q) = H\/ﬁ— J@HQ (2.15)

Vriypr yrivli—m Ve vrivli—aq
Let Ay = : : and By = : :

VKNP V(1= pK) VTG TEVT = aK

where p; = mj and ¢; = F(a+pPz;), j =1,..., K. ||vec(Aq)|, = ||vec(B1)l, =

K
1, with ) ;= 1.
j=1

23
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Note that equation (2.15) is equivalent to:

|VP =V = llvectas) - wee(my)|?
= ||vec(A; — By)||?
=tr[(A; — B1)" (A1 — By))]

=2 — tr(A;"By). (2.16)
So, minimizing (2.14) is also equivalent to maximizing
tr(A1"By) = H(a, B). (2.17)

For a numerical implementation of this method, initially input two matrices
A and B. In many statistical software programs, for example in R, we use
sqrt(A) to obtain the square root of all the elements in the matrix, and the
result is exactly the A;. A similar method can be used to obtain B;. Finally,

minimize tr(A;”B;) to obtain MHDE of the parameter.

2.3.3 Monte Carlo Studies (Logistic Model)

In order to compare the MHDE with MLE and WLSE, a simulation study is
conducted. Suppose z;, ¢ = 1,....., 10, represent doses given to 20 subjects.
Thus, for each dose z;, we generate 20 observations from the Bernoulli distri-
bution with probability of success F(o + fz;). We take o = —2, f = 0.4 as
the true values and z; = j, 1 < 7 < 10. Calculations are carried out assuming
that F'is the CDF from the logistic distribution family first. By using differ-
ent methods, following four models are used to find the means, variances and

covariances of ¢,, and Bn under 1000 replications.
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Model I: F(y) = 1iy = L(y),
Model II: F(y) = 0.9L(y) + 0.1L(2y),
Model III: F(y) = 0.9L(y) 4+ 0.1L(0.5y),

Model IV: F(y) = 0.9L(y) + 0.1.

Model I is simply the standard logistic model. Model II, I1I, IV are derived
from the classical Tukey-Huber contamination model. Model II represents 10%
contamination from a distribution with shorter tails while model IIT is mixed
with a longer tails one. Model IV represents the situation where 10% of the
subjects show a response not caused by the stimulus under examination; for
example, if subjects recover naturally (similar to the censoring data of survival
analysis. We will show robustness by using this model). Simulation results
are given in Tables 2.1 and 2.2. These results are based on 1000 replications.
&, (m) and Bn(m), m = 1,2,3,...,1000 are estimators of o and /3 based on
the true distribution, then &, and Bn can be found by averaging the 1000
results of G,(m) and B,(m). In the tables, V(&,) and V(5,) are used to
denote the estimated variance of é&, and 3, . Similarly, Cov(ay, Bn) stands for
the estimated covariance between d&, and f3,. Also, MSE(a,) and MSE(3,)

denote estimated the mean squared errors of &, and 3n

Table 2.1: ITteratively Reweighted Least Squares Estimation

Model b Bn  V(an) V(Bn) Covlénm,Bn) MSE(&n) MSE(S,)
Model I  —1.8122 0.3619 0.6295 0.0234  —0.1186 0.6642 0.0248
Model II  —1.8106 0.361 0.8596 0.0325  —0.1643 0.8946 0.0339
Model IIT  —1.7357 0.3465 0.5338 0.0195  —0.0992 0.6031 0.0223
Model IV —1.2952 0.3019 0.4662 0.0228  —0.1001 0.9625 0.0324
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Table 2.2: Results of Four Estimation Methods by Logistic Model

Model Method an Bn V(an) V(Bn) Cov(an,Bn) MSE(4n) MSE(Bn)
I WLSE  —1.9131 0.3817 0.1149  0.0033 —0.0174 0.1223 0.0036
MLE —2.046  0.4084 0.1437  0.0040 —0.0215 0.1457 0.0041
MHDE  —2.1284 0.4277 0.1820 0.0054 —0.0283 0.1983 0.0062
I WLSE ~ —2.0093 0.4005 0.1241  0.0037 —0.0193 0.124 0.0037
MLE  —2.1616 0.4347 0.1426  0.0044 —0.0226 0.1686 0.0056
MHDE  —2.1053 0.4214 0.1731  0.0054 —0.028 0.1841 0.0058
I WLSE ~ —2.1217 0.4291 0.4709 0.0103 —0.0644 0.4852 0.0111
MLE  —1.8799 0.3776 0.1403  0.0041 —0.0216 0.1546 0.0046
MHDE —2.0379 0.4082 0.1652 0.0051 —0.0263 0.1655 0.0052
v WLSE ~ —1.6954 0.4027 0.4128  0.0094 —0.0572 0.5051 0.0094
MLE  —1.5486 0.3613 0.1242  0.0039 —0.0197 0.3278 0.0054
MHDE  —2.14  0.4295 0.2320 0.0069 —0.0366 0.2514 0.0077

The results in Table 2.1 show that the IRLS method is not good in this
problem; it is far away from the true value and not comparable with others.
We focused on the comparison of other three methods. In all cases, MLE is the
highest variable while the MHDE is the least variable. WLSE has the smallest
variance for Models I and II among the three. If we consider only the biases
of the three estimators, we see that the MLE is least biased if the postulated
model is correct, i.e. Model I. Further we see that the weighted least squares
estimator shows the least bias under Model II, and the MHDE shows the
least bias under Models III and IV. These results suggest that the method of
weighted least squares has some protection if the true distribution has shorter
tail contamination. Also, the method of MHDE has some protection if the true
distribution has longer tail contamination. The results for Model IV suggest
that the MHDE might be the best if we wish to protect against the possibility
of subjects showing a response regardless of what dose they receive, and the

next graph shows a comparison of MLE and MHDE by using model IV.
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Figure 2.1: Bias Plots between MLE and MHDE for Logistic Model
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As shown in Figure 2.1, after increasing the contamination rate (X), the
bias plot of MHDE is showing bounded trend but that of MLE keeps increasing.
We find that the MHDEs of o and  are comparable to those of the MLE
and WLSE in most cases, but the MHDE estimator of « slightly outperforms
other two estimators when the data are under contamination. Thus we can
conclude that MHD estimator has desirable robustness properties as well as

asymptotically efficient properties when using the logistic model.

2.3.4 Monte Carlo Studies (Probit Model)

Although it is computationally more convenient to use the logistic distribution
function for binary responses, normal distribution is also frequently used in
numerical calculations. For each of the three methods of estimation we esti-
mate the means, variances and covariances of &, and Bn again under each of
the following four models:

Model I: F(y) = ®(y), where ®(y) is the CDF of standard normal distri-
bution.

Model II: F(y) = 0.99(y) + 0.1®(2y),

Model III: F(y) = 0.99(y) + 0.19(0.5y),

Model IV: F(y) = 0.99(y) + 0.1.

Model I is the case where the chosen model is N (0, 1), the standard normal
distribution. Model II represents 10% contamination from N(0,0.25), while
model IIT is mixed with 10% from N(0,4); Model IV represents the situation
where 10% of the subjects show a response not caused by the stimulus under
examination; for example, if subjects recover naturally. Simulation esults are

given in Table 2.3, and the values in table are based on 1000 replications.
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Again, IRLS estimation is not good for the Probit Model either and the output

of this method is not posted.

Table 2.3: Results of Four Estimation Methods by Probit Model

Model Method n B V(an) V(Bn) Cov(ém,Bn) MSE(&n) MSE(Sn)
I WLSE  —2.0865 0.4175 0.0636 0.0019 —0.0088 0.0706 0.0022
MLE  —2.0423 0409 00794 0.0025 —0.0130 0.0811 0.0026
MHDE —2.217 0.4435 0.1156 0.0039 —0.0197 0.1626 0.0058
11 WLSE —2.171 0.4325  0.0968 0.0028 —0.0146 0.1253 0.0038
MLE  —2.1314 0.4268 0.0839 0.0028 —0.0140 0.1011 0.0035
MHDE  —2.2232 0.4446 0.1183  0.0039 —0.0202 0.168 0.0059
111 WLSE  —1.6825 0.3712 0.1054 0.0028 —0.0151 0.2057 0.0036
MLE  —1.8858 0.3778 0.0682 0.0022 —0.0111 0.0811 0.0027
MHDE —2.173 0.4366  0.1241 0.0042 —0.0211 0.1539 0.0055
v WLSE  —1.6814 04001 04216 0.0096 —0.0586 0.5277 0.0096
MLE  —1.5747 0.3521 0.0558 0.0018 —0.0091 0.2366 0.0041
MHDE  —2.2288 0.4483 0.1954 0.0057 —0.0313 0.2476 0.008

The results in the Table 2.3 show that, in all cases, the value of MHDEs
are least variable, while the MLEs are the most variable. If we consider only
the biases of these estimators, we see that the MLEs are least biased if the
postulated model is correct, i.e. Model 1. Further we see that the MLEs also
show the least bias under Models II and III, while the MHDESs show the least
bias under Model IV. These results suggest that the method of MLE has some
protection if the true distribution has shorter or longer tails contamination.
Also, the results for Model IV suggest that the MHDE might be the best
if we wish to protect against the possibility of subjects showing a response
regardless of what dose they receive. Figure 2.2 shows a comparison of MLE
and MHDE by using Model IV.

Using the same method of bias plot, we also did not see the boundedness of

the MLE. But it shows that after increasing the contamination rate (X), the
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Figure 2.2: Bias Plots between MLE and MHDE for Probit Model
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MHDE increases slower than the MLE. Thus, we can reasonably conclude that,
when using the Probit model in this dose-response study, Minimum Hellinger
distance (MHD) estimation method has desirable robustness properties as well
as asymptotically efficiency properties. We find that the MHDESs of a and /3
are comparable to those of the MLE and WLSE in most cases, but the MHDE
estimator of « slightly outperforms the other two estimators when the data

are under contamination.

2.4 An Application to Real Data Example

In this Section, we illustrate the above methods for a real data set given
in Giltinan et al. (1988). This data are collected from an experiment to
investigate the joint activity of two insecticides. T'wo insecticides are denoted
here by A and B. The mixtures are chosen in the ratios 0 : 100, 25 : 75, 75 : 25
and 100 : 0. 30 insects were tested at each of 4 dose levels of each mixture,
the insects were exposed for 96 hours to these insecticides and the mortality
count were recorded after that. The number of dead insects and total number
of insects exposed are presented in Table 2.8.

60¢+B log z;

In this example, we used the model: F(a + flogx;) = Tooarasy | =
1,2,3,4. From the results of 100% B and 100% A, we used GLM regression,
separately, to obtain the parameter values and consider them as the ‘true’
values: ag = —4.4101, g = 1.8056 and oy = —3.1501, B4 = 1.3699.

From the simulation section, we conclude that the MHDE might offer some
protection if the true distribution has longer tail than the postulated model

distribution. We consider B as the postulated model and A as the contam-

inated model with longer tail. For 75%B + 25%A, we obtained dppp =
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—7.7302, Barrr = 2.6407; but dargps = —4.626892, Barrpe = 1.0608, which

are more robust in dealing with longer tail contamination.

Table 2.4: Mortality in response to mixtures of insecticides

Mizture Amount of A (ppm) Amount of B (ppm) dead insects insects tested
B 0 30.00 26 30
B 0 15.00 19 30
B 0 7.50 7 30
B 0 3.75 ) 30
A25:B75 6.5 19.50 23 30
A25:B75 3.25 9.75 11 30
A25:B75 1.625 4.875 3 30
A25:B75 0.813 2.438 0 30
AT5:B25 19.50 6.50 20 30
A75:B25 9.75 3.25 13 30
AT75:B25 4.875 1.625 6 29
AT75:B25 2.438 0.813 0 30
A 30.00 0 23 30
A 15.00 0 21 30
A 7.50 0 13 30
A 3.75 0 ) 30
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Chapter 3

Symmetric y? Distance Method

3.1 Background

Consider two discrete probability distributions P = {f; : i € S} and Q = {g; :
i € S}, where S is a discrete set, ) f; = > ¢; =1, fi > 0 and g; > 0. Then

the square of Hellinger distance between P and () is defined as

D*(P.Q) = Y (VT — /3

ies
_ Z (fi — 902 .
—~ (Vi +/9:)?
On the other hand, the symmetric chi-squared distance between P and (@) is

defined as (Lindsay, 1994)

HrQ 2T
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Using the inequalities

fita <(/fi+ V9)? <2(fi + 1),

a little manipulation gives the following near equivalence relationship between

Hellinger distance and the symmetric chi-squared distance:
L o 2 L o

Lindsay (1994) noted that, although both are equally robust to outlying ob-
servations, Hellinger distance D?*(P, Q) does not behave as well for sampling
zeros. (In biological and ecological studies, sampling zeroes typically occur
when a species is present but absent in the sample. We borrow the definition
from sampling techniques and consider no response at a dose level as sampling
zeros.) For this reason, he prefers S?(P, Q) over D*(P, Q) for use in statistical
inference, especially for discrete distributions. On the other hand, D*(P, Q) is
better than S?(P, Q) for theoretical calculations.

We apply S?(P, Q) with

r1ip1 ri1q1
TKPK kdK
P= and ) = ;
7’1(1 —p1) 7’1(1 —91)
TK(l —pK) T’K(l —QK)
K
WhereijWj,quF(Oé—Fﬁxj)a ZT‘j:l,j:l,...,K, Wj:%,rj:%
J
j=1

and N = > n;. Then S%(P, Q) reduces to
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K = Fla+ 8s)P (1= 1) — (1= F(a+ fz,))
Q=25 (P g * [ (= Fa 3

We define estimators of (a, fo) as (&, 3) that minimize S2(P, Q). Then take

952 (P,Q) 952(P,Q) S2(P,Q) 8S2(PQ)
B andT B = (0 and 95 =0 to

and solve the equations

find estimators. Again they cannot be solved explicitly and only numerical
solutions can be obtained.

Definition 3.1: Suppose Gk is as defined in Chapter 2 and © is the
parameter space for («, 5); © C R x (0,00). A symmetric chi-squared distance
estimate (SCDE) functional for estimating (o, Bp) is a functional T : G — ©

such that T'(7,r) is (&, §) obtained by minimizing

3 Fla+ )l [(1—m) — (- Fla+ fa))?
S s (= T (=Pt s O

Jj=1

Note that A(q, ) can also be written as

K 2
@9 =LA i

7j=1 i=1

where 1y ; =7, Mo =1 —m;; q1j = Fla+ Bz;), @2 =1 — F(a+ Bz;).

3.2 Properties of The SCDE

3.2.1 Consistency

Theorem 3.1: Existence
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(i) If © is compact and F' is continuous, then except m; =1, 1 < j < K,
T(m,r) exists for all (w,r) € Gk.
(ii) If F is strictly increasing on R and 7; = F(a + fz;), 1 < j < K, with

not all x;’s equal, then T'(w,r) = («, )7 uniquely for any r.

Proof:
. M= Flat Bl | [(L-m) = (1= Fla+ Bry))
(et 8008) = ) Aot P (=) (1= Fla+ )P

and for a sequence (ay, Bn)n>1 — (@, 8) as n — oo, write

(3.3)

Since F(a + fx;) nonnegative and continuous, we have the function of
F(a + fz;) continuous, then |A(ay, 8,) — A(e, 8)]— 0. So when 7; is given,
A(a, B) is continuous with («, 8) on compact set and there exist a minimum.

(ii) A(e, B) is minimized when F(a+ fz;) = m;. If there exists A(a,b) =0
for another (a,b), then F(a + bx;) = m;, 1 < j < K. Since F' is one-to-one
this implies that a + bx; = a + Bx;,1 < j < K. Hence the result follows. The
proof of Theorem 3.1 is complete.

Theorem 3.2: Continuity

Suppose O is compact, F' is continuous and strictly increasing on R and
(7,r) is such that T'(7r,r) is unique with 0 < 7; < 1,1 < j < K. Then T is
continuous at (7,r).

Proof: Suppose {(m,,r,) € Gk : n > 1} is asequence such that (7, r,) —
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(m,r) as n — oo for some (7, r) € G. Denote

L K glmnFlatpn)? | [(mmn) (- F(a+Br,)?
AnlasB) = 2sa A T raram P + TmoraFasae e} For conve

nience, let (o, 8)T = T'(m, 1), (o, Bn)T = T(m,,1,) (any of the possible values

will do in the latter case). It is sufficient to show that
sup{|An(e, 8) — A(e, B)]: (a, B)" € ©} = 0. (34)

Let F; = F(a + Bx;),

P [ =) = (L= B)P

, ) )
Tin + F5)2 (L= mj0) + (1= Fj)J?

(
(
M —-E)? A -m) - (- F)P
2 TR T A= m) A= F)P!
|(7Tj,n - )PP (7 - Fj)2|
(Tjm + F)]2 (7 + F))?

(- m)— (= E)? [1—m)— (1 F)p
e TA=F)E  [(A=m) T A= F)F

= AFy(mjam — FY)
2 v By AP )

j=1
K

4(7Tjn +7Tj — TinTj — 2FJ —+ F]2)
’ ’ in — Tj5)| 3.5

Jj=1

|A, (o, B) —A(e, B)| is bounded since all 7;,,, 7; and F}; are bounded. Also,
mjn — 7; implies that |A,(a, 5) — A(e, 8)|— 0 and hence sup{|A,(a, ) —

Ao, B)]: (o, )T € ©} — 0. The proof of Theorem 3.2 is complete.

K
In order to study properties of (&, B), we again recall that N = an,
j=1
min = =% and r; v = 5 (previously 7; and r;, respectively) for 1 < j < K.
J

Let 7 and rn be the K dimensional vectors with components 7; x and r; v,
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respectively.

Theorem 3.3: Consistency

Suppose © is compact, F' is continuous and strictly increasing on R and
we select subjects from a population for which the critical dose of a drug is
a random variable specified by d.f. F with parameter (ag,3y). To each of
n;j (1 < j < K) subjects, a dose z; is applied and m; of these show a response.
Ifriy =1 >01<j<K,as N — oo, then T(mwy,rn)—=" (a0, fo)" as
N — 00, i.e. the SCDE is consistent.

Proof: As N — oo, Wj,N—>PF(a0 + Boxj) = mjo since for large value of
N the sample proportion will be expected to form an approximation to the
parent population proportion.

From Theorem 3.2, we have T is continuous at (m,r). Let T(mg,r9) =
(cvo, Bo)T, and we want to show that lim P(|T(wy,rn) — T (w0, T0)|< €) = 1

N—oo

Use the continuity of T to find § > 0 such that

|(7wn,rn) — (0, 10)|< 0 = |T (N, rn) — T(70,1r0)|< €.

Then P(|(7n,rn) — (70,T0)|< ) < P(|T(7wy,ry) — T(m0,10)|< €). Here
we use the fact that if one event implies another, it has a smaller probability.
Since the first probability goes to 1 as N — oo, so T(my,rn)—=" (ao, o)’

The proof of Theorem 3.3 is complete.

3.2.2 Asymptotic Normality

Before giving an asymptotic expansion for our SCDE functional T', we derive

the ‘score’ and the ‘information matrix’ from (3.1) first.

Let m; =7, moj; =1—m1j, q; = Fi(y), ¢o; =1— Fj(y), Z; = (1,2;)"
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K

and A(y) = Y A, (y), where A,(y) = Z{M} Let

Gjly) = 8 —42{”’;:1%?”)}8;;%j: 1, K,
K

= ZZ ZTG’ (ap + Boz) and X(«v, By, 7, 1) = ZZjGj(ag + Boxj).

Theorem 3.4: Suppose O is compact, F' is a:continuous, strictly in-
creasing and thrice differentiable function on R with derivatives f,f’ and f"
on C ={a+pfz;: (a,)T € 0,1 <j< K} and F(C) C [§,1 — 4] for some
positive number §. Suppose (m,r) € G be such that T'(mwg,1o) = (v, Bo)7 is
unique and let (wy,ry) — (79, r9) as N — oo. If ¥ is non-singular then we
have

T(mwn,rn) — T(mo,r0) = =X " Aag, Bo, wn, rn) (1 + 0,(1)), as N — oo.

Proof: Let T(mwy,ry) = (dy,3y)T. Differentiability of F implies that

(G, Bn)T satisfies
K A
0 = A(an, BN, TN, TN) = ZZjGj,N(@N + Bnzj), (3.6)
=1

where G v is defined as G; with 7 5 replaced by 7;. Expanding G; n(an +

B NT;) at ag + Box; by Taylor series we obtain

Gin(an + Byzy) = Gy (oo + Boxy) + ZF vy G w0 + Boxy) 5

(3.7)

where x; is between Gy + Bij and ap + Box;, Z; = (1,z;)7 and vy =

(dN — (v, BN - SO)T‘
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Since F' has bounded derivatives and is bounded in the interval [0, 1], and
G v is continuous in a closed interval, then G y is bounded. Also, m; x — 7;

implies that G y(y) — G’(y) uniformly in y, then (3.7) becomes

Gjn(Gn + Bij) = G;n(o + Boxj) + ZJT’YNG;(Oéo + Box;) + O(Z]T7N)7
(3.8)

since Theorem 3.2 implies v,y — 0 as N — oco. Substituting (3.8) in (3.6) we

obtain

K K
0=> Z;Gjn(ao+ Bor;) + [Y_Z;Z]{G) (a0 + Boz;) + o(1) v x
j=1

J=1

=A(ao, Bo, N, rn) +{X + Wa vy,

since r; y — r; as N — oo. Here Wy is a 2 X 2 matrix whose component
are o(1) as N — oo. Since {¥ + Wy} will be non-singular for N sufficiently

large, 71 = (X + Wy) ™! as N — oo. Hence we have

")’N = T(Tl'N, I'N) — T(Tl'(), I'()) = —E_lA(O{(), 60, ™N, I'N)[l + Op(l)] (39)

The proof of Theorem 3.4 is complete.

Special case: If m; ; = ¢;; = F(y), then v, = 0.
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T 7Tz —q; ) aQi j
Notes: 1. Gj( —4 SANY) ] ?so that G;(y) = 0 when
Z{ (i + g0)° ¥ Dy i
Tig = ¢i; = Fi(y).

9. G/ _82{77'@] 271'1,] sz 3%] Z{ﬂ'w 7'('” ql])}aquJ

(7ij + i) — " (mij+ ;) T Oy
so that X is very comphcated in general. However When Ti; = (i;j wWe have

2 2
Giy) = E (q_aiyj)2 = E ( (;qu 712 and we can get the following theo-
i=1 1" i=1

rem.

Theorem 3.5: Asymptotic Normality

Suppose the conditions in Theorem 3.3 holds and that the expansion in
Theorem 3.4 holds for T(mwy,ry). Let T(mo,ro) = (a0, 50)" and Xg =
¥13,571 Then, we have

VN{T(7y,ry) — T (o, 10)} =P N(0,%g), as N — oc.

Proof: Note that
5 Zz 27T G (oo + o)

—ZZ 810g q”)

dy

=> A, (3.10)

where A; = f2(a+ﬁxj)(F2 @iy T (l—F(al—f—,ij))Q)’ j=1,..., K.
K K

K

Note ¥ is singular when |X|= (ZAJ)(ZI?AJ) — (ijAj)2 =0, ie X
j=1 j=1 j=1

is singular only when K =1 or all z; equals to each other. Except for special

K :E]2.A]- _mjAj
. . _ ) )
cases, > is nonsingular and X 1 — g Bl 1]
- T Aj Aj
=1 — =
J ] =]
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From (3.9), as N — oo,

Yn = T(WN,I'N) - T(ﬂ-OarO) = _271)\(0507/80771-]\/71']\/')

K
_ —E_IZZjGjN(QO + ﬂOfL‘j)- (311)

i=1

Let yo = ag + ﬁox
T iN 7rz iN — 4; ) 8%
__4 5] 5] »J 7]2_4A Tiny — I A7
Gjin (v0) § { W@JN—I-C]”) } By f](yo)( JN J(?JO))

TN 1-7m;n
where A = [wwﬁfj(yo)]?’ t e B P

As N = oo, mjn =¥ Fj(y0), 1 < j < K and A can be considered as a

constant.
At each dose level x;, m; = % and m; ~ Binomial(n;, F;(yo)).
Then since \/N_rj Vg, /(TN — Fi(yo)) —P N (0, Fj(yo)(1 — Fj(yo))-
Now let ¥, = 16Zf2 Y0) F (o) (1 = Fy(y0))A*Z, 7]

j=1
then we have VN{T(7y,ryn) — T(mo,19)} =" N(0,2g), as N — co. The

proof of Theorem 3.5 is complete.

3.3 Simulation Study

3.3.1 Logistic Model

It is difficult to establish theoretical results on the robustness of the SCDE
because it has a complex form. Thus to explore the robustness properties of
SCDE we relied upon on Monte Carlo methods again. To compare the results
with MHDE, MLE and WLSE, the same simulation study is conducted with

the following four models:

Model I: F(y) = 2 = L(y),

1+4eY
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Model II: F(y) = 0.9L(y) + 0.1L(2y),
Model III: F(y) = 0.9L(y) + 0.1L(0.5y),
Model IV: F(y) = 0.9L(y) + 0.1,

Table 3.1: Symmetric x? Distance Method

Model by Bn  V(an) V(Bn) Cov(ém,fBn) MSE(&n) MSE(B,)
Model I~ —2.129 0.4246 0.1754 0.0047  —0.0259 0.1919 0.0053
Model IT  —2.1155 0.4224 0.1617 0.0046  —0.0244 0.1749 0.0051

Model ITI  —2.1436  0.4275 0.1910 0.0055  —0.0293 0.2114 0.0062
Model IV —2.1046  0.42  0.2261 0.0060  —0.0335 0.2368 0.0064

Simulation results are outlined in Tables 3.1. Again, the results are based
on 1000 replications. As in Chapter 2 tables, V(a,) and V(3,) are used to
denote the estimated variance of &, and §,. Similarly, Cov(&y, 3,) stands for
the estimated covariance between d&, and £,. Also, MSE(d,) and MSE(j3,)
denote estimated the mean squared errors of &, and Bn Our results show
that MHDE and SCDE are both much more robust to model mispecification
than WLSE and MLE. Thus, we focus on comparing the two robust methods,
MHDE and SCDE. In all cases considered, values of MHDE are more variable
than those of SCDE. SCDE has smaller variances for Models I, IT and IV. If
we consider only the biases of the two estimators, we see that the SCDE is
less biased if the postulated model is correct, i.e. Model I. Further we see that
the MHDE shows less bias under Models II and III, while the SCDE shows
less bias under Model IV. These results suggest that the MHDE has some
protection if the true distribution has small contaminations (10% shorter or
longer tails). The results for Model IV suggest that the SCDE might be the

best if we wish to protect against the possibility of subjects showing a response
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regardless of what dose they receive.

Frequarcy
Fraquarcy

0@ im A A0 A m
1@ MwW W oA m M

(a) WLS (b) MLE

Fiaguercy
ToW m o\ osm s

Freguercy
0@ Mmoo A A

Betaham

(¢) MHDE (d) SCDE

Figure 3.1: Histograms of 1000 an of Model I by four methods.

44



(a) WLS (b) MLE

(¢) MHDE (d) SCDE

Figure 3.2: Histograms of 1000 ,s of Model II by four methods.
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Figure 3.3: Histograms of 1000 an of Model III by four methods.
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Figure 3.4: Histograms of 1000 /3,s of Model IV by four methods.

From Figures 3.1-3.4, we observe that two robust methods, MHDE and
SCDE, have less skewed histograms for the estimator B . One can clearly see
that the histogram of SCDE is centered at the true parameter value and has
the smallest deviation.

We considered six more models based on the Model II by increasing the
contamination rate from 10% to 70%. We let the distribution with a short tail
as the contaminated one.

Model V: F(y) = 0.8L(y) + 0.2L(2y),

Model VI: F(y) = 0.7L(y) + 0.3L(2y),

Model VII: F(y) = 0.6L(y) + 0.4L(2y),

Model VIIT: F(y) = 0.5L(y) + 0.5L(2y),

Model IX: F(y) = 0.4L(y) + 0.6L(2y),

Model X: F(y) = 0.3L(y) + 0.7L(2y),
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Table 3.2: WLS Method for the contaminated Logit models

Model bin Bn  V(an) V(Bn) Cov(ém,Bn) MSE(&,) MSE(S,)
Model I ~ —2.0093 0.4005 0.1241 0.0037  —0.0193 0.124 0.0037
Model V. —2.1237 0.4238 0.1298 0.0036  —0.0194 0.1449 0.0042
Model VI —2.2606 0.4488 0.1451 0.0042  —0.0221 0.2128 0.0065
Model VII  —2.4132 0.4789 0.1424 0.0041  —0.0218 0.313 0.0103

Model VIII  —2.5098 0.4989 0.1496 0.0042  —0.0228 0.4092 0.014
Model IX ~ —2.662 0.5282 0.1600 0.0049  —0.0257 0.5979 0.0214
Model X —2.833  0.5632 0.1541 0.0050  —0.0255 0.8475 0.0317

Table 3.3: MLE Method for the contaminated Logit models

Model bin Bn  V(an) V(Bn) Cov(ém,Bn) MSE(&,) MSE(S,)
Model I —2.1616 0.4347 0.1426 0.0044  —0.0226 0.1686 0.0056
Model V. —2.3165 0.4616 0.1690 0.0049  —0.0264 0.269 0.0087
Model VI —2.4752  0.4943 0.1682 0.0052  —0.0267 0.3939 0.0141
Model VII  —2.6595 0.5311 0.1842  0.0059  —0.0302 0.619 0.0231

Model VIII  —2.8088 0.5611 0.1970 0.0063  —0.0324 0.8509 0.0323
Model IX ~ —3.0334 0.6043 0.2222 0.0070  —0.0361 1.2898 0.0487
Model X —3.2183 0.6429 0.2551 0.0082  —0.0425 1.739 0.0672
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Table 3.4: Minimum Hellinger Distance Method for the contaminated Logit
models

Model Qn Bn Vian) V(Bn) Covléy,Bn) MSE(&,) MSE(S,)
Model 1T —2.1053 0.4214 0.1731 0.0054 —0.028 0.1841 0.0058
Model V —2.121 04256 0.1832 0.0059 —0.0302 0.1977 0.0065
Model VI —2.162 0.4319 0.1675 0.0058 —0.0288 0.1936 0.0068
Model VI  —2.1661 0.4338 0.1698 0.0053 —0.0278 0.1972 0.0065
Model VIIT —2.1726 0.4365 0.1786 0.0059 —0.0304 0.2082 0.0072
Model IX  —2.1841 0.439 0.1611 0.0058 —0.0288 0.1949 0.0073
Model X —2.2203 0.4443 0.1695 0.0059 —0.0300 0.2179 0.0079

Table 3.5: Symmetric x? Distance Method for the contaminated Logit models

Model o Bn  V(an) V(Bn) Cov(ém,fBn) MSE(&n) MSE(B,)
Model II  —2.1155 0.4224 0.1617 0.0046  —0.0244 0.1749 0.0051
Model V. —2.1109 0.4211 0.1604 0.0045  —0.0245 0.1726 0.0049
Model VI —2.0898 0.4156 0.1550 0.0045  —0.0241 0.1629 0.0048
Model VII  —2.0833 0.4137 0.1312 0.0039  —0.0206 0.138 0.004

Model VIII  —2.0567 0.4082 0.1151 0.0034  —0.0179 0.1182 0.0034
Model IX ~ —2.0168 0.4007 0.1065 0.0033  —0.0172 0.1067 0.0033
Model X —1.9816 0.3932 0.0962 0.0029  —0.0152 0.0964 0.0029
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Figure 3.5: Histograms of 1000 /,s of Model V by four methods.
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Simulated results are presented in Tables 3.2 to 3.5. These results show
that there are monotonic trends (increasing or decreasing) of the values of
E(éy,) and E(3,) as the contamination rate increases. For the non-robust
methods, WLSE and MLE method, we see large fluctuations when we in-
crease the contamination rate. When we compared the two robust methods
MHDE and SCDE only, we observed following: Although the MHDE has some
protection if the true distribution has 10% shorter tails contamination, it lost
this advantage immediately when we increase the shorter tails contamination
to 20% or higher. The results suggest that the SCDE might be the best if we
wish to protect against the true distribution mixed with a higher percentage

of shorter tails contamination. Histograms and boxplots of the range of E(f3)

both show that SCDE is the best one in robustness among the four method.
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Huber (2009) used the Asymptotic Relative Efficiency (ARE) to compare
two estimators. For F(y) = (1 — €)L(y) + €L(2y) in this simulation, we use
ARE of MHDE relative to MLE defined as

var(Ss)

ARE(e) = lim,, ==
var(fs)

The results are summarized in Table 3.6.

Table 3.6: ARE of MHDE relative to MLE
€ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ARE | 0.8148 | 0.8305 | 0.8966 | 1.1132 | 1.0678 | 1.2069 | 1.3898

From Table 3.6, we can see a turning point between 0.3 and 0.4. After
this turning point, we should certainly prefer MHDE to MLE. Using the same
technique for comparing SCDE and MLE, we can find the turning point is

between 0.1 and 0.2.

3.3.2 Probit Model

We continue our discussion of the robustness of SCDE method by using the
Probit Models. Specifically, we studied following four models:

Model I: F(y) = ®(y), where ®(y) is the CDF of standard normal distri-
bution.

Model II: F(y) = 0.99(y) + 0.19(2y),

Model III: F(y) = 0.99(y) + 0.19(0.5y),

Model IV: F(y) = 0.99(y) + 0.1.
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Table 3.7: Symmetric x? Distance Method (Probit Model)

Model by Bn  V(an) V(Bn) Cov(ém,Bn) MSE(&n) MSE(B,)
Model I~ —1.883  0.3743 0.0629 0.0019  —0.0096 0.0765 0.0026
Model II  —1.8805 0.372 0.0611 0.0019  —0.0097 0.0753 0.0027
Model ITI  —2.1424  0.4236 0.0861 0.0027  —0.0136 0.1062 0.0033
Model IV —2.587  0.4601 0.2024 0.0054  —0.0312 0.5468 0.009
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Figure 3.13: Histograms of 1000 3,s of Model I by four methods.
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Figure 3.16: Histograms of 1000 3,s of Model IV by four methods.

Again we examined the behavior of the four methods as in the previous
section for Models I to IV. Simulation results are displayed in Tables 3.6 to
3.10. These results also show that MHDE and SCDE are both much more
robust to model variability than WLSE and MLE. When we compare MHDE
and SCDE, we observed that in all four models the MHDE is less variable than
the SCDE. However, SCDE has smaller variance for Models I, IT and III. If we
consider only the biases of these two estimators, we see that the SCDE is less
biased if the postulated model is correct, i.e. Model I. Further we see that the
SCDE shows less bias under Models II and III, while the MHDE shows less
bias under Model IV. These results suggest that the SCDE has some protection
if the true distribution has 10% shorter or longer tails contaminations. The
results for Model IV suggest that the MHDE might be better if we wish to

protect against the possibility of subjects showing a response regardless of
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what dose they receive.

From Figures 3.13-3.16, we see that two robust methods, MHDE and
SCDE, have less skewed histograms for the estimator B We also noticed
that the histogram of SCDE is centered at the true parameter value and has
the smallest variance.

We considered six models based on Model II by increasing the contamina-
tion rate from 10% to 70%. We let the distribution with a short tail as the
contaminated one.

Model V: F(y) = 0.8®(y) + 0.29(2y),

Model VI: F(y) = 0.7®(y) + 0.39(2y),

Model VII: F(y) = 0.6®(y) + 0.4P(2y),

Model VIII: F(y) = 0.5®(y) + 0.5®(2y),

Model IX: F(y) = 0.4®(y) + 0.69(2y),

Model X: F(y) = 0.3®(y) + 0.79(2y),

Table 3.8: WLS Method for the contaminated Probit models

Model o Bn  V(an) V(Bn) Cov(ém,Bn) MSE(&n) MSE(B,)
Model II  —2.2084 0.4406 0.0952 0.0026  —0.0134 0.1374 0.0042
Model V. —2.2063 0.4577 0.0841 0.0025  —0.0131 0.1708 0.0058
Model VI —2.3618 0.4769 0.0699 0.0027  —0.0106 0.1994 0.0086
Model VII  —2.4936  0.4988 0.1444 0.0036  —0.0217 0.3834 0.0132

Model VIII  —2.5648 0.5222 0.1996 0.0061  —0.0316 0.5069 0.0207
Model IX ~ —2.8476  0.567 0.1046 0.0035  —0.0160 0.8022 0.0307
Model X —2.8108 0.5951 0.0276  0.002 —0.007 0.6804 0.0397
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Table 3.9: MLE Method for the contaminated Probit models

Model b Bn  Vi(dn) V(Bn) Covlénm,fB,) MSE(&,) MSE(S,)
Model 1T —2.1477 0.4296 0.0859 0.0028 —0.0142 0.1076 0.0037
Model V —2.2373  0.4482 0.0929 0.0030 —0.0155 0.1491 0.0054
Model VI —2.346  0.4683 0.1094 0.0037 —0.0188 0.229 0.0083
Model VII  —2.4944 0.4975 0.1179 0.0040 —0.0204 0.3622 0.0135

Model VIIT —2.6491 0.5292 0.1573 0.0053 —0.0274 0.5784 0.022
Model IX  —2.8211 0.5629 0.1697 0.0062 —0.0309 0.8437 0.0327
Model X —-3.032 0.6053 0.1993 0.0072 —0.0360 1.2641 0.0493

Table 3.10: Minimum Hellinger Distance Method for the contaminated Probit
models

Model an Ba  Viaw) V(Ba) Cov(an,Bn) MSE(G,) MSE(S,)
Model 1T —2.2166 0.4433 0.1263 0.0043 —0.0217 0.1731 0.0061
Model V —2.2435 0.4489 0.1256 0.0044 —0.0220 0.1848 0.0068
Model VI ~ —2.2714 0.4557 0.1554 0.0053 —0.0273 0.2289 0.0084
Model VIT  —2.2892 0.4599 0.1531 0.0054 —0.0275 0.2366 0.009

Model VIII —2.3164 0.4646 0.1706 0.0061 —0.0309 0.2705 0.0102
Model IX  —2.3433 0.4696 0.1619 0.0059 —0.0299 0.2796 0.0108
Model X —2.365 0.4713 0.1680 0.0062 —0.0311 0.301 0.0112
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Table 3.11: Symmetric y? Distance Method for the contaminated Probit mod-
els
Model bin Bn  V(an) V(Bn) Couv(ém,Bn) MSE(&,) MSE(S,)
Model 1T —1.8856 0.3741 0.0593 0.0018 —0.0092 0.0724 0.0025
Model V —1.8588 0.3698 0.0644 0.0021 —0.0106 0.0843 0.003
Model VI —1.8256 0.3638 0.0709 0.0025 —0.0122 0.1012 0.0038
Model VIT  —1.7949 0.3565 0.0703 0.0025 —0.0123 0.1122 0.0044
Model VIIT —1.7737 0.3525 0.0758 0.0027 —0.0134 0.127 0.005
Model IX  —1.7331 0.3453 0.0768 0.0028 —0.0138 0.148 0.0058
Model X —1.688 0.3367 0.0769 0.0029 —0.0140 0.1742 0.0069
g ) E s
E" H
(a) WLS (b) MLE
‘- £
E = E g
(c) MHDE (d) SCDE
Figure 3.17: Histograms of 1000 @ns of Model V by four methods.
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Figure 3.21: Histograms of 1000 an of Model IX by four methods.
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Figure 3.22: Histograms of 1000 8,s of Model X by four methods.
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Simulation results are presented in Tables 3.7 to 3.10. These results show
that there are monotonic trends (increasing or decreasing) of the values of
E(éy,) and E(3,) as the contamination rate increases. For the non-robust
methods, WLSE and MLE, we observe large fluctuations when we increase
the contamination rate. When we compare the two robust methods MHDE
and SCDE, we find that the SCDE has some protection if the true distribution
mixed with shorter tails contamination. Histograms and the boxplots of these
estimators shown on Figures 3.17 to 3.24 suggest that the SCDE might be the
best if we wish to protect against the true distribution mixed with shorter tails

contamination.

3.4 An Application to Real Data Example

In this chapter, we have derived a new robust and efficient estimator, SCDE, by
illustrating its properties and by showing numerical advantages in simulations.
Now we show this advantage in a real data example. The real data we are
going to use are from the second half of Table 2.8.

We consider A (with parameter value (—3.1501,1.3699)) as the postulated
model and B (with parameter value (—4.4101, 1.8056)) as the contamination.
For 75%A+25% B, we obtain dypp = —5.2679, Bare = 1.8890; but dsopr =
—3.9469, BSCD g = 1.4194, which are more robust in dealing with shorter tail
contamination.

From this example, we can reasonably conclude that the SCDE is robust
in protecting against the true distribution mixed with shorter tails contami-

nation.
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Chapter 4

Stimulus Dose Level Estimation

4.1 Background

In Chapters 2 and 3, binary response experiments are performed to find the
critical dose based on the assumption that the probability of response increases
monotonically as the stimulus dose level increases. Besides the critical dose,
dose level corresponding to a quantile (or quantiles) of a monotonically non-
decreasing curve are also important in dose-response studies. One of the most
important dose level quantity is the ‘median effective dose’ (E Dsp) where re-
sponse should be shown in half of the population that takes it. Rosenberger
and Grill (1997) designed an experiment to show the relationship between s-
timulus dose level and response by estimating the median, lower and upper
quartiles of the dose-response curve. They claimed that logistic and probit
analysis would yield similar results in estimating the median. Wiens and Li
(2012) gave a robust treatment of the link misspecification and model discrim-
ination. There is a huge literature on this area; more recent work and the

relevant reference can be seen in the preceding paper.
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4.2 Simulation

In this section we compare four methods, MLE, WLSE, MHDE and SCDE,
by estimating the lower quartile (EDss), median (EDsg), EDgy and upper
quartile (ED75) of the dose-response curve.

Under the true models I, 11, III.. .., X from the previous chapter, let I'; =
[(z;) = F(a+ Bz;).

Let p be a value in (0, 1), and let n be the corresponding quantile, that is,
p = F(n). Then it is easy to see that n = F~1(p) = a + Bz(p).

Let z;(p) be the theoretical minimum dose to produce a response for p%

of subjects on the true distribution F;, : = 1,2,3,...,10.

¢ i=1,2,3...10, (4.1)

where Fj(a+ Bz) is the correct model with unknown parameters o and 5. As
in the previous two chapters, we use a = —2 and § = 0.4 as the ‘true’ value.

If o, (4) and f3,,(i) are estimators of @ and § based on the true distribution
F;, then the estimator of dose level z;(p) is

N . Fi_l(p) - an(z)
S0

Li=1,2,3,...,10, (4.2)

where F;,i=1,2,3,...,10 denote the models I to X, respectively.

For example, if F' follows Model I, then F~'(p) = log &, the logit, and

1-p?

an ()

© Bali)”

estimator of the median is Z;(3) =

For comparing robustness of the four methods under study, we calculate
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the value of M SE(z;(p)). Define

MSE(2:(p)) = E(2:(p) — z:(p))*, i =1,2,3,...,10. (4.3)

For p = 0.25, 0.5, 0.6, 0.75, Tables 4.1 to 4.4 report the estimated values of
MSE(z;(p)), i =1,2,3,...,10 for the four methods used to obtained «, and

B, in Chapters 2 and 3.

4.2.1 Results of Logistic Model

By using the logistic model, the results of the dose level predictions of E Dy,
EDsy, EDgy and E D75 are presented in Tables 4.1 - 4.4. Again, &(p) is the
average of 1000 replications.

From Tables 4.1-4.4, we find that in most of cases the values of M SE(z(p))
using SCDE are the least variable, while the WLSE values are the most vari-
able. If we consider only the M SE(z(p)) for each model, we see that the MLE
is least biased under Model I at E D5, EDs5g, EDgy and E D75 levels. Further
we see that the MLE shows the least bias under Model II at EDs5, E D5y and
E Dg levels, and the WLSE is the least biased under Model II at E D75 level.
For Model III, the MHDE shows the least bias at EDs5 and E D75 levels, and
MLE shows the least bias at E'Dsq and E Dgq levels. For Model IV, the SCDE
shows the least bias at EDss, EDsy, EDgy and E D75 levels. For the contam-
inated models with shorter tail, i.e. Model V to Model X, SCDE is the least
biased at D5, EDgy and E D75 levels, but MHDE is smaller in the MSE in
most of cases.

We can conclude from the numerical results that the MLE and WLSE have

some protection if the true distribution has no contamination. Also, SCDE

70



‘() S POPIOIAI SIB SINSAI [BILISWINT SAT}RSOU Y, 90N

€LLT0 06029 €879°0 L2600 L0ST'S  6L6S°C L020°0 0610°G  00°G e12e 0 1628°¢  L19€'¢ X
LELT0 €TLE'9  L29L9 PPIT0 60TC°G  69€9°G 98600 8¥20'C  00°C LEEE0 €L09¢  €LeTe  XI
eLYE 0 L67G9 80689 6STT°0 8TLG'G  68L9°G ¥S0T°0 20'S 00 0ST€°0 GR67'¢  T60T'E  IIIA
L6220 0¥9L°9  9€€0'L RIFT°0 8099°G  8LTL'G 09TT°0 €e10c  00°¢ 600£°0 L292°€  ¥996'C  TIA
LI€T0 SPI0L  9T6T L 9VET'0 LGELG TPRL'G 16210 V€T 00°G z892°0 €7€0°¢  ¥808C  IA
91220 T0LTL  ¥V9€L 0LET'0 1608°C  T6¥8'G TLET'O 70667 00°G 98T€°0 L0TL'T  S989C A
619T'T 16€9°0  888¢°L €0LS'T PGOLT  6LGG°C 0631°C G629'e  TTHT 829€°G 0 79L6'0 Al
L2590 G6TRL  6606'L Treeo SIP6'S  6L90°9 L20L°0 1298 00°G VSH0'C 09887 1060  III
9820 1609°L  ¥0SG'L €291°0 9IF6'S 676G 09S1°0 16667  00°C 9£9€°0 098€°C 96¥F'C 1T
LGTE0 REE8L  GOVL'L TL8T'0 grr0'9  LE10°9 e¥81°0 €L66'7  00°C 199%°0 L09T°C  GESTT I
(Dz)gsw @z (dz  (Dz)gsw  (z  (dz  (@2)gsw  (dz  (dz  (Dz)gsw  (dz  (d)z

¢l 0=d 9:0=d ¢'o=d gz 0=d [PPOIN

POYIRIN HSTM UL ()2 [oA9] 9SO Jo soyewSH T'F ORL

71



‘() S POPIOIAI SIB SINSAI [BILISWINT SAT}RSOU Y, 90N

66970 6V70°9  €879°0 0GET'0 9€8€°G  6L6C'G L180°0 gL00'S  00°C 09670 G696'¢  L198'€ X
9e77°0 Y0619  L29L'9 ¥6€1°0 TEEF'S  69€9°G L1600 8800°¢  00°C €Tl 0 T1e8°¢  €.60°¢  XI
LIV 0 169€°0  8068°9 REFT0 0687'G  68L9°G g901°0 €8667  00°G L6ZY0 C1€9'e  T60T'E  IIIA
ceLE0 C0LS'9  9€0°L ¥E8T°0 €I8V'S  8LTL'S AN 1.86'%  00°¢C €¥8€°0 REOV'E  $996'C  IIA
eee’0 PSIR0  9T6T'L LLST0 8LF9'G  TH8LG €8¢1°0 VL6677 00°G 198€°0 V6LTE  F808C  IA
GeTIe 0 16V0°L  F9€°L L6ST°0 S0TL'G  T6¥8'G 6€T°0 18967  00°C L2€€°0 CI88C  GSE9T A
€eLY 0 0800°L 80£6'0 1619°0 11267 6LGS°G ZI16°0 e6Y9'¢  T1CHIT 12¥8°C 0 79L6'0 Al
e1L¥0 6,608 6606'L €602°0 9.21°9  6,90°9 YIS0 €6867  00°G ¥109°0 Qz.8T 1060  III
60820 G0TF’L  F0SG'L 119T°0 TLL8'G  6726'G L2810 68667  00°C Treeo ¢LLGT 96VFT I
£862°0 gIE9’L  GOVLL 16ST°0 8696'C  LE10'9 0¥F1°0 6L667  00°G PE8E0 LY9E'T  GESTT I
(Dz)gsw @z (dz  (Dz)gsw  (z  (dz  (@2)gsw  (dz  (dz  (Dz)gsw  (dz  (d)z

¢l 0=d 9:0=d ¢'o=d gz 0=d [PPOIN

POUIOIN ATIN Ul (d) [9A] 9SOP JO SOYWNSH g} B[R],

72



9G8T0 71¢e'9  €879°9 VOTT0 9Frae'ad  6L6G°G 86600 98867  00°'G 61610 8G4y'€  LIGEE X

8661°0 98299  LT9L'9 0STT'0 TELG'G  6GE9C €901°0 9LL67  00°G 17020 90ze'e  €L80€  XI
102270 OFSL'9  8068°9 82ET°0 0£€9°G  68L9°C 12210 €886'F  00°G L9€T°0 9z6T'¢  T60T'E  TIIA
80€2°0 0616'9 9€€0°L 9L7T°0 6.8G°C  8LTL'G GeTT'0 Te86' v 00°G 77920 PFer0'e  $996'C  TIA
€682°0 0VL0'L 9T6T'L 2ee1°0 86TL'G  TW8L'G 9LET1°0 0186'F  00°G 82620 0888°C  ¥808C  IA
L8820 9697 L ¥H9EL TLST°0 8L08°G  T6V8'C LTVT0 60667  00°G €L2€°0 191, 69€9C A
068€°0 €00€°L  888EL G8TT0 €7CG°G  6LGG°C 8992°0 oeEVY  1THTT VEVO'T Z8SO'T  F9L6'0 Al
GTET0 VTE6'L  6606°L LETT0 06909  6.90°9 T961°0 18867 00°G 00L7°0 6770°C 1060 TII
912€"0 8PST' L FOGGL eTLT 0 0988°C 676G 19ST°0 vE€66' 7 00°G G8L€°0 02€6c  96FFC 1T
889¢°0 GT0G'L  G9PL'L 79810 9z16'C  LE10'9 LS9T°0 TES6'V  00°G L8TF0 0S9%'C  GESTT I
(Dz)gsw @z (dxr  (dz)gsw  (dz  (dz  (Dz)gsw  (dz  (dz  (d)z)gsn (d)zx (d)x
gL 0=d 9':0=d g 0=d 6z 0=d [PPOIN

POUIIN AAHIN Ul ()7 [9A9] 9SO JO saeMISH ¢'f [qRL,

73



88GT°0 69€L9  €87¥9°0 YOTT'0 GGF9'C  6L6C°G 1901°0 Zreo'e 00°G 0Z8T°0 911g'e  LIG8'¢ X
8L9T°0 12€8°9  LT9L'9 6021°0 GI89°C  65€9°G TLIT0 TTe0c  00°G ¥Z6T°0 TTETE  €LETE X
€e81'0 90T6'9 80689 ¥S2T0 VTOL'G  68L9°G 1221°0 L820°S 00°G 9€2Z°0 8OFT'E  T60T'S  TIIA
€602°0 99%0°'L  9€€0°L 7610 6099°C  8LTL'G 6£€T°0 09T0°G  00°G LTLT0 €686'C ¥996'C  TIA
9L¥2°0 L99T°L  9T6T'L G651°0 RELL'G  TF8L'G 65GT°0 6L667  00°G Z8IE0 1628°C ¥808°C  IA
1622°0 88TEL  THOEL ¥9LT°0 99%8°G 168G TELT°0 09T0°G  00°G L09€°0 €E0LT  G9€9C A
z19¢°0 RLTEL  888EL G81Z'0 692G 6LGC°G L9G2°0 S6CVV  1THTT 86160 9020'T  ¥9L6'0 Al
GTHY 0 G6G8°L  6606°L 95220 €609  6.90°9 8L02°0 L6667 00°G $19G°0 666T°C  T1060C  IIT
080€°0 8€ST' L T0GC'L €681°0 0T68'G  6726°C €08T°0 87867 00°C 7GLEO 8G8T'T  96¥FT 1T
£09€°0 125S°L  GOTLL 75020 GLE6'C  LETO9 1261°0 0£66F  00°G 62770 6EET'T  GESTT I
(Dz)gsnw @z (dz  (dz)gsw Dz @z (Dz)gsw  (z  (dz  (dz)gsw _ (dz  (d)z
6L 0=d 9'0=d g'0=d 6z 0=d [PPOIN

POURIN HADS Ul (d) [949] 950p JO s9YRWIISH §'F SR

74



and MHDE are better if we wish to protect against contamination models.

(a) ED 25 (b) ED 50

(¢c) ED 60 (d) ED 75

Figure 4.1: Dose Level Plots of Four Methods for Logistic Model

In Figure 4.1 (a), the dose level plot for F D5 shows that after increasing
the contamination rate (X), SCDE is getting closer and closer to the true
value, while the MLE and WLSE keep increasing. In Figure 4.1 (b), it is not
clear which one is the best estimator from the dose level plot for FDsg, but
the MHDE shows a trend in getting closer to the true value. In Figure 4.1 (c)
and (d), the dose level plot for EDgy and EDgy show that after increasing the
contamination rate (X), SCDE is getting closer and closer to the true value,

while the MLE and WLSE keep increasing.
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4.2.2 Results of Probit Model

By using the Probit model, the simulation results of the dose level prediction
of EDys, EDs5y, EDgy and E D75 are shown in Tables 4.5-4.8.

From Tables 4.5-4.8, we find by using Probit model, the values of M SE(z(p))
of MHDE and SCDE are less variable than those of WLSE and MLE. For each
model, we see that the MLE is least biased under Models I and II at £ Dys,
EDsy, EDgy and E D75 levels. Further we see that the MHDE is the least
biased under Model III at E Doy level, while the MLE shows the least bias at
levels £ Dsy, EDgy and ED75. For Model IV, the MHDE shows the least bias
at all levels EDss, EDsy, EDgg and ED75. For the contaminated models with
shorter tail, i.e. Model V to Model X, SCDE and MHDE is smaller in the
MSE in most of cases.

We can conclude from the numerical results that the method of MLE has
some protection if the true distribution has no contamination. Also, SCDE

and MHDE are better if we wish to protect against contamination models.
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(a) ED 25 (b) ED 50

(c) ED 60 (d) ED 75

Figure 4.2: Dose Level Plots of Four Methods for Probit Model

We did not see any significant differences among those four methods from
Figures 4.2. Therefore, no convincing conclusion can be made by the dose

level plots by using Probit model.
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Chapter 5

Summary and Future Work

5.1 Summary

In this thesis, we have focused on examining statistical procedures based on
some minimum distance methods. We have introduced and analyzed the prop-
erties of two estimators, the minimum Hellinger distance estimator and the
symmetric Chi-squared distance estimator, and have confirmed that they are
both robust and efficient by an example in dose-response studies.

In Chapter 2, we have confirmed previous robustness and efficiency results
related to MHDE by illustrating a sequence of theorems and some Monte Carlo
studies. Our simulation studies suggests that MHDE works well in the cases of
models with contamination, especially good if the true distribution has longer
tails than the postulated model distribution. MHDE has also been applied to
a real data example of insecticides to show the same results.

In Chapter 3, we suggested using a new method for parameter estimation,
namely the symmetric chi-square distance estimation. We investigated a tech-

nique for this new parameter estimation method by a similar approach as in
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the MHDE case. Our SCDE estimator exhibits a similar level of robustness
as the MHDE for the simulation problem described in Chapter 3, but it also
shows a better performance in protecting a case with shorter tail contami-
nations. We have numerically examined the estimator using histograms and
boxplots to show that the SCDE is robust.

In Chapter 4, we used four methods to show the relationship between
predictive stimulus dose level and model contamination rate at the median and
the lower and upper quartile levels. By using the logistic model, we numerically

confirmed that MHDE and SCDE are robust in the contamination models.

5.2 Recommendation for Future Work

The following are some recommendations for future research based on this

thesis:

x In this thesis, we considered only the case where the contaminated part
from the same distribution family with different parameter values. Fu-
ture research could be conducted on the case where the model density
function is of a completely different family than the true probability den-
sity of the observed data. This might occur, for example, if the normal
distribution was postulated when the logistic distribution was actually

true one.

x Up until now, little has been done with symmetric chi-square distance
estimators for regression problems. Also, future study may be carried

out to develop improved algorithms for the SCDE.
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Appendix

R code to Calculate WLSE, MLE, MHDE, SCDE in Model I and II
of logistic model, the others are similar.

rm(list = 1s()) # clear the memory

#download Rlab for rbern

#WLSE method

wlse = replicate(1000,

p=array(0)

for(i in 1:10)

pli|=sum(rbern(20,F[i]))/20

w=diag(f(y)"2/(p*(1-p)))

x= matrix(c(1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10),nc=2)

r1=c(0.1,0.1) #or use r=rep(0.1,2) to get a diagonal matrix of Rj.

R=diag(r1)

xtwx=R%*%t (x) %*%w%*%x

xtwxinv=solve(xtwx)

Y=log(p/(1-p))

xtwy=R%*%t(x) %*%w%*%Y

wlse=xtwxinv%*%xtwy)

WLSE=matrix(wlsefs.na(wlse)],nr=2)
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alphahat1=WLSE[1,]

betahat1=WLSE[2,]

al=round(mean(alphahat1),4)

bl=round(mean(betahatl),4)

round(cov(cbind(alphahat1,betahat1)),4)

mse.alphal=mean((alphahat142)"2)

round(mse.alphal,4)

mse.betal=mean((betahat1-0.4)"2)

round(mse.betal,4)

hist(betahat1,main = paste() )

#MLE Method

mle.logit = replicate(1000,

y=array(0)

for(i in 1:10)

yli]=sum(rbern(20,F[i]))

my=20-y

out.logit= glm(formula = cbind(y, my)~ xi, family = binomial(link = "log-
it"))

mle.logit=out.logit$coefficients)

MLE.logit=matrix(mle.logit[!is.na(mle.logit)],nr=2)

alphahat2=MLE.logit|[1,]

betahat2=MLE.logit[2,]

a2=round(mean(alphahat2),4)

b2=round(mean(betahat2),4)

round(cov(cbind(alphahat2 betahat2)),4)

mse.alpha2=mean((alphahat2+2)"2)
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round(mse.alpha2,4)

mse.beta2=mean((betahat2-0.4)"2)

round (mse.beta2,4)

hist(betahat2,main = paste() )

hist(betahat3,main = paste() )

#MHD Method

mhd.beta = replicate(1000,

p=array(0)

for(i in 1:10)

p[i]=sum(rbern(20,F[i]))/20

A = matrix( ¢(p, 1-p), nrow=10, ncol=2, byrow = FALSE)
Al=sqrt(A)

mhd.betaj-function(beta)

FF=array(0)

for(i in 1:10)
FF[i]=(exp(beta[l]+beta[2]*xi[i]))/(1+exp(beta[1]+beta[2]*xi[i]))
B = matrix( ¢(FF, 1-FF), nrow=10, ncol=2, byrow = FALSE)
Bl=sqrt(B)

-sum(diag(t(A1)%*%B1))
mhd.beta=nlm(mhd.beta,c(-2,0.4))$estimate)
alphahat3=mhd.betall,]

betahat3=mhd.beta[2,]

round(mean(alphahat3),4)

round(mean(betahat3),4)
round(cov(cbind(alphahat3,betahat3)),4)

mse.alpha3=mean((alphahat3+2)"2)
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round(mse.alpha3,4)

mse.beta3=mean((betahat3-0.4)"2)

round(mse.beta3,4)

#symmetric chi-square method

scs.beta = replicate(1000,

p=array(0)

for(i in 1:10)

plij=sum(rbern(20,F]i]))/20

scs.beta=function(beta)
sum((p-exp(beta[l]+beta[2]*xi)/(14-exp(beta[l]+beta[2]*xi))) "2/
(ptexp(beta[l]+beta[2]*xi) /(14+exp(beta[l]+beta[2]*xi))) "2+
(p-exp(beta[l]+betal2]*xi)/(14-exp(beta[l]+beta[2]*xi))) "2/
(2-p-exp(beta[l]+beta[2]*xi) /(1+exp(beta[l]+beta[2]*xi))) "2)
scs.beta=nlm(scs.beta,c(-2,0.4))$estimate)
alphahatb=scs.beta[l,]

betahatb=scs.beta|2,]

round (mean(alphahat5),4)

round (mean(betahat5),4)
round(cov(cbind(alphahat5,betahat5)),4)
mse.alphab=mean((alphahat5+2)"2)

round(mse.alphab,4)

mse.betab=mean((betahat5-0.4)"2)

round(mse.betab,4)

hist(betahat5,main = paste() )

rm(list = 1s()) # clear the memory

#download Rlab for rbern
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xi=c(1,2,3,4,5,6,7,8,9,10)

alpha=-2

beta=0.4

#Model II, WLSE Method

y=alpha+beta*xi

F=0.9%exp(y)/(1+exp(y))+0.1%exp(2*y)/(1+exp(2*y))

F #cdf

#MLE Method

mle.logit = replicate(1000,

y=array(0)

for(i in 1:10)y[i]=sum(rbern(20,F[i]))

my=20-y

out.logit= glm(formula = cbind(y, my) xi, family = binomial(link =
"logit”))

mle.logit=out.logit$coefficients)

MLE.logit=matrix(mle.logit[!is.na(mle.logit )] ,nr=2)

alphahat2=MLE.logit|[1,]

betahat2=MLE.logit[2,]

a2=round(mean(alphahat2),4)

b2=round(mean(betahat2),4)

a2

b2

round(cov(cbind(alphahat2,betahat2)),4)

mse.alpha2=mean((alphahat2+42)"2)

round(mse.alpha2,4)

mse.beta2=mean((betahat2-0.4)"2)
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round (mse.beta2,4)

hist(betahat2,main = paste() )

Xp.MSE=function(p)

((log(p/(1-p))-a2)/b2-(log(p/(1-p))+2)/0.4)"2

round (Xp.MSE(0.25),4)

round(Xp.MSE(0.5),4)

#MHD Method

mhd.beta = replicate(1000,

p=array(0)

for(i in 1:10)p[i]=sum(rbern(20,F[i]))/20 #generated from bernoulli func-
tion with p=F

r=rep(0.1,10)

mhd.beta=function(beta)

-sum(r*(sqrt(p*(0.99*exp(beta[l]+beta[2]*xi) /(14-exp(beta[l]+betal2]*xi))+

0.01*exp(2*(beta[l]+betal2]*xi))/(14+exp(2*(beta[l]+beta[2]*xi)))))+

sqrt((1-p)*(1-0.99*exp(beta[l]+beta[2]*xi) /(1+exp(beta[1]+beta[2]*xi))-

0.01*exp(2*(beta[l]+beta[2]*xi))/(1+exp(2*(betall]+beta[2]*xi)))))))

mhd.beta=nlm(mhd.beta,c(-2,0.4))$estimate)

alphahat3=mhd.betall,]

betahat3=mhd.beta[2,]

round(mean(alphahat3),4)

round (mean(betahat3),4)

round(cov(cbind(alphahat3,betahat3)),4)

mse.alpha3=mean((alphahat342)"2)

round(mse.alpha3,4)

mse.beta3=mean((betahat3-0.4)"2)
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round (mse.beta3,4)

hist(betahat3,main = paste() )

#symmetric chi-square method

scs.beta = replicate(1000, pj-array(0)

for(i in 1:10)

plij=sum(rbern(20,F]i]))/20 #generated from bernoulli function with p=F
scs.beta=function(beta)

sum((p-(0.9%exp(beta[1]+beta[2]*xi) /(1+exp(beta[1]+beta[2]*xi))+
0.1*exp(2*(beta[l]+beta[2]*xi))/(1+exp(2*(betall]+beta[2]*xi))))) "2/
(p+(0.9%exp(beta[1]+beta[2]*xi) /(1+exp(beta[1]+beta[2]*xi) )+
0.1%exp(2*(beta[l]+beta[2]*xi))/(1+exp(2*(beta[l|+beta[2]*xi))))) "2+
(p-(0.9*exp(beta[l]+betal2]*xi)/(1+exp(beta[l]+betal2]*xi))+
0.1%exp(2*(beta[l]+beta[2]*xi))/(1+exp(2*(beta[l]+beta[2]*xi))))) "2/
(2-p-(0.9%exp(beta[1]+Dbeta[2]*xi) / (1+exp(beta[1]+beta[2]*xi))+
0.1*exp(2*(beta[l]+beta[2]*xi))/(1+exp(2*(beta[l]+beta[2]*xi)))))"2)
scs.beta=nlm(scs.beta,c(-2,0.4))$estimate)

alphahatb=scs.beta[l,]

betahatb=scs.beta[2,]

round(mean(alphahat5),4)

round (mean(betahat5),4)

round(cov(cbind(alphahat5,betahat5)),4)
mse.alphab=mean((alphahat5+2)"2)

round(mse.alphab,4)

mse.betab=mean((betahat5-0.4)"2)

round(mse.betab,4)

hist(betahat5,main = paste() )
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par(mfrow=c(2,2))

hist(betahat1,main = paste(” WLS method”) )

hist(betahat2,main = paste(” MLE method”) )

hist(betahat3,main = paste(” MHDE method”) )

hist(betahat5,main = paste(”SCDE method”) )

boxplot(betahat1,betahat2,betahat3,betahat5,ylab="Beta hat” main="Model
1)

axis(1, at=1:4, lab=c("WLS”, "MLE”, "MHD”, ”SCDE"))
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