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Abstract

In this thesis, we examine two robust and efficient methods of estimation

in dose-response studies context. In particular, we investigate the minimum

Hellinger distance estimation and symmetric chi-squared distance methods of

estimation. Using these approaches, we obtain estimators which have desirable

robustness properties as well as good asymptotic efficiency properties. We

support our theoretical results with extensive finite sample simulation studies.

For quantal assay problems, logit and probit analysis are used to analyze

binary responses. Based on the minimum Hellinger distance and symmetric

chi-squared distance approaches, new estimators of the regression parameters

are derived for logistic and probit models. Then their asymptotic properties

such as consistency and asymptotic normality are investigated. It is shown

that our minimum Hellinger distance estimator is asymptotically equivalent to

the traditional estimators derived using the maximum likelihood and weighted

least squares approaches. Simulation studies are used to demonstrate that the

new estimators work as good as the traditional estimators and most often

outperforms them when a contamination occurs in the data.

Further, the proposed methods are used to estimate the critical dose, and

the corresponding estimators are again compared with the the maximum like-

lihood and weighted least squares estimators. This is done only numerically.

The final numerical estimates are obtained by performing optimization of the

mean value of 1000 replications. The proposed estimators are comparable to

the benchmark methods and show good robust properties. A real data set is

analyzed as case study to illustrate the performance of the estimators.
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Chapter 1

Introduction

1.1 Parameter Estimation in Dose-Response

Studies

1.1.1 Background

In order to obtain a preliminary efficacy and toxicity of a testing drug, wide-

ranging quantities of doses are used in the pre-clinical studies. The crucial step

is to find the critical dose. Critical dose is a random variable which determines

the minimum amount of drug needed to show a response (e.g. cure in an

efficacy experiment or death in a dosage-mortality study). Due to variation

between individuals in the population, the critical dose is a random variable

and the statistical problem concerns with the estimation of the parameters of

its distribution.

In the usual dose-response experiments, study subjects are randomized to

several subgroups. The outcome of interest is usually measured at several in-

creasing dose levels, denoted as xj (j = 1, 2, . . . , K, i.e. K different increasing
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dosages). In each subgroup, the number of individuals who show a response

is observed. Then the ratio πj =
mj
nj

is an estimate and a sufficient statistic of

P (Critical Dose ≤ xj), where mj subjects show responses out of nj. Assume

that

P (Critical Dose ≤ xj) = P (Response atDose xj) = F (α + βxj),

where F is a known distribution function and α, β are unknown parameters.

One of the most important quantity of dose is the ‘median effective dose’

(ED50), which is the dose that produces a response in half of the population

that takes it. The most common choices of F are the cumulative distribution

functions (CDF) of logistic and normal distributions. For instance, the logistic

CDF is F (x) = (1 + e−
x−µ
σ )−1, where µ is the location parameter and σ is the

scale parameter. The standardized form of the logistic CDF has µ = 0 and

σ = 1 and, as x→∞, F (x) ↑ 1 when σ > 0 (we do not consider the case where

σ < 0). The model used here is not formulated in terms of the usual location

and scale parameter; the parameters α and β have another interpretation as

follows.

The dose-response curve is S-shaped and logistic regression model is one

of the most important formulae used to fit this S-shaped pattern:

π(y) =
ey

1 + ey
(1.1)

We solve for y and obtain y = log π(y)
1−π(y)

, and we call it logit[π(y)]. Since πj

is considered as a sufficient statistic for F (α + βxj), we have yj = F−1(πj) =

log
πj

1−πj = α + βxj. The plot of yj = F−1(πj) against xj, j = 1, 2, . . . , K,
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should be approximately a straight line, if our chosen model is appropriate.

1.1.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is by far the most popular point es-

timation method employed in statistics. If model is correct and the observa-

tions are not contaminated, then parameters can be estimated using the MLE

method effciently. MLEs have many nice properties such as consistency and

asymptotic efficiency in most cases. However, they can be highly unstable if

the model is not totally correct, and they are not robust if the data is slightly

contaminated.

An example of MLE of one-dimensional location parameter is as follows.

Let X be a random variable (r.v.) from a probability density function f(x),

with location parameter θ. For sample of n independent observations {x1, . . . , xn}

with the same distribution as X, the likelihood function is the joint prob-

ability distribution or density function f(x; θ), viewed as a function of the

parameter θ given the sample. Then the likelihood function is given by

l(θ; x) = Πn
i=1f(xi; θ). The estimated parameter in the maximum likelihood

sense, say θ̂, is the parameter value that maximizes the likelihood function,

and it can be obtained by solving the equation ∂l
∂θ
|θ=θ̂ = 0.

For easier calculation, ln l, which is called the log-likelihood, is commonly

used instead of l if any exponential form is shown in the likelihood func-

tion. Therefore, the MLE is defined as: θ̂ = arg min
θ

n∑
i=1

ρ(xi; θ), where ρ =

− ln f(xi; θ). Our objective is then to minimize L(θ) =
n∑
i=1

ρ(xi; θ). To solve

the optimization problem, the derivative of the objective function was set equal

to zero and solve for θ: ∂L
∂θ
|θ=θ̂ = 0. If ρ is an arbitrary function, an implicit

3



equation
n∑
i=1

ψ(xi; θ) = 0 with ψ(xi; θ) = ∂ρ(xi;θ)
∂θ

is called an M-estimation e-

quation (M stands for ‘maximum likelihood type’). The resulting estimator is

called an M-estimator. See Huber (2009) for more details.

In our dose-response problem, let θ0 = (α0, β0)T be the true parameter

value, and θ̂ = (α̂, β̂)T be the MLE of θ0 = (α0, β0)T , then

(α̂, β̂)T = arg max
α ,β

{ΠK
j=1[F (α + βxj)]

mj [1− F (α + βxj)]
nj−mj}. (1.2)

We typically use an iterative procedure (e.g. Fisher Scoring or Newton-

Raphson algorithm) to find the maximum likelihood estimate. If we assume

that the following linear logistic model holds

logit[πj] = α0 + β0xj

where πj = Prob(Yj = 1) with Yj = 1 means a positive response is showing,

and the F to be the CDF of logistic distribution F (α0 + β0xj) = eα0+β0xj

1+eα0+β0xj
,

then the variance of the predicted probability is given by

V ar(logit[π̂j]) = V ar(α̂) + x2
jV ar(β̂) + xjCov(α̂, β̂).

For maximum likelihood estimators α̂ and β̂, V ar(α̂, β̂) is obtained by

inverting the information matrix. Specifically,

V ar(α̂, β̂) = E


K∑
j=1

(Wj)
K∑
j=1

(Wjxj)

K∑
j=1

(Wjxj)
K∑
j=1

(Wjx
2
j)


−1

,

where
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Wj =
njexp{α0+β0xj}

(1+exp{α0+β0xj})2 .

In general, for a continuous distribution with CDF F and probability den-

sity function (PDF) f , Wj ∝ f2(α0+β0xj)

F (α0+β0xj)(1−F (α0+β0xj))
.

1.1.3 Weighted Least Square Estimation

Suppose yj = F−1(πj) against xj, j = 1, 2, . . . , K, is plotted, and if the pos-

tulated model is appropriate then the plotted points should approximately lie

in a straight line. But due to multiple reasons, such as model contamination

or sampling fluctuations in the data, the plotted points usually cannot strictly

follow a straight line. The parameters α and β are the y-intercept and the

slope of this straight line, respectively. Therefore, the problem can be con-

sidered as one of simple linear regression under the assumption that the error

variance is non-homogeneous. For known heteroscedasticity, weighted least

squares (WLS) is a popular method which is used to obtain efficient unbiased

estimates.

In this dose-response problem, consider minimizing the weighting of the

individual measurements in the least squares cost function: V =
K∑
j=1

njwj(yj−

α− βxj)2 with respect to α and β to obtain α̂ and β̂. In matrix form:

V = (Y − Zθ)TW (Y − Zθ), where Y = (y1, y2, . . . yK)T , θ = (α, β)T ,

Z =


1 x1

...
...

1 xK

, W =


w1

. . .

wK

.

Let θ̂ = (α̂, β̂)T be the WLSE of (α0, β0). This involves solving the equation

∂
∂θ

[(Y − Zθ)TW (Y − Zθ)] = 0 and it results in θ̂ = (ZTWZ)−1ZTWY . For

calculation in the general form, let f be the density function of F , wj =

5



f 2(yj)/[πj(1− πj)] and the minimization gives the following estimates:

θ̂ = Γ−1
N

K∑
j=1

njwjyjZj, (1.3)

where Zj = (1, xj)
T , N =

K∑
j=1

nj and ΓN =
K∑
j=1

njwjZjZ
T
j .

By examining (1.3) we note that the weighted least squares estimator is not

robust and could be greatly affected by many types of errors. Some common

errors are:

- errors in the measurement or recording of the xj values,

- errors in the πj values as caused, for example, by subjects showing re-

sponse (e.g. dying) from other causes,

- errors caused by choosing the wrong distribution function,

- errors caused when the inverse function (or matrix) is not exist.

The method of iteratived reweighted least squares (IRLS) is an adjustment

of WLSE. One can use this algorithm to minimize
K∑
j=1

log(1+(yj−α−βxj)2).

But as shown in Section 2.3.2 later, the results are not very good when com-

pared with other methods.

1.2 Motivation and Organization of The The-

sis

Statisticians stress the importance of robust procedure in statistical inference

over the years. Hampel (1968, 1973) and Huber (1972, 1973) are considered
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as the landmark papers for finding robust statistics. Although the methods

they proposed are good in dealing with outliers, they are easily suffer from

a loss of efficiency if the assumed model distribution is actually the real one.

Two fundamental ideas in parametric estimation are efficiency and robustness,

but there are contradictions between the aims of achieving both, i.e. a robust

estimator is usually not efficient and vice versa. Hampel (1968) introduced

the influence curve to distinguish these two kinds of estimators. In general,

the influence curve of an efficient estimator will show unboundedness, while a

robust one will be always bounded. In many statistical inference areas, mini-

mum distance approaches yield statistics that are efficient under the case when

the postulated model is true and robust to deviations under the contaminat-

ed model. A popular minimum distance approach is the minimum Hellinger

distance (MHD) approach introduced by Beran (1977). He also proposed α-

influence curve to determine the robustness of an estimator. Various other

distances such as chi-squared distance, symmetric chi-squared distance, total-

variation distance, etc. have been used in the literature, see Lindsay (2004)

for more discussions on these distances and their applications.

This thesis is organized as follows. In Chapter 2, a version of the minimum

Hellinger distance estimation (MHDE) method is employed to estimate the

regression parameters (α0, β0) by comparing an estimate with the postulated

parametric distribution. Then the asymptotic properties such as consistency

and asymptotic normality of the MHD estimators are studied. Robust prop-

erties of the estimators are investigated using a Monte Carlo study.

In Chapter 3, the parameters (α0, β0) are estimated using the symmetric

chi-squared distance introduced by Lindsay (2004). In particular, in Section

3.1 we propose estimating α0 and β0 by the symmetric chi-squared distance

7



estimation (SCDE) method. In Section 3.2 we give results on the existence,

uniqueness, consistency and asymptotic distribution of the SCDE. In Section

3.3 we use some Monte Carlo studies to examine the robustness of the SCDE

in comparison with the traditional estimators.

In Chapter 4, the relationship between the predictive dose level and con-

tamination rate is numerically compared using four methods: MLE, WLSE,

MHDE and SCDE. Chapter 5 contains some closing remarks. It contains the

summary and conclusions on the performance of the methods employed. We

also provide some directions for further studies.

8



Chapter 2

Minimum Hellinger Distance

Estimation Method

2.1 Background

The minimum Hellinger distance (MHD) approach was proposed by Beran

(1977) for independent and identically distributed (iid) continuous random

variables in parametric models. MHD estimators have been shown to have

excellent robustness properties in parametric models such as the resistance to

outliers and robustness with respect to model misspecification (Beran, 1977;

Donoho & Liu, 1988). Since the original work of Beran, MHD estimators

have been developed in the literature for various setups and models including

discrete random variables, some parametric mixture models, semiparametric

models, etc. The literature is too extensive to state a complete listing here.

For recent developments in the area and some important references can be

seen in the recent articles of Wu and Karunamuni (2009, 2012), Karunamuni

and Wu (2011) and Tang and Karunamuni (2013).
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There are many versions of mathematical form of Hellinger distance. In

the most general form, Hellinger distance between two probability measures

P and Q, DH(P,Q), is defined as

D2
H(P,Q) =

1

2

∫
[
√
p−√q]2dµ, (2.1)

for some dominating measure µ. The following example shows that the choice

of µ does not affect the value of DH(P,Q).

Example 2.1: (Shorack, 2000, p.68). Let P and Q denote probability

measures on (Ω, A). Then the choice of dominating measure µ does not affect

the value of DH(P,Q).

Solution: For any measure µ dominating both P and Q, i.e. P << µ,

Q << µ, and for A ∈ A, P (A) =
∫
A
dP
dµ
dµ and Q(A) =

∫
A
dQ
dµ
dµ, where p = dP

dµ

and q = dQ
dµ

are Randon-Nikodym derivatives. Substituting p and q in (2.1),

we get D2
H(P,Q) = 1

2

∫
[
√
p−√q]2dµ = 1

2

∫
dP
dµ
dµ+ 1

2

∫
dQ
dµ
dµ−

∫ √
dPdQdµ =

1 −
∫ √

pq. The first two integrals are equal to 1 because we are integrating

probability density functions. Hence, the choice of dominating measure µ does

not affect the value of DH(P,Q) and, for a discrete case, the counting measure

can be used as the dominating measure both P and Q.

From Example 2.1, we find that minimizing the Hellinger distance is equiva-

lent to maximizing the Bhattacharyya (BC) distance, BC(P,Q) =
∫ √

pq since

D2
H(P,Q) = 1

2
[2(1−BC(P,Q))].

In a dose-response studies setup, we are dealing with N(=
K∑
j=1

nj), K ≥ 2

independent Bernoulli random variables, but not all identically distributed;

for a trial at dose xj, the probability of success is F (α + βxj) and πj =
mj
nj

is

10



an estimate of this probability, j = 1, . . . , K.

We define an estimator of (α, β) as the value of (α̂, β̂) which minimizes the

sum of Hellinger distances

∆1(α, β) =
K∑
j=1

nj{[
√
πj −

√
F (α + βxj)]

2 + [
√

1− πj −
√

1− F (α + βxj)]
2}.

This is equivalent to maximizing

∆2(α, β) =
K∑
j=1

nj{[
√
πjF (α + βxj) +

√
(1− πj)(1− F (α + βxj))}.

Now take ∂∆(α,β)
∂α

and ∂∆(α,β)
∂β

and solve the equations ∂∆(α,β)
∂α

= 0 and

∂∆(α,β)
∂β

= 0 to find estimators. However, there are no explicit solutions in this

case, only numerical solutions can be obtained. The same situation occurs for

maximum likelihood estimation in this context.

Let us denote IK = [0, 1]× [0, 1]× . . .× [0, 1] (K copies) and define GK =

{(π, r) ∈ IK × IK : 0 ≤ πj ≤ 1;
K∑
j=1

rj = 1, rj > 0, 1 ≤ j ≤ K}.

Definition 2.1: Let Θ be the parameter space for (α, β); Θ ⊆ R× (0,∞).

A Hellinger distance functional for estimating ‘true’ unknown parameter value

(α0, β0) is a functional T : GK → Θ such that T (π, r) is a value of (α, β)

maximizing

∆1(α, β) =
K∑
j=1

nj{[
√
πj −

√
F (α + βxj)]

2 + [
√

1− πj −
√

1− F (α + βxj)]
2}.

11



Note that ∆1(α, β)/N can be written as:

∆(α, β) =
K∑
j=1

rj{[
√
πj −

√
F (α + βxj)]

2 + [
√

1− πj −
√

1− F (α + βxj)]
2},

where rj =
nj
N

, with N =
K∑
j=1

nj. Thus
K∑
j=1

rj = 1. This is also equivalent

to maximizing

H(α, β) =
K∑
j=1

rjHj(α, β), (2.2)

where Hj(α, β) = {
√
πjF (α + βxj) +

√
(1− πj)(1− F (α + βxj))}.

For example, suppose F (α + βxj) = eα+βxj/(1 + eα+βxj), the CDF of the

logistic distribution. Then substituting this F in (2.2) we have

H =
K∑
j=1

rj(1 + eα+βxj)−
1
2 (
√
πjeα+βxj +

√
1− πj).

Taking logarithm both sides we obtain:

logH =
K∑
j=1

[log rj −
1

2
log(1 + eα+βxj) + log(

√
πjeα+βxj +

√
1− πj)].

Then the derivatives with respect to (w.r.t.) α and β give score values

∂H

∂α
= 1

2

K∑
j=1

eα+βxj [
1

eα+βxj +
√

(1− π)/πe(a+bxj)/2
− 1

1 + eα+βxj
],

∂H

∂β
= 1

2

K∑
j=1

xje
α+βxj [

1

eα+βxj +
√

(1− π)/πe(α+βxj)/2
− 1

1 + eα+βxj
].
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Let Ui denote the part common to both ∂H
∂α

and ∂H
∂β

. Then the covariance

(Inverse Fisher Information) matrix can be approximated by

V ar(α̂, β̂) = E


K∑
j=1

(Uj)
K∑
j=1

(Ujxj)

K∑
j=1

(Ujxj)
K∑
j=1

(Ujx
2
j)


−1

,

2.2 Properties of The MHDE

2.2.1 Consistency

Definition 2.2: An estimator θ̂ is said to be consistent if θ̂ →P θ as N →∞,

where θ is considered as the true unknown parameter.

It is well known that MLEs are consistent under fairly general conditions

(see Casella and Berger, 2002). The existence, continuity and consistency of

the MHDE are shown in following three theorems.

Theorem 2.1: Existence

(i) If Θ is compact and F is continuous, then T (π, r) exists for all (π, r) ∈

GK .

(ii) If F is strictly increasing on R and πj = F (α+ βxj), 1 ≤ j ≤ K, with

not all xj’s equal, then T (π, r) = (α, β)T uniquely.

Proof :

(i) From (2.2), H(α, β) =
K∑
j=1

rj{
√
πjF (α + βxj)+

√
(1− πj)(1− F (α + βxj))}.

13



For a sequence (αn, βn)n≥1 such that (αn, βn)→ (α, β), we have

|H(αn, βn)−H(α, β)|

=
K∑
j=1

rj|
√
πjF (αn + βnxj)−

√
πjF (α + βxj)|

+
K∑
j=1

rj|
√

(1− πj)(1− F (αn + βnxj))−
√

(1− πj)(1− F (α + βxj)|. (2.3)

Since F (α+βxj) is nonnegative and continuous, we have
√
F (α + βxj) and√

1− F (α + βxj) continuous. Then |
√
F (αn + βnxj) −

√
F (α + βxj)|→ 0

and |
√

1− F (αn + βnxj) −
√

1− F (α + βxj)|→ 0 imply that |H(αn, βn) −

H(α, β)|→ 0. So when πj is given, H(α, β) is continuous with (α, β) on a

compact set and attains a maximum there.

(ii) H(α, β) is maximized when F (α + βxj) = πj, it is obvious from

∆(α, β) ≥ 0. If there exists ∆(a, b) = 0 for another (a, b), then F (a+bxj) = πj,

1 ≤ j ≤ K. Since F is one-to-one this implies that a+bxj = α+βxj, 1 ≤ j ≤ K

and (a, b) = (α, β). Hence the result follows. The proof of Theorem 2.1 is com-

plete.

Theorem 2.2: Continuity

Suppose Θ is compact, F is continuous and strictly increasing on R and

(π, r) is such that T (π, r) is unique with for some 0 < πj < 1, 1 ≤ j ≤ K.

Then T is continuous in the Hellenger metric at (π, r).

Proof : Suppose {(πn, rn) ∈ GK : n ≥ 1} is a sequence such that

(πn, rn)→ (π, r) as n→∞ for some (π, r) ∈ GK . Denote

Hj(α, β) =
√
πjF (α + βxj) +

√
(1− πj)(1− F (α + βxj))

and H(α, β) =
∑K

j=1rjHj(α, β).

Similarly, we define Hn(α, β) =
∑K

j=1rj,nHj,n(α, β), where Hj,n(α, β) =

14



√
πj,nF (α + βxj) +

√
(1− πj,n)(1− F (α + βxj)) with πj and rj replaced by

πj,n and rj,n, respectively, 1 ≤ j ≤ K.

For convenience, let T (π, r) = (α, β)T , T (πn, rn) = (αn, βn)T . We want to

show that T (πn, rn)→ T (π, r) as n→∞, which needs

sup{|Hn(α, β)−H(α, β)|: (α, β)T ∈ Θ} → 0. (2.4)

To obtain (2.4), first note that

|Hn(α, β)−H(α, β)|≤
K∑
j=1

|Hj(α, β)||rj,n − rj|+
K∑
j=1

|rj,n||Hj,n(α, β)−Hj(α, β)|.

(2.5)

Since Θ is compact and F is strictly increasing on R, Hj(α, β) is bounded

and so rn → r implies that the supremum of the first term on the RHS of (2.5)

converges to zero. Let Fj = F (α + βxj) and consider

δj,n(α, β) =Hj,n(α, β)−Hj(α, β)

=
√
Fj(
√
πj,n −

√
πj) +

√
1− Fj(

√
1− πj,n −

√
1− πj)

=
1

2

√
Fj
πj

[(πj,n − πj)− (
√
πj,n −

√
πj)

2]

−1

2

√
1− Fj
1− πj

[(πj,n − πj) + (
√

1− πj,n +
√

1− πj)2]. (2.6)

Since (
√
b−
√
a)2 = (b−a)2

(
√
b+
√
a)2 ≤

(b−a)2

a
for b ≥ 0, a > 0, we have
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δj,n(α, β) ≤1

2
|πj,n − πj|[

√
Fj
πj

+

√
1− Fj
1− πj

] +
1

2
|πj,n − πj|2[

√
Fj
π3
j

+

√
1− Fj

(1− πj)3
]

≤1

2
[
√
πjFj +

√
(1− πj)(1− Fj)]εj,n, (2.7)

where εj,n = |πj,n − πj|[ 1
πj

+ 1
1−πj ] + |πj,n − πj|2[ 1

π2
j

+ 1
(1−πj)2 ].

Now πj,n → πj implies that εj,n → 0 and hence (2.4) is satisfied. Then it

follows that |max{Hn(α, β)} −max{H(α, β)}|→ 0, i.e. Hn(α, β) → H(α, β).

Further, (2.4) also implies that |Hn(α, β)−H(α, β)|→ 0 and hence

Hn(α, β)→ H(α, β), as n→∞. (2.8)

The result follows from (2.8) by standard arguments based on the continu-

ity of function H, compactness of Θ and uniqueness of (α, β). This completes

the proof.

In order to study properties of (α̂, β̂) first we introduce some notation. We

have N =
K∑
j=1

nj. For 1 ≤ j ≤ K, let πj,N =
mj
nj

and rj,N =
nj
N

(previously

πj and rj, respectively). Let πN and rN be the K dimensional vectors with

components πj,N and rj,N , respectively. Clearly (πN , rN ) ∈ GK .

Theorem 2.3: Consistency

Suppose Θ is compact, F is continuous and strictly increasing on R and

we select subjects from a population for which the critical dose of a drug is

a random variable specified by d.f. F with parameters (α0, β0). To each of

nj (1 ≤ j ≤ K) subjects, a dose xj is applied and mj of these show a response.

If rj,N → rj > 0, 1 ≤ j ≤ K, as N → ∞, then T (πN , rN)→P (α0, β0)T as
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N →∞, i.e. the MHDE is consistent.

Proof : As N → ∞, πj,N→PF (α0 + β0xj) = πj0 since for large value of

N the sample proportion will be expected to form an approximation to the

parent population proportion.

From Theorem 2.2, we have T is continuous at (π, r). Let T (π0, r0) =

(α0, β0)T . We want to show that lim
N→∞

P (|T (πN , rN)− T (π0, r0)|< ε) = 1

Use the continuity of T to find δ > 0 such that

|(πN , rN)− (π0, r0)|< δ ⇒ |T (πN , rN)− T (π0, r0)|< ε.

Then P (|(πN , rN)− (π0, r0)|< δ) ≤ P (|T (πN , rN)− T (π0, r0)|< ε). Here we

use the fact that if one event can be implied by another, it has a greater proba-

bility. Since the first probability goes to 1 asN →∞, so T (πN , rN)→P (α0, β0)T .

This completes the proof.

2.2.2 Asymptotic Normality

Definition 2.3: An estimator θ̂ is said to be asymptotically multivariate

normal if
√
N(θ̂ − θ) →D N(0,Σ), where Σ is the asymptotic covariance

matrix of the estimate θ̂.

An MLE θ̂ is asymptotically normal under fairly general conditions (see

Casella and Beger, 2002) with
√
N(θ̂−θ)→D N(0, I−1(θ)), where I(θ) is the

Fisher information matrix.

Before giving an asymptotic expansion for our functional T , we introduce

some notations first. Define

Gj(y) =
∂

∂y
[
√
πjF (y)+

√
(1− πj)(1− F (y))] =

f(y)

2
(

√
πj
F (y)

−

√
1− πj

1− F (y)
),
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G′j(y) =
f ′(y)

2
{
√

πj
F (y)

−

√
1− πj

1− F (y)
} − f 2(y)

4
{
√

πj
F (y)3

+

√
1− πj

[1− F (y)]3
},

G′′j (y) =
f ′′(y)

2
{
√

πj
F (y)

−

√
1− πj

1− F (y)
} − f ′(y)[f ′(y) + 2f(y)]

4
{
√

πj
F 3(y)

+

√
1− πj

[1− F (y)]3
}+

3f 3(y)

8
{
√

πj
F 5(y)

−

√
1− πj

[1− F (y)]5
},

for F (y) 6= 0 and F (y) 6= 1;

Σ =
K∑
j=1

rjZjZ
T
j G
′
j(α0 + β0x) and

λ(α0, β0,π, r) =
K∑
j=1

rjZjGj(α0 + β0xj), with Zj = (1, xj)
T .

Theorem 2.4: Suppose Θ is compact, F is a continuous, strictly in-

creasing and thrice differentiable function on R with derivatives f , f ′ and f
′′

bounded on C = {α+βxj : (α, β)T ∈ Θ, 1 ≤ j ≤ K} and F (C) ⊆ [δ, 1− δ] for

some positive δ. Let (π, r) ∈ GK be such that T (π0, r0) = (α0, β0)T is unique

and let (πN , rN) → (π0, r0). Let VN be a 2 × 2 matrix whose components

converge to 0 as N →∞. If Σ is non-singular then we have as N →∞,

T (πN , rN)− T (π0, r0) = −Σ−1λ(α, β,πN , rN).

Proof : Let T (πN , rN) = (α̂N , β̂N)T . Differentiability of F implies that

(α̂N , β̂N)T satisfies

0 = λ(α̂N , β̂N ,πN , rN) =
K∑
j=1

rj,NZjGj,N(α̂N + β̂Nxj), (2.9)

where Gj,N is defined the same way as Gj with πj,N replacing πj. Expanding
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Gj,N(α̂N + β̂Nxj) at α0 + β0xj by Taylor series we obtain

Gj,N(α̂N + β̂Nxj) = Gj,N(α0 + β0xj) + ZT
j γNG

′
j,N(α0 + β0xj) +

1

2
(ZT

j γN)2G′′j,N(κj),

(2.10)

where κj is between α̂N + β̂Nxj and α0 + β0xj, Zj = (1, xj)
T and γN =

(α̂N − α0, β̂N − β0)T .

Since F has bounded derivatives and is bounded in the interval [0, 1], G′′j,N

is continuous in a closed interval, F (κj) 6= 0 and F (κj) 6= 1, function G′′j,N is

bounded. Also, πj,N → πj implies that G′j,N(y)→ G′j(y) uniformly in y. Then

(2.10) becomes

Gj,N(α̂N + β̂Nxj)−Gj,N(α0 + β0xj) = ZT
j γNG

′
j(α0 + β0xj) + o(ZT

j γN).

(2.11)

Since Theorem 2.2 implies γN → 0 as (πN , rN) → (π0, r0). Substituting

(2.11) in (2.9) we get

0 =
K∑
j=1

rj,NZjGj,N(α0 + β0xj) + [
K∑
j=1

rj,NZjZ
T
j {G′j(α0 + β0xj) + o(1)}]γN

=λ(α0, β0,πN , rN) + {Σ + VN}γN ,

as rj,N → rj. Here VN is also a 2 × 2 matrix whose component are o(1)

as N → ∞. Since {Σ + VN} will be non-singular for sufficiently large N ,
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Σ−1 = (Σ + VN)−1 as N →∞, the result follows, i.e. for large N ,

γN = T (πN , rN)− T (π, r) = −Σ−1λ(α0, β0,πN , rN). (2.12)

This completes the proof.

Notes: 1. Gj(y) = f(y)
2

(
√

πj
F (y)
−
√

1−πj
1−F (y)

), so that Gj(y) = 0 when πj =

F (y).

2. G′j(y) = Gj(y)f
′(y)
f(y)
− f2(y)

4
[
√

πj
F (y)3 +

√
1−πj

(1−F (y))3 ], so that Σ is

very complicated in general. However, when πj = F (y) we have G′j(y) =

− f2(y)
4F (y)(1−F (y))

, and we can get the following corollary.

Corollary 2.1: Suppose the conditions of Theorem 2.4 hold with πj0 =

F (α0 + β0xj), 1 ≤ j ≤ K, and let Σ∗ be the 2 × 2 matrix defined by Σ∗ =

−4Σ =
K∑
j=1

rjZjZ
T
j

f 2(α0 + β0xj)

F (α0 + β0xj)(1− F (α0 + β0xj))
.

Then we have

γN = T (πN , rN)− T (π0, r0) = 4Σ∗−1λ(α0, β0,πN , rN), (2.13)

as N →∞. We find that Σ∗ is proportional to
f2(α0+β0xj)

F (α0+β0xj)(1−F (α0+β0xj))
, which

has the same structure as the Information matrix of MLE.

Special case: Σ∗ is singular only when f(α0 + β0xj) = 0 for some j and

xj = x for all other j values. Thus Σ∗ is not singular except for this special

case.

Finally we state a theorem establishing the asymptotic normality property

of MHDE without a proof. A proof can be found in Chapter 3 of ‘Advanced

Multivariate Statistics with Matrices ’ by Kollo and von Rosen (2005).
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Theorem 2.5: Asymptotic Normality

Suppose the conditions in Theorem 2.3 hold and the expansion in Theorem

2.4 holds for T (πN , rN).

Let T (π0, r0) = (α0, β0)T and Σx =
K∑
j=1

r2
jZjZ

T
j

f 2(α0 + β0xj)

F (α0 + β0xj)(1− F (α0 + β0xj))
.

Then, as N →∞, we have
√
N{T (πN , rN)− T (π0, r0)}→DN(0,ΣH), where ΣH = Σ∗−1ΣxΣ

∗−1.

Special case: If all the subgroups are equally weighted, then rj = 1
K

, 1 ≤

j ≤ K, ΣH = 1
K

Σ∗−1.

2.3 Simulation Study

2.3.1 Influence Function

The idea for the influence function comes from Hampel (1968) and Huber

(1972, 1973). Beran (1977) introduced the α-influence curve to measure the

robustness of an MHDE. As the name implies, the influence function of an

estimator measures the impact that a single observation can have on an esti-

mator. Assume that a sample has n observations (x1, . . . , xn−1, xn), of which

the first n − 1 observations belong to a distribution F and xn can then take

on any value. The influence function IFn(x) then measure the standard d-

ifference between the two estimators: IFn(x) = T (x1,x2,...,xn)−Tn−1(x1,x2,...,xn−1)
ε

.

Lindsay (1994) used a bias plot, which is related to the influence function as

bias ≈ ε ∗ IFn(x).

For measuring the effect of a single contaminated observation in a sample
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of size n, so ε = 1/n. This influence function can then be written as

IFn(x) =
T (x1, x2, . . . , xn)− T (x1, x2, . . . , xn−1)

1/n
= n(θ̂n − θ̂n−1).

The above definition applies to finite samples, but it can be generalized to

the asymptotic case as follows. Under some regularity conditions, the asymp-

totic influence function can be derived from the Gâteaux derivative:

IF (G) = lim
ε→0

T ((1− ε)F + εG)− T (F )

ε
,

where F is the appropriate distribution and G = δx, a point mass distribution

with a mass at x.

Since our responses are binary numbers, either 1 (response) and 0 (no

response), it is hard to see the robustness property of estimators if we are

trying to put a mass at a point. Thus, we use some Monte Carlo studies to

examine the robustness of estimators for departures from the assumed model.

2.3.2 An Algorithm for MHDE Calculation

We discussed algorithms for WLSE and MLE in the introduction. In this

section, we focus on how to obtain MHDE numerically. First introduce two

K×2 matrices: A =


r1p1 r1(1− p1)

...
...

rKpK rK(1− pK)

 and B =


r1q1 r1(1− q1)

...
...

rKqK rK(1− qK)

,

where pj = πj and qj = F (α+βxj), j = 1, . . . , K. vec(A) is the 2K×1 vector

formed by stringing the first column of A out followed by the second one.

Definition 2.4: Define two discrete probability distributions
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P = vec(A) =



r1p1

...

rKpK

r1(1− p1)

...

rK(1− pK)


and Q = vec(B) =



r1q1

...

rKqK

r1(1− q1)

...

rK(1− qK)


,

where pj = πj and qj = F (α + βxj),
K∑
j=1

rj = 1, j = 1, . . . , K. Then the

Hellinger distance between P and Q is defined as

DH(P,Q) =
1√
2

∥∥∥√P−
√

Q
∥∥∥

2
. (2.14)

Definition 2.5: A Hellinger distance functional for estimating true pa-

rameter value (α0, β0) is a functional T : GK → Θ such that T (π, r) is the

estimator of true parameter value as (α̂, β̂) which minimizes the square of

Hellinger distance:

2D2
H(P,Q) =

∥∥∥√P−
√

Q
∥∥∥2

. (2.15)

Let A1 =


√
r1
√
p1

√
r1

√
1− p1

...
...

√
rK
√
pK
√
rK
√

(1− pK)

 and B1 =


√
r1
√
q1
√
r1

√
1− q1

...
...

√
rK
√
qK
√
rK
√

1− qK

,

where pj = πj and qj = F (α+βxj), j = 1, . . . , K. ‖vec(A1)‖2 = ‖vec(B1)‖2 =

1, with
K∑
j=1

rj = 1.
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Note that equation (2.15) is equivalent to:

∥∥∥√P−
√

Q
∥∥∥2

= ‖vec(A1)− vec(B1)‖2

= ‖vec(A1 −B1)‖2

=tr [(A1 −B1)T (A1 −B1)]

=2− tr(A1
TB1). (2.16)

So, minimizing (2.14) is also equivalent to maximizing

tr(A1
TB1) = H(α, β). (2.17)

For a numerical implementation of this method, initially input two matrices

A and B. In many statistical software programs, for example in R, we use

sqrt(A) to obtain the square root of all the elements in the matrix, and the

result is exactly the A1. A similar method can be used to obtain B1. Finally,

minimize tr(A1
TB1) to obtain MHDE of the parameter.

2.3.3 Monte Carlo Studies (Logistic Model)

In order to compare the MHDE with MLE and WLSE, a simulation study is

conducted. Suppose xi, i = 1, ....., 10, represent doses given to 20 subjects.

Thus, for each dose xj, we generate 20 observations from the Bernoulli distri-

bution with probability of success F (α + βxj). We take α = −2, β = 0.4 as

the true values and xj = j, 1 ≤ j ≤ 10. Calculations are carried out assuming

that F is the CDF from the logistic distribution family first. By using differ-

ent methods, following four models are used to find the means, variances and

covariances of α̂n and β̂n under 1000 replications.
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Model I: F (y) = ey

1+ey
= L(y),

Model II: F (y) = 0.9L(y) + 0.1L(2y),

Model III: F (y) = 0.9L(y) + 0.1L(0.5y),

Model IV: F (y) = 0.9L(y) + 0.1.

Model I is simply the standard logistic model. Model II, III, IV are derived

from the classical Tukey-Huber contamination model. Model II represents 10%

contamination from a distribution with shorter tails while model III is mixed

with a longer tails one. Model IV represents the situation where 10% of the

subjects show a response not caused by the stimulus under examination; for

example, if subjects recover naturally (similar to the censoring data of survival

analysis. We will show robustness by using this model). Simulation results

are given in Tables 2.1 and 2.2. These results are based on 1000 replications.

α̂n(m) and β̂n(m), m = 1, 2, 3, . . . , 1000 are estimators of α and β based on

the true distribution, then α̂n and β̂n can be found by averaging the 1000

results of α̂n(m) and β̂n(m). In the tables, V (α̂n) and V (β̂n) are used to

denote the estimated variance of α̂n and β̂n . Similarly, Cov(α̂n, β̂n) stands for

the estimated covariance between α̂n and β̂n. Also, MSE(α̂n) and MSE(β̂n)

denote estimated the mean squared errors of α̂n and β̂n.

Table 2.1: Iteratively Reweighted Least Squares Estimation

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model I −1.8122 0.3619 0.6295 0.0234 −0.1186 0.6642 0.0248

Model II −1.8106 0.361 0.8596 0.0325 −0.1643 0.8946 0.0339

Model III −1.7357 0.3465 0.5338 0.0195 −0.0992 0.6031 0.0223

Model IV −1.2952 0.3019 0.4662 0.0228 −0.1001 0.9625 0.0324
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Table 2.2: Results of Four Estimation Methods by Logistic Model
Model Method α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

I WLSE −1.9131 0.3817 0.1149 0.0033 −0.0174 0.1223 0.0036

MLE −2.046 0.4084 0.1437 0.0040 −0.0215 0.1457 0.0041

MHDE −2.1284 0.4277 0.1820 0.0054 −0.0283 0.1983 0.0062

II WLSE −2.0093 0.4005 0.1241 0.0037 −0.0193 0.124 0.0037

MLE −2.1616 0.4347 0.1426 0.0044 −0.0226 0.1686 0.0056

MHDE −2.1053 0.4214 0.1731 0.0054 −0.028 0.1841 0.0058

III WLSE −2.1217 0.4291 0.4709 0.0103 −0.0644 0.4852 0.0111

MLE −1.8799 0.3776 0.1403 0.0041 −0.0216 0.1546 0.0046

MHDE −2.0379 0.4082 0.1652 0.0051 −0.0263 0.1655 0.0052

IV WLSE −1.6954 0.4027 0.4128 0.0094 −0.0572 0.5051 0.0094

MLE −1.5486 0.3613 0.1242 0.0039 −0.0197 0.3278 0.0054

MHDE −2.14 0.4295 0.2320 0.0069 −0.0366 0.2514 0.0077

The results in Table 2.1 show that the IRLS method is not good in this

problem; it is far away from the true value and not comparable with others.

We focused on the comparison of other three methods. In all cases, MLE is the

highest variable while the MHDE is the least variable. WLSE has the smallest

variance for Models I and II among the three. If we consider only the biases

of the three estimators, we see that the MLE is least biased if the postulated

model is correct, i.e. Model I. Further we see that the weighted least squares

estimator shows the least bias under Model II, and the MHDE shows the

least bias under Models III and IV. These results suggest that the method of

weighted least squares has some protection if the true distribution has shorter

tail contamination. Also, the method of MHDE has some protection if the true

distribution has longer tail contamination. The results for Model IV suggest

that the MHDE might be the best if we wish to protect against the possibility

of subjects showing a response regardless of what dose they receive, and the

next graph shows a comparison of MLE and MHDE by using model IV.
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Figure 2.1: Bias Plots between MLE and MHDE for Logistic Model
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As shown in Figure 2.1, after increasing the contamination rate (X), the

bias plot of MHDE is showing bounded trend but that of MLE keeps increasing.

We find that the MHDEs of α and β are comparable to those of the MLE

and WLSE in most cases, but the MHDE estimator of α slightly outperforms

other two estimators when the data are under contamination. Thus we can

conclude that MHD estimator has desirable robustness properties as well as

asymptotically efficient properties when using the logistic model.

2.3.4 Monte Carlo Studies (Probit Model)

Although it is computationally more convenient to use the logistic distribution

function for binary responses, normal distribution is also frequently used in

numerical calculations. For each of the three methods of estimation we esti-

mate the means, variances and covariances of α̂n and β̂n again under each of

the following four models:

Model I: F (y) = Φ(y), where Φ(y) is the CDF of standard normal distri-

bution.

Model II: F (y) = 0.9Φ(y) + 0.1Φ(2y),

Model III: F (y) = 0.9Φ(y) + 0.1Φ(0.5y),

Model IV: F (y) = 0.9Φ(y) + 0.1.

Model I is the case where the chosen model is N(0, 1), the standard normal

distribution. Model II represents 10% contamination from N(0, 0.25), while

model III is mixed with 10% from N(0, 4); Model IV represents the situation

where 10% of the subjects show a response not caused by the stimulus under

examination; for example, if subjects recover naturally. Simulation esults are

given in Table 2.3, and the values in table are based on 1000 replications.
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Again, IRLS estimation is not good for the Probit Model either and the output

of this method is not posted.

Table 2.3: Results of Four Estimation Methods by Probit Model
Model Method α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

I WLSE −2.0865 0.4175 0.0636 0.0019 −0.0088 0.0706 0.0022

MLE −2.0423 0.409 0.0794 0.0025 −0.0130 0.0811 0.0026

MHDE −2.217 0.4435 0.1156 0.0039 −0.0197 0.1626 0.0058

II WLSE −2.171 0.4325 0.0968 0.0028 −0.0146 0.1253 0.0038

MLE −2.1314 0.4268 0.0839 0.0028 −0.0140 0.1011 0.0035

MHDE −2.2232 0.4446 0.1183 0.0039 −0.0202 0.168 0.0059

III WLSE −1.6825 0.3712 0.1054 0.0028 −0.0151 0.2057 0.0036

MLE −1.8858 0.3778 0.0682 0.0022 −0.0111 0.0811 0.0027

MHDE −2.173 0.4366 0.1241 0.0042 −0.0211 0.1539 0.0055

IV WLSE −1.6814 0.4001 0.4216 0.0096 −0.0586 0.5277 0.0096

MLE −1.5747 0.3521 0.0558 0.0018 −0.0091 0.2366 0.0041

MHDE −2.2288 0.4483 0.1954 0.0057 −0.0313 0.2476 0.008

The results in the Table 2.3 show that, in all cases, the value of MHDEs

are least variable, while the MLEs are the most variable. If we consider only

the biases of these estimators, we see that the MLEs are least biased if the

postulated model is correct, i.e. Model I. Further we see that the MLEs also

show the least bias under Models II and III, while the MHDEs show the least

bias under Model IV. These results suggest that the method of MLE has some

protection if the true distribution has shorter or longer tails contamination.

Also, the results for Model IV suggest that the MHDE might be the best

if we wish to protect against the possibility of subjects showing a response

regardless of what dose they receive. Figure 2.2 shows a comparison of MLE

and MHDE by using Model IV.

Using the same method of bias plot, we also did not see the boundedness of

the MLE. But it shows that after increasing the contamination rate (X), the
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Figure 2.2: Bias Plots between MLE and MHDE for Probit Model
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MHDE increases slower than the MLE. Thus, we can reasonably conclude that,

when using the Probit model in this dose-response study, Minimum Hellinger

distance (MHD) estimation method has desirable robustness properties as well

as asymptotically efficiency properties. We find that the MHDEs of α and β

are comparable to those of the MLE and WLSE in most cases, but the MHDE

estimator of α slightly outperforms the other two estimators when the data

are under contamination.

2.4 An Application to Real Data Example

In this Section, we illustrate the above methods for a real data set given

in Giltinan et al. (1988). This data are collected from an experiment to

investigate the joint activity of two insecticides. Two insecticides are denoted

here by A and B. The mixtures are chosen in the ratios 0 : 100, 25 : 75, 75 : 25

and 100 : 0. 30 insects were tested at each of 4 dose levels of each mixture,

the insects were exposed for 96 hours to these insecticides and the mortality

count were recorded after that. The number of dead insects and total number

of insects exposed are presented in Table 2.8.

In this example, we used the model: F (α + β log xi) = eα+β log xi

1+eα+β log xi
, i =

1, 2, 3, 4. From the results of 100% B and 100% A, we used GLM regression,

separately, to obtain the parameter values and consider them as the ‘true’

values: αB = −4.4101, βB = 1.8056 and αA = −3.1501, βA = 1.3699.

From the simulation section, we conclude that the MHDE might offer some

protection if the true distribution has longer tail than the postulated model

distribution. We consider B as the postulated model and A as the contam-

inated model with longer tail. For 75%B + 25%A, we obtained α̂MLE =
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−7.7302, β̂MLE = 2.6407; but α̂MHDE = −4.626892, β̂MHDE = 1.0608, which

are more robust in dealing with longer tail contamination.

Table 2.4: Mortality in response to mixtures of insecticides

Mixture Amount of A (ppm) Amount of B (ppm) dead insects insects tested

B 0 30.00 26 30

B 0 15.00 19 30

B 0 7.50 7 30

B 0 3.75 5 30

A25:B75 6.5 19.50 23 30

A25:B75 3.25 9.75 11 30

A25:B75 1.625 4.875 3 30

A25:B75 0.813 2.438 0 30

A75:B25 19.50 6.50 20 30

A75:B25 9.75 3.25 13 30

A75:B25 4.875 1.625 6 29

A75:B25 2.438 0.813 0 30

A 30.00 0 23 30

A 15.00 0 21 30

A 7.50 0 13 30

A 3.75 0 5 30
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Chapter 3

Symmetric χ2 Distance Method

3.1 Background

Consider two discrete probability distributions P = {fi : i ∈ S} and Q = {gi :

i ∈ S}, where S is a discrete set,
∑
fi =

∑
gi = 1, fi > 0 and gi > 0. Then

the square of Hellinger distance between P and Q is defined as

D2(P,Q) =
∑
i∈S

(
√
fi −
√
gi)

2

=
∑
i∈S

(fi − gi)2

(
√
fi +
√
gi)2

.

On the other hand, the symmetric chi-squared distance between P and Q is

defined as (Lindsay, 1994)

S2(P,Q) = 2
∑
i∈S

(fi − gi)2

(fi + gi)2
.
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Using the inequalities

fi + gi ≤ (
√
fi +
√
gi)

2 ≤ 2(fi + gi),

a little manipulation gives the following near equivalence relationship between

Hellinger distance and the symmetric chi-squared distance:

1

4
S2(P,Q) ≤ D2(P,Q) ≤ 1

2
S2(P,Q).

Lindsay (1994) noted that, although both are equally robust to outlying ob-

servations, Hellinger distance D2(P,Q) does not behave as well for sampling

zeros. (In biological and ecological studies, sampling zeroes typically occur

when a species is present but absent in the sample. We borrow the definition

from sampling techniques and consider no response at a dose level as sampling

zeros.) For this reason, he prefers S2(P,Q) over D2(P,Q) for use in statistical

inference, especially for discrete distributions. On the other hand, D2(P,Q) is

better than S2(P,Q) for theoretical calculations.

We apply S2(P,Q) with

P =



r1p1

...

rKpK

r1(1− p1)

...

rK(1− pK)


and Q =



r1q1

...

rKqK

r1(1− q1)

...

rK(1− qK)


,

where pj = πj, qj = F (α+ βxj),
K∑
j=1

rj = 1, j = 1, . . . , K, πj =
mj
nj

, rj =
nj
N

and N =
∑
ni. Then S2(P,Q) reduces to

34



S2(P,Q) = 2
K∑
j=1

{ [πj − F (α + βxj)]
2

[πj + F (α + βxj)]2
+

[(1− πj)− (1− F (α + βxj))]
2

[(1− πj) + (1− F (α + βxj))]2
}.

We define estimators of (α0, β0) as (α̂, β̂) that minimize S2(P,Q). Then take

∂S2(P,Q)
∂α

and ∂S2(P,Q)
∂β

and solve the equations ∂S2(P,Q)
∂α

= 0 and ∂S2(P,Q)
∂β

= 0 to

find estimators. Again they cannot be solved explicitly and only numerical

solutions can be obtained.

Definition 3.1: Suppose GK is as defined in Chapter 2 and Θ is the

parameter space for (α, β); Θ ⊆ R×(0,∞). A symmetric chi-squared distance

estimate (SCDE) functional for estimating (α0, β0) is a functional T : GK → Θ

such that T (π, r) is (α̂, β̂) obtained by minimizing

∆(α, β) =
K∑
j=1

{ [πj − F (α + βxj)]
2

[πj + F (α + βxj)]2
+

[(1− πj)− (1− F (α + βxj))]
2

[(1− πj) + (1− F (α + βxj))]2
}. (3.1)

Note that ∆(α, β) can also be written as

∆(α, β) =
K∑
j=1

2∑
i=1

{ [πi,j − qi,j]2

[πi,j + qi,j]2
}, (3.2)

where π1,j = πj, π2,j = 1− π1,j; q1,j = F (α + βxj), q2,j = 1− F (α + βxj).

3.2 Properties of The SCDE

3.2.1 Consistency

Theorem 3.1: Existence
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(i) If Θ is compact and F is continuous, then except πj = 1, 1 ≤ j ≤ K,

T (π, r) exists for all (π, r) ∈ GK .

(ii) If F is strictly increasing on R and πj = F (α+ βxj), 1 ≤ j ≤ K, with

not all xj’s equal, then T (π, r) = (α, β)T uniquely for any r.

Proof :

(i) Let ∆(α, β) =
K∑
j=1

{ [πj − F (α + βxj)]
2

[πj + F (α + βxj)]2
+

[(1− πj)− (1− F (α + βxj))]
2

[(1− πj) + (1− F (α + βxj))]2
},

and for a sequence (αn, βn)n≥1 → (α, β) as n→∞, write

|∆(an, bn)−∆(a, b)|

=
K∑
j=1

{ [πj − F (αn + βnxj)]
2

[πj + F (αn + βnxj)]2
− [πj − F (α + βxj)]

2

[πj + F (α + βxj)]2
}

+
K∑
j=1

{ [(1− πj)− (1− F (αn + βnxj))]
2

[(1− πj) + (1− F (αn + βnxj))]2
− [(1− πj)− (1− F (α + βxj))]

2

[(1− πj) + (1− F (α + βxj))]2
}.

(3.3)

Since F (α + βxj) nonnegative and continuous, we have the function of

F (α + βxj) continuous, then |∆(αn, βn)−∆(α, β)|→ 0. So when πj is given,

∆(α, β) is continuous with (α, β) on compact set and there exist a minimum.

(ii) ∆(α, β) is minimized when F (α+βxj) = πj. If there exists ∆(a, b) = 0

for another (a, b), then F (a + bxj) = πj, 1 ≤ j ≤ K. Since F is one-to-one

this implies that a+ bxj = α+ βxj,1 ≤ j ≤ K. Hence the result follows. The

proof of Theorem 3.1 is complete.

Theorem 3.2: Continuity

Suppose Θ is compact, F is continuous and strictly increasing on R and

(π, r) is such that T (π, r) is unique with 0 < πj < 1, 1 ≤ j ≤ K. Then T is

continuous at (π, r).

Proof : Suppose {(πn, rn) ∈ GK : n ≥ 1} is a sequence such that (πn, rn)→
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(π, r) as n→∞ for some (π, r) ∈ GK . Denote

∆n(α, β) =
∑K

j=1 {
[πj,n−F (α+βxj)]

2

[πj,n+F (α+βxj)]2
+

[(1−πj,n)−(1−F (α+βxj))]
2

[(1−πj,n)+(1−F (α+βxj))]2
}. For conve-

nience, let (α, β)T = T (π, r), (αn, βn)T = T (πn, rn) (any of the possible values

will do in the latter case). It is sufficient to show that

sup{|∆n(α, β)−∆(α, β)|: (α, β)T ∈ Θ} → 0. (3.4)

Let Fj = F (α + βxj),

|∆n(α, β)−∆(α, β)|=
K∑
j=1

{(πj,n − Fj)2

(πj,n + Fj)2
+

[(1− πj,n)− (1− Fj)]2

[(1− πj,n) + (1− Fj)]2
}

−
K∑
j=1

{(πj − Fj)2

(πj + Fj)2
+

[(1− πj)− (1− Fj)]2

[(1− πj) + (1− Fj)]2
}

≤
K∑
j=1

|(πj,n − Fj)]
2

(πj,n + Fj)]2
− (πj − Fj)2

(πj + Fj)2
|

+
K∑
j=1

| [(1− πj,n)− (1− Fj)]2

[(1− πj,n) + (1− Fj)]2
− [(1− πj)− (1− Fj)]2

[(1− πj) + (1− Fj)]2
|

=
K∑
j=1

|
4Fj(πj,nπj − F 2

j )

[(πj,n + Fj)(πj + Fj)]2
(πj,n − πj)|

+
K∑
j=1

|
4(πj,n + πj − πj,nπj − 2Fj + F 2

j )

[(2− πj,n − Fj)(2− πj − Fj)]2
(πj,n − πj)|. (3.5)

|∆n(α, β)−∆(α, β)| is bounded since all πj,n, πj and Fj are bounded. Also,

πj,n → πj implies that |∆n(α, β) − ∆(α, β)|→ 0 and hence sup{|∆n(α, β) −

∆(α, β)|: (α, β)T ∈ Θ} → 0. The proof of Theorem 3.2 is complete.

In order to study properties of (α̂, β̂), we again recall that N =
K∑
j=1

nj,

πj,N =
mj
nj

and rj,N =
nj
N

(previously πj and rj, respectively) for 1 ≤ j ≤ K.

Let πN and rN be the K dimensional vectors with components πj,N and rj,N ,
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respectively.

Theorem 3.3: Consistency

Suppose Θ is compact, F is continuous and strictly increasing on R and

we select subjects from a population for which the critical dose of a drug is

a random variable specified by d.f. F with parameter (α0, β0). To each of

nj (1 ≤ j ≤ K) subjects, a dose xj is applied and mj of these show a response.

If rj,N → rj > 0,1 ≤ j ≤ K, as N → ∞, then T (πN , rN)→P (α0, β0)T as

N →∞, i.e. the SCDE is consistent.

Proof : As N → ∞, πj,N→PF (α0 + β0xj) = πj0 since for large value of

N the sample proportion will be expected to form an approximation to the

parent population proportion.

From Theorem 3.2, we have T is continuous at (π, r). Let T (π0, r0) =

(α0, β0)T , and we want to show that lim
N→∞

P (|T (πN , rN)− T (π0, r0)|< ε) = 1

Use the continuity of T to find δ > 0 such that

|(πN , rN)− (π0, r0)|< δ ⇒ |T (πN , rN)− T (π0, r0)|< ε.

Then P (|(πN , rN)− (π0, r0)|< δ) ≤ P (|T (πN , rN)− T (π0, r0)|< ε). Here

we use the fact that if one event implies another, it has a smaller probability.

Since the first probability goes to 1 as N → ∞, so T (πN , rN)→P (α0, β0)T .

The proof of Theorem 3.3 is complete.

3.2.2 Asymptotic Normality

Before giving an asymptotic expansion for our SCDE functional T , we derive

the ‘score’ and the ‘information matrix’ from (3.1) first.

Let π1,j = πj, π2,j = 1− π1,j, q1,j = Fj(y), q2,j = 1− Fj(y), Zj = (1, xj)
T
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and ∆(y) =
K∑
j=1

∆j(y), where ∆j(y) =
2∑
i=1

{ [πi,j − qi,j]2

[πi,j + qi,j]2
}. Let

Gj(y) =
∂∆j(y)

∂y
= −4

2∑
i=1

{πi,j(πi,j − qi,j)
(πi,j + qi,j)3

}∂qi,j
∂y

, j = 1, ..., K,

Σ =
K∑
j=1

ZjZ
T
j G
′
j(α0 + β0x) and λ(α0, β0,π, r) =

K∑
j=1

ZjGj(α0 + β0xj).

Theorem 3.4: Suppose Θ is compact, F is a continuous, strictly in-

creasing and thrice differentiable function on R with derivatives f ,f ′ and f
′′

on C = {α + βxj : (α, β)T ∈ Θ, 1 ≤ j ≤ K} and F (C) ⊆ [δ, 1 − δ] for some

positive number δ. Suppose (π, r) ∈ GK be such that T (π0, r0) = (α0, β0)T is

unique and let (πN , rN) → (π0, r0) as N → ∞. If Σ is non-singular then we

have

T (πN , rN)− T (π0, r0) = −Σ−1λ(α0, β0,πN , rN)(1 + op(1)), as N →∞.

Proof : Let T (πN , rN) = (α̂N , β̂N)T . Differentiability of F implies that

(α̂N , β̂N)T satisfies

0 = λ(α̂N , β̂N ,πN , rN) =
K∑
j=1

ZjGj,N(α̂N + β̂Nxj), (3.6)

where Gj,N is defined as Gj with πj,N replaced by πj. Expanding Gj,N(α̂N +

β̂Nxj) at α0 + β0xj by Taylor series we obtain

Gj,N(α̂N + β̂Nxj) = Gj,N(α0 + β0xj) + ZT
j γNG

′
j,N(α0 + β0xj) +

1

2
(ZT

j γN)2G′′j,N(κj),

(3.7)

where κj is between α̂N + β̂Nxj and α0 + β0xj, Zj = (1, xj)
T and γN =

(α̂N − α0, β̂N − β0)T .
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Since F has bounded derivatives and is bounded in the interval [0, 1], and

G′′j,N is continuous in a closed interval, then G′′j,N is bounded. Also, πj,N → πj

implies that G′j,N(y)→ G′j(y) uniformly in y, then (3.7) becomes

Gj,N(α̂N + β̂Nxj) = Gj,N(α0 + β0xj) + ZT
j γNG

′
j(α0 + β0xj) + o(ZT

j γN),

(3.8)

since Theorem 3.2 implies γN → 0 as N →∞. Substituting (3.8) in (3.6) we

obtain

0 =
K∑
j=1

ZjGj,N(α0 + β0xj) + [
K∑
j=1

ZjZ
T
j {G′j(α0 + β0xj) + o(1)}]γN

=λ(α0, β0,πN , rN) + {Σ +WN}γN ,

since rj,N → rj as N → ∞. Here WN is a 2 × 2 matrix whose component

are o(1) as N → ∞. Since {Σ + WN} will be non-singular for N sufficiently

large, Σ−1 = (Σ +WN)−1 as N →∞. Hence we have

γN = T (πN , rN)− T (π0, r0) = −Σ−1λ(α0, β0,πN , rN)[1 + op(1)]. (3.9)

The proof of Theorem 3.4 is complete.

Special case: If πi,j = qi,j = Fj(y), then γN = 0.
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Notes: 1. Gj(y) = −4
2∑
i=1

{πi,j(πi,j − qi,j)
(πi,j + qi,j)3

}∂qi,j
∂y

, so that Gj(y) = 0 when

πi,j = qi,j = Fj(y).

2. G′j(y) = 8
2∑
i=1

{πi,j(2πi,j − qi,j)
(πi,j + qi,j)4

}(∂qi,j
∂y

)2−4
2∑
i=1

{πi,j(πi,j − qi,j)
(πi,j + qi,j)3

}∂
2qi,j
∂y2

,

so that Σ is very complicated in general. However, when πi,j = qi,j we have

G′j(y) =
2∑
i=1

(
1

qi,j

∂qi,j
∂y

)2 =
2∑
i=1

(
∂ log qi,j
∂y

)2, and we can get the following theo-

rem.

Theorem 3.5: Asymptotic Normality

Suppose the conditions in Theorem 3.3 holds and that the expansion in

Theorem 3.4 holds for T (πN , rN). Let T (π0, r0) = (α0, β0)T and ΣS =

Σ−1ΣyΣ
−1. Then, we have

√
N{T (πN , rN)− T (π0, r0)}→DN(0,ΣS), as N →∞.

Proof : Note that

Σ =
K∑
j=1

ZjZ
T
j G
′
j(α0 + β0x)

=
K∑
j=1

ZjZ
T
j

2∑
i=1

(
∂ log qi,j
∂y

)2

=
K∑
j=1

 1 xj

xj x
2
j

Aj, (3.10)

where Aj = f 2(α + βxj)(
1

F 2(α+βxj)
+ 1

(1−F (α+βxj))2 ), j = 1, . . . , K.

Note Σ is singular when |Σ|= (
K∑
j=1

Aj)(
K∑
j=1

x2
jAj) − (

K∑
j=1

xjAj)
2 = 0, i.e. Σ

is singular only when K = 1 or all xj equals to each other. Except for special

cases, Σ is nonsingular and Σ−1 =
K∑
j=1

 x2
jAj

|Σ| −
xjAj
|Σ|

−xjAj
|Σ|

Aj
|Σ|

 .
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From (3.9), as N →∞,

γn = T (πN , rN)− T (π0, r0) = −Σ−1λ(α0, β0,πN , rN)

= −Σ−1

K∑
j=1

ZjGjN(α0 + β0xj). (3.11)

Let y0 = α0 + β0x,

GjN(y0) = −4
2∑
i=1

{πi,jN(πi,jN − qi,j)
(πi,jN + qi,j)3

}∂qi,j
∂y

= −4fj(y0)(πjN − Fj(y0))Λ,

where Λ =
πjN

[πjN+Fj(y0)]3
+

1−πjN
[2−πjN−Fj(y0)]3

.

As N → ∞, πjN →P Fj(y0), 1 ≤ j ≤ K and Λ can be considered as a

constant.

At each dose level xj, πj =
mj
nj

and mj ∼ Binomial(nj, Fj(y0)).

Then since
√
Nrj =

√
nj,
√
nj(πjN − Fj(y0))→D N(0, Fj(y0)(1− Fj(y0)).

Now let Σy = 16
K∑
j=1

f 2
j (y0)Fj(y0)(1− Fj(y0))Λ2ZjZ

T
j ,

then we have
√
N{T (πN , rN) − T (π0, r0)}→DN(0,ΣS), as N → ∞. The

proof of Theorem 3.5 is complete.

3.3 Simulation Study

3.3.1 Logistic Model

It is difficult to establish theoretical results on the robustness of the SCDE

because it has a complex form. Thus to explore the robustness properties of

SCDE we relied upon on Monte Carlo methods again. To compare the results

with MHDE, MLE and WLSE, the same simulation study is conducted with

the following four models:

Model I: F (y) = ey

1+ey
= L(y),
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Model II: F (y) = 0.9L(y) + 0.1L(2y),

Model III: F (y) = 0.9L(y) + 0.1L(0.5y),

Model IV: F (y) = 0.9L(y) + 0.1.

Table 3.1: Symmetric χ2 Distance Method

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model I −2.129 0.4246 0.1754 0.0047 −0.0259 0.1919 0.0053

Model II −2.1155 0.4224 0.1617 0.0046 −0.0244 0.1749 0.0051

Model III −2.1436 0.4275 0.1910 0.0055 −0.0293 0.2114 0.0062

Model IV −2.1046 0.42 0.2261 0.0060 −0.0335 0.2368 0.0064

Simulation results are outlined in Tables 3.1. Again, the results are based

on 1000 replications. As in Chapter 2 tables, V (α̂n) and V (β̂n) are used to

denote the estimated variance of α̂n and β̂n. Similarly, Cov(α̂n, β̂n) stands for

the estimated covariance between α̂n and β̂n. Also, MSE(α̂n) and MSE(β̂n)

denote estimated the mean squared errors of α̂n and β̂n. Our results show

that MHDE and SCDE are both much more robust to model mispecification

than WLSE and MLE. Thus, we focus on comparing the two robust methods,

MHDE and SCDE. In all cases considered, values of MHDE are more variable

than those of SCDE. SCDE has smaller variances for Models I, II and IV. If

we consider only the biases of the two estimators, we see that the SCDE is

less biased if the postulated model is correct, i.e. Model I. Further we see that

the MHDE shows less bias under Models II and III, while the SCDE shows

less bias under Model IV. These results suggest that the MHDE has some

protection if the true distribution has small contaminations (10% shorter or

longer tails). The results for Model IV suggest that the SCDE might be the

best if we wish to protect against the possibility of subjects showing a response
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regardless of what dose they receive.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.1: Histograms of 1000 β̂ns of Model I by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.2: Histograms of 1000 β̂ns of Model II by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.3: Histograms of 1000 β̂ns of Model III by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.4: Histograms of 1000 β̂ns of Model IV by four methods.

From Figures 3.1-3.4, we observe that two robust methods, MHDE and

SCDE, have less skewed histograms for the estimator β̂. One can clearly see

that the histogram of SCDE is centered at the true parameter value and has

the smallest deviation.

We considered six more models based on the Model II by increasing the

contamination rate from 10% to 70%. We let the distribution with a short tail

as the contaminated one.

Model V: F (y) = 0.8L(y) + 0.2L(2y),

Model VI: F (y) = 0.7L(y) + 0.3L(2y),

Model VII: F (y) = 0.6L(y) + 0.4L(2y),

Model VIII: F (y) = 0.5L(y) + 0.5L(2y),

Model IX: F (y) = 0.4L(y) + 0.6L(2y),

Model X: F (y) = 0.3L(y) + 0.7L(2y),
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Table 3.2: WLS Method for the contaminated Logit models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.0093 0.4005 0.1241 0.0037 −0.0193 0.124 0.0037

Model V −2.1237 0.4238 0.1298 0.0036 −0.0194 0.1449 0.0042

Model VI −2.2606 0.4488 0.1451 0.0042 −0.0221 0.2128 0.0065

Model VII −2.4132 0.4789 0.1424 0.0041 −0.0218 0.313 0.0103

Model VIII −2.5098 0.4989 0.1496 0.0042 −0.0228 0.4092 0.014

Model IX −2.662 0.5282 0.1600 0.0049 −0.0257 0.5979 0.0214

Model X −2.833 0.5632 0.1541 0.0050 −0.0255 0.8475 0.0317

Table 3.3: MLE Method for the contaminated Logit models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.1616 0.4347 0.1426 0.0044 −0.0226 0.1686 0.0056

Model V −2.3165 0.4616 0.1690 0.0049 −0.0264 0.269 0.0087

Model VI −2.4752 0.4943 0.1682 0.0052 −0.0267 0.3939 0.0141

Model VII −2.6595 0.5311 0.1842 0.0059 −0.0302 0.619 0.0231

Model VIII −2.8088 0.5611 0.1970 0.0063 −0.0324 0.8509 0.0323

Model IX −3.0334 0.6043 0.2222 0.0070 −0.0361 1.2898 0.0487

Model X −3.2183 0.6429 0.2551 0.0082 −0.0425 1.739 0.0672

47



Table 3.4: Minimum Hellinger Distance Method for the contaminated Logit

models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.1053 0.4214 0.1731 0.0054 −0.028 0.1841 0.0058

Model V −2.121 0.4256 0.1832 0.0059 −0.0302 0.1977 0.0065

Model VI −2.162 0.4319 0.1675 0.0058 −0.0288 0.1936 0.0068

Model VII −2.1661 0.4338 0.1698 0.0053 −0.0278 0.1972 0.0065

Model VIII −2.1726 0.4365 0.1786 0.0059 −0.0304 0.2082 0.0072

Model IX −2.1841 0.439 0.1611 0.0058 −0.0288 0.1949 0.0073

Model X −2.2203 0.4443 0.1695 0.0059 −0.0300 0.2179 0.0079

Table 3.5: Symmetric χ2 Distance Method for the contaminated Logit models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.1155 0.4224 0.1617 0.0046 −0.0244 0.1749 0.0051

Model V −2.1109 0.4211 0.1604 0.0045 −0.0245 0.1726 0.0049

Model VI −2.0898 0.4156 0.1550 0.0045 −0.0241 0.1629 0.0048

Model VII −2.0833 0.4137 0.1312 0.0039 −0.0206 0.138 0.004

Model VIII −2.0567 0.4082 0.1151 0.0034 −0.0179 0.1182 0.0034

Model IX −2.0168 0.4007 0.1065 0.0033 −0.0172 0.1067 0.0033

Model X −1.9816 0.3932 0.0962 0.0029 −0.0152 0.0964 0.0029
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.5: Histograms of 1000 β̂ns of Model V by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.6: Histograms of 1000 β̂ns of Model VI by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.7: Histograms of 1000 β̂ns of Model VII by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.8: Histograms of 1000 β̂ns of Model VIII by four methods.

50



(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.9: Histograms of 1000 β̂ns of Model IX by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.10: Histograms of 1000 β̂ns of Model X by four methods.
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(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 3.11: Boxplot of 1000 β̂n’s of four methods for model I-IV
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(a) Model V (b) Model VI

(c) Model VII (d) Model VIII

(e) Model IX (f) Model X

Figure 3.12: Boxplot of 1000 β̂n’s of four methods for contaminated Logit

models
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Simulated results are presented in Tables 3.2 to 3.5. These results show

that there are monotonic trends (increasing or decreasing) of the values of

E(α̂n) and E(β̂n) as the contamination rate increases. For the non-robust

methods, WLSE and MLE method, we see large fluctuations when we in-

crease the contamination rate. When we compared the two robust methods

MHDE and SCDE only, we observed following: Although the MHDE has some

protection if the true distribution has 10% shorter tails contamination, it lost

this advantage immediately when we increase the shorter tails contamination

to 20% or higher. The results suggest that the SCDE might be the best if we

wish to protect against the true distribution mixed with a higher percentage

of shorter tails contamination. Histograms and boxplots of the range of E(β̂)

both show that SCDE is the best one in robustness among the four method.
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Huber (2009) used the Asymptotic Relative Efficiency (ARE) to compare

two estimators. For F (y) = (1 − ε)L(y) + εL(2y) in this simulation, we use

ARE of MHDE relative to MLE defined as

ARE(ε) = limn
var(β̂2)

var(β̂3)
.

The results are summarized in Table 3.6.

Table 3.6: ARE of MHDE relative to MLE

ε 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ARE 0.8148 0.8305 0.8966 1.1132 1.0678 1.2069 1.3898

From Table 3.6, we can see a turning point between 0.3 and 0.4. After

this turning point, we should certainly prefer MHDE to MLE. Using the same

technique for comparing SCDE and MLE, we can find the turning point is

between 0.1 and 0.2.

3.3.2 Probit Model

We continue our discussion of the robustness of SCDE method by using the

Probit Models. Specifically, we studied following four models:

Model I: F (y) = Φ(y), where Φ(y) is the CDF of standard normal distri-

bution.

Model II: F (y) = 0.9Φ(y) + 0.1Φ(2y),

Model III: F (y) = 0.9Φ(y) + 0.1Φ(0.5y),

Model IV: F (y) = 0.9Φ(y) + 0.1.
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Table 3.7: Symmetric χ2 Distance Method (Probit Model)

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model I −1.883 0.3743 0.0629 0.0019 −0.0096 0.0765 0.0026

Model II −1.8805 0.372 0.0611 0.0019 −0.0097 0.0753 0.0027

Model III −2.1424 0.4236 0.0861 0.0027 −0.0136 0.1062 0.0033

Model IV −2.587 0.4601 0.2024 0.0054 −0.0312 0.5468 0.009

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.13: Histograms of 1000 β̂ns of Model I by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.14: Histograms of 1000 β̂ns of Model II by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.15: Histograms of 1000 β̂ns of Model III by four methods.

57



(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.16: Histograms of 1000 β̂ns of Model IV by four methods.

Again we examined the behavior of the four methods as in the previous

section for Models I to IV. Simulation results are displayed in Tables 3.6 to

3.10. These results also show that MHDE and SCDE are both much more

robust to model variability than WLSE and MLE. When we compare MHDE

and SCDE, we observed that in all four models the MHDE is less variable than

the SCDE. However, SCDE has smaller variance for Models I, II and III. If we

consider only the biases of these two estimators, we see that the SCDE is less

biased if the postulated model is correct, i.e. Model I. Further we see that the

SCDE shows less bias under Models II and III, while the MHDE shows less

bias under Model IV. These results suggest that the SCDE has some protection

if the true distribution has 10% shorter or longer tails contaminations. The

results for Model IV suggest that the MHDE might be better if we wish to

protect against the possibility of subjects showing a response regardless of
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what dose they receive.

From Figures 3.13-3.16, we see that two robust methods, MHDE and

SCDE, have less skewed histograms for the estimator β̂. We also noticed

that the histogram of SCDE is centered at the true parameter value and has

the smallest variance.

We considered six models based on Model II by increasing the contamina-

tion rate from 10% to 70%. We let the distribution with a short tail as the

contaminated one.

Model V: F (y) = 0.8Φ(y) + 0.2Φ(2y),

Model VI: F (y) = 0.7Φ(y) + 0.3Φ(2y),

Model VII: F (y) = 0.6Φ(y) + 0.4Φ(2y),

Model VIII: F (y) = 0.5Φ(y) + 0.5Φ(2y),

Model IX: F (y) = 0.4Φ(y) + 0.6Φ(2y),

Model X: F (y) = 0.3Φ(y) + 0.7Φ(2y),

Table 3.8: WLS Method for the contaminated Probit models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.2084 0.4406 0.0952 0.0026 −0.0134 0.1374 0.0042

Model V −2.2963 0.4577 0.0841 0.0025 −0.0131 0.1708 0.0058

Model VI −2.3618 0.4769 0.0699 0.0027 −0.0106 0.1994 0.0086

Model VII −2.4936 0.4988 0.1444 0.0036 −0.0217 0.3834 0.0132

Model VIII −2.5648 0.5222 0.1996 0.0061 −0.0316 0.5069 0.0207

Model IX −2.8476 0.567 0.1046 0.0035 −0.0160 0.8022 0.0307

Model X −2.8108 0.5951 0.0276 0.002 −0.007 0.6804 0.0397

59



Table 3.9: MLE Method for the contaminated Probit models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.1477 0.4296 0.0859 0.0028 −0.0142 0.1076 0.0037

Model V −2.2373 0.4482 0.0929 0.0030 −0.0155 0.1491 0.0054

Model VI −2.346 0.4683 0.1094 0.0037 −0.0188 0.229 0.0083

Model VII −2.4944 0.4975 0.1179 0.0040 −0.0204 0.3622 0.0135

Model VIII −2.6491 0.5292 0.1573 0.0053 −0.0274 0.5784 0.022

Model IX −2.8211 0.5629 0.1697 0.0062 −0.0309 0.8437 0.0327

Model X −3.032 0.6053 0.1993 0.0072 −0.0360 1.2641 0.0493

Table 3.10: Minimum Hellinger Distance Method for the contaminated Probit

models

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −2.2166 0.4433 0.1263 0.0043 −0.0217 0.1731 0.0061

Model V −2.2435 0.4489 0.1256 0.0044 −0.0220 0.1848 0.0068

Model VI −2.2714 0.4557 0.1554 0.0053 −0.0273 0.2289 0.0084

Model VII −2.2892 0.4599 0.1531 0.0054 −0.0275 0.2366 0.009

Model VIII −2.3164 0.4646 0.1706 0.0061 −0.0309 0.2705 0.0102

Model IX −2.3433 0.4696 0.1619 0.0059 −0.0299 0.2796 0.0108

Model X −2.365 0.4713 0.1680 0.0062 −0.0311 0.301 0.0112
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Table 3.11: Symmetric χ2 Distance Method for the contaminated Probit mod-

els

Model α̂n β̂n V (α̂n) V (β̂n) Cov(α̂n, β̂n) MSE(α̂n) MSE(β̂n)

Model II −1.8856 0.3741 0.0593 0.0018 −0.0092 0.0724 0.0025

Model V −1.8588 0.3698 0.0644 0.0021 −0.0106 0.0843 0.003

Model VI −1.8256 0.3638 0.0709 0.0025 −0.0122 0.1012 0.0038

Model VII −1.7949 0.3565 0.0703 0.0025 −0.0123 0.1122 0.0044

Model VIII −1.7737 0.3525 0.0758 0.0027 −0.0134 0.127 0.005

Model IX −1.7331 0.3453 0.0768 0.0028 −0.0138 0.148 0.0058

Model X −1.688 0.3367 0.0769 0.0029 −0.0140 0.1742 0.0069

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.17: Histograms of 1000 β̂ns of Model V by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.18: Histograms of 1000 β̂ns of Model VI by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.19: Histograms of 1000 β̂ns of Model VII by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.20: Histograms of 1000 β̂ns of Model VIII by four methods.

(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.21: Histograms of 1000 β̂ns of Model IX by four methods.
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(a) WLS (b) MLE

(c) MHDE (d) SCDE

Figure 3.22: Histograms of 1000 β̂ns of Model X by four methods.

64



(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 3.23: Boxplot of 1000 β̂n’s of four methods for model I-IV
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(a) Model V (b) Model VI

(c) Model VII (d) Model VIII

(e) Model IX (f) Model X

Figure 3.24: Boxplot of 1000 β̂n’s of four methods for contaminated Probit

models
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Simulation results are presented in Tables 3.7 to 3.10. These results show

that there are monotonic trends (increasing or decreasing) of the values of

E(α̂n) and E(β̂n) as the contamination rate increases. For the non-robust

methods, WLSE and MLE, we observe large fluctuations when we increase

the contamination rate. When we compare the two robust methods MHDE

and SCDE, we find that the SCDE has some protection if the true distribution

mixed with shorter tails contamination. Histograms and the boxplots of these

estimators shown on Figures 3.17 to 3.24 suggest that the SCDE might be the

best if we wish to protect against the true distribution mixed with shorter tails

contamination.

3.4 An Application to Real Data Example

In this chapter, we have derived a new robust and efficient estimator, SCDE, by

illustrating its properties and by showing numerical advantages in simulations.

Now we show this advantage in a real data example. The real data we are

going to use are from the second half of Table 2.8.

We consider A (with parameter value (−3.1501, 1.3699)) as the postulated

model and B (with parameter value (−4.4101, 1.8056)) as the contamination.

For 75%A+25%B, we obtain α̂MLE = −5.2679, β̂MLE = 1.8890; but α̂SCDE =

−3.9469, β̂SCDE = 1.4194, which are more robust in dealing with shorter tail

contamination.

From this example, we can reasonably conclude that the SCDE is robust

in protecting against the true distribution mixed with shorter tails contami-

nation.
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Chapter 4

Stimulus Dose Level Estimation

4.1 Background

In Chapters 2 and 3, binary response experiments are performed to find the

critical dose based on the assumption that the probability of response increases

monotonically as the stimulus dose level increases. Besides the critical dose,

dose level corresponding to a quantile (or quantiles) of a monotonically non-

decreasing curve are also important in dose-response studies. One of the most

important dose level quantity is the ‘median effective dose’ (ED50) where re-

sponse should be shown in half of the population that takes it. Rosenberger

and Grill (1997) designed an experiment to show the relationship between s-

timulus dose level and response by estimating the median, lower and upper

quartiles of the dose-response curve. They claimed that logistic and probit

analysis would yield similar results in estimating the median. Wiens and Li

(2012) gave a robust treatment of the link misspecification and model discrim-

ination. There is a huge literature on this area; more recent work and the

relevant reference can be seen in the preceding paper.
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4.2 Simulation

In this section we compare four methods, MLE, WLSE, MHDE and SCDE,

by estimating the lower quartile (ED25), median (ED50), ED60 and upper

quartile (ED75) of the dose-response curve.

Under the true models I, II, III,. . . , X from the previous chapter, let Γi =

Γ(xi) = F (α + βxi).

Let p be a value in (0, 1), and let η be the corresponding quantile, that is,

p = F (η). Then it is easy to see that η = F−1(p) = α + βx(p).

Let xi(p) be the theoretical minimum dose to produce a response for p%

of subjects on the true distribution Fi, i = 1, 2, 3, . . . , 10.

xi(p) =
F−1
i (p)− α

β
, i = 1, 2, 3, . . . , 10, (4.1)

where Fi(α+ βx) is the correct model with unknown parameters α and β. As

in the previous two chapters, we use α = −2 and β = 0.4 as the ‘true’ value.

If αn(i) and βn(i) are estimators of α and β based on the true distribution

Fi, then the estimator of dose level x̂i(p) is

x̂i(p) =
F−1
i (p)− αn(i)

βn(i)
, i = 1, 2, 3, . . . , 10, (4.2)

where Fi , i = 1, 2, 3, . . . , 10 denote the models I to X, respectively.

For example, if F follows Model I, then F−1(p) = log p
1−p , the logit, and

estimator of the median is x̂i(
1
2
) = −αn(i)

βn(i)
.

For comparing robustness of the four methods under study, we calculate
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the value of MSE(x̂i(p)). Define

MSE(x̂i(p)) = E(x̂i(p)− xi(p))2, i = 1, 2, 3, . . . , 10. (4.3)

For p = 0.25, 0.5, 0.6, 0.75, Tables 4.1 to 4.4 report the estimated values of

MSE(x̂i(p)), i = 1, 2, 3, . . . , 10 for the four methods used to obtained αn and

βn in Chapters 2 and 3.

4.2.1 Results of Logistic Model

By using the logistic model, the results of the dose level predictions of ED25,

ED50, ED60 and ED75 are presented in Tables 4.1 - 4.4. Again, x̂(p) is the

average of 1000 replications.

From Tables 4.1-4.4, we find that in most of cases the values of MSE(x̂(p))

using SCDE are the least variable, while the WLSE values are the most vari-

able. If we consider only the MSE(x̂(p)) for each model, we see that the MLE

is least biased under Model I at ED25, ED50, ED60 and ED75 levels. Further

we see that the MLE shows the least bias under Model II at ED25, ED50 and

ED60 levels, and the WLSE is the least biased under Model II at ED75 level.

For Model III, the MHDE shows the least bias at ED25 and ED75 levels, and

MLE shows the least bias at ED50 and ED60 levels. For Model IV, the SCDE

shows the least bias at ED25, ED50, ED60 and ED75 levels. For the contam-

inated models with shorter tail, i.e. Model V to Model X, SCDE is the least

biased at ED25, ED60 and ED75 levels, but MHDE is smaller in the MSE in

most of cases.

We can conclude from the numerical results that the MLE and WLSE have

some protection if the true distribution has no contamination. Also, SCDE
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and MHDE are better if we wish to protect against contamination models.

(a) ED 25 (b) ED 50

(c) ED 60 (d) ED 75

Figure 4.1: Dose Level Plots of Four Methods for Logistic Model

In Figure 4.1 (a), the dose level plot for ED25 shows that after increasing

the contamination rate (X), SCDE is getting closer and closer to the true

value, while the MLE and WLSE keep increasing. In Figure 4.1 (b), it is not

clear which one is the best estimator from the dose level plot for ED50, but

the MHDE shows a trend in getting closer to the true value. In Figure 4.1 (c)

and (d), the dose level plot for ED60 and ED60 show that after increasing the

contamination rate (X), SCDE is getting closer and closer to the true value,

while the MLE and WLSE keep increasing.
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4.2.2 Results of Probit Model

By using the Probit model, the simulation results of the dose level prediction

of ED25, ED50, ED60 and ED75 are shown in Tables 4.5-4.8.

From Tables 4.5-4.8, we find by using Probit model, the values ofMSE(x̂(p))

of MHDE and SCDE are less variable than those of WLSE and MLE. For each

model, we see that the MLE is least biased under Models I and II at ED25,

ED50, ED60 and ED75 levels. Further we see that the MHDE is the least

biased under Model III at ED25 level, while the MLE shows the least bias at

levels ED50, ED60 and ED75. For Model IV, the MHDE shows the least bias

at all levels ED25, ED50, ED60 and ED75. For the contaminated models with

shorter tail, i.e. Model V to Model X, SCDE and MHDE is smaller in the

MSE in most of cases.

We can conclude from the numerical results that the method of MLE has

some protection if the true distribution has no contamination. Also, SCDE

and MHDE are better if we wish to protect against contamination models.
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(a) ED 25 (b) ED 50

(c) ED 60 (d) ED 75

Figure 4.2: Dose Level Plots of Four Methods for Probit Model

We did not see any significant differences among those four methods from

Figures 4.2. Therefore, no convincing conclusion can be made by the dose

level plots by using Probit model.
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Chapter 5

Summary and Future Work

5.1 Summary

In this thesis, we have focused on examining statistical procedures based on

some minimum distance methods. We have introduced and analyzed the prop-

erties of two estimators, the minimum Hellinger distance estimator and the

symmetric Chi-squared distance estimator, and have confirmed that they are

both robust and efficient by an example in dose-response studies.

In Chapter 2, we have confirmed previous robustness and efficiency results

related to MHDE by illustrating a sequence of theorems and some Monte Carlo

studies. Our simulation studies suggests that MHDE works well in the cases of

models with contamination, especially good if the true distribution has longer

tails than the postulated model distribution. MHDE has also been applied to

a real data example of insecticides to show the same results.

In Chapter 3, we suggested using a new method for parameter estimation,

namely the symmetric chi-square distance estimation. We investigated a tech-

nique for this new parameter estimation method by a similar approach as in
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the MHDE case. Our SCDE estimator exhibits a similar level of robustness

as the MHDE for the simulation problem described in Chapter 3, but it also

shows a better performance in protecting a case with shorter tail contami-

nations. We have numerically examined the estimator using histograms and

boxplots to show that the SCDE is robust.

In Chapter 4, we used four methods to show the relationship between

predictive stimulus dose level and model contamination rate at the median and

the lower and upper quartile levels. By using the logistic model, we numerically

confirmed that MHDE and SCDE are robust in the contamination models.

5.2 Recommendation for Future Work

The following are some recommendations for future research based on this

thesis:

∗ In this thesis, we considered only the case where the contaminated part

from the same distribution family with different parameter values. Fu-

ture research could be conducted on the case where the model density

function is of a completely different family than the true probability den-

sity of the observed data. This might occur, for example, if the normal

distribution was postulated when the logistic distribution was actually

true one.

∗ Up until now, little has been done with symmetric chi-square distance

estimators for regression problems. Also, future study may be carried

out to develop improved algorithms for the SCDE.
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Appendix

R code to Calculate WLSE, MLE, MHDE, SCDE in Model I and II

of logistic model, the others are similar.

rm(list = ls()) # clear the memory

#download Rlab for rbern

#WLSE method

wlse = replicate(1000,

p=array(0)

for(i in 1:10)

p[i]=sum(rbern(20,F[i]))/20

w=diag(f(y)ˆ2/(p*(1-p)))

x= matrix(c(1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10),nc=2)

r1=c(0.1,0.1) #or use r=rep(0.1,2) to get a diagonal matrix of Rj.

R=diag(r1)

xtwx=R%*%t(x)%*%w%*%x

xtwxinv=solve(xtwx)

Y=log(p/(1-p))

xtwy=R%*%t(x)%*%w%*%Y

wlse=xtwxinv%*%xtwy)

WLSE=matrix(wlse[is.na(wlse)],nr=2)
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alphahat1=WLSE[1,]

betahat1=WLSE[2,]

a1=round(mean(alphahat1),4)

b1=round(mean(betahat1),4)

round(cov(cbind(alphahat1,betahat1)),4)

mse.alpha1=mean((alphahat1+2)ˆ2)

round(mse.alpha1,4)

mse.beta1=mean((betahat1-0.4)ˆ2)

round(mse.beta1,4)

hist(betahat1,main = paste() )

#MLE Method

mle.logit = replicate(1000,

y=array(0)

for(i in 1:10)

y[i]=sum(rbern(20,F[i]))

my=20-y

out.logit= glm(formula = cbind(y, my)∼ xi, family = binomial(link = ”log-

it”))

mle.logit=out.logit$coefficients)

MLE.logit=matrix(mle.logit[!is.na(mle.logit)],nr=2)

alphahat2=MLE.logit[1,]

betahat2=MLE.logit[2,]

a2=round(mean(alphahat2),4)

b2=round(mean(betahat2),4)

round(cov(cbind(alphahat2,betahat2)),4)

mse.alpha2=mean((alphahat2+2)ˆ2)
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round(mse.alpha2,4)

mse.beta2=mean((betahat2-0.4)ˆ2)

round(mse.beta2,4)

hist(betahat2,main = paste() )

hist(betahat3,main = paste() )

#MHD Method

mhd.beta = replicate(1000,

p=array(0)

for(i in 1:10)

p[i]=sum(rbern(20,F[i]))/20

A = matrix( c(p, 1-p), nrow=10, ncol=2, byrow = FALSE)

A1=sqrt(A)

mhd.beta¡-function(beta)

FF=array(0)

for(i in 1:10)

FF[i]=(exp(beta[1]+beta[2]*xi[i]))/(1+exp(beta[1]+beta[2]*xi[i]))

B = matrix( c(FF, 1-FF), nrow=10, ncol=2, byrow = FALSE)

B1=sqrt(B)

-sum(diag(t(A1)%*%B1))

mhd.beta=nlm(mhd.beta,c(-2,0.4))$estimate)

alphahat3=mhd.beta[1,]

betahat3=mhd.beta[2,]

round(mean(alphahat3),4)

round(mean(betahat3),4)

round(cov(cbind(alphahat3,betahat3)),4)

mse.alpha3=mean((alphahat3+2)ˆ2)
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round(mse.alpha3,4)

mse.beta3=mean((betahat3-0.4)ˆ2)

round(mse.beta3,4)

#symmetric chi-square method

scs.beta = replicate(1000,

p=array(0)

for(i in 1:10)

p[i]=sum(rbern(20,F[i]))/20

scs.beta=function(beta)

sum((p-exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi)))ˆ2/

(p+exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi)))ˆ2+

(p-exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi)))ˆ2/

(2-p-exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi)))ˆ2)

scs.beta=nlm(scs.beta,c(-2,0.4))$estimate)

alphahat5=scs.beta[1,]

betahat5=scs.beta[2,]

round(mean(alphahat5),4)

round(mean(betahat5),4)

round(cov(cbind(alphahat5,betahat5)),4)

mse.alpha5=mean((alphahat5+2)ˆ2)

round(mse.alpha5,4)

mse.beta5=mean((betahat5-0.4)ˆ2)

round(mse.beta5,4)

hist(betahat5,main = paste() )

rm(list = ls()) # clear the memory

#download Rlab for rbern
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xi=c(1,2,3,4,5,6,7,8,9,10)

alpha=-2

beta=0.4

#Model II, WLSE Method

y=alpha+beta*xi

F=0.9*exp(y)/(1+exp(y))+0.1*exp(2*y)/(1+exp(2*y))

F #cdf

#MLE Method

mle.logit = replicate(1000,

y=array(0)

for(i in 1:10)y[i]=sum(rbern(20,F[i]))

my=20-y

out.logit= glm(formula = cbind(y, my) xi, family = binomial(link =

”logit”))

mle.logit=out.logit$coefficients)

MLE.logit=matrix(mle.logit[!is.na(mle.logit)],nr=2)

alphahat2=MLE.logit[1,]

betahat2=MLE.logit[2,]

a2=round(mean(alphahat2),4)

b2=round(mean(betahat2),4)

a2

b2

round(cov(cbind(alphahat2,betahat2)),4)

mse.alpha2=mean((alphahat2+2)ˆ2)

round(mse.alpha2,4)

mse.beta2=mean((betahat2-0.4)ˆ2)
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round(mse.beta2,4)

hist(betahat2,main = paste() )

Xp.MSE=function(p)

((log(p/(1-p))-a2)/b2-(log(p/(1-p))+2)/0.4)ˆ2

round(Xp.MSE(0.25),4)

round(Xp.MSE(0.5),4)

#MHD Method

mhd.beta = replicate(1000,

p=array(0)

for(i in 1:10)p[i]=sum(rbern(20,F[i]))/20 #generated from bernoulli func-

tion with p=F

r=rep(0.1,10)

mhd.beta=function(beta)

-sum(r*(sqrt(p*(0.99*exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi))+

0.01*exp(2*(beta[1]+beta[2]*xi))/(1+exp(2*(beta[1]+beta[2]*xi)))))+

sqrt((1-p)*(1-0.99*exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi))-

0.01*exp(2*(beta[1]+beta[2]*xi))/(1+exp(2*(beta[1]+beta[2]*xi)))))))

mhd.beta=nlm(mhd.beta,c(-2,0.4))$estimate)

alphahat3=mhd.beta[1,]

betahat3=mhd.beta[2,]

round(mean(alphahat3),4)

round(mean(betahat3),4)

round(cov(cbind(alphahat3,betahat3)),4)

mse.alpha3=mean((alphahat3+2)ˆ2)

round(mse.alpha3,4)

mse.beta3=mean((betahat3-0.4)ˆ2)
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round(mse.beta3,4)

hist(betahat3,main = paste() )

#symmetric chi-square method

scs.beta = replicate(1000, p¡-array(0)

for(i in 1:10)

p[i]=sum(rbern(20,F[i]))/20 #generated from bernoulli function with p=F

scs.beta=function(beta)

sum((p-(0.9*exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi))+

0.1*exp(2*(beta[1]+beta[2]*xi))/(1+exp(2*(beta[1]+beta[2]*xi)))))ˆ2/

(p+(0.9*exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi))+

0.1*exp(2*(beta[1]+beta[2]*xi))/(1+exp(2*(beta[1]+beta[2]*xi)))))ˆ2+

(p-(0.9*exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi))+

0.1*exp(2*(beta[1]+beta[2]*xi))/(1+exp(2*(beta[1]+beta[2]*xi)))))ˆ2/

(2-p-(0.9*exp(beta[1]+beta[2]*xi)/(1+exp(beta[1]+beta[2]*xi))+

0.1*exp(2*(beta[1]+beta[2]*xi))/(1+exp(2*(beta[1]+beta[2]*xi)))))ˆ2)

scs.beta=nlm(scs.beta,c(-2,0.4))$estimate)

alphahat5=scs.beta[1,]

betahat5=scs.beta[2,]

round(mean(alphahat5),4)

round(mean(betahat5),4)

round(cov(cbind(alphahat5,betahat5)),4)

mse.alpha5=mean((alphahat5+2)ˆ2)

round(mse.alpha5,4)

mse.beta5=mean((betahat5-0.4)ˆ2)

round(mse.beta5,4)

hist(betahat5,main = paste() )
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par(mfrow=c(2,2))

hist(betahat1,main = paste(”WLS method”) )

hist(betahat2,main = paste(”MLE method”) )

hist(betahat3,main = paste(”MHDE method”) )

hist(betahat5,main = paste(”SCDE method”) )

boxplot(betahat1,betahat2,betahat3,betahat5,ylab=”Beta˙hat”,main=”Model

II”)

axis(1, at=1:4, lab=c(”WLS”, ”MLE”, ”MHD”, ”SCDE”))
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