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Abstract

Quality of Service (QoS) Routing is concerned with the problem of finding
paths to satisfy connections’ QoS requirements, e.g., bandwidth, delay, jitter,
packet loss, as well as to efficiently use network resources. One prominent
problem with QoS routing is scalability. In this thesis, we approach the issue
of scalability by tackling the following problems: QoS routing with inaccurate
information, cost—effective routing information dissemination, and deflection
routing.

Routing inaccuracy is tightly related to the scalability problem because
scalable solutions are primarily aimed at reducing the amount of link state
exchange, which directly causes imprecise routing information. Furthermore,
some (Q0S metrics are not accurate, e.g. link delays. We deal with the in-
accuracy problem using multi-path routing. We propose a family of routing
construction and selection strategies to compensate for the inaccurate infor-
mation. Our results show that among the proposed algorithms, the hop-based
one provides the best performance. Compared with the single—path routing
and other popular methods, our hop-based scheme shows superior capabilities
in dealing with inaccurate information. Also examining the costs and bene-

fits demonstrates that the proposed multi—path routing schemes are scalable

solutions.
Confronted with the redundancy and blindness of the conventional flooding
scheme, we propose a set of routing information dissemination schemes, i.e.,

the distance—based link state update schemes. The experiments show that the
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proposed mechanisms offer comparable performance to flooding while greatly
reducing the update overhead. Then based on the analysis of the reason be-
hind large update periods, we propose to qualitatively separate the content
of updates. We conclude that the link state update frequency is not the only
factor that influences routing performance, and with large update periods, the
nature of the link state information also has a dramatic impact on perfor-
mance. Based on these observations, we can further improve the effectiveness
of routing information distribution.

Finally, deviating from the traditional connection—based QoS provisioning
model, we re-approach the multi-path routing problem without depending
on fixed path sets. Under the deflection model, we investigate the impact
of multi-path routing on real-time delay jitter sensitive voice traffic. Using
multiple paths for packets inside a session brings about the issue of packet
mis—ordering in the network, and therefore assembly buffers are needed at the
destination; on the other hand, the lossless feature of deflection routing allows
us to reduce the buffer space at the intermediate routers. Consequently, we
address the trade—off of buffer resource allocation between intermediate routers
and destination hosts. We also conduct a comparison between the proposed
lossless deflection strategy and the conventional shortest path strategy. Our
results show that, from the global viewpoint of network resource management,

deflection-base routing is a preferable choice.
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Chapter 1

Introduction

1.1 Preliminaries

This dissertation focuses on the scalability problem of Quality of Service (QoS)
routing in the Internet. The diversification of Internet applications have
raised new challenges to its service architecture. Observing that the exist-
ing best—effort model can not satisfy the diverse requirements of applications,
researchers have proposed new QoS architectures, such as the Integrated Ser-
vices (IntServ) and Differentiated Services (DiffServ) architectures. However,
inharmonious with the proposed QoS architectures, current Internet routing
mechanisms are still best—effort based, impeding the effectiveness of controlling
QoS. Therefore, specialized QoS based routing appears to be an indispensable
aspect in QoS provisioning.

In this chapter, we will first introduce routing basics in Section 1.2. Then
in Section 1.3 and Section 1.4, we will review the currently existing QoS ar-
chitectures and the routing deficiencies under the proposed architectures. In
Section 1.5, we will touch upon some traffic engineering tools pertinent to QoS

routing. Finally we will give the organization of the whole dissertation.

1.2 Routing Basics

1.2.1 Internet Unicast Routing Protocols Overview

The Internet is organized into areas named Autonomous Systems (AS). Each

AS is composed of many routers working together under the control of a cer-
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tain administrative entity, such as an Internet Service Provider (ISP), a uni-
versity or a corporation. Based on the area in which routers exchange their
information and cooperate to transport packets, routing protocols fall into
two categories: the Interior Gateway Protocol (IGP) and the Ezterior Gate-
way Protocol (EGP). IGP is an intra-AS routing protocol designed for routers
within an AS to exchange routing information, whereas EGP is an inter-AS
routing protocol designed for routers to exchange routing information between
ASs [55].

Historically, IGP protocols fall into two categories: the distance vector pro-
tocols and the link state protocols. The Routing Information Protocol (RIP) [33,
51] and the (Enhanced) Interior Gateway Routing Protocol ((E)IGRP) are rep-
resentatives of distance vector routing protocols, while the Open Shortest Path
First{(OSPF) protocol and the Intermediate System~Intermediate System (IS-
IS) protocol are typical link state routing protocols. A typical example of EGP
is the Border Gateway Protocol (BGP), a path vector protocol. The content
of BGP is beyond the scope of this dissertation, therefore in the following, we

will only present RIP and OSPF, the representatives of IGP protocols.

1.2.2 Distance Vector and Link State Routing Protocols

A distance vector protocol employs a distributed processing model [55], under
which route computation is distributed on the whole network. In the distance
vector routing mechanisms, “distance” refers to the path construction metrics,
i.e., the path distance in number of hops, and “vector” means the routing
table. Specifically, all the routers cooperate to find the best path to each
destination. In the following, we will present the routing procedure of RIP, a

canonical example of distance vector protocols.

e [ach RIP router maintains a routing table, each entry of which indicates
the path distance to a certain destination and the corresponding next

hop.

e Every 30 seconds, every RIP router broadcasts its routing table to all of

its neighbors.
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e Upon receiving the routing table update from its neighbor, IV, a RIP
router, R, checks all the destinations of the update and finds out the
new path distance from itself to the destinations via N (by adding the
distance from itself to IV to the distance from N to a certain destination).
If the new path distance is shorter than the one in its current routing

table, then the next hop of R is updated to its neighbor V.

The advantage of RIP is its simplicity, but it also has drawbacks. First, it
is only suitable for moderate sized networks, i.e., the largest hop length is 15.
Second, in case of network failures, it takes a long time for RIP to converge.
This is referred to as counting to infinity and is the reason why the maximum
path length is limited to a very small number. Schemes such as split horizon
and triggered updates [33] have been proposed to deal with counting to infinity,
but they only work in limited situations. Third, RIP uses a single fixed metric
to calculate paths, and therefore can not deal with situations where paths need
to be chosen based on real-time parameters, such as reliability or load.

A link state protocol such as OSPF employs a distributed database model [55].

The basic idea is as follows:

e Each router maintains a link state database, a topology map of the whole
network. Based on the database, each router conducts route computation

using Dijkstra’s shortest path algorithm.

e Every 30 minutes, each router sends Link State Advertisements(LSA),
the topology information of itself, to every other nodes through reliable
flooding. In doing so, each router has an identical topology map of the

network so that routing loops and “black hole” are avoided.

As a representative of link state protocols, OSPF provides more advanced

features than the typical distance vector protocol RIP. For example:

e fast convergence. By flooding link state information, all the OSPF

routers can immediately receive the updated status of the network.

e more descriptive routing metrics. Unlike RIP, which only uses the hop

count as a metric, OSPF allows for a variety of link metrics, e.g., link

3
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delay and costs, etc. In addition, the value of the configurable link metric
ranges from 1 to 65,535, eliminating the network diameter limitation of

15 hops in RIP and being able to support large networks.

o supporting routing hierarchy. OSPF provides a scalable routing solution
by supporting routing hierarchy, while RIP only supports routing in

“flat” networks.

e supporting equal-cost-multi-paths. OSPE supports multiple paths with
equal costs, while RIP only supports single path routing. The former

obviously increases the possibility of load balancing.

1.3 Quality of Service Architectures

The current standard IP-based Internet supports only best effort services.
Under this service model, all the applications compete together for the limited
network resources, such as buffers and bandwidth. As a result, applications
can not predict their service quality, which depends on the congestion situation
on the network. For example, if the buffer at a certain port is full, then the
packets going through that port will have to be dropped. If there is not enough
bandwidth available on a certain link, then packets will have to wait in the
queue and experience long queuing delays.

With the overwhelming growth of the Internet, various new types of ap-
plications have gained increasing importance, e.g., IP telephony, video con-
ferences, and on-line games, etc. The emerging applications have posed new
challenges to the Internet community. In particular, the diversification of ap-
plication types calls for service differentiation. For example, the quality of
Voice over IP (VoIP) and video conferencing applications are extremely de-
pendent on delay and delay jitter (the delay variation), while for file transfer
applications, the most important quality metric is the loss rate. Moreover,
satisfactory services require resource assurance. For instance, IP telephony
has stringent delay requirements: if the delay between two conversation party

exceeds 0.5 seconds, then the perceived conversation quality would be unac-
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ceptable. Confronted with the diverse requirements of emerging applications,
the current IP-based network, unfortunately, does not meet the challenges,
which motivates the research on quality of service (QoS). Quality of Service
refers to “the capability to provide resource assurance and service differenti-
ation in a network” [69]. In the following sections, we will review the major

QoS architectures.

1.3.1 The Asynchronous Transfer Mode (ATM)

The Asynchronous Transfer Mode is a technology based on fast packet switch-
ing of small fixed sized packets called cells. It is designed to provide a high—
speed low—delay multiplexing and switching network to support diverse user
traffic, such as voice, video, and data applications [68]. Its underlying fea-
ture is QoS support, which is facilitated by its connection-oriented nature and
negotiation phase, i.e., contract driving connection setup. ATM supports ser-
vice differentiation by defining five service categories: the Constant Bit Rate
(CBR), the Real-Time Variable Bit Rate (rt—VBR), the non-Real-Time Vari-
able Bit Rate (nrt—VBR), the Available Bit Rate (ABR), and the Unspecified
Bit Rate (UBR). The CBR service is used for traffic with very strict band-
width requirements, e.g., video on demand applications. The network offers
constant bandwidth and minimum delay, delay variation and loss rate. The
rt—VBR service is suitable for real-time applications, such as real-time video
conferencing, requiring tight delay and delay variation, but not exhibiting the
fixed bit rate of CBR. The nrt-VBR service is used for bursty data that is not
sensitive to delay variation, e.g., multimedia E-mails. The UBR service is a
best effort service with no real guarantees, and an example application is file
transfers. The ABR service is intended for applications that can adapt their
rates based on the feedback from the network. When an ABR connection is
established, the user specifies a maximum required bandwidth and a minimum
usable bandwidth. The bandwidth available from the network may vary, but
is never less than the minimum bandwidth [27].

Despite its high-bandwidth promise and QoS features, ATM has not been

widely used as expected because while ATM was in the process of standard-
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ization, the emerging Gigabit Ethernet technology and QoS capabilities of IP
networks reduced the attractiveness of ATM. In addition, ATM is too compli-
cated and expensive to employ, making customers reluctant to adopt it once

cost—eflfective solutions became available.

1.3.2 The Integrated Services/RSVP Model

The Integrated Services (IntServ) [15] framework supports the transport of
audio, video, real-time, and classical data traffic within a single network in-
frastructure. The architecture provides the ability for applications to choose
among multiple controlled levels of delivery services for their data packets.
Currently, two types of services are defined — the Controlled-Load Service [71]
and the Guaranteed Service [67]. The former is for adaptive tolerant real-time
traffic (i.e., traffic with loose delay requirements). It guarantees a QoS similar
to that achievable by a best effort traffic in an unloaded network. The latter is
for non—tolerate real-time applications with tight delay requirements. It guar-
antees assured level of bandwidth, mathematically bounded end-to—-end delay
and no loss for conforming traffic, which stays within the “expected capacity”.

The IntServ model features per—flow resource reservation. This idea is
similar to the virtual circuit in ATM, but the objective of IntServ is to preserve
the datagram model of IP networks while supporting resource reservation for
real-time applications, and the challenge is to integrate resource reservation
into the existing Internet architecture [69].

In [15], Braden, Clark and Shenker proposed a reference framework (see
Figure 1.1) to implement the IntServ model. Our work is based on the as-
sumption of this framework. According to this framework, the IntServ model
encompasses five components: the reservation setup protocol, the QoS rout-
ing agent, the admission control agent, the packet classifier, and the packet
scheduler. The first three components are background functions, and the last
two are functions in the forwarding path. According to the Integrated Service
model, an application must depend on resource reservation to receive guaran-
teed service. Therefore, the reservation protocol is the key component of the

background functions. But QoS routing and admission control is needed to
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Figure 1.1: A Reference framework for Integrated Service model.

assist with the reservation setup. In particular, QoS routing is responsible for
establishing the QoS paths, along which the reservation is to be made. During
the procedure of reservation setup, the admission control agent at each node
determines whether the resource request should be granted or rejected based
on its knowledge about the resource availability. In the forwarding path, the
classifier identifies each packet as belonging to a certain reserved flow and
maps it to a certain service class. All the packets inside the same class are
treated equally. Once a packet has been identified, the router will look up
the reservation