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ABSTRACT

The supplementation of total parenteral nutrition (TPN) formulas with short chain
fatty acids (SCFAs) increases glucose uptake and the expression of glucose transporters
following intestinal resection. While several signals may be involved in intestinal
adaptation, increases in proglucagon and early response genes mRNA levels are seen in
non-resected animals receiving SCFA supplemented TPN. While the effects of a mixture
of SCFAs are well documented, the relative contribution of the individual SCFAs is
unknown. Butyrate is of interest as it is a preferred fuel of colonocytes, with documented
effects on cellular proliferation and gene expression. Accordingly, this study was
undertaken to determine the relative role of butyrate in initiating an adaptive response in
non-resected rats receiving TPN. Animals received standard TPN for 66 hours, followed
by 6 hours of either a) standard TPN, b) TPN supplemented with a mixture of SCFAs (60
mM total), ¢) TPN supplemented with butyrate (9 mM). An oral control group was fed an
elemental diet, similar in macronutrient content to the TPN, such that all animals received
the same amount of energy daily. SCFAs increased ileal GLUT2 mRNA expression
compared to the orally fed group. SCFAs also increased proglucagon mRNA expression
as compared to the TPN group. The ileal protein abundance of SGLT1 was reduced by
both TPN and butyrate compared to the orally fed group. No changes in Na'K*"ATPase
or early response gene expression were found in this study. In conclusion, 9 mM butyrate
was not able to mimic the effects of a 60 mM mixture of SCFAs on GLUT2 and

proglucagon expression.
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1) INTRODUCTION

Total parenteral nutrition (TPN) is used to provide nutritional support to patients
who are unable to absorb nutrients through the gastrointestinal tract. Many side effects
have been associated with intravenous feeding including mucosal atrophy (Goldstein et
al, 1985), increases in intestinal permeability (Buchman et al, 1995) and reductions in
amino acid and glucose transport (Inoue, 1993). Researchers have looked at the
possibility of supplementing TPN formulas with nutrients that are trophic to the

gastrointestinal tract.

Intestinal adaptation is the process by which the intestine adapts to physiological
or pathological changes. Functional alterations in the uptake of nutrients may occur in
response to changes in the composition of nutrients delivered (Thomson et al., 1989;
Thomson et al., 1994; Ferraris et al., 1989). Similarly, the parenteral delivery of nutrients
results in changes in intestinal morphology and function (Buchman et al., 1995; Inoue et
al.,, 1993). Changes in the maximal rate of glucose transport, and the expression and
abundance of glucose transporters have been seen in several models of intestinal

adaptation (Thomson, 1986; Thomson and Rajotte, 1983; Burant et al., 1994).

Short chain fatty acids (SCFA’s) are the products of fiber fermentation in the
colon. The major products of this fermentation are butyrate, acetate and propionate.

Dietary fiber has been established as a trophic factor to both the small intestine and colon



(Jacobs et al, 1993). More specifically, highly fermentable fiber has been shown to
increase intestinal glucose uptake and the expression of glucose transporters in rats
(Reimer et al, 1997) and dogs (Massimino et al, 1998). Similarly, supplementing TPN
formulas with a mixture of SCFA’s for 3 to 7 days has been shown to increase the
glucose uptake and the expression of glucose transporters following massive small bowel
resection (Tappenden et al., 1997). While several signals may be involved in intestinal
adaptation, increases in both proglucagon and early response gene mRNA have been
found following only 6 hours of treatment with SCFA supplemented TPN (Tappenden et

al., 1998).

While the effects of a SCFA mixture on intestinal adaptation is well established,
the relative role of each of the SCFA’s is unknown. Butyrate, in particular, is of interest
due to the observation that it is the preferred fuel for colonocytes (Clausen, 1994). In
vivo studies demonstrate positive effects of butyrate on colonic mucosal growth (Kripke
et al, 1989), crypt cell proliferation and early response gene expression (Velasquez et al,

1996).

The objective of this study was to determine the relative role of butyrate, as
compared to a mixture of SCFA’s, in initiating an intestinal adaptive response in a rat
model of TPN feeding. The effect of 6 hour treatments with standard TPN, TPN
supplemented with SCFA’s, or TPN supplemented with butyrate alone, on the expression

of glucose transporters, proglucagon and early response genes was examined.



2) LITERATURE REVIEW

2.1) TOTAL PARENTERAL NUTRITION

Total parenteral nutrition (TPN) plays an important role in the nutritional
management of patients unable to absorb nutrients enterally. Unfortunately, the absence
of luminal nutrients has been associated with negative effects including mucosal atrophy
(Goldstein et al., 1985), decreased enzymatic activity (Guedon et al., 1986), impaired
immune function (Alverdy et al, 1988), and increases in intestinal permeability (Li et al.,

1994).

Bacterial translocation is defined as the passage of both viable and nonviable
bacteria and their products across the intestinal barrier to extraintestinal sites, including
the liver, kidney, spleen and blood. The translocated bacteria may serve as triggers to
initiate, perpetuate or exacerbate the septic state and thereby promote multi organ failure.
Parenteral feeding is associated with increases in intestinal permeability, (Li et al., 1994)
which may result in bacterial translocation (Alverdy et al., 1983). This translocation is
thought to be a potential initiator of multi organ failure (Marshall et al., 1993) and may

increase the patient’s risk of death from sepsis (Alexander et al., 1990).

The most dramatic and rapid morphological and functional changes have been
seen in rodent models of TPN (Levine et al., 1974, Johnson et al., 1975 and Hosada et al.,

1989). Results from piglet experiments are in general agreement with the mucosal



atrophy and reductions in brush border membrane (BBM) dissacharidase activity seen in

rats (Goldstein et al., 1985).

Clinically significant findings from TPN have been reported in human studies.
Buchman et al. (1995) found decreases in the intestinal mucosal thickness, as a result of
decreased villus height, following 14 days of TPN. Increases in urinary lactulose-
mannitol ratios, as a measure of intestinal permeability, were also seen in these TPN
dependent patients. In a study using subjects with chronic pancreatitis, Groos (1996)
found that the use of TPN resulted in decreases in villus height, accompanied by a
remodeling of the intestinal mucosal surface pattern, thereby decreasing the absorptive
surface area. Mild villus atrophy, as well as reductions in BBM disaccharidase activity
and [°H] thymidine incorporation, have also been found in children dependent on long-
term TPN (Rossi et al., 1993). Inoue (1993) prepared BBM vesicles from jejunal and ileal
segments taken from patients receiving either TPN or regular oral diets. A rapid
mixing/filtration technique was used to determine the effect of TPN on the vesicle uptake
of various nutrients. Functional decreascs in BBM amino acid and glucose transport
following one week of TPN were found. This suggests that even in the absence of the
major structural changes that are seen in rodents, significant functional alterations may be

occurring in humans receiving TPN.

The negative effects of TPN, coupled with the high costs of maintaining patients
on intravenous nutrition, have led investigators to study ways of optimizing current TPN

formulas. In an attempt to maintain intestinal structure and function, and to facilitate the



transition from TPN to enteral feeding, researchers have looked at supplementing TPN
with nutrients or growth factors that are trophic to the intestine. Several of these wili be

discussed.

Glutamine is considered to be a conditionally essential amino acid, and it is the
preferred fuel for enterocytes (Duee et al., 1995). While the de novo synthesis of
glutamine is generally sufficient, during periods of prolonged catabolism both plasma and

intracellular glutamine may be depleted (Parry-Billings, 1992).

Glutamine is absent from current TPN formulas, largely due to its instability
during storage. Researchers have looked at the effects of the more stable glutamine-
containing dipeptides such as L-alanine-L-glutamine or glycyl-L-glutamine in TPN
formulas. Schroder et al. (1995) found that supplementation of TPN with the L-alanine-
L-glutamine dipeptide reversed the intestinal villus atrophy, the decreased enzymes, and
the reduced absorption that was seen in TPN fed rats. Similarly, Van der Hulst et al.
(1993) used enteral lactulose and mannitol administration to show that glutamine
prevented the deterioration in intestinal permeability commonly seen with TPN.
Histological examination also showed that glutamine supplementation preserved a
normal mucosal structure. Glutamine has also been shown to have beneficial effects on
gastrointestinal immune function. Gastrointestinal associated lymphoid tissue (GALT)
atrophy and IgA depression, associated with the use of TPN, were reversed with

glutamine administration in mice (Li et al, 1997).



Both insulin like growth factor 1 (IGF-1) and growth hormone (GH) are
regulators of tissue growth. IGF’s are small homologous peptides related to insulin by
structure and function (Herington, 1991). GH regulates circulating concentrations of
IGF-1 and local expression of IGF-1 in a number of tissues including the small bowel
(Lund, 1994). Receptors for both IGF-1 and GH are found throughout the GI tract (Lobie

etal., 1990, Ziegler et al., 1995), suggesting a role in intestinal growth and maturation.

Subcutaneous administration of IGF-1 selectively increased gut mass, villus
height and crypt depth in orally-fed rats (Steeb et al., 1994). More recently, Alexander
and Carey (1999) studied the effect of orally administered IGF-1 on small intestinal
structure and function. They found increases in sodium-dependent nutrient absorption,
independent of changes in mucosal mass or surface area. The effect of enteral IGF-1 on
parenterally fed piglets was investigated by Park et al. (1999). IGF-1 augmented
intestinal morphology and disaccharidase activity over that observed with partial enteral
nutrition alone. While the role of GH is less clear, anabolic effects on gut structure
(Schulman et al., 1992) and intestinal ion transport (Guarino et al., 1995) have been

reported.

Using an intravenous model, Peterson et al. (1996) demonstrated that IGF-1
attenuated the TPN induced changes in ion transport and gut structure seen in rats.
Further work by this group showed that while GH is known to induce IGF-1 synthesis in
the liver, GH alone did not stimulate intestinal growth or normalize changes in epithelial

function seen with TPN.



Ketone bodies are oxidized by most tissues and are energy sources for
gastrointestinal tissues (Roediger et al., 1982). Unlike glucose, maintaining narrow
ranges of blood concentrations of ketones is not critical and, therefore, it may be
advantageous to consider giving ketone bodies as alternatives to glucose in TPN
formulas. Researchers have looked at the effect of intravenous ketones on gastrointestinal
structure. Kripke et al. (1988) showed that when monoacetin was substituted for a portion
of the glucose in TPN, jejunal and colonic atrophy was inhibited. Nagayama et al. (1990)
demonstrated that ketones were better than glucose in supporting colonic healing

following anastomosis.



2.2) GLUCOSE TRANSPORT

The kinetics of glucose transport is characterized by three parameters:
maximal transport rate (Vmax), the Michaelis-Menton affinity constant (Km) and the
passive permeability coefficient (Pd). Carrier mediated transport is saturable and
predominantly regulated by changes in Vmax (Karasov and Diamond, 1983). Variations
in Vmax reflect alterations in either the quantity or activity of the transporters.
Nonspecific mechanisms that may affect uptake include changes in the: 1) surface area,
2) electrochemical gradient for Na+, 3) plasma membrane lipid composition and 4) ratio
of transporting to non-transporting cells. Specific mechanisms that may influence uptake
include changes in the: 1) transporter turnover, 2) affinity constant and 3) site density of

the transporters (Ferraris and Diamond, 1997).

The Km represents the concentration of the solute at 2 Vmax. Failure to correct
for the effective resistance of the intestinal unstirred water layer (UWL) leads to an
overestimation of Km and an underestimation of Pd (Thomson et al., 1979, 1980, 1981,

1987).

While carrier-mediated transport is responsible for the vast majority of glucose
transport, passive permeation does occur. A study conducted by Madara and
Pappenheimer (1987) suggested that the presence of D-glucose in hamster enterocytes
caused contraction of the cell leading to dilation of the tight juctions, leading to an

increase in paracellular glucose transport. A subsequent study using human jejunam



tissue by Fine and colleagues (1993) did not find increases in tight junction permeability
induced by sodium dependent glucose transport. As a result of these findings the authors
concluded that in humans, paracellular transport is trivial. Most recently, Lane et al.
(1999) studied this phenomenon in unanesthetized dogs, and found that at physiological
concentrations of D-glucose, L-glucose absorption accounted for only 4-7% of total

glucose absorption.

The sodium dependent glucose transporter (SGLT1) in the BBM is responsible
for the transport of glucose and galactose from the intestinal lumen into the enterocyte
(Wright et al.,, 1994). This transporter is competitively inhibited by phloridzin. The
absorption of fructose across the BBM is a sodium-independent process mediated by the
facilitative transporter, GLUTS (Thorens et al., 1996). The transport of hexoses out of the
enterocyte across the basolateral membrane (BLM) occurs via the facilitative GLUT?2
transporter (Thorens et al., 1996). GLUT2 is competitively inhibited by cytochalasin B.
The BLM Na'K'-ATPase establishes and maintains the sodium gradient required for the

BBM sodium-dependent transport (Freeman et al., 1993).

SGLT-1 was the first intestinal transporter to be cloned by novel expression
cloning techniques (Wright et al, 1993). SGLT-1 transports glucose and galactose from
the lumen into the enterocyte (Semenza et al., 1984; Stevens et al, 1984; Wright et al.,
1993). SGLT-1 has a molecular weight of 73 kDa and is found on the enterocyte BBM. [t
is thought to be an asymmetrical protein, as phloridzin inhibits its function only from the

luminal side (Karasov and Diamond, 1983).



SGLT-1, as a functional co-transporter, is a homotetramer, consisting of a
catalytic subunits and regulatory subunits (RS1), each with weights of 70 kDa (V. eyhl,
1992). There are two potential sites for glycosylation at positions 248 and 306 and post
translational processing adds 15kDa to SGLT-1 (Hediger et al., 1989). Dietary or
hormonal manipulations may induce cellular events that modulate transcriptional and
posttranscriptional processing of the RS1 protein. Insertion of the RS1 regulatory subunit

may also be involved in inducing transporter activity (ref?).

The Na* gradient required for SGLT-1 maximal activity is maintained by the
Na'K*-ATPase (Horisberger et al., 1991). When sodium is absent, the transporter is
negatively charged. When sodium binds to SGLT1, conformational changes occur and
expose the glucose-binding site, allowing the binding and transport of the substrate
(Peerce and Wright, 1984). SGLT-1 has recently been discovered to be a water pump,
transporting 210 water molecules in conjunction with 2 sodium and 1 glucose molecule

(Meinild et al., 1998).

In humans, SGLT-1 expression is greater in the proximal small intestine, and
parallels the proximal-to-distal gradient of glucose absorption (Hopfer et al., 1987). The
onset of SGLT-1 expression in the rabbit small intestine occurs at the crypt villus
junction (Hwang et al., 1991). Rat studies show that SGLT! activity increases along the
length of the villus, with protein and mRNA levels remaining relatively constant (Smith

et al., 1992). Because of the disassociation between mRNA levels and activity along the

10



crypt-villus axis, positional factors are thought to influence post-transcriptional control of

SGLT-1 (Smith et al., 1992).

Studies using weaning lambs suggest a role for post-transcriptional regulation of
SGLTI. Shirazi-Beechey et al., (1991) found that while mRNA levels fell with weaning,
the decrease was not parallel to changes in protein or activity levels. Ishikawa and
colleagues (1997) postulate that the identification of consensus sites for phosphorylation
suggest that control of glucose transport may be modulated by phosphorylation of the
transporter. Similarly, Wright et al., (1997) studied protein kinase A (PKA) and protein
kinase C (PKC) regulation of SGLT-1. While PKC was found to reduce the maximal
transport rate (Vmax) by 60%, PKA increased this rate by 30%. These changes in Vmax
were accompanied by proportional changes in the number of cotransporters, and were
found to be independent of consensus sites for SGLT-1. Recent work by Vayro and
Silverman (1999) suggests that PKC regulates glucose transport through a direct effect on
the transporter. In this study, COS-7 cells expressing recombinant NH2-terminal myc-
tagged rabbit SGLT-1 were treated with a PKC agonist. The decreases in sugar uptake
seen with this treatment were reversed when treated with a PKC inhibitor. Despite the
changes in uptake, measurement of high-affinity Na'-dependent phloridzin binding
revealed no differences in the number of cell surface transporters. The investigators

conclude that PKC modulates glucose uptake by reducing the transporter turnover rate.

GLUT?2 is the basolateral facilitative transporter that transports glucose, galactose,

mannose and fructose (Venkatramen et al., 1988; Venkatramen et al., 1991; Thorens et

11



al., 1988; Thorens et al., 1990; Burant and Bell, 1992; Cheeseman, 1993). While GLUT2
does transport fructose, it does so with 6 fold less affinity when compared to GLUTS

(Colville et al., 1993).

GLUT?2 is a 61 kDa low affinity, high capacity transporter. Because the kinetics
are not rate-limiting, sugar uptake increases with increasing concentration of substrate
(Mueckler et al., 1990). GLUT2 is expressed along the villus, and is absent from the
crypt.

GLUT2 is subject to developmental regulation and appears in late gestation
(Davidson et al., 1992). While little is known about the regulation of GLUT2 expression
in the intestine, glucose metabolism is required for induction of the GLUT2 gene in the

liver, and this effect is transcriptionally regulated (Rencurel et al., 1996).

GLUTS is the 47 kDa sodium independent facilitative BBM fructose transporter
(Burant, 1991). Maximal protein expression is seen in the upper villus and maximal
mRNA expression in the mid villus (Parent, 1992). Expression is greatest in the proximal

small intestine, in differentiated villus cells (Miyamoto et al., 1994).

GLUTS mRNA expression is subject to diurnal variations (Castello et al., 1995).
Twelve-fold increases are seen at the end of the light cycle as compared to the beginning.
Protein levels also varied throughout the day, but were found to be out of phase with

mRNA fluctuations.

12



The expression of GLUTS is influenced by cAMP levels. Brot-Laroche et al.
(1992) found increased levels of mRNA in Caco2 cells that were treated with forskolin, a

cAMP agonist.

The Na'K'-ATPase maintains the Na™ and K" gradient across the cell membrane
(Horisberger et al., 1991). The transport of 2 K™ molecules into the cell, and 3 Na*
molecules out of the cell maintains the gradient necessary for sodium dependent
transport. The Na'K'-ATPase is a heterodimer, consisting of a 110 kDa a catalytic
subunit along with a highly glycosylated 55 kDa B subunit (Fambrough et al., 1994). In

the adult small intestine, only oi;and B, are expressed (Wild et al., 1994).

Increases in oijand By mRNA levels, along the crypt villus axis, parallel increases
in Na"K'-ATPase activity (Wild et al., 1992). In streptozotocin-induced diabetes mellitus,
however, regional alterations in mRNA and protein expression suggest post-
transcriptional mechanisms of control of Na'K'-ATPase (Wild et al., 1999). Post-
transcriptional events may be associated with assembling the subunits and targeting

newly synthesized molecules to the BLM (Fambrough et al., 1994).

13



Figure 1. Model of enterocyte hexose transport.
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2.3) INTESTINAL ADAPTATION

The intestine is capable of modulating the quantity of nutrients absorbed in
response to pathological changes or alterations in nutritional demands, and thus affect the
welfare of the animal. This process is referred to as intestinal adaptation, and it occurs in
response to various pathological states including diabetes (Thomson, 1980,1981,1983;
Thomson and Rajotte, 1983), intestinal resection (Gleeson et al., 1972; Thomson, 1986b),
and external abdominal radiation and chronic alcohol consumption (Thomson
1983,1984). Adaptations also occur in response to physiological changes such as
pregnancy (Musacchia and Hartner, 1970), lactation (Cripps and Williams, 1975) and as
a result of aging (Thomson et al., 1986). In most cases, adaptation is beneficial and
improves the animal’s nutritional status. For example, following massive small bowel
resection (MSBR), the remnant intestine compensates by increasing nutrient uptake and
thereby minimizing malabsorption (Thomson et al.,1986b). In contrast, the increases in
hexose uptake that occur with uncontrolled diabetes may exacerbate prevailing

hyperglycemia (Burant et al., 1994).

Both morphological and functional changes occur with intestinal adaptation
(Thomson et al., 1989). Early studies demonstrated that following MSBR, the remnant
gut becomes markedly hyperplastic with increased villus height and crypt depth
(Dowling, 1967). More recently, both crypt cell production rate and enterocyte turnover
time have been shown to change in several models of intestinal adaptation (Thomson et

al., 1994). While morphological changes may be associated with alterations in nutrient
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transport, the two processes appear to be independently controlled. Work by O’Connor
and colleagues (1999) showed that following an 80% resection, the mass of the remnant
intestine increased 5-fold within a one week period, to 50-70% of its pre-resection level.
Despite this increase, mass-specific glucose uptake was reduced, restoring uptake to only

33% of control values.

Membrane cholesterol content, phospholipid and fatty acid composition can be
modified in mammalian cells (Spector and Yorek, 1985). Alterations in the lipid
composition of the BBM (Thomson et al, 1987) and changes in membrane fluidity
(Meddings, 1988b) occur with intestinal adaptation, and may influence the activity of
membrane bound transporters. Indeed, passive lipid permeability and carrier-mediated D-
glucose uptake are influenced by changes in membrane fluidity (Brasitus et al., 1989;
Meddings, 1988a; Meddings and Thiesen, 1989; Meddings et al., 1990). While these
changes in the composition of membranes may influence transport processes, they do not
fully explain the changes in nutrient transport seen with intestinal adaptation (Keelan,
PhD thesis).

Functional changes in carrier-mediated nutrient transport and passive transport
occur in several models of adaptation. The increases in sugar and amino acid uptake
following MSBR result from alterations in the value of the maximal transport rate
(Vmax), as opposed to changes in the Michaelis constant (Km) (Thomson, 1986b).
Increased Vmax suggests either an increase in the transport activity of the enterocytes or

an increase in the number of transporting enterocytes. Using a resection model Sigalet
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and Martin (1998) found that functional measures of adaptation were paralleled by an

increase in SGLT1 mRNA.

Resection also selectively affects the passive uptake of lipids, with effects
differing depending on chain length and degree of unsaturation (Thomson et al., 1986b).
The changes in uptake seen in this study could not be attributed to changes in mucosal

surface area or changes in the effective resistance of the unstirred water layer.

Both carrier mediated and passive transport increase with diabetes (Thomson and
Rajotte, 1983a,b; Fedorak et al, 1987). This increase in nutrient transport cannot be solely
explained by enterocyte hyperplasia and intestinal hypertrophy (Thomson and Wild,
1997). Increased transport activity represents a response to a perceived state of tissue
starvation and is accompanied by increases in the abundance of SGLT! and GLUT?2
protein and mRNA levels (Burant et al., 1994). In situ hybridization results suggest that
these increases are due to the premature expression of hexose transporters along the
crypt-villus axis (Burant et al., 1994). Similarly, Fedorak et al. (1987) used [3H]-
phlorizin binding to show increases in SGLT1 transporters in the lower villus and crypt
region of enterocytes. The increases in these regions were associated with increases in
transport activity to a greater extent than the villus tip region. This phenomenon is
referred to as the “recruitment” of transporters to the more distal portions of the crypt

villus axis.
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Increases in Na'K'-ATPase a, and B1 isoform protein, corresponding mRNA, and
levels of transcriptiom are also increased in the jejunum and ileum of the chronically
diabetic rat (Wild et a’l.,, 1999). Discrepancies between mRNA levels and corresponding
protein values, lead tlne authors to speculate that transcriptional and posttranscriptional
mechanisms may lead to the precocious expression of genes in immature enterocytes at
the level of the crypt or lower villus. The increased Na'K'-ATPase activity seen in
diabetes may result im an increased Na* gradient across the BBM and, as a result,

enhanced glucose uptalke.

While previous work on resected animals have found reductions in Na'K'-
ATPase mRNA in resmonse to SCFA supplemented TPN as compared to standard TPN
(Tappenden et al., 1997), no changes were observed in the non-resected animals

(Tappenden et al., 1998).

Adaptation ma:y also result in reductions in nutrient uptake in response to
physiological or path:ological changes. Chronic ethanol consumption and external
abdominal irradiation result in decreases in carrier-mediated and passive transport
(Thomson et al.,, 1983c,1984). With aging, sugar transport per unit intestinal tissue
declines with age, how:ever, because of the mild hyperplasia that occurs, intestinal uptake
remains relatively unchanged from that seen in younger animals (Ferraris and Diamond,

1997).
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2.4) NUTRITIONAL REGULATION OF INTESTINAL
ADAPTATION

Altering the composition of the nutrients that the gastrointestinal tract is exposed
to can affect small intestinal structure and function. Adaptations in nutrient transport help
to maintain a safety margin among intake and requirements (Ferraris and Diamond,
1989). Intestinal function is modified by dietary lipids (Thomson et al.,1986a, Thomson
et al.,1987a, Thomson et al., 1989). Intestinal transport may be modified by the presence
of cholesterol (Keelan et al., 1994), by altering the ratio of saturated to polyunsaturated
fat in the diet (Keelan et al., 1990) and by altering the ratio of n6 to n3 in the diet
(Thomson et al.,1994). Changes in the Vmax of sugar transporters were shown to be
responsible for the changes in sugar uptake that result from altering dietary lipids

(Thomson et al.,1986a).

Several studies have characterized the effects of dietary lipids early in life.
Alterations in the fatty acid content of maternal diets during gestation produce changes in
the ontogeny of intestinal nutrient transport in suckling offspring (Perin et al., 1997). A
study by Jarocka-Cyrta et al. (1998) showed that the ontogeny of the intestine is critically
influenced by the diet of the mother during both gestation and the nursing period. The
same alterations in dietary lipid resulted in adaptation of intestinal transport in

postweaning rats (Perin et al., 1999).

The mechanism by which fatty acids alter nutrient transport is not fully

established. Although dietary fatty acids modulate BBM fatty acid composition (Keelan
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et al,, 1990), adaptive changes in transport are not fully explained by alterations in
membrane lipids. Polyunsaturated fatty acids regulate gene transcription (Clarke and
Jump, 1993). This may occur due to effects on the activity of transcription factors (Clarke
and Jump, 1994). Fatty acids also activate the peroxisome proliferator-activator receptor
(PPAR), which may mediate effects on gene expression (VandenHeuvel, 1999). The
PPAR controls gene expression by interacting with specific DNA response elements
called peroxisome proliferator response elements (PPRE) located upstream of responsive
genes (Tugwood et al, 1992). The genes regulated by the PPAR include those involved in
fatty acid metabolism (reviewed in Schoonjans et al., 1997) and cell cycle control

(Ledwith et al., 1993, 1996, 1997; Rokos and Ledwith, 1997).

Scharrer (1972) demonstrated a specific adaptation of active amino acid transport
to the level of dietary protein. Feeding a high protein diet increases the Vmax for the
uptake of amino acids, particularly those that are considered essential ( ref? Diamond et
al early 90’s). The ability of a single amino acid to affect the gastrointestinal tract has
been demonstrated by Schroder et al.(1995), who showed that supplementing TPN
formulas with glutamine reversed villus atrophy, decreased enzymes and reduced
absorption resulting from TPN in rats. In contrast, parenteral arginine supplementation in
rats with massive SBR leads to a slowing of intestinal adaptation, indicated by reduced

glutamine uptake and protein synthesis (Welters et al., 1999).

Work by Ferraris and Diamond (1989) demonstrates specific regulation of

intestinal nutrient transporters by their dietary substrates. Adaptation to increased
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carbohydrate levels in the diet result in increased glucose transport capacity in both the
BBM (Diamond and Karasov, 1984) and the BLM (Cheeseman and Harley, 1991).
Increases in the maximal rate of glucose transport (Vmax) were seen, while the carrier’s
affinity (Km) for glucose did not change (Diamond and Karasov, 1984). While a high
glucose diet stimulates glucose transport activity and increases levels of SGLT1 and
GLUT2 mRNAs in rat jejunum, GLUTS mRNA was only increased by fructose
(Miyamoto et al., 1993). Similarly, Shu et al. (1997) confirmed that dietary fructose
enhances intestinal fructose uptake and GLUTS expression. In addition, precocious
introduction of dietary fructose selectively increases the expression of GLUTS during the

midweaning period.

Ferraris and Diamond (1992) postulated that the signal for the up-regulation or
down-regulation of BBM nutrient transport is perceived in the crypt, where future
transport capabilities of the enterocyte are irreversibly programmed. Switching from a
high carbohydrate to low carbohydrate diet produces a 2-3 day lag in the decline of
glucose transport. This lag corresponds to the average enterocyte lifetime, suggesting that
enterocyte migration times are responsible for this delay. Indeed, phloridzin binding
studies show that changes in transporter site density first appear in the crypts, and

gradually migrate up to the villus tip.

In contrast to brush border nutrient transport, studies have shown a rapid
component to changes in basolateral nutrient transport. Cheeseman and Maenz (1989)

found increases in basolateral transport, independent of cytochalasin B binding, within 30
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minutes of the induction of hyperglycemia in rats. The results of this study suggest that
basolateral D-glucose transport is regulated by a modulation of membrane bound carriers

and changes in the carrier site density.

Dietary fiber is trophic to the small intestine and colon (Jacobs and Lupton, 1984;
Jacobs et al., 1993). Goodlad et al. (1989) showed increases in proliferation associated
with ingestion of fermentable fiber. In contrast, fermentable fiber fed to germ free
animals had no effect on proliferation, suggesting a role for SCFAs, the products of the
bacterial fermentation of fiber, in eliciting the proliferative response. More recent work
by Reimer et al. (1997) showed that physiological levels of fermentable rhubarb fiber
modulate intestinal glucose uptake in rats. Similarly, Massimino et al.(1998) found
changes in villus height, jejunal glucose transport and GLUT2 protein abundance in dogs

fed a highly fermentable fiber.

Short chain fatty acids (SCFAs) are the products of the microbial fermentation of
fiber in the colon. The major end products of this fermentation are acetate, propionate and
butyrate, which account for 83% of the SCFAs produced (Cummings et al., 1987). These
products are produced in a nearly constant ratio of 60:25:15, with a total concentraticn of
100 mmol/L (Rechkemmer et al., 1988). Human studies show that ~50-60 grams of
carbohydrate are fermented daily, yielding 0.5-0.6 moles of SCFAs with a total energy
value of 14-180 kcal (Hoverstad 1986, McNeil 1984). Using an in vitro fermentation
system, in conjunction with the human ileostomy model, McBurney et al. (1988) found

SCFAs to account for 3-13% of metabolizeable energy.
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As a result of the pH of the colonic lumen, greater than 90% of the SCFAs are
present as dissociated anions, representing the major anion in the colonic lumen
(Engelhart and Reckhemmer, 1983). Perfusion studies show increases in colonic Na™, CI’,
NH3", Ca”, Mg" and water absorption, as well as HCO;™ and K secretion, in response to
SCFA absorption (Binder and Mehta, 1989, McNeil et al., 1979, Ruppin et al., 1980).
Fluid and electrolyte fluxes may be affected by the generation of CO, from butyrate
oxidation (Roediger, 1982) or as a result of butyrate induced up-regulation of Na*™-H"
transporter and Na'K'-ATPase mRNA (Bishop et al., 1992 and Chehab et al., 1987).
While the rates of transport of the three major SCFAs in the proximal colon were found
to be similar, absorption rates in the distal colon increased with increasing chain length
(Ronnau, 1989).

SCFAs may be absorbed via three mechanisms:

(1) concentration dependent passive diffusion of the ionized or unionized acid.

(2) paracellular diffusion through “leaky spots” (Engelhart and Reckhemmer,

1983, Binder et al., 1997).
(3) carrier mediated transport via a HCO3;/SCFA antiport system, independent of
CI/HCO3" exchange and Na™ transport (Harig et al., 1996).
Vesicle studies have previously demonstrated the presence of this carrier-mediated

system in human ileum (Harig et al., 1991) and rat colon (Mascolo et al., 1991).

The B oxidation of SCFAs meets 80% of the energy requirements of the colonic

epithilium (Barnard et al., 1997). SCFAs are utilized by the intestinal epithilial cells or
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are transported to hepatic or peripheral tissues to be metabolized (Bugaut, 1987). Portal
concentrations of SCFAs are 4-10 times higher than circulating levels, suggesting a
substantial clearance function for the liver (Hoverstad, 1986, Dankert et al., 1981).
Propionate is largely metabolized in the liver, and due to its odd numbered chain length,
is used as a gluconeogenic substrate (Bergman, 1990). Acetate accounts for 95% of
SCFAs in peripheral blood (Skutches et al, 1979) and is largely metabolized in
peripheral tissues such as adipose and muscle. Butyrate appears to play an important role
in colonic mucosal metabolism. In isolated human colonocytes, greater than 70% of
oxygen consumption was attributed to butyrate oxidation (Roediger, 1980). The
importance of butyrate as an energy source is emphasized by the observation that of the
SCFAs, butyrate has the lowest Michaelis constant (Km), indicating that it is more
readily oxidized by rat colonocytes. (Clausen and Mortensen, 1994). When considering
the interaction of various colonic substrates, the colonocytes utilized fuels in the order of
butyrate>acetoacetate>glutamine>glucose (Roediger, 1982). A constitutive preference
for butyrate was found in neonatal and adult rat colon epithilial cells (Krishnan and

Ramakrishna, 1998).

There is evidence of competition between intestinal fuels. Clausen and Mortensen
(1994) found butyrate oxidation to be competitively inhibited by propionate, but only
slightly inhibited by acetate. Butyrate was found to competitively inhibit the oxidation of

both acetate and propionate, while inhibiting glucose oxidation non-competitively.
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The SCFAs alter colonic mass and in vivo proliferation rates (Jacobs and Lupton,
1984, Goodlad et al., 1987). Both intracolonic and intraperitoneal injections of SCFAs
stimulate mucosal proliferation in the jejunum and ileum of normal rats (Sakata et al.,
1984, Kripke et al., 1989). A study by Koruda et al. (1988) investigated the effect of
supplementing TPN formulas with SCFAs on adaptation following massive small bowel
resection. Significantly greater ileal and jejunal mucosal weights, protein, RNA and DNA
contents were seen compared to the standard TPN group. Further work by this group
demonstrated that both intravenous and intracecal infusions of SCFAs significantly
reduced mucosal atrophy associated with TPN in non-resected animals (Koruda et

al.,1990).

More recent work by Tappenden et al. (1996) using a model of TPN and intestinal
resection, showed similar positive effects on intestinal morphology, as well as increases
in proglucagon and ornithine decarboxylase mRNA. This suggests a mechanism by
which SCFAs influence adaptation. Effects on functional aspects of adaptation were also
seen, including increases in ileal glucose uptake, as well as upregulation of GLUT2
mRNA expression, demonstrating the ability of SCFAs to influence both nutrient

transport and gene expression (Tappenden et al., 1997).

Work with non-resected animals showed SCFAs to have similar trophic effects
(Tappenden et al., 1998). Changes in morphological parameters, as well as proglucagon
and basolateral glucose transporter expression, suggest a role for SCFAs in adaptation of

the non-resected intestine. SCFA treatment for as little as 6 hours produced changes in
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glucose transporter and proglucagon and oncogene mRNA expression (Tappenden et al.,

1998).

While most in vivo studies have looked at mixtures of the SCFAs, Kripke et al.
(1989) compared the effects of intracolonic infusions of saline, butyrate (20 mM) and a
SCFA mixture (125mM). Both the SCFA mixture and butyrate alone stimulated colonic
mucosal growth. Further increases in butyrate concentrations had no additional effect,
suggesting that butyrate is the primary colonotrophic factor, with physiological

intraluminal levels being optimal with respect to colonic epithilial proliferation.

Incubating human colonic mucosal biopsies with butyrate results in increased
proliferation rates (Scheppach et al., 1992). An in vivo study by Velasquez et al. (1996)
looked at the effect of intraluminal butyrate on crypt cell proliferation. Butyrate was
found to increase crypt base proliferation, but decrease crypt surface proliferation in the
rat colon. This effect is consistent with the role of butyrate as a protective agent against
carcinogenesis, because a shift in the proliferative zone from base to surface of the crypt
is considered a predictor of cancer risk. The study also demonstrated that the effects may
be mediated by changes in the expression of the early response genes, c-myc and c-jun,

which are known to regulate cell proliferation and differentiation.

Linseisen and Wolfram (1997) examined the effect of TPN supplemented with a
structured triglyceride containing butyric acid on gut integrity in traumatized animals. No

significant differences in ileal and colonic morphological parameters were observed
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despite a theoretically increased supply of systemic butyrate. While the investigator
speculates that a certain ratio of SCFAs may be necessary, favorable results have been

seen with parenteral triacetin administration (Karlstad et al., 1992).

Sodium butyrate exerts a wide variety of biological effects. Early studies showed
n-butyrate to induce terminal differentiation in a variety of cell lines (Leder and Leder,
1975). Researchers have investigated the cellular mechanisms by which butyrate
modulates gene expression. Butyrate inhibits histone deacetylase, leading to histone
hyperacetylation (Kruh et al., 1994). This results in a relaxing of the chromatin structure,
making DNA more accessible to transcription factors (Perrin et al., 1994). Work by
Siavoshian et al. (2000) compared the effects of butyrate and trichostatin A, an inhibitor
of histone deacetylase. Trichostatin A mimicked the effects of butyrate on specific
protein expression, as well as cell proliferation and apoptosis. Butyrate’s effects on
proliferation and apoptosis have also been linked to changes in protein kinase A (PKA)
isozyme-dependent signal transduction. Incubating young adult mouse cells (YAMC)
with 1 mmol/L of butyrate reduced PKA type I/II activity ratio (Aukema et al., 1997).
Similarly, butyrate has been found to affect protein kinase C (PKC) activity in LIM1215
colon cancer cells (Rickard et al., 2000). A 50% reduction in cellular PKC activity was
found in butyrate treated cells. This effect was not due to a reduction in the synthesis of
the PKC protein, leading the authors to speculate that butyrate enhances the degradation
of this enzyme. Interestingly, the inhibition of 8 oxidation did not alter butyrate’s ability
to alter PKC activity. This observation suggests that PKC regulation is not mediated by a

metabolic by-product of butyrate or due to the supply of ATP to the cell.



Inan et al. (2000) examined the effect of butyrate on NF- kB activity, gene
expression, and protein abundance in a human colonic epithelial cell line. Exposure to
buyrate eliminated constitutive NF- kB, p50 dimer activity. This change did not correlate
with changes in [kB levels. Effects on NF- kB, p50 activity may occur as a result of
butyrate’s role as a deacetylase inhibitor. This notion is supported by the observation that

p50 binding is also reduced by the selective deacetylase inhibitor trichostatin A.

Recently, a link has been made between triiodothyronine, butyrate, and histone
hyperacetylation in regard to enterocyte specific gene expression. The induction of
intestinal alkaline phosphatase (IAP) occurs when Caco-2 cells, transfected with the 5’
flanking region of the human IAP gene, are co-incubated with triiodothyronine and

butyrate (Meng et al., 1999).
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2.5) EARLY RESPONSE GENES

Early response genes are cell cycle related genes involved in cellular proliferation.
Since the expression of these genes is both rapid and transient, they are often referred to
as “early response genes”. Both the fos and jun genes encode for DNA binding proteins.
Leucine zipper dimerization of these proteins results in the formation of the API1
transcription factor (DeGroot et al., 1990). The early induction of AP-1 binding activity
suggests a role for these proteins in the differentiation of the Caco-2 intestinal cell line
(Ding et al., 1999). The subsequent regulation of several other genes involved in growth
and differentiation is thought to occur as a result of the binding of this factor. The ability
of polyamines to regulate cell growth may be partially achieved through the modulation
of positive and negative Jun/AP-1 activities in the intestinal mucosa (Patel and Wang,

1999).

c-myc encodes for a nuclear phosphoprotein which also acts as a transcription
factor, regulating cell cycle progression and programmed cell death, or apoptosis (Gu et
al., 1994). Upon mitogen or serum stimulation, a rapid and transient burst in both c-myc
mRNA and protein as cells enter the G1 phase, followed by a slow decline to low levels
in proliferating cells (Campisi et al.,, 1984; Keily et al., 1983). Recently, a cellular
binding partner, named Max, has been identified. The Myc-Max heterodimer has been

shown to regulate gene transcription (reviewed in Luscher and Larsson, 1998).
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More recent studies, using the short chain fatty acid butyrate, demonstrate it’s
unique ability to exert opposite effects on cellular proliferation and differentiation in
normal vs. cancer cells. As a result of these paradoxical effects, a large amount of
research has focused on the effect of butyrate on cellular proliferation and early response

gene expression.

Using neoplastic cells in vitro, several investigators have demonstrated the ability
of sodium butyrate to affect early response gene expression. Nishina et al. (1993) used
embryonal carcinoma cells to show that butyrate elicits rapid, reversible effects including
the induction of the jun gene as well as other markers of differentiation. Regulation of c-
Jos expression by sodium butyrate has been demonstrated using fibroblasts (Muller et al,
1984), colon carcinoma cells (Souleimani and Asselin, 1993) and leukemic cells
(Rabizadeh et al., 1993). A marked effect on AP-1 dependent gene transcription was
found when a colon carcinoma cell line was exposed to butyrate (Glinghammar et al.,

1999).

In contrast to the inductions seen with the fos and jun genes, sodium butyrate was
found to decrease c-myc expression (Rottleb et al., 1995). Barnard et al. (1993) concluded
that because blocking protein synthesis abolished this effect, butyrate may induce the

synthesis of a protein with a negative effect on c-myc mRNA abundance.

While the effects on transformed cell lines are well documented, less is known

about the in vivo effects on normal gastrointestinal cells. Holt et al. (1991) examined
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oncogene expression following starvation and refeeding using an in vivo rat model.
Increases in fos and jun mRNA was seen following refeeding, demonstrating the
importance of nutrients in the stimulation of gastrointestinal proliferation. The ability of
short chain fatty acids (SCFAs) to influence the in vivo expression of early response
genes in the gastrointestinal tract has been studied. Velasquez et al. (1996) found that
intraluminal butyrate instillations in normal rats resulted in increases in colonic c-jun but
not c-fos protein abundance. These changes were associated with decreases in crypt
surface proliferation and indexes of premalignant hyperproliferation. Work done using a
model of total parenteral nutrition in rats by Tappenden et al. (1998) showed increased
expression of c-myc, c-fos and c-jun mRNA following 6-12 hours of intravenous
formulas supplemented with a mixture of SCFAs. The relative role of systemic butyrate
in initiating this response is unknown. Similarly, it is unknown where along the crypt
villus axis changes in early response gene expression and protein abundance are
occurring. /n situ hybridization studies would enable investigators to determine if the
proliferative effects associated with butyrate are specific to the crypt region, as suggested

by Velasquez (1996).
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2.6) HUMORAL REGULATION OF INTESTINAL ADAPTATION

The mechanism by which SCFAs exert their stimulatory effects is not fully
established. Direct effects on proliferation. are seen in organ culture studies, in the
absence of neural or hormonal factors (Schepepach et al., 1992). In contrast, many in vivo
studies show SCFAs to have distant effects on gastrointestinal tissue. For example,
SCFAs infused into the colon stimulate mittosis in the jejunum, suggesting a role for

systemic factors (Sakata et al., 1984).

Proglucagon is a 160 amino acid peptiide encoded by the glucagon gene, which is
present in intestinal L cells and a cells of the islets of Langerhans (Bell et al., 1983;
Holst, 1984). In mammals, a single copy gene= gives rise to an mRNA transcribed from an
identical promoter in the pancreas, intestine amd brain (Novak et al., 1987; Heinrich et al.,

1984; Lee et al., 1990).

Proglucagon is post-translationally clleaved into several peptide products. The
peptides produced differ depending on whethesr cleavage occurs in the intestinal L cells or
the pancreatic a cells. The major product prociuced in the pancreas is glucagon, while the
intestine produces GLP-1 (7-36 amide), GsLP-1 (7-37 glycine extended), glicentin,
oxyntomodulin, and GLP-2 (Orskov et al., 19.87). The products of the intestinal cleavage
of proglucagon are referred to collectively as “‘enteroglucagon”. L cells increase along the
length of the intestine, with the highest nurmber found in the distal ileum and colon

(Holst,1984). Prohormone convertases, PC1 and PC2, appear to play important roles in
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the tissue-specific post-translational processing of proglucagon (Tucker et al., 1996). Hill
et al. (1999) found that Pax6, an important activator of proglucagon gene expression in
islet cells, is also essential for the development and functioning of glucagon-producing
intestinal cells. It has recently been suggested that there may be differences between
species in the regulation of proglucagon. Nian et al.(1999) analyzed the human
proglucagon promoter expression in transgenic mice, and found divergence in the
mechanisms utilized for tissue specific regulation of the human and rodent proglucagon

genes.

The ontogeny of proglucagon mRNA and encoded precursor was studied in the
rat intestine from day 11 of fetal gestation to maturity. A similar magnitude of increases
in L cell density and proglucagon mRNA abundance was seen, possibly reflecting an
increase in L cells, rather than changes in transcription or mRNA stability (Jin et al.,
1990). Increased expression of proglucagon and secretion of proglucagon derived
peptides has been observed in various disease states including celiac disease (Besterman
et al., 1978), STZ diabetes (Brubaker et al., 1989) and following massive small bowel

resection (Gomacz et al., 1984; Taylor et al., 1990).

GLP-1 is an incretin hormone with glucose-dependent insulinotrophic actions. In
addition to stimulating the release of insulin, GLP-1 has been shown to stimulate
proinsulin gene expression and biosynthesis (Fehmann and Habener, 1992). This action,
along with the observation that GLP-1 maintains insulinotrophic activity in non-insulin

dependent diabetes (NIDDM), makes GLP-1 an attractive potential therapeutic agent in
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the treatment of NIDDM. More recently, GLP-1 has also been shown to play a role in
the regulation of food intake (Gunn et al., 1996) and body temperature (O’Shea et al.,

1996).

GLP-2 has been found to be an important intestinotrophic factor (Tsai et al.,
1997a; Tsai et al. 1997b). Gleeson et al. (1971) found a patient with an enteroglucagon
producing renal tumor exhibited small bowel hyperplasia, while Dowling (1982) found
that an intraperitoneal injection of the tumor extract resulted in intestinal enlargement in
rats. A study on non-luminal influences on bowel mucosa demonstrated a correlation
between enteroglucagon and cell proliferation following small bowel resection (Gornacz
et al., 1984). Similarly, Drucker et al. (1996) showed that nude mice bearing
subcutaneous proglucagon producing tumors exhibited proliferation of the small
intestinal epithelium

GLP-2 was found to be the agent that produced the most marked stimulation of
intestinal proliferation, increasing bowel weight, villous height and stimulating crypt cell
proliferation. In contrast to other growth factors, GLP-2 appears to exert a “tissue specific
effect” on the gut, as no evidence of increases in proliferation were found in other tissues
including the spleen, heart, brain or liver. The authors speculate that this may be due to
the specific expression of a GLP-2 receptor. Monroe et al. (1999) have recently cloned
and characterized the GLP-2 receptor as a G protein coupled receptor super family
member, which is expressed in the gut and is closely related to the glucagon and GLP-1

receptor.
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Although it appears to be normal histologically, the functional capacity of the
GLP-2 treated intestine has not been studied. Brubaker et al. (1997) found increased
BBM dissacharidase and peptidase activity, parallel to intestinal growth, leading the
researchers to conclude that normal to increased digestive capacity was seen following
subcutaneous treatment. These animals also exhibited normal glycemic profiles,
suggesting that the enteroinsular axis is unaffected. Curiously, decreases in jejunal

glucose transporter expression (SGLT1 and GLUT?2) were seen with GLP-2 treatment.

The effect of GLP-2 on both BLM and BBM glucose uptake has been
characterized. Cheesman and Tsang (1996) showed that 2 hour vascular perfusions of
GLP-2 (400 and 800 pM) increased the BLM D-glucose maximal transport rate. A
subsequent study by Cheeseman and O’Neill (1998) demonstrated that vascular infusions
of GLP-2 increased phloridizin insensitive D-glucose uptake, with no change in the BLM

abundance of GLUT?2.

Similar work characterizing the effect of GLP-2 on the BBM, showed that brush
border glucose uptake, as well as SGLT1 protein, increased following GLP-2 infusion
(Cheeseman, 1997). The insertion of SGLTI into the BBM may be responsible for this
increase in uptake, as luminal brefeldin A, an inhibitor of protein trafficking, blocked the

changes in transport that were observed with GLP-2 treatment.
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GLP-2 has been shown to have potential benefits in various models of disease.
The role of GLP-2 in experimental diabetes was examined by Fischer et al. (1997). In a
model of untreated streptozotocin induced diabetes, a correlation between enhanced
bowel weight and increases in ileal and plasma GLP-2 and proglucagon mRNA levels
were seen. Insulin therapy was able to prevent these effects, which were shown to be
independent of nutrient consumption. Thulesen et al. (1999) found plasma GLP-2 levels
to parallel diabetic intestinal growth, while plasma enteroglucagon increased regardless
of the extent of mucosal injury. Drucker et al. (1999) used a model of dextran sulfate
induced colitis to show that GLP-2 reverses weight loss, and increases colon length, crypt

depth and both the mucosal area and integrity of the colon.

Results from both animal and human studies suggest a potential role for GLP-2 in
the management of gastrointestinal diseases. Boushey et al. (1999) showed GLP-2 to
decrease the mortality and reduce the severity of indomethacin—induced murine enteritis.
Jeppeson and colleagues (1999) demonstrated an impaired meal stimulated GLP-2
response in patients suffering from short bowel syndrome. Patients with inflammatory
bowel disease undergo an adaptive response to intestinal injury by increasing circulating
levels of bioactive GLP-2, facilitating the repair of intestinal mucosal epithilium (Xiao et
al., 2000). Preliminary work by Prasad et al. (2000) demonstrates that patients with
intestinal ischemia syndromes may benefit from treatment with GLP-2a,, a GLP-2 analog.
The authors also speculate that GLP-2a may prove to be a useful adjunct in improving

graft survival in intestinal transplantation.
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In addition to the well established intestinotrophic effects, GLP-2 has recently
been found to have other physiological effects. Intravenous infusions of GLP-2 reduce
gastric acid secretion in healthy volunteers (Wojdemann et al., 1999). The same group of
investigators demonstrated an “ileal brake effect” in a study of antral motility in

intravenously infused pigs (Wojdemann et al., 1998).

The mechanism by which GLP-2 exerts its effects is unknown. A study by Yusta
et al. (2000) examined GLP-2 signaling in baby hamster cells expressing a transfected rat
GLP-2 receptor. GLP-2 increased cAMP levels and activated both cAMP-response
element and AP-1-dependent transcriptional activity in a dose dependent manner. The
induction of early response genes and the stimulation of cell proliferation were noted at

GLP-2 concentrations of 100nM.

Many studies have looked at the nutritional regulation of proglucagon expression
and peptide synthesis. Enteral nutrition is known to play a role, as demonstrated by Hoyt
(1996) who found that fasting rats decreased proglucagon mRNA, with increases
occurring with refeeding. Similarly, Goodlad (1989) found decreases in plasma

enteroglucagon in rats infused with total parenteral nutrition.

Intraluminal glucose stimulates the release of GLP-1 (Orskov et al, 1986). Shima
et al. (1990) found that while both metabolizable and non-metabolizeable hexoses
stimulated secretion, certain structural features were required. Ordinary mixed meals

were found to stimulate the secretion of proglucagon derived peptides (Holst and Orskov,
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1994). Xiao et al., (1999) fed healthy volunteers test meals and concluded that the
secretion of GLP-2 from the intestine is differentially regulated in a nutrient dependent
manner. Rocca and Brubaker (1999) used an in situ model of the rat GI system to show
that the secretion of GLP-1 and glucagon-like immunoreactivity (gGLI) in response to
luminal fat is regulated by a complex neuroendocrine loop. This loop involves the enteric
nervous system, the afferent and efferent vagus nerves, as well as the duodenal hormone

GIP.

The effect of dietary fiber on proglucagon expression and peptide secretion is well
established. Gee et al. (1996) found increases in plasma enteroglucagon levels following
the ingestion of fermentable carbohydrates. Reimer et al. (1996) fed diets supplemented
with fiber to rats and found increased ileal proglucagon mRNA expression and increased
plasma GLP-1 levels following an oral glucose load. A subsequent study using
physiological levels of fiber in the diet confirmed these findings. Highly fermentable
rhubarb fiber was found to increase ileal proglucagon mRNA levels above that of levels

found in animals fed a non-fermentable cellulose fiber source (Reimer et al., 1997).

The role of systemic SCFAs in stimulating proglucagon expression and peptide
synthesis has been investigated. Tappenden et al. (1996) showed increases in ileal
proglucagon mRNA with SCFA supplemented TPN following 80% small bowel

resection. A subsequent study showed that 12 hour infusions of TPN supplemented with
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SCFAs increased ileal proglucagon mRNA and plasma GLP-2 levels in the non-resected

rat (Tappenden et al.,1998).

The effect of butyrate on proglucagon expression and peptide synthesis is not well
established. Brubaker (1988) found that sodium butyrate did not produce any changes in
glucagon-derived peptides in fetal rat intestinal cultures. Work has been done using
cultures of a neoplastic pancreatic A cell tumor derived from a patient with glucagonoma
syndrome. Incubation with sodium butyrate had no effect on glucagon like
immunoreactivity secretion in vitro, leading the investigators to conclude that neoplastic
A cells may have abnormalities in the biosynthesis and secretion of glucagon (Drucker et
al,, 1990). In contrast, Philippe et al. (1987) found that insulinoma cells treated with
sodium butyrate increased glucagon mRNA expression and induced a pattern of events

leading to cell differentiation.

To my knowledge, no in vivo studies have looked at the effect of butyrate of
proglucagon expression and peptide synthesis. In addition, the effect of systemic butyrate

administration has not been investigated.
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Figure 2. Post-translational processing of proglucagon in the pancreas and the intestinal
L-cells. The numbers represent the amino acid at which enzymatic cleavage occurs.

1 30 61 72 78 107 127 158
PANCREATIC a CELL

1 30 33 61 72 158

GRPP Glucagon

INTESTINAL L-CELL

1 69 78 107NH2 111 122 126 158
Glicentin
1 30 33 69
GRPP Oxyntomodulin
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3) HYPOTHESIS

I have reviewed the links between TPN, short chain fatty acids, and intestinal
adaptation. Based on this information and the results of previous studies in our lab, I

propose the following hypothesis:

. TPN will decrease the expression of the brush border glucose transporter
(SGLT1), Na'K'-ATPase, proglucagon and the early response genes (c-myc, c-
fos) and will increase the expression of the basolateral glucose transporter,

GLUT?2, as compared to the oral control group.

° SCFA supplemented TPN will increase the expression of the basolateral glucose
transporter (GLUT?2), proglucagon, and the early response genes (c-myc, c-fos)
compared to the TPN group. The expression of Na'K*-ATPase and the expression
and abundance of SGLT! will be unaffected by SCFA supplemented TPN as

compared to the TPN group.

. Butyrate (BUT) supplemented TPN will increase the expression of the basolateral
glucose transporter (GLUT2), proglucagon, and the early response genes (c-myc,
c-fos) compared to the TPN group. The expression of Na'K'-ATPase and the
expression and abundance of SGLT!1 will be unaffected by BUT supplemented

TPN.
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4) MATERIAL AND METHODS

4.1) ANIMAL CHARACTERISTICS

Thirty two adult male Sprague Dawley rats (193+1.2g) obtained from Health
Sciences Laboratory Animal Service (University of Alberta, Edmonton, Canada) were
acclimatized and housed in individual metabolic cages in a temperature and humidity
controlled facility with 12 hour light/dark exposure. Three days prior to surgery animals
were given a nutritionally complete elemental diet (Rodent Laboratory Diet PMI# 5001,
see Table 1) in order to decrease residual fiber fermentation and short chain fatty acid
production prior to the experimental period. All animals had free access to drinking
water. All procedures received ethical approval from the University of Alberta Animal
Policy and Care Committee and are consistent with the guidelines of the Canadian

Council on Animal Care.

4.2) EXPERIMENTAL MODEL

Prior to surgery, the animals underwent a 12 hour fast, were weighed and
anesthetized with halothane. Jugular catheterizations and swivel placements were
performed, as described by Popp and Brennan (1981). Postoperatively, animals were
randomly assigned to one of three groups. Animals were infused with standard TPN for
66 hours followed by 6 hours of either (a) standard TPN, (b) SCFA supplemented TPN

(36mmol/L acetate, 15 mmol/L propionate, 9 mmol/L butyrate) or (c) butyrate
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supplemented TPN (9mmol/L butyrate) (see Figure 1). The TPN solutions (see Table 2)
were prepared daily under a laminar flow hood in sterile conditions and were filter
sterilized before infusion (0.22 pum millipore filter, Millipore Corporation, Bedford MA).
The solutions were infused at a rate of 1.75 ml/hour using a Harvard pump (Harvard
Apparatus, Wellesley, MA). A final group, which did not undergo jugular
catheterization, acted as an oral control. They were fed the elemental diet, similar in
macronutrient content to the TPN solutions, such that all animals received the same
amount of energy daily (46 kcal/day). All animals had free access to drinking water

throughout the study.

4.3) TISSUE PREPARATION

Following the 72 hour experimental period, animals were weighed and
anesthetized with halothane. The intestine was rapidly excised from the ligament of
Treitz to the ileocecal valve and rinsed in ice cold saline. The intestine was divided into
three segments, with the proximal one third segment representing the jejunum and the
distal one third segment representing the ileum. One cm segments were removed from the
proximal end of the jejunum and frozen in liquid nitrogen for RNA analysis. One cm
segments from the distal end of the ileum were also removed and processed in the same
manner. The remaining segments of jejunum and ileum were weighed, measured, and cut
open along the longitudinal axis in order to obtain mucosal scrapings for subsequent

Western Blot analysis.
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4.4) RNA ISOLATION

Total cellular RNA was isolated using the Trizol reagant (GIBCO BRL,
Burlington, ON). RNA was quantified by measuring absorbance at 260 nm and 280 nm
(GeneQuant RNA/DNA Calculator). RNA was equally loaded (15 pg/lane) and
electrophoresed on a denaturing 1% agarose/0.66 M formaldehyde gel. The integrity and
relative amounts of RNA were evaluated using ultraviolet visualization of ethidium
bromide stained RNA. Capillary diffusion was used to transfer the RNA to MSI
nitrocellulose membrane (MSI Laboratories, Westboro, MA) for cDNA probes or
Zetaprobe GT Genomic nylon membrane (Biorad Laboratories, Hercules, CA) for

riboprobes. RNA was fixed to the membranes by baking at 80° in vacuo for 2 hours.

4.5) NORTHERN BLOT ANALYSIS

The 440 bp proglucagon cDNA probe was a generous gift from Peter J. Fuller of
Prince Henry’s Institute of Medical Research in Melboume, Australia. The probe was
labeled with [a32P] -dATP (800 Ci/mmol, Amersham Canada, Oakville, ON) by nick
translation (Random Primers DNA Labeling System, Life Technologies, Burlington,
ON). Membranes were prehybridized for 1 hour at 65 °C in a medium containing
6xSSPE (0.18 M NaCl, 0.01 M sodium phospate, 1 mM EDTA, ph 7.4), 0.1% sodium
dodecyl sulfate (w/v), 5x Denharts solution (0.5 g Ficoll 400, 0.5 g PVP, 0.5 g bovine

serum albumin). The membranes were incubated overnight (16-20 hours) at 65°C with



hybridization solution containing the 2> P labeled probe. Following hybridization,
membranes were washed 3 times with 2xSSPE, 0.1% SDS for 20 minutes at room
temperature, followed by a final wash of 0.1xSSC, 0.1% SDS for 20 minutes at 60 °C.
Membranes were then exposed to KODAK XARS film (Eastman KODAK, Rochester,
NY) using an intensifying screen at -70°C. Following adequate exposure, the film was

developed using the Kodak M35A X-OMAT processor.

The GLUT?2 plasmid was kindly donated by Dr. G.I. Bell, of the Howard Hughes
Medical Institute, University of Chicago. The [a*’P]-CTP (800 Ci/mmol, Amersham
Canada, Oakville, ON) labeled GLUT2 antisense riboprobe was generated from Xbal
linearized plasmid DNA (PGEM4Z-HTL-3) and T7 RNA polymerase. Membranes were
prehybridized for 1 hour at 50 °C in a medium containing 60% (v/v) deionized
formamide, 1xSSPE (.18M NaCl, 0.01 M sodium phosphate at ph 7.4, ImM EDTA),
0.5% blotto, 10% (w/v) dextran sulfate, 1% (w/v) sodium dodecyl sulfate and 500 pg/ml
salmon testes DNA. The membranes were then incubated at 50 °C overnight (16-20
hours) with the hybridization solution containing the *> P labeled probe. Following
hybridization, membranes were washed with 2xSSC (5min @ room temp), 2xSSC/0.1%
SDS (10 min @room temp), .2xSSC/1% SDS (5-30 min @70°C) and .2xSSC (2min @
room temp) . Membranes were then exposed to KODAK XARS film (Eastman KODAK,
Rochester, NY) using an intensifying screen at -70°C. Following adequate exposure, the

film was developed using the Kodak M35A X-OMAT processor.
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The SGLT-1 c¢cDNA probe was obtained as a generous gift from Dr. N.O.
Davidson of the University of Chicago. The cDNA probes encoding the o; and ; Na'K"-
ATPase isoforms were obtained from Dr. J. Lingrel of the University of Cincinnati.
Hybridization with the non-radioactively labelled Bl and ol NaK ATPase and SGLT1
cDNA probes was carried out according to the standard protocol for digoxigenin labeled
cDNA probes (Roche Molecular Biochemicals, 1999). Briefly, DNA probes were
labelled with DIG-11-UTP using random primer labelling. To quantitate the labelled
cDNA, serial dilutions of the labelled control DNA and the labelled experimental DNA
were dot blotted onto nylon membranes and immunologically detected according to the
manufacturers protocol (Roche). The intensity of the probe was compared to the control

and the probe concentration estimated.

Membranes were prehybridized for 30 minutes at 42 °C in DIG Easy Hyb
solution (Roche Molecular Biochemicals). All probes were heat denatured for 10 minutes
at 95°C before being added to prewarmed DIG Easy Hyb (~50 ng/ml solution).
Hybridization at 42°C proceeded overnight. Following hybridization, membranes were
washed for 2x5 minutes in 2XSSC, 0.1%SDS at room temperature, and 2x15 minutes in
0.1XSSC, 0.1%SDS at room temperature. Following these stringency washes,
membranes were briefly rinsed in 1X washing buffer (Roche Molecular Biochemicals)
and then blocked in 1x blocking reagant (Roche Molecular Biochemicals) for 30 minutes
to reduce non specific binding. Membranes were incubated with anti-digoxigenin-
alkaline phosphatase at a dilution of 1:10 000 for 30 minutes. To remove unbound

antibody, membranes were washed 2x 15 minutes in 1x washing buffer (Roche
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Molecular Biochemicals). Membranes were equilibrated in 1x detection buffer for 5
minutes. The chemiluminescent substrate CDP-Star (Roche Molecular Biochemicals)
was applied to the membrane and a reaction with the bound antibody conjugate produced
a signal that was detected by exposing the membranes to Kodak X-OMAT AR-5 film for
10 to 30 minutes.

The abundance of mRNA was determined using laser densitometry (Model GS-
670 Imaging Densitometer, Biorad Laboratories Ltd, Mississauga, ON). Quantification of
the 28S ribosomal units from the membranes was used to account for loading

discrepancies.

4.6) REVERSE TRANSCRIPTION-POLYMERASE CHAIN
REACTION (RT-PCR)

200 ng of isolated total RNA was reverse transcribed using Expand RT (GIBCO BRL,

Life Technologies) and an oligo dT)s primer. Briefly, the RNA and primer were

incubated for 10 minutes at 65°C. Following the addition of the dNTP’s (2 mM each), 5X

buffer (100 mM Tris-HCI pH 8.3, 150 mM KCI, 6 mM MgCl), 20 mM DTT and 50 U of

Expand RT, the mixture was incubated for 60 minutes at 42°C.

Coding sequences for c-myc and c-fos were obtained from the Genbank database
(NCBI). c-myc and c-fos primers were designed using GeneJockey II from Biosoft
(Ferguson, MO) and Amplify 1.2. An 10 ul aliquot of the RT reaction was amplified by
PCR using 1.25 U Taq DNA polymerase (Gibco BRL) in a 50 pl reaction containing 2.25

mM MgCl, 200 uM dNTPs, 20 mM Tris HCI (ph 8.0), 50 mM KCI and 300 nM of each
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primer. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) was used as an internal
control in all PCR reactions as it is constitutively expressed in the adult small intestine
(Burant et al, 1994). For c-myc, a GAPDH mixture (including 1.5 uM primers, 20 mM
Tris HCI (ph 8.0), 50 mM KCI, 2.25 mM MgCl and 0.2 mM dNTP’s) was added after 12
cycles of the c-myc PCR amplification. For c-fos, the GAPDH mixture was added along
with the c-fos mixture at the start of the PCR reaction. Reaction mixtures were amplified
using a DNA thermal cycler (Perkin Elmer Gene Amp PCR System 2400, version 2.11).
The conditions included an initial denaturation step for 2 minutes at 94°C, followed by 35
cycles with denaturation for 2 minutes at 94°C, annealing for 30 seconds at 57°C (c-myc)
or 60 °C (c-fos), and elongation at for 1 minute at 72 °C. After the completion of 35
cycles, the mixture was incubated for 7 minutes at 72 °C. PCR products were separated
on a 1% (w/v) agarose gel. The gels were stained with .1 mg/ml ethidium bromide to
visualize the DNA. The abundance of DNA was determined using laser densitometry

(Model GS-670 Imaging Densitometer, Biorad Laboratories Ltd, Mississauga ,ON).

4.7y BRUSH BORDER MEMBRANE (BBM) AND BASOLATERAL
MEMBRANE (BLM) PREPARATION

BBM and BLM were isolated from rat intestinal mucosal scrapings using
homogenization, differential centrifugation, and Ca®* precipitation. (Maenz and
Cheeseman, 1986; Orsenigo et al., 1987; Orsenigo et al., 1985). The Bio-Rad Protein

Assay was used to determine the protein concentration of the samples. Aliquots were

stored at —70°C for Western immunoblotting.
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4.8) WESTERN BLOTTING

BBM and BLM aliquots, containing approximately 20 pg of protein, were solubilized
in Sample Buffer Dye (0.125 M Tris-HCI, pH 6.8, 20% glycerol, 4% SDS, 10% B-
mercaptoethanol, 0.025% Bromopheno! Blue). These samples were incubated at 100°C

for 5 minutes to denature the proteins. The samples were stored at —70 °C.

BLM and BBM proteins were separated by SDS-PAGE (sodium dodecyl sulfate-
polyacrylamide gel electrophoresis) using a modification of the method developed by
Laemmli (1970). Four gels were prepared in a multicaster chamber (Hoefer scientific
instruments, San Francisco, California) and stored at 4°C overnight. Gels were composed
of two parts: Resolving gel (7.5% gel, 0.375 M Tris, pH 8.8) and Stacking gel (4% gel,

0.123 M Tris, pH 6.8).

The samples along with four Kalaidoscope Prestained Standards (Bio-Rad
laboratories, Hercules, Canada), were loaded onto the gel. Electrophoresis was carried
out in a Hoefer electrophoresis tank (Hoefer scientific instruments, San Francisco,
California). Gels were oriented vertically and submerged in a tank containing
electrophoresis buffer (0.025 M Tris, pH 8.3, 0.192 M glycine, 0.1% SDS). Proteins were
electrophoresed at room temperature at a constant voltage of 100 Volts through the

stacking gel for 30 minutes and 200 Voits through the resolving gel for 2.5 hours.
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After migration, proteins were immobilized on a solid support by electroblotting to a
nitrocellulose membrane (Towbin et al., 1979). The gel was put into contact with a
nitrocellulose membrane and closed tightly in a transfer cassette (Hoefer scientific
instruments, San Francisco, California) between filter papers and sponges. Cassettes were
placed in a Hoefer transfer tank (Hoefer scientific instruments, San Francisco, California)
between two electrode panels and totally submerged in freshly prepared Transfer Buffer
(25mM Tris, 192mM glycine, 20% methanol). Electrotransfer was carried out for 160

minutes at a current of 1 Amp.

In order to determine the completeness of protein transfer, the membrane were
removed from the cassette and stained with Ponceau S. Membranes were destained with
deionized water until no further trace of Ponceau S was visible. Gels were stained with
Coomassie Blue Stain (Coomassie Blue R250, methanol, desionised water and glacial
acetic acid) to ensure complete protein transfer. The membranes were blocked by
incubation overnight in BLOTTO (Bovine Lacto Transfer Technique Optimizer)
containing 5% w/v dry milk in Tween Tris Buffered Saline (TTBS: 0.5% Tween 20, 30

mM Tris, 150 mM NacCl.

Membranes were washed three times with TTBS for 10 minutes on a shaking
incubator. Then, membranes were probed with specific rabbit anti-rat antibodies. The
incubation was carried out at overnight at room temperature. The antibody was diluted in

2% dry milk in TTBS at 1:500.
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The polyclonal antibody against SGLT1 was obtained from Biogenesis, Poole,
England. It detects the SGLT-1 protein of 75-85 kDa. Following this primary incubation,
membranes were washed three times with TTBS for 10 minutes to remove the residual
unbound primary antibody. Membranes were then, incubated for one hour with goat anti -
rabbit antibody conjugated with horseradish peroxidase (HRP) (Pierce, Rockfort, Illinois,

USA). This secondary antibody was diluted at 1:20000 in 2% dry milk in TTBS.

After three 10 minute washes in TTBS to remove residual secondary antibody,
membranes were incubated 5 minutes with SuperSignal® Chemiluminescent-HRP
Substrate (Pierce, Rockfort, Illinois, USA) composed of 50% Stable Peroxide Solution
and 50% of Luminol/Enhancer Solution. The membranes were then exposed to X-OMAT
AR films for 5 minutes. The film was developed and fixed using Kodak GBX developer

and fixer.
The relative band densities were determined by transmittance densitometry using a

Bio-Rad imaging densitometer (Life science group, Cleveland, Ohio, USA).

4.9) STATISTICS

Data was analyzed using a randomized block ANOVA. Sources of variation were
block (gel) and treatment. Gel was included as a block in order to account for gel-to-gel
variability. The general linear model (GLM) procedure in SAS (Version 6.04, SAS
Institute, Cary, NC) was used. When a significant difference was identified, student’s t-

test was used to make comparisons between means. Significance was defined as p<0.05.
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5) RESULTS

5.1) Animal characteristics

The initial weights of the animals in the 4 groups did not differ. The
change in the weight of the animals over the 72 hour experimental period was not
significantly affected by the treatments (Table 3). The mean weight of the intestine (mg
per cm length) was significantly higher in both the jejunum and ileum of the orally fed

animals as compared to the intravenously fed animals (Table 4).

5.2) al and B1 Na"K'ATPase mRNA expression

The administration of TPN, SCFA and BUT had no effect on the jejunal
expression of basolateral ol and Bl Na'’K'ATPase mRNA as compared to the oral

control group (Figures 4 and 5).

The administration of TPN, SCFA and BUT had no effect on the ileal expression
of basolateral ol and B1 Na'K"ATPase mRNA as compared to the oral control group

(Figures 6 and 7).
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5.3) GLUT2 mRNA expression

The jejunal expression of GLUT2 mRNA was unaffected by administration of

TPN, SCFA and BUT as compared to the oral control group (Figure 8).

The ileal expression of GLUT2 mRNA was increased by the administration of
SCFA as compared to the oral control group (Figure 9). Neither TPN or BUT

significantly affectd ileal GLUT2 expression as compared to the oral control group.

5.4) SGLT1 mRNA expression

The jejunal expression of brush border SGLT1 mRNA was significantly reduced
(p<0.05) in animals exposed to BUT as compared to the oral control or TPN group
(Figure 10). SCFAs had no effect on jejunal SGLTI mRNA as compared to the oral

control or TPN group.

5.5) SGLT1 protein abundance

The abundance of brush border SGLT1 protein in the ileum was significantly
reduced (p<0.05) by the administration of TPN and BUT as compared to the oral control
group (Figure 11). ). SCFAs had no effect on ileal SGLT1 protein as compared to the oral

control or TPN group.
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5.6) c-myc and c-fos mRNA expression

The ileal expression of c-myc and c-fos mRNA was unaffected by the
administration of TPN, SCFA and BUT as compared to the oral control group (Figures

12 and 13).

5.7) Proglucagon mRNA expression

The administration of SCFA significantly increased (p<0.05) ileal proglucagon

mRNA expression as compared to the TPN group (Figure 14).
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6) DISCUSSION

The effect of SCFA or BUT supplemented TPN appears to be site specific.
Different responses were seen in the proximal and distal small intestine. The more
pronounced ileal response agrees with previous findings (Tappenden et al.,
1997, Tappenden et al., 1998a,b) and may reflect increased ileal sensitivity to SCFAs or

to GLP2, which is produced from neighboring L cells (Bell et al, 1983).

The effect of SCFAs on ileal GLUT2 expression agrees with previous studies
(Tappenden et al, 1997). The responsiveness of GLUT2 expression to SCFAs appears to
be specific, as the basolateral membrane Na'K'-ATPase was not changed with this
treatment. Although not statistically significant (p= 0.146), increases in GLUT2
expression were also seen in TPN fed animals as compared to oral controls. This increase
was expected as a result of delivering all nutrients systemically. Similarly, work by
Cheeseman and Maenz (1989) showed increases in GLUT2 expression following 30
minute systemic glucose infusions. Taken together, these studies demonstrate a rapid
component to changes in the gene expression of GLUT2 in response to systemic
nutrients, and SCFAs in particular. The more modest increase seen in this study as
compared to previous work may be because we did not use an intestinal resection model.
Also, diurnal variations in GLUT2 expression have been documented by Corpe et al.
(1996). Differences in the levels of expression seen in this study as compared to previous
work may, therefore, be due to the differences in the time of day that animals were

sacrificed. It is not known whether SCFAs exert their effects by increasing the rate of
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transcription or by affecting mRNA stability or turnover. Nuclear run on assays or
ribonuclease protection assays could be done in the future to address this question.
Although protein was not measured in this study, GLUT?2 is transcriptionally regulated
(Rencurel et al, 1996). Also, earlier work by Tappenden et al (1998a), demonstrated
increases in GLUT2 protein in response to SCFA administration. Thus, while GLUT2
does respond to the systemic delivery of nutrients, the increase seen with SCFA or BUT

supplemented TPN was not significantly higher than the TPN group.

Total parenteral nutrition decreases intestinal brush border glucose uptake (Inoue
et al, 1993). As expected, the systemic infusion of nutrients, and resulting lack of luminal
stimulation, decreased ileal SGLT1 protein abundance. The short-term administration of
SCFAs or BUT in this non-resected model was not sufficient to stimulate increases in
SGLT! abundance. Although transport was not measured in this study, earlier work
found no changes in D-glucose transport following 24 or 72 hour SCFA administration as
compared to standard TPN (Tappenden et al, 1998a). Taken togeiher, these results
suggest that in the non-resected intestine, the brush border glucose transporter, SGLTI, is
relatively unresponsive to systemic SCFAs. BUT administration decreased jejunal
SGLT1 mRNA expression when compared to TPN. Jejunal protein abundance, however,
was not measured in this study. The significance of this change in mRNA expression is
questionable, as SGLT1 is known to be post-transcriptionally regulated (Shirazi-Beechey
et al, 1991). Future studies investigating the roles of phosphorylation and intracellular

protein trafficking in the regulation of SGLT-1 activity are warranted.
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Although alterations in SGLT1 mRNA expression and protein abundance were
found, concominant changes in Na'K'-ATPase expression were not seen in this study.
The Na'K'-ATPase pumps sodium out of the enterocyte, maintaining the gradient
necessary for the uptake of glucose from the lumen (Horisberger et al., 1991). It is not
known what magnitude of change is necessary in SGLT1 expression or abundance to
produce changes in Na'K'-ATPase expression In conclusion, the systemic delivery of
nutrients decreases ileal SGLT1 abundance, and neither SCFA or BUT supplemented

TPN were able to prevent this effect.

The expression of ileal c-fos and c-myc were not changed by TPN, SCFA or BUT
administration. This is in contrast to previous reports of imcreases in expression
following 6 hour SCFA treatment (Tappenden et al, 1998b). Although Northern blotting
was used in this previous study, our study utilized RT-PCR as a measure of mRNA
expression. Despite the use of this more sensitive technique, we were unable to
demonstrate changes in expression. Early response genes demonstrate rapid and transient
inductions (1-3 hours) in response to trophic stimuli (Sacks et al, 1 995). It is possible that
we missed a transient increase in expression, and therefore measured mRNA expression
at a steady state level. A subsequent time course study using shorter infusion times, may

identify earlier increases in ERG expression.
Both fermentable fiber and systemic SCFAs increase ileal proglucagon mRNA

expression (Tappenden et al, 1998a,b; Reimer et al, 1997; Massimino et al, 1997).

Similarly, in our study SCFAs increased proglucagon mRNA compared to the TPN
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group. Butyrate (9 mM), however, produced an intermediate response relative to SCFAs
(60mM), suggesting that the SCFA effect is not butyrate specific. This is the first in vivo
study, examining the effect of a single SCFA on proglucagon expression. The
mechanism by which SCFAs affect proglucagon expression is unknown, but may involve

a cAMP dependent pathway (Rocca and Brubaker, 1995).

Although the administration of SCFAs increased GLUT2 and proglucagon
expression, butyrate was not found to be responsible for these effects, as was postulated.
Indeed the response to 9 mM butyrate as compared to the 60 mM SCFA mixture, was
found to be intermediate in magnitude. It is possible that the amount of butyrate (9 mM)
as compared to the SCFA mixture (60 mM), was not sufficient to modulate gene
expression. Although similar levels have been used in studies using intraluminal
administration of butyrate, (Velasquez et al, 1996; Kripke et al, 1989) systemic
administration may result in a dilution in the blood to a level that may not alter gene
expression. Future studies comparing 60 mM infusions of butyrate with 60 mM infusions

of a SCFA mixture would answer this question.

The lack of effect of butyrate may also be a result of the infusion time used in this
study. Unpublished work by Tappenden (2000), showed acute effects on intestinal
permeability within only 15 minutes of butyrate administration. Because butyrate is a
preferred fuel of colonocytes (Roediger et al, 1982), it may provide a more acute
stimulus, as compared to the SCFA mixture. Future studies looking at different infusion

times may demonstrate the ability of butyrate to produce changes in gene expression.
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As hypothesized, the systemic delivery of TPN increased ileal GLUT2
expression, although the change was not statistically significant (p=.146). Similarly, the
lack of luminal stimulation in the TPN fed group reduced SGLT1 protein abundance
compared to the oral control group (p<0.05). We also predicted that parenteral feeding
would cause sufficient intestinal atrophy to reduce the ileal expression of proglucagon
and the early response genes. No changes were seen, suggesting that the route of nutrient
delivery does not affect proglucagon and early response gene expression in this

experimental model.

The results of this study partially support our first hypothesis. We expected TPN
to cause sufficient atrophy such that decreases in SGLT1, proglucagon, and the early
response genes would occur. While our results show that decreases in SGLTI protein
abundance were seen, no changes in proglucagon or early response genes were found.
Due to the systemic delivery of nutrients, an increase in the basolateral expression of
GLUT2 was anticipated. Our results show only a modest, non-significant increase in

GLUT?2 expression with TPN as compared to the orally fed group.

Based on the results of previous studies, the second hypothesis predicted increases
in GLUT?2, proglucagon and early response gene expression in the SCFA supplemented
group, as compared to the TPN group. While the results of this study show significant
increases in proglucagon expression, SCFA supplemented TPN did not affect the

expression of the early response genes or GLUT2.
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The third hypothesis predicted that the SCFA effect was butyrate specific.
Consequently we hypothesized that the effects seen with SCFAs would also be observed
with the administration of butyrate. This hypothesis is not supported by the results of this

study.
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Table 1. Composition of the elemental diet

INGREDIENT G/KG DIET
Amino acid mix’ 200.0
Fat” 100.0
Glucose 427.2
Sucrose 213.6
Fiber -—-
Mineral Mix’ 441
Vitamin Mix" 12.6
Choline Chloride 2.5
Digestible Energy’ MJ/kg 17.9
Amino Acid Content, g/MJ 11.2
Nitrogen Content, g/MJ 1.72

! Supplied (g/kg): L-arginine-HCI, 67.5; L-histidine, 22.5; L-isoleucine, 41; L-leucine,
67.5; L-lysine-HCI, 90; L-methionine, 41; L-phenylalanine, 58; L-threonine, 41; L-
tryptophan, 13; L-valine, 47.5; L-alanine,17.5; L-aspartic acid, 17.5; L-glutamic acid,
239.5; glycine, 116.5; L-proline, 27.5; -cystine, 22.5; L-serine, 17.5; L-tyrosine, 22.5; L-
asparagine, 30.

% Contains (g/kg) hydrogenated beef tallow, 392; linseed oil, 20; and safflower oil 588.
Polyunsaturated to saturated ratio was 1.0.

3 Supplied (g/kg) calcium phosphate dibasic, 500; potassium citrate monohydrate, 220;
sodium chloride, 74; potassium sulfate, 52; magnesium oxide, 24; ferric citrate
pentahydrate, 6; manganous carbonate, 3.5; zinc carbonate, 1.6; potassium iodate, 0.01;
cupric carbonate, 0.3; sodium selenite, 0.01; chromium potassium sulfate, 0.55; sucrose,
118.

* Supplied (g/kg) thiamin hydrochloride, 600mg; riboflavin, 600mg; pyridoxine
hydrochloride, 700mg; nicotinic acid, 3.0g; D-calcium pantothenate, 1.6g; folic acid,
200mg; D-biotin, 20mg; cyanocobalamin, 1.0mg; retinyl palmitate (250 000IU/g), 1.6g;
allrac-atocopherol acetate (250IU/g), 20g; cholecalciferol (400 000IU/g), 250 mg;
menaquinone, 5.0g; sucrose, 972.9g.

3 Digestible energy was calculated from gross energy measurements of dietary
components.
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Table 2. Composition of TPN Solutions

INGREDIENT TPN TPN+SCFA TPN+BUTYRATE
Dextrose (g/L) 204 199 201
Nitrogen' (g/L) 8.0 8.0 8.0

Lipid® (g/L) 26 26 26

NaCl (mmol/L) 60 -—- 51

Sodium acetate (mmol/L) -—- 36 —-

Sodium propionate -- 15 ---
(mmol/L)

Sodium butyrate (mmol/L) o 9.0 9.0

KCl (mmol/L) 20 20 20

KPO4 (mmol/L) 15 15 15

CeH 107 ¢1/2Ca (mmol/L) 8.0 8.0 8.0

MgS0O4 (mmol/L) 3.0 3.0 3.0

Multivitamins® (ml/L) 10 10 10

! 10% Travasol (Baxter, Toronto, Ontario).
220% Intralipid (Kabi Pharmacia, Baie D’Urfe, Quebec).

3 Multi-1000 (Sabex Inc., Boucherville, Quebec).
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Table 3. Initial body weights of rats and net body weight change

following the 72 hour experimental period

TREATMENT INITIAL WEIGHT (grams) NET WEIGHT CHANGE (grams)
BUT 185 +3° 34 +3.6"
SCFA 190 + 3° 3.1+3.4"
TPN 184 + 3° 29 +3.6"
ORAL 189 + 3° 2.3+3.2%

Values are means + SEM. Values with different letters are significantly different
(p<0.05).
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Table 4. Intestinal weights following 72 hour experimental period

WEIGHT PER LENGTH (mg/cm)

TREATMENT JEJUNUM ILEUM
BUT 37.1+1.3° 333+1.6°
SCFA 36.2+1.8° 353+23°
TPN 36.1+1.8° 343+33°
ORAL 514+1.1° 42.1+08*

Values are means + SEM. Values with different letters are significantly different

(p<0.05).
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Figure 3. Experimental design

72 hour elemental diet

12 hour fast

standard
TPN standard TPN,
SCFA or BUT

66 hours 6 hours
Jugular ‘
catheterization sacrifice
and swivel
placement

65



w
|
Q

Arbitrary Densitometry Units
- N

ORAL TPN SCFA BUT

Figure 4. The Effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on jejunal al Na'K*-ATPase mRNA expression.
Values are means + SEM. Bars with different letters are significantly different as

identified by randomized block ANOVA and student’s t-test.
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Figure 5. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on jejunal f1 Na'K'-ATPase mRNA expression.
Values are means + SEM. Bars with different letters are significantly different as

identified by randomized block ANOVA and student’s t-test.
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Figure 6. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on ileal 1l Na'K'-ATPase mRNA expression.
Values are means + SEM. Bars with different letters are significantly different as

identified by randomized block ANOVA and student’s t-test.
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Figure 7. The Effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on ileal B1 Na'K*-ATPase mRNA expression.
Values are means + SEM. Bars with different letters are significantly different as

identified by a randomized block ANOVA and student’s t-test.
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Figure 8. The effect of standard TPN, short chain fatty acid supplemented TPN, and
butyrate supplemented TPN on jejunal GLUT2 mRNA expression. Values are means
+ SEM. Bars with different letters are significantly different as identified by randomized

block ANOVA and student’s t-test.
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Figure 9. The effect of standard TPN, short chain fatty acid supplemented TPN, and
butyrate supplemented TPN on ileal GLUT2 mRNA expression. Values are means +
SEM. Bars with different letters are significantly different as identified by randomized

ANOVA and student’s t-test.
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Figure 10. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on jejunal SGLT1 mRNA expression. Values are

means + SEM. Bars with different letters are significantly different as identified by

randomized block ANOVA and student’s t-test.
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Figure 11. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on ileal SGLT1 protein abundance. Values are
means + SEM. Bars with different letters are significantly different as identified by

randomized block ANOVA and student’s t-test.
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Figure 12. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on ileal c-myc mRNA expression. Values are means
+ SEM. Bars with different letters are significantly different as identified by randomized

block ANOVA and student’s t-test.
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Figure 13. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on ileal c-fos mRNA expression. Values are means
+ SEM. Bars with different letters are significantly different as identified by randomized

block ANOVA and student’s t-test.
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Figure 14. The effect of standard TPN, short chain fatty acid supplemented TPN,
and butyrate supplemented TPN on ileal proglucagon mRNA expression. Values are
means = SEM. Bars with different letters are significantly different as identified by

randomized block ANOVA and student’s t-test.
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Appendix 1. Representative Northern and Western blot scanned images.

Proglucagon 1.2 Kb transcript GLUT?2 3.8 Kb transcript

ol Na'K'-ATPase 2.7 Kb transcript SGLT-1 4.8 Kb transcript
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Appendix 2. Representative RT-PCR scanned images

98



