32826

~

		· · ·	N	* <u>.</u> .
National Library of Caneda	Bibliothèque nationale du Canada	CANADIAN THESES ON MICROFICHE	THÈSES CANADIENN SUR MICROFICHE	ES
	· •			
	.*			
*				
	· · · · · · · · · · · · · · · · · · ·	ι,		•
		· · · · · · · · · · · · · · · · · · ·		·
	, , , , , , , , , , , , , , , , , , ,	•		4.
NAME OF AUTHOR/ <i>NOM DE L*</i> /	ALLENI	6 Frint	. ·	
4	· [: 0	C. C.C.TOIL	······································	
TITLE OF THESIS/TITRE DE LA	THÈSE A LIEMEC.	LENCEL LAVE	TIGETION OF	CLUSCULFR.
•	k./	ÓEK.		
,	·	,	•	
UNIVERSITY/UNIVERSITE	University of F.	SEKTA.	<u>ں</u>	
DEGREEFOR WHICH THESIS WA	S PRESENTED/ THÈSE FUT PRÉSENTÉE	1. Section 1.		
		10-17	- <u></u>	· · · · · · · · · · · · · · · · · · ·
	ANNÉE D'OBTENTION DE CE GRA	n Received	•. 	t
AME OF SUPERVISOR/NOM DU	DIRECTEUR DE THÈSE	FESSOR STERENE	RD	
		•		
ermission is hereby grante	ed to the NATIONAL LIBRARY C)F L'autorisation est, p	ar la présente, accordée	à la BIBLINTHÈ
ANADA to microfilm this t	hesis and to lend or sell copie		CANADA de microfilme	
f the film.				•
•	· · · · · · · · · · · · · · · · · · ·		e des exemplaires du film	
	ublication rights, and neither th		les autres droits de pu	blication; ni la
esis nor extensive extracts	from it may be printed or other	- thèse ni de longs extra	aits de celle-ci ne doiver	nt être imprimés
ise reproduced without the a	uthor's written permission.	ou autrement reproduit	s sans l'autorisation écr	ite de l'auteur.
/	•	1. 37.		
ATED/DATE LANDAL I	3, 1977 SIGNED/SIGNE	Allen L FII'C		•
J J	,			· · · · · · · · · · · · · · · · · · ·
· · ·	1000 20	n / N		- -
RMANENT ADDRESS/RÉSIDENCI	e fixe	2 M. HVE.		a internet
•		^		
	EDMONTO	V GIBERTA.		4

National Library of Canada

Cataloguing Branch Canadian Theses Division

Ottawa, Canada K1A 0N4

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Bibliothèque nationale du Canada

Direction du catalogage Division des thèses canadiennes

AVIS

La qualité de cette microfiche depend grandement de la qualité de la thèse sournite au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

THE UNIVERSITY OF ALBERTA

A BIOMECHANICAL INVESTIGATION OF MUSCULAR WORK

by ALLEN G. ELLÍOTT

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF PHYSICAL EDUCATION

EDMONTON, ALBERTA

SPRING, 1977

 \hat{D}

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled....

A BIOMECHANICAL INVESTIGATION OF MUSCULAR WORK summitted by Allen G. Elliott....

in partial fulfilment of the requirements for the degréé of Master of Science.

arrive

Supervisor

<u>(</u>

and A Ul

Date. December 20 . 1976

ABSTRACT

Strength, in varying degrees, is generally recognized as a major component of successful participation in almost every sport. How best to train for maximum strength benefits has been a sugject of controversy and the lack of agreement has stemmed, in part, from a lack of knowledge about the nature of muscular contraction.

The purpose of the study was to re-examine the nature of muscular contraction from a biomechanical point of view because it was believed that the differences found in the strength levels for the three modes of contraction were not real differences but were, reflections of the combined influence of angular motion and inertia upon the contraction. The hypothesis tested was that the maximum torques produced at a specified angle of flexion by the forearm flexor muscles would be the same regardless of the mode of contraction after the apparent torque produced had been adjusted for the peculiarities of angular motion and inertia.

Six male and female subjects performed isometric, concentric and eccentric contractions about the elbow joint using the forearm flexor muscles. The fundamental premise underlying the experimental method was that the force, which imparted motion to an object, could be calculated if the time and distance characteristics of the motion

iv

were known. Eccentric and concentric contractions against a resistance in the form of a dumbell were recorded photographically using a high speed motion picture camera. The isometric contraction was also performed using a dumbell but the recording of this event photographically was not necessary since its exact motion was known. Special precautions were taken in order to ensure stabilization of the shoulder and elbow joints while the contractions were being performed. Since most of the strength data in existance had been accumulated as the result of experiments performed on dynamometers, an isometric reading was taken on the dynamometer designed by Karpovich and Karpovich. The torque required to produce the movement was calculated by summing moments about the elbow joint.

Where accelerated motion was involved, the results tended to show no differences. There was no statistical difference between isometric and eccentric contractions. The concentric contractions exhibited a tendency to decelerate as the angle under review was approached. This caused large differences between the concentric and isometric torques. It was reasoned that the mathematical treatment of the concentric motion was erroneous because the torque producing the motion could not have decreased. Therefore, a conclusion regarding the concentric contractions and their relationship to isometric contractions was postponed until the experiment could be re-run using modified equations. equations. There was no difference in isometric torque values arising out of the dynamometer readings and the value when performed with a so dumbell.

. .

TABLE OF CONTENTS

CHAPTER	PAGE
I. INTRODUCTION	1
The purpose of the Study	2
The Hypothesis	2
Definitions	2
II. REVIEW OF LITERATURE	4
General Overview	. 4
Contradictions.	6
Cricical Review of Literature	6
	13
III. METHOD AND PROCEEDURE	14
IV. TREATMENT	. *. 21
V. RESULTS AND ANALYSIS	26
	33
BIBLIOGRAPHY	. 34
APPENDIX A Centroidal Moments of Inertia of Resistance	:es 36
APPENDIX B Personal Data	47
APPENDIX C Resistance Data	57
APPENDIX D Angular Acceleration Determination	70
APPENDIX E Moment Calculations	84
APPENDIX F Dynamometer Data.	97

LIST OF TABLES

. ¹ v

ŧ

Table	and a second		•		Page
1.	Resistances Used For the Concentric, Isometric and Eccentric Contractions	•	•	•	17
2.	Resistances As a Proportion of Isometric .	:	•	•	18
3.	Raw and Adjusted Scores	•	•	:	27
4.	Statistical Analysis of Adjusted Scores.	•	.•	•	28
5.	Analysis of Variance	•	•	•	29 _,
6.	The Determination of R	•	••		104

LIST OF FIGURES

.

,

Figure	ى ،	-
LTRAIE	n an	Page
1.	Position of Reference	3
2.'	Acceleration in Uniform Angular Motion	9
3.	Schematic Representation of Abbott's Negative Work Experiment.	10
4.	Schematic Representation of Asmussen's Negative Work Experiment	11
5.	Incline Board	15
6.	Isometric Force Diagram	22
7.	Concentric and Eccentric Force Diagrams	24
8.	Mechanical Analogue of the Forearm and It's Flexor Muscles	

CHAPTER IN - Introduction

Strength, in varying degrees, is generally recognized as a major component of successful participation in almost every aport. It is important, therefore, that athletes, coacher and all those interested in strength training have knowledge of how to best train for maximum benefits. Ironically, this type of information is lacking or it is at least subject to controversy. This lack of agreement stems, in part, from a lack of knowledge about the nature of muscular contraction.

There are three ways in which a muscle can contract, namely, isometrically, concentrically and eccentrically. As reported in detail in Chapter II, the literature has stated that the force developed by a muscle was least concentrically and maximal eccentrically. Conversely, it has also stated that heat production and oxygen consumption by muscle was maximal concentrically and least eccentrically. It appeared, therefore, that the relationship between the force exerted on the one hand and the oxygen uptake and heat production associated with it on the other was contrary to that which one would normally expect. We had, therefore, an apparent contradiction. An eccentric contraction had been reported to be the strongest while at the same time, it required the least oxygen and produced the least heat. This phenomenon has been explained in terms of reversible chemical reactions with regard to the eccentric contraction.

The purpose of this study was to re-examine the nature of muscular contraction from a biomechanical point of view because it was believed that the differences found in the strength levels for the various modes of contraction were not real differences but were reflections of the combined influence of gravity and angular motion upon the contraction. It was believed that there was no difference in the way a muscle contracts whether it was eccentrically, isometrically or concentrically. 2

The hypothesis to be tested was that the maximum torque produced at a specified angle of flexion by the forearm flexor muscles would be the same regardless of the mode of contraction after the apparent torque produced had been adjusted for the influence of gravity, the peculiarities of angular motion and the method of

The following definitions were used in this paper. A concentric contraction was the generation of force by a shortening muscle against a resistance. An eccentric contraction was the generation of force by a muscle against a resistance which caused the muscle to lengthen while it contracted. An isometric contraction was the generation of force by a muscle which did not change length while contracting against a resistance.

The word "tension" deserved special attention because it had

₿

measurement.

been used liberally in the literature while, at the same time, it did not appear to have a precise meaning. In general, it appeared to refer to the force generated by a muscle.

Negative and positive work referred to eccentric and concentric contractions respectively. "The phrase "angle of flexion" referred to the angle between the anterior surfaces of the upper arm and the forearm. It was measured from the "position of reference" which has been defined as "the position achieved when the axis of the arm and forearm are in a straight line" (Kapandji:1974). An angle which was used extensively in this study, was the angle θ which referred to the angle between the axis of the forearm and an imaginary vertical axis through the elbow joint in the sagittal plane. The two angles referred to have been demonstrated in Figure 1 below.

FIGURE 1 · Position of Reference

= Position of Reference

3

Lateral Views

CHAPTER II

Review of Literature

There has been general agreement in the literature that the tension developed by a muscle was least conceptrically, greatest eccentrically and middling isometrically. In 1965, Doss and Karpovich conducted an experiment using a manually operated dynamometer in order. to compare the strength levels of concentric, eccentric and isometric. contractions of the elbow flexors. The results were similar to those found in later studies (Singh and Karpovich: 1966, Singh and Karpovich: 1968) where concentric strength was found to be approximately twenty. (20) percent lower than isometric strength. Other researchers have found similar relationships although their studies may not have been designed specifically for comparison purposes.

Not only did muscle develop maximum tension eccentrically, it also produced the least energy expenditure and heat. Abbott, Bigland et al (1952) studied the physiological cost of negative work using two bicycle ergometers placed back to back and coupled by a chain. While, one subject pedalled in the conventional forward direction, the other resisted in the opposite direction. It was reasoned that the cyclist, who pedalled forward, pedalled concentrically while the cyclist, who resisted, had his legs driven backwards eccentrically. The results confirmed the findings of other brudies, namely, that the oxygen cost of eccentric work was less than that which was characteristic of concentric work. Other researchers have obtained similar results (Asmussen: 1953, Abbott & Bigland: 1953, Kamon: 1970, Knuttgen <u>e. al</u>: 1971).

The significance of the aforementioned experimental results and others was not lost on researchers. An eccentric contraction could be as high as seven times more efficient than concentric work. Abbott and Aubert (1952) referred to studies which have shown that heat production during eccentric work was less than that produced during concentric contractions. The researchers went one step further by observing that some work performed on a muscle during an eccentric contraction disappeared and it did not reappear as heat or mechanical energy. They, concluded by speculating that the missing work "might have been used to stop or reverse some chemical processes normally providing energy in the muscle."

⁶Abbott and Aubert (1952) studied the absorption of work by muscle forced to stretch. In their summary of literature, they asserted that the heat produced during stretching (eccentric contraction) was more than that expected during relaxation but was too small to account for the work done. The authors also stated:

As a result of the foregoing experiments and others, the notion of a fundamental difference between eccentric and other forms of contraction became deeply imbedded in the theory of strength physiology. Unfortunately, the data did not fit into a convenient although the work performed was apparently equal, the strain while lifting a mass felt less than when it was lowered; that is, there was less strain associated with eccentric work than with concentric work.

The every day experience of most people and personal experience in the gym appeared to contradict the conclusions reached by researchers regarding the relationships which exist between the force outputs of the three modes of contraction. Further, oxygem uptake and heat production studies, which have already been referred to, provided concrete evidence that the work loads were not equal in these studies if one disregards the notion of reversible chemical reactions. the foregoing comments are limited to the special case of motion in a vertical plane against the force of gravity.

In view of the foregoing, a critical review of the literature was undertaken in order to establish the basis for the present state of knowledge. As was indicated in Chapter I, the use of the word "tension" appears to refer to force output of a muscle. Webster's New Collegiate Dictionary (1956 edition) defines the word tension thus:

> 6.MECH. a A force (either of two balancing forces) causing, or tending to cause extension. b The stress or condition due to these forces.

Clearly, the apparent forces tending or causing extension varied according to the mode of contraction. It is known that muscle

consistent model which could be ased to unify the knowledge available about strength and endurance.

Those who are experienced in weight training are generally aware of the fact that, with the proper amount of resistance applied to a limb moving against gravity, the initial concentric contraction will cease and become an isometric one. This phenomenon demonstrated the intimate relationship which appeared to exist between isometric, eccentric and concentric contractions. In view of this experience, it made no sense to say that the force generating capacity of muscle during the concentric contraction was twenty (20) percent less than its isometric value at the instant the concentric contraction became isometric. Intuitively, it appeared to be an error to make the statement that the force generating capacity of concentrically contracting muscle was eighty (80) percent of an isometric contraction.

The same line of reasoning was used when comparing eccentric, and isometric contractions. A resistance could be moved downward with gravity voluntarily until a peculiar angle was reached where a maximal contraction could be made isometrically without changing the resistance but beyond the said angle, the resistance forced the muscle to contract involuntarily in an eccentric manner. At the instant after the contraction became eccentric, it again did not seem reasonable to state that muscle could eccentrically contract twenty (20) percent more forcefully than it could isometrically.

Finally, it has been the experience of most people that,

can support more weight than it can lift, for example. To make the logical jump from tension (resistance) to force output by the muscle, however, was unwarranted because the equivalence of tension to the strength generation required to overcome a resistance had not been established. None of the Singh and Doss studies, for example, considered the weight of the forearm or the characteristics of angular motion. In addition, it was assumed that the constant angular velocity involved in their studies was devoid of acceleration. Normally, this assumption would probably be a reasonable one, but the particular motions studied in the above referred to studies involved angular motion of the forearm about the elbow joint in the sagittal plane where the acceleration due to gravity operated vertically. It is a peculiar property of the said angular motion that a point on the forearm accelerates in the vertical plane from an angle θ of zero (0) to ninety (90) degrees and it de-accelerates from ninety (90) to one hundred and eighty (180) degrees (see Figure 2).

Figure 2 demonstrates vertical acceleration of a point on an arm which is rotating at a constant angular velocity. An arc has been drawn which represents the path of the point. Equal distances on the arc have been marked off and the distances between these points represent equal distances travelled per unit time. These points have been projected to a'Y-axis where the distances between points are clearly not equal although the time interval between these same points has not changed.

De-Acceleration

Acceleration

In the study of the physiological cost of negative work by Abbott, Bigland (1952), two bicycle ergometers were placed back to back. A single chain coupled the bikes such that when one subject pedalled in the normal manner, the legs of the other were driven backwards, that is, he was forced to pedal eccentrically. The authors of the experiment stated that the forces applied by the cyclists against each other were equal because the pedalling was performed at a constant velocity. A reconsideration of the experiment indicated that the assumption of equal and opposite forces was unwarranted. The subject who pedalled concentrically had to constantly lift his own legs and those of the resister, overcome the inertia of the system and overcome the resistance applied by the resister. The resister on the other hand needed only to apply resistance. Clearly, the work performed by the two cyclists was unequal. The apparatus has been schematically

FIGURE 2

illustrated in Figure 3.

FIGURE 3

Concentric Work

Eccentric Work

Asmussen (1953) studied the energy cost of positive and negative work using a bike ridden uphill and downhill on a motorized treadmill. Although the experiment was incompletely described, a detailed examination suggested that both up and downhill work were concentrically performed. In order to perform positive (concentric work uphill) work, the cyclist had to overcome the component of the combined force (weight) of the rider and bike which was parallel to the treadmill as well as the force generated by the treadmill causing the bike to move backwards. (see Figure 4) With regard to the negative work, it appeared that the treadmill was running and that the bike faced in the downhill position. If the treadmill was moving in the downhill direction, the cyclist had to pedal backwards in order to maintain his position on the treadmill and the muscular contraction had to have been concentrically performed. If the treadmill was moving in the uphill direction, then concentric contractions must have been performed also. (see Figure 4) The only way eccentric work could have taken place was to have held the treadmill motionless and to have

inclined the platform at a steep angle so that the cyclist was forced to resist the downhill movement of the combined bike and rider weight by contracting eccentrically against the bicycle pedals. The chain would have had to have been in its normal position.

0,

FIGURE 4

-Schematic Representation of Asmussen's Negative Work Experiment

If the foregoing reduced ones confidence in the current state of knowledge about muscular contraction, the experiment of Infanti <u>et al</u> (1964) caused profound doubts. Referring to the foregoing experiments and others, he stated in his review of literature that these studies

> "leave little doubt that the chemical reactions which normally occur during contraction can be reversed by stretch under the influence of the mechanical work supplied."

The purpose of his study was to see if ATP was re-synthesized under such conditions. He found that, although the ATP breakdown was about one-half of that which would have occurred concentrically, the resynthesis of ATP did not occur. The researcher remarked that his results were in apparent contradiction to the current theory. He then concluded that ATP was not the final source of energy for muscular work.

Knuttgen et al (1971) studied oxygen debt in short term

exercise with regard to eccentric and concentric work. The results indicated no significant difference in recovery patterns.

If the notion of reversible chemical reactions has been found wanting, the notion of absorption of heat was found to be equally suspect. The experiment of Algort and Aubert (1952), which studied the absorption of work by muscle, calculated the heat produced eccentrically by subtracting the heat which would have been produced had no stretch occurred from the actual heat produced. This procedure may be criticized by stating that the work performed during positive and negative work had to be equal in order to make such a statement. Movement in the human body is normally angular whereas the motion of the resistance in the experiment was linear. As has been explained in Chapter IV, the resistive forces in angular motion in the vertical plane are not the same when moving up as when moving down.

It was considered possible that the differences in the production of force by muscle as a function of the contraction could have been the result of the series elastic component in the muscle tissue. Wilkie (1956) stated in his study of the Mechanical Properties of Muscle, that the series elastic component of muscle smooths out the rapid changes in tension in the muscle. He correctly pointed out that the series elastic component has no mechanical effect upon a contraction when the contractions are performed isotonically where the term "isotonic" refers to equal tension in the muscle. Much of the strength data produced and all of the strength data referred to in this report has been the result of experiments performed upon machines which purport to allow uniform motion only. The dynamometer referred to in this report was a case in point and it was the machine used in the studies of Singh and Karpovich (1968 and 1969). Since these studies involved non accelerated motion, the series elastic component could not have accounted for the spread in strength values found for the various modes of contraction. 13

In summary, the literature has been found both contradictory and suspect with regard to some of the conclusions reached. It is contradictory in that there was evidence which did not support the reversible chemical reaction theory. In fact, the experiments of Infanti and Knuttgen <u>et al</u> suggested that there was no difference in the muscle physiology of concentrically and eccentrically contracting muscle. The experiments of Abbott and Asmussen, which found differences in work efficiency, have been found suspect because it was not clear that the work loads were equal on the one hand and on the other hand, there was doubt as to whether or not eccentric and concentric work were, in fact, being performed.

CHAPTER III

Method and Proceedure

The fundamental premise underlying the experimental method and proceedure was that the force which imparted motion to an object could be calculated if the time and distance characteristics of the motion were known. The satisfaction of two criteria followed from the foregoing; first, a simple, undomplicated movement was needed about a joint which was geometrically simple and second, a method of accurately recording the motion in sufficient detail for analysis was required. The movement, which best fulfilled the first criteria, was contraction of the flexors of the forearm about the elbow joint. Eccentric and concentric contractions against a resistance in the form of a dumbell were recorded photographically using a high speed motion picture camera. An isometric contraction was also performed using a dumbell but the recording of this event on film was not necessary because its exact motion was known. In view of the large amount of existing dynamometer data, it was decided to include an isometric measurement from the dynamometer described by Karpovich and Karpovich (1969).

In order to ensure that the forearm flexors were producing movement without assistance, a method of stabilizing the upper arm

had to be devised. Those experienced in weight lifting are aware of an inclined exercise board used by "body builders" to stabilize the upper arm while performing "curis", that is, concentric contractions. An inclined bench (Figure 5) was constructed for the

experiment.

FIGURE 5

"Incline Board

The subjects were instructed to stand on the base and to lean into the board such that the top was securely placed into the axilla and the extended arm was lying on the board. A foreward lean was necessary in order to both position the axilla properly and to stabilize the body by using the bench as support. Those experienced with handling weights assumed the proper position without instruction. and the elbow and shoulder joints remained fixed while the muscles contracted. The inexperienced, however, transferred support of their upper body from the incline board to their front leg during maximal work and thereby, freed the shoulder from its position of contact with the board. As a result, the subject was able to displace the shoulder and elbow joints. This movement affected the contraction by

improving the mechanical advantage of the lever system. This resulted in gross deviations in the resistance required to produce an isometric contraction. As a result, restraints had to be introduced to prevent the shoulder and elbow joints from moving laterally and medially.

A photographer from the photographic services department at the University of Alberta was used for the actual filming. The film was taken at right angles to the movement of the forearm around the elbow joint. Black and white film was used and the camera setting specifications were one hundred (100) frames per second, thirty six (36) degree shutter angle and one-thousandths (1000) of a second shutter speed. The camera was located twelve (12) feet from the subject.

A group of six male and female subjects were used for the study. Pertinent data for each has been summarized below.

Subject	Sex	Age	Comments
1	f	35	Mother & housewife; average physique & fitness
2	f	19	First year university student; average fitness
3		15	Junior high school student; non athletic
4	.	30	Masters degree student in physical education-
5	m	36	Masters degree student in physical education;
. •	. É		experienced with weights; athletic background
6	m	21	Clothing sąlęsman; average fitness

Three testing sessions were conducted. The first session

consisted of familiarizing the subjects with the apparatus and the movements to be performed on it. It was also held for the purpose of determining the amount of dumbell resistance required to produce an isometric contraction at an angle θ of eighty (80) degrees. Each subject was given progressively heavier weights while performing concentric contractions on the inclined bench. At the correct amount of resistance, the subject was able to move the forearm concentrically upwards until the angle was reached at which time movement ceased and the weight was held isometrically at that angle. Four or five trials were required to determine the correct poundage. Weight was then added and subtracted from the isometric value to fine those resistances which would allow eccentric and concentric contractions through the angle. The resistances used and their relationships to one another have been outlined on Tables 1 and 2.

TABLE 1

Resistances Used For The Concentric

Isometric And Eccentric Contractions

(pounds)

Subject	Concentric	$\theta = 80^{\circ}$ Isometric	Eccentric	Concentric	θ = 110 ⁰ Isometric	Eccentric.	
1 .	14.5	17.3	32.7	16.9	28.5	, 35.1)
2	10.7	12.9	16.7	16.8	20.4	27.7	!
3	16.8	22.5	29.9	22.5	30.0	37.5	
4	29.1	39.4	46.2	32.4	40.4	53.6	• •
5	27.1	32.3	52.5	27.2	45.4	52.5	
6	32.2	37.9	53.4	32.2	40.4	58.0	•

TABLE 2

18

• 110[°] e = 60⁰ Concentric Isometric Eccentric Subject Concentric Isometric Eccentric 1.23 1.00 0,59 1.89 0.84 1.00 1 1.36 1.00 0.82 1.29 0.83 1.00 2 1.25 1.00 0.75 1.00 1.33 0.75 3 1.33 0.80 1.00 1.00 1.17 0.74 4 1.00 1.16 0.60 1.00 1.63 0.84 5 1.44 1.00 0.80 1.00 1.41 0.85 6

Resistances As A Proportion Of Isometric

The second session was divided into two parts. The first part consisted of taking isometric measurements on the dynamometer at two angles of θ equalling eighty (80) degrees and one-hundred and ten (110) degrees. These two angles were chosen because they were above and below the horizontal at points where gravity acted with almost full force. The subjects were placed in the dynamometer so that the shoulder was placed twenty degrees posterior to the elbow joint. This was necessitated by the fact that the upper arm lay at an angle of twenty (20) degrees to the vertical when it was lying on the incline The lateral epicondyle of the humerus was placed opposite the board. axis of rotation of the lever arm. The contact plate for the distal forearm was positioned such that the distal border of the plate lay at the styloid process of the radius. The distance from the axis to the distal border of the plate was measured after each contraction. Each subject was taken in order and each performed three contractions at each angle.

F

Concentric	θ = 60 ⁰ Isometric	Eccentric	Concentric	$\theta = 110^{\circ}$ Isometric	Eccentric	· · ·
0.84	1.00	1.89	0,59	1.00	1.23	•
0.83	1.00	1.29	0.82	1.00	1.36	, L
0.75	1.00	1.33	0.75	1.00	1.25	
0.74	1.00	1.17	0.80	1.00	1.33	•
0.84	1.00	1.63	0.60	1.00	1.16	
0.85	1.00	1.41	0.80	1.00	1.44	·
, e.				•		

The second session was divided into two parts. The first insisted of taking isometric measurements on the dynamometer at (les of θ equalling eighty (80) degrees and one-hundred and ten legrees. These two angles were chosen because they were above low the horizontal at points where gravity acted with almost full

The subjects were placed in the dynamometer so that the er was placed twenty degrees posterior to the elbow joint. This essitated by the fact that the upper arm lay at an angle of (20) degrees to the vertical when it was lying on the incline The lateral epicondyle of the humerus was placed opposite the

E rotation of the lever arm. The contact plate for the distal n was positioned such that the distal border of the plate lay styloid process of the radius. The distance from the axis to stal border of the plate was measured after each contraction. ubject was taken in order and each performed three contractions h angle.

to the four raw data scores. Statistically speaking, this study was designed as a single factor experiment where the adjusted scores were considered to be repeated measures. Treatment effects were measured relative to the individual who thus was his own control. The difference between two observations on the same person depended, in part, upon uncontrolled or residual sources of variation. The appropriate test used was an F ratio which compared the mean square of the treatment effects to the mean square of the residual effects. F tests the hypotheses that $T_1 = T_2 = T_3 = T_4$ and in this study, T represented the treatment effects. The verbal hypotheses restated was that there would be no difference in T.

CHAPTER LV

Natural phenomenon and even the research data quoted suggested a more plausible model of muscle contraction and a model which was more consistent with the physical laws of nature. It hypothesized no difference in the ability of muscle to contract, that is, muscle would contract in the same way regardless of the method employed. If this were the case, then there were only two factors which could account for the apparent differences in work output, namely, the quantity of motion and the effect of inertia. Since all limb movement in this experiment was angular, all motion was necessarily accompanied by acceleration even if the angular velocity was uniform in the vertical plane. In addition, all movement would be accompanied by a moment of inertia whose effect would increase exponentially as the resistance moved away from the / axis of rotation.

It followed from the model proposed that the effective strength output of a concentrically contracting muscle had to be its maximal strength potential less that which was needed to provide acceleration and that which was needed to overcome the inertial effect of the system. During an isometric contraction, the inertial component became zero while during an eccentric contraction, the inertial influence assisted the muscular effort by resisting the downward motion of the resistance. Thus the amount of force which

a muscle could sustain eccentrically under identical velocity criteria would be more than it would be able to concentrically sustain.

Since a study of this kind had not been conducted before, the mathematical expressions to be used had to be developed. Meriam (1971), Plagenhoef (1971), and Slote et al (1963) were useful in this regard. The total torque required for each contraction was calculated by summing moments of force about the elbow joint. An isometric contraction (Figure 6) using a resistance in the form of a dumbell held in the hand proved illustrative. Figure 6a illustrated the position of the arm while Figure 6b summarized the forces involved. The shoulder and elbow joints were assumed to be fixed and the only movement possible about the elbow joint "o" was rotation of the forearm and resistance in the vertical plane.

The weight of the arm was considered to act at the centre of gravity of the limb and the summation of moments of force about the axis "o" was:

 $M = Wt_{a}r_{a}sin\theta + Wt_{r}r_{s}sin\theta$ but $Wt_{a} = m_{a}g$

 $Wt_{\perp} = m_{\perp}g$

therefore $M = (m_a r_a + m_r r_r) 32.17 \sin\theta$

The isometric contraction was the simplest to deal with as it did not involve motion. The same isometric equation used for calculating moments of force where dumbells were utilized was used to analyze the dynamometer readings. A small adjustment was necessary, however, because the dynamometer recorded the force applied at right angles to the lever arm regardless of the angle of flexion of the arm. Therefore, the moment of force of the dynamometer reading was the reading "R" times its perpendicular distance from the axis which was the distance from the axis of rotation to the point of application of torque to the dynamometer. The point of application was considered to be the mid point of the plate which received the distal end of the forearm. The modified equation was written as follows:

 $M = m_{a}r_{a}(32.17)\sin\theta + Rr$

Concentric and eccentric contractions were analyzed with the aid of their respective resistive force diagrams contained in Figures 7a and 7b. In the case of a concentric contraction, two additional forces were added to basic isometric drawing. These two were the inertial forces associated with the masses and they were labelled I_{a}^{α} and I_{r}^{α} . These same two forces were present in the eccentric contractions but their role was reversed; that is, they opposed the motion due to gravity rather than the motion due to muscle.

Meriam (240:1971) has shown that the resultant sum of all 'moments about the centre of mass of an object'was the same as I_{α}^{α} where I was the moment of inertia about the centroid and α was the angular acceleration. It was also subsequently pointed out that the resultant sum of all moments about a point called the centre of percussion was Ia where I was the moment of inertia associated with that point and α was the angular acceleration. It was more convenient to choose the centre of percussion as the point of application of the force mra. Since the centre of percussion was a unique point where the resultant moment about the axis of rotation was preserved, it was chosen because consideration of the force mra was eliminated. Thus, only two pieces of information were required in order to solve for the torque producing a movement, namely, the angular acceleration of the movement and the moment of inertia associated with the centre of percussion of the mass.

Since two masses were involved in each contraction (the arm and resistance), two moments of inertia were required. The

24

details of their calculation have been included in the appendices of this report.

The **M**uation used to solve for the resultant torque of a concentric contraction was:

25

 $M = m_{a}r_{a}g + m_{r}r_{r}g + (I_{a} + I_{r})\alpha$

 $M = m_a r_a g + m_r r_r g - (I_a + I_r) \alpha$

The equation used to solve for the resultant torque of an eccentric ' contraction was:

CHAPTER V

Results and Analysis

The raw and adjusted scores obtained during the testing process have been presented in Table 3. Inspection of the data indicated adjusted concentric scores which were significantly below the scores of the other treatment groups. The adjusted eccentric scores tended to be greater than their corresponding isometric scores. The adjusted scores were subjected to an F test in order to determine whether or not the apparent trends were statistically significant.

The statistical foremat used was that found in Winer (268:1971). The detailed calculations have been omitted but the significant calculations have been included in Table 4. The computational procedures used have been listed below as has the variance formulae.

Summary of (Computational	Procedures	Computation	of Variance
$(1) = \frac{G^2}{kn}$	n an		SSbtwn	= (4) - (1)
$(2) = \Sigma \Sigma x^2$	¢	х	SSwithin	= (2) - (4)
$(3) = \frac{\Sigma T^2}{n}$: 1		SStreatments	= (3) - (1)
$(4) = \frac{\Sigma P^2}{k}$			SS _{residual}	= (2)-(3)-(4)+(1)
				= (2) - (1)

				•		۲.		
· /				, ne d	Part of Additional Control	· · ·	•	•
	•	•			and Aujusted Sco (pound feet)	1 F 68		
	· , •	RAW	SCORE	S		ADJUSTED	SCORE	S
Ð	Subject	Subject Concentric Isometr	Isometric	ic Eccentric	Dynamometer	Concentric Isometric	Eccentric	Dynamometer
80 ⁰		14.5	17,3	32.7	Eccentric 27.5	15.2 17.2	19.6	Eccentric 17.2
800	7	10.7	12.9	16.7	21.3	10.6 13.3	13.4	14.2
80°	ŝ	16.8	22.5	29.9	34.6	23.3 24.2	27.9	25.7
800	4	29.1	39.4	46.2	53.2	26.5 39.5	0.44	44.5
80 <mark>0</mark> 3	ک	27.1	32.3	52.6	53.7	31.0 33.9	43.2	38.5
800	9	32.2	37.9	53.4	47.0	35.9 40.0	43.3	37.5
	• .	•			•			•
1100	1	16.8	28.5	35.1	42.3	17.7 26.3	29.6	29.3
1100	7	16.8	20.4	27.7	26.5	17.7 19.3	16.5	19.4
1100	n	22.5	30.0	37.5	40.8	22.6 30.2	36.0	31.1
1100	4	32.4,	40.4	53.6	57.6	28 3 38.6	38.1	47.9
1100	ŝ	27.2	45.4	52.5	59.0	29 44.7	44.6	42.4
110 ⁰	9	32.2	40.4	58.0	51.4	27.4 40.6	46.5	42.4
• 1		•				•		

TABLE 3

÷7,

27

/
Subject	1 (Conc.)	2 (Iso)	3 (Ecc.)	4 (Dyn.)	TOTAL	MEAN
1	15.2	17.2	19.6	17.2	69.2 🎍	17.3
2	10.6	13.3	13.4	14.2	51.5	12.9
3	23.3	24.2	27.9	25.7	101.1	25.3
4	26.5	39.5	44.0	44.5	154.5	38.6
5	31.0	33.9	43.2	38.5	146.6	36.6
6	35.9	40.0	43.3	37.5	156.7	30.0 39.2
1	17.7	26.3	. 29.6	29.3	102.9	25.7
2	17.7	19.3	16.5	19.4	72.9	18.2
3	22.6	30.2	36.0	31.1	119.9	30.0
4	28.8	38.6	38.1	47.9	153.4	38.3
5 6	29.6	44.7	44.6	42.4	161.3	40.3
6	27.4	40.6	46.5	42.4	156.9	39.2
•						
TOTAL	286.3	367.8	402.7	390.1	1446.9=G	•
MEAN	23.9	30.6	33.6	32.5	*	30.1

	•		
Statistical	Analysisro	f Adjusted	l Scores
	(pound feet	E)	

The data compiled in Table 4 was used in the computational formulae to compute variances. These calculations have been assembled in Table 5 under the heading of Analysis of Variance.

TABLE 4

Source of Variation	SS	d.f.	M.S.
Between subjects	4391	11	• •
Within subjects	1088	36	
Treatment	684	3	228.0
Residual	40	33	12.2
Total	· 5479	47	

TABLE 5

Analysis of Variance

The interpolated critical value for the F ratio was:

 $F_{.05}(3,33) = 2.896$

 $\mathbf{F} = \frac{MS}{MS}_{\text{residual}} = \frac{228.0}{12.2} = 18.7$

As a result of the analysis of variance of the treatment scores (Table 5), it was found that the value of the F ratio exceeded the critical value required for no difference between the treatments. An inspection of the data suggested that the difference lay between treatment groups (1) and the others. The hypothesis that $T_2 = T_3 = T_4$ was then tested using the following procedure outlined by Winer (268:1971).

$$SS_{234} = \frac{T_2^2 + T_3^2 + T_4^2}{n} - \frac{(T_2^2 + T_3 + T_4)^2}{3n} = 26.0$$

$$MS_{234} = \frac{SS_{234}}{d.f.} = \frac{26}{2} = 13.0$$

The critical value for the F ratio was : $F_{.05}(2,33) = 3.293$

$$F = \frac{MS_{treatment}}{MS_{residual}} = \frac{13.0}{12.2} = 1.100$$

The statistical test confirmed that the difference between treatments lay between (1) and the remainding groups and that there was no statistical difference between groups (2), (3) and (4) at the .05 confidence level. Thus, the hypothesis of this study was confirmed in part.

The data in group (1) was examined more closely in an attempt to determine the reason why the results did not follow the pattern of the other groups. A simple t-test was run for each subject at the two angles studied. The mean and standard deviation were computed for treatments (2), (3) and (4). The score for (1) was then tested to see if it was statistically different from the mean previously computed. It was found that five (5) of the twelve items in group (1) were statistically different and of these, four (4) were at an angle θ of one hundred and ten (110) degrees. A chi square test of independance using Yates correction for continuity, did not indicate a significant difference between the two angles. The probability associated with the distribution of differences found in (1) of statistically significant scores was

.20 < p < .30.

The statistically significant scores were examined for a common factor which would explain their presence. The scores revealed no preference for age, sex or fitness level. However, four (4) of the five (5) deviant scores were characterized by negative acceleration. Μ.

Score (2) was also characterized by negative acceleration but it was not found to be statistically significant.

It was reasoned that a contraction at $\theta = 80^{\circ}$ should experience decreasing acceleration if not de-acceleration. However, it was not clear why negative acceleration should occur at where acceleration should have been the rule as the elbow joint provided an increasing percentage of the force required to support the mass and where the resistance lever arm shortened.

The equation used to adjust the raw scores was then

 $\Sigma M_o: M = m_a r_a g + m_r r_r g + (I_a + I_r) \alpha$

The equation indicated that the difference between the torque of a static contraction and a dynamic one, was the interaction of inertia and motion. When "r" was changed, I_r also changed. For a given resistance, α should, depending upon the angle examined, experience positive or negative acceleration. Thus the equation confirmed that which was expected. However, what was not expected was the fact that the equation would yield a concentric torque which was less than the isometric. This situation could not be unless the resistance was moving faster than the arm. This result did not make sense because, in the case case of the example previously cited of a concentric contraction.

ending as an isometric one, it appeared to be nonsense to state that the concentric contraction was produced by less torque than the subsequent isometric contraction.

If the foregoing argument was cogent, the reason for the low concentric values was either in the mathematical expression of the movement or in the application of that expression. In an attempt to find a solution to the problem, a model was constructed to simulate the movements examined in this study. The apparatus has been illustrated in Figure 8.

FIGURE 8 Mechanical Analogue of The Forearm And It's Flexor Muscles

Using a constant weight at F, the transformation of a concentric contraction into an isometric one was accomplished. A concentric contraction, which de-accelerated as it moved through the angle and then accelerated, was also duplicated using a constant force F.

In view of the foregoing, it was concluded that the application of the moment equation and/or its form was incorrect. In summary, the statistical results did not indicate a significant difference between the adjusted eccentric and isometric values. On the other hand, a difference was found between concentric and isometric values. The first result supported the hypothesis while the second did not. With regard to the second, it was pointed out that the interaction of the data and the mathematical treatment of it produced a suspicious result when, during a concentric contraction, the movement decelerated. A judgement regarding the results arising out of the concentric contractions must wait for a retest at which time a refined methodology will take deceleration into account.

The results in general should be viewed with caution due to the small number of subjects. However, the data does suggest the motion plays a significant role in the ability of muscle to contract against a resistance.

In conclusion, the results of this study are inconclusive. The lack of a significant difference with regard to the eccentric contraction and the large differences found with regard to the concentric contractions may be due to chance alone. However, other explanations have been put foreward and a repeat of the experiment is warrented.

BIBLIOGRAPHY

Abbott, B.C., Aubert, X.M., and Hill, A.V. 1951. The Absorption of Work by a Muscle Stretched During a Single Twitch or hort Tetanus Proc. Roy. Soc. B. 139: 104

Abbott, B.C. and Aubert, X.M. 1952. The Absorption of Work by a Muscle Stretched During a Single Twitch or a Short Tetanus

Abbott, B. C. Bigland, Brenda, and Ritchie, J.M. 1952. The Physiological Cost of Negative Work J. Physiol. 117:380

Abbott, B.C. and Bigland, B. 1953. The Effects of Force and Speed. Changes on the Rate of Oxygen Consumption During Negative Work J. Physiol. 120:319

Asmussen, E. 1953. Positive and Negative Work Acta Physiol. Scand. 28:364

Bigland, B. and Lippold, O.C.S. 1954. The Relation between Force, " Velocity and Integrated Electrical Activity in Human Muscles J. Physiol. 123:214

Doss, W.S. and Karpovich, P.V. 1965. A Comparison of Concentric, Eccentric and Isometric Strength of Elbow Flexors J. Appl. Physiol: 20:351

Duggar, B.C. 1962. The Centre of Gravity and Moment of Inertia of the Human Body Human Factors 4:131

Fenn, W.O. and Marsh, B.S. 1935. Muscular Force at Different Speeds of Shortening J. Physiol. 85:277

Infanti. A.A. et al 1964. Adenosine Triphosphate: Changes in Muscles . doing Negative Work. Science 144:1577

Kamon, E. 1970. Negative and Positive Work in Climbing a Laddermill. J. Appl. Physiol. 29:1

Kapandji, I. A. 1970. The Physiology of the Joints: Volume Two Upper Limb.

Churchill Livingstone, Edinburgh and London

Karpovich, P.V. and Karpovich, P. 1969. An Improved Lever Arm for an Electric Dynamometer. J. Appl. Physicl. 27:906

Knuttgen, H.G. and Klausen, K. 1971. Oxygen Debt in Short-term Exercise with Concentric and Eccentric Muscle Contractions. J. Appl. Physiol. 30:632

Liberson, W.T. et al, 1962. Brief Repeated Isometric Maximal Exercises: An Evaluation by Integrative Electromyography. Am. J. Phys. Med. 41:3

Meriam, J.L. 1971. Dynamics John Wiley & Sons, Inc. Toronto

Plagenhoef, S. 1971. Patterns of Human Motion: a Cinematographic Analysis Prentice-Hall Inc. Englewood Cliffs, New Jersey

Rodgers, K. L. and Berger, R.A. 1974. Motor-unit Involvement and Tension during Maximum, Voluntary Concentric, Eccentric and Isometric Contractions of the Elbow Flexors. Medicine and Science in Sports, 6(4): 253

Singh, M. and Karpovich, P.V. 1966. Isotonic and Isometric Forces of Forearm Flexors and Extensors J. Appl. Physiol. 21:1435

Singh, M. and Karpovich, P.V. 1968. Strength of Forearm Flexors and Extensors in Men and Women J. of Appl. Physiol. 25(2): 177

Slote, L. and Stone, G. 1963. Biomechanical Power Generated by Forearm Flexion Human Factors 5(5): 443

Wilkie, D.R. 1949. The Relation Between Force and Velocity in Human Muscle J. Physiol. 110:249

Wilkie, D.R. 1956. The Mechanical Properties of Muscle Brit. Med. Bull. 12:177

APPENDIX A

CENTROIDAL MOMENTS OF INERTIA OF THE RESISTANCES

The resistance used by an individual for a particular contraction was an assemblage of seperate resistances which collectively formed the dumbell. Each part had its own peculiar mass and shape and thus, had its own peculiar moment of inertia about its centre of mass.

In order to calculate the moment of force which imparted momentum to a particular resistance, it was necessary to know the moment of inertia of the dumbell about its axis of rotation (the elbow joint of the subject performing the contraction). The first step in this computation was to calculate the moment of inertia. of the masses about their centroids. Standard moment of inertia formula were used (Meriam:1971).

Each calculation has been presented in three parts. A sectional drawing of each part of the dumbell, the calculation of the moment of inertia (I_0) and the computations leading up to the inertia calculation.

· 37

Volume = $3/5 R^2 H - 3/5 r^2 h - r^2 (H-h)$ (collar)

 $= 3/5 (.1042)^{2} (.2526) - 3/5 (.0677)^{2} (.1641) - (.0469)^{2} (.0885)$

= .003141 cu. ft.

Mass density: <u>mass</u> = 6.8131 slugs per cu. ft. volume

MASS CALCULATION

Object	Volume	x	Mass Density	=	Mass	
Total Cone	.005169	x	6.8131	• 🕿	М	= .0352
Small Cone	.001417	x	6.8131	-	m	= .0096
Cylinder	.000611	x	6.8131 .	, - =	ш с	= <u>.0042</u>
Mass of Col	lar (M-m-m _c)	· •			· · ·	.0214 slugs

.005544 cu.ft.

Total Volume

Mass	Density =	<u>Mass</u> Volume	.05	<u>05</u> = 9.1089 5544	sl	ugs p	er	cu. ft		
Mass	Calculation	•		· · · · · ·						
	Object	Volume	х	Mass density	2	Mass			•	
•	Cylinder	.000566	х	9.1089	Ŧ	M	-	.0052		
	Cone	.003342	x	9.1089	-	m	9	.0304		•
	Cylinder	.001636	x	9.1089	=	^ш с	m	.0149		
	Mass of grip	o (M-m-m _c)				а. Алар		.0505	slugs	

I = Cylinder + Cone + Cylinder I = $[1/2(MR^2 - mr^2)] + [3/10mR^2 - 3/10mr^2 - 1/2mr^2] + [1/2m_1r_1^2 - 1/2m_2r_2^2]$

$$(1/2(.0064)(.1042^{2})-1/2(.0012)(.0469^{2})+.3(.0456)(.1042^{2})-.3(.0087)(.0599^{2})-.5(.0033)(.0469^{2})+.5(.0385)(.0599^{2})-.5(.0236)(.0469^{2})$$

• .0002 slug feet squared

47

42 .

GREEN & BLACK 5

$$1 = 1/2MR^2 - 1/2M(r_2^2 + r_1^2) - 1/2m_cr^2$$

 $= 1/2(.2178)(.3073^2) - 1/2(.0517)(.2531^2 + .0885^2) - 1/2(.0076)(.0573^2))$
 $= .0084$ slug feet squared
VOLUME CALCULATION
Volume = $R^2h - 2 d(r_2^2 - r_1^2) - r^2h$
 $= .(.3073^2)(.0521) - 2 (.0104)(.2531^2 - .0885^2) - (.0573^2)(.0521)$
 $= .01245$ cu. ft.
MASS CALCULATION
Mass density = $\frac{mass}{Volume} = \frac{.1585}{.011245} = 14.0951$ slugs per cubic foot
Volume x Mass density = Mass
.015456 x 14.0951 = M = .2178
.003674 x 14.0951 = m - .0517

.000537 x 14.0951 Mass of plate (M-m-m_)

6

.1585 slugs

[™]c

₩.

•-• .0076

Mass of Plate (M-m_-m)

.1609 slugs

BLACK 7 1/2
BLACK 7 1/2

$$2812$$

 1 -0625^{1}
 3437^{1}
 1 -1554^{1}
 1 -1554^{1}
 1 -154^{1}
 1 -154^{1}
 1 $-12(1,3285)(-3437^{2})-1/2(10109)(-0625^{2})-1/2(-0765)(-2812^{2}+.1354^{2})$
 -0.156 slug feet squared
VOLIME CALCULATION
Volume = $\pi^{2}h - \pi^{2}h - 2 d(\pi^{2}_{2} - \pi^{2}_{1})$
 $-(.3437^{2})(-0677) - (.0625^{2})(-0677) - 2 (.0208)(-2812^{2}-.1354^{2})$
 -0.018442 cu. ft.
Mass density: $\frac{mass}{vOlume} - \frac{2411}{.018442} = 13.0734$ slugs per cu. ft.
MASS CALCULATION
Volume \times Mass density $-$ Mass
 $.025124 \times 13.0734 - M - .3285$
 $.000831 \times 13.0734 - M - .3285$
 $.000831 \times 13.0734 - M - .3285$
 $.000931 \times 13.0734 - M - .3285$
 $.000931 \times 13.0734 - M - .3285$
 $.000931 \times 13.0734 - M - .3285$
 $.2411$ slugs

• •

3 PENDIX A P ₿

.....

÷

Two bits of information were collected from each subject. The individuals body weight was taken in pound measure and from this information, the mass of the forearm, hand and arm were calculated using percentage tables published from the research of Dempster (Duggar:1962). The measurement was taken with the individual in his of her street clothes but without the shoes.

The second bit of information taken was the length of the arm measured in feet. This measurement actually consisted of the addition of two measurements, namely, the length of the forearm (from the lateral epicondyle of the humerus to the styloid process of the radius) and the length of the clenched hand (from the styloid process of the radius to the carpal/metacarpal joint of the clenched fist). The hand had to be clenched because that was the position it approximated when wrapped around the handle of a dumbell.

Knowing the length of the forearm and hand, the location of the centroid or centre of mass of each limb segment from the axis of rotation (the elbow joint) was computed using percentage tables published from the research of Dempster (Duggar:1962). The assission had to be made, however, that the location of the centre of mass of the clenched fist was the same as when the hand was in the anatomical position.

Moments of force about the elbow joint were calculated where the only two forces acting about the joint were the result of the masses of the hand and forearm under the influence of gravity. Dividing the result by the total mass of the arm, the location of the centre of mass of the arm as a whole was computed. This calculation has been shown for each subject. The computation of the systems (forearm and hand) centre of mass was necessary because the two limbs were considered to be one mass in the experimental treatments.

The moment of inertia of the arm (I_a) was required as well as the radius of gyration because, as explained in the body of the report, the resistance was moved from its normal centre of mass location to a parallel position through a point called the centre of percussion. The radius of gyration (k) about this same point was also necessary in order to compute I_a .

The relationship between the moment of inertia of a body and its radius of gyration was found to be;

 $k = \left(\frac{I}{T} \right)$

o / 2

The arm was considered to be a long slender rod whose moment of inertia about the centroid was given by the expression;

 $I_0 = \frac{1}{12^m} \ell^2$ (2)

(1)

Substituting I into equation (1), the following centroidal relation-

The radius of gyration k associated with the centre of percussion was calculated from the expression;

$$k = \sqrt{k_o^2 + r^2}$$

The moment of inertia of the arm associated with the centre of percussion was found using the following expression;

 $I_a = m_a k^2$

0

Subject 1

BODY WEIGHT

 105.0000° pounds

			0.0(00 -1
MASS	Body	100.00%	3.2639 slugs
	Forearm	1.57%	.0512
•	Hand	0.66%	.0215
•	Arm	2.23%	.0728
	Pom a com		.7917 ft.
LENGTH	Forearm	1	.2917
· -	Hand (clenche	a)	1.0834
	Arm (²)	(1	
CENTROID	Forearm (r) 43.00% of length	.3404 ft.
1 	Hand (r) 51.00% of length plus forearm	.9405
•	Arm (r) by summing moments	.5172
	•		

 $\Sigma M_{o} = M_{a}r_{a} = m_{f}r_{f} + m_{h}r_{h}$

 $r_a = \frac{.0512(.3404) + .0215(.9405)}{.0728}$

= .5172 feet

Τ.

RADIUS OF GYRATION

ATION
$$k_0 = \sqrt{\frac{2}{12}} = \sqrt{\frac{1.0834^2}{12}} = .3127 \text{ ft.}$$

 $k = \sqrt{k_0^2 + r^2}$
 $= \sqrt{.3127^2 + .5172^2}$.6044 ft.

MOMENT OF INERTIA OF ARM

$$I_a = m_a k^2 = .0728(.6044^2)$$

= .0266 slug feet squared

51 '

Subject 2

							•		
	BODY WEIGHT			• • • •				120.5000	lbs.
•	MASS	Body		100.00%				3.7457	slugs
	IEROO	Forearm		1.57%	¥			.0588	•
		Hand	•	0.66%				.0247	
		Arm		2.23%				.0835	•
	LENGTH	Forearm	•	8			1 ·	.7917	ft.
	LENGIN	Hand (cler	ched)			、		.2917	
	· .	Arm (1)	icited /					1.0834	ж. 1
				(2.00% -4	E longth			.3404	ft.
	CENTROID	Forearm		43.00% of					<u>,</u>
	•	Hand	(r _h)	51.00% of	f length	n plus	forearm .		
		Arm	(r_a)	by summin	ng momen	its		.5179	
		∑M = M	r =	^m f ^r f ^{+ m} l	h ^r h		-		·
			r =.	.0588(.34	.0835	0247(.9	405)		•
	-				•	-		I	<u>د</u>
			r. = a	.5179 fee	20		••		•
· ·		н 1 ж. н	·		• • •				
·. ·.	RADIUS OF G	YRATION	k _o =	$\sqrt{\frac{\ell}{l^2}}$	- = -	$\sqrt{\frac{1.08}{12}}$	$34^2 =$.3128	ft.
·			١			•			
•	· · · · · · · · · · · · · · · · · · ·	· · ·	k =	$\sqrt{k_o^2 + r^2}$	2	•			
		•		√.3128 ²	+ .5179		-	.6050	ft.

MOMENT OF INERTIA OF ARM

 d_{2i}

 $= .0835(.6050^2)$

m k²

= .0306 slug feet squared

Subject 3

BODY WEIGHT			116.0000	pound
MASS	Body 100	.00%	3.6058	slugs
	Forearm 1	.57%	.0566	
	Hand 0	.66%	. 0238	
	Arm 2	.23%	.0804	
LENGTH	Forearm		.8333	ft.
	Hand (clenched)		.3750	
	Arm (2)	1	1.2083	
CENTROID	Forearm (r _f) 43	.00% of length	.3583	ft.
1. 	Hand $(r_h)^{-3}$ 51	.00% of length plus forearm	1.0245	
· · ·	Arm (r) by	summing moments	.5555	`
• •				
•	$\Sigma M_o = M_a r_a = m_f r_a$	$r_{f} + m_{h}r_{h}$	· .	
•				
	r = .05	66(.3583) + .0238(1.0245)		•
, .	ан на н	.0804		
	·	55 feet		

RADIUS OF GYRATION
$$k_{0} = \sqrt{\frac{2}{12}} = \sqrt{\frac{1.2083^{2}}{12}} = .3488 \text{ ft.}$$

 $\mathbf{k} = \sqrt{k_{0}^{2} + r^{2}}$
 $= \sqrt{.3488^{2} + .5555^{2}} = .6559 \text{ ft.}$

MOMENT OF INERTIA OF ARM

$$I_{a} = m_{a}k^{2} = .0804(.6559^{2})$$

= .0346 slug feet squared

Subject 4

MASS	Body		100.00%	4.8803	slugs
	Forearm		1.57%	.0766	-0-
•	Hand	1	0.667	.0322	
	Arm		2.23%	.1088	
LENGTH	Forearm			.8021	ft.
	Hand (cle	nched)		.3333	
	Arm (2)			1.1354	
CENTROID	Forearm	(r _f)	43.00% of length	.3449	ft. ⁷
	Hand	(r_h)	51.00% of length plus forearm	.9721	
	Arm	(r_)	by summing moments	.5305	

$$r_a = \frac{.0766(.3449) + .0322(.9721)}{.1088}$$

.5305 feet

RADIUS OF GYRATION $k_0 = \sqrt{\frac{\ell}{12}}{\frac{\ell}{12}} = \sqrt{\frac{1.1354^2}{12}} = .3278 \text{ ft.}$ $\mathbf{k} = \sqrt{\frac{k^2 + r^2}{k^2 + r^2}}$ $= \sqrt{.3278^2 + .5305^2}$.6236 ft.

MOMENT OF INERTIA OF ARM

$$I_a = m_a k^2 = .1088(.6236^2)$$

= .0423 slug feet squared

Subject 5

							مرد				
BODY WEIGHT	r						1		160.0000	pounds	
MASS	Body		100.00%				•		4.9736	slugs	·
	Forearm		1.57%		• .				.0781		a
· · · · · · · · · · · · · · · · · · ·	Hand		0.66%						.0328		
	Arm		2.23%					· .	.1109	r '	
LENGTH	Forearm					. •			.8132	ft.	
4	Hand (cle	nched)							.3750		
	Arm (2)	•						Ŷ	1.1882		
CENTROID	Forearm	(r _f)	43.00%	of	length	•		• .	.3497	ft.	
	Hand	(r _h)	51.00%	of	length	plus	fore	arm	1.0044		
	Arm	(r_a)	by summ	ing	g moment	s			.5433		•

$$= Mr = m_f + m_h$$

$$\mathbf{r}_{a} = \frac{.0781(.3497) + .0328(1.0044)}{.1109}$$

= .5433 feet

RADIUS OF GYRATION
$$k_{0} = \sqrt{\frac{2}{12}} = \sqrt{\frac{1.1882^{2}}{12}} = .,3430 \text{ ft.}$$

 $k = \sqrt{k_{0}^{2} + r^{2}}$
 $= (\sqrt{.3430^{2} + .5433^{2}} = ..6425 \text{ ft.})$

MOMENT OF INERTIA OF ARM

Ð

÷.

Ω

 $I_a = m_a k^2$; = .1109(.6425²)

= .0458 slug feet squared

55

`'Subject 6

					-
	BODY WEIGHT	· · · · ·		145.0000	pounds
	MASS	Body	100.00%	4.5073	slugs
		Forearm	1.57%	.0708	
		Hand	0.66%	.0297	
		Arm		.1005	
		АГШ	2.23%		
	LENGTH	Forearm	- -	.8542	ft.
			· · ·	,3333	1
		Hand (clenched)		1.1875	
		Arm (l)	· · · · ·	1.10/ 5	
`. `.a	CENTROID	Forearm (r _f)	43.00% of length	.3673	ft.
		Hand (r.)	51:00% of length plus forearm	1.0242	
		••			· ·
		Arm (r _a)	by summing moments	.5614	
		$\Sigma M = M r =$	${}^{m}f^{r}f^{+}{}^{m}h^{r}h$. •	
			$\frac{.0708(.3673) + .0297(1.0242)}{.1005}$		
	•		.1002		•
	• .	· •		• •.	
	· ·	r_ =	.5614 feet		
	• • • • •	& ,			
		۰.	$\sqrt{\frac{2}{12}}$ = $\sqrt{\frac{1.1875^2}{12}}$ =	1.	
	RADIUS OF GY	RATION k =	$2^{2} = \frac{1.1875^{2}}{1.1875^{2}} =$.3428	ft.
		0	$\frac{1}{12}$	•	· · · · ·
	-	•	12		•.
	· · · · ·				
	1			•	
			$\sqrt{\frac{2}{2}}$	· · · .	
		k =	$\sqrt{k_0} + r^2$		• .
		• • •			× •

 $-\sqrt{.3428^2 + .5614^2} = .6578 \text{ ft.}$

MOMENT OF INERTIA OF ARM

56

R

1.1.

APPENDIX C

1

Subject 1 (contractions at $\theta = 80^{\circ}$)

4

Conce	ntric Dumbell	Weight	Mass	I _o
	Bar; grip; two collars One green 5 One silver 2 1/2 Total plus: mk ² (.4499 x .9554 I r	$ \begin{array}{r} 6.500 \\ 5.125 \\ \underline{2.850} \\ 14.475 \\ 2 \\ \end{array} $.4499	.0005 .0084 .0038 .0124 .4107 .4234 slug ft ²
	•	· · ·	· ·	

Isometric Dumbell

Bar; grip; two collars	6.500	
One green 5	5.125	•
Two silver 2 1/2	5.700	•
Total	17.325	.5385

Eccentric Dumbell

Bar; grip; two collars	6.500		.0005
One green 5	5.125	•.•	.0084
One gold 5	5.175		.0082
Two black 5	10.200		.0168
Two silver 2 1/2	5.700		.0076
Total	32.700	1.0165	.0415
plus: mk^2 (1.0165x.9619 ²))		.9405
I _{r.}	· .		.9820 slug

58

ft²

Subject 1 (contractions at $\theta = 110^{\circ}$)

Concentric Dumbell	Weight	Mass	. I _o	3. (3.
Bar; grip; two collars Two gold 5 Total plus: mk ² (.5238x.9410 ²) I _r	6.500 <u>10.350</u> 16.850	.5238	.0005 .0164 .0169 .4638 .4807	slug ft ²

Isometric Dumbell

÷.

 \odot

Bar; grip; two collars	6.500	
One green 5	5.125	
"Three gold 5	15,525	
Two collars	1.375	
Total	28,525 .8867	7

Eccentric Dumbell

•	Bar; grip; two collars	6.500		.0005		•
	Two black 7 1/2	15.512		.0312		•
	Two black 5	10.200		.0168		,
	One silver 2 1/2	2.850		.0038		
	Total	35.062	1.0899	.0523	•	
	plus: mk^2 (1.0899x.9657 ²)		· 2	1.0525		
	I _r	5 ¹		1.1048	slug	ft ²
	•					

13

Subject 2 (contractions at $\theta = 80^{\circ}$)

Concentric Dumbell	Weight	Mass	ι _ο
Bar; grip; two collars One silver 2 1/2 Two collars Total plus: mk ² (.3334x.9476 ²) I _r	6.500 2.850 <u>1.375</u> 10.725	. 3334	.0005 .0038 .0002 .0045 .2994 .3039 slug ft ²

Isometric Dumbell

۵

Bar; grip; tv Two silver 2 One collar	wo collars 1/2	6.500 5.700 .687	.
Total	• •	12.887	.4006

Eccentric Dumbell

Bar; grip; two collars 6.500		.0005	1 1
Two black 5 10.200		.0168	· ·
Total 16.700	.5191	.0173	
plus: mk ² (.5191x.9581 ²)	· · · · ·	.4764	- 1
Ir		.4937 slug	ft4

60 _

61

Subject 2 (contractions at θ = 110°)

		19. J. A. A.				
ł			· c.			·,
Concentri	c Dumbell	· · · · · · · · · · · · · · · · · · ·	Weight	Mass	Îo	ישריג הי ו
·	Bar: grip:	two collars	6.500		.0005	
•	Two gold 5		10.350	•	.0164	
	Total	a) .	16.850	.5238	°.0169	.,
	plus: mk ² 🕉	5238 [°] x.9575 ²)	_		.4802	
	Ir			•	.4971 sl	ug ft ²
		· · · ·	i a		. *	
0.1	· · · ·	***	A.,		е. т.	
			5 0			and the second se
Isometric	Dumbell .		;		¢.,	40
	Rome and	two collars	6.500			
	Two gold 5.	LWO COLLAIS	.0.350			,
	Öne silver		2.850		•	·
··· • · · · · · · · · · · · · · · · · ·	One collar	- 1/-	.687	•	•	·
•	Total		20.387	.6337	ر مور با که مد	. • <u>.</u>
14	·		0		- . .	÷.
	1. Sta	2				
- Eccentric	Dumbell	· · · · ·	,	۸. I		
· .	Bar: grip:	two_collars	6.500		.0005	
	Two black 7	-1 12	15.512	ц	.0312	- N. 1
C	Two black 7 Two silver	21/2	5,200		.0076	
	Total		27.712	.8614	.0393	
•	plus: mk ² (.8614x.9644 ²)			.8012	
\$	Ir	•			.8405 sl	ug ft ²
	• • • • • • • • • • • • • • •	شجيه ا	<i>2</i> 1	۰.		
			· · · ·		1	•
	· · ·	•			10	
1 E &	• • • •		-9		. #	· · · ·

Subject '3 (contractions at $\theta = 80^{\circ}$)

51

ų,

7.16

		• • • •				· ,			ٽ . ن ٽ
	Concentri	c Dumbell		•	Weight	Mass	Io		
· .		Ban; grip Two gold Total		lars	6.500 10.350	· · · ·	.0005	•	
	are a second and a s	plus: mk ²	(.5238x1	.0401 ²)	16.850	.5238	.0169 .5666		
	y	Tr.		•	· · ·	· · ·	•2835 s	lug ft ²	·
	5.5.5			•	• • •	•	•	•	
		9 • • • • • • • •			,	22 1		•	
	Isomethic	Dumbell				n de la composition de la comp			
Ŷ.	a a station								
	,	Bar; grip; Two gold 5	two coll		6.500		.'		
•	4 (m. 1) 187	Two silver			10.350				
	Ĩ.	Total		181	22.550	.7010			
	i i i i i i i i i i i i i i i i i i i	· .		•		*	, · · ·	•	
	· • •		*	· · · · ·				1	
	Frank beda	N	1	ŝ	-/* •	$(1,1) \in \mathbb{R}^{n}$			
,	Eccentric	Dumbell	ם	. ب م	.]	· · ·	•		
		Bar; grip;	two coll	ars	6.500		.0003	u .	2.
		Two gold			10.350		.0164	•	
•		Two black		- se - 1	10.200		.0168		
		One silver	2 1/2		2.850		.0038		
		Total			29.900	.9294	.0375		•
	•	plus: mk ²	(.9294x1.	0440*)	. 6	• .	$\frac{1.0130}{1.0505}$	·	•
· . /		Ir	· · ·				1.0505 sl	Lug It"	•
***						*		· · · ·	

62 ·

 \bigcirc

Subject 3 (contractions at $\theta = 110^{\circ}$)

Concentri	c Dumbell	Weight	Mass	Io
	Bar; grip; two collars Two gold 5 Two silver 2 1/2	6.500 10.350 5.700		.0005 .0164 .0076
	Total plus: mk ² (.7010x1.0414 ²) T _r	22.550	.7010	.0245 .7602 .7847 slug ft ²
			•	•

Isometric Dumbell

Bar; grip; two collars	6.500
- Three gold 5	15.525
One given 5	5.125
One silver 2 1/2	2.850
Total	30.000 .9325

Eccentric Dumbell

Bar; grip; two collars	6.500		.0005		
	15.512 ⁴⁷	•	.0312		•
Two gold 5	10.350	· ·	.0164	• .	
One green 5	5.125		1 × 10084		
Total	37.487	1,1653	.0565	-	
plus: mk ² (1.1653x1.0479 ²)	ن م		1.2796		-
I _r	<i>ST</i>		1.3361	slug	ft ²
		1			

63

#;
64

1.1

Blug

Subject 4 (contractions at $\theta = 80^{\circ}$)

	1.2			
Concentr	ic Dumbell	Weight	Mass	I _o
	Bar; grip; two collars	6.500		.0005
• •	Two black 7 1/2	15,512		.0312
	Two silver 2 1/2	5 700		.0076
	Two collars	1.375		.0002
•	Total	29.087	.9042	.0395
	plus: mk^2 (.9042x.9943 ²)			.8939
	I _r · · · ·			.9334

÷,

Isometric Dumbell

1

Bar; grip; two collars	6.500	3
Two black 7 1/2	15.512	-
One green 5	5.125	
One gold 5	5.175	. •
Two silver 2 1/2	5.700	
Two collars	1.375	· · · ·
Total	39.387	1.224
		*

Eccentric Dumbell

1

Bar; grip; two collars	6.500	• •	.0005	4.	
Four black 7 f/2	31,024		.0624	•	
One gold 5	5.175		.0082	· .	
One silver 2 1/2	2.850	. -	.0038		
One collar	.687		.0001		63
Total	46.236	1.4372	.0750		7 Y
plus: mk^2 (1.4372x.9971 ²)	•	i i i i i i i i i i i i i i i i i i i	1.4289	•	-
I _r .			1.5039 slug f	t ²	
• •			-		

3

Subject 4 (contractions at $\theta = 110^{\circ}$)

		1			1
Concentric	2 Dumbell	Weight	Mass	Ιo	
	plus: mk ² (1.0060x.9955 ²)	6.500 15.512 <u>10.350</u> 32.362	1.0060	.0005 .0312 .0164 .0481 .9970	slug ft ² /
	Ir				
• 1	* · · · ·	. e	•		•
Isometric	Dumbell	Υ. Υ	•	/	
•	Bar; grip; two collars Four black 7 1/2 One silver 2 1/2	6.500 31.024 2.850	. ' .	4,99 2010 - 10	4 4
• • • • • •	Total	40.374	1.2550	• •	
•	f	. .			:
Eccentric	Dumbell	· · ·	•	•	
	Bar; grip; two collars Four black 7 1/2 Two gold 5 Two silver 2 1/2	6.500 31.024 10.350 5.700		.0005 .0624 .0164 .0076	
	Total plus: mk ² (1.6653x.9977 ²) I _r	53.574	1.6653	.0869 <u>1.6576</u> 1.7445	slug ft ²

65

È

Subject 5 (contractions at $\theta = 80^{\circ}$)

				.
Concentric	: Dumbell	Weight	Mass	Io
. · ·	Bar; grip; two collars	6.500	. 1	.0005
	Two black 7 1/2	15.512		0312
	One green 5	5.125		.0084
	Total	$\frac{3.223}{27.137}$.8435	0401
· · · · · ·	plus: mk^2 (.8435x1.0278 ²		.0.155	.8910
)		.9311 slug ft ²
	Ir			
	· · · · · ·			
1				·
Isometric	Dumbell		· • • ·	· •
•	D	6.500		
	Bar; grip; two collars	15.512		,
	Two black 7 1/2	5.125		4
	One green 5			
	One gold 5	$\frac{5.175}{22.212}$	1 0044	
	Total	32.312	1.0044	
				•
			۰.	
		1		
Eccentric	Dumbell	.		
		(500	,	.0005
	Bar; grip; two collars	6.500		.0312
	Two black 7 1/2	15.512		.0592
	Two silver 10	20.200	· •	.0082
	One gold 5	5.175	A A	
	One green 5	5.125		.0084
	Total	52.572	1.6323	.1075
	plus: mk ² (1.6323x1.036)	(*)		$\frac{1.7543}{1.8618}$
	Ir		•.	1.8618 slug ft ² *
				n. An
•				•
	1	1 A A		

Subject 5 . (contractions at $\theta = 110^{\circ}$)

eight	Mass	Io
6.500 5.512 <u>5.175</u> 7.187		.0005 .0312 .0082 .0399 .8924 .9323 slug ft ²
	5.175	5.175

Isometric Dumbell

Bar; grip; two collars 6.500	ta -
Two black 7 1/2 15.512	•
Two gold 5 10.350	
One green 5 \$.125	
One black 5 5.100	
One silver 2 1/2 2.850	
Total 45.437	1.4124
κ.	

Eccentric Dumbell

•					
Bar; grip; two collars	6.500		.0005		
Two black 7 1/2	15.512		.0312		
Two silver 10	20.200	*	.0592		
One green 5	. 5.125	÷	.0084		
One gold 5	5.175	•	.0082		
Total	52.512	1.6323	.1075	4)	
plus: mk ² (1.6323x1.0367 ²)	•	•	1.7395		
Ir			1.8618	slug	ft ²
		و.	r., *		

Subject 6 (contractions at $\theta = 80^{\circ}$)

	Concentri	c Dumbell	Weight	Mass	Io	 J	•
	· · ·	Bar; gri#; two collars Two black 7 1/2 Two black 5	15.512	- • •	.0005	•	
	94 1	Total plus: mk^2 (1.0013x1.0476 ²)	$\frac{10.200}{32.212}$	1.0013	.0168 .0485 1.0989		•
. ,	•	Ir	· ·	r	1.1474	slug ft ²	<u>}</u>
	.) .				•	- '	
• .	Isometric	Dumbell					
		Bar; grip; two collars Two black 7 1/2	6.500 15.512	· · · ·			•
			10.200			· ·	
· ;	 4	Two silver 2 1/2 Total	$\frac{5.700}{37.912}$	1.1785			÷
• •	4 		-		. • • • •	•	1
· .	Eccentric	Dumball	à		•	÷	· .
	Eccentric	Dumbell					•
	, 	Four black 7 1/2	6.500 31.024		10005 .0624		•
· ·			10.200 <u>5.700</u>		.0168		
۰ •		Total plus: mk ² (1.6607x1.0495 ²) I _r	53.424	1.6607	.0873 <u>1.8292</u> 1.9165	slug ft ²	
						-	,

Ξ.

ปั

Subject 6 (contractions at $\theta = 110^{\circ}$)

				•		
	Concentric Dumbell	Weight	Mass	Ι _ο	· .	
	Bar; grip; two collars	6.500		.0005	•	
	Two black 7 $1/2$	15.512		.0312		
	One green 5	5.125		.0084		
	One black 5	5.100		.0084		
	Total	32.237		.0485		
	plus: mk^2 (1.0021x1.0457 ²)			1.0958		
	I,			1.1443	slug ft ²	
•	-					
	4 /	•	С.,			
	Isometric Dumbell			ъ.		
		6 500	•			
	Bar; grip; two collars	6.500			•	
	Four black 7 1/2	2.850				
	One silver 2 1/2 Total	$\frac{2.830}{40.374}$	1.2550	• .	•	
		40.574	1.2550			
•	and the second					
		•		,		
	Eccentric Dumbell	•	• .		•	
	Remaind two collers	6.500		10005		
	Bar; grip; two collars Four black 7 1/2	31.024	-	.0624		
	Two black 5	10.200	,	.0168		
	Two silver 2 1/2	5,700	· .	.0076		
	Total	58.024	1.6607	.0873		
	plus: mk^2 (1.6607x1.0495 ²)			1.8292		
	I _r				slug ft ²	
	- r	•			-	
	- <i>I</i> -	$\boldsymbol{v}^{(1)} = \boldsymbol{v}^{(1)}$		 1		

2

4

ANGULAR ACCELERATION DETERMINATION

Two resistances were moved through two angles of flexion. A Vangard film analyzer containing an X and Y axis was used to record Y co-ordinates every five frames as the resistance moved through an angle under review. Seven measurements were taken and by computing the differences between them, the distance (\overline{Y}) traversed by the centre of the resistance was computed. Since each frame equalled a time span of point one (.01) seconds, the velocity (v_y) of the centre along the Y axis could be calculated. In order to minimize errors in measurement. \overline{Y} was converted a moving average (Y) of three successive points and it was distance which was used to compute v_y .

Acceleration $(a_y)_y$ along the Y co-ordinate was computed by dividing the change of time into the change of velocity over a ten (10) frame period. The acceleration tangent to the arm (a_t) was calculated by dividing a_y by angle which the forearm made with the angle of reference.

ANGULAR ACCELERATION DETERMINATION (contractions at $\theta = 80^{\circ}$).

Subject 1

 $\frac{a}{r}$

α =

Angular acceleration:

 1.393 rad/sec^2

ECCENTRIC DUMBELL

30

Y	ΔY	<u>JY</u>	vy
2653	•		
2553	100	ŭ .	
2395	158	158	3160
2180	215	216	4320
1905	275	281	5620
1552	353		. • .

 $x_{y} = \frac{\Delta v_{y}}{\Delta t} = \frac{5640 - 3160}{.10}$

= 24,800 units = 10.664 ft/sec²

 $= \frac{\mathbf{v}}{\mathbf{sin}\theta} = \frac{10.664}{\sin 80^{\circ}} = 10.828 \text{ ft/sec}^2$

Angular acceleration:

11.513 rad/sec²

ANGULAR ACCELERATION DETERMINATION (contractions at $\beta = 110^{\circ}$)

Subject 1

α

1. A.	Y	ΔY	ΔY	v					•			
				y			Δ٧	- 12	40 - 2	560		
	2370					₽ , "	<u> </u>	= <u>-</u>	.10		•	/
	2373	103				1	Δt					
	2506	133	128	·2560 .						N/A	/sec ²	
, ,	2653	147	147	2940		-	6800	units	; = 2.9		sec	
	2805	162	162	3240			•			•		. ' ว
	2963	158.	•			a. =	⊧ ar	= 2	924	= 3.3	116 ft	/sec ¹
	3118				,	T.	sint	s s	ln70°			

Angular acceleration:

3.313 rad/sec4

K

73

0	ECCENTRIC	DUMBELL				
	and the second and the second s	۵¥	$\overline{\Delta Y}$	vy		
in a ran an a	2987 2884	103	х . `		$x = \frac{\Delta v}{\Delta t} = \frac{2820 - 2280}{.10}$	
	2768 2646	116 122	114 126/	2280 2520	= 5400 units = 2.322 ft/sec ²	
	2507 2346 2171	139 161	141	2820	$a_t = \frac{a_y}{\sin\theta} = \frac{2.322}{\sin 70^0} = 2.471 \text{ ft/sec}$	2

α

Angular acceleration:

2.627 rad/sec 2

ANGULAR ACCELERATION DETERMINATION (contractions at $6 = 80^{\circ}$)

Subject 2

CONCENTRIC DUMBELL

Ð

Y ,	ΔY	ΔY	vу	
1319				
1447	123			
1590	143	- 134	2680	
1590 1720	13Ó	128	2560	
1880	112	113	2260	
1930	100			
2013				
			•	

•
$a_{y} = \frac{\Delta v_{y}}{\Delta v_{y}} = \frac{2260 - 2680}{260}$
ΔΕ .10
= -4200 units = -1.806 ft/sec ²
$a_t = \frac{a_y}{\sin \theta} = \frac{-1.806}{\sin 80^\circ} = -1.834 \text{ ft/sec}^2$

4

Angular accéleration: $\alpha = \frac{a_t}{r} = -1.950 \text{ rad}/\sec^2$

tal.

ECCENTRIC DUMBELL

	Y	ΔY	ΔY	v	•	
	2435			,		Δν
	2341	94	,		-	$a_{y} = \frac{3260}{2} = 3260 - 2380$
L. • ·	2219	122	. 119	2380	· ·	Δt .10
No. No.	2078	141	143	ື 2860		
	1912	166	163	3260	7	$\pm 8800 \text{ units} = 3.784 \text{ Et/sec}^2$
· · ·	1730	182	•		•	
•	1578			2	~ .	a
;	,	•				$sin\theta sin80^{\circ} = 3.842 \text{ ft/sec}^2$

Angular acceleration: $\alpha = \frac{7t}{2} = 4.085 \text{ rad/sec}^2$

74

ANGULAR AGCELERATION DETERMINATION (Contractions at $\theta = 110^{\circ}$ ىنى يەترىغان

Subject 2

CONC	ENTRIC	DUMBELL			
2	Y	⁸ ۵۲,	ΔΫ	v.,	
1.	and the second sec	· · · · · ·	· · ·	y	
	2768			•	
•	2823	55	• -		1.1
	2880	57	57	1140	

A 7 00								
2823	.55	• •	1. 18 T. 19	У	Δt		.10	· · ·
2880	57	57	1140		4 - Al-	A Star		
2940 ⁰	60	62	1240	· •	2800 u	init =	1.204	ft/sec ²
3010	70	7.1	1420	•	· ·	, ,		
3092	82		N:	4.	⊧∵aty i	1.204	4 _ 1	. 281
3167			and the second s	15	sin0	sin70	<u>jo</u> = 1	.201
				· · · · ·				

Δ٧

- 1140

2

1420

	· · ,		<u> </u>	•		
Angular	acceleration: 🍋	a	_=	1.280	rad	c.

e e					6		
	•	· · ·	P	•		· ·	
		15		•			

2

a

	ENTRIC DUMBELL	45 24, 4	
1 1 12 1	Υ ΔΥ	AYC V	i det i de la constance de la c
<u>ئ</u>	3553		Δν
A .	3474 79	1	$\frac{1}{y} = \frac{1}{4t} = \frac{4660 - 2460}{10}$
•	3351 - 123	123 2460	.10
	3185 166	173 3460 *	= 22000 mits = 9.46 ft/sec^2
	2956 229	233, 4660	- 22000 miles - 9.40 il/sec
•	2652 304		
	2266		$\frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{9.46}{10.067} = 10.067$ ft/sec
	1		$sin70^{\circ} = 10.007$ 11/sec.

10.704 rad/sec² acceleration: Angular.

ANGULAR ACCELERATION DETERMINATION (contractions at $\partial = 80^{\circ}$)

Subject 3 .

÷.	· · · ·		•.	
-	CONCENTRI	C DEMBELL		
هر		A Constant of the second se		

		ΔY	Уу
1995	B		1. A.
2062	? 67		$_{\rm e}$ \times 1
2153	91		
2160	7		; 140
3 59	.99	•	1980
2366	107		
2474	.•		

۱۱

εī

 $y = \frac{\Delta v}{\Delta t} = \frac{1980 - 140}{.10}$ = 18,000 units = 7.912 ft/sec² t = $\frac{v}{sin\theta} = \frac{7.912}{sin 800} = 8.034$ ft/sec²

Angular acceleration: $\alpha = \frac{1}{r} = 7.822$ rad 25 ec.

SF)

	÷ .			
X A		y 3 - 5 - 5	AV	•
2282	•		$\frac{\Delta v}{y} = \frac{3980 - 3180}{10}$	n an
2140 14	12 52 159 318	0	Δε .10	
1978 16 1804 1	181 362	- · · · · ·	8000 units = 3.440	ft/sec ²
	16. 199 398	0	•	
	L8	· · · · · · · · · · · · · · · · · · ·	x = 3.440 = 3.49	3 ft/sec^2
1134 🦲	•	t	sine Findo	•

Angular acceleration: $\alpha = \frac{1}{2} = 3.409 \text{ rad/sec}^2$

ANGULAR ACCELERATION DETERMINATION (contractions at $\theta = \frac{1}{10}$)

Subject 3

CONCENTRIC DUMBELL

ei

2 5

. Y	Δ¥ 🛩	ΔY	v y	1998 1997	:		8 · · · ·	
` 3142 ^{÷*}					_ Δv	= 1380 - 19	500	
3213	71		`		y At	.10	<u></u>	
3295 🌋	. 82 🏅	7.5	1500			. ,	• •	
3366	`71	70 .	1400		ີ = 1200 ມ	mits =51	6 ft/sec ² .	
3423	57		1380		- 1000 0			
3501 *	78			• • •	.	- 516 - 1	549 ft/sec ²	
3579		· · ·	- * Anto				549 IT/Sec~	
	A		يبون ا	∑∰u, [] =	sinθ	sin70°		

:77

145

100

ngular acceleration: 3.6 P

ELL	ENTRIC	DOWRELL	•	•	•.	they.	3 ·
, 2	Y	AY 23	ζ ν			•	د د .
	3344.				- Δv -	1080 - 84	40
¥	323.4 9	26 * - 49 42		, , , , , , , , , , , , , , , , , , ,	Δt	.10	¯ , '
:	3219 3161	50 52 58 54	1040 1081	l.	= 2400 un	its = 1.03 ,	32 ft%
•	3108 3055	53		 #	= <u>*</u> =	1.032	

1081 54 N.,+ 098 ft sin 70° sec sinθ

sec

1.072 rad/sec² Angular acceleration: a

ANGULAR ACCELERATION DETERMINATION (contractions at $\theta = 80^{\circ}$)

Subject 4

3860 3520

3140

CONCENTRIC DUMBELL

I	Δĭ	ΔΥ •
1212	· .	
1420	208	
1613	193	193
1791	178	176
1949	158	157
,2084	135	
2200	• • .	

7.		Δvy Δt	$\frac{3140 - 3860}{.10}$?
	-	-7200	units = -3.096 f	t/sec ²

 $t = \frac{y}{\sin \theta} = \frac{-3.096}{\sin 80^{\circ}} = -3.144 \text{ ft/sec}^2$

78 -

Angular acceleration: $\alpha = \frac{t}{\sqrt{t}}$

.6

 $\frac{c}{r} = -3.234 \text{ arad/sec}^2$

ECGENTRIC DUMEELL

3

	Υ <i>4</i>	<u>X</u> X	• 44	С У У
· .	1956	· / · ·	à	3
•	1818	-138		
.,	1665	153	150	3000
	1506	159	158	3160
	1343	163	165	3300
	1169	174		
	990	*	•	

	γ	= 3300 [°] - [°] 3000
y	Δt	.10
	= 3000	units = 1.290 ft/sec^{2}
i L	=y	$= 1.290 = 1.310 \text{ ft/sec}^2$

sine sin80°

gular acceleration: $\alpha = \frac{a_t}{c} = 1.348 \text{ rad/sec}^2$

ANGULAR ACCELERATION DETERMINATION (contractions at $\theta = 110^{\circ}$)

79

Subject 4

6. £ .

CONCENTRI	C DUM	IBELL

	Y	ΔY	ΔY	∀ y	
	2715			and the second se	$\mathbf{z} = \Delta \mathbf{v}_{\mathbf{y}} = 1200 - 1680$
3	2814	99 [*]	· ·		$y \frac{\Delta t}{\Delta t}$.10
	2900	86	84	1680	
.	2967	67	68	1360	= -4800 units = -2.064 ft/sec ²
	3018	51	60	1200	
	3079	61			a = $\frac{a}{y}$ = $\frac{-2.064}{-2.196}$ ft/sec ²
	3144	1		· · · · · · · · · · · · · · · · · · ·	$t = \frac{1}{\sin\theta} = \frac{1}{\sin^2\theta}$
		1		<u>ب</u>	

Angular acceleration: - 2.259 rad/sec^2 t α =

ECCENTRIC DUMBELL

Y	, Δ Υ	ΔY	V y_1					
+3521		•			$= \frac{\Delta v}{y}$	5100 - 3600		
τ 3381 .	140		~ 100	· · · ·	Δt	.10	•,	
3198.	183	180	3600		•	· · ·	· _ /	
2980	218	214	4 <u>2</u> 80	. ·	= 15000	units = 6\$450) ft/sec ²	
2738	242	255	5100			1 × ×	•	
2433	305				1. 1. 👖 - 1.			
2106	•			1	$\mathbf{t} = \frac{\mathbf{y}}{\mathbf{y}}$	$= \frac{6.450}{\sin 70^{\circ}} = 6.8$	564 IT/sec	
	4	• •	•	<u> </u>	sin θ/	sin/U	1. A. A.	

Angular acceleration; 7.061 rad/sec² à-

ANGULAR ACCELERATION DETERMINATION (contractions at $e = 80^{\circ}$)

Subject 5

1.11

CONCENTRIC DUMBELL

` Y	AY.	¥.	v y	۰ و ۰ بر بر ۰ ۱۹٫۹	т. Хала Х		
843					<u>مە</u>		k
1065	222			y 7		10	
1296	231	232	4640		36	.10	
1538	242	241	4820	*		ts = 2,322 ft	1 2 ·· · · · · · · · · ·
1789	251	295	5180	- 3	9400 uni	13 = 2022 IL	/sec
2073	284			2.4 2.5 <u>1.5 1.5 1.5</u> 1	8;	#ີ່∛ຢູ່ ນະການາວະວ	ft/sec ²
2340	· · · · ·	•	•		y 4 inθ s	$\frac{2.322}{\sin 80^{\circ}} = 2.338$	IL/Sec
· •	* .		·**		·	• و٠	

Έ., rad/sec acceleration: Angul 'n

·.	•	÷,	· They	• .
				• • •
	•		• •	

ECCENTRIC DUMBEL

Y	ΔΥ ,	ΔY	v	
2242	· . ·			$a_{-} = \frac{\Delta v}{y} = 5400 - 4600$
2113	129			$y \frac{y}{\Delta t} = \frac{9400}{.06}$
1971	142	139	4633	Δ L .QU 384
1824	147	151	5023	= 12,783 units + 5.497 ft/sec ²
1659	165	162	5400	- 12,705 units - 5.497 ft/sec
1484	175		î,	
1300		. <u>.</u>	2	$a_{1} = \frac{a_{2}}{y} = 5.497 = 5.582 \text{ ft/sec}^{2}$
				sine sin80°
	•			•

- 1

rad/sec² Angular acceleration: 557

80

ANGULAR ACCELERATION DETERMINATION (contractions at $\theta = 110^{\circ}$)

81

Subject 5.

CONCENTRIC-	DUMBEL	L	,- ,-			•		· · ·
Y	۸Y	ΔŶ	v y		در ا			ан. 1
2850	ų,	~~			$a = \Delta v$	y = 448	0 - 4000	
3027	177	Â.			Ϋ́Υ Δt		.10	
3230	203	200	4000	ۈ_≌د. : ن	\$. ¥	Ê.		
3449	219	217	4340		= 48	000 units	= 2.064	ft/seć ²
3679	230	224	4480		•	NO		
3902	223	5 (t.)	4	U.	_t`#	y= 2.0	64 = 2.19	6 ft/sec ²
4132	- 1 8 			* :	- 🕻 🐨	no sin	702	17
				1 M 1	an an a			

Angular acceleration: $\alpha = \frac{t}{r_t} = 2.186$ rad/sec

ECCENTRIC DUMBELL

Y	Ą٧	Δ¥	⁹ v _{y ≈ ∞}	
3261 3228 3190 3150 3100	33 38 40 50	37 43 51	1233 1433 1700	$\frac{\Delta v}{y} = \frac{\Delta v}{\Delta t} = \frac{1700 - 1233}{.06}$ = 7783 units = 3.347 ft/sec ²
3036 2976	64	í X		$\frac{1}{t} = \frac{y}{\sin \theta} = \frac{3.347}{\sin 70^{\circ}} = 3.562 \text{ ft/sec}$

Angular acceleration: - $\alpha = \frac{t}{r} = 3.546^{2} rad/sec^{2}$

Subject 6

	Y	ΔY	ΔΥ	v y	•				·
	1404			•		Δν.	a 2520 - 22	200	٠.
	1504	100		. •		$\mathbf{y} = \frac{1}{\Lambda t}$.10		
	1608	104	110	2200				10 C	
•	1735	127	119	2380	. ,	= 3200) units = 1.3	76 ft/sec ²	
	1861	126	126	25 20			•		13
	1985	124	Ŧ		• "	a	= 1.376 = 1	.397 ft/sec ²	
	2105	· · .	14. 1		•	t sine			•

Angular acceleration: $\alpha = \frac{a_t}{r} = 1.364 \text{ rad/sec}^2$

ECCENTRIG DUMBELL

•	¥.	· 77	ΔY	v y				• •	
	2710		1	-		_ Δ ν _ ,	4320 -	2840	-
	2596	114			-	Δt	.10		•
.*	2451	145	142	2840			8 - F.		
	2284	. 167	176	3520		= 14,80 0) units =	6.364	ft/sec ²
	2067	k. 217	216	,4320	- station of the		· · · · · · · · · · · · · · · · · · ·	•	•
	1804	263			·****			6 160	6-12
	1486	•		- V	5	$= \frac{y}{\sin\theta}$	$\frac{6.364}{sin80^{\circ}} =$	0.402	IT/SEC-
÷.,	13d and the		٠.			•			

Angular acceleration: $\alpha = \frac{-t}{r} = 6.309 \text{ rad/sec}^2$

82

ANGULAR ACCELERATION DETERMINATION (contractions at $\theta = 110^{\circ}$)

Subject 6

4

Y	ΔY	ΔY	vy				(<u>)</u>		
 2705) ہ ک		_ Δv_	· - 2000	(000	·	* ; ; ;
2919	214	٩		(5	$r = \frac{y}{\Delta t}$	= <u>3000</u> -			
3116	197	200	4000		46	.1(J		
 3305	189	179	3580		= _101	000 units	- / 200	Enlard?	
3456,	151	150	3000	i.	- <u>-</u> 10,0	Joo unius	= 4.300	IL/Sec~	
3566	110				1 al 🔬 🔻			ft/sec ²	
3661				.	- y	· ■ -4.300 `	= 4.576	ft/sec ⁴	

Angular	acceleration:	α		-4.468	rad/sec ²
0		a	ř.	-4.400	rad/sec-

ECCENTRIC DUMBELL

	¥	ΔY	ΔY	V.	• •	!			
1	3180 3151 3118	29 33		1450 1650	a -	$\frac{\Delta \mathbf{v}}{\Delta t}$	= <u>1750</u>	<u>- 1450</u> 04	•
	3083 3047	35		L750 *		7500	units =	3.2 25 f	t/sec ²
		۱ ۱ ۱				ay sin0	= 3.225	e = 3.43	2 ft/sec ²

Angular acceleration: $\alpha = \frac{-t}{-} = 3.351 \text{ rad/sec}^2$

٠.

Ç

1. J. N.

83 _

.0728(.5172)sin80°(32.17) + 27.474(.5833)

17.2 pound feet -

MOMENT CALCULATIONS (contractions at $\hat{v} = 110^{\circ}$)

Subject 1

CONCENTRIC DUMBELL

ΣM

= $(m_{a}r_{a} + m_{r}r_{r})32.17\sin\theta + (I_{a} + I_{r})\alpha$ = $[.0728(.5172) + .5238(.9405)]32.17\sin^{7}0^{\circ}$ (.5073)3.313 86

6

= 17.7 pound feet

ISOMETRIC DUMBELL

- $\Sigma M_{0} = (m_{r}r + m_{r}r) 32.17 \sin \theta$
 - = $[(.0728)(.5172) + .3867(.94+5)]32.17sin70^{\circ}$
 - = 26.3 pound feet

BCCENTRIC DUMBELL

- $M_{0} = (m_{a,a} + m_{r,r}) 32.17 \sin \theta + (I_{a} + I_{r}) \alpha$ $= [.0728(.5172) + 1.1048(.9405)] 32.17 \sin 70^{\circ}$ (1.1314) 2.627
 - = 29.6 pound feet,

ISOMETRIC WITH DYNAMOMETER

- $EM_{0} = m_{a}r_{a} \sin\theta (32.17) + Rr$
 - $= .0728(.5172)\sin 70^{\circ}(32.17) + 42.260(.6667)$
 - = 29.3 pound feet

 $\Sigma M_{o} = (m_{a}r_{a} + m_{r}r_{r})32.17 \sin\theta - (I_{a} + I_{r})\alpha$

= [.0838(.\$179) + .5191(.9405)]32.17sin80^o
(.8418)4.085

-- = 13.4 pound feet

ISOMETRIC WITH DYNAMOMETER

 $M_0 = m_{a}r_{a} \sin\theta (32.17) + Rr$

 $= .0835(.5179) \sin 80^{\circ}(32.17) + 21.270(.6042)$

= 14.2 pound feet

MOMENT CALCULATIONS (contractions at $\theta = 110^{\circ}$).

Subject 2

CONCENTRIC DUMBELL

- $\Sigma M_{0} = (m_{a}r_{a} + m_{r}r_{r})32 \cdot 17\sin\theta + (I_{a} + I_{r})\alpha$
 - $= [.0835(.5179) + .5238(.9405)]32-17sin70^{\circ} + (.5277)1.362$

88

= 16.9 pound feet

ISOMETRIC DUMBELL

- $\Sigma M_{o} = (m_{r}r_{e} + m_{r}r_{r}) 32.17 \sin \theta^{3}$
 - = [,0835(.5179) + .6337(.9405)]32.17sin70°
 - 19.3 pound feet

ECCENTRIC DUMBELL

ê

- $\Sigma M_{0} = (m_{a}r_{a} + m_{r}r_{r})32.17 \sin\theta (I_{a} + I_{r})\alpha$
 - = [.0835(.5179) + -8614(,9405)]32.17&in70^c (.8711)10.704
 - = 16.5 pound feet

ISOMETRIC WITH DYNAMOMETER

- EM = = r sin0 (32.17) + Rr
 - :0835(.5179)sin70⁰(32.17) + 26.527(.6823)
 - 19.4 pound feet

MOMENT CALCULATIONS (contractions at $\theta = 80^{\circ}$)

Subject 3

CONCENTRIC DUMBELL

ΣΜ

ຬຐຼ

= $(m_a r_a + m_r r_r) 32.17 \sin\theta + (I_a + I_r) \alpha$ = $[.0804(.5555) + .5238(1.0245)] 32.17 \sin 80^{\circ} + (.6181) 7.842$ 89

23.3 pound feet

ISOMETRIC DUMBELL

= $(m_a r_a + m_r r_r) 32.17 \sin\theta$

[.0804(.5555) + .7010(1.024)]32.17sin80°

24.2 pound feet

ECCENTRIC DUMBELL

 $\Sigma M_{o} = (m_{a}r_{a} + m_{r}r_{r})32.17 \sin \theta - (I_{a} + I_{r})\alpha$

= [.0804(.5555) + .9294(1.0245)]32.17sin80^o -(1.0851)3.409

= 27.9 pound feet

ISOMETRIC WITH DYNAMOMETER

 $\sum_{o} = \max_{a \in a} \sin \theta (32.17) + Rr$

 $= .0804(.5555) \sin 80^{\circ}(32.17) + 34.564(.7033)$

25.7 pound feet

Subject 3

CONCENTRIC DUMBELL

^ν ΣΜο

$$= (m_{a}r_{a} + m_{r}r_{r})32.17\sin\theta + (I_{a} + I_{r})\alpha$$
$$= [.0804(.5555) + .7010(1.0245)]32.17\sin70^{\circ}$$
$$(.0245)]32.17\sin70^{\circ}$$

90

22.6 pound feet

ISOMETRIC DUMBELL

$$\mathbf{EM}_{o} = (\mathbf{m}_{a}\mathbf{r}_{a} + \mathbf{m}_{r}\mathbf{r}_{r}) 32.17 \sin\theta$$

= [.0804(.5555) + .9325(1.0245)]32.17sin70°
= 30.2 pound feet

ECCENTRIC DUMBELL

$$\Sigma M_{o} = (m_{a}r_{a} + m_{r}r_{r})32.17 \sin 6 - (I_{a} + I_{r})_{\alpha}$$

= [.0804(.5555) + 1.1653(1.0245)]32.17sin70°
(1.3707)1.072
= 36.0 pound feet

ISOMETRIC WITH DYNAMOMETER

$$EM = m_r sin\theta (32.17) + Rr$$

- $= .0804(.5555)\sin 70^{\circ}(32.17) + 40.767(.7292)$
 - = 31.1 pound feet

91

Subject 4

39.5 pound feet

ECCENTRIC DUMBELL

$$\Sigma M_{o} = (m_{a}r_{a} + m_{r}r_{r})32.17\sin\theta - (I_{a} + I_{r})\alpha$$

= [.1088(.5305) + 1.4372(.9721)]32.17sin80° (1.5462)1.348

= 44.0 pound feet

ISOMETRIC WITH DYNAMOMETER

= m_r sin0 (32.17) + Rr

٥

. .1088(.5305)sin80°(32.17) + 53.175(.8021)

44.5 pound feet

MOMENT CALCULATIONS (contractions at $\theta = 110^{\circ}$)

Subject 4

CONCENTRIC DUMBELL

ΣMo

 $= (m_{a}r_{a} + m_{r}r_{r})32.17\sin\theta + (I_{a} + I_{r})\alpha$ $= [.1088(.5305) + 1.0060(.9721)]32.17\sin70^{\circ} + (1.0874)2.259$

92

28.8 pound feet

ISOMETRIC DUMBELL

1.

- = $(m_{a}r_{a} + m_{r}r_{f})$ 32.17 sin θ (
- = $[.1088(.5305) + 1.255(.9721)]32.17sin70^{\circ}$
 - 38.6 pound feet

ECCENTRIC DUMBELL

$$\Sigma M_{0} = (m_{a}r_{a} + m_{r}r_{r})32.17\sin\theta - (I_{a} + I_{r})\alpha$$

= 38.1 pound feet

ISOMETRIC WITH DYNAMOMETER

.1088(.5305)sin70°(32.17) + 57.606(.8021)

47.9 pound feet

6

MOMENT CALCULATIONS (contractions at 0= 80°)

Subject 5

CONCENTRIC DUMBELL

dei.

- $= (m_{a}r_{a} + m_{r}r_{r})sin\theta + (I_{a} + I_{r})\alpha$
 - [.1109(.5433) + .8435(1.0044)]32.17sin80⁰ (.9769)2.348
 - = 31.0 pound feet

ISOMETRIC DUMBELL

 ΣM

ΣM

- (m_r_+ m_r_) 32.17 sin0
- [.1109(.5433) + 1.0044(1.0044)]32:17sin80⁰
- 33.9 pound feet

ECCENTRIC DUMBELL

- = $(m_a r_a + m_r r_r) \sin \theta$ $(I_a + I_r) \alpha$ = $[.1109(.5433) + 1.6323(1.0044)]32.17 \sin 8$ (1.9076)5.557
- 43.2 pound feet

ISOMETRIC WITH DYNAMOMETER

- m_r_sinθ (32.17) + Rr .1109(.5433)sin80^o(32.17) + 53.685(36823)
 - 38.5 pound feet

MOMENT CALCULATIONS (contractions at $\theta = 110^{\circ}$)

Subject 5

CONCENTRIC DUMBELL $EM_{0} = (m_{x}r_{a} + m_{r}r_{r})\sin\theta + (I_{a} + I_{r})\alpha$ $= [.1109(.5433) + .8451(1.0044)]32.17\sin70^{0} + (.0458 + .9323)2.186$ = 29.6 pound FeetISOMETRIC DUMBELL $EM_{0} = (m_{r}r_{a} + m_{r}r_{r}) 32.17 \sin\theta$ $= [.1109(.5433) + 1.4124(1.0044)]32.17\sin70^{0}$ = 44.7 pound feetECCENTRIC DUMBELL $EM_{0} = (m_{a}r_{a} + m_{r}r_{r})\sin\theta - (I_{a} + I_{r})\alpha$

> = $[.1109(.5433) + 1.6323(1.0044)]32.17sin70^{\circ}$ (1.9076)3.546

= 44.6 pound feet

ISOMETRIC WITH DYNAMOMETER

ΣM = m r sinθ (32.17) + Rr

 $1 = .1109(.5433) \sin 70^{\circ}(32.17) + 59.053(.6875)$

= 42.4 pound feet

MOMENT CALCULATIONS (contractions at $\theta = 80^{\circ}$)

Subject 6

CONCENTRIC DUMBELL

- $\Sigma M_{o} = (m_{a}r_{a} + m_{r}r_{r})\sin\theta + (I_{a} + I_{r})\alpha$
 - [.1005(.5614) + 1.0013(1.0242)]32.17sin80^o
 . (.0435 + 1.1474)1:364
 - 35.9 pound feet

ISOMETRIC DUMBELL

 $\mathbf{M}_{o} = (\mathbf{m}_{r} \mathbf{r}_{r} + \mathbf{m}_{r} \mathbf{r}_{r}) \quad 32.17 \quad \sin\theta$ $= [.1005(.5614) + 1.1785(1.0242)] \quad 32.17 \\ = 40.0 \quad \text{pound feet}$

- CERTRIC DUMBELL

- $\mathbf{M}_{o'} = (\mathbf{m}_{\mathbf{a}} \mathbf{r}_{\mathbf{a}} + \mathbf{m}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}) \sin \theta (\mathbf{I}_{\mathbf{a}} + \mathbf{I}_{\mathbf{r}}) \mathbf{a}$

43.3 pound feet

ISQUETRIC WITH DYNAMOMETER

EM_ = m_r_ sin0 (32.17) + Rr

= .1005(.3641)sin80°(32.17) + 46.971(.7604)

37.5 pound feet

MOMENT CALCULATIONS (contractions at $\varepsilon = 110^{\circ}$)

Subject 6

CONCENTRIC DUMBELL

ΣM

ΣM

ΣMo

$$(m_a r_a + m_r r_r) \sin \theta + (I_a + I_r) \alpha$$

 $[.1005(.5614) + 1.0021 \le 1.0242)] 32.17 \sin 70^{\circ}$
 $(.0435 + 1.1443) 4.468$

1141

I

96

= 27.4 pound feet

ISOMETRIC DUMBELL

$$= (m_{a}r_{a} + m_{r}r_{r}) 32.17 \sin\theta$$

$$= [.1005(.5614) + 1.2550(1.0242)]32.17 \sin 70^{\circ}$$

$$= 40.6 \text{ pound feet}$$

ECCENTRIC DUMBELL

$$= (\underset{a}{\text{m}}_{a} + \underset{r}{\text{m}}_{r}) \sin \theta - (I_{a} + I_{r}) \alpha$$

= [.1005(.5614) + 1.6607(1.0242)]32.17sin70⁰ (1.96)(3.351)

46.6 pound feet

ISOMETRIC WITH DYNAMOMETER

$$\Sigma M = m_r \sin\theta (32.17) + Rr$$

= $.1005(.5641)sin70^{\circ}(32.17) + 51.402(.7917)$

• 42.4 pound feet

DYNAMOMETER DATA

Two maximal isometric contractions performed on the dynamometer described by Karpovich and Karpovich (1969) were recorded and included in this report as an additional isometric strength measurement. The two contractions were performed at an angle of eighty (80) and onehundred and ten (110) degrees. This section of the report contains the results of the tests.

A problem was encountered with the recording apparatus which had the potential to seriously affect the results. Exhibit 1 displays' two parts of the tracing used to calibrate the dynamometer output. Part "a" shows two horizontal lines. The uppermost line was the base line and a close examination of same revealed that it had shifted first downward and then upward. Part "b" was the actual tracing used in the calibration process and it was noticed that the base line had shifted several times there also. Another student who was using the equipment for his thesis was instructed by Dr. Singh, who was in charge of the machine, to use the level of the line which predominated before the testing began. The lower portion of the line was therefore chosen as the reference point.

Forty-six point zero nine (46.09) pounds was loaded onto the lever arm of the dynamometer. The tracing showed a deflection of thirteen (13) units. The calibration process indicated three point five four five (3.545) pounds per unit.

°98

Exhibit 2 displays the tracings for the various subjects which were tested the same day that the above calibration took place.

EXHIBIT 2

 $\theta = 110^{\circ}$

Subject 1

Subject 2

• •

EXHIBIT 2 cont'd

Subject 3

Subject, 4

Subject 6

80⁰

.

= 110°

θ

3

\$

6

12

n T**r**

ی در معامد م	
- in an an an an an A	-
in in a second	• • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
	1
	· · · · · · ·
1	
The second s	

The data displayed in Exhibit 2 was deficient with regard to the contractions of subjects one, two and five. For a variety of reasons, a retest of each subject was performed. In the case of subjects one and two the retest was conducted after it was suspected that a maximal output had not been given. In the case of subject five, the original results were lost. The results of the retest have been listed in

Exhibit 3 and both the test and calibration recording have been ;

included.

Forty-two point two six (42.26) pounds was loaded onto the lever arm of the dynamometer. The tracing produced a deflection of twelve (12) units. The calibration process indicated three point five two two (3.522) pounds per unit.

Fifty-three point zero six two (53.062) pounds was loaded onto the arm of the dynamometer. The tracing indicated a deflection of fifteen (15) units. The calibration process indicated three point five three seven (3.537) pounds per unit.

Subject 2

EXHIBIT 3 cont'd

Subject 5

 $\theta = 110^{\circ}$

Thirty-four (34) pounds was loaded onto the arm of the dynamometer. The tracing indicated a deflection of Nine point five (9.5) units. The calibration process indicated three point five four five (3.545) pounds per unit.

Calibration

Table 10 contains the data used to compute the R reading

104

for each individual.

TABLE 10

The Determination of R

(the dynamometer torque reading)

•	•	Subject	Deflection (units)	Calibration (pounds/unit)	R (pounds)	÷
. *	80 ⁰	1	7.75	3.545	27.474	•
	80 ⁰	2	6.00	3.545	21.270	
•	/ 80°	3	9.75	3.545	34.564	<
	80 ⁰	4	15.00	3.545	53.175	7
	80 ⁰	5	15.00	3.579	53.685	
	80 ⁰	6	13.25	3.545	46.971	
	110 [°]	1	12.00	3.522	42.264	
	110 ⁰	2	7.50	3.537	26.527	
	110 ⁰	3	11.50	3.545	40.767	
ſ	110 ⁰	- 4	16.25	3.545	57.606	
1.	110 ⁰	5	16.50	3.579	59.053	
х. н	110 ⁰	6	14.50	3.545	51.402	•