
Few-shot, Interpolation-based Style-conditioned Text
Generation using LLMs

by

Moemen Gaafar

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Moemen Gaafar, 2024

Abstract

This thesis addresses the task of few-shot style-conditioned text generation

using large language models (LLMs). We propose a novel, model-agnostic

approach for adapting LLMs to arbitrary styles using a few text samples from

a certain author. Instead of using pre-defined features, our method represents

style directly in terms of model weights and employs a Variational Autoencoder

(VAE) to construct a latent space of these weights, allowing for a generic style

representation.

We investigate whether style features can be generically extracted from

LLM weights, if a salient latent space can effectively encode authorial styles,

and whether an interpolation strategy can extract novel finetuned models for

low-resource authors. Our approach is evaluated on three datasets, comparing

it to naive finetuning and prompting techniques.

Results show that our method outperforms and is more reliable than naive

finetuning in low-resource settings based on automatic metrics. While our

method outperforms prompting for some LLMs using a low number of text

samples, its performance still does not consistently exceed that of prompt-

ing, especially as the number of available text samples increases. This work

contributes to controllable text generation by introducing a weight space in-

terpolation technique for few-shot style adaptation and demonstrating that

model weights can directly represent text style, providing insights for future

research in this area.

ii

Preface

This thesis presents an original work by Moemen Gaafar under the supervision

of Dr. Matthew Guzdial. This work may be restructured to get published

under different research venues in the near future. Generative AI has been used

sporadically in the implementation of this work, mainly to generate boilerplate

code.

iii

Acknowledgements

The two years I took to finish my Master’s degree were full of highs and lows.

I would like to acknowledge all those who stood by me as I went through this

journey. First and foremost, I would like to thank my supervisor Dr. Matthew

Guzdial for his guidance and support during these two years. I learned a lot

from my interactions with Matthew on both the academic and personal levels

and I am grateful for our time working together. I would like to thank Alaa

Alajmy who was there for me from the very beginning to the very end. We

started this journey together and we grew so much along the way. I hope the

future is kinder and brighter for both of us.

I would not have been able to get through these two years without the

friends that I made along the way. I am full of gratitude for Mohamed Elsayed,

Yazeed Mahmoud, Esraa Eleimey, Lucas, and Kian Razavi. I am also grateful

to the wider Edmonton community that became my second home away from

home. Organizations like Food Not Bombs, Rapid Fire Theatre and Fringe

Theatre gave me the opportunity to give back to this community and to meet

a lot of wonderful like-minded people. I am lucky to have come across them

and I hope they continue to grow and affect more lives in the future.

My deepest appreciation extends to my friends around the world, Diaa El-

din Malek, Belal Magdy, Fahmy Ahmed, Mohamed Mahrous, Ahmed Ali,

Omar Ali, Mohamed Kasem, Mohamed Mostafa (Bakkar), Hossam Arafa,

Ahmed Hisham, Asmaa Ibrahim, Mohamed Chaffei, Mahmoud Ashraf, Mo-

hamed Alasmar, Omar Hegazy, Mohamed Ashraf, Seif Tarek, Ahmed Elghan-

dour, Omar El Gammal, Ghada Ali, Ahmed Magdy Ragab, Ammar Shehata,

Toka Alokda, Mohanad ElAbd, Omneya Adel, Afnan Sultan, Hazem Abu-

Bakr, Youssef Ahmed, MAG, and Ziad Elkomy, who, despite the distances,

iv

will always have their places in my heart. Thank you for being one call or

text message away. I hope the universe is kind enough to bring us all back

together. For now, I am grateful that two of my friends, Abdelrahman Elaraby

and Khaled Elbastawisy, are joining the University of Alberta community this

year and are bringing with them a taste of back home. My appreciation also

goes to my parents and siblings whose calls were a source of relief amidst

stressful times.

Finally, I would like to thank the department of Computing Science for

giving me this opportunity to learn and grow. Moving here was the start of a

very significant chapter in my life that I am still learning to navigate through.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions & Contributions 2
1.3 Thesis Outline . 3

2 Background 5
2.1 Artificial Neural Networks . 5

2.1.1 Sequence-to-Sequence Models 7
2.2 Variational Autoencoders . 9
2.3 Language Models . 12

2.3.1 Transformers . 13
2.4 Transfer Learning . 17

2.4.1 Transfer Learning in Large Language Models 18
2.4.2 Low-Rank Adaptation (LoRA) 18

3 Literature Review 20
3.1 Style Transfer and Style-conditioned Text Generation 20
3.2 Few-shot Style-conditioned Text Generation 21

4 System Overview 22
4.1 Constructing the Latent Space 22

4.1.1 Extracting Weight Deltas 24
4.1.2 Training the VAE . 24

4.2 Interpolation . 25
4.3 Implementation . 27

4.3.1 Datasets . 27
4.3.2 Finetuning Llama 2 with LoRA 28
4.3.3 VAE Training . 28
4.3.4 Interpolation . 32

5 Evaluation & Results 34
5.1 Evaluation . 34

5.1.1 Evaluation Metrics . 34
5.1.2 Baselines . 35

5.2 Results . 35
5.2.1 Reddit Dataset . 35
5.2.2 Twitter and Gutenberg Datasets 43

6 Conclusion & Future Work 46
6.1 Future Work . 46
6.2 Conclusions . 47
6.3 Ethical Considerations . 48

vi

References 49

Appendix A Case Study 53
A.1 Success Sample . 53
A.2 Effect of Text Samples . 53
A.3 Effect of Source Models . 55
A.4 Effect of Interpolation Method 55

Appendix B More Results 59

vii

List of Tables

4.1 VAE training hyperparameters. 29

5.1 Comparison of different methods using the UAR similarity met-
ric. The dagger symbol indicates that the values are reported
verbatim from their respective sources. 43

viii

List of Figures

2.1 A single perceptron. 6
2.2 Feedforward Neural Network. 7
2.3 Recurrent Neural Network. 8
2.4 The Encoder-Decoder Architecture. 9
2.5 Autoencoder Architecture. 10
2.6 Variational Autoencoder Architecture. 12
2.7 Low-Rank Adaptation. 19

4.4 Histograms of the difference in percentage change in cross-entropy
loss between the original and the PCA reconstructed weight
deltas for (a) the train split and (b) the validation split of the
Reddit dataset. 31

5.1 Two-dimensional projection of the VAE latent space trained on
the Reddit dataset for (a) the full latent space, and (b) the
connected subset of the latent space. 36

5.2 Heatmap showing the Euclidean distance between subreddit
weights in the VAE latent space for (a) all data points, and
(b) data points that belong to the continuous subset of the la-
tent space. 38

5.3 Cross-Entropy Loss Results for the Reddit dataset. 39
5.4 UAR Scores for the Reddit dataset. 40
5.5 UAR Scores for the Reddit dataset comparing the performance

of our approach with GPT-3.5. 41
5.6 Comparison of different methods using the UAR similarty met-

ric using (a) two text samples, and (b) 16 text samples. 42
5.7 Two-dimensional projection of the VAE latent space trained on

the combined Twitter and Gutenberg datasets for (a) the full
latent space, and (b) the connected subset of the latent space. 44

5.8 Cross-Entropy Loss Results for the combined Gutenberg and
Twitter datasets. 45

A.1 Cross-Entropy Loss Results for the case study data point. . . . 54
A.2 A sequence of snapshots from the latent space during the oper-

ation of our system. The red dot represents the actual location
of the target model in the latent space. The interpolated mod-
els successively approach the actual location as the number of
samples increase. 54

A.3 The Euclidean distance between the interpolated models and
the actual model in the latent space. 55

A.4 Cross-Entropy Loss Results for different text samples of the case
study data point. 56

A.5 A sequence of snapshots from the latent space during the oper-
ation of our system with a bad choice of text samples. 56

ix

A.6 Cross-Entropy Loss Results for the case study data point with
source models that belong to the same subreddit. The red X
represents failure in interpolation. 57

A.7 A sequence of snapshots from the latent space during the oper-
ation of our system with source models that belong to the same
subreddit as the target model. 57

A.8 Cross-entropy results using simple interpolation (left) and ac-
cumulative interpolation (right) for (a) a good choice of source
models and text samples, (b) the same source models but with
different text samples, and (c) source models that belong to the
same subreddit. 58

B.1 Cross-Entropy Loss Results for Reddit Dataset with Simple In-
terpolation. 60

B.2 Cross-Entropy Loss Results for Reddit Dataset with base mod-
els that belong to the same subreddit. 60

B.3 UAR results for the combined Twitter and Gutenberg dataset
with base models belonging to (a) the other dataset, and (b)
the same dataset. 61

x

Chapter 1

Introduction

1.1 Motivation

Text generation is a core task in Natural Language Processing (NLP) research

that powers applications such as machine translation, summarization and ques-

tion answering [1]. Controllable text generation is a subfield of NLP that aims

to guide text generation systems towards outputs that satisfy a certain set of

constraints [2]. Since transformer-based large language models (LLMs) have

become the current state-of-the-art in many NLP tasks, research in this area

has become of great importance due to the difficulty of reliably controlling

their output [2].

Style-conditioned text generation is the task of constraining the generated

text to a certain writing style, usually corresponding to a specific author [3].

Style-conditioned text generation in LLMs is particularly challenging due to

the prohibitive training data requirements of LLMs [2]. Successfully style-

conditioning LLM text generation with a few samples holds the potential for

new applications such as real time adaptation, and empowering end users to

produce text matching their writing style.

Text generated through LLMs can be controlled either through prompt-

ing, finetuning, or postprocessing [2]. While prompting is the least demanding

approach computationally, previous work has shown that it is incapable of re-

liably inferring style from a few text samples [4], [5]. On the other hand, fine-

tuning, while theoretically capable of adapting the model to arbitrary styles,

requires collecting a sizable corpus to be effective, even using low-resource

1

techniques, such as Low Rank Adaptation (LoRA) [6]. Finally, postprocessing

techniques, which modulate the output probabilities of an LLM, have been

shown to be capable of few-shot style-conditioned text generation [7]. How-

ever even these reduced training data requirements might prove burdensome in

some applications, such as applications where a user produces text in real time.

In addition, some of them assume the existence of predefined style features,

such as punctuation frequency, ratio of uppercase to lowercase characters, and

n-gram word counts [8].

In this work, we propose a novel model-agnostic approach capable of per-

forming few-shot adaptation of an LLM to a target style. We differ from prior

approaches in representing style in terms of a model’s weights rather than

secondary features, and employing a Variational Autoencoder (VAE) to con-

struct a latent space of the differences in the model weights, which we call

weight deltas. In our implementation, we extract these weight deltas using

Low-Rank Adaptation (LoRA). This way, our approach does not assume the

availability of predefined style features and leaves it to the VAE to find simi-

larities among the finetuned models. We argue this allows our approach to be

more adaptable in terms of style representation. During inference, we run an

interpolation process that picks the best model weights corresponding to the

provided text samples.

1.2 Research Questions & Contributions

In this thesis, we aim to answer the following research questions regarding

few-shot style-conditioned text generation:

R1 Can we use a Variational Autoencoder to construct a latent space that

is capable of encoding authorial styles using finetuned LLM weights?

R2 Using this latent space, can we employ an interpolation strategy to find

LLM weight deltas that produce LLMs that are more capable of gener-

ating text in a target authorial style compared to baselines using a small

number of text samples from unseen authors?

2

Guided by these questions, our work presents the following contributions:

1. We propose a model-agnostic approach capable of performing few-shot

stylized text generation. Based on automatic metrics, we find that our

approach outperforms and is more reliable than naive finetuning in low-

resource settings. However, our evaluations show that it is still incapable

of reliably outperforming prompting given sufficiently large models.

2. We show that model weights can be used directly as representation for

text style. Without extra information outside of the model weights, we

find that the latent space constructed by the VAE produces embeddings

corresponding to text style.

1.3 Thesis Outline

In this chapter, we provided a brief introduction into the problem of few-

shot style-conditioned text generation. The rest of this thesis is organized as

follows:

1. Chapter 2: Background presents a detailed background that surveys

the main concepts behind Artificial Neural Networks, Language Models,

and Transfer Learning.

2. Chapter 3: Literature Review presents a literature review of previ-

ous work approaching low-data controllable text generation with LLMs.

We also focus on differentiating our problem from the closely-related one

of style transfer.

3. Chapter 4: System Overview presents our proposed system and the

details of our implementation.

4. Chapter 5: Evaluation and Results presents a detailed evaluation

on three distinct datasets.

5. Chapter 6: Conclusions and Future Work shows a discussion of

our results and ends with our suggestions for future work.

3

In addition to these chapters, we include two appendices. Appendix A presents

a case study that showcases the functionality of our proposed system. Ap-

pendix B presents more evaluation results under different settings than the

ones presented in the main text.

4

Chapter 2

Background

In this chapter, we introduce the concepts necessary to understand the work

presented in this thesis. First, we cover Artificial Neural Networks as the

basic computational model that we use in this thesis. Second, we introduce

the Variational Autoencoder architecture since it is the component responsible

for the latent space required for our system. Third, we cover Language Models

with an emphasis on transformer-based Large Language Models. Finally, we

cover the field of transfer learning as it is the area of research our work falls

under.

2.1 Artificial Neural Networks

One of the most important features of computers is their ability to reliably

store and rapidly manipulate data. Utilizing these capabilities, it is possible to

build predictive models that leverage existing data to make predictions about

unseen data. Artificial Neural Networks (ANNs) are computational models,

loosely inspired by biological brains, that can iteratively fit a given corpus of

data [9]. The basic building block of ANNs is the neuron, also know as the

perceptron, shown in Figure 2.1. Given the input features x0, x1, x2, ..., xN ,

the output y of the perceptron is calculated as follows:

y = f(
N
∑

i=0

wi ∗ xi + b) (2.1)

where w0, w1, w2, ..., wN are the weights of the pereceptron, b is the constant

5

the latent space. For simplicity and ease of representation, these probability

distributions typically take the form of Gaussian distributions. Latent vectors

are then sampled from these distributions and passed to the decoder for re-

construction, just like in a regular autoencoder. Accordingly, the VAE can be

expressed as:

µx, σx = e(x) (2.6)

z ∼ N(µx, σx) (2.7)

x̂ = d(z) (2.8)

where µx and σx are the mean and covariance matrices defining the Gaus-

sian distribution corresponding to x in the latent space, and N(µ, σ) is the

Gaussian distribution with mean µ and standard deviation σ. This process

is summarized in Figure 2.6. Encoding input data as distributions instead of

point vectors in the latent space aims to create a continuous and connected

latent space. This continuity enables meaningful interpolation and sampling

within the latent space, facilitating the generation of new coherent data points.

However, this approach alone is inadequate to consistently construct a

latent space suitable for interpolation and generation. Even though input data

are projected as Gaussian distributions, it is still possible that the encoded

distributions might be widely dispersed in the latent space, or might collapse

into point vectors. Consequently, the VAE cannot be effectively trained using

only the reconstruction loss, and so a regularization term is incorporated into

the loss function. This term enforces that the latent distributions’ means and

standard deviations approximate a Gaussian distribution with a mean of 0 and

a standard deviation of 1. Thus, the VAE loss function is expressed as:

Loss = ∥x− x̂∥2 +KL(N(µx, σx), N(0, 1)) (2.9)

where KL stands for the Kullback–Leibler divergance function, which quan-

tifies the divergance between two distributions. In this case, it is used to

11

probability of all tokens in the vocabulary given the prior n−1 tokens. To train

an n-gram model, we count the number of occurrences of each token given the

prior n−1 tokens and then divide it by the total number of occurrences of the

prior n− 1 tokens. This can be expressed as:

P (yt) =
C(yn−t, yn−t+1, ..., yt−1, yt)

C(yn−t, yn−t+1, ..., yt−1)
(2.10)

where C is a counting function and yt is the t-th token in the sentence. Despite

their simplicity, n-gram language models are not very practical since the size

of the probability distribution table increases exponentially as n increases.

They also do not encode any semantic information about the tokens and so

are incapable of learning linguistic relationships among tokens.

Neural networks have been shown to be capable of learning embedding

vectors that can represent the semantic and contextual meaning of tokens

[13]. The number of dimensions of the embedding space is set to be much

smaller than the size of the vocabulary. This salient compression allows neural

networks, especially encoder-decoder models, to perform complex language

tasks without an exponential explosion in model size.

2.3.1 Transformers

Despite the effectiveness of RNN-based encoder-decoder models, they suffer

from a structural problem that limits their capabilities: the information bottle-

neck imposed by the context vector. As the fixed-size context vector produced

by the encoder iteratively encodes more and more information as it processes a

sentence, it loses its ability to retain the necessary context information needed

by the decoder. To mitigate this issue, a new mechanism was proposed for

the encoder-decoder architecture that allows the decoder to attend to all the

hidden states of the encoder, not only the last one. This mechanism is known

as the attention mechanism [14].

The Attention Mechanism

The aim of the attention mechanism is to construct a context vector with

the relevant information for the decoder at each time step using the encoder’s

13

hidden states. This is generally done by learning attention weights that are

used to average the encoder hidden states and calculate the output. The

context vector at time step t is thus calculated as follows:

Ct =
∑

j

αt,jhj (2.11)

where hj is the hidden state of the encoder after the j-th input token. The

attention weights are learned during training using the encoder hidden states

and a subset of the decoder hidden states. Bahdanau et al. [15] used the

decoder hidden state from the previous time step, st−1, for this calculation,

and so the attention weights were calculated as follows:

αt,j = softmax(a(st−1, hj)) (2.12)

where a(·) is the alignment model. For Bahdanau et al. [15], the alignment

model is a neural network component designed to learn and compute attention

weights for each word in the source sentence during the generation of the target

sentence. Luong et al. [16] used the decoder hidden state from the current

time step, st, for calculating the attention weights instead, and used a simpler

alignment calculation based on the dot product of st and hj. This is known

as Global Attention or Scaled Dot-Product Attention.

The attention mechanism improved the performance of RNN-based encoder-

decoder models on various language processing tasks. This success led to it

becoming the basic building block for the transformer architecture.

Self-Attention and the Birth of the Transformer

Vaswani et al. [14], aiming to improve the performance of neural networks in

the task of machine translation, proposed the transformer architecture which

does away with RNNs and relies primarily on the attention mechanism. The

transformer is an encoder-decoder neural architecture, where the encoder and

decoder are composed of stacked identical encoder and decoder units. Since

there is no recurrence in the transformer architecture during training or at

inference time, it proved to be a highly parallelizable architecture. However,

14

this meant that there are no encoder or decoder hidden states to perform

attention calculations. Instead, Vaswani et al. [14] proposed a new attention

mechanism, called self-attention. For each input token in a sentence, instead

of updating the hidden state of the encoder, self-attention computes a new

representation of the token that incorporates information from all other tokens

in the sentence.

Each self-attention layer consists of three main parameter matricesWq, Wk,

Wv which are learned during training. Given a sentence x = (x0, x1, x2, . . . , xn),

to calculate the self-attention output for the token xt, first we compute its

query:

qt = xtWq (2.13)

Then, for each token in the sentence, including xt itself, we calculate the

keys and values:

ki = xiWk, ∀i ∈ {0, 1, 2, . . . , n} (2.14)

vi = xiWv, ∀i ∈ {0, 1, 2, . . . , n} (2.15)

Using the query, keys and values, the self-attention output for xt is calcu-

lated as follows::

at =
∑

i

softmax(
qt · ki√

dk
)vi (2.16)

where dk is the number of dimensions of the key vectors. The final output

of this process is a list of vectors A = (a0, a1, a2, . . . , an), each corresponding

to one of the tokens in X, which becomes the input for the next encoder or

decoder unit.

Each encoder unit of the transformer is composed of a self-attention layer

and a feedforward layer. Each decoder unit is composed of a masked self-

attention layer, an encoder-decoder attention layer, and a feedforward layer.

The attention layers in the decoder have slight variations to the self-attention

15

mechanism described above. The masked self-attention layer only attends to

tokens that come before the current token, x<t. Since the decoder generates

the output tokens one by one, it is not supposed to “look ahead” of the current

time step. The encoder-decoder attention layer performs a similar function to

the context vector, injecting information from the encoder into the decoder.

Instead of calculating its own queries, keys and values matrices, the encoder-

decoder attention layer takes the keys and values matrices of the last encoder

unit of the encoder, and the queries matrix of the masked self-attention layer

in the same unit.

The transformer architecture additionally employs a residual layer nor-

malization technique across each of its layers to enhance training stability

by facilitating smoother information flow and to mitigate issues like vanish-

ing gradients. This method involves adding the input directly to its output

and normalizing activations across feature dimensions. Finally, transformers

use positional encoding to inject sequence order information into the model

because, unlike recurrent architectures, transformers lack inherent sequential

understanding due to their parallel nature. Positional encoding addresses this

by embedding positional information directly into the input embeddings, en-

abling effective handling of tasks requiring sequence understanding.

Large Language Models

Transformer-based models have become state-of-the-art for many language

tasks due to their parallelizable nature and the effectiveness of the self-attention

mechanism. By scaling the transformer architecture, language models started

achieving impressive generalization capabilities across different tasks. For ex-

ample, T5, an encoder-decoder transformer-based model, was capable of per-

forming machine translation in addition to summarization and question an-

swering [17]. Such versatile language models are commonly known as founda-

tional language models, or large language models (LLMs).

While the original transformer architecture was designed with an encoder-

decoder structure for machine translation, other tasks often require further

modifications. For instance, BERT is an encoder-only language model de-

16

signed to learn strong token embeddings, and so it does not need a decoder

since it does not generate output sequences [18]. In contrast, the GPT family

of models employs a decoder-only architecture since their primary goal is text

generation and completion. Decoder-only architectures remove the encoder-

decoder attention layer in the decoder blocks. Surprisingly, with sufficient

scaling of model size and training data, decoder-only LLMs, such as GPT-3,

were found capable of performing tasks that previously required encoding such

as machine translation and summarization.

2.4 Transfer Learning

Transfer learning is a framework in which knowledge learned in one domain is

adapted to perform a task in another domain. In the context of deep learning

using ANNs, the transfer learning framework can be expressed in terms of five

components:

• Source Task (Ts): The task that the neural network is originally trained

to perform.

• Source Dataset (Ds): The data used to train the neural network for the

source task.

• Predictive Function (fT): A neural network trained to perform the source

task using the source data.

• Target Task (Tt): A new task that the neural has not been trained to

perform.

• Target Dataset (Dt): The data which can be utilized by a neural network

to learn the target task.

Deep transfer learning is then defined as the task of improving the perfor-

mance of fT on task Tt using the dataset Dt where Tt ̸= Ts and/or Dt ̸= Ds

[19]. In addition, the size of Dt is usually much smaller than Ds.

17

Multiple methodologies exist to perform deep transfer learning. We focus

mainly on network-based transfer learning where part or all of the neural

network trained on the source domain is reused.

2.4.1 Transfer Learning in Large Language Models

Deep transfer learning is an integral component in the training process of most

LLMs. The process is usually split into a pre-training phase and a finetuning

phase. In the pre-training phase, the LLM is trained on a huge corpus of text

with the self-supervised task of predicting the next or masked tokens. This

self-supervised learning process allows the LLM to learn the complex semantic

meanings of tokens and their relationships with each other. After pretraining,

however, the LLM outputs are often too generic to be useful for downstream

tasks. This is why it is crucial to perform a finetuning phase where the LLM

is further trained on a smaller corpus of selected examples from a downstream

task. Finetuning is then a form of transfer learning where the LLM’s learned

language representations during pretraining are leveraged for a new target

task.

Given an LLM PΦ(yt|x, y<t), the finetuned LLM can be represented as

PΦ+∆Φ(yt|x, y<t), where ∆Φ is the difference in weights (weight deltas) due

to finetuning. In this case, the number of parameters in ∆Φ is equal to that

in Φ. This constitutes an issue for LLMs where the number of parameters is

usually in the scale of billions (e.g. the number of parameters of GPT-3 is 175

billion), and so the process of finetuning can be computationally prohibitive.

Parameter-efficient finetuning techniques mitigate this issue by selecting and

finetuning a subset of LLM parameters, achieving approximate results to full

finetuning.

2.4.2 Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) is a parameter-efficient finetuning technique

capable of reducing the number of finetuning parameters to as little as 0.01%

of the total number of LLM parameters [6]. LoRA freezes the parameters of the

LLM during training so that backprobagation does not affect them. Instead, it

18

Chapter 3

Literature Review

In this chapter, we overview previous literature related to our current work. We

first differentiate between style-conditioned text generation and the adjacent

task of style transfer. Then, we survey past approaches to the problem of

few-shot stylized text generations and how our approach differs from them.

3.1 Style Transfer and Style-conditioned Text

Generation

Text Style Transfer refers to the task of converting a piece of text from its given

style to a target style while preserving its content [20], [21]. Two definitions of

style have been put forward for this task. Attribute-based style transfer aims

to transform text along one or more stylistic dimensions that are explicitly

defined [22]. Attribute-based approaches are limited due to their reliance on

labeled data and their inability to model complex styles [20], [21]. On the

other hand, authorial style transfer aims to transform text to a style that is

not easily explicitly defined, usually attributed to a unique author [23], [24].

Style-conditioned Text Generation is the task of generating more text in

the style of a target author [25]. This task differs from style transfer since

it does not aim to preserve provided content during inference and so it does

not disentangle style from content. Lample et al. demonstrated that this

disentanglement, besides being challenging, is unnecessary in order to model

style [22]. The straight-forward approach to this task is to train a language

model on a corpus of text in the target style [25]. However, as transformer-

20

based LLMs have become the state-of-the-art for text generation, the data

requirements for utilizing the text generation capabilities of LLMs with this

approach have become increasingly prohibitive [2]. Our work addresses this

shortcoming as we aim to model arbitrary text styles in a few-shot setting

while simultaneously leveraging the generation capabilities of LLMs.

3.2 Few-shot Style-conditioned Text Genera-

tion

LLMs have been shown to be excellent zero-shot and few-shot learners in

multiple NLP tasks [2]. STYLL [4] demonstrates that LLMs are capable of

performing style transfer on arbitrary styles through prompting. However,

STYLL prompts the LLM to classify the target style using specific attributes

which are later used to perform style transfer, similar to the work of Reif

et al. [26]. This approach performed satisfactorily for attribute-based style

transfer, but it did not demonstrate the ability to improve its similarity to

complex authorial styles. This is evidenced by STYLL’s poor performance in

approaching the target style even though it is capable of moving away from the

source. Liu et al. [5] mitigate these shortcomings by proposing ASTRAPOP,

a reinforcement learning actor-critic approach to perform style-transfer. How-

ever, while ASTRAPOP performs consistently well on medium-sized corpora,

its performance is inconclusive on small-sized corpora belonging to a single

author. Finally, Khan et al. [7] propose StyleMC, a unified approach to style

transfer and stylized text generation using future discriminators [27]. StyleMC

relies on pretrained style embeddings in its operation. Using model weights

directly, we forgo the need for any predefined notions of style which allows for

more powerful generalizations. We compare our approach to StyleMC later in

this thesis.

21

Chapter 4

System Overview

In this section, we present our proposed system for few-shot style-conditioned

text generation. We frame the problem of few-shot style-conditioned text

generation as the task of obtaining a finetuned LLM, given a small corpus

of text in a certain style, that is capable of generating text in that style.

Given a pre-trained autoregressive LLM PΦ(yt|x, y<t), where Φ stands for the

base model weights, we represent an instance of it finetuned on a corpus C

as PΦ+∆ΦC
(yt|x, y<t) where ∆ΦC stands for the difference in model weights

(weight delta) due to finetuning. As a shorthand notation, moving forward,

we represent the weight deltas as ∆C and to the corresponding finetuned LLM

as P∆C
. Thus, our task can be expressed as follows: given a small text corpus

C∗ from a certain author, we find ∆C∗ that, when applied to the base LLM

weights, produces the finetuned LLM P∆C∗
, which generates text that mimics

the style of that author.

To perform this task, our approach constructs a latent space of LLM weight

deltas and, during inference, approximates novel finetuned models. We discuss

these two steps in details in the following sections.

4.1 Constructing the Latent Space

In this section, we go through the two steps required for constructing the latent

space: extracting the weight deltas and training the VAE. These two steps are

summarized in Figure 4.1. We start with a collection of text corpora belonging

to distinct authors with various writing styles. We finetune a base LLM on

22

each of these corpora to get our finetuned models. The weight deltas are then

extracted from these models and provided as the input to the VAE. The VAE

learns to reconstruct the weight deltas, constructing the latent space in the

process.

4.1.1 Extracting Weight Deltas

For the pre-trained LLM PΦ(yt|x, y<t), we extract a collection of LLM weight

deltas ∆1,∆2,∆3, . . . ,∆n corresponding to LLM instances finetuned on text

corpora C1, C2, C3, . . . , Cn, which belong to distinct authors. These corpora

must be large enough for finetuning to capture the style of each text. When

applied to the base LLM, these weight deltas produce the finetuned LLMs

P∆1
, P∆2

, P∆3
, . . . , P∆n

. Our approach does not make many assumptions about

the finetuning process so any finetuning method can be used as long as the

differences are captured in all or a subset of model weights, and the weight

deltas indeed generate text in their respective author styles when applied to

the base LLM. To make the behavior of our system more predictable, we also

assume that finetuning is performed using the same hyperparameters for all

authors so that the differences between weight deltas would be dependent on

the training corpora only. In our implementation, to reduce the dimensionality

of the weight deltas and the computational resources required for finetuning,

we apply a parameter-efficient finetuning method (LoRA) which captures an

approximation of the weight deltas.

4.1.2 Training the VAE

We employ a VAE to represent the weight deltas in a low-dimensional latent

space that is salient and continuous enough for interpolation. In our context,

saliency means that the VAE is capable of reconstructing the weight deltas with

minimal effects on LLM generation, measured using metrics that we define in

Section 5.1.1. Continuity refers to the ability of the VAE to encode the weight

deltas of similar users closer together in the latent space. As discussed in

Section 2.2, given the input ∆C , the VAE encoder outputs two latent-space

vectors corresponding to the mean µ and covariance σ matrices that define

24

a Gaussian distribution in the latent space. The decoder samples from this

distribution and outputs ∆′
C , a reconstructed version of ∆C . Thus, the loss

function of the VAE can be written as:

Loss = ∥∆C −∆′

C∥2 +KL(N(µ∆C
, σ∆C

), N(0, 1)), (4.1)

The first term represents the reconstruction loss which ensures that ∆′
C is

as close as possible to ∆C . The second term is the regularization loss which

ensures that the VAE indeed represents each ∆C as a Gaussian distribution

in the latent space and not as point vectors like a regular autoencoder.

In our experiments, we found it useful to modify this loss function by

multiplying the regularization term by a tunable parameter β so it becomes:

Loss = ∥∆C −∆′

C∥2 + β ·KL(N(µ∆C
, σ∆C

), N(0, 1)). (4.2)

We found that setting β < 1 helps ensure the VAE is capable of ade-

quately reconstructing the weight differences due to their small scale and high

variability.

4.2 Interpolation

The purpose for learning our VAE was to be able to generate new weight

deltas and associated models from it, which we chose to do via interpola-

tion on the latent space in order to leverage signals from the models it was

trained on. There are multiple ways to perform interpolation from a latent

space. We propose a simple linear interpolation method guided by a random

sample of finetuned models P∆1
, P∆2

, P∆3
, . . . , P∆n

. To simplify interpolation

this method assumes that the topology of the latent space is smooth. We

picked this method because it does not rely on any additional hyperparamters

or domain knowledge for its operation, making it generalizable to other do-

mains and datasets. Given a small corpus C∗ containing a few text samples

corresponding to an unseen author, we pick K models at random from the

collection of finetuned models and perform one pass of finetuning on each us-

ing C∗. This step does not require much time or computational resources due

25

to the small size of the corpus C∗. This is important for any future real-time

applications of our system. By the end of this step, we get ∆∗
1,∆

∗
2, . . . ,∆

∗
K

which vary slightly from the original ∆1,∆2, . . . ,∆K and so are incapable of

modelling the style of C∗. However, using the VAE, we interpolate the weight

delta corresponding to C∗ using these slight variations.

To interpolate using the VAE, we pass ∆1,∆2, ...,∆K through the encoder

to get µ1, µ2, ..., µK . We do the same for ∆∗
1,∆

∗
2, ...,∆

∗
2 and we get the corre-

sponding µ∗
1, µ

∗
2, ..., µ

∗
K . We treat each pair (µt, µ

∗
t) as defining a vector in the

latent space moving from the original model µt in the direction r⃗t = µ∗
t − µt.

This means that we now have K latent-space vectors, which, given the saliency

and continuity of the latent space, should point towards a point that approxi-

mates the target model corresponding to C∗ when passed through the decoder.

For each pair of N -dimensional lines (µ⃗1, r⃗1) and (µ⃗2, r⃗2), assuming they

point towards our target model, we want to find their intersection point in

the latent space. Expressed mathematically, we find t1 and t2 that satisfy the

following equation:

µ⃗1 + t1r⃗1 = µ⃗2 + t2r⃗2 (4.3)

which can be re-written as:

r⃗1t1 − r⃗2t2 = µ⃗2 − µ⃗1 (4.4)

or in matrix form:

Ax = b, (4.5)

where

A =
[

r⃗1 −r⃗2
]T

b =
[

µ⃗2 − µ⃗1

]

26

x =

[

t1
t2

]

Solving this equation returns the vector µ⃗C∗ = µ⃗1+ t1r⃗1 = µ⃗2+ t2r⃗2 which,

when passed through the decoder, constructs our target ∆C∗ . However, since

there is no guarantee that two N -dimensional lines will intersect, we modify

this equation to instead find the least-square approximation as follows:

argmin
x∈RN

∥Ax = b∥, (4.6)

Solving this equation returns t1 and t2 that represent the closest point on

each line to the other one. In this case, we return the midpoint of the line

connecting the two points as our target µ⃗C∗ .

4.3 Implementation

4.3.1 Datasets

We used three text datasets for our evaluation. First, the Twitter dataset is

a subset of the Sentiment140 dataset which contains tweets tagged with the

Twitter handles of their authors [28]. We filtered the dataset for authors with

more than 200 tweets, to ensure there was enough text samples to finetune

the LLM, and ended up with 17 authors in total. Second, we collected the

Gutenberg dataset from the website of Project Gutenberg which provides free

access to electronic books [29]. We retrieved the top 100 most popular books

of all time. We assume that this collection of books approximate a dataset

of distinct styles. We treated each book as a separate author with a distinct

style since an author’s style might change from one book to another, especially

in fiction. Finally, we employed the Reddit dataset, which is a subset of the

Reddit Million User Dataset (MUD) [30]. Similar to Khan et al. [7], we

focused on four subreddits that have distinct styles: r/wallstreetbets, r/news,

r/AskHistorians, and r/australia. We filtered the dataset for authors with

more than 200 posts and picked 30 at random from each subreddit, ending up

with 120 authors in total.

27

For each dataset, we separated 10% of the authors for test data and used

the rest for training. We split the datasets by author to ensure that the styles

of the authors in the test data is not seen by the VAE during training. For

both the training and evaluation authors, we split each author’s text corpus

into train, validation and test sets which we used to finetune and evaluate the

LLMs.

4.3.2 Finetuning Llama 2 with LoRA

We used Llama 2 as the base LLM in our implementation, which is an open-

source autoregressive LLM [31]. Due to its large number of model weights

(7 billion for the version we use), we apply Low-Rank Adaptation (LoRA)

finetuning instead of full finetuning. As discussed in Section 2.4.2, instead

of backpropagating losses to all model weights, LoRA freezes the base model

weights and instead adds an adaptation layer to each Q and V attention layers

of the LLM. LoRA provides two advantages for our system. First, we need

not worry about the finetuning computational and time resources. Second,

we can directly use the adapter weights as the weight deltas for our system.

The 7-billion Llama 2 model contains 32 decoder units, each containing four

4096x4096 attention layers (corresponding to the Q,K,V,O matrices). This

amounts to a total of more than 2 billion weights. Applying LoRA to the Q

and V matrices, each unit now contains four rankx4096 vectors instead, where

rank refers to the rank of the LoRA adapters. Setting the rank parameter to

2 decreases the number of weights to about 1 million weights only.

Thus, for each author corpus, we finetune an instance of Llama 2 using

LoRA to obtain a 32x4x2x4096 weight delta. The extraction process of the

LoRA weights is demonstrated in Figure 4.2. When the LoRA adaptation lay-

ers are populated by the weight delta, we get a finetuned model that generates

text in the style of that author.

4.3.3 VAE Training

Since there is no inherent structure to the model weight deltas (as opposed

to images for example), we found that the VAE encoder and decoder had to

28

their reconstruction and KL loss ascendingly. This way, we can differentiate

between the data points that the VAE fit well (low combined loss) and those

that it did not (high combined loss). For each dataset or split of a dataset, we

extract the five core data points with the least combined loss, which are then

averaged to find a centroid in the latent space that represents them. After that,

the maximum of their Euclidean distance from this centroid is calculated. For

each data point in the dataset, we calculate the distance between itself and

its respective centroid and compare that distance to its respective maximum

distance multiplied by a factor. If its distance to the centroid is less than

that threshold, it is considered a part of the continuous subset of the latent

space. If not, then it is discarded. We found that a factor of three was

capable of adequately discerning between the points that did and those that

did not belong to the continuous subspace of the latent space for all datasets,

assessed through inspecting the latent space graphically and using Euclidean

distance. We experimented with different values for the hyperparameters of

this algorithm and selected the ones that led to better results based on that

criterion.

4.3.4 Interpolation

After the VAE is trained, we perform linear interpolation as described in Sec-

tion 4.2. We use the numpy implementation of least-squares estimation to

find the closest point on each line to the other line. Our approach returns the

midpoint between these two points as the interpolated latent model, which

is passed through the decoder to be constructed. For some lines, this point

falls in the negative direction of the vector from the source to the target mod-

els, indicating that the two source models are diverging in one or more latent

dimensions. In such cases, we do not consider the interpolated models as valid.

Interpolated models differ based on the choice of source models. For the

results in Section 5.2, for each test data point, we choose base models belonging

to a different dataset or a different dataset split than the one that the test data

point belongs to. We believe this is more representative of the performance

of our system on unseen data which might not belong to any of the datasets

32

that the VAE was trained on. The Reddit dataset is already split according to

subreddit so it naturally allows us to make this choice. As for the Gutenberg

and Twitter datasets which are not split internally, we train the VAE on their

combination in order to perform a similar analysis. In Appendix B, we show

additional results where we ignore this consideration.

We experimented with two different methods of interpolation that differ in

how they handle successive text samples. For simple interpolation, we perform

linear interpolation directly using only the changes in latent space produced in

the current timestep. For accumulative interpolation, we accumulate and aver-

age the changes in the latent space produced through all the previous timesteps

until the current one. This allows our system to accumulate information and

stabilizes the interpolated models. This stability problem is showcased in de-

tail in Appendix A. The results shown in the next chapter are produced using

accumulative interpolation. Results produced using simple interpolation can

be found in Appendix B.

33

Chapter 5

Evaluation & Results

5.1 Evaluation

In this section, we discuss the details of the evaluation of our proposed system.

First, we discuss the evaluation metrics and baselines we use for comparison.

Then, we show the results of our experiments for all datasets.

5.1.1 Evaluation Metrics

We use two evaluation metrics in our experiments. First, we use the cross

entropy loss on the test split of the corpus of the unseen author. Using this

metric, we compare the performance of our interpolated models compared to

the finetuned source models. Intuitively, this provides us with a quantitative

estimate about the extent to which our models use the same words in the

same order as the reference author corpus. This metric assumes access to the

output probabilities of the LLM, thus we cannot use it to compare our system

with closed-source models. Since LLMs have a different base cross-entropy loss

for different writing styles, in order to aggregate cross-entropy losses among

different authors, we normalize each author’s cross entropy loss using its base

LLM cross entropy loss.

Second, we use the Universal Authorship Representation (UAR) model,

proposed by Rivera Soto et al. [32], to generate author style embeddings and

measure the cosine similarity between the test split and text generated from

the models under study.

34

5.1.2 Baselines

We compare the performance of our interpolated models to the finetuned

source models and GPT 3.5 prompted for style-conditioned text generation. In

addition, we compare the performance of our system on the Reddit dataset to

the results reported in the literature. To the best of our knowledge, StyleMC

is the only system in the literature that targets the problem of few-shot style-

conditioned text generation, not only style transfer. Unfortunately, however,

due to the recent publication of this system, the source code is not yet avail-

able for us to reproduce the results. To mitigate this limitation, we quote the

results reported by the authors in their paper.

5.2 Results

In this section, we present the evaluation results of our proposed system, or-

ganized by dataset. For each dataset, we show the latent space constructed

by the VAE followed by the metric results.

5.2.1 Reddit Dataset

Latent Space

Figure 5.1a shows the latent space constructed by the VAE trained on the

Reddit dataset. As is clear in the figure, the latent space is mostly fragmented

and discontinuous. However, we were able to extract a continuous subset of

the latent space through the filtering algorithm described in the Section 4.3.3.

As shown in Figure 5.1b, in this subset of the latent space, the VAE was

able to differentiate between the weight differences that belong to the different

subreddits without any prior information.

We confirm this observation by calculating the Euclidean distance in the

latent space between data points according to the subreddits they belong to.

The heatmap in Figure 5.2b confirms that data points in this subset of the

latent space are closer to each other than data points that belong to other

subreddits. This is contrasted with the heatmap in Figure 5.2a, which shows

that this property does not apply to the full latent space. For the following

35

results, we only operate within the continuous subset of the latent space, which

encodes 40 data points (37% of the training dataset).

Cross-Entropy Results

Figure 5.3 shows the cross-entropy loss results for the Reddit dataset, grouped

based on subreddit. We show the percentage change in cross-entropy loss,

relative to the base cross-entropy loss, on the y-axis. All results are below the

y-axis since finetuned models are better at modelling the text corpus compared

to the base model due to the similarities among Reddit user styles even if they

belong to different subreddits.

The results in Figure 5.3 show that our approach outperforms finetuning

for all subreddits for low number of text samples (less than 10). When more

text samples are available, the performance of our approach approximately

converges to that of finetuning.

UAR Results

Figure 5.4 shows the cosine similarity scores for the UAR style embeddings.

The only subreddit where there is a significant difference between the finetuned

models and our approach is r/wallstreetbets. For the other subreddits, their

performance is largely similar.

Finally, we show the performance of our system compared to GPT 3.5

prompted to perform style-conditioned text generation in Figure 5.5. We find

that that while GPT 3.5 outperforms our system in some instances, the vari-

ance in its performance is significantly larger and, based on that, argue that

it is less reliable for this task.

Table 5.1 shows the UAR similarity scores for our system and all baselines.

The results shown in this table are aggregated across all subreddits. The ta-

ble confirms our previous observations about the performance of our system

compared to finetuning and prompting GPT 3.5. We include results gener-

ated by prompting an instruction-tuned version of Llama 2 for comparison.

The table also shows that the reported performance of StyleMC with 16 text

samples exceeds the performance of our system. The StyleMC paper however

37

Method UAR (2 samples) UAR (16 samples)
Our Apporach 0.609 0.607
One-step Backprob 0.588 0.601
Prompting GPT-3.5 0.581 0.649
Prompting Llama-2 0.592 0.633
StyleMC - 0.849²

Table 5.1: Comparison of different methods using the UAR similarity metric.
The dagger symbol indicates that the values are reported verbatim from their
respective sources.

5.2.2 Twitter and Gutenberg Datasets

Latent Space

As with the Reddit dataset, we find that the full latent space of the VAE

trained on the combined Twitter and Gutenberg datasets is disconnected.

However, as shown in Figure 5.7, a larger portion of the data points fit within

the continuous subset of the latent space. For the Twitter dataset, 11 data

points were encoded in this continuous subset (78% of the training data), and

for the Gutenberg dataset, 66 data points were encoded in it (81% of the

training data). We hypothesize that these percentages are higher compared to

that of the Reddit dataset due to the higher inner similarity among data points

within the Twitter and Gutenberg datasets compared to the Reddit data.

Again, the VAE is shown to be capable of discerning the difference between

both datasets just from the weight deltas without any extra information.

Cross-Entropy Results

Figure 5.8 shows the cross-entropy loss results for the Gutenberg and Twitter

datasets. Again, we show the percentage change in cross-entropy loss on the

y-axis. The results for the Gutenberg dataset are similar to the results for the

Reddit dataset with our approach outperforming finetuning for low number

of text samples and converging to finetuning as the number of text samples

increases. However, for the Twitter dataset, we find that finetuning slightly

outperforms our approach especially as the number of text samples increases.

We suspect that this is due to the fact that the Twitter dataset is quite small

43

Chapter 6

Conclusion & Future Work

In this chapter, we summarize our findings based on the results presented in

the previous section. We also suggest future research directions that we believe

have the potential to improve our proposed system and provide more insights

into its functionalities.

6.1 Future Work

There are multiple directions that future research can take to build on our

current work:

1. Latent Space Connectivity: One issue that we spent much time

studying was how to balance latent space connectivity with the VAE’s

ability to reconstruct weights. Tuning the parameter β and selecting a

subset of the latent space allowed us to circumvent this issue. However,

it would be beneficial to find a training methodology that predictably

produces a continuous latent space. This could also allow for an easier

scaling of our system by including more data.

2. Latent Space Salience: While we showed that the latent space was

salient enough to differentiate between weight deltas that belonged to

different datasets or splits of the same dataset, it would be beneficial

to further investigate the linguistic style features included in each latent

space dimension, if any. This insight into the latent space could be used

to construct more elaborate interpolation mechanisms.

46

3. Interpolation Efficiency: Our proposed interpolation mechanism re-

lies on finetuning source models on a few text samples. While this process

is efficient in our case due to our decision to work with LoRA, in order

for this methodology to be more generalizable, it would be of interest to

find other interpolation methods that can forgo this step and rather use

other sources of information to guide the interpolation process.

4. Interpolation Complexity: Our proposed interpolation mechanisms

make a simplifying assumption about the smoothness of the latent space.

However, the latent space might be much more complex with multiple

hills and valleys. In this case, it would be beneficial to employ an in-

terpolation method that takes such topological information about the

latent space into consideration.

5. Generalized Style Evaluation Metrics: Since the Reddit dataset

is the standard dataset used to study style-conditioned text genera-

tion in the literature, UAR scores have also become the standard style-

embedding metric to evaluate the output text. However, for method-

ologies such as ours that aim for generalizability of style extraction and

interpolation, it is not enough to rely on them for evaluation. Future re-

search might find it beneficial to try and construct more generic datasets

and evaluation metrics for generalized style-conditioned text generation.

6.2 Conclusions

Through the work we presented in this thesis, we were able to provide the

following answers our research questions.

R1 Can we use a Variational Autoencoder to construct a latent

space that is capable of encoding authorial styles using fine-

tuned LLM weights?

We found that a Variational Autoencoder was able to encode meaningful

style information relying only on finetuned LLM weights, and able to

reconstruct the weight deltas that produce these finetuned LLMs. While

47

the VAE required multiple adjustments, such as discounting the KL loss

values during training and subsequent filtering of the latent space, we

believe that these adjustments are relatively minor.

R2 Using this latent space, can we employ an interpolation strategy

to find LLM weight deltas that produce LLMs that are more

capable of generating text in a target authorial style compared

to baselines using a small number of text samples from unseen

authors?

We found that it is possible to interpolate models that outperform fine-

tuning from the VAE latent space. While UAR scores did not show

significant improvement in style similarity, the cross-entropy scores for

both datasets were significantly better than in the case of finetuning in

low-data cases (n < 10). The performance of our system has also shown

to be more reliable than prompting.

While our results were inconclusive in some areas, we believe this line of

research can open the door for more powerful and generic low-resource LLM

adaptation algorithms.

6.3 Ethical Considerations

This work proposes an approach to mimic the style of a certain author us-

ing a few text samples. In addition to useful application, we are aware that

the system developed in this work can be used for malicious purposes such as

scamming and cheating. We strongly oppose such use cases of our work. This

work was developed to be used for educational and entertainment-related pur-

poses only. Parts of this work however can be used for authorship verification

and so can be repurposed to combat these malicious use cases.

48

References

[1] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, Pretrained lan-
guage models for text generation: A survey, 2022. arXiv: 2201.05273
[cs.CL]. [Online]. Available: https://arxiv.org/abs/2201.05273.

[2] H. Zhang, H. Song, S. Li, M. Zhou, and D. Song, “A survey of controllable
text generation using transformer-based pre-trained language models,”
ACM Comput. Surv., vol. 56, no. 3, Oct. 2023, issn: 0360-0300. doi:
10.1145/3617680. [Online]. Available: https://doi.org/10.1145/
3617680.

[3] L. Mou and O. Vechtomova, “Stylized text generation: Approaches and
applications,” in Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics: Tutorial Abstracts, A. Savary and
Y. Zhang, Eds., Online: Association for Computational Linguistics, Jul.
2020, pp. 19–22. doi: 10.18653/v1/2020.acl-tutorials.5. [Online].
Available: https://aclanthology.org/2020.acl-tutorials.5.

[4] A. Patel, N. Andrews, and C. Callison-Burch, “Low-resource authorship
style transfer: Can non-famous authors be imitated?,” 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:254853995.

[5] S. Liu, S. Agarwal, and J. May, “Authorship style transfer with pol-
icy optimization,” ArXiv, vol. abs/2403.08043, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:268379272.

[6] E. J. Hu, Y. Shen, P. Wallis, et al., Lora: Low-rank adaptation of large
language models, 2021. arXiv: 2106.09685 [cs.CL].

[7] A. Khan, A. Wang, S. Hager, and N. Andrews, “Learning to generate text
in arbitrary writing styles,” ArXiv, vol. abs/2312.17242, 2023. [Online].
Available: https://api.semanticscholar.org/CorpusID:266573772.

[8] K. Lagutina, N. Lagutina, E. Boychuk, et al., “A survey on stylometric
text features,” in 2019 25th Conference of Open Innovations Associa-
tion (FRUCT), 2019, pp. 184–195. doi: 10.23919/FRUCT48121.2019.
8981504.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

49

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. [Online]. Available: https://doi.org/
10.1162/neco.1997.9.8.1735.

[11] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation
of gated recurrent neural networks on sequence modeling, 2014. arXiv:
1412.3555 [cs.NE]. [Online]. Available: https://arxiv.org/abs/
1412.3555.

[12] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2022.
arXiv: 1312.6114 [stat.ML]. [Online]. Available: https://arxiv.
org/abs/1312.6114.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of
word representations in vector space, 2013. arXiv: 1301.3781 [cs.CL].
[Online]. Available: https://arxiv.org/abs/1301.3781.

[14] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need,
2023. arXiv: 1706.03762 [cs.CL].

[15] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by
jointly learning to align and translate, 2016. arXiv: 1409.0473 [cs.CL].
[Online]. Available: https://arxiv.org/abs/1409.0473.

[16] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-
based neural machine translation,” in Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, L. Màrquez, C.
Callison-Burch, and J. Su, Eds., Lisbon, Portugal: Association for Com-
putational Linguistics, Sep. 2015, pp. 1412–1421. doi: 10.18653/v1/
D15-1166. [Online]. Available: https://aclanthology.org/D15-1166.

[17] C. Raffel, N. Shazeer, A. Roberts, et al., Exploring the limits of transfer
learning with a unified text-to-text transformer, 2023. arXiv: 1910.10683
[cs.LG]. [Online]. Available: https://arxiv.org/abs/1910.10683.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019. arXiv:
1810.04805 [cs.CL]. [Online]. Available: https://arxiv.org/abs/
1810.04805.

[19] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, A survey
on deep transfer learning, 2018. arXiv: 1808.01974 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1808.01974.

[20] Z. Fu, X. Tan, N. Peng, D. Zhao, and R. Yan, “Style transfer in text:
Exploration and evaluation,” ArXiv, vol. abs/1711.06861, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:6484065.

50

[21] D. Jin, Z. Jin, Z. Hu, O. Vechtomova, and R. Mihalcea, “Deep learning
for text style transfer: A survey,” Computational Linguistics, vol. 48,
no. 1, pp. 155–205, Mar. 2022. doi: 10.1162/coli_a_00426. [Online].
Available: https://aclanthology.org/2022.cl-1.6.

[22] S. Subramanian, G. Lample, E. M. Smith, L. Denoyer, M. Ranzato, and
Y.-L. Boureau, “Multiple-attribute text style transfer,” ArXiv, vol. abs/1811.00552,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
53295789.

[23] H. Jhamtani, V. Gangal, E. H. Hovy, and E. Nyberg, “Shakespeariz-
ing modern language using copy-enriched sequence to sequence models,”
ArXiv, vol. abs/1707.01161, 2017. [Online]. Available: https://api.
semanticscholar.org/CorpusID:9737200.

[24] B. Syed, G. Verma, B. V. Srinivasan, A. Natarajan, and V. Varma,
“Adapting language models for non-parallel author-stylized rewriting,”
ArXiv, vol. abs/1909.09962, 2019. [Online]. Available: https://api.
semanticscholar.org/CorpusID:202719307.

[25] A. Tikhonov and I. P. Yamshchikov, “Guess who? multilingual approach
for the automated generation of author-stylized poetry,” 2018 IEEE Spo-
ken Language Technology Workshop (SLT), pp. 787–794, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:49879813.

[26] E. Reif, D. Ippolito, A. Yuan, A. Coenen, C. Callison-Burch, and J. Wei,
“A recipe for arbitrary text style transfer with large language models,” in
Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), S. Muresan, P. Nakov, and
A. Villavicencio, Eds., Dublin, Ireland: Association for Computational
Linguistics, May 2022, pp. 837–848. doi: 10.18653/v1/2022.acl-
short.94. [Online]. Available: https://aclanthology.org/2022.acl-
short.94.

[27] K. Yang and D. Klein, “Fudge: Controlled text generation with future
discriminators,” ArXiv, vol. abs/2104.05218, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:233210709.

[28] A. Go, “Twitter sentiment classification using distant supervision,” 2009.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
18635269.

[29] Project Gutenberg, Project Gutenberg, http://www.gutenberg.org,
Retrieved July 20, 2024.

[30] J. Baumgartner, S. Zannettou, B. Keegan, M. Squire, and J. Blackburn,
The pushshift reddit dataset, Jan. 2020. doi: 10.5281/zenodo.3608135.
[Online]. Available: https://doi.org/10.5281/zenodo.3608135.

[31] H. Touvron, L. Martin, K. Stone, et al., Llama 2: Open foundation
and fine-tuned chat models, 2023. arXiv: 2307.09288 [cs.CL]. [Online].
Available: https://arxiv.org/abs/2307.09288.

51

[32] R. A. Rivera-Soto, O. E. Miano, J. Ordonez, et al., “Learning univer-
sal authorship representations,” in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, M.-F. Moens,
X. Huang, L. Specia, and S. W.-t. Yih, Eds., Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 913–919. doi: 10.18653/v1/2021.emnlp-main.70. [Online].
Available: https://aclanthology.org/2021.emnlp-main.70.

52

Appendix A

Case Study

In this section, we present a case study that showcases the functionality of our
system’s interpolation process. For the purposes of this case study, we pick
a data point from the training data so that we would be able to compare its
interpolated latent representation with its actual latent representation. First,
we showcase a sample result where our system successfully interpolates latent
models. Second, we study the effect of various system settings, specifically
the choice of source models and the choice of data samples, on these results.
Finally, we show how accumulative interpolation solves some of the issues that
come up in different settings.

A.1 Success Sample

We picked a case study datapoint that belongs to the subreddit r/wallstreetbets.
Similar to the results in Section 5.2, we randomly select source models that
belong to other subreddits. In this case study, we pick 3 base models. Figure
A.1 shows the cross entropy results produced by models interpolated using our
approach compared to finetuning. As the figure shows, our system is capable
of interpolating models that outperform naive finetuning on the given text
samples.

Given the knowledge of the actual position in the latent space of the data
point, we can inspect the operation of our system and check its validity. Figure
A.2 shows this process. We also validate these results by plotting the Euclidean
distance in the latent space between the interpolated models and the actual
location of the target model, shown in Figure A.3. It is clear from these two
figures that our system indeed captures the style of the target author as the
number of text samples available increases.

A.2 Effect of Text Samples

While a text corpus belonging to a certain author generally represents their
style, each text sample differs in how much it represents that style. For this
reason, in few-shot settings, there is the risk that a few text samples that are
not clearly in the style of the author might misguide the system. Figure A.4
shows the cross-entropy results for our system in the same setting but with a
different subset of text samples. We can see that the text samples in the range
from 6 to 10 push the system away from the target model. This is supported by

53

Appendix B

More Results

In this appendix, we present more results from the evaluations we performed
on our system. In Section 5.2, we showed the results for the setting where the
source models are selected to be belonging to a different dataset or a different
split than the target model. We also only showed results for accumulative in-
terpolation. In the next sections, we show cross-entropy results for the Reddit
dataset in different settings. We also show the UAR results for the Twitter
and Gutenberg datasets which we omitted for inconsistency.

Reddit Dataset Results with simple interpolation

Figure B.1 shows the cross-entropy results for the Reddit dataset with simple
interpolation. Compared to Figure 5.3, we find that simple interpolation leads
to more visible variations in the performance of the interpolated models. This
observation is in tandem with our case study observations in Appendix A.

Reddit Dataset Results with different base models

Figure B.2 shows the cross-entropy results of the Reddit Dataset when base
models are selected to be belonging to the same subreddit as the target model.
To compare with Figure 5.3, we show the results for accumulative interpola-
tion. We find that when the base models already belong to the same distribu-
tion as the target model, the performance of our system is almost the same as
finetuning.

Twitter and Gutenberg Dataset UAR Results

Figure B.3 shows the UAR results for the combined Twitter and Gutenberg
datasets. Comparing the case when the source models belong to the other
dataset (Figure B.3a) to that when the source models belong to the same
dataset (Figure B.3b), we find a discrepancy in the performance of the source
models for the Gutenberg dataset where source models that do not belong
to the dataset perform better on average than those that belong to it. This
anomaly is probably caused by UAR scores being trained on Reddit data that
is significantly out-of-distribution for the Gutenberg dataset. This hypothesis
is supported by the relative consistency of the UAR scores for the Twitter
dataset which is closer to the style of Reddit data.

59

	Introduction
	Motivation
	Research Questions & Contributions
	Thesis Outline

	Background
	Artificial Neural Networks
	Sequence-to-Sequence Models

	Variational Autoencoders
	Language Models
	Transformers

	Transfer Learning
	Transfer Learning in Large Language Models
	Low-Rank Adaptation (LoRA)

	Literature Review
	Style Transfer and Style-conditioned Text Generation
	Few-shot Style-conditioned Text Generation

	System Overview
	Constructing the Latent Space
	Extracting Weight Deltas
	Training the VAE

	Interpolation
	Implementation
	Datasets
	Finetuning Llama 2 with LoRA
	VAE Training
	Interpolation

	Evaluation & Results
	Evaluation
	Evaluation Metrics
	Baselines

	Results
	Reddit Dataset
	Twitter and Gutenberg Datasets

	Conclusion & Future Work
	Future Work
	Conclusions
	Ethical Considerations

	References
	Appendix Case Study
	Success Sample
	Effect of Text Samples
	Effect of Source Models
	Effect of Interpolation Method

	Appendix More Results

