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Abstract

One of the main difficulties in extending Macdonald’s theory of spherical func-

tions from p-adic Chevalley groups to p-adic Kac-Moody groups is the absence of

Haar measure in the infinite dimensional case. Related to this problem is the ques-

tion of how to generalize the integral defining Harish-Chandra’s c-function to the

p-adic Kac-Moody setting. Finding answers to these questions is the key objective

of this thesis.

Our main results, proven in the setting of p-adic Kac-Moody groups, are the

finiteness of formal analogues of the spherical function (Spherical Finiteness), the

c-function (Gindikin-Karpelevich Finiteness), and a formal analogue of Harish-

Chandra’s limit (Approximation Theorem) relating spherical and c-function.

These results have been proven byA.Braverman, H.Garland, D.Kazhdan andM.

Patnaik for untwisted affine Kac-Moody groups using algebraic and representation

theoretic techniques. In this thesis, we prove these results for p-adic Kac-Moody

groups by using a method motivated by Braverman et. al. but distinct even in the

affine case.
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Chapter 1

Introduction

1.1 Origin of the Problem

The central object of this thesis “the Gindikin-Karplevich formula” originated from

the theory of spherical functions on the real semi-simple Lie groups. The study of

these functionswas initiated byV.Bargman [2], I.M.Gelfand [25], R.Godment [28],

and significantly advanced by Harish-Chandra’s work [30, 31]. In the following,

we introduce these functions and give an account of their relationship with the

Gindikin-Karpelvich formula.

1.1.1 Spherical Functions

Let G be a connected, semisimple Lie group with finite center and g := Lie(G) be

its Lie algebra. Let K be a maximal compact subgroup of G, and θ : g → g the

corresponding Cartan involution, which has eigenvalues ±1. Letting k = {X ∈ g |

θ(X) = X} and p = {X ∈ g | θ(X) = −X}, we have a Cartan decomposition

g = k⊕p. Pick a ⊂ p a maximal, abelian subalgebra and letA be the corresponding

Lie subgroup of G; writing exp for the exponential map, we have exp(a) = A.
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Under the adjoint action, the elements of a are (jointly) diagonalizable and the non-

zero eigenvalues are given by the roots of g. Pick a set of positive roots, and let

n+ denote the sum of the corresponding eigenspaces; it is a nilpotent subalgebra.

Let U+ be the corresponding Lie subgroup of G. The Iwasawa decomposition then

states that

G = KAU+ = K exp(a)U+ (1.1)

that is, each g ∈ G can be written uniquely as g = kau = k exp(h)u for k ∈

K,u ∈ U+, and a = exp(h), h ∈ a. Let a∗C be the dual of the complexification

aC := C ⊗R a. Let ∆0 ⊂ a∗C be the set of roots, ∆0,+ be the set of positive roots

and Π0 be set of simple roots. Let A+ ⊂ A be the cone of dominant elements of A.

We denote by DK(G) the set of all K-bi-invariant differential operators on G. Let

us now define the main notion of this subsection.

Definition 1.1.1. A continuous function

f : G −→ C (1.2)

is called a spherical function if: (i) f(1) = 1; (ii) f(kgk′) = f(g) for all k, k′ ∈ K

and g ∈ G; (iii) f is an eigenfunction for each operator in DK(G).

Let dk be the invariant Haar measure on K, normalized by
∫
K
dk = 1.

1.1.2 Harish-Chandra’s c-function

In his seminalwork [30], Harish-Chandra introduced the nowwell known c-function.

This was the starting point of the Gindikin-Karpelevich formula. For more details

on the c-function, let v : a −→ C be a function. Associated with this function, we

2



define a character φv : G −→ C∗ as φv(g) = e〈v,h〉, where g ∈ G has the Iwasawa

decomposition g = k exp(h)u for some k ∈ K, u ∈ U+ and exp(h) ∈ A with

h ∈ a. Let ρ = 1
2

∑
α∈∆0,+

α. Harish-Chandra parametrized the set of spherical

functions on G by the following theorem (see corollary on page 61 in [30].)

Theorem 1.1.2. As v runs through a∗C, the functions

fv(g) =

∫
K

φv+ρ(gk)dk, g ∈ G, (1.3)

exhaust the class of spherical functions on G and fv = fv′ if and only if v′ ∈ Wv,

whereWv is the orbit of v under the action ofW on a∗C.

Let U− be the unipotent group opposite to U+. In Theorem 4 of op. cit. the

asymptotic behaviour of the spherical function fv was studied and Harish-Chandra

showed

Theorem 1.1.3. Let Re(iv) ∈ a∗, then the limit cv := lim
a
+→∞

fv(a)
φv+ρ(a)

exists and it

is equal to

cv =

∫
U−

φv+ρ(u
−)du−, (1.4)

where du− is the Haar measure on U− normalized such that
∫
U−

φ−2ρ(u
−)du− = 1

and a
+→ ∞ means a is made increasingly dominant in the cone of dominant

elements A+.

The function cv is known as the Harish-Chandra’s c-function.
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1.1.3 Bhanu Murti’s Solution

F. Karpelevich started working on the c-function and computed it for SL3(R) in

1959, but he never made his solution public [27]. F. A. Berezin proposed this

problem to his PhD student T. S. Bhanu Murti, who found a product formula for

SLn(R) in [5]. After this, Karpelevich suggested to Bhanu Murti the problem for

the symplectic group Spn(R). He solved this problem (see [4]) and obtained these

solutions by using an inductivemethod. In this subsection, we outline BhanuMurti’s

strategy for SLn(R).

Let U− ⊂ SLn(R) be the group of lower unipotent matrices and u− ∈ U− be

such that

u− =



1 0 0 . . . 0

u21 1 0 . . . 0

u31 u32 1 . . . 0

... ... ... . . .
...

un1 un2 un3 . . . 1


. (1.5)

Next, let u1, u2, u3, . . . , un be columns of matrix u− and for 1 ≤ i, j ≤ n, 〈ui, uj〉

denotes the inner product of two columns. For 1 ≤ r ≤ n, suppose

u−r =



〈u1, u1〉 〈u1, u2〉 . . . 〈u1, ur〉

〈u2, u1〉 〈u2, u2〉 . . . 〈u2, ur〉
... ... . . .

...

〈ur, u1〉 〈ur, u2〉 . . . 〈ur, ur〉


(1.6)

and Dr = det(u−r ). Bhanu Murti [5, P. 862] proved the following result.
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Theorem 1.1.4. Harish-Chandra’s c-function for SLn(R) satisfies

cv = NCn(v), (1.7)

where

Cn(v) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
D
−i v1−v2

2
− 1

2
1 . . . D

−i vn−1−vn
2

− 1
2

n−1 du−, (1.8)

N =

∫
U−

1

D1D2 . . . Dn−1

du−, (1.9)

v = (v1, v2, . . . , vn) and du− is the product measure
∏

i>j du
−
ij .

Moreover, he showed that the integral Cn(v) can be solved inductively and the

problem reduces to rank one computations. He obtained a formula for cv as a

product of Beta functions (cf. Section 1.1.4).

1.1.4 General Formula

Bhanu Murti could not extend and generalize his work for all semi-simple Lie

groups. Then, Gindikin and Karpelevich took up this problem. By following Bhanu

Murti’s inductive method, they evaluated the integral on the right hand side of (1.4)

for any semi-simple Lie group and gave the following solution in [26].

With the notations of Subsection 1.1.1, let

∆̃0,+ = {α ∈ ∆0,+ |
1

2
α 6∈ ∆0,+}. (1.10)

Theorem 1.1.5. For each α ∈ ∆̃0,+ set rα,v = 2−1〈v, α∨〉. The Harish-Chandra cv

5



has the following formula

cv = c0

∏
α∈∆̃0,+

2rα,vΓ(rα,v)

Γ(1
2
(1

2
m(α) + 1 + rα,v))Γ(1

2
(1

2
m(α) +m(2α) + 1 + rα,v))

,(1.11)

where for a positive integer n, Γ(n) is the gamma function, c0 is a constant such that

cρ = 1, and for a root β,m(β) denotes the multiplicity of β.

This expression for the c-function is now known as the Gindikin-Karpelevich for-

mula.

1.2 Non-Archimedean Case

1.2.1 Macdonald’s Work

The theory of spherical functions for real semi-simple groups was extended to p-

adic groups by F. T. Mautner [48], T. Tamagawa [59], F. Bruhat [9, 10], I. Satake

[56], and others. To describe the non-archimedean analogue of the construction

of the previous section, let K be a non-archimedean local field with ring of the

integers O. Pick π be a uniformizing element and k = O/πO be the finite residue

field of cardinality q. Suppose G = G(K) is a split, simply-connected Chevalley

group over K. We denote the integral subgroup G(O) by K; this group is a non-

archimedean analogue of maximal compact subgroup. LetH be a Cartan subgroup

and HO = H ∩ K. The quotient group A := H/HO can be identified with the

coweight lattice Λ∨ (which is equal to the coroot lattice Q∨ since G is simply-

connected) via the map µ∨ 7→ πµ
∨ . The Iwasawa decomposition in this context

states that G = ∪µ∨∈Λ∨Kπ
µ∨U+, that is, every g ∈ G can be written as g = kπµ

∨
u

with µ∨ uniquely determined by g (note that k ∈ K and u ∈ U+ are not uniquely

6



determined). For a map v : A −→ C∗ we can define a function

φv : G −→ C∗

as φv(g) = q〈v,µ
∨〉, if g ∈ G has Iwasawa decomposition as above g ∈ Kπµ∨U+,

µ∨ ∈ Λ∨. The spherical function on G can be defined as in (1.3)

fv(g) =
∫
K
φv+ρ(gk)dk, (1.12)

where dk is the normalized Haar measure on K so that
∫
K
dk = 1. In an analogy

with the archimedean case, by taking the limit λ∨ → ∞ in the dominant cone, the

integral on the right hand side of (1.12) over K can be shifted to an integral over

U−, that is

cv := lim
λ∨

+→∞

fv(π
λ∨)

φv+ρ(πλ
∨)

=

∫
U−

φv+ρ(u
−)du−, (1.13)

where du− is an appropriately normalized Haar measure onU−. Following the same

inductive method of Gindikin and Karpelevich, Macdonald in [43, P. 77] found the

following formula for the above integral.

cv =
∏

α∨∈∆∨0,+

1− q−1−v(α∨)

1− q−v(α∨)
, (1.14)

where ∆∨0,+ is the set of positive coroots.

7



1.2.2 Constant Term Formula

In Langlands’ notes [40, P 25], the integrals on the right hand side of (1.4) and (1.13)

also appear in his computation of the constant term of the Fourier series expansion

of Eisenstein series on certain adelic groups. A full account on the Fourier series

expansion can be found in Langlands’ notes and [21, Ch. 9].

1.3 Non-Archimedean Case: Formal Analogues

SinceHaarmeasures do not exist in generalKac-Moodygroups over non-archimedean

local fields, we need an algebraic formulation for the constructions given in the Sub-

section 1.2.1. Let us rephrase the integrals (1.12) and (1.13) as follows. The function

fv is bi-invariant with respect toK and hence constant on each Cartan cellKπλ∨K,

λ∨ ∈ Λ∨+. So, if g ∈ G and k ∈ K are such that gk ∈ Kπµ
∨
U+ ∩ Kπλ∨K for

some µ∨ ∈ Λ∨ and λ∨ ∈ Λ∨+ then φv+ρ(gk) = q〈v+ρ,µ∨〉. Thus, the integral (1.12)

becomes equal to

fv(g) =
∑
µ∨∈Λ∨

q〈v+ρ,µ∨〉V ol(Kπµ
∨
U+ ∩Kπλ∨K). (1.15)

The volume V ol(Kπµ∨U+ ∩Kπλ∨K) with Haar measure dk (which is normalized

so that K has volume 1) is equal to |K\Kπµ∨U+ ∩ Kπλ∨K|, where |X| denotes

the cardinality of a set X .

By the Iwasawa decomposition, µ∨ runs through all the coweights. So, one

obtains the following formal version (i.e. valued in C[Λ∨] rather than C) of the

spherical function fv:

8



Sλ∨ :=
∑
µ∨∈Λ∨

|K\Kπµ∨U+ ∩Kπλ∨K|q〈ρ,µ∨〉eµ∨ , (1.16)

such that the value of function fv(g) for g ∈ Kπλ
∨
K satisfying gk ∈ Kπµ

∨
U+

is equal to fv(g) = evv(Sλ∨), where evv : C[Λ∨] −→ C is the map defined as

eµ
∨ 7→ q〈v,µ

∨〉. Similarly, a formal version of the Gindikin-Karpelevich integral

(1.13) is written as:

Gλ∨ :=
∑
µ∨∈Λ∨

|K\Kπλ∨−µ∨U+ ∩Kπλ∨U−|q〈ρ,λ∨−µ∨〉eλ∨−µ∨ . (1.17)

Let us immediately notice the following “homogenity” property of the sum Gλ∨ ,

which shows that it suffices to obtain a formula for G0.

Lemma 1.3.1. The sum Gλ∨ satisfies

Gλ∨ = q〈ρ,λ
∨〉eλ

∨
G0 (1.18)

The proof of Lemma 1.3.1 follows from the following bijection of the sets

Kπλ
∨−µ∨U+ ∩Kπλ∨U− ↔ Kπλ

∨−µ∨U+π−λ
∨ ∩Kπλ∨U−π−λ∨ ,

by the equality

Kπλ
∨−µ∨U+π−λ

∨ ∩Kπλ∨U−π−λ∨ = Kπ−µ
∨
U+ ∩KU− (1.19)

and some simple algebra.

9



The sum Sλ∨ is connected with the Satake map,

S : H −→ C[Λ∨]W ,

where the notation is as follows: H is the space of complex valued, compactly

supported K-bi-invariant functions on G with basis consisting of the characteristic

functions hλ∨ = χKπλ∨K of Kπλ∨K for all λ∨ ∈ Λ∨+;W is the Weyl group; C[Λ∨]

is the group algebra of Λ∨; and C[Λ∨]W is itsW -invariant subspace.

For λ∨ ∈ Λ∨+, the Satake map S sends hλ∨ to Sλ∨ . In [43], I. G. Macdonald

determined an explicit formula for Sλ∨

Sλ∨ =
q〈ρ,λ

∨〉

Wλ∨(q−1)

∑
w∈W

w(Υ)ewλ
∨
, (1.20)

whereΥ =
∏

α∨∈∆∨0,+

1−q−1e−α
∨

1−e−α∨ is a rational expression fromCq[Λ
∨] := C[q, q−1]⊗C

C[Λ∨]; andWλ∨(q−1) =
∑

σ∈Wλ∨
q−`(σ) is the Poincare polynomial of the stabilizer

Wλ∨ ⊂ W of λ∨, where ` : W −→ Z denotes the length function onW . The formal

analogue of the limit (1.13) can be stated as:

Theorem 1.3.2 (Approximation Theorem). For each µ∨ ∈ Λ∨, there exists λ∨0 ∈ Λ∨+

regular such that for all λ∨ > λ∨0 , we have

Kπλ
∨−µ∨U+ ∩Kπλ∨U− = Kπλ

∨−µ∨U+ ∩Kπλ∨K. (1.21)

For finite dimensional groups, a proof of this result can be found in [3, Proposition

3.6 (ii)]. By using Lemma 1.3.1 and Theorem 1.3.2, G0 can be expressed as

G0 = lim
λ∨

+→∞

Sλ∨
q〈ρ,λ∨〉eλ∨

, (1.22)

10



where λ∨ +→∞ indicates that the regular dominant coweight λ∨ is approaching to

infinity while remaining within the regular dominant cone. By using the expression

(1.20), one can compute the limit on the right hand side of (1.22) to obtain

G0 = Υ. (1.23)

This strategy to compute the Gindikin-Karpelevich formula is stated and generalized

for affine Kac-Moody groups in [6].

1.4 General Setting

Suppose, now G is a general Kac-Moody group over a non-archimedean local field

K. To consider Gλ∨ and Sλ∨ associated with G and compute a formula for Gλ∨ , the

first challenge is to show that these sums are well defined when G is not of finite

type, and an infinite dimensional version of Theorem 1.3.2 holds.

For Gλ∨ , one needs to prove the following,

Theorem1.4.1 (Gindikin-KarpelevichFiniteness). Forλ∨, µ∨ ∈ Λ∨, the setK\Kπµ∨U+∩

Kπλ
∨
U− is finite. Moreover, it is empty unless µ∨ ≤ λ∨.

For Sλ∨ , one needs to prove

Theorem 1.4.2 (Spherical Finiteness). For λ∨, µ∨ ∈ Λ∨ with λ∨ dominant, the

coset spaceK\Kπµ∨U+ ∩Kπλ∨K is finite. Moreover, it is empty unless µ∨ ≤ λ∨.

For (untwisted) affine Kac-Moody groups, Braverman et. al. obtain Theo-

rems 1.3.2, 1.4.1 and 1.4.2. Note that their proofs for the second part of the

Spherical and Gindikin-Karpelevich Finiteness (the inequalities µ∨ ≤ λ∨) extend
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to general Kac-Moody groups without any change (see Lemma 8.2.1 and the proof

of Theorem 1.4.1 in Section 9.2.3 for the details about these two proofs).

The first part of the (untwisted) affineGindikin-Karplevich Finitenesswas proven

for λ∨ = 0 by showing that:

(a) Kπµ∨U+ ∩KU− = ∪w∈WKπµ
∨
U+ ∩KV−w , where for each w ∈ W , V−w is

a certain subset of U− defined in Section 3 of [6] (or see Subsection 4.2.1 of

this thesis)

(b) A corollary of the Kac-Moody generalization [7, Lemma 18.2] of a represen-

tation theoretic construction due to A. Joseph [29, 33] implies that there are

finitely many w which appear in the above union.

(c) By using the completions, it is then proved that for each suchw,K\Kπµ∨U+∩

KV−w is finite.

Next, the Gindikin-Karpelevich finiteness is used to get the Approximation Theorem

as well as Spherical Finiteness. Finally, by combining these results with an affine

generalization of the Macdonald’s formula for Sλ∨ from [8], the following affine

version of the Gindikin-Karpelvich formula is obtained

G0 =
1

m

∏
α∨∈∆∨+

(
1− q−1e−α

∨

1− e−α∨
)m(α∨)

, (1.24)

where m(α∨) is the multiplicity of the coroot α∨ and m is a W -invariant factor

which depends on the Langlands-dual root system of given affine Lie algebra. An

exposition on the affine construction is given in Chapter 4.
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1.5 Our Strategy

As stated in previous section, our key objective in this thesis is to obtain the

proofs of Theorems 1.3.2, 1.4.1 and 1.4.2 for general Kac-Moody groups over non-

archimedean local fields. Though Braverman-Garland-Kazhdan-Patnaik’s work [6]

is the main motivation of this project, our approach to attack this problem is a little

different. Unlike the affine case, we prove Theorem 1.3.2 independently of the

finiteness result Theorem 1.4.1. Theorem 1.3.2 has also been proven by A. Hébert

in [32, Theorem 6.1], but our proof is perhaps more elementary and can also be

used to obtain the Iwahori version of the assertion (see Proposition 5.2.1).

Next, we turn to Theorem 1.4.1. For the first part of the assertion, our method

of proof restricts us to put a further condition on λ∨. Namely, we first prove

Theorem 1.5.1 (Weak Spherical Finiteness). Let µ∨ ∈ Λ∨. For λ∨ ∈ Λ∨+ regular

and sufficiently dominant, the set K\Kπµ∨U+ ∩Kπλ∨K is finite.

This theorem is proven by getting the finiteness at the Iwahori level. The Iwahori

level questions are indexed by the Weyl group W . So, first we show that there are

finitely many elements of the Weyl group which contribute (Section 7.1), each

indexing an Iwahori piece of our sum. In Chapter 6, we introduce a certain integral

and show that it satisfies a recursion relation in terms of certain Demazure-Lusztig

operators. Our objective in so doing is to obtain the finiteness of the Iwahori piece.

In Chapter 7, we establish a relation between an Iwahori piece and a level set of the

integral which allows us to complete the proof of the Weak Spherical Finiteness.

In Chapter 8, we discuss the applications of the results proven in the previous

three chapters. First, in Section 8.1, we apply the Approximation Theorem and the

Weak Spherical Finiteness to show that if µ∨ ∈ Q∨− is very small as compared to

λ∨ = 0, then K\Kπµ∨U+ ∩ KU− is finite and this together with Lemma 1.3.1
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imply the Gindikin-Karplevich Finiteness. Then, as in the affine case, we use the

Gindikin-Karplevich Finiteness to get the proof of the Spherical Finiteness.

We also tried to obtain the Gindikin-Karpelevich Finiteness (Theorem 1.4.1)

independently of Spherical Finiteness (Theorem 1.4.2) but our efforts did not suc-

ceed. This incomplete solution is discussed in the last chapter of our thesis. Our

approach uses the completion U− of U− and the local analogues of the geometric

embeddings of certain subgroups and subsets of U− into its finite dimensional quo-

tient [39, Section 7.3]. We construct this completion and prove the results about

these embeddings by using the representation theory in Subsection 9.2.2.

Our method of proof is motivated by the affine case; one needs to prove a

certain bounded condition satisfied by a finitely generated subgroup of U− (see

Subsection 4.2.3 for detail). In the affine setting, this became possible because of

the presence of: (a) a natural order on the set of roots corresponding to the finite set

of generators, and (b) a set of coordinates on the elements of that finitely generated

subgroup when identified in U−. This order and the system of coordinates do not

exist in general settings; therefore, we can not proceed further beyond this step and

state this bounded condition as a Conjecture 9.2.7.

1.6 Alternative Approach

These finiteness theorems for general Kac-Moody settings have also appeared in

some other publications. In a recent paper [32, Theorem 6.1], Hébert has obtained

the proof of Theorem 1.4.2 for general Kac-Moody settings. Theorem 1.3.2 is

shown to be true by S. Gaussent and G. Rousseau in [24]. Both of these proofs

involve the techniques based on the use of geometric objects known as masures,

introduced by Gaussent and Rousseau in [23]. These are an analogue of the Bruhat-
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Tits buildings for groups over local fields. On the other hand, our strategy for

proving the assertions of these theorems is elementary, algebraic in nature and relies

on the use of the representation theory. It would be interesting to compare these two

techniques in more detail.
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Chapter 2

Preliminaries

2.1 Local Fields

Let K be a field. An absolute value on K is a function

|.| : K −→ R, (2.1)

such that:

(i) |x| ≥ 0 for all x ∈ K and |x| = 0 if and only if x = 0,

(i) |xy| = |x||y| for all x, y ∈ K,

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

Axiom (iii) is known as the triangle inequality. An absolute value |.| is called

non-archimedean if it satisfies a stronger version of the triangle inequality

|x+ y| ≤ max{|x|, |y|} (2.2)
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for all x, y ∈ K. Otherwise, |.| is called an archimedean absolute value. Associated

with a non-archimedean absolute value |.|, there is a function

val : K −→ R ∪ {∞} (2.3)

defined as val(x) = −log(|x|). This function satisfies the following properties:

(1) val(xy) = val(x) + val(y); (2) val(x) =∞ if and only if x = 0, and

(3) val(x+ y) ≥ min{val(x), val(y)}, for all x, y ∈ K.

Conversely, given a function (2.3) satisfying (1), (2) and (3) we obtain an absolute

value by putting |x| = q−val(x) for all x ∈ K, where q ∈ R>1. The function val is

called a valuation onK and a fieldK equipped with a valuation is called a valuation

field. Let K be a valuation field with an absolute value |.|. The subset

O = {x ∈ K | |x| ≤ 1} = {x ∈ K | val(x) ≥ 0} (2.4)

is a ring with the set of units

O∗ = {x ∈ K | |x| = 1} = {x ∈ K | val(x) = 0} (2.5)

and a unique maximal ideal

p = {x ∈ K | |x| < 1} = {x ∈ K | val(x) > 0}. (2.6)

The ring O is called a valuation ring and K is the field of fraction of O. The field

k = O/p is called the residue field of O. The ideal p is a principal ideal, we fix a

generator π of m and shall refer to it as a uniformizer. The valuation val is called

discrete if val(K∗) = sZ for some real number s, in the case of which we can chose
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s = 1 and then the valuation is said to be normalized.

A valued fieldK is complete with respect to the absolute value |.| if everyCauchy

sequence of elements of K converges. A complete field K is called a local field

if the valuation is discrete and its residue field is finite. If the absolute value is

archimedean, then K is isomorphic to R or C. The non-archimedean local fields

have also been classified. In characteristic zero, K is either Qp for some prime p or

a finite extension of Qp. If the characteristic of K is positive, then K is the field of

formal Laurent series Fq((t)) or its finite extension, where q is a power of p.

2.2 Kac-Moody Algebra

2.2.1 Generalized Cartan Matrices

Let I be a finite set of cardinality l and A = (aij)i,j∈I be a square matrix such that

for all i, j ∈ I ,

(i) aii = 2; for i 6= j, aij are non positive integers; and aij = 0 if and only if

aji = 0,

(ii) there exist a diagonal matrix D and a positive definite matrix P such that

A = DP .

A matrix A is said to be a Cartan matrix if it satisfies (i) & (ii) and if A satisfies

only (i), then it is called a generalized Cartan matrix (GCM).

AGCMA is said to be equivalent to another matrixB, ifB is obtained by reordering

the indices i and j, and vice versa. If a GCM A is equivalent to a block diagonal

matrix with more than one block, we say it is a decomposable GCM; otherwise, it is

known as an indecomposable GCM. An indecomposable GCM A can be classified

into the following three types,
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(a) Finite: If A is positive-definite. In this case the determinant of A is positive.

(b) Affine: If A is positive-semidefinite. In this case det(A) = 0.

(c) Indefinite: If A is neither finite nor affine type.

As in [38], suppose (h,Π,Π∨) is a realization of GCM A, that is, h is a complex

vector space of finite dimension; Π∨ = {α∨i }i∈I ⊂ h, Π = {αi}i∈I ⊂ h∗ are two

linearly independent sets, such that for all i, j ∈ I , αj(α∨i ) = aij; and, dim(h) =

2l−rank(A). The elements of Π are called simple roots and those of Π∨ are known

as simple coroots. A realization (h,Π,Π∨) is said to be a decomposable realization

if h = h1⊕ h2, Π∨ = (Π∨1 ×{0})∪ ({0}×Π∨2 ) and Π = (Π1×{0})∪ ({0}×Π2),

where (h1,Π1,Π
∨
1 ) and (h2,Π2,Π

∨
2 ) are realizations themselves. A realization is

called indecomposable realization if it is not a decomposable realization. In [38,

Proposition 1.1], Kac asserts that an indecomposable GCM A corresponds to an

indecomposable realization (h,Π,Π∨) which is unique up to equivalence in the

following sense:

A realization (h,Π,Π∨) is said to be equivalent to another realization (h′,Π′,Π′∨),

if there exists an isomorphism φ ∈ HomC(h, h′), such that φ(Π∨) = Π′∨ and

φ∗(Π) = Π′, where φ∗ is the induced isomorphism of the dual spaces of h and h′.

Furthermore, this isomorphism is unique if det(A) 6= 0.

2.2.2 Presentation of Kac-Moody Algebras

AGCM of finite type, up to equivalence, corresponds to a unique finite dimensional

complex semisimple Lie algebra g up to isomorphism. In [18], Chevalley showed

that a finite dimensional complex semisimple Lie algebra admits a finite presentation

as a set of generators satisfying relations in terms of entries of a Cartanmatrix. Later,
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Serre in [57] proved that these relations are the defining relations of g. Insprired by

this, Victor G. Kac [34] and R. Moody [49] independently introduced a new class of

Lie algebras by giving a finite presentation in terms of entries of a GCM A. These

Lie algebras are infinite dimensional generalizations of finite dimensional complex

semisimple Lie algebras.

To describe these Lie algebras, let A = (aij)i,j∈I be a GCM and (h,Π,Π∨) the

associated realization. We define g as the Lie algebra generated by h and the 2n

generators {ei, fi}i∈I subject to the following relations:

(1) [h, h] = 0. For all i, j ∈ I,

(2) [ei, h] = αi(h)ei, h ∈ h,

(3) [fi, h] = −αi(h)fi, h ∈ h,

(4) [ei, fj] = δijα
∨
i , where δij is the Kronecker delta ,

(5) For i 6= j, adei
(−aij+1)(ej) = 0 and adfi

(−aij+1)(fj) = 0, where ad is the

adjoint representation of g.

The Lie algebra g is known as a Kac-Moody algebra. The subalgebra h is called

Cartan subalgebra and {ei, fi}i∈I are known as the Chevalley generators of g. Let

n+ and n− be the subalgebras generated by {ei}i∈I and {fi}i∈I , respectively. Then

g has a vector subspace decomposition

g = n− ⊕ h⊕ n+. (2.7)

This decomposition is known as the triangular decomposition of g.
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2.2.3 Classification of Kac-Moody Algebras

AKac-Moody algebra g falls in one of the three categories finite, affine or indefinite,

according to the type of GCMA (cf. Section 2.2). A finite type Kac-Moody algebra

is a complex semisimple Lie algebra. There are four infinite families of complex

semisimple Lie algebras An, n ≥ 1; Bn, n ≥ 2; Cn, n ≥ 3; Dn, n ≥ 4. These

four families are known as classical Lie algebras. In addition to the classical Lie

algebras there are five so-called exceptional Lie algebras Lie algebras, G2, F4, E6,

E7 and E8. The classes of the Kac-Moody algebras can be described by particular

graphs called the Dynkin diagrams associated with the corresponding GCMs. The

Dynkin diagrams of finite types are given below.

An : Bn : Cn :

Dn : E6 : E7 :

E8 : F4 : G2 :

Table 2.1: Finite Type Dynkin Diagram

An affine Kac-Moody algebra is an extensions of loop algebra of finite di-

mensional semisimple Lie algebra. So, once the classification in finite dimension is

known, the classification of affineKac-Moody algebras becomes possible. These Lie

algebras are describedwith the symbolXrwithX = An, Bn, Cn, Dn, E6, E7, E8, F4

and G2, and r = 1, 2, 3. When r = 1, the corresponding Lie algebras are called

the untwisted affine Lie algebras. The following table contains the affine Dynkin

diagrams of untwisted type:

A1
1 : A1

n : B1
n : C1

n :
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D1
n : E1

6 : E1
7 : E1

8 :

F 1
4 : G1

2 :

Table 2.2: Untwisted Affine Type Dynkin Diagram

When r = 2, 3, the corresponding Lie algebras are called the twisted affine Lie

algebras. The following is the list of affine diagrams of twisted type:

A2
2n(n ≥ 2) : A2

2n−1(n ≥ 3) : A2
2 :

D2
n(n ≥ 2) : E2

6 : D3
4 :

Table 2.3: Twisted Affine Type Dynkin Diagram

The Kac-Moody algebras of indefinite type are the least understood and the clas-

sification of the corresponding root systems has not yet been achieved. However, a

subclass known as the hyperbolic Kac-Moody algebras is well known. These corre-

spond to the GCMs A such that every proper, indecomposable principal submatrix

of A is either of finite or affine type. In this case, we have det(A) < 0. These Lie

algebras and the related data have been studied in the literature, for example, see

[11, 12, 14, 41, 64].

2.2.4 Roots and Weyl Group

Let Q = ⊕i∈IZαi and Q∨ = ⊕i∈IZα∨i be the root and coroot lattice, respectively.

The Lie algebra g admits another decomposition g = ⊕α∈Qgα under the adjoint

action of h where

gα = {x ∈ g | [h, x] = α(h)x;∀ h ∈ h}.
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This is known as the root space decomposition. If α 6= 0 and gα 6= 0, the subspace

gα is known as the root space of α; its dimension m(α) is called the multiplicity

of α; and, α is called a root. We denote the set of roots by ∆. Every root can be

written as an integral combination of the simple roots, with the coefficients, either

all positive or all negative integers; a root is called positive or negative, accordingly.

We denote the set of positive roots by ∆+, the set of negative roots by ∆− one has

a disjoint union,

∆ = ∆+ t∆−.

In the study of finite dimensional complex semisimple Lie algebras, a symmet-

ric, nondegenerate and invariant bilinear form known as the Killing form plays a

significant role. An analogue of the Killing form in the general setting can be de-

fined if the GCM A is symmetrizable. That is, A = DB, whereD is a non-singular

diagonal matrix and B is a symmetric matrix. Restriction of this bilinear form to h

is also nondegenerate; therefore it induces an isomorphism between h and h∗. The

natural pairing between h and h∗ is denoted by

〈−,−〉 : h∗ × h −→ C.

LetQ+ = ⊕i∈IZ≥0αi. The space h∗ can be equipped with a partial order≤ defined

as: µ ≤ λ if and only if λ − µ ∈ Q+, for all λ, µ ∈ h∗. Similarly, we can

define a partial order on h, which we denote by the same symbol ≤, by setting

Q∨+ = ⊕i∈IZ≥0α
∨
i and imposing the same defining condition as above. An element

λ ∈ h∗ is integral if 〈λ, α∨i 〉 ∈ Z, is dominant if 〈λ, α∨i 〉 ≥ 0, and is called regular

if 〈λ, α∨i 〉 6= 0, for all i ∈ I . Let

Λ := {λ ∈ h∗ | λ(h) ∈ Z, ∀h ∈ h} (2.8)
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and Λ∨ = HomZ(Λ,Z) be the weight and coweight lattice, respectively. We denote

by Λ+ the set of dominant weights and Λreg the set of regular weights. Similarly we

define the sets Λ∨+ and Λ∨reg. For i ∈ I , let us define a map wi = wαi on h∗ by setting

wi(λ) = λ− λ(α∨i )αi = λ− 〈λ, α∨i 〉αi, (2.9)

for all λ ∈ h∗. This map is a reflection in the hyperplane

(α∨i )⊥ = {µ ∈ h | 〈µ, α∨i 〉 = 0}. (2.10)

The reflection wi is called a simple root reflection or the Weyl reflection and the

group W ⊂ Aut(h∗) generated by the simple root reflections wi for all i ∈ I , is

called the Weyl group. The Weyl group also acts on h via the following formula,

wi(λ
∨) = λ∨ − 〈αi, λ∨〉α∨i , (2.11)

for all λ∨ ∈ h. If the Kac-Moody algebra g is of affine or indefinite type, the set ∆

of roots admits another partition

∆ = ∆re ∪∆im, (2.12)

where ∆re = WΠ and ∆im = ∆−∆re. The elements of ∆re are called real roots

and those of ∆im are known as the imaginary roots. The transpose of GCM A

corresponds to the realization (h∗,Π∨,Π) and a dual root system ∆∨ ⊂ h, which is

called the set of coroots. This set also admits the disjoint decompositions

∆∨ = ∆∨+ ∪∆∨−, ∆∨ = ∆∨,re ∪∆∨,im (2.13)
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and there is a bijection α 7→ α∨ between ∆ and ∆∨.

2.3 Highest Weight Representation

Let g be a Kac-Moody algebra, U = U(g) be the universal enveloping algebra of g.

The triangular decomposition (2.7) of g yields the triangular decomposition

U = U(n+)⊕ U(h)⊕ U(n−)

of U . For λ ∈ Λ+, a g representation V = V λ over C is a highest weight represen-

tation with the highest weight λ ∈ h∗ and a highest weight vector vλ if:

(i) n+vλ = 0,

(ii) h.vλ = λ(h)v for all h ∈ h,

(iii) V = Uvλ.

Moreover, if

(iv) for all i ∈ I , ei and fi act as locally nilpotent operators on V , that is, for each

v ∈ V there exist integersM and N such that eMi v = fNi v = 0,

then the space V is said to be an integrable highest weight representation.

The space V has a weight space decomposition

V = ⊕µ∈h∗Vµ, (2.14)

where Vµ = {v ∈ V | hv = µ(h)v, ∀ h ∈ h}. Let us denote by Pλ the set of

weights of V . For µ ∈ Pλ

ηµ : V −→ Vµ
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denotes the projection map. Unless otherwise specified, throughout this thesis our

highest weight representation shall be integrable.

Now, suppose

ρ =
∑
i∈I

ωi, (2.15)

where for i ∈ I , ωi ∈ h∗ is a fundamental weight defined by ωi(α∨j ) = δij for all

i, j ∈ I and ωi = 0 outside Q∨ ⊗Z C (where δij is the Kronecker delta).

Let w ∈ W and Fm be the canonical filtration on the universal enveloping

algebra of U(n+). The following lemma from [7, Section 18] relates the weight

vectors vρ and vwρ := wvρ in V ρ,

Lemma 2.3.1 (Joseph’s Lemma). Suppose vρ ∈ Fm(U(n+))vwρ. Then we must

have `(w) < 2m, where `(w) denotes the length of w.

We end this section with the following construction of subspaces and finite

dimensional quotients of V , which will be used to construct completion of certain

groups in Chapter 9. The set Pλ inherits the partial order from h∗ and each µ ∈ Pλ

satisfies µ ≤ λ which implies λ− µ =
∑

i∈I niαi with ni ∈ Z≥0 for all i ∈ I . For

µ ∈ Pλ, we define the depth of µ as depth(µ) =
∑

i∈I ni. Form ≥ 0, let

Pλ(m) = {µ ∈ Pλ | depth(µ) > m}

and set V λ(m) = ⊕µ∈Pλ(m)Vµ. The quotient V m = V/V λ(m), isomorphic to a

direct sum of finitely many weight spaces, is a finite dimensional vector space.
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Chapter 3

Kac-Moody Groups

Let g be complex Kac-Moody algebra of finite type, that is, g is a finite dimensional

complex semisimple Lie algebra. Associated with g, there are finitelymany complex

Lie groups. This list includes a unique simple group Gad, which is known as the

group of adjoint type; a unique simply connected semisimple Lie group G̃, which

is said to be of simply connected type; and intermediate forms between Gad and G̃.

By using the Z-form of g, Chevalley in [17] proved that an analogous situation

holds for algebraic groups over an arbitrary field K. He found a uniform procedure

to associate an algebraic group G with g, which is semisimple if K is algebraically

closed. These groups are known as the Chevalley groups. A detailed exposition and

complete construction of the Chevalley groups can be found in [58].

Chevalley further extended the study of these groups and introduced Chevalley

group schemes in [19]. Chevalley’s scheme-theoretic treatment of these groups was

generalized to all reductive algebraic groups by M. Demazure in his thesis [20].

These schemes are known as the Chevalley-Demazure group schemes.

The Chevalley-Demazure group schemes can be classified with a combinatorial

data known as the root datum. A Chevalley-Demazure group scheme corresponding
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to a root datumD is a group functor GD over the category of commutative rings such

that a reductive algebraic group G over an algebraically closed field K is precisely

equal to GD(K) for some root datum D. So, there are two equivalent ways to

associate Chevalley groups with the Kac-Moody algebras of finite type, namely, the

Chevalley-Demazure group schemes or via Steinberg’s construction.

In the general setting, the association of a group with a Kac-Moody algebra

corresponding to aGCMof affine or indefinite type is a complex problem. R.Moody

and K. Teo initiated work on this problem in [50] and subsequent contributions were

made in [46, 22, 36, 35, 37] and [60].

In 1987, J. Tits [61] defined a group functor over the category of commutative

rings associated with a Kac-Moody root datum corresponding to a GCMs of affine

and indefinite type. He presented this functor as a set of axioms and this generalizes

the constructions done by Steinberg, Chevalley and Demazure. The groups obtained

by Tits are now known as theKac-Moody groups. In the next sections of this chapter,

we are going to discuss all these notions in more details.

3.1 Functorial Construction

3.1.1 Kac-Moody Root Datum and Algebra

Let I be a finite set of cardinality ` and A = (aij)i,j∈I be a GCM as introduced

earlier.

Definition 3.1.1. A Kac-Moody root datum associated with the pair (I, A) is a

quadruple D = (X,X∨, {ci}i∈I , {hi}i∈I) such that:

(D1) X is a free Z-module with a free rank,X∨ is its Z dual, these come equipped

with a perfect pairing 〈·, ·〉 : X ×X∨ −→ Z.
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(D2) we have ci ∈ X , hi ∈ X∨ such that 〈ci, hj〉 = aij for all i, j ∈ I .

A Kac-Moody root datum D is called free (resp. cofree) if the set {ci}i∈I (resp.

{hi}i∈I) is Z-linearly independent; D is adjoint (resp. coadjoint) if the sets {ci}i∈I

(resp. {hi}i∈I) spans X (resp. X∨); D is said to be simply connected if for every

i ∈ I there exists xi ∈ X such that 〈xi, hj〉 = δij , for all j ∈ I . Given a Kac-Moody

root datum D, set hD := X∨ ⊗ C.

3.1.2 Some Group Functors

LetR be a commutative ring with identity andR∗ be its group of units. A split torus

scheme associated with a Kac-Moody root datum D is a group functor

TX : Z-alg −→ Grp,

from the category Z-alg of Z-algebras to the category Grp of groups, defined as

TX(R) := HomZ(X,R∗) = X∨ ⊗Z R
∗. (3.1)

Thus, if n is the rank of X , the group TX(R) is isomorphic to Gn
m = (R∗)n. For

r ∈ R and λ ∈ X , rλ ∈ TX(R) is the map µ 7→ r〈λ,µ〉, where µ ∈ X .

The action of the Weyl groupW on hD restricts to one on X∨ and X via:

wi(λ
∨) = λ∨ − 〈ci, λ∨〉hi and wi(λ) = λ− 〈λ, hi〉ci, (3.2)

respectively, where i ∈ I , ci, λ ∈ X , and hi, λ∨ ∈ X∨. This action induces an action
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ofW on TX(R) which is defined as: for a simple root reflection wi and t ∈ TX(R),

wi.t = (t)wi : X −→ R∗ (3.3)

such that twi(λ) = t(wiλ), for all λ ∈ X .

Let G+ be one-dimensional additive group scheme. For α ∈ ∆re, we denote by

Uα an affine group scheme over Z isomorphic to G+ such that Lie(Uα) := gα,Z =

ZXα, whereXα is a non-zero vector in gα. Using the choice of a double basis ([61,

Section 3.3, Section 3.6]), we obtain an isomorphism

xα : G+ −→ Uα, (3.4)

then Uα(R) = {xα(r) | r ∈ R} and for any r, s ∈ R,

xα(r + s) = xα(r)xα(s). (3.5)

To define a commutation relation between the elements of different groups Uα(R),

α ∈ ∆re, we introduce the following notions on the set of roots.

Definition 3.1.2. A pair of roots α, β ∈ ∆ is called a prenilpotent pair if there exist

w,w′ ∈ W such that wα, wβ ∈ ∆+ and w′α, w′β ∈ ∆−.

A subset Ψ ⊂ ∆ is said to be prenilpotent if there exists w,w′ ∈ W such that

wΨ ⊂ ∆+ and w′Ψ ⊂ ∆−; Ψ ⊂ ∆ ∪ {0} is said to be a closed set or an ideal if

α, β ∈ Ψ and α + β ∈ ∆ ∪ {0} then α + β ∈ Ψ; Ψ is referred to as a nilpotent set

if it is both prenilpotent and closed.
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For a prenilpotent pair α, β, set

[α, β] := (Nα + Nβ) ∩∆, ]α, β[:= [α, β] \ {α, β}.

One can check that [α, β] and ]α, β[ are nilpotent sets. To any subset Ψ of the set of

roots, we write gΨ := ⊕α∈Ψgα. If Ψ is a closed subset then gΨ is a Lie subalgebra

and if Ψ is a nilpotent subset then gΨ is a nilpotent Lie subalgebra.

Proposition 3.1.3 ([47, P. 134]). Let α, β be a prenilpotent pair and the set ]α, β[

be equipped with any order. Then there exist integers Cαβ
ij depending on α, β and

the order on ]α, β[, such that

[xα(r), xβ(s)] =
∏
γ

xγ(C
αβ
ij r

isj) (3.6)

where r, s,∈ R and γ = iα+jβ runs through the elements of ]α, β[ in the prescribed

order.

Definition 3.1.4. The Steinberg group functor

St : Z-alg −→ Grp

sends any ring R to St(R), the free product of the groups Uα(R) for all α ∈ ∆re

modulo the relations (3.5) and (3.6).

For i ∈ I and t ∈ R∗, let

w∗i (t) = w∗αi(t) = xαi(t)x−αi(−t−1)xαi(t), (3.7)

w∗i := w∗i (1) and hi(t) = hαi(t) = w∗i (t)(w
∗
i )
−1. (3.8)
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Now, we introduce the last group functor of this subsection.

Definition 3.1.5. Associated withD, we define a group functorGD over the category

Z-alg, such that its value over the ring R is a free product St(R) ∗ TX(R) modulo

the following relations:

(R1) txαi(r)t
−1 = xαi(t(ci)r), i ∈ I , t ∈ TX(R),

(R2) w∗i t(w
∗
i )
−1 = wi(t), i ∈ I , t ∈ TX(R),

(R3) w∗i (r
−1) = wir

hi , for r ∈ R∗,

(R4) w∗i xβ(r)(w∗i )
−1 = xwiβ(ηαi,βr), r ∈ R, β ∈ ∆re and ηαi,β ∈ {±1}.

The above construction of the group functor can be found in Section 3 of Tits’

paper [61]. He also gave an abstract definition of this functor and presented it a set

of axioms. This abstract definition is now known as the Tits’ Group Functor, which

is going to be discussed in the next subsection.

3.1.3 Tits Group Functor

Let D be a Kac-Moody root datum associated with (A, I) as defined earlier. Let

R be a commutative ring, T := TX be a split torus scheme as introduced in the

previous section and SL2 is a group functor defined as:

SL2(R) = {

 a b

c d

 : a, b, c, d ∈ R; ad− bc = 1}.

The Tits’ functor is a system (G, (φi)i∈I , η), which consists of a group functor

G : Z-alg −→ Grp
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and homomorphisms of functors

φi : SL2 −→ G and η : T −→ G,

that is, for a ring R the maps φi,R : SL2(R) −→ G(R) and ηR : T(R) −→ G(R)

are group homomorphisms and this data satisfies the following axioms: for all i ∈ I

(a) If R is a field, G(R) is generated by φi,R(SL2(R)) and ηR(T(R)).

(b) For all R, the homomorphism ηR : T(R) −→ G(R) is injective.

(c) For r ∈ R∗ and i ∈ I , let rα∨i ∈ T(R) be defined as rα∨i (λ) = r〈λ,α
∨
i 〉, then

φi,R


 r 0

0 r−1


 = ηR(rα

∨
i ).

(d) If i is an an embedding of a ring R in a fieldK, thenG(i) is an embedding of

group G(R) in G(K).

(e) There is a homomorphism Ad : G(C) −→ Aut(g) such that:

(i) we have ker Ad ⊂ ηC(T(C)).

(ii) For c ∈ C and i ∈ I

Ad(φi,C(u+(c))) = eadcei , Ad(φi,C(u−(c))) = eadcfi ,

where u+(c) =

 1 c

0 1

 and u−(c) =

 1 0

c 1

.
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(iii) For t ∈ T(R) and i ∈ I

Ad(η(t))(ei) = t(αi)ei Ad(η(t))(fi) = −t(αi)fi .

Themain result inTits’ paper [61, Theorem1] asserts that for any system (G, (φi)i∈I , η)

satisfying the above axioms, the groupG(K) over a fieldK is defined up to canonical

isomorphism. The group G(K) is known as a minimal or incomplete Kac-Moody

group.

3.2 Carbone-Garland Construction

Steinberg’s construction ofChevalley groups is also a natural candidate for an infinite

dimensional generalization. L. Carbone and H. Garland extended this construction

to Kac-Moody root systems over arbitrary fields in [13]. Recently this construction

has been generalized to define Kac-Moody groups over Z and arbitrary rings by

Carbone et al. in [1, 15].

3.2.1 Z-Forms: Pathway to Arbitrary Fields

We retain the notation of Kac-Moody algebra g and the related data from Section 2.2.

Let U , U(n+) and U(n−) be the universal enveloping algebras of g, n+ and n−,

respectively. Let S(h) be the symmetric algebra of h, Tits in [62] asserts that the

canonical map

U(n+)⊗ S(h)⊗ U(n−) −→ U (3.9)
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is a bijection. Next, we introduce some notions on an associative algebra A over C

which will be used later.

Definition 3.2.1. A Z form of A is a Z subalgebra AZ of A such that the canonical

map AZ ⊗ C −→ A is a bijection.

Definition 3.2.2. For a ∈ A and n ∈ Z≥0, we define the following elements of A,

a(n) :=
an

n!
(3.10)(

a

n

)
:=

a(a− 1)(a− 2) . . . (a− n+ 1)

n!
. (3.11)

Let us denote by t and t∨ the linear span of αi and α∨i for i ∈ I , respectively.

For i ∈ I and n ∈ Z≥0, Ui,+ (resp. Ui,−) be the subring
∑

n Ze
(n)
i (resp.

∑
n Zf

(n)
i )

of U . Let UZ,+ (resp. UZ,−) be a subring of U(n+) (resp. of U(n−)) generated by

Ui,+ (resp. Ui,−) for all i ∈ I . Then UZ,+ and UZ,− are the Z-subalgebras of U(n+)

and U(n−), respectively [61, p.556]. Let UZ,0 be the Z-subalgebra of the universal

enveloping algebra S(h) generated by
(
λ
n

)
(λ ∈ t∨) and UZ be the Z-subalgebra

of the universal enveloping algebra U generated by Ui,+, Ui,− and
(
λ
n

)
for i ∈ I ,

n ∈ Z≥0 and λ ∈ t∨.

We state the following result from [47, p.106] and [63] without giving its proof.

Proposition 3.2.3. We have the following

(i) UZ,+, UZ,− and UZ,0 are the Z-forms of U(n+), U(n−) and S(h), respectively.

(ii) UZ is the Z-form of U .

(iii) The product map

UZ,− ⊗ UZ,0 ⊗ UZ,+ −→ UZ (3.12)

35



is an isomorphism of Z-modules.

The Z-forms of U and its subalgebras will be used to define the Kac-Moody

algebra gK over an arbitrary field K. Let gZ = g ∩ UZ, n±Z = n± ∩ UZ and

t∨Z = t∨ ∩ UZ,0. The following proposition on page 78 of [47] implies that gZ is

Z-form of g.

Proposition 3.2.4. The sum map

n+
Z ⊕ t∨Z ⊕ n−Z −→ gZ

is a bijection.

For a field K, set

n±K := n±Z ⊗K, t∨K := t∨Z ⊗K, gK := gZ ⊗K,

UK,± := UZ,± ⊗K, UK,0 := UZ,0 ⊗K, UK := UZ ⊗K.

Then gK is a Kac-Moody algebra overK and it admits the root spaces decomposition

gK = t∨K ⊕ (⊕α∈∆gα,K), (3.13)

where for each α ∈ ∆, gα,K = (gα ∩ gZ)⊗K.

3.2.2 Minimal Kac-Moody Group

As in Steinberg’s presentation of Chevalley groups, the second essential ingredient

in Carbone and Garland’s construction of Kac-Moody groups is an integrable rep-

resentation having a stable lattice. We begin this subsection with a description of

this lattice.
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Let V = V λ be an integrable highest weight representation with the highest

weight λ and the highest weight vector vλ. As in the finite dimensional case [58],

a Z-lattice VZ is constructed by setting VZ = UZvλ. The following lemma gives a

more concrete description of the lattice VZ.

Lemma 3.2.5. We have

VZ = UZ,−(vλ). (3.14)

Proof. Since Xαvλ = 0 for all α ∈ ∆+, UZ,+ \ {1} annihilates vλ. Moreover, for

n ≥ 1 and µ∨ ∈ t∨

λ(µ∨)(λ(µ∨)− 1)(λ(µ∨)− 2) . . . (λ(µ∨)− n+ 1)

n!
∈ Z

which gives UZ,0vλ = Zvλ. Finally, by Propositon 3.2.3 (iii) we have

VZ = UZvλ = UZ,−Zvλ = UZ,−vλ.

Corollary 3.2.6. The space VZ is a Z-form and an admissible lattice of V , that is,

for i ∈ I and for some n ≥ 0

e
(n)
i VZ ⊂ VZ; f

(n)
i VZ ⊂ VZ.

For each weight µ of V and the corresponding weight space Vµ, we set Vµ,Z =

Vµ∩VZ. Then VZ = ⊕µ∈PλVZ,µ. For a fieldK, let VK := VZ⊗K, VK,µ := VZ,µ⊗K

and for t ∈ K

χαi(t) :=
∑
n≥0

tne
(n)
i = etei , χ−αi(t) :=

∑
n≥0

tnf
(n)
i = etfi . (3.15)
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Since ei and fi act as locally nilpotent operators, χ±αi(t) are well defined automor-

phisms of VK. The minimal Kac-Moody groupG(K) of Carbone and Garland is the

subgroup of Aut(VK) generated by the elements χ±αi(t) with t ∈ K and i ∈ I [13,

Section 5]. Similar to the Chevalley groups [58, Lemma 27], the group constructed

above depends on the integrable highest weight representation V and the choice of

an admissible lattice in V . Though we do not need the completed version of G

for our results, for the sake of completion we briefly discuss this notion in the last

subsection.

3.2.3 Completion of G

Intuitively, a minimal or incomplete Kac-Moody group is constructed by exponenti-

ating the root spaces of real roots. If the root spaces corresponding to the imaginary

roots are also used in the construction, the resulting group is called a complete or

maximal Kac-Moody group. There are three completions of minimal Kac-Moody

groups which can be found in the literature, a representation theoretic completion

by L. Carbone and H. Garland in [13], a completion by using the building topology

by B. Remy and M. Ronan in [54] and a scheme theoretic completion over C by S.

Kumar in [39] and over algebraically closed field by G. Rousseau in [55].

3.3 Tits Axioms and BN -Pairs

In what follows, we shall consider Carbone-Garland’s Kac-Moody groupG(K) over

a fieldK and denote it byG, by droppingK from our notation. For i ∈ I and t ∈ K∗,
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set

w̃i(t) := χα(t)χ−α(−t−1)χα(t), w̃i := w̃i(1) (3.16)

h̃i(t) := w̃i(t)w̃
−1
i . (3.17)

LetH be the subgroup generated by the elements hi(t) for all i ∈ I and t ∈ K∗. Let

α ∈ ∆re then α = wαi form some w ∈ W and simple root αi, i ∈ I . For t ∈ K, we

set

χα(t) = wχαi(t)w
−1 (3.18)

One can check that for t ∈ K, we have χα(t) ∈ Aut(VK). Associated with α ∈ ∆re,

a root group is defined as,

Uα = {χα(t) | t ∈ K}.

Continuing with α ∈ ∆re
± , let B±α be the group generated by H and Uα; Gα be the

group generated by B±α ; and B± be the group generated by Bα for all α ∈ ∆re
± .

The following properties of these subgroups can be verified easily.

(RD1) Let α, β be a prenilpotent pair then [Uα, Uβ] ⊂ 〈 Uγ | γ ∈]α, β[ 〉.

(RD2) For each i ∈ I , B+
αi
∩B−αi = H .

(RD3) The group B+
αi

has two double cosets in Gαi .

(RD4) For each i ∈ I and β ∈ ∆re, there exists an element si ∈ Gαi such that

siBαs
−1
i = Bwiα.

(RD5) For each i ∈ I , B+
αi

is not contained in B− and B−αi is not contained in B
+.
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Let N be the subgroup generated by H and w̃i for all i ∈ I . For a proof of the next

result, we refer readers to [61, Section 5].

Theorem 3.3.1. The axioms RD1-RD5 imply the following important consequences,

(a) The pairs (B+, N) and (B−, N) form a Tits system.

(b) There exists a unique homomorphism φ : N −→ W withKerφ = H , and for

all n ∈ N and β ∈ ∆re, nBβn
−1 = Bφ(n)β .

(c) Group G has Bruhat decompositions

G = BNB = B−NB−

= BNB− = B−NB.

3.4 Subgroups and Decompositions

Now, we consider K to be a non-archimedean local field (See Section 2.1 for

notations) and G = G(K). The group G has an integral subgroup which is defined

as

K := {g ∈ G | gVO ⊂ VO}, (3.19)

where

VO = VZ ⊗O. (3.20)
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The group K is an analogue of maximal compact subgroup from the finite dimen-

sional theory. There is a pair of unipotent subgroups

U± = 〈Uα | α ∈ ∆re,±〉

Let U±O = U± ∩ K be the integral subgroup and U±π be the level one congruence

subgroups of U±. Let HO = H ∩K. The weight lattice Λ∨ can be identified with

H
′
= H/HO via the map λ∨ 7→ πλ

∨ , and G has an Iwasawa decomposition

G = ∪µ∨∈Λ∨Kπ
µ∨U+ = ∪ν∨∈Λ∨U

+πν
∨
K (3.21)

with respect to U+ and

G = ∪γ∨∈Λ∨Kπ
γ∨U− = ∪δ∨∈Λ∨U

−πδ
∨
K (3.22)

with respect to U−. Let G(k) be the Kac-Moody group over the finite residue field

k and $ : K −→ G(k) be the reduction mod π map. The group K has a pair of

subgroups defined as

I± = $−1(B±(k)). (3.23)

These groups are known as the Iwahori subgroups and admit the following direct

product decompositions,

I+ = U+
OU

−
π HO

I− = U−OU
+
π HO,

41



which are known as the Iwahori-Matsumoto decompositions. The group K admits

the following decompositions

K = ∪w∈W I+wI+ = ∪w∈W I−wI+

= ∪w∈W I+wI− = ∪w∈W I−wI−

known as the Iwahori decompositions.

For w ∈ W , we define the following two subsets of the set of roots ∆.

S+
w := {α ∈ ∆+ | wα ∈ ∆−} = ∆+ ∩ w−1(∆−),

S−w := {α ∈ ∆− | wα ∈ ∆+} = ∆− ∩ w−1(∆+).

Similarly, we define the subsets S±,∨w ⊂ ∆∨. By using S±w , we introduce finitely

generated subgroups

U±w = 〈Uα | α ∈ S±w 〉.

Let U±,w = U± − U±w . Set

U±w,O = U±w ∩ U±O , U±w,π = U±w ∩ U±π (3.24)

U±,wO = U±,w ∩ U±O , U±,wπ = U±,w ∩ U±π . (3.25)
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Chapter 4

Affine Construction and Formula

As stated earlier, our thesis project is motivated by a desire to extend certain con-

struction and results from the affine to general Kac-Moody setting. Our methods

for proving the main theorems are not exactly the same, even in the affine case.

We present a review of the previous work in the affine case here to make these

differences clear.

4.1 Realization of Affine Kac-Moody Data

Affine Kac-Moody algebras and groups are the most investigated objects of the

infinite dimensional Kac-Moody theory. A concrete description of these algebraic

structures make them suitable for both theoretical purposes and applications to

other branches of mathematics and physics. In this section, we briefly describe

affine Lie algebras and groups and explain how they arise as extensions of the finite

dimensional Lie theoretic data.
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4.1.1 Affine Kac-Moody Data

Affine Generalized Cartan Matrix

As discussed in Subsection 2.2.3, an affine GCM is classified into categories: un-

twisted and twisted type; and can be constructed from a GCM of finite type. For

this chapter we will consider untwisted and symmetrizable affine GCM A. First

we describe how A is obtained from a GCM of finite type. For this, let Å be an

l × l indecomposable GCM of finite type, g̊ be the associated finite dimensional

simple Lie algebra, and h̊ be its Cartan subalgebra. Let ∆̊, ∆̊∨, Π̊ = {αi}1≤i≤l,

Π̊∨ = {α∨i }1≤i≤l be the set of roots, coroots, simple roots and simple coroots, re-

spectively. Let κ(−,−) be the killing form on g̊, h̊ and h̊∗, and θ be the highest

root with the corresponding coroot θ∨. Set α0 = −θ and A = (aij)1≤i,j≤l+1 where

aij =
2κ(αi,αj)

κ(αi,αi)
, i, j = 1, 2, . . . l+1. ThematrixA is called an affineGCM associated

with A as defined in [22, p. 204].

Affine Kac-Moody Algebra

Let t be an indeterminate and C[t, t−1] be the ring of polynomials in t and t−1.

Suppose C((t)) and C[[t]] denote the field of Laurent series and the ring of formal

power series over C, respectively.

Let g and g̊ be the Kac-Moody algebras overC associatedA and Å, respectively.

These two Kac-Moody algebras are related as follows. Let

˜̊g := C[t, t−1]⊗C g̊. (4.1)

With the Lie bracket defined as [u⊗x, v⊗ y] = uv⊗ [x, y], for u⊗x, v⊗ y ∈ ˜̊g

and [x, y] the Lie bracket of x, y ∈ g̊, the space ˜̊g becomes a Lie algebra known
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as the loop algebra of g̊. We fix a symmetric, non-degenerate, invariant bilinear

form (−,−) on g̊ which exists by Theorem 2.2 of [38] and is a scalar multiple of

κ(−,−). The untwisted affine Kac-Moody algebra constructed on the top of g̊ is

the following double 1-dimensional extension of the loop algebra

ĝ := C[t, t−1]⊗ g̊⊕ Cc⊕ Cd (4.2)

with the Lie bracket defined as,

[X1, X2] = tm1+m2 ⊗ [x1, x2] + µ1m2t
m2 ⊗ x2 − µ2m1t

m1 ⊗ x1

+m1δm1,m2(x1, x2)c, (4.3)

for allX1 = tm1 ⊗x1 +λ1c+µ1d,X2 = tm2 ⊗x2 +λ2c+µ2d ∈ ĝ with x1, x2 ∈ g,

m1,m2 ∈ Z and λ1, λ2, µ1, µ2 ∈ C. Set

h := h̊⊕ Cc⊕ Cd

then h is an l + 2 dimensional subalgebra of ĝ and h̊ ↪→ h. As in [38, p. 100], the

dual h̊∗ of Cartan subalgebra imbeds in h∗ through an extension of each element

λ ∈ h̊∗ to h∗ by setting λ(c) = λ(d) = 0. Theorem 7.4 in [38] and Theorem 13.1.3

in [39] assert that the Lie algebra ĝ is isomorphic to the Kac-Moody algebra g

corresponding to A defined by a set of generators and relation in Subsection 2.2.2.

Roots and the Weyl Group

Let δ ∈ h∗ be defined as

δ|̊h⊕Cc = 0, δ(d) = 1,
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where δ|̊h⊕Cc is the restriction of δ on h̊⊕ Cc. Then Π∨ = {α∨0 = c− θ∨} ∪ Π̊∨ are

the simple coroots corresponding to the simple roots Π = {α0 = δ − θ} ∪ Π̊. The

triplet (h,Π,Π∨) constructed above is a realization associated with the GCMA. The

corresponding abstractly definedKac-Moody algebra g (as defined Subsection 2.2.2)

is isomorphic to the Lie algebra ĝ. For the rest of this chapterwe shall use the notation

g to denote the affine Kac-Moody algebra ĝ.

The set of roots and positive roots of g are given by

∆ = {nδ | n ∈ Z \ {0}} ∪ {nδ + β | n ∈ Z, β ∈ ∆̊}. (4.4)

and

∆+ = {nδ | n > 0} ∪ {nδ + β | n > 0, β ∈ ∆̊}. (4.5)

Let W̊ be the Weyl group associated with g̊ andQ∨ = ⊕li=1Zαi be coroot lattice

then W̊ acts on Q∨ through the restriction on h̊. We denote by

W̃ = W̊ nQ∨. (4.6)

The group W̃ is called the affine Weyl group and the Weyl groupW associated with

g is isomorphic to W̃ .

4.1.2 Affine Kac-Moody Group

Loop Groups and Extension

Let G̊ be the simple, simply-connected algebraic group over Z with Lie algebra

g̊. We choose a pair of opposite Borel subgroups B̊+, B̊− with unipotent radicals
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Ů+, Ů+, respectively. The intersection H̊ = B̊+ ∩ B̊− is a maximal torus of G̊.

The polynomial loop group G̊[t, t−1] is a functor whose points over a ring R are

given by G̊(R[t, t−1]). By a theorem of Pressley and Segal [53, Theorem 4.4.1], the

loop group admits a central extension

1 −→ Gm −→ G̃ −→ G̊[t, t−1] −→ 1. (4.7)

The multiplicative group Gm acts on G̊[t, t−1] and this action lifts to G̃. The

affine Kac-Moody group G is the semidirect product Gm n G̃ under this action.

One can associate a Lie algebra gwithGwhich is isomorphic to the untwisted affine

Kac-Moody algebra corresponding to the affine GCM A. The affine Kac-Moody

groupG and the Lie algebra g can be described by the affine root system introduced

earlier in the previous subsection. .

Subgroups

Let G̊, B̊±, Ů± and H̊ be as introduced earlier. Let H = Gm × H̊ × Gm. Let

G̊[t]B+ denote the preimage of B̊+ under the natural map G̊[t] −→ G̊. We let B+

to be the preimage inG of G̊[t]B nGm. This is a group-scheme, which is endowed

with a natural map to H . We denote by U+ the kernel of this map. This is the

pro-unipotent radical of B+. Similarly, let G̊[t−]B− be the preimage of B̊− under

the map G̊[t−] → G̊ coming from evaluating t to ∞. We let B− ⊂ G to be the

preimage in G of G̊[t−1]B n Gm. This is a group ind-scheme, which (similarly

to B+) is endowed with a natural map to H and we denote its kernel by U−. In

addition, the intersection B+ ∩B− is naturally isomorphic to H.

Let K be a non-arcimedean local field as before and G = G(K). This group

is different than the affine Kac-Moody group constructed by Carbone and Garland
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(see Subsection 3.2.2) or Tits group (constructed in Subsection 3.1.2) as it does not

depend on the representation or on the choice of Kac-Moody dataD. LetGk andK

be the values of G over the residue field k and the ring of integers O, respectively.

Let I+ and I− be the pair of Iwahori subgroups of K which are preimages of B+
k

and B−k , respectively, under the natural map $ : K −→ Gk (reduction mod π).

Let U± = U±(K), and H = H(K) be the subgroups of G, and U±O = U±(O)

and HO = H(O) be the subgroups of K. Let Gπ := {g ∈ K | $(g) = 1}.

We denote by U±π = U± ∩ Gπ and Hπ = H ∩ Gπ. The group G admits the

Iwasawa decompositions, K admits the Iwahori decompsoitions and I± admit the

Iwahori-Matsumoto decompositions as given in Subsection 3.4.

4.1.3 Representation Theoretic Norm

Let V = V λ be the integrable highest weight g-representation of highest weight λ

defined over the local fieldK and VO be the integral lattice in V as defined in (3.20).

For v ∈ V , set

Ord(v) = minn∈Z π
nv ∈ VO (4.8)

and define a norm on V as

||v|| := qOrd(v), (4.9)

for all v ∈ V . An element v ∈ V is said to be a primitive element if ||v|| = 1; we

shall always choose the highest weight vector vλ to be a primitive element.

We will choose a coherently ordered basis B = {v1, v2, . . . } consisting of

primitive elements, that is, B consists of weight vectors; if vi ∈ Vµ, vj ∈ Vδ and
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depth(δ) > depth(µ) then j > i; and,Vµ∩B consists of an interval vr, vr+1, . . . , vr+m.

We end this section with the following lemma without giving its proof. This

lemma will be used frequently during the course of representation theoretic argu-

ments.

Lemma 4.1.1. If v, w ∈ V belong to different weight spaces then

||v + w|| ≥ ||v||. (4.10)

4.2 Affine Gindikin-Karpelevich Finiteness

In this section, we elaborate the three steps mentioned in Section 1.4, which Braver-

man et al. followed in [6] to obtain the affine version of the Gindikin-Karpelevich

Finiteness. The first step was to decomposeU− as a disjoint union of certain subsets.

4.2.1 Step 1: Decomposition of U−

Let IwK : U− −→ K/K ∩B be a function defined by

IwK(u−) = k(K ∩B) (4.11)

for all u− ∈ U− such that K-component of the Iwasawa decomposition of u− is

equal to k. It is straightforward to check that IwK is an embedding. Let $ be

the reduction mod π map defined earlier. Combining these two functions with

the natural projections of the quotient spaces, we get the following commutative

diagram,
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U− U−O\U− U−O\K/K ∩B

U−(k)\G(k)/B(k) ' W

π1 ψ

φ
$

For w ∈ W , the subset V−w is defined as

V−w := π−1
1 (φ−1(w)). (4.12)

Thus U− decomposes as a disjoint union of its subsets,

U− =
⊔
w∈W

V−w . (4.13)

As explained on page 51 of [6], the set V−w can be described more explicitly as an

intersection

V−w = U− ∩ U−OU
+
w,πwB, (4.14)

where U+
w,π is the subgroup introduced in (3.24) and each element u− ∈ V−w has the

following form

u− = u−Ou
+
w,πwhOπ

µ∨u+ (4.15)

for some u−O ∈ U
−
O , u+

w,π ∈ U+
w,π, hO ∈ HO, u+ ∈ U+, and µ∨ ∈ Λ∨. The quotient

U−O\U− is isomorphic to K\KU− and hence

K\KU− =
⊔
w∈W

U−O\V
−
w . (4.16)
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4.2.2 Step 2: Finiteness I

Due to the homogeneity of theGindikin-Karpelevich formal sum (see Lemma 1.3.1),

it suffices to obtain the finiteness of the coset space K\KU− ∩Kπµ∨U+. Now by

using the right hand side of (4.13), we can write

K\KU− ∩Kπµ∨U+ =
⊔
w∈W

K\KV−w ∩Kπµ
∨
U+

=
⊔
w∈W

U−O\V
−
w ∩Kπµ

∨
U+

:=
⊔
w∈W

U−O\V
−
w (µ∨). (4.17)

The second step towards the Gindikin-Karpelevich finiteness is to show that there are

finitely many w’s which contribute in the union on the right hand side of (4.17). It

follows from the next proposition which is a consequence of Joseph’s Lemma 2.3.1.

Proposition 4.2.1. If w ∈ W and µ∨ ∈ Q∨− be such that V−w (µ∨) 6= ∅ then

`(w) ≤ −2〈ρ, µ∨〉.

The assertion of above proposition is proven by Braverman et. al. for affine

Kac-Moody groups on page 51 of [6] but its generalization is straightforward. Since

we are using this result for our proofs, we sketch its proof in the following.

Poof of Proposition 4.2.1. Let u− ∈ V−w ∩Kπµ
∨
U+, then

u− = u+
w,πwhOπ

µ∨u+
2 , (4.18)

for some u+
w,π ∈ U+

w,π, hO ∈ HO, u+
1 , u

+
2 ∈ U+. We let this element act on the

highest weight vector vρ and get the following equations,

u−vρ = vρ + weight vectors of lower weights, (4.19)
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u+
w,πwhOπ

µ∨u+
2 vρ = δ∗π〈ρ,µ

∨〉u+
w,πvwρ (4.20)

for some δ∗ ∈ O∗. Now, if

u+
w,π =

∑
n1,n2,...,nr

σn1
1 σn2

2 . . . σnrr ζ
(n1)
α1 ζ

(n2
α2 . . . ζ

(nr)
αr

where αi ∈ S+
w−1 and ζ(ni)

αi is the divided power of the Chevalley generator

corresponding to αi. Now, by Joseph’s Lemma 2.3.1 to get the highest weight vector

from the action u+
w,πvwρ, we must have `(w)

2
≤ n1 + n2 + . . . nr. Moreover, to

preserve the primitivity we must have n1 + n2 + . . . nr = −〈ρ, µ∨〉. Combining

these two facts we get the assertion.

4.2.3 Completion and Coordinates

The third step for Gindikin-Karpelevich finiteness is to show that for each w ∈ W ,

the coset U−O\V−w (µ∨) is finite. The key point in getting this finiteness is to realize

the elements of V−w (µ∨) as uniformly bounded operators (with respect to the norm

(4.9)) on a finite dimensional subspace of V . These notions are going be made more

precise in Subsection 4.2.4. The main tool used to get this realization is a set of

coordinates, which exists in the completion. So, we first discuss the completion and

this coordinate system as given on page 53-54 of [6].

Let G̊[[t−1]] be the formal loop group functor in the variable t−1. The group

ind-scheme U− is the preimage of Ů− under the natural map G̊[t−1] −→ G̊

of evaluation at ∞, where G̊[t−1] be the polynomial algebra in the variable t−1

(see Subsection 4.1.2). Let U− be the preimage of Ů− in G̊[[t−1]] as defined in

Subsection. This is a group ind-scheme which comes equipped with the natural

injection between the sets of K points

ι : U− ↪→ U−,
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Form ≥ 0, suppose

U−(m) := {u− ∈ U− | u− ≡ Id(mod t−m)} (4.21)

and U−[m] := U−/U−(m). We shall denote by φm the projection

φm : U− −→ U−[m]. (4.22)

Next, we define the following elements of U−, ifm = 0

u−[0] :=
∏
β∈∆̊−

uβ(y0,β) (4.23)

and form ≥ 1,

u−[m] :=
∏
α∈∆̊+

uα(tmxm,α)
l∏

i=1

hi(1 + ci,mt
m)

∏
β∈∆̊−

uβ(tmym,β), (4.24)

where ∆̊+ and ∆̊− are the underlying finite dimensional set of positive and negative

roots, respectively, and y0,β, ci,m, xm,α, ym,β ∈ K.

Definition 4.2.2. An element u−[j] is said to be componentwise bounded by a

positive constant C if:

1. j = 0 and u−[j] has expression (4.23), we have |y0,β| < C for all β ∈ ∆̊−.

2. j ≥ 1 and u−[j] has expression (4.24), we have |xj,α| < C, |yj,β| < C and

|ci,j| < C for all α, β ∈ ∆̊−.

The last result of this subsection asserts that the elements of U− in U− can be

expressed as the products of the above coordinates.
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Proposition 4.2.3. By identifying U− inside U−, every element u− of U− has the

following unique form as a product

u− =
∏
j≥0

u−[j]. (4.25)

Moreover, form ≥ 0

φm(u−) = φm(
m∏
j=0

u−[j]), (4.26)

where φm is the projection (4.22).

4.2.4 Step 2: Finiteness II

Being a subset of U−, the elements of the set V−w (µ∨) admit a decomposition (4.25).

Moreover,

Lemma 4.2.4. (a) For each element u− ∈ V−w (µ∨) there exists n ≥ 0, such that

u− =
∏n

j=0 u
−[j].

(b) There exists a constant C > 0 such that ||u−vλ|| ≤ C, for all u− ∈ V−w (µ∨).

Lemma 4.2.4 implies that the set V−w (µ∨) fulfills the conditions of the family F

given in the next propositions.

Proposition 4.2.5. Let F be a subset U− such that,

(a) The family F is bounded by a constant C > 0,

(b) every u− ∈ F is a finite product of the coordinates u− =
∏n

j=1 u
−[j].

Then there exists D such that each u−[j] is componentwise bounded by D.

Thus, the elements of V−w (µ∨) can be written as a product of finitely many

coordinates and each coordinate is componentwise bounded by the same constant.
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Moreover, it can be viewed as embedded inside the automorphism group of the finite

dimensional space V [m]. This gives rise to a family F of equivalence classes of

elements V−w (µ∨). By using the properties of finitely ordered matrices consisting

of uniformly bounded entries from Section 7 of [6], one can show that F is finite,

and for each u− ∈ V−w (µ∨), there exists v− ∈ F such that u− ∈ U−Ov−. This proves

K\V−w (µ∨) is finite.

4.3 Other Results

The affine Spherical Finiteness and Approximation theorems are proven by using

the Gindikin-Karpelevich Finiteness. For instance, one of containments

Kπλ
∨
U− ∩Kπλ∨−µ∨U+ ⊂ Kπλ

∨
K

to prove the Approximation Theorem is shown by using the fact that there exists a

finite subset Ω ⊂ U− such that

K\Kπλ∨−µ∨U+ ∩Kπλ∨U− = ∪u−∈ΩK\Kπλ
∨−µ∨U+ ∩Kπλ∨u− (4.27)

and corresponding to these finitely many elements, λ∨ can be chosen sufficiently

big, such that we get Ω ⊂ K. For the Spherical Finiteness, we refer readers to

Subsection 8.2.

4.4 Computation of Limit

With the finiteness theorems proven, the formal analogues Gλ∨ and Sλ∨ of the

Gindikin-Karpelevich integral and image of Satake isomorphism respectively, make
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sense in the infinite dimensional settings. In [8], Braverman et. al. obtained the

generalized version of the Macdonald’s formula for Sλ∨ and used it to compute a

formula for Gλ∨ where λ∨ = 0. We describe this process of computation in the

following. Let Σ ⊂ W , Σ(q) =
∑

w∈Σ q
−l(w) be the Poincare Polynomial. For

λ∨ ∈ Λ∨, let Wλ∨ = {w ∈ W | wλ∨ = λ∨} be the stabilizer of λ∨. For each

α ∈ ∆+ with multiplicitym(α), we define an element

Υα∨ =

(
1− q−1e−α

∨

1− e−α∨
)m(α)

of C[q, q−1][[Q∨−]]. Set

Γ :=
∏
α∈∆+

Υα∨ .

The rational function Γ is also an element of of C[q, q−1][[Q∨−]]. For each w ∈ W ,

let

Γw :=
∏
α∈∆+

Υwα∨ .

For λ∨ ∈ Λ∨, let

Hλ∨ =
q〈ρ,λ

∨〉

Wλ∨(q−1)

∑
w∈W

Γwewλ
∨
.

Let C≤[Λ∨] be a completion of the group algebra C[Λ∨] as defined in Section 2.1.5

of op. cit. Proof of the following theorem can be found in Subsection 7.2 of op. cit.

Theorem 4.4.1. Let λ∨ ∈ Λ∨ be dominant. The ratio Hλ∨
H0

is an element of

C[q, q−1]⊗C C≤[Λ∨] and is equal to Sλ∨ .

By Theorem 4.4.1, for λ∨ dominant,

Sλ∨ = (H0)−1 q〈ρ,λ
∨〉

Wλ∨(q−1)

∑
w∈W

Γwewλ
∨
. (4.28)
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Theorem 1.3.2 and Lemma 1.3.1 imply that for ξ∨ ∈ Λ∨ if we choose λ sufficiently

big as compare to ξ∨, then

[eξ
∨
]G0 =

[eλ
∨−ξ∨ ]Sλ∨
q〈ρ,λ∨〉

, (4.29)

where for any f ∈ C[Λ∨], such that f =
∑

ν∨∈Λ∨ cν∨e
ν∨ , [eµ

∨
]f = cµ∨ . Next, if λ∨

is regular,Wλ∨ = {1} and henceWλ∨(q−1) = 1. So, (4.28) becomes equal to

Sλ∨ = (H0)−1q〈ρ,λ
∨〉
∑
w∈W

Γwewλ
∨
. (4.30)

Now, if we choose λ∨ very large as compare to ξ∨, then only the term with w = 1

in the sum
∑

w∈W Γwewλ
∨ can contribute to the coefficient of eλ∨−ξ∨ . Indeed, if λ∨

is chosen very large such that wλ∨ becomes very small as compare to λ∨ − ξ∨ for

w 6= 1 and the presence of (H0)−1 in (4.30) (which can be expanded in the negative

powers of eαi , i ∈ I) force w = 1. As a consequene of (4.29), by choosing λ regular

and sufficiently big, we get

G0 =
1

H0

Γ

=
1

H0

∏
α∈∆+

Υα∨

=
1

H0

∏
α∈∆+

(
1− q−1e−α

∨

1− e−α∨
)m(α)

. (4.31)

The equalityH0 =
∑
w∈W Γw∑

w∈W q−l(w) follows from the fact that the Satake Isomorphism

S being a homomorphism of algebras must satisfy S(h0) = S(χK) = 1. In the

finite dimensional caseH0 = 1 but this equality does not hold in affine settings. The

W -invariant factor H0 is under investigation for infinite dimensional Kac-Moody
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groups. One of the few known cases is when G is affine and the underlying group

G0 is of simply laced type. Then it has an infinite product decomposition

H0 =
l∏

i=1

∞∏
j=1

1− q−mie−jc

1− q−(mi+1)e−jc
, (4.32)

where c is the minimal imaginary coroot and for 1 ≤ i ≤ l,mi are the exponents of

G0. This value ofH0 was conjectured byMacdonald in [45]. It is known as constant

term conjecture and has been proven by I. Cherednik in [16]. Recently, for general

Kac-Moody settings this factor was studied and various properties were listed by D.

Muthiah, A. Puskás and I. Whitehead in [51].
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Chapter 5

Approximation Theorem

In this chapter, we shall prove Theorem 1.3.2. This theorem establishes a link

between the image Sλ∨ of the Satake isomorphism and the Gindikin-Karpelevich

sum Gλ∨ when λ∨ is very large.

5.1 Proof of Main Theorem

Let ρ ∈ Λ be the element as defined in (2.15). Throughout this chapter we fix

our highest weight module V ρ with highest weight ρ and equipped with the norm

||.|| given in (4.9). We also fix a primitive highest weight vector vρ in V ρ, that is,

||vρ|| = 1. Let Pρ be the set of weights of the representation V ρ and for ν ∈ Pρ, ην

be the projection map as introduced in Section 2.3. First, we prove the following

lemma which will be used to prove the statement of the theorem.

Lemma 5.1.1. Let µ∨ be fixed and λ∨ ∈ Λ+ be regular. There exists a finite subset

Ξ = Ξ(λ∨, µ∨) ⊂ Pρ such that if u− ∈ U− satisfies

πλ
∨
u− ∈ Kπλ∨−µ∨U+, (5.1)
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and ην(u−vρ) 6∈ V ρ
O for some ν ∈ Pρ, then ν ∈ Ξ.

Proof. If u− ∈ U−O then u−vρ ∈ V ρ
O and hence there is nothing to prove. Let

U−(λ∨, µ∨) be the set of elements u− ∈ U− \ U−O which satisfy (5.1), and set

Σ = Σ(λ∨, µ∨) = {γ ∈ Q+ | ηρ−γ(u−vρ) 6∈ V ρ
O, u

− ∈ U−(λ∨, µ∨)}.

It suffices to show that Σ is a finite set. Let u− ∈ U−(λ∨, µ∨) with a corresponding

γ ∈ Σ with γ =
∑l

i=1 kiαi, for ki ∈ Z>0 and αi ∈ Π. By assumption

πλ
∨
u− = kπλ

∨−µ∨u+, (5.2)

for some k ∈ K and u+ ∈ U+. We apply both sides of (5.2) to the highest weight

vector vρ. The action of the left hand side of (5.2), Lemma 4.1.1 and the fact

ηρ−γ(u
−vρ) 6∈ V ρ

O give,

||πλ∨u−vρ|| ≥ ||πλ∨vρ−γ|| > q−〈ρ−γ,λ
∨〉. (5.3)

The right hand side of (5.2) acts as,

||kπλ∨−µ∨u+vρ|| = q−〈ρ,λ
∨−µ∨〉. (5.4)

So, (5.3) and (5.4) imply q−〈ρ−γ,λ∨〉 < q−〈ρ,λ
∨−µ∨〉. Which shows q〈γ,λ∨〉 < q〈ρ,µ

∨〉

and hence 〈γ, λ∨〉 < 〈ρ, µ∨〉. Consequently,

l∑
i=1

ki〈αi, λ∨〉 < 〈ρ, µ∨〉. (5.5)

Sinceµ∨ is fixed, and λ∨ is dominant and regular, 〈αi, λ∨〉 are fixed positive numbers
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for 1 ≤ i ≤ l, the bound 〈ρ, µ∨〉 in (5.5) on the coefficients ki appearing in the simple

root decomposition of γ implies that we have only finitely many choices for γ ∈ Q+.

Therefore, the set Σ ⊂ Q∨ is finite and this completes the proof.

Now, we give the proof of the Approximation Theorem.

Proof of Theorem 1.3.2. To prove the assertion of the theorem, we show that for

µ∨ ∈ Q∨+ and λ∨ sufficiently dominant the following set theoretic inclusions hold

Kπλ
∨
K ∩Kπλ∨−µ∨U+ ⊂ Kπλ

∨
U− ∩Kπλ∨−µ∨U+ (5.6)

Kπλ
∨
U− ∩Kπλ∨−µ∨U+ ⊂ Kπλ

∨
K ∩Kπλ∨−µ∨U+. (5.7)

The first containment follows exactly as it does in affine case [6, Subsection 6.3], we

only sketch its (slightly modified) proof here. First note that if λ∨ is dominant then

πλ
∨
U+
Oπ
−λ∨ ⊂ U+

O (5.8)

and Kπλ∨I+ = Kπλ
∨
U−π ⊂ Kπλ

∨
U−.

Thus, it suffices to show that for µ∨ ∈ Q∨+ and λ∨ as above

Kπλ
∨
K ∩Kπλ∨−µ∨U+ ⊂ Kπλ

∨
I+. (5.9)

For this, let k1 ∈ K be such that

πλ
∨
k1 ∈ Kπλ

∨−µ∨U+ (5.10)

and suppose k1 ∈ I+wI+ for some w ∈ W . For any w ∈ W , U−π wI+ ⊆ wI+.
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Then by using this fact and (5.8), we have

πλ
∨
k1 ∈ πλ

∨
I+wI+ = πλ

∨
U+
OU

−
π wI

+

⊆ U+
Oπ

λ∨wI+

= U+
Oπ

λ∨wU−π U
+
O . (5.11)

So, (5.10) and (5.11) imply that for u1, u2 ∈ U+
O , u− ∈ U−π , u3 ∈ U+ and k′ ∈ K

πλ
∨
k1 = u1π

λ∨wu−u2 = k′πλ
∨−µ∨u3 (5.12)

Thus, by taking (u1)−1k′ = k ∈ K and u3u
−1
2 = u+ ∈ U+, we have

πλ
∨
wu− = kπλ

∨−µ∨u+. (5.13)

Next, we choose λ∨ ∈ Λ∨ sufficiently dominant such that if σ ∈ W , σ 6= 1 and

σλ∨ = λ∨ − β∨ for some β∨ ∈ Q+, then

〈ρ, β∨〉 > 〈ρ, µ∨〉. (5.14)

If w 6= 1, by letting the both sides of (5.13) act on the highest weight vector vρ, we

compute

q−〈ρ,λ
∨−µ∨〉 = ||kπλ∨−µ∨u+vρ|| = ||πλ

∨
wu−vρ||

≥ ||πλ∨vwρ|| = q−〈wρ,λ
∨〉 = q−〈ρ,w

−1λ∨〉. (5.15)

This implies 〈ρ, λ∨ − µ∨〉 ≤ 〈ρ, w−1λ∨〉 and this results in a contradiction of the

inequality (5.14).
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For the containment (5.7), let u− ∈ U− be such that πλ∨u− ∈ Kπλ
∨−µ∨U+.

If u− ∈ U−O , then our theorem follows. If u− 6∈ U−O then by Lemma 5.1.1, there

exists a finite subset Ξ ⊂ Pρ such that if ν ∈ Ξ then ην(u−vρ) 6∈ V ρ
O. Moreover, as

in the proof of the above lemma, if we write ν = ρ − γ for some γ ∈ Q+, we get

q〈γ,λ
∨〉 ≤ q〈ρ,µ

∨〉. Thus by choosing λ∨ sufficiently dominant corresponding to the

finitely many elements in Ξ, we can arrange

q〈ρ,µ
∨〉 < q〈γ,λ

∨〉, (5.16)

leading us to a contradiction.

5.2 Iwahori Refinement

The following proposition is an Iwahori analogue of the Approximation Theorem.

Proposition 5.2.1. Let w ∈ W and µ∨ ∈ Λ∨ be fixed. Then for all sufficiently

dominant λ∨ = λ∨(µ∨, w) (that is, sufficiently dominant depending on µ∨ and w),

we have

I−πλ
∨
U− ∩ I−wπλ∨−µ∨U+ = I−πλ

∨
U−O ∩ I

−wπλ
∨−µ∨U+.

Proof. One inclusion is straightforward. So, we prove the other

I−πλ
∨
U− ∩ I−wπλ∨−µ∨U+ ⊂ I−πλ

∨
U−O ∩ I

−wπλ
∨−µ∨U+. (5.17)

For this, let v− ∈ U− be such that πλ∨v− ∈ I−wπλ
∨−µ∨U+. Then using the
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Iwahori-Matsumoto decomposition I− = U+
π U

−
OHO, we have

πλ
∨
v− ∈ U−OU

+
w,πwπ

λ∨−µ∨U+.

Hence, for the containment (5.17), it suffices to show that:

(P1) Letw ∈ W , µ∨ ∈ Λ∨ be fixed. Then for sufficiently dominant λ∨ = λ∨(µ∨, w),

if πλ∨u− ∈ U+
w,πwπ

λ∨−µ∨U+ with u− ∈ U−, then u− ∈ U−O .

To prove (P1), let u− ∈ U− be such that

πλ
∨
u− = u+

wwπ
λ∨−µ∨u+, (5.18)

for some u+
w ∈ U+

w,π and u+ ∈ U+. We apply both sides of (5.18) to the highest

weight vector vρ. The right hand side gives us,

u+
wwπ

λ∨−µ∨u+vρ = u+
wwπ

λ∨−µ∨vρ

= π〈ρ,λ
∨−µ∨〉u+

wwvρ.

Since u+
w ∈ K, ||u+

w || = 1 and hence

||u+
wwπ

λ∨−µ∨u+vρ|| = ||π〈ρ,λ
∨−µ∨〉wvρ||

= q−〈ρ,λ
∨−µ∨〉. (5.19)

On the other hand, the element on the left hand side of (5.18) acts as

πλ
∨
u−vρ = πλ

∨
(
∑
ν∈Pρ

vν), (5.20)
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If u− 6∈ U−O , then there exists at least one weight ξ := ρ − γ ∈ Pρ, with γ ∈ Q+

such that the corresponding weight vector vρ−γ on the right hand side of (5.20) is

not integral, i.e. ηρ−γ(u−vρ) 6∈ Vρ,O. This gives

||πλ∨u−vρ|| ≥ ||πλ
∨
vρ−γ||

≥ q−〈ρ−γ,λ
∨〉. (5.21)

So, (5.19) and (5.21) imply

q〈ρ,µ
∨〉 ≥ q〈γ,λ

∨〉. (5.22)

Claim 1. There are finitely many γ ∈ Q+ such that ηρ−γ(u−vρ) 6= 0 for all u−

satisfying (5.18).

Proof. The subgroup U+
w,π is generated by the finite number of root subgroups Uα,π,

α ∈ S+
w−1 . So, for each element u+

w ∈ U+
w,π, when u+

ww acts on the highest weight

vector vρ, there are a finite number of choices of weights that can appear in the

weight vector decomposition of u+
wwvρ. The same is true for u− appearing on the

left hand side of (5.18). Hence our claim holds.

Thus, by choosing λ∨ sufficiently dominant corresponding to these finitely many γ

from the claim, we may arrange

q〈ρ,µ
∨〉 < q〈γ,λ

∨〉.

Thus our assumption u− 6∈ U−O leads to a contradiction of (5.22), and consequently

the statement (P1) and the proposition follow.
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Chapter 6

An Integral and Recursion Relation

In this chapter we introduce two propotional integrals Iw,λ∨ and Ĩw,λ∨ , and prove

the convergence of Iw,λ∨ by showing that it satisfies a recursion relation in terms of

a certain operator. This will imply the convergence of Ĩw,λ∨ as well. The finiteness

of the level set of Ĩw,λ∨ obtained as a consequence of this convergence will be used

to obtain the proof of the Weak Spherical Finiteness in Chapter 7.

6.1 The Integral

Let ρ be the sum of fundamental weights as introduced earlier (see (2.15)).

Definition 6.1.1. We define a function

Φρ : G −→ C[Λ∨]

by the formula Φρ(g) = q−〈ρ,µ
∨〉eµ

∨
, where g ∈ G has an Iwasawa decomposition

g ∈ Uπµ∨K.

For w ∈ W , recall the subset S−w−1 and the corresponding subgroups U−w−1 ,
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U−w−1,O and U−w−1,π from Subsection 3.4. The group U−w−1 is finite dimensional and

carries a natural Haar measure du−w which is normalized such the group U−w−1,O has

volume 1 with respect to this measure.

Definition 6.1.2. The integral Iw,λ∨ is defined by the following equation,

Iw,λ∨ =

∫
U−
w−1,π

Φρ(u
−
wπ

wλ∨)du−w .

We also need another integral which we define as follows: The group U−w−1,π has

finite volume with respect to the measure du−w . We normalize the restriction of this

measure on U−w−1,π so that the volume of U−w−1,π becomes equal to 1 and call this

measure ˜du−w .

Definition 6.1.3. The integral Ĩw,λ∨ is defined by the following equation,

Ĩw,λ∨ =

∫
U−
w−1,π

Φρ(u
−
wπ

wλ∨) ˜du−w .

6.2 Demazure-Lusztig operator

Let v be a formal variable and Cv := C[v] be the ring of polynomial in v. Let

R := C[[Q∨−]]. Set

L := Cv ⊗C R (6.1)

and

L [W ] := {
∑
w∈W

aw[w] | aw ∈ L }. (6.2)
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Now, we consider another formal variable X and define the following rational

functions

b(X) :=
v − 1

1−X
and c(X) :=

1− vX
1−X

.

By expanding b(X) and c(X) in X−1 and using X = eα
∨ for some positive coroot

α∨ it follows that b(X), c(X) ∈ L . For a coroot α∨, we shall denote

b(α∨) := b(eα
∨
) and c(α∨) := c(eα

∨
). (6.3)

Definition 6.2.1. For i ∈ I , let α∨i be the simple coroot and wi = wαi be the simple

root reflection. A Demazure-Lusztig operator on L is defined by

Twi := c(α∨i )[wi] + b(α∨i )[1], (6.4)

which, by expanding the rational functions, can be seen to be an element of L [W ].

The operator Twi satisfies the following properties.

Proposition 6.2.2. For i ∈ I ,

(1) For i ∈ I , T2
wi

= (v − 1)Twi + v.

(2) The operators Twi satisfy the braid relations. So, if w ∈ W has a reduced

decomposition w = wi1wi2 . . . win then

Tw = Twi1
Twi2

. . .Twin

and this expansion is independent of the chosen reduced decomposition.
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Proof. For the proof of the last part, we refer readers to [52, §6] or from the

references given there. Here, we only sketch the proof of the first part. By using

[wi]c(α∨i ) = c(−α∨i )[wi], [wi]b(α∨i ) = b(−α∨i )[wi],

and

b(−α∨i ) + b(α∨i ) = v − 1

we write

T2
wi

= c(α∨i )c(−α∨i )[1] + c(α∨i )b(−α∨i )[wi] + b(α∨i )c(α∨i )[wi] + b(α∨i )2[1]

=
(
c(α∨i )c(−α∨i ) + b(α∨i )2

)
[1] + c(α∨i )(b(−α∨i ) + b(α∨i ))[wi]

= (v − 1)c(α∨i )[wi] +
(
c(α∨i )c(−α∨i ) + b(α∨i )2

)
[1]. (6.5)

Now, we use (v−1)c(α∨i )[wi] = (v−1)Twi−(v−1)b(α∨i )[1] in (6.5) and simplify

the resulting expression to get

c(α∨i )c(−α∨i ) + b(α∨i )2 − (v − 1)b(α∨i ) = v. (6.6)

This is what we want to show.

Now, we state and prove the main result of this section. This is an analogue of the

results previously proven in [43, Theorem 4.4.5], [6, Proposition 7.3.7] and [52,

Proposition 2.10].

Proposition 6.2.3. Letλ∨ be a dominant and regular,w ∈ W be such thatw = wαw
′

and l(w) = 1 + l(w′). Then

Iw,λ∨ = Twα(Iw′,λ∨). (6.7)
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The above proposition has the following corollaries.

Corollary 6.2.4. For w ∈ W and λ ∈ Λ+ regular, the value ofTw(eλ
∨
) at v = q−1

is equal to a constant multiple of the integral Iw,λ∨ . More precisely,

Iw,λ∨ = q−〈ρ,λ
∨〉Tw(eλ

∨
). (6.8)

Proof. Let w = wαmwαm−1 . . . wα1 be a reduced decomposition of w, then by

Proposition 6.2.3

Iw,λ∨ = TwαmTwαm−1
. . .Twα2

(Iw1,λ∨). (6.9)

The rank 1 computation implies that Iw1,λ∨ = q−〈ρ,λ
∨〉Tw1(e

λ∨). Finally, this

corollary follows by part (2) of Proposition 6.2.2.

Corollary 6.2.5. With the same assumptions as above, the integral Iw,λ∨ converges

in the following sense: there exists a finite subset B ⊂ Λ∨ such that

Iw,λ∨ =
∑
µ∨∈B

cµ∨e
µ∨

with cµ∨ ∈ C for all µ∨ ∈ B.

Proof. By Proposition 6.2.3, the assertion follows by showing Tw(eλ
∨
) ∈ C[Λ∨]

at v = q−1. An affine version of this statement is given in [44, Section 4.3] which

extends to general Kac-Moody root systems as well. The proof is obtained by

combining the rank 1 computations with Proposition 6.2.2 (2). In the following we
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give the rank 1 computation. For λ∨ ∈ Λ∨+

Twα(eλ
∨
) = c(α∨)ewαλ

∨
+ b(α∨i )eλ

∨

=
1− veα∨

1− eα∨
ewαλ

∨
+

v − 1

1− eα∨
eλ
∨

= (ewαλ
∨

+ (1− v)ewαλ
∨+α∨ + (1− v)ewαλ

∨+2α∨ + . . . )

− ((1− v)eλ
∨

+ (1− v)eλ
∨+α∨ + . . . )

= ewαλ
∨

+ (1− v)ewαλ
∨+α∨ + · · ·+ (1− v)eλ

∨−α∨ . (6.10)

The way we defined Haar measure, it is easy to verify that there exists a constant

C > 0 such that

Ĩw,λ∨ = CIw,λ∨ . (6.11)

Corollary 6.2.5 and (6.11) imply that the integral Ĩw,λ∨ also converges. The proof

of Proposition 6.2.3 will be carried out in next two sections.

6.3 Rank 1 Proof

First, we prove the proposition in rank one where the computations are very similar

to whatMacdonald did in Proposition 4.3.1 from [42] for a slightly different integral.

Step 1: Decomposition

The integral Iwα,λ∨ can be split into two parts

Iwα,λ∨ =

∫
U−wα,π

Φρ(u
−
wαπ

wαλ∨)du−wα = I1
wα,λ∨ − I

2
wα,λ∨ , (6.12)

71



where

I1
wα,λ∨ =

∫
U−α(K)

Φρ(u−απ
wαλ∨)du−α, (6.13)

I2
wα,λ∨ =

∫
U−α[≤0]

Φρ(u−απ
wαλ∨)du−α, (6.14)

and where U−α[≤ 0] = ∪n≤0U−α[n] and for n ≤ 0,

U−α[n] = {u−α(t) : val(t) = n}. (6.15)

Step 2: Evaluation of I2
wα,λ∨

We start by evaluating I2
wα,λ∨

, which can be written as

I2
wα,λ∨ =

−∞∑
t=0

∫
U−α[t]

Φρ(u−απ
wαλ∨)du−α. (6.16)

Let s ∈ K with val(s) = t, t ≤ 0 and s = πtu for some u ∈ O∗. We use the

following identity which can be proven by using the relations (3.7)

u−α(s) = uα(s−1)π−tα
∨
wαuα(s−1) (6.17)

and write

u−α(s)πwαλ
∨

= uα(s−1)π−tα
∨
wαuα(s−1)πwαλ

∨

= uα(s−1)πλ
∨−tα∨wαuα(π〈α,−wαλ

∨〉s−1)

= uα(s−1)πλ
∨−tα∨wαuα(π〈α,λ

∨〉s−1).
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Since λ∨ is dominant and regular, 〈α, λ∨〉 > 0. Therefore,

Φρ(u−απ
wαλ∨) = q−〈ρ,λ

∨−tα∨〉eλ
∨−tα∨

= q−〈ρ,λ
∨〉qteλ

∨−tα∨ .

The integral in the sum (6.16) solves as,

∫
U−α[t]

Φρ(u−απ
wαλ∨)du−α =

∫
U−α[t]

q−〈ρ,λ
∨〉qteλ

∨−tα∨du−α

= q−〈ρ,λ
∨〉qteλ

∨−tα∨V ol(U−α[t])

= q−〈ρ,λ
∨〉qteλ

∨−tα∨(q−t − q−t−1)

= q−〈ρ,λ
∨〉eλ

∨
(1− q−1)e−tα

∨
.

Hence,

I2
wα,λ∨ =

−∞∑
t=0

q−〈ρ,λ
∨〉eλ

∨
(1− q−1)e−tα

∨

= q−〈ρ,λ
∨〉1− q−1

1− eα∨
eλ
∨
. (6.18)

Step 3: Evaluation of I1
wα,λ∨

Next, we compute I1
wα,λ∨

. By the change of variables u−α 7→ πwαλ
∨
u−απ

−wαλ∨ , we

get

I1
wα,λ∨ =

∫
U−α(K)

Φρ(u−απ
wαλ∨)du−α

= (u−απ
wαλ∨)

∫
U−α(K)

Φρ(π
wαλ∨u−α)du−α, (6.19)

where (u−απwαλ
∨
) is a Jacobian factor that is equal to q−〈α,λ∨〉. Now, we have two

cases:
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Case 1: if u−α ∈ U−α(O). Then Φρ(π
wαλ∨u−α) = q−〈ρ,wαλ

∨−〉ewαλ
∨ and hence

∫
U−α(O)

Φρ(π
wαλ∨u−α)du−α = q−〈ρ,wαλ

∨〉ewαλ
∨
V ol(U−α(O)) = q−〈ρ,wαλ

∨〉ewαλ
∨
.

Case 2: If u−α /∈ U−α(O), then

πwαλ
∨
u−α(s) = πwαλ

∨
uα(s−1)π−val(s)α

∨
wαuα(s−1)

= uα(π−〈α,λ
∨〉s−1)πwαλ

∨−val(s)α∨wαuα(s−1).

So,

Φρ(π
wαλ∨u−α(s)) = q−〈ρ,wαλ

∨−val(s)α∨〉ewαλ
∨−val(s)α∨ = q−〈ρ,wαλ

∨〉qval(s)ewαλ
∨
e−val(s)α

∨

= q−〈ρ,λ
∨〉q〈α,λ

∨〉ewαλ
∨
qval(s)e−val(s)α

∨
.

Putting the values of the function for both cases in (6.19), we obtain

I1
wα,λ∨ = (u−απ

wαλ∨)q−〈ρ−α,λ
∨〉ewαλ

∨
[1 + (1− q−1)eα

∨
+ (1− q−1)e2α∨ + . . . ]

= q−〈ρ,λ
∨〉ewαλ

∨
[1 +

(1− q−1)eα
∨

1− eα∨
]

= q−〈ρ,λ
∨〉ewαλ

∨ 1− q−1eα
∨

1− eα∨
. (6.20)

Step 4: Conclusion

Using (6.20) and (6.18) in (6.12), we get

Iwα,λ∨ = q−〈ρ,λ
∨〉1− q−1eα

∨

1− eα∨
e−wαλ

∨ − q−〈ρ,λ∨〉1− q
−1

1− eα∨
eλ
∨

= q−〈ρ,λ
∨〉[c(α∨i )ewiλ

∨
+ b(α∨i )eλ

∨
]

= q−〈ρ,λ
∨〉Twαi

(eλ
∨
). (6.21)
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6.4 Higher Rank Proof

The assertion in higher rank is proven below.

Step 1: Preliminary Reduction:

We will use the following description of the elements of S−w−1 = ∆− ∩w∆+ which

can be verified easily.

Lemma 6.4.1. Let w ∈ W be such that w = wαw
′ and l(w) = 1 + l(w′). Then

S−w−1 = {−α} ∪ {wαβ | β ∈ S−(w′)−1}. (6.22)

The above lemma implies the following decomposition of U−w−1 .

Lemma 6.4.2. By assuming the conditions on w ∈ W from the above lemma,

each u−w ∈ U−w−1 can be written as u−w = u−αwαu
−
w′wα, where u−α ∈ U−α and

u−w′ ∈ U
−
(w′)−1 .

Lemma 6.4.2 yields the following splitting of the integral Iw,λ∨:

Iw,λ∨ =

∫
U−
w−1,π

Φρ(u
−
wπ

wλ∨)du−w

=

∫
U−α,π

∫
U−
(w′)−1,π

Φρ(u−αwαu
−
w′wαπ

wλ∨)du−αdu
−
w′

= I1
w,λ∨ − I2

w,λ∨ ,

where

I1
w,λ∨ =

∫
U−α(K)

∫
U−
(w′)−1,π

Φρ(u−αwαu
−
w′wαπ

wλ∨)du−αdu
−
w′

and

I2
w,λ∨ =

∫
U−α[≤0]

∫
(U−
w′)−1,π

Φρ(u−αwαu
−
w′wαπ

wλ∨)du−αdu
−
w′ .
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Step 2: Evaluation of I1
w,λ∨:

To simplify the integrand, we define a map.

Definition 6.4.3. Let A be the quotient group as introduced in Subsection 3.4. The

function

IwA : G −→ A

is defined by setting the formula IwA(g) = πµ
∨ for all g ∈ Uπµ∨K and µ∨ ∈ Λ∨.

Following Kumar [39, P. 77], for a simple root α, we denote a subset by Uα

of U+ which is equal to wαU+wα ∩ U+. This subset is normalized by the root

subgroups Uα and U−α and each element u of U+ can be written as u = uαu
α for

some uα ∈ Uα and uα ∈ Uα. Writing u−w ∈ U−w−1,π as in Lemma 6.4.2, we have

u−wπ
wλ∨ = u−αwαu

−
w′wαπ

wλ∨

= u−αwαu
−
w′π

w′λ∨wα, (6.23)

for some u−α ∈ U−α and u−w′ ∈ U
−
(w′)−1,π. Next assume u−w′πw

′λ∨wα = uπµ
∨
k be

an Iwasawa decomposition, u = xαu
α for some xα ∈ Uα and uα ∈ Uα, and let

n−α ∈ U−α be defined as n−α = wαxαwα. The right hand side of (6.23) becomes

u−αwαu
−
w′π

w′λ∨wα = u−αwαuπ
µ∨kwα

= uα1π
wαµ∨(π−wαµ

∨
u−αn−απ

wαµ∨)wαkwα. (6.24)

Let ñ−α = π−wαµ
∨
u−αn−απ

wαµ∨ . Summarizing, we have

Lemma 6.4.4. In the above notations,

IwA(u−w) = IwA(u−w′)
wαIwA(ñ−α).

76



So, the integral I1
w,λ∨ takes the form

I1
w,λ∨ =

∫
U−α(K)

∫
U−
(w′)−1,π

Φρ(IwA(u−w′)
wαIwA(ñ−α))dñ−αdu

−
w′

=
∫
U−α(K)

Φρ(IwA(ñ−α))dñ−α
∫
U−
(w′)−1,π

Φρ(IwA(u−w′)
wα)du−w′ .

The integral defined with measure dñ−α can be related to the integral defined

with measure du−α by a change of variables contain a Jacobian factor q−〈α,µ∨〉. So,

we obtain

I1
w,λ∨ =

∫
U−α(K)

Φρ(IwA(ñ−α))dñ−α

∫
U−
(w′)−1,π

Φρ(IwA(u−w′)
wα)du−w′

=

∫
U−α(K)

q−〈α,µ
∨〉Φρ(IwA(u−α))du−α

∫
U−
(w′)−1,π

q〈α,µ
∨〉(Φρ(IwA(u−w′)))

wαdu−w′

=

∫
U−α(K)

Φρ(IwA(u−α))du−α

∫
U−
(w′)−1,π

(Φρ(IwA(u−w′)))
wαdu−w′

where in the second integral the following fact is used

Φρ(π
wαµ∨) = q−〈ρ,wαµ

∨〉ewαµ
∨

= q−〈ρ−α,µ
∨〉ewαµ

∨
= q〈α,µ

∨〉Φρ(π
µ∨)wα .

The rank 1 computation for the first integral now implies,

I1
w,λ∨ = c[α∨]

∫
U−
(w′)−1,π

(Φρ(IwA(u−w′)))
wαdu−w′

= c[α∨](Iw′,λ∨)wα . (6.25)

Step 3: Evaluation of I2
w,λ∨:

For t ∈ K and val(t) ≤ 0, we write the integrand of I2
w,λ∨ as

u−α(t)wαu
−
w′wαπ

wλ∨

= πwλ
∨
(π−wλ

∨
u−α(t)πwλ

∨
)(π−wλ

∨
wαu

−
w′wαπ

wλ∨).
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Thus

u−α(t)wαu
−
w′wαπ

wλ∨ = πwλ
∨
u−α(π〈−α,−wαw

′λ∨〉t)(wαπ
−w′λ∨u−w′π

w′λ∨wα)

= πwλ
∨
u−α(π−〈α,w

′λ∨〉t)(wαπ
−w′λ∨u−w′π

w′λ∨wα).(6.26)

Set nw′α = −〈α,w′λ∨〉. Since λ∨ is dominant nw′α is a non positive integer. We

define the subset U−w′ [λ] ⊂ U−w′,π by setting U−w′ [λ] = π−w
′λU−(w′)−1,ππ

w′λ. We use

(6.26) and the above notation to write,

I2
w,λ∨ = 12

∫
U−α[≤nw′α]

∫
U−
w′ [λ]

Φρ(π
wλ∨u−αwαu

−
w′wα)du−αdu

−
w′

= 12q
−〈ρ,wλ∨〉ewλ

∨
∫
U−α[≤nw′α]

∫
U−
w′ [λ]

Φρ(u−αwαu
−
w′wα)du−αdu

−
w′ , (6.27)

where 1 := (u−απ
wλ∨) = q−〈w

′λ,α∨〉 and 2 := (u−w′π
w′λ∨) are the Jacobian

factors. Suppose

J2
w,λ∨ :=

∫
U−α[≤nw′α]

∫
U−
w′ [λ]

Φρ(π
wλ∨u−αwαu

−
w′wα)du−αdu

−
w′ . (6.28)

The following lemma will be used to write J2
w,λ∨ as a product of two integrals.

Lemma 6.4.5. Let u−α(t) ∈ U−α[≤ nw′α] and u−w′ ∈ U
−
w′ [λ], then

IwA(u−α(t)wαu
−
w′wα) = IwA(u−α(t)wα)IwA(u−α(t−1)u−w′u−α(t−1)−1).

Proof. Let ũ−w′ := (u−α(t−1)u−w′u−α(t−1)−1). We have

u−α(t)wαu
−
w′wα = uα(t−1)π−val(t)α

∨
u−α(t−1)u−w′wα

= uα(t−1)π−val(t)α
∨
ũ−w′u−α(t−1)wα. (6.29)

Let ũ−w′ = u−α(t−1)u−w′u−α(t−1)−1 = u′πν
∨
k′, for some u′ ∈ U and k′ ∈ K. Using
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this Iwasawa decomposition in (6.29), we get

u−α(t)wαu
−
w′wα = uα(t−1)π−val(t)α

∨
(u
′
πν
∨
k
′
)u−α(t−1)wα

= u
′′
πν
∨−val(t)α∨k

′
u−α(t−1)wα, (6.30)

for some u′′ ∈ U+. Thus

u−α(t)wαu
−
w′wα ∈ Uπ

ν∨−val(t)α∨K

and the assertion follows.

By following the above lemma integral J2
w,λ∨ can be split,

J2
w,λ∨ =

∫
U−α[≤nw′α]

Φρ(u−αwα)du−α

∫
U−
w′ [λ]

Φρ(u−α(t−1)u−w′u−α(−t−1))du−w′ .

For t ∈ Kwith val(t) = nw′α, u−α(t−1) ∈ U−α(O) thereforeU−w′ [λ] andu−α(t−1)U−w′ [λ]u−α(−t−1)

have the same measure and we can write

J2
w,λ∨ =

∫
U−α[≤nw′α]

Φρ(u−αwα)du−α

∫
U−
w′ [λ]

Φρ(u
−
w′)du

−
w′ .

Since 1 = (u−απ
wλ∨) = q−〈w

′λ,α∨〉 and nw′α = 〈α,w′λ∨〉, therefore

1q
−〈ρ,wλ∨〉ewλ

∨
= 1q

−〈ρ,wαw′λ∨〉ewαw
′λ∨ = 1q

−〈ρ−α,w′λ∨〉ew
′λ∨−〈α,w′λ∨〉α∨

= 1q
−〈−α,w′λ∨〉q−〈ρ,w

′λ∨〉ew
′λ∨e−〈α,w

′λ∨〉α∨ = q−〈ρ,w
′λ∨〉ew

′λ∨e−nw′αα
∨
.

Also,

e−nw′αα
∨ ∫

U−α[≤nw′α]
Φρ(u−αwα)du−α

= e−nw′α [(1− q−1)enw′αα
∨

+ (1− q−1)e(nw′α+1)α∨ + . . . ]

= [(1− q−1) + (1− q−1)eα
∨

+ . . . ] = b[α∨].
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By putting these pieces back in (6.27), we obtain

I1
w,λ∨ = 2b[α∨]

∫
U−
w′ [λ]

q−〈ρ,w
′λ∨〉ew

′λ∨Φρ(u
−
w′wα)du−w′

= 2b[α∨]

∫
U−
w′

Φρ(π
w′λ∨u−w′)du

−
w′

= b[α∨]Iw′,λ∨ . (6.31)

The solutions (6.25) and (6.31) imply that

Iw,λ∨ = Twα(Iw′,λ∨). (6.32)
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Chapter 7

Weak Spherical Finiteness

7.1 Iwahori Level Decomposition

Now, we initiate the proof of the Theorem 1.5.1. For λ∨, µ∨ ∈ Λ∨, set

M(λ∨, µ∨) = K\Kπµ∨U+ ∩Kπλ∨K. (7.1)

We begin by establishing a bijective correspondence between the coset space

M(λ∨, µ∨) and a disjoint union of so-called Iwahori pieces. This disjoint union is

indexed by the Weyl group W and the main result of this section asserts that there

are finitely many elements ofW which contribute in this union.

7.1.1 Iwahori Pieces

Let Γ ≤ G,X be a right-Γ and Y be a left-Γ set. We need the following relation on

the set X × Y from [8, Section 4].

Definition 7.1.1. Let (x, y), (x′, y′) ∈ X × Y , (x, y) ∼ (x′, y′) if and only if there

exists some r ∈ Γ such that, x′ = xr and y′ = r−1y.
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One can check that∼ is an equivalence relation. We denote byX×ΓY , the quotient

space (X × Y )/ ∼. For µ∨, λ∨ ∈ Λ∨, we take X = U+K, Y = Kπλ
∨
K, Γ = K

and consider the following map induced by the multiplication

mλ∨ : U+K ×K Kπλ
∨
K −→ G. (7.2)

For w ∈ W and λ∨ ∈ Λ∨, we take X = U+wI−, Y = I−πλ
∨
K, Γ = I− and

consider also the following map induced by multiplication:

mλ∨,w : U+wI− ×I− I−πλ
∨
K −→ G. (7.3)

As in the affine case from [52, Section 4.4], it can be shown that for µ∨ ∈ Λ∨, the

fiberm−1
λ∨ (πµ

∨
) is in bijective correspondence withM(λ∨, µ∨). Also, the following

lemma can be proven more generally along the same lines as those of [8, Lemma

7.3.3], which again was written in the affine context.

Lemma 7.1.2. For all w ∈ W and λ∨ ∈ Λ∨+ regular, the fibers m−1
w,λ∨(πµ

∨
) are

disjoint and there is a bijection

m−1
λ∨ (πµ

∨
) ' tw∈Wm−1

w,λ∨(πµ
∨
). (7.4)

From now on, for w ∈ W and µ∨ ∈ Λ∨, the fiber m−1
w,λ∨(πµ

∨
) will be referred to

as an Iwahori piece of M(λ∨, µ∨). For each w ∈ W and fixed λ∨, µ∨ ∈ Λ∨, by

definition

m−1
λ∨,w(πµ

∨
) = I−\I−w−1πµ

∨
U+ ∩ I−πλ∨K. (7.5)

Theorem 1.5.1 will follow if we prove: (a) for fixed µ∨ ∈ Λ∨ and λ∨ regular and
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sufficiently dominant, there are finitely many elements ofW contribute in the union

on the right hand side of (7.4); and (b) for each such w ∈ W , the Iwahori piece

m−1
w,λ∨(πµ

∨
) is finite. Part (b) is discussed in §5− 6 and part (a) is a consequence of

Proposition 7.1.3. For a fixed µ∨ ∈ Λ∨, λ∨ ∈ Λ∨ regular and sufficiently large

with respect to µ∨, there exists a finite subset Ω = Ω(λ∨, µ∨) ⊂ W such that

m−1
λ∨ (πµ

∨
) ' tw∈Ωm

−1
w,λ∨(πµ

∨
).

Proof. By (7.5), it suffices to show the following: for µ∨ fixed and λ∨ regular and

sufficiently large, there exist finitely many w ∈ W such that

I−wπµ
∨
U+ ∩ I−πλ∨K 6= ∅. (7.6)

We replace K by K = ∪σ∈W I+σI− and then use the Iwahori-Matsumoto decom-

position I+ = U+
OU

−
π HO on the left hand side of (7.6) to obtain

I−wπµ
∨
U+ ∩ I−πλ∨K = ∪σ∈W I−wπµ

∨
U+ ∩ I−πλ∨U+

OU
−
π σI

−

= ∪σ∈W I−wπµ
∨
U+ ∩ I−πλ∨σI−, (7.7)

where in the last step we use the fact that if λ∨ is dominant and regular then

πλ
∨
U+
Oπ
−λ∨ ⊂ U+

π . Consider σ ∈ W such that

I−wπµ
∨
U+ ∩ I−σπσλ∨U−O 6= ∅. (7.8)

Now,

I−wπµ
∨
U+ ∩ I−σπσλ∨U−O ⊂ Kπµ

∨
U+ ∩Kπσλ∨U−. (7.9)
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By the second part of Theorem 1.4.1 we get,

µ∨ ≤ σλ∨. (7.10)

Since λ∨ is regular, if we choose λ∨ very large compared to µ∨ then (7.10) holds

only for σ = 1. Hence (7.7) implies that

I−wπµ
∨
U+ ∩ I−πλ∨K = I−wπµ

∨
U+ ∩ I−πλ∨U−O .

By (7.6), we also have:

U− ∩ U+
w−1,πwπ

µ∨−λ∨HOU
+ 6= ∅.

Finally, Corollary 4.2.1 implies

l(w) ≤ 2〈ρ, λ∨ − µ∨〉. (7.11)

The bound (7.11) proves the Proposition.

7.2 Finiteness of Fiber

In this section, we fix w ∈ Ω, µ∨ ∈ Λ and λ ∈ Λ+ regular, where Ω ⊂ W is the

finite set obtained in Proposition 7.1.3, and prove the finiteness of the Iwahori piece

m−1
w,λ∨(µ∨) for w ∈ Ω. We introduce the following terminology which will be used

in this section.
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Definition 7.2.1. Let f =
∑

µ∨∈Λ∨ cµ∨e
µ∨ be a formal sum, we write

[eξ
∨
]f := cξ∨ . (7.12)

Let Z := {µ∨ ∈ Λ∨ | m−1
w,λ∨(πµ

∨
) 6= ∅}.

Lemma 7.2.2. For w ∈ W and λ∨ ∈ Λ∨+ regular, Z ⊂ supp(Iw,λ∨), where

supp(Iw,λ∨) = {µ∨ ∈ Λ∨ | [eµ∨ ]Iw,λ∨ 6= 0}.

Proof. Let µ∨ is such thatm−1
w,λ∨(πµ

∨
) 6= ∅, then

wI−πλ
∨
K ∩ Uπµ∨K 6= ∅

which implies

wU+
π U

−
Oπ

λ∨K ∩ Uπµ∨K 6= ∅.

Since λ∨ is dominant and regular, π−λ∨U−Oπλ
∨ ⊂ K and this gives

U−w−1ππ
wλ∨ ∩ Uπµ∨K 6= ∅.

and thus µ∨ ∈ supp(Iw,λ∨).

7.2.1 Quotient Space and Surjection

We equip the group U+
w,π with the following relation

Definition 7.2.3. Let uw, zw ∈ U+
w,π. We say uw ∼ zw if and only if

uw = zwπ
λ∨U+

w,ππ
−λ∨ . (7.13)
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It can be easily verified that ∼ is an equivalence relation. For uw ∈ U+
w,π, [uw] will

denote the equivalence class of uw with respect to the relation ∼. Next, set

U+
w,π(µ∨) := {uw ∈ U+

w,π | wuwπλ
∨ ∈ Uπµ∨K}, (7.14)

and

X+
w,π(µ∨) := {[uw] | uw ∈ U+

w,π(µ∨)}. (7.15)

If [uw] ∈ X+
w,π(µ∨) with uw ∈ U+

w,π(µ∨), the relation

wuwπ
λ∨ = uπµ

∨
k, (7.16)

implies

u−1wuwπ
λ∨k−1 = πµ

∨
, (7.17)

for some k ∈ K and u ∈ U+. Thus [uw] ∈ X+
w,π(µ∨) gives rise to an element in

m−1
w,λ∨(µ∨).

Definition 7.2.4. Let

φ : X+
w,π(µ∨) −→ m−1

w,λ∨(µ∨) (7.18)

be a map defined as φ([uw]) : = (u−1wuw, π
λ∨k−1).

Lemma 7.2.5. The function φ is well defined and onto.

Proof. To show that φ is a well defined, let uw, zw ∈ U+
w,π(µ∨) and uw ∼ zw then
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there exists u+ ∈ U+
w,π such that

uw = zwπ
λ∨u+π−λ

∨
. (7.19)

Also, for some k ∈ K and u1 ∈ U+,

wuwπ
λ∨ = u1π

µ∨k, (7.20)

which implies

πµ
∨

= u−1
1 wuwπ

λ∨k−1,

= u−1
1 wuw(πλ

∨
u+π−λ

∨
)−1(πλ

∨
u+π−λ

∨
)πλ

∨
k−1

= u−1
1 wzwπ

λ∨u+k−1

= u−1
1 wzwπ

λ∨k′, (7.21)

where u+k−1 = k′ ∈ K. Thus by taking (πλ
∨
u+π−λ

∨
)−1 = i− ∈ I−

(u−1
1 wzw, π

λ∨k′) = (u−1
1 wuwi

−, (i−)−1πλ
∨
k), (7.22)

and hence

φ([uw]) = φ([zw]). (7.23)

Next, we show that φ is onto. Let (x, y) ∈ m−1
w,λ∨(µ∨) with x = uwi−1 and

y = i−2 π
λ∨k for some u ∈ U+, k ∈ K and i−1 , i−2 ∈ I−. Then there exists i− ∈ I−

87



such that

uwi−πλ
∨
k = πµ

∨
. (7.24)

Suppose i− has the following decomposition

i− = u+
π u
−
OhO (7.25)

for some u+
π ∈ U+

π , u−O ∈ U
−
O and hO ∈ HO. By putting it into (7.24), we have

πµ
∨

= uwi−πλ
∨
k

= uwu+
π u
−
OhOπ

λ∨k

= uwuw,ππ
λ∨k′′ (7.26)

for some uw,π ∈ U+
w,π and k′′ = π−λ

∨
u−OhOπ

λ∨k ∈ K. So, we get an element

uw,π ∈ U+
w,π(µ∨) such that

φ([uw]) = (x, y). (7.27)

This completes the proof.

7.2.2 Finiteness of Level Sets

Let U−w−1 [λ
∨] : = π−wλ

∨
U−w−1,ππ

wλ∨ and U−w−1 [λ
∨, µ∨] := U−w−1 [λ

∨] ∩ Uπµ∨K.

Remark 7.2.6. If uw ∈ U+
w,π satisfies wuwπλ

∨ ∈ Uπµ∨K, then

π−wλ
∨
uwπ

wλ∨ ∈ Uπµ∨−wλ∨K ∩ U−w−1 [λ
∨]. (7.28)
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Set

Ŷ := {µ∨ − wλ∨ | µ∨ ∈ Y },

where Y = Supp(Ĩw,λ∨).

Lemma 7.2.7. For each ξ ∈ Ŷ , the coset space U−w−1 [λ
∨, ξ∨]/U−w−1,π is finite.

Proof. The integral Ĩw,λ∨ which is defined in Section 6.1 can be written as

Ĩw,λ∨ =

∫
U−
w−1,π

Φρ(u
−
wπ

wλ∨) ˜du−w

=

∫
U−
w−1 [λ∨]

Φρ(π
wλ∨u−w) ˜du−w

= q−〈ρ,wλ
∨〉ewλ

∨
∫
U−
w−1 [λ∨]

Φρ(u
−
w) ˜du−w

= q−〈ρ,wλ
∨〉ewλ

∨ ∑
ξ∨∈Ŷ

V ol(U−w−1 [λ
∨] ∩ Uπξ∨K)q−〈ρ,ξ

∨〉eξ
∨

= q−〈ρ,wλ
∨〉ewλ

∨ ∑
ξ∨∈Ŷ

|U−w−1 [λ
∨] ∩ Uπξ∨K/U−w−1,π|q

−〈ρ,ξ∨〉eξ
∨

=
∑
ξ∨∈Ŷ

|U−w−1 [λ
∨] ∩ Uπξ∨K/U−w−1,π|q

−〈ρ,wλ∨+ξ∨〉ewλ
∨+ξ∨ . (7.29)

By Theorem 6.2.4, for each µ∨ ∈ Y , there exists a constant D such that

[eµ
∨
]Ĩw,λ∨ = D[eµ

∨
]Tw(eλ

∨
). (7.30)

Since the right hand side of (7.30) is finite, so is the left hand side and hence the

lemma follows.

7.2.3 Main Result

In this subsection we complete the proof of the Weak Spherical Finiteness by

showing that the fiberm−1
w,λ∨(µ∨) is finite.
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Proposition 7.2.8. There exists a one-to-onemap fromX+
w,π(µ∨) toU−w−1 [λ

∨, ξ∨]/U−w−1,π.

Proof. By using the fact

wπ−λU+
w.π(µ∨)πλw−1 ⊂ U−w−1 [λ

∨, ξ∨]

we define a map

ψ : X+
w,π(µ∨) −→ U−w−1 [λ

∨, ξ∨]/U−w−1,π

as,

ψ([uw]) = (wπ−λuwπ
λw−1)U−w−1,π. (7.31)

We prove that ψ is our required one-to-one map. First, we show that

ψ is well defined: Let uw, zw ∈ U+
w,π(µ∨) and uw ∼ zw then there exists u+ ∈ U+

w,π

such that

uw = zwπ
λ∨u+π−λ

∨
. (7.32)

Hence (zw)−1uw = πλ
∨
u+π−λ

∨ and

wπ−λ
∨
(zw)−1uwπ

λ∨w−1 = wπ−λ
∨
(πλ

∨
u+π−λ

∨
)πλ

∨
w−1. (7.33)

Since u− = w(u+)−1w−1 ∈ U−w−1,π, we get

wπ−λ
∨
u−w−1π

λ∨w−1U−w,π = wπ−λ
∨
z−w−1π

λ∨w−1U−w,π (7.34)
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and hence ψ is well defined.

ψ is injective: To show that ψ is one-one, suppose uw, zw ∈ U+
w,π(µ∨) be such

that

ψ([uw]) = ψ([zw])

that is,

wπ−λ
∨
z−1
w uwπ

wλ∨w−1 ∈ U−w−1,π

π−λ
∨
z−1
w uwπ

λ∨ ∈ w−1U−w−1,πw.

Consequently, z−1
w uw ∈ πλ

∨
U+
w,ππ

−λ∨ and zw ∼ uw. Hence ψ is a one-one map.

We now state and prove the main result of this section.

Proposition 7.2.9. For w ∈ Ω, µ∨ ∈ Λ∨ and λ∨ ∈ Λ∨+ regular, the fibers

m−1
w,λ∨(πµ

∨
) is finite.

Proof. By Proposition 7.2.8 the set X+
w,π(µ∨) is embedded in U−w−1 [λ

∨, ξ∨]/U−w−1,π.

The quotient U−w−1 [λ
∨, ξ∨]/U−w−1,π is finite by Lemma 7.2.7 and hence X+

w,π(µ∨) is

finite. Finally, by Lemma 7.2.5 the finite set X+
w,π(µ∨) is mapped onto the fiber

m−1
w,λ∨(µ∨) which implies the finiteness of m−1

w,λ∨(µ∨). So, the Weak Spherical

Finiteness follows.
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Chapter 8

Proof of Main Finiteness Theorems

Our aim in this chapter is to prove the following diagram of implications by applying

the finiteness results we obtained so far.

Weak Spherical Finiteness+Approximation Theorem

Gindikin-Karpelevich Finiteness Spherical Finiteness

8.1 Gindikin-Karpelevich Finiteness

Proof. By using the Approximation Theorem and Weak Spherical Finiteness, we

give a proof of Theorem 1.4.1. The Approximation Theorem implies that for a fixed

µ∨ ∈ Λ∨, λ∨ ∈ Λ∨ regular and sufficiently large, we have an equality

K\Kπλ∨K ∩Kπλ∨−µ∨U+ = K\Kπλ∨U− ∩Kπλ∨−µ∨U+ (8.1)

of coset spaces. With the same assumption on µ∨ and considering λ∨ sufficiently

large, the Weak Spherical Finiteness implies the finiteness of the left hand side of
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(8.1). Now, there is a bijection of sets

Kπλ
∨
U− ∩Kπλ∨−µ∨U+ ↔ KU− ∩Kπ−µ∨U+, (8.2)

which implies the finiteness of the set K\KU− ∩ Kπ−µ∨U+. As µ∨ was chosen

arbitrarily, the Gindikin-Karpelevich finiteness follows.

8.2 Spherical Finiteness

For the implication

Gindikin-Karpelevich Finiteness =⇒ The Spherical Finiteness,

we will use the second part of Theorem 1.4.1. An affine version of this result was

proven in [6, P. 60], which generalizes to indefinite type Kac-Moody groups as well.

However, for the sake of completion we rewrite its proof as the following lemma.

Lemma 8.2.1. For λ∨ ∈ Λ∨ dominant and for any µ∨ ∈ Λ∨

Kπλ
∨
K ∩Kπµ∨U− = ∅ unless µ∨ ≤ λ∨. (8.3)

Proof. Let y ∈ Kπλ∨K ∩Kπµ∨U−, there exists k1, k2, k3 ∈ K, and u− ∈ U− such

that

y = k1π
λ∨k2 = k3π

µ∨u−. (8.4)

We apply the both decompositions of the above element on the highest weight vector
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vρ of the highest weight module V ρ and compute the norms of the resulting vectors

||y−1vρ|| = q〈ρ,λ
∨〉 = ||k−1

2 π−λ
∨
k−1

1 vρ||

= ||(u−)−1πµ
∨
k−1

3 vρ|| ≥ q〈ρ,µ
∨〉, (8.5)

to get the proof of the lemma.

By combining this lemma with the last part of Theorem 1.4.1, we get the

following corollary.

Corollary 8.2.2. For λ∨ ∈ Λ∨+ and for any ν∨, µ∨ ∈ Λ∨

Kπλ
∨
K ∩Kπµ∨U− ∩Kπν∨U+ = ∅

unless ν∨ ≤ µ∨ ≤ λ∨.

So, for λ∨ ∈ Λ∨ dominant, we can write

Kπλ
∨
K ∩Kπµ∨U+ =

⋃
ν∨≤µ∨≤λ∨

Kπλ
∨
K ∩Kπµ∨U− ∩Kπν∨U+. (8.6)

The Spherical Finiteness follows by the following two facts:

(a) For fixed λ∨, ν∨,∈ Λ∨, the set {µ∨ ∈ Λ∨ | ν∨ ≤ µ∨ ≤ λ∨} is finite.

(b) For λ∨ ∈ Λ∨ dominant and for any µ, ν∨ ∈ Λ∨ the containment

Kπλ
∨
K ∩Kπµ∨U− ∩Kπν∨U+ ⊂ Kπµ

∨
U− ∩Kπν∨U+,

implies that K\Kπλ∨K ∩ Kπµ∨U− ∩ Kπν∨U+ is finite by the Gindikin-

Karpelevich Finiteness.
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Chapter 9

An Open Problem

In this chapter, we present an incomplete proof of the Gindikin-Karpelevich Finite-

ness independent of the Spherical Finiteness. By Lemma 1.3.1, it suffices to get this

finiteness for λ∨ = 0, we restate the assertion as the following proposition.

Proposition 9.0.1. Let µ∨ ∈ Λ∨ be fixed and U−(µ∨) = U− ∩Kπµ∨U+. Then the

coset space U−O\U−(µ∨) has finite cardinality.

To obtain the proof of this proposition, we use an unproven bounded condition,

which we state as Conjecture 9.2.7. As indicated in Subsection 4.2.4, the existence

of a coordinate system onU−was the key to prove the affine version of this finiteness.

This coordinate system is used to obtain a particular product representation of the

certain elements of U− and to prove certain bounded conditions satisfied by them.

This construction can not be generalized to arbitrary Kac-Moody setting. However,

we believe that these bounded conditions holds true in general settings as well, but

our method of proof does not work. We begin this chapter with the properties of

finitely ordered matrices.

95



9.1 A Finite Dimensional Result

9.1.1 Properties of Finite Matrices

Let A = (aij) ∈ GLr(K) be a unipotent lower triangular matrix such that aij are

uniformly bounded by some constant C, for all 1 ≤ i, j ≤ r. For each l ≥ 0, such a

matrix can be written as

A = A0 + ε, (9.1)

whereA0 is an r×r lower unipotent matrix and ε is an r×r strictly lower triangular

matrix such that ε ≡ 0r×r(mod πl). Moreover, the entries ofA−1 are also uniformly

bounded by some constant which depends on C and r and thus it has an expression

similar to (9.1). More precisely,

Lemma 9.1.1. Let A and A0 be r × r lower unipotent matrices with entries which

are uniformly bounded by a constant C. Then given any m ≥ 0, there exists

l = l(m,C, r) such that if

A = A0 + εA, with εA ≡ 0r×r(mod πl) (9.2)

then

A−1 = A−1
0 + εA−1 , with εA−1 ≡ 0r×r(mod πm). (9.3)

Proof. The above statement is implied by the following facts:

(i) IfA is an r×r lower unipotent matrix with entries from πlO, then there exists

somem which depends on l and r such thatA−1 is is a lower unipotent matrix
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with entries from πmO.

(ii) Given p1, p2 ≥ 0, there exists positive integer s = s(C, r, p) such that if

εA ≡ 0r×r(mod πs)

then A−1εA ≡ 0r×r(mod πp1) and εAA−1 ≡ 0r×r(mod πp2), and

(iii) if A = A0 + εA then A = A0(Ir + A−1
0 εA) and hence

A−1 = (Ir + A−1
0 εA)−1A−1

0 ,

where Ir + A−1
0 εA is a lower unipotent matrix with entries from πjO for some j.

Proposition 9.1.2. Let r be a positive integer and C > 0. There exists l = l(r, C)

such that for any A,B ∈ GLr(K) satisfying,

(a) entries of A and B are bounded by C.

(b) A−B ≡ 0 (mod πl),

then AB−1 ∈ GLr(O).

Proof. By using Lemma 9.1.1, we write A = A0 + εA and B−1 = A−1
0 + εB−1 such

that εA ≡ 0r×r(mod πm1) and εB−1 ≡ 0r×r(mod πm2), then

AB−1 = Ir + A0εB−1 + εAA
−1
0 + εAεB−1 .

The integersm1 andm2 can be chosen sufficiently large such that A0εB−1 , εAA
−1
0 ∈

GLr(O) and thus AB−1 ∈ GLr(O).
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9.1.2 Bounded Conditions

Let V0 be a vector space over K of finite dimension r with a basis B = {vi}ri=1. Let

V0(O) = ⊕ri=1Ovi the integral lattice in V0. Let || · || be a norm on V0 as defined

earlier in Subsection 4.1.3. With respect to this norm, we assume that ||vi|| = 1, for

all 1 ≤ i ≤ r. Next, suppose

G0 := Aut(V0)

and set

K0 := {g ∈ G0 | gV0(O) ⊂ V0(O)}.

LetU−0 (resp. U+
0 ) be the subgroup ofG0 consisting of lower (resp. upper) triangular

unipotent matrices with respect to B and

U±0 (O) = U±0 ∩K0.

We equip G0 with a norm || · ||0, by setting

||g||0 := max
1≤i≤r

||gvi|| (9.4)

for all g ∈ G0. Let b be a constant and

G0,b := {g ∈ G | ||g||0 ≤ b}. (9.5)

Set U−0,b := G0,b ∩ U−0 . Note that U−0 (O) ⊂ U−0,b. Our aim in this subsection is to

show the following.

Proposition 9.1.3. For a fixed constant b, the coset space U−0 (O)\U−0,b is finite.

Proof. By the constructions, elements of U−0,b are lower unipotent matrices with
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entries which are uniformly bounded by the constant b. Then, for l > 0, each

X− ∈ U−0,b can be written asX− = X−0 +εX− ,whereX−0 is an r×r lower unipotent

matrix and εX− is a strictly lower triangular matrix such that εX− ≡ 0r×r(mod πl).

Furthermore, there are finitely many choices for X−0 ’s (say n). We denote by

Al = {X−,j0 }nj=1 the set of these matrices. Let U−0,b,fin be a finite subset of U−0,b

consisting of elements u−j such that u−j = X−,j0 + εj, with εj ≡ 0r×r(mod πl), for

1 ≤ j ≤ n. We choose l sufficiently big to satisfy the condition of Proposition 9.1.2.

Then, for every u− ∈ U−0,b there exists u
−
fin ∈ U

−
0,b,fin such that

u−(u−fin)−1 ∈ U−0 (O)

and this implies the proposition.

9.2 General Settings

To prove Proposition 9.0.1, we shall use the embeddings and projections of certain

subsets of the completion of U−. A geometric version of this completion and these

mappings can be found in Chapter 7 of Kumar’s book [39]. We give a representation

theoretic completion of U− and prove the existence of analogous embeddings and

projections in this completion.

9.2.1 Completion of U−

As before, let λ ∈ Λ+ and V = V λ an irreducible highest weight representation.

Form ≥ 0, suppose V (m) ⊂ V be the subspace and its finite dimensional quotient

space V [m] := V/V (m) as introduced in Subsection 2.3. For 0 ≤ m1 ≤ m2, the
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containment V (m2) ⊆ V (m1) induces a projection

V [m2] � V [m1]. (9.6)

The action of U− on V preserves V (m) and descends to give,

ωm : U− −→ Aut(V [m]).

Let U−(m) := Kerωm and U−[m] := ωm(U−) ' U−/U−(m). If 0 ≤ m1 ≤ m2,

the map (9.6) implies U−(m2) ⊆ U−(m1) which gives a projection

πm1
m2

: U−[m2] −→ U−[m1].

This allows us to consider the projective family {U−[m]}m≥0 of groups with the

maps · · · → U−[3]
π2
3−→ U−[2]

π1
2−→ U−[1]

π0
1−→ U−[0].

We define the completion of U− as the projective limit

U− := lim←−U
−[m].

This completion comes equipped with an inclusion

ι : U− −→ U−, (9.7)

and projections

φm : U− −→ U−[m] (9.8)

for allm ≥ 0. This construction yields the following straightforward fact.
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Lemma 9.2.1. For any integrable highest weight g-representation V = V λ and

m ≥ 1, the following diagram commutes

U− U−

Aut(V [m])

i

ωm
φm

(9.9)

9.2.2 Some Embeddings and Surjections

Form,n ≥ 1, set

Xn := ∪`(σ)≤nB
+σB+ ∩ U−,

Xn(µ∨) := Xn ∩ U−(µ∨)

and

ϑn,m : Xn −→ U−[m] (9.10)

be the restriction of composition of the maps

U−
i
↪−→ U−

φm−−−� U−[m] (9.11)

on Xn. Then we have,

Lemma 9.2.2. For a fixed n ≥ 1, there exists k(n) such that for all m > k(n) the

map ϑn,m is an embedding.

Proof. For n andm as above, we define a map

φn,m : Xn −→ V [m]
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as x 7→ xvλ, where for v ∈ V , v = v + V (m).

Claim 2. There exists k(n) such that for allm > k(n), φn,m is an injection.

Proof. Let σ1, σ2, . . . , σp ∈ W be such that Xn = U− ∩ (∪1≤i≤pBσiB). Next,

suppose νi : = σiλ and k(n) = max1≤i≤p{depth(νi)}. Then

Xnvλ ⊆ Vλ ⊕ · · · ⊕ Vνp ,

that is, each element ofXnvλ can be written as a sum of weight vectors with weights

of depths up to k(n). This implies Xnvλ ∩ V (m) = ∅ for all m > k(n) and hence

φn,m is one-one.

For n ≥ 1, k(n) as chosen above and by assuming m > k(n), we get the

following commutative diagram

Xn U−[m]

V [m]

ϑn,m

φn,m
θm

(9.12)

where θm is the map g 7→ gvλ. Let x, y ∈ Xn be such that x 6= y. If

ϑn,m(x) = ϑn,m(y), (9.13)

then

θm(ϑn,m(x)) = θm(ϑn,m(y)). (9.14)
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Commutativity of the diagram (9.12) implies

φn,m(x) = φn,m(y) (9.15)

which contradicts that φn,m is one-one. Thus ϑn,m is one-one.

Lemma 9.2.3. There exists a sufficiently large n such that Xn(µ∨) is mapped onto

U−O\U−(µ∨).

Proof. For every r ≥ 1, by definition we have Xr(µ
∨) ⊂ U−(µ∨). We will show

that there exists a sufficiently large n such that the restriction π of the projection

U−(µ∨) � U−O\U
−(µ∨)

toXn(µ∨) is our required surjective map. The last part of the Theorem 1.4.1 implies

that we may choose µ∨ ∈ −Q∨+. We replace K by its Iwahori decomposition

K = ∪w∈W I−wI+ to obtain

U− ∩Kπµ∨U+ = ∪w∈WU− ∩ I−wI+πµ
∨
U+

= ∪w∈WU− ∩ I−wU−π U+
Oπ

µ∨U+

= ∪w∈WU− ∩ I−wπµ
∨
U+

= ∪w∈WU− ∩ U−OU
+
π wπ

µ∨HOU
+. (9.16)

By Corollary 4.2.1, there are finitely many σ1, σ2, . . . , σs ∈ W such that

U− ∩Kπµ∨U+ = ∪si=1U
− ∩ U−OU

+
π σiπ

µ∨HOU
+.

Set n = Max{`(σi)}1≤i≤s.
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Let ȳ = U−Oy ∈ U
−
O\U−(µ∨), where y = u−Ouπσiπ

µ∨hOu for some u−O ∈ U
−
O ,

uπ ∈ U+
π , hO ∈ HO, u ∈ U+ and σi ∈ W with 1 ≤ `(σi) ≤ n. Suppose

z = uπσiπ
µ∨hOu then z ∈ U−(µ∨)∩B+σiB

+ ⊂ Xn(µ∨) and π(z) = ȳ. Thus, the

restriction of π which we also denote by π is the required onto map.

Definition 9.2.4. Form ≥ 1, set

U−[m]O := {u− ∈ U−[m] | u−(V [m]O) ⊂ V [m]O}. (9.17)

(F) For the rest of this section, we fix n ≥ 1 as given in Lemma 9.2.3 and m be as

given in Lemma 9.2.2.

Definition 9.2.5. We define a relation∼ onXn as: for x, y ∈ Xn, x ∼ y if and only

if there exists some u− ∈ U−[m]O such that

ϑn,m(x) = u−ϑn,m(y),

where ϑn,m is the map (9.10).

It can be verified easily that ∼ is an equivalence relation on Xn. Let X̂n := Xn/ ∼

be the quotient space under this equivalence relation. Then

X̂n(µ∨) ⊂ X̂n

Lemma 9.2.6. Let π̄ : X̂n(µ∨) −→ U−O\U−(µ∨) be defined as

π̄([x]) := π(x); [x] ∈ X̂n(µ∨),

where π is the projection obtained in Lemma 9.2.3. Then π̄ is an onto map.
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Proof. It is enough to show that π̄ is well defined since surjectivity of π implies the

surjectivity of π̄. Let x ∈ Xn(µ∨) be such that x ∼ 1. We shall show that x ∈ U−O .

By the assumption

ϑn,m(x) = u−ϑn,m(1) (9.18)

for some u− ∈ U−[m]O. It implies ϑn,m(x) ∈ U−[m]O and hence

ϑn,m(x)V [m]O ⊂ V [m]O. (9.19)

In particular

θ(ϑn,m(x)) = ϑn,m(x)(vλ) ∈ V [m]O, (9.20)

where θ is the map defined in Lemma 9.2.2. The diagram (9.12) commutes, so we

get

φn,m(x) = ¯xvλ ∈ V [m]O. (9.21)

Now, since m is chosen such that yvλ ∩ V (m) = {0} for all y ∈ Xn. Therefor

xvλ ∈ VO and by Lemma 5.16 of [6], x ∈ U−O . This completes the proof.

9.2.3 Proof of Main Results

For a positive integer b, let U−[m]b be the set of uniformly bounded elements

(bounded by b) inside Aut(V [m]) as in the previous section.

Conjecture 9.2.7. There exists a positive integer b such that the set X̂n(µ∨) is
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embedded in the quotient U−[m]O\U−[m]b

Remark 9.2.8. We believe this conjecture is true and tried to prove the assertion

using the strategy from [6]. By this method, one can prove the statement by showing:

S1: ωm(X̂n(µ∨)) is finitely generated.

S2: Express the elements of ωm(X̂n(µ∨)) as an ordered product.

We only succeeded to realize ωm(X̂n(µ∨)) inside U−[m] as a set of elements gener-

ated by the root subgroups corresponding to the roots of heights less than or equal

to m. The set of such roots is finite. But we don’t know how to get the ordered

presentation of elements of ωm(X̂n(µ∨)).

Proof of the Proposition 9.0.1. Let n andm be as chosen in (F). The group U−[m]

is a finitely generated group; Proposition 9.1.3 implies that the quotient space

U−[m]O\U−[m]b is finite. By assuming the Conjecture 9.2.7 and combining it with

Lemma 9.2.6, we obtain the following diagram of maps,

Xn(µ∨) U−O\U−(µ∨)

X̂n(µ∨) U−[m]O\U−[m]b

π

π1 π̄ (9.22)

So, we get an onto map from a subset of the finite set U−[m]O\U−[m]b to the the

quotient U−O\U−(µ∨), which implies the finiteness of U−O\U−(µ∨).

Proof of Theorem 1.4.1 . Proposition 9.0.1 implies that the coset spaceK\KU− ∩

Kπµ
∨
U is finite for any µ∨ ∈ Λ∨. For any λ∨ ∈ Λ∨, there is a bijection of the sets

KU− ∩Kπµ∨U = Kπλ
∨
U− ∩Kπ−λ∨+µ∨U. (9.23)
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Thus for any µ∨ and λ∨, the set K\Kπλ∨U− ∩Kπ−λ∨+µ∨U is finite. Though the

second part of Theorem 1.4.1 follows exactly as it does in affine, for the sake of

completion we rewrite it. Let u− ∈ U− be such that

πλ
∨
u− = kπµ

∨
u (9.24)

for some k ∈ K and u ∈ U+. We let the both sides act on the highest weight vector

vρ of the highest weight module V ρ and compute their norms. The right hand side

of (9.24) gives

||kπµ∨uvρ|| = q−〈ρ,µ
∨〉, (9.25)

whereas the action of the left hand side of (9.24) and Lemma 4.1.1 give

||πλ∨u−vρ|| ≥ q−〈ρ,λ
∨〉. (9.26)

Comparing both norms, we get 〈ρ, λ∨〉 ≥ 〈ρ, µ∨〉 and hence λ∨ ≥ µ∨.
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