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Abstract

Regarding the problems of resource allocation in OFDMAekasireless communica-
tion systems, much of the research effort mainly focuses ratirfyy efficient power con-
trol and subcarrier assignment policies. With systems eyipd) multicast transmission,
the available schemes in literature are not always appéicakloreover, the existing ap-
proaches are particularly inaccessible in practical syst@ which there are a large number
of OFDM subcarriers being utilized, as the required comirial burden is prohibitively
high. The ultimate goal of this research is therefore to psepaffordable mechanisms to
flexibly and effectively share out the available resourcemulticast wireless systems de-
ploying OFDMA technology. Specifically, we study the resmudistribution problems in
both conventional and cognitive radio network settingsimfadating the design problems
as mathematical optimization programs, and then offeriregsolution methods. Subop-
timal and optimal schemes with high performance and yet oépiable complexity are
devised through the application of various mathematicéih@pation tools such as genetic
algorithm and Lagrangian dual optimization. The noveltiéthe proposed approaches are
confirmed, and their performances are verified by computeulsition with the presenta-

tion of numerical examples to support the findings.
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Chapter 1

Introduction

1.1 Background

In recent years, Orthogonal Frequency Division Multiptex{ OFDM) [1, 2], a multi-
plexing scheme utilized as a digital multi-carrier modgattechnique, has become a pop-
ular advanced technology for wideband digital communicatind also been considered
a greatly promising candidate for the next generation nedsvoThe basic idea of OFDM
is to divide the transmitted bitstream into many differembstreams and send these over
a large number of closely-spaced orthogonal subchannelsh &ibchannel can be repre-
sented by one subcarrier, and effectively one substrearatafigl transmitted through one
subcarrier whereas individual subcarriers are modulatiéal asconventional modulation
scheme such as Quadrature Amplitude Modulation (QAM) orsBtghift Keying (PSK)
at a low symbol rate. It should be noted that while the cowadmg subchannel band-
width is much less than the total system bandwidth, the ti#td rates achieved by OFDM
maintain similar to conventional single-carrier modwatschemes subject to the same to-
tal bandwidth. The key advantage of employing OFDM over Isiogurier schemes is its
ability to easily adapt to severe channel conditions, dafigén frequency-selective fad-
ing environments due to multipath propagation, withouturegg complex equalization.
This is because OFDM can be realized as transmitting mamhsimodulated narrowband
signals rather than one rapidly-modulated wideband sighak low symbol rate allows
handling of time-spreading and eliminating inter-symbukrference (ISI) possible since
it is now affordable to provide a guard interval between sgtsb Furthermore, OFDM
systems offer high spectral efficiency with an efficient ietpkntation using Fast Fourier
Transform (FFT). All those mentioned advantages have pi@forward as a commonly

chosen scheme for wideband communication, whether wgeesver copper wires, used
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Figure 1.1: Orthogonal Frequency Division Multiple Access

in various applications such as digital television and almloadcasting, wireless network-
ing and broadband internet access. The ideal structure OF&M system is described in
detail in Appendix A.

Being employed for transmitting one bit stream over one camination channel using
one sequence of OFDM symbols, OFDM in its primary form is aered a digital mod-
ulation technique rather than a multi-user channel acagsnse. Nevertheless, it can be
combined with multiple access using time, frequency ormgdieparation of the users. In
Orthogonal Frequency Division Multiple Access (OFDMA)eduency-division multiple
access is achieved by assigning different OFDM subchanoelgferent users, provided
that each subchannel is allocated to at most one user at gdgmeFig. 1.1). In effect,
differentiated Quality-of-Service (Qo0S) is supported Isgigning various number of sub-
carriers to different users in a similar fashion as in Codddibn Multiple Access (CDMA)
technique, and hence complex packet scheduling or medesaoontrol can be avoided.
Importantly, thanks to the independence in the fading cebstates of different users, there
is also an opportunity to take advantage of frequency seitgcand perform channel aware
scheduling and resource allocation.

On the other hand, it is known that unicast is the sendingfofmmation to one single
destination. As transmission with a unicast service israhily point-to-point, it becomes
necessary that the source replicates several identicafldats in order to transmit them to
each of the receivers. Accordingly, bandwidth waste is ggRd. In contrast, broadcast is

used to send the same content to all destinations indistately. This mechanism also re-
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Figure 1.2: Transmission mechanisms.

sults in a waste of resource since it implies transportimgddita to all the network stations,
even if the number of receivers wishing to have that contem¢duced. A more efficient
way to transmit data is to provide a multicast service in Whacsingle flow of data, origi-
nating from a given source, may be sent simultaneously t&rakwterested receivers. With
multicast, the source sends only one single copy of the datkeps to a multicast group
address. The network infrastructure replicates thesegggskin an intelligent way, direct-
ing the data according to the topology of receivers intedest that piece of information.
When compared with the unicast and broadcast transmissinricast counterpart shows
its clear advantages in numerous one-to-many and manyatg-agpplications such as real-
time audio and video conferences, live concerts, disiobubf software, news and market
information, database updating, distance learning,ibiggd games, and so on. The three
discussed mechanisms are illustrated in Fig. 1.2 and thefibeiof employing multicast

transmission are summarized in the following.

¢ Network performance is optimized through intelligentiatition of network resources

to avoid unnecessary flow replication.

e Services run on multicast are scalable, easily dimensianedthus allowing appli-

cations to be accessed by a large number of participants.

¢ Distributed applications are supported.



e Resource economy can be achieved through the reductiortwbreload, and sub-

sequently network usage cost.

In wireless multicast, while all users within a multicasbgp receive the same rate
from the base station (BS), the main issue arises from thenath data rates attainable
by individual users of that group whose link conditions gngidally asymmetric. If the
BS transmits rate higher than the maximum rate that a usehaadle, that user cannot
decodeany of the transmitted data at all. Therefore, a conventionpt@gch is to transmit
at the lowest rate of all the users within a group, which i®deined by the user with the
worst channel condition. This assures that the multicasicges can be provided to all the
subscribed users. On one hand, as all the multicast usdrmwitgroup receive the same
data rate from the BS, the total sum rate is scaled by the gizepwhich is effectively the
number of active users of that group. On the other hand, thedbtransmit rate typically
decreases as the number of users increases because iti®bdike least capable user. We,
however, have established that as the number of users intacauier multicast system
tends to infinity, the ergodic system capacity becomes iad@gnt of the group size but
instead depends on the total number of subcarriers (sededetkerivation in Appendix
B). This result confirms that the conventional multicashsraission scheme is, at least,
both practical and beneficial, particularly with the use afltrcarrier transmission as in

OFDM-based wireless networks.

1.2 Motivations and Research Aims

Two important resources in wireless communication are ttaélable spectrum over
which all the users signals may occupy, and the transmitegepbudget. While more and
more users desire to utilize the system, the actual systeourees remain limited and thus
making the resource allocation problem a very critical andllenging one. In literature,
there are two key approaches to share out the availableroeson wireless communication
systems: i) fixed resource allocation, and ii) dynamic reseallocation. A fixed allocation
scheme, such as Time Division Multiple Access (TDMA) or Rrency Division Multiple
Access (FDMA), essentially assigns an independent diroen@ime slots or frequency
subchannels) to each individual user in a static manner.aderyin a frequency selective
fading environment there are time slots or subchannelauteised because these experi-

ence highly deep fade and therefore are not power efficienamy any information bit.



As the allocation is fixed regardless of the current chanoetition while the fundamental
characteristic of wireless links is being varying, a pressburce distribution algorithm is
certainly not optimal. On the contrary, a dynamic resoultecation method adaptively
shares out the available dimensions to the users accomlthgit respective channel condi-
tions, and thus takes full advantage of channel diversitgragrusers in different locations.
This kind of diversity, commonly known as the “multiuser eligity”, stems from indepen-
dent pathloss and fading of different users. In a particiinae slot or subchannel, although
a certain user may be in deep fade, it is unlikely that all otieers also experience bad
channel conditions since fading parameters of differeersisre mutually independent.
That time slot or subchannel is therefore not wasted as iffisted allocation, but can be
assigned to the users with good wireless links. By utilizimgyavailable channel state infor-
mation and also exploiting the multiuser diversity, adaptiesource distribution schemes
can help to substantially enhance the system performance.

Recently, the problem of how to dynamically allocate thegadsources to improve
the performance of OFDMA wireless systems has been the dulifjentensive research.
Broadly speaking, the solution methods obtainable inditme can be categorized into two
classes — the margin adaptive and the rate adaptive. Theefams at minimizing the
transmitted power under constraints on the individual 'sstata rate and/or bit error rate
(BER) (see, for example, [3]), whereas the objective of Hitet is to maximize the data
rate of each user subject to transmitted power constraildfauser’s data rate (see, for
instance, [4-11]). In literature, these problems have tstedied for both downlink and
uplink scenarios employing unicast or multicast transioissechniques, each of which
has various system requirements, resulting in very diffedesign formulations and so-
lution methods. It is worth noticing that although much ofaarch efforts have focused
on the resource allocation for unicast OFDMA-based compaitinn systems, many simi-
lar issues concerned with multicast settings remain opdntdhnow, no practical answer
to these questions has been found. In these multiusergrulp scenarios, the problems
involved the joint optimization of the subchannel and powaatable sets are usually Non-
deterministic Polynomial-time hard (NP-hard). As suclis itery likely that a simple appli-
cation of the available solutions will lead to a prohibitivdigh computational complexity
in most cases, whereas the optimal allocation solutionslarays desired to be attained
within a designated time due to quick variations of wireleeannels. Indeed, this ob-

servation ascertains the impractical and inaccessiblecsspf the existing approaches in



multicast transmission situations.

Motivated by the shortcomings of the present resolutidms aim of this thesis work is
to provide accessible mechanisms to effectively distebiasources in a multicast wireless
systems employing OFDMA. In particular, two design probdesne investigated and their
corresponding solutions are derived through the apptinatof Lagrangian duality theory,
dual optimization method and genetic algorithm. First,hima tontext of a conventional
multicast wireless system deploying OFDMA, we proposedhrevel efficient resource
allocation schemes that balance the tradeoff between nRrgrthe total system through-
put and ensuring a flexible and controllable spectrum sbamimong different multicast
groups. Specifically, a minimum number of subchannels isajuaed to be designated
to each group subject to a total power budget at the baserstafiecond, in a cognitive
radio network setting, we devise a practically optimal tgse allocation scheme which
targets at maximizing the expected sum rate of all users iI@RDMA-based multicast
secondary network, while satisfying the tolerable intexfice level induced to individual
primary users. Remarkably, by defining a rate loss functemwaell as referring to a risk-
return model, we in this design also take into account thenagmy user activities or the
OFDM subchannel availability, an important issue which hasyet been paid adequate
attention in literature. The proposed solutions to bothmirad problems are of great flex-
ibility, affordable computational complexity and high feemance so as to meet the vital
design requirements in practical systems. Efficiency ofrd@mmended approaches is

verified by computer simulations with the presentation ahetical examples.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 provides necessary background knowledge on mathemagitalieation. Spe-
cial emphases are placed on the Lagrangian duality theatyganetic algorithm,

which shall be utilized as the key tools of analysis throughhis work.

Chapter 3 presents three different efficient resource allocatiowritlyms for the conven-
tional OFDMA-based multicast systems. By defining the “baidt¢h control in-
dices” which guarantee the minimum numbers of OFDM subeggtio be assigned
to each multicast group, the shares of available spectruomgrmdividual groups

can be flexibly and effectively controlled. The recommense@ldtions are proven to

6



achieve high total throughput while their computationamptexity is substantially

reduced.

Chapter 4 proposes aresource allocation scheme for an OFDM-basditastisecondary
network, subject to tolerable interference range intredu primary users as well
as the dynamics of primary users on the available radio spact The proposed
solution, obtained via a dual optimization framework, igitied to achieve global
optimality with fast computational time in practical sysie wherein a large number

of OFDM subcatrriers is normally deployed.

Chapter 5 concludes the thesis, summarizing the findings and makiogmeendations

for possible future work.



Chapter 2

Optimization Preliminaries

Optimization theory provides significant tools in the fiefaeagineering, particularly in
wireless communications. These tools are specially inaporfor the analysis of theoretical
as well as practical problems and their solutions. Chaptbeifore presents a foundation
of optimization concepts and technigues used or referrgtirtmighout this thesis. The
main references for this chapter are [12—-16].

Chapter 2 is organized as follows. Section 2.1 serves agradirction to mathematical
optimization theory. Section 2.2 presents the Lagrangiaiity theory and dual optimiza-
tion method. Section 2.3 discusses various concepts ofti@ekigorithm and its particular

application to optimization problems as well. Finally, 8&c 2.4 summarizes the chapter.

2.1 Mathematical Optimization

Optimization problems occur in the mathematical modelingwide spectrum of appli-
cations; for instance, optimal allocation of scarce resesirscheduling, logistics, network
routing, sequence alignment in genomics, portfolio opation, engineering design opti-
mization and so on. Most optimization problems of practingrest can be appropriately
formulated as constrained optimization problems, the dation of which is described in

the following.
2.1.1 Optimization Problem Formulation

Mathematically, an optimization problem can be expresadté form [16]

min  fy(x) (2.1)

s.t. fl(X)Sbl,’Lzl,,m



wherex = (z1,...,x,) € R" is the optimization variablef, : R™ — R is the objective
(or cost) function, andf; : R" — R (with ¢ = 1,...,m) are the constraint functions.
Constantss, . .., b, are the bounds for the constraints. If there are no congtraihe
problem is said to be unconstrained.

The set of points for which the objective and all constraimictions are defined, that is,

i=0
is called the domain of the optimization problem (2.1). Amioi € D is feasible if it sat-
isfies the constraintg;(x) < b;, i = 1,...,m. The problem (2.1) is said to be feasible if
there exists at least one feasible point. Otherwise, itiisiciered as an infeasible problem.
The optimal value™* of the problem (2.1) is denoted psand is achieved at an optimal so-
lution x*, that is,p* = fo(x*). If that problem is infeasible, its optimal value is commponl
denoted by* = +oc.

The optimization problem (2.1) is an abstraction of the f@obof finding the best pos-
sible choice of a vector iR"™ from a set of candidate choices. While variakleepresents
the choice made, the constraintgz) < b; represent specifications that limit the possi-
ble choices, and the objective valifig{x) represents the cost of choosirg An optimal
solutionx* of (2.1) corresponds to a choice, from all the available oéwisatisfying the

specifications, that has minimum cost.

2.1.2 Solving Optimization Problems

It can be argued that optimization problems are usuallyadiffito solve, even when
the objective and constraint functions are either knownemibconsidered to be smooth.
The solution by a single and all-purpose method is both cusabee and inefficient, as it
may involve some sort of compromise as well as involve higidgnplex computation. It
is even possible that the use of a single and all-purposeadettay give no resolution to
the optimization problem at all. Because of all these diffieg, optimization problems are
categorized as belonging to a particular class, where dash is defined by the properties
of the objective and constraint functions of the problemsiging to that class. Solutions
are then developed for each class of problems. Althoughrifinthie solutions for most
optimization problems can be challenging, there are indaote important exceptions. For

a few problem classes (for example, least-squares problemesr programs, or convex



optimization), there are effective algorithms that can tpleyed to reliably solve prob-
lems belonging to those particular classes, even when tiroddems involve hundreds or
thousands of variables and constraints.

Obviously, a global optimal solution for optimization pteins is desirable. However,
finding this global solution is far more difficult than dis@wing one or even many local op-
timal ones. Whereas an algorithm providing sub-optimafhtplves lower theoretical and
computational complexity, resulting in many sub-optin@usions for a particular problem,
these outcomes do not guarantee a global optimal point theimgl [15,17,18]. According
to [15, p. 109], a problem is said to be multi-extremal whelmais many local minimizers
with different objective functions values (so that a locahimizer may fail to be global).
In fact, for some optimization problems, a local optimalusioin is equivalent to failure,
since global optimal point is a strict requirement for therect solution.

Optimization problems can be categorized into two broadsela — constrained and
non-constrained. Intuitively, problems with constraiate far more difficult to solve than
unconstrained ones. Fortunately, there are many techsigualable to remove restric-
tions, hence converting constrained problems into uncaingtd ones. Lagrangian duality
method, which will be discussed in the next section, is antbegnost efficient techniques
available.

2.2 Dual Optimization and Lagrangian Duality Theory

The optimization problem (2.1) can be written in standamifas described in [16]

min  fy(x) (2.2)
st. filx)<0,i=1,....m
hi(x)=0,i=1,....p
with variablex € R"™, inequality constraint functiong; : R” — R (wherei = 1,...,m),

and equality constraint functiorts : R™ — R (wherei = 1,...,p). The domainD =
U, domf; U |J?_; domh; of Problem (2.2) is assumed to be non-empty. The basic
concept of Lagrangian duality is to take the constraintRig)(into account by augmenting
the objective function with a weighted sum of the constréimictions. The Lagrangian

associated with the problem (2.2) is defined as

P

L(x, A, ) = fo(x) + D Nifi(x) + Y pihi(x), (2.3)
=1

1=1

10



where); is the Lagrange multiplier associated with tké inequality constraing;(x) = 0,
andy; is the Lagrange multiplier associated with flfeequality constraink;(x) = 0. The
domain ofL isthenD;, = D x R" x RP.

The optimization variable is called the primal variable and the vectdtsaand . are
called the dual variables or Lagrange multiplier vectosoamted with the problem (2.2).
The original objective functiorfy(x) is termed the primal objective or primal function. The
dual objective or dual function(\, p) is defined as the minimum value of the Lagrangian

overx; thatis, forhA € R™ andu € RP,

9\, ) = inf L(x, A, p), (2.4)

which is a concave function.
Lower Bound Property: The dual functiong(A, ) is a lower bound on the optimal
valuep* of the problem (2.2), that is,

min fo(x) > H)}axg()\, @), with A > 0. (2.5)
X M

When attempting to solve the primal problem (2.2), one migimisider finding the best
lower bound of its optimal valug*. From the Lower bound property (2.5), it is natural that

the following optimization problem, called the Lagrangebjoroblem, is then examined

maxy , g(A p) (2.6)
s.t. A>0.

The difference between the original problem (2.2) and tted groblem (2.6) is called
the duality gap. Weak duality holds if property (2.5) holdsghastrict inequality. Strong
duality holds if the equality is satisfied. While weak duakiways holds, this is generally
not true for strong duality. However, there are conditioaked the constraint qualifications
that guarantee strong duality in the case where the printddigam is a convex optimiza-
tion onel. As well, there also exists non-convex problems that have deality gap. In
these instances, solving the primal problem is equivalesbtving the problem (2.6). As
the Lagrange dual problem is always convex regardless ofdheexity of primal prob-

lem, it can be solved very efficiently in practice. In certadmses, closed-form solutions

A function f : R™ — R is convex ifdomf is a convex set and if for alt,y € domf, andd with
0 <6 <1, wehavef(8z + (1 —0)y) < 0f(x)+ (1 —6)f(y). A convex optimization problem is one of
minimizing a convex function over a feasible set describga ket of inequalities involving convex functions
and a set of linear equality constraints [16].

11



can be analytically obtained. However, in general itegativethods such as interior-point
or cutting-plane are usually employed to solve the convdiropation problem (see, for
example, [15,17,19]).

2.2.1 Example: Water-filling Solution via Dual Optimization

In solving engineering optimization problems, solutiongolving water-filling struc-
ture are frequently obtained. The application of Lagrangsity theory in finding solutions
for a typical information theory optimization problem isndenstrated in the water-filling

example shown below.
Example 2.2.1 ([16], Example 5.2)Channel capacity maximization)

Consider the following:

maxy Z log(x; + o) (2.7)
i=1
st. x>0,1"x=1

wherex = (z1,...,2,)" anda; > 0. This can be viewed as the problem of optimally
allocating transmitted power, as representec olyp maximize the communication channel
capacity as in the objective function. The constant$with i = 1,2, ..., n) represent the
noise variances.

Lagrange multipliers\ € R™ and . € R (for the inequality constraintg > 0 and
the equality constraint”’x = 1 respectively) are now introduced. At optimality »f the
Karush—Kuhn—Tucker (KKT) conditions give [16, p. 243]

The slack variable\. can then be eliminated, leaving

x>0, 17x=1,

Z’Z(M—alixl):()’ i:l,,,,’n

1 .
/LZm, z:l,...,n.
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Figure 2.1: Water-filling structure.
Finally, this results in
1 ; 1
S — ifp <=,
;=4 F . 9 (2.8)
That is,z; = max(0, % — «;), Wherey is determined from
= 1
Zmax(o, ——q) =1 (2.9
i=1 p

In Figure 2.1, the water-filling structure (2.9) is illuded. There arex patches. The
height of each patchis «;. The region is flooded to a Iev%l which uses a total quantity

of water equal td. The height of the water above each patch is the optimal v&lug.

2.3 Genetic Algorithm for Optimization
2.3.1 Overview

Genetic Algorithm (GA) [12—14], categorized as global shaneuristics, is a search
technique used to find exact or approximate solutions to ¢mtktrained and unconstrained
optimization problems. It is based on natural selectioa,focess driving biological evo-
lution. In brief, the GA is implemented as a computer simalain which a population of
abstract representations (calletlomosomesr the genotype of the genome) of candidate
solutions (calledndividualsor creatures) to an optimization problem evolves towartebet
solutions. Specifically, the evolution usually starts fraopulation of randomly generated
individuals and happens in generations. The GA repeatedljifias a population of indi-
viduals through iterations, and, at each iteration, theréttyn randomly picks individuals

from the current population to be parents which are then ts@doduce thechildren (or
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Table 2.1: Comparison of Genetic Algorithm and classicgbathms.

Genetic Algorithm Classical Algorithms

Generates a population of points at each itsenerates a single point at each iteration.
eration. The best point in the populationThe sequence of points approaches an |op-
approaches an optimal solution. timal solution.

Selects the next population by computatipi$elects the next point in the sequence by a
which uses random number generators.| deterministic computation.

offspringg for the next generation. Since the population evolves tdvea optimum over
successive generations, a sufficiently good solution t@ftienization problem can finally
be found. When compared to classical derivative-basednigstion algorithms, the GA
differs in two main aspects as summarized in Table 2.1.

The attractiveness of GAs comes from their simplicity arefjahce as robust search
algorithms as well as from their power to discover good sohst rapidly for difficult high-

dimensional problems. This class of algorithms are pdeituuseful and efficient when
e The search space is large, complex or even poorly understood
e It is difficult to encode to narrow the search space.
e No mathematical analysis is available.
e Traditional search methods fail.

For the above reasons, Genetic Algorithm has been employagaimerous applications
in different fields such as machine learning, bioinformsmtieconomics, chemistry, manu-

facturing, mathematics, physics, and so on.

2.3.2 Basic Operations of Genetic Algorithm

A typical GA is presented in Table 2.2 [12, 14] and its dethidperations are explained
in the rest of this section.

While there are many different implementations of the gal®A for various problems,
the key of success in the application of GA lies in an effect®presentation of the solution

domain and also a meaningful fithess function to evaluatedhsion.

e Coding of Individuals: A standard representation of the solution is as an array of

bits. Arrays of other types and structures can be used imgatgthe same way. The
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Table 2.2: Outline of a basic Genetic Algorithm.

1. [Start] Generate a random population consistiighromosomes (that
is, the suitable solutions for the problem)

2. [Fitnesq Evaluate the fithesg(z) of each chromosome in the popu-
lation

3. [New population] Create a new population by repeating the following
steps until the new population is complete

a. [Selectior] Select two parent chromosomes from a population a
cording to their fitness (the better fitness, the bigger chandbe
chosen)

<)
1

b. [Crossovel]l With a certain crossover probability, cross over the
parents to form a new offspring. If no crossover was perfaime
offspring is an exact copy of parents.

c. [Mutation] With a certain mutation probability, mutate new off-
spring at a position in chromosome

d. [Accepting] Place new offspring in a new population

4. [Replacgd Use newly generated population for a further run of the a
gorithm

5. [Tesf] If an end condition is met, stop, and return the best satuiio
current population

6. [Loop] Go to step 2

main property that makes these genetic representationgmient is that their parts
are easily aligned due to their fixed size, which in turn featiés simple crossover
operation. Variable length representations are also Iplesbut implementation of

crossover is more complex in this case.

¢ Fitness Function: Fitness function, a measurement of the quality of the remtes!
solution, is defined over the genetic representation. Ity the fitness function is
always problem dependent. For certain instances, it icditfor even impossible to
define the fitness expression, in which case interactivetigealgorithms are to be

utilized.

Once the genetic representation and the fitness functioe begn defined, GA pro-

ceeds to initialize a population of solutions randomly,ntiprove it through repetitive
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application of the following key rules. The reproductioreagtions of GA are also depicted
in Fig. 2.2.

e Selection Rule: Selection rule determines how individuals are chosen fainga
If a selection method that picks only the best individual sedy the population will
quickly converge to that individual. Therefore, it is imfont to design a selector
that is not only biased toward better individuals but alske ab pick some that are
not quite as good (but hopefully have some good genetic rahterthem). Some
of the more common rules include roulette wheel selectibat (s, the likelihood of
picking an individual is proportional to the individual's@e), tournament selection
(that is, a number of individuals are picked using roulette®l selection, then the
best of these is chosen for mating), and rank selectioni@hgick the best individual
every time). Other selection rules such as stochastic reteaisampling, stochastic

uniform sampling may also be effective.

e Crossover Rule: Crossover is used to combine two parents to form children for
the next generation. Essentially, crossover enables furitdm to extract the best
genes from different individuals and recombine them intteptally superior off-
springs. Some common rules include one-point or two-poimntand-splice and uni-

form crossover.

e Mutation Rule: Mutation applies random changes to individual parentsrtm fchil-
dren. The purpose of mutation in GA is to permit the algoritieravoid local minima
by preventing the population of individuals from becoming similar to each other
which, in turn, may slow down or even stop evolution. In thease, mutation adds to
the diversity of a population and thereby increases thdiliked that the algorithm

will generate individuals with better fitness values.

e Elite Children Rule: If no operation is performed on a parent (likely to be one with
the highest fithess value) and this individual is allowedutmenatically survive to the

next generation, then it is called tkeéte child

The generational process is repeated until a terminatingliton has been reached. Of

which, some popular ones are:

e A solution that satisfies minimum criteria is found.
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Figure 2.2: Reproduction process in Genetic Algorithm.

Fixed number of generations has reached.

Allocated budget (for instance, computation time) has l@kespent.

e The highest ranking solution’s fitness has reached a platgetuthat successive iter-

ations no longer produce better results.

By manual inspection

Combinations of the above

2.4 Concluding Remarks

In this chapter, we have presented some background knoe/lenignathematical opti-
mization, which shall be used as the main analytical toaubghout the thesis. Lagrangian
dual method and genetic algorithm have been introducedexifimples given to illustrate

their operations.
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Chapter 3

Efficient Resource Allocation for
Conventional OFDMA-based
Multicast Wireless Systems

It is apparent that radio spectrum is among the most prediessurces in wireless
communication. As the available spectrum is scarce andegsechannels are dynamic,
resource allocation in multicast systems should be efficiEnable to cope with the channel
variation, and more importantly, be flexible to adjust theslef priority or fairness in terms
of accessible bandwidth provided to individual groups.

Chapter 3, which studies the efficient resource allocatignriihms for conventional
OFDMA-based multicast systems with a controllable medrarfior spectrum sharing, is
organized as follow's Section 3.1 summarizes related study on the subject andcesgh-
light the original contributions of this research work. g@&t 3.2 formulates the OFDMA-
based multicast resource allocation problem with specsharing constraints. Sections
3.3 and 3.4 propose the separate optimization and gerigbothm-based schemes, re-
spectively. Section 3.5 analyzes computational complexit also evaluates performance
of the proposed solutions with the support of humerical ltesirinally, Section 3.6 con-

cludes the chapter.

LA version of this chapter has been accepted for presentatitre2009 IEEE Radio and Wireless Sym-
posium (RWS09) held in San Diego, USA [20]. Further development of the itsshias been accepted for
publication as a regular paper in the IEEE Transactions dwcéar Technology [21].
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3.1 Introduction

3.1.1 Background

For the uplink from mobile users to the base station (BS) abfraventional OFDMA
wireless system, the study by [8] investigates the sumsreteimization problem and de-
rives the necessary optimality conditions, from which arrggimal joint scheme of sub-
carrier and power allocation is proposed. Specificallystinecarrier is assigned by a greedy
algorithm while power is distributed in a water-filing mann More generalized, refer-
ence [22] deals with the utility maximization problem in whithree specific examples,
namely throughput optimization, proportional fairnessl amax-min fairness, are exam-
ined. Regarding the issue of fairly distributing the aualtaresources to different users,
reference [11] devises a low-complexity algorithm to maxerthe sum rate of an OFDMA
uplink, constrained on both individual rate and transrdifp@wers. Here, the interpreta-
tion of fairness is to assure a minimum target rate to be mit avhigh probability for all
users including those with bad link conditions. Specificalhe initial subcarrier alloca-
tion designates subcarriers to users whose rates are bedopreédefined target, and later
the remaining subcarriers are allotted in such a way thastine rate is enhanced. Once
the subcarrier assignment process is finished, the optimglesuser power allocation is
performed for each user by water-filling over the alreadyedeined subcarriers. As for
the uplink of an OFDMA relay-assisted network, the work ih ¢8nsiders the subcarrier
assignment problem wherein a certain notion of fairnesgligesed by allowing a relay
node is to use/aid only up to a maximum number of subcarsigus¢es. The binary integer
program formulated here is first transformed to a lineamogkidistribution problem, which
is then solved via graph theory.

For the downlink transmissions from the BS to the mobile sistre proposed algo-
rithm in [3], through the application of the Lagrangian seltion, solves the formulated
multiuser OFDM margin adaptive problem by relaxing the $i#mmel assignment binary
variables to take any real value between zero and one. lit[Bhs been proven that the
sum capacity is maximized only when each subchannel isressip the user with the best
channel gain for that subcarrier, and power is distributgthb water-filling algorithm. On
the other hand, [4] studies the fair max-min problem, in whidl users are guaranteed to
eventually achieve a similar rate through maximizing of wst user’s capacity. A sub-

optimal algorithm is also provided to alleviate the inteascomputation required to find
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optimum of the resulting max-min problem. A more generalnfass-aware scheme has
been suggested by [6], where a set of proportional fairneasstiints is imposed to en-
sure that each user can achieve its required data rate astanms/with QoS guarantees.
Similar to [4], a low-complexity suboptimal algorithm thsgparates the subchannel allo-
cation and the power distribution is proposed because doicdmputationally complex to
resolve the constrained non-linear fairness problem. i8gaty, subchannel assignment
is first accomplished by applying the algorithm of [4] to asl@ coarse fairness. Then,
fine fairness is attained by power allocation which targetsaximizing the sum capacity
while maintaining proportional fairness via an iterativetirod such as Newton-Ralphson
or quasi-Newton methods. Considering another form of &ssn namely fair bandwidth
distribution among users, the study in [7] recommends acation of equal number of
subcarriers to each single user. The total data rate canlbienaximized via a greedy
algorithm for a given transmitted power constraint and hiberate (BER) requirements.
In [10], the level of fairness achieved by [7] is further enbead through swapping the sub-
carriers belonging to the user with the most number of lodmlisdto the user with the least.
Examining a fairness-aware dynamic resource allocatiorthie downlink of a multihop
OFDMA system, the investigation in [23] formulates an opgation problem to maximize
the system capacity while guaranteeing minimum resouraegdch user. Then, an ef-
ficient heuristic algorithm, which comprises of subcharmdcation, load balancing and
power distribution steps based on the ideas of [4], is pregpodt should be noticed that
the aforementioned approaches requires channel staten@tion made available at the
base station. To further avoid the extensive feedback afraélanformation from users to
base station, the work in [24] suggests two constant contiplimited-feedback resource
allocation algorithms for the downlink in OFDMA networkshigh achieve near-optimal
performance.

When multicast transmission [25, 26] is employed, the stndi27] proposes a low-
complexity resource allocation scheme to improve the Strmapacity of the downlink
in an OFDM multicast wireless network. Specifically, eacttled available subchannels
is assigned to the group with the best channel and the mosberensers, under the as-
sumption of equal transmitted power, followed by waterAgl of the power. In [28], a
low-complexity heuristic algorithm for suboptimally aflating resources of an OFDM mul-
ticast system is proposed to minimize the number of OFDM syisthat each individual

user receives, thus resulting in a reduction of power comsliny the users. Considering the
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downlink transmission of an OFDM-based multicast wirelesisvork with the assumption
of multiple description coding (MDC), reference [29] sadvihe power control/bit load-
ing problem for maximum throughput and proportional fagmeTo avoid high complexity
required to solve the resulting integer program, a two-stdpoptimal algorithm is pro-
posed. In particular, subcarriers are assigned assumimgtard transmitted power being
distributed to each subcarrier, then bits are loaded toltheated subcarriers through the

application of a modified Levin-Campello algorithm.

3.1.2 Research Contributions

Since the channel quality of every user in a multicast ndtwoay be very different,
the attainable data rate of each multicast stream is ustestyicted by the data rate of the
least capable user. Furthermore, the number of users intcantlgroup also has a direct
impact on the aggregate data rate that can be achieved hyrthgt. These critical factors
lead to imbalanced opportunities in gaining access intatiadable system resources, such
as bandwidth and power, of individual multicast groups. Withee differences in pathloss
and/or size among groups are large, it is likely that thecipadaptive resource alloca-
tion schemes, which try to maximize the system performawiédistribute most of the
available bandwidth (and subsequently power) to the grexitishigh equivalent channel
signal-to-noise-ratio (CSNR) and/or with larger user sketisa significant portion of time.
Consequently, the groups with worse channel conditiongoarndth fewer member users
may not be able to access to any available resources at altheAsystem resources are
valuable but scarce and maximizing total system througlgpnot always the only design
priority, the issue of fair resource utilization among neast groups with diverse CSNR
characteristics and with different group sizes becomescpéarly important. The fair allo-
cation of available resources in OFDMA-based systems hais dliscussed in different con-
texts for both unicast and multicast scenarios, includirgg+min fairness [4], proportional
rate guarantee [6], minimum bandwidth assurance [23], |dopredwidth distribution [7],
and proportional fairness [29]. However, none of thesetsmwa accounts for a controllable
sharing of the available radio spectrum to flexibly disttébthe system resources in wire-
less multicast settings. Motivated by the works in [4, 2Bis research work shall address
the above-mentioned shortcoming of existing solutions.

We first provide a new formulation for the resource allocatpyoblem in OFDMA-

based multicast wireless systems that balances the tfdutefeen maximizing the total
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throughput and ensuring a flexible and controllable spetsharing among different mul-
ticast groups. To this end, by introducing the “bandwidtimtoal indices” which can be
easily regulated, we impose constraints on the minimum musnbf subcarriers to be as-
signed to individual groups. The indices can be adjustedhabthe formulated problem
may be cast into the problem of sum rate maximization. Mongairtantly, if a fair band-
width sharing among different groups with asymmetric links and diversaugrsizes is
desired, the minimum numbers of subcarriers can alwaysthe peoper values which are
determined from the respective channel conditions and sizéendividual groups. On the
one hand, this prevents groups with good channels or witelaser sets from greedily
consuming all the available bandwidth. On the other hangldrantees that groups with
poorer channel conditions or with smaller group sizeslsdile good opportunities to access
the system resources.

We then propose three novel efficient schemes with low coatiomal complexity to
solve the formulated NP-hard design problem. In the firstsewbnd schemes, the alloca-
tion is accomplished via separate optimization of subeesrand transmitted power where,
specifically, subcarriers are assigned based on the assanopuniform power allocation,
followed by water-filling of the total power over the detenmad subcarrier assignment. In
the third scheme, which is based on a modified genetic atgorii2—14], each individual
of the whole population corresponds to a subcarrier aliogatnd whose fitness score is
the system throughput computed on the basis of power wéltegfprocedure. It is shown
that with proper adjustments of the minimum numbers of sulara assigned to individual
groups, the proposed solutions provide a more flexibilitgantrolling the share of avail-
able radio spectrum given to each group and, at the samedchieve a very high total sum
rate. Complexity analysis of the proposed approachesiigedasut, and their potentials are

thoroughly verified via simulation with the illustration nfimerical examples.

3.2 System Model and Problem Formulation

Consider a one-cell multicast wireless system employin®MR, in which one base
station (BS) transmit& (downlink) traffic flows, each to one distinct multicast gpoover

M subcarriers. Assume that each user receives one traffic flaviime, hence it belongs

2In this work, “fair bandwidth sharing” means that a certainlticast group deserves some portion of the
total available bandwidth regardless of its link condit@rgroup size. Also, the terms “bandwidth” and “radio
spectrum” are used interchangeably.
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Figure 3.1: Downlink of an OFDMA multicast system.

to only one multicast group. Let, and|K,| (9 = 1,--- ,G) denote the user set of group

g and its cardinality, respectively. Since th¢h group is unicast ifK,| = 1 whereas it is
multicast if [K,| > 1, the model is valid for both unicast and multicast settinGsearly,

all the users belong to the st = (J_, K,, and|K| = Y5 K| is the total number

of users in the system. L&® denote the total system bandwidth and assume that each
subcarrier has an equal bandwidth Bf, = By = B/M. A generic system setup is
depicted in Fig. 3.1.

In this work, the resource allocation is accomplished inrgtre¢ized manner at the BS,
which has the perfect channel state information (CSI) oftadl users in the systems via
dedicated feedback channels. This is a typical assumptititerature [3,5, 6]. The BS is
then able to determine the maximum rate at which an individsar can reliably receive
data, as well as the corresponding subcarrier over whictateshall be transmitted on. It
is known that the maximum attainable rate of user K, on subcarrierm is

|hk,m|2Pm
By Ny

B
Thm = —Olog2 <1+

5 (3.1)

whereh,, ,,, represents the channel from the BS to usen subcarriem, P, is the trans-
mitted power allocated to subcarriet, and Ny is one-sided power spectral density of

additive white Gaussian noise. It is further assumed thatctrannel conditions remain
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unchanged during the allocation period. This assumptigardcularly valid for slowly-
varying channels where the channel gains do not vary todfisigntly over time, for exam-
ple, in high data rate systems and/or environments withaedidegrees of mobility.

An attractive feature of wireless multicast is that mulicdata can be transmitted from
the BS to multiple mobile users only through a single trassion. However, while all
users within a multicast group receive the same rate frorB8¢he main issue arises from
the mismatch data rates attainable by individual usersaifgtoup whose link conditions
are typically asymmetric. If the BS transmits rate higheanttthe maximum rate that a
user can handle, that user cannot decadg of the transmitted data at all. Therefore,
a conventional approach is to transmit at the lowest ratdldha users within a group,
which is determined by the user with the worst channel caondii27]. This assures that
the multicast services can be providedalb the subscribed users. On the one hand, as
all the multicast users within a group receive the same dsgtafrom the BS, the total
sum rate is scaled by the group size which is effectively tmaler of active users of that
group. On the other hand, the lowest transmit rate typicddlgreases as the number of
users increases since it is based on the least capable pgpeEmdix B, however, establishes
that as the number of users in a multi-carrier multicastesgsiends to infinity, the ergodic
system capacity becomes independent of the group size pehde on the total number
of subcarriers. This result confirms that the conventionalticast transmission scheme is
indeed both practical and beneficial, particularly with tise of multi-carrier transmission
as in OFDM-based wireless networks.

It is worth pointing out that other approaches such as etipipthe hierarchy in mul-
ticast data with the use of Multi Description Coding are jass(see, for instance, ref-
erence [29]). In this particular approach, a single datacsois fragmented into several
independent substreams (called descriptions) arrangetigrarchy that provides progres-
sive refinement. If only the first (base) description is reegiby the worst user, that user
can decode the worst quality version. As more descriptioageceived by more capable
users, they can combine these descriptions to produce wegrguality. However, such
approaches are limited to multimedia (video and audio)iegfibns whereas it may not be
practical to perform partitioning of the data in other apations, for instance, file transfer.
Therefore, MDC approaches are not pursued in this studyeyiestead, the conventional
approach shall be followed to deal with a more general claapplications. Here, the BS

is enforced to transmit at the lowest rate of all the userkiw# group, which is determined
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by the user with the smallest channel-to-noise ratio (CSIKR)subcarriem, let

gm keK, ByNg

(3.2)

be the equivalent CSNR of group then the maximum rate at whiehl users of groupy

are able to decode the transmitted data is
5 B
Fom = §° 1085 (1 4 BgmPrm)- (3.3)

As all users in a group receive the same rate, the aggreg@teada transmitted to group
on subcarriern is thus
Rym = Y Fgm = gl Fgm. (3.4)
keK,

The goal of this work is to devise a subcarrier assignmentpameer allocation policy
that maximizes the system sum rate of all multicast groupdevsatisfying a constraint on
the total transmitted power. Distinct from the existing Wsrhere the important issue of
providing a flexible mechanism to effectively govern thershat the accessible bandwidth
among various multicast groups is also taken into accouné g@ssible way to realize this
idea is to guarantee a certain minimum number of subcartodye allocated to each group.

Specifically, the design problem can be formulated as falow

3 1Kl logy (1 + BgmPrm) (3.5)
max 5 Pg,m10 mALm .
{p{].,7rL7P7rL} _1 _1 M p97 2 g’
g=1m=
M
subjectto: Y Py < Py, (3.6)
m=1
szo,mzl’...’M7 (37)
G
Zpg,m:17m:15"'7Ma (38)
g=1
pgm € {0,1}, (3.9)
M
Z Pgm > Qg, § = 17 o 7G- (310)
m=1

In this formulation, the binary variable, ,,, represents the allocation of subcarrieto
groupg. Constraints (3.6)-(3.7) express the power limitatiorhatBS, whereas constraints
(3.8)-(3.9) ensure a disjoint subcarrier assignment in @MABystems in which one sub-
carrier can only be given to at most one group. ConstrairitOj3reflects the spectrum-

sharing control of the design, where the “bandwidth contrdéx” o, is required to satisfy
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ay € Z4 and Zle ay < M. The valuea, manages the priority in terms of spectrum
access opportunity provided to each multicast group. liegairom0 to M and can be
flexibly adjusted according to system design specificatidxsa, increases toward/, a
higher priority is given to groug. In particular, if alla,’s approach0, problem (3.5)-
(3.10) becomes that of sum rate maximization. Moreover las s approach[%J, the
optimization formulation enforces (almost) a strict baidttv fairness.

It should be pointed out that problem (3.5)—(3.10) is NRdharherefore determining
its optimal solution within a given time is very challengir@erforming a direct exhaustive
search at the BS would obviously face a prohibitive comjtat burden where the opti-
mal solutions must be obtained within a designated timeodeadtue to quick variations of
wireless channels. Since such a solution method is too ctatigoally expensive, it is im-
practical, particularly for systems with large number dicarriers (which is often the case
in practice). Suboptimal algorithms, which have a low coesjty and yet provide good
performance, are therefore preferable for cost-effectivd delay-sensitive implementa-
tions. In the next sections, three efficient solutions teedhe formulated design problem
(3.5)—(3.10) are proposed. The first two solutions are baseseparate optimization of

subcarriers and power, while the last one is obtained witlodified genetic algorithm.

3.3 Efficient Resource Allocation via Separate Optimizatia

Ideally, both subcarriers and power should be jointly ated to achieve the global op-
timum of (3.5)—(3.10). However, this is highly complicatesithe total number of variables
becomes large. Instead of jointly optimizidg, ., } and{P,,}, separate optimization over
these two set of variables shall be performed. Although gtilpal, this approach enables
significantly lower computational complexity since the rhenof variables in each sepa-
rate optimization problem is reduced almost by half. Speatlifj, the subcarrier assignment
problem is solved in the first phase by assuming a constanémpallocation on subcarri-
ers. In the second phase, the total power is distributed theeavailable subcarriers in a

water-filling fashion.
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3.3.1 Phase 1 — Subcarrier Allocation with Uniform Power Assmption

Under the assumption of equal-power distribution over titecarriers, the data rate of

the downlink traffic flow to multicast groug on subcarriern in (4.7) becomes

‘K’ Ptot
Rym = ngogQ 1+ Bym Yk (3.11)

The proposed two-step subcarrier allocation is detailedgarithm 1. In Stepl, each
subcarrier is assigned to the group who has the largest wildg, ,, and who has not
been given its required minimum number of subcarriers. Gnsebcarrier is assigned, it
will not be considered in all subsequent operations. Furthe group which has already
been allocated its minimum number of subcarriers is diszhid all subsequent iterations.
While the largestR, ,,, corresponds to the group with largest group size and/or és¢ b
link condition, the bandwidth constraint actually helpsidvthe situation that subcarriers
are all granted to the advantageous multicast groups. Tdwegure is repeated until all
groups have been allocated their minimum numbers of subcarin Ste?, the remaining
subcarriers left from Step are assigned to the group who has the largest value,of
in a sequential manner. Effectively, the allocation cdsti certain level of bandwidth
sharing as a result of Stdp whereas the system throughput is further enhanced asa dire
consequence of Stép

It can be easily seen that the lookup of subcarrier-group (@dj, ") in lines 8-11
of Algorithm 1 involves a two-dimensional search, which icobe highly intensive for
systems with large numbers of subcarriers and multicasipgo To alleviate this draw-
back, we now propose a reduced-complexity subcarrier mssgt based on Algorithm 1.
Different from Algorithm 1, the reduced-complexity appcbgperforms the assignment on
a per-subcarrier basis in Stépvhere randomization is carried out to pick a subcarrier for
which all the eligible groups, that is, the ones that have@athed their minimum numbers
of subcarriers, will compete. Since the assignment onlyireg a one-dimensional search
for each subcarrier, its computational complexity is digantly lower. A full description

of this algorithm is provided in Algorithm 2.

3.3.2 Phase 2 — Water-filling Power Allocation

Once subcarrier allocation is accomplished, all the vabfes;, ,,, are known. Hence,

power allocation can be optimally completed on a per-sularabasis. The optimization
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input : Rgxm = {Rym} computed by (3.11),
S={1,2,--- ,M},anda = [ag, 9, -+ ,aq]| € Zf.
output: Subcarrier allocatio pg ., }

1 begin
/1 Initialization
2 Pgm +— 0, Yg,m
3 | ©«—10,0,---,0] € 2¢
/[l Step 1
4 if g ==0, Vg=1,---,G then
5 | gotoLine 20
6 else
7 repeat
8 find pair {g;,, m*} that satisfy both conditions:
9 (a)R(g;kn,?m*) > R(gvm)> Vg, m,
10 (b) ©(g7,) < algr)
11 end
12 Pgx,,m* <— 1
13 Py#gs.m* < 0
14 ©(g) — O(gn,) +1
15 S — S\{m*}
16 deleteR(:,m*) from R
17 if ©(g%,) > alg:,) thendeleteR(g;,,:) from R
18 until ©, > oy, Vg =1,--- ,G
19 end
/[l Step 2
20 foreachm € S do
21 find g;, = arg, max R(g,m)
22 Pgr,m < 1
23 Py#gz.m < 0
24 end
25 end

Algorithm 1: Subcarrier Assignment with Bandwidth-sharing Control.
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input : Rgxm = {Rym} computed by (3.11),
S={1,2,--- , M},
G={12---,G},and
a=[a, g, ,ag] € Zf.

output: {pgm}

begin

[/ Initialization

pgm < 0, Vg,m

© «— [0,0,--- ,0] € 2¢

/[l Step 1

if a, == 0, ¥g=1,-- G then

| gotoLine 17

else

repeat

randomly pickm* from S

find g}, = argmax,eg R(g, m*)

Pgx, m* <— 1

Pygt,m* <0

©(gm) < O(gn) +1

S «— S\{m*}

if ©(gy,) > algr,) thenG = G\{g;, }

until ©, > oy, Vg =1,--- ,G

end

/[l Step 2

foreachm € S do

find g, = arg, max R(g,m)

Pgm < 1

Pgtgz,m < 0
end
end

Algorithm 2: Reduced-complexity Subcarrier Assignment.
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problem (3.5)—(3.10) now becomes

M
|Kg;*n|
psd B 2 ar 108 B Pa) 812
M
subjectto: Y Pp < Pot,

1

3
I

where each subcarrier has been assigned to grogf.

Clearly, (3.12) involves the maximization of a concave tiorcover a linear set, thus
it is a convex optimization problem. The closed-form salntcan then be obtained by
employing the Lagrange multiplier method. The Lagrangia(Bd.2) can be expressed as

follows:

M

| Ky, |
‘C(Pmnu) = Z #IOgQ(l‘Fﬁg%,um)

m=1

M
—H (Z Pm - Ptot> ) (313)
m=1

wherep > 0 is a Lagrange multiplier. The optimal power allocation canderived from
the Karush-Kuhn-Tucker (KKT) conditions to be
| K= | 1
P, = mo ,0 . 3.14
max (M s T (3.14)

It can be observed that the solution in (3.14) has the formaiewfilling, whereu can be

easily found from the total power constra@%:1 P, < Pi.

Combining Phasd and Phase in the above results in two complete efficient re-
source allocation schemes, which shall be referred to aBdhdwidth ontrol — Separate
Optimization (BC-SO) and Bduced-omplexity Bandwidth (ntrol — Sparate @timization
(RCBC-S0), respectively. Though being simple, the alloceschemes devised in this sec-
tion are suboptimal due to the separation of optimizatiaratdes in each allocation phase.
In the next section, we propose another efficient schemehwttiizes the Genetic Algo-

rithm to provide a global search for a jointly optimal subearand power allocation.

3.4 Efficient Resource Allocation via Modified Genetic Algoithm

By its nature, a Genetic Algorithm (GA) does not begin itsimtation process from

a single point in the search space, but rather from an ergirefsndividuals, which form
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the initial population. Hence, GA may be invoked in robusibgll search and optimiza-
tion procedures that do not require the knowledge of theatikge function’s derivatives
or any gradient-related information concerning the seapate. It is therefore particularly
suitable for optimization problems which are not well sdifer standard optimization algo-
rithms, including problems whose objective function iscdigtinuous, non-differentiable,
stochastic, or highly nonlinear Regarding the NP-hard design problem (3.5)—(3.10), the
objective function involves both continuous and discreagables and thus represents a
class of problems for which GA can be efficiently applied.

The proposed efficient scheme, which shall be referred to aaslBidth _®ntrol —
Genetic_Agorithm (BC-GA), follows the general procedure of a GA ttge with the fol-

lowing features to specifically solve the design problemeauridvestigation (3.5)—(3.10).

Coding of Individuals

Each individual of the population corresponds to a subeasdilocation. It is coded as
a vector of lengthl/ whose indices represent the subcarriers, and the valuebfveator
entry is an integer in the rande, G| representing the group that has been assigned the
subcarrier corresponding to that entry. For instance ik entry of an individual has
value ofg implies that subcarriem is designated to multicast groyp Fig. 3.2 depicts the

coding of individuals and the entire population in one gatien.

Initial Population

The initial population of sizeV,, can be randomly generated, with high-quality indi-
viduals possibly being fed into the population. A fine indival could be either a good
subcarrier allocation generated by appropriate randdioizaor the suboptimal solutions
derived via the proposed BC-SO and RCBC-SO schemes in 8&:8oWith a well-chosen
starting population, the time required for BC-GA to reachoptimum solution would be

substantially reduced.

Fitness Function

For each individual, its fitness value is the correspondiigl tsum rate. To compute
this value, first the bandwidth-control constraint in (3.19 checked against each indi-

vidual (that is, each subcarrier allocation). If the coaisttr is unsatisfied, the individual

3See, for instance, the adaptive resource allocation aridadatission control problem in [30], or the
multiple-antenna OFDM multiuser detection problem in [31]

31



SC1 SC2 SC3 SCM

Individual 1 1 2 3 G
Individual 2 3 G-1 G 1
SC M assigned
to Group 1
TOTAL -
POPULATION Individual 3 1 3 G-2 1
Individual Np 2 2 1 2

Figure 3.2: Coding of individuals and total population ireaeneration.

will be given fitness value of-co. Otherwise, by performing the water-filling of power
over the known subcarrier assignment as described in 8€818) the fithess score of this
subcarrier-power allocation can be computed. Since thectbg is to maximize the system
throughput, individuals with higher fithess values (thahigher sum rates) are preferable

in the proposed solution.

Producing Next Generation

To produce the next generation, the following rules apply #eir operations are also

illustrated in Fig. 3.3.

(i) Elite Children Rule: Elite children are the individuals in the current genenativith
the best fitness values. These individuals automaticatiyhsito the next generation.
We propose the number of elite childréf in our genetic algorithm to be fewer than
5 as setting this number to a high value causes the fittestithdils to dominate the

population, which in turn may lead to a less effective search

(i) Crossover Rule Crossover enables the algorithm to extract the best geoes f

different individuals and recombine them into potentialyperior children. In our
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Figure 3.3: Operations to create new generations.

proposed scheme, we apply a two-point crossover rule whetdcts two unequal
pointsM 4 andMp atrandom { < M4, M < M). The child has the vector entries
(genes) of the first parent at the locations befbfg and afterM g, and the vector

entries (genes) of the second parent after and beforel/ .

(i) Mutation Rule: The mutation process adds to the diversity of a populatimhhence
increases the likelihood that the algorithm will generatdiviiduals whose fitness
values are better. Here, we propose a swapping of two raydegtécted entries in a

single parent to produce a new child.
Stopping Criteria
The proposed GA is terminated when at least one of the faigwbnditions is met:
() A maximum number of generations,,,, is exceeded.

(i) The number of generations, over which a cumulative dgain fitness function value

is less than a tolerance valdeexceedd ;.
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3.5 Complexity Analysis and Performance Evaluation
3.5.1 Complexity Analysis

Regarding the resource allocation problem (3.5)—(3.10)pimal search can be ac-
complished via exhaustive comparison of@ll’ possible subcarrier assignments, each of
which requires a total af/ runs of power water-filling to compute the achieved throughp
As a result, the direct search has an exponential complekit)(G* M). On the other
hand, after obtaining the matrik via GM operations, both the BC-SO and RCBC-SO
schemes only need to perform either a one- or two-dimenisir®ch to find the eligi-
ble group corresponding to individual subcarriers. Oncegtimal solution of subcarrier
assignment has been found, the actual number of wategfilk@cutions in these cases is
simply M. Assuming that a search through a one-dimensional (sdis¢#l)ith K elements
is of O(Klog K) complexity, then the total number of operations requiredigyBC-SO
approach is indeed M + GM?log(GM) + M whereas that by the RCBC-SO design is
only GM + G Mlog G+ M. Itis worth pointing out that the considerably lower conxite
of the two proposed algorithms is mainly attributed to theasetion of{p, .} and{P,, }
variable sets with the assumption of uniform power distidoy as previously discussed in
Section 3.3.1.

In contrast, complexity of BC-GA scheme depends on the maximumber of gen-
erations L.« required to be produced before the algorithm terminatesyels as on
the sizeN,, of each generated population. Within a population, watkndi of power is
completed for each individual in the computation of fithessres, followed by a one-
dimensional search to select the most fitted individualsshéiuld be noted that the effi-
ciency of a genetic-algorithm-based approach also depemdsther factors (such as the
choice of initial population, the rules to produce new gatiens and the tolerance allow-
able for cumulative changes in fitness scores), which cariffieutt to explicitly quantify.
Excluding these factors, the total complexity of the BC-Gheme can be shown to be
@ (Lmapr(M + log Np))-

All of the above-mentioned analyses are summarized in Taldle Compared with
the optimal exhaustive search, the three proposed metheddycrequire far less com-
putational effort. However, this benefit comes at the costamfificing attainable system
throughput as the devised schemes, by their nature, ar@tulad In selecting suitable

algorithms for different applications, it is thereforetiwal to balance the contradicting re-
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Table 3.1: Complexity analysis.

Algorithm Number of Operations Order of Complexity
Optimal search | GM M O(GMM)
BC-SOscheme | GM + GM?log(GM) + M | O(GM?log(GM))
RCBC-SO scheme¢ GM + GMlog G + M O(GMlog G)
BC-GAscheme | LyaNy(M +log N,) O (Linax Np(M + log N,))

Table 3.2: Parameters for the BC-GA scheme.

Parameter | N, | Ne | Lmax | Liim | €
Value 32 |2 |60 20 | 107

guirements of reducing computational burden and achie¥iadnighest possible sum rates.
In what follows, some numerical examples are provided tduata the performance of the

proposed designs in various scenarios.

3.5.2 Numerical Examples

Considered is an OFDMA system wifif = 9 subcarriers in which the BS communi-
cates withG = 3 multicast groups, each has eqlél | = |Ks| = |K3| = 4 users. Assume
that K, is located closer to the BS thus causes a pathloss advartdgel8 to K-, and
of 3dB to K3. To have a meaningful interpretation of the result¥) sets of independent
channel coefficient$r,, ,,, } are randomly generated according to the Rayleigh distabut
in each simulation study. The equivalent CSNR of gré(pon subcarriern is computed
asfy,m = minger, |hi.m|?. The final results are then averaged for plotting. For sicityli
the average channel gain, the noise power in each subcamigthe individual subcarrier
bandwidth are all normalized th

We shall now demonstrate three illustrative examples vwhéehe values of bandwidth-
control indicese, (g9 = 1,2,3) are properly adjusted to either provide throughput max-
imization, or offer a fair spectrum sharing by guaranteedegtain portions of the total
available bandwidth to be designated to individual mugtiogroups. Performance of the
proposed solutions (namely BC-SO, RCBC-SO and BC-GA) at@etcompared against
one another and also with that of optimal exhaustive sedrchll the examples presented
here, the parameters used for the BC-GA scheme are listeabia 8.2.

First, notice that by not guaranteeing any minimum numbéssibcarriers to be allo-
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Figure 3.4: Performance in the SRM example.

cated to individual multicast groups, that is, by setting= a2 = a3 = 0, the formulation
(3.5)—(3.10) actually becomes the problem of throughputimization. In this case, there
is a free competition among;, K, and K3, and the group who contributes the most to the
total sum rate will finally secure the available system resesifor its own usage. We will
refer to this example as Sum Rate Maximization (SRM), where ¢lear from Fig. 3.4a

that all the proposed algorithms approach optimality. Thimerical result, in particular,
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verifies that an equal transmit power allocation hardly eéases the data throughput of an
OFDMA-based system since each subchannel is only given seraxhose channel gain is
good in that subchannel. Further, because $tepboth Algorithms 1 and 2 is omitted in
the SRM example, the BC-SO and RCBC-SO schemes reduce tougkiput maximiza-
tion algorithm and hence perform identically. In terms ofta&idth sharing, the proposed
algorithms allocate more subcarriers to the group withelodittk conditions in this case,
as can be clearly seen in Fig. 3.4b. It should also be pointéthat although the optimal
search assigns more subcarriers to the advantageous gtioeps subcarriers might have
been distributed zero power by the water-filling procedtesulting in no improvement in
the attained throughput at all.

Since groupd(, and K3 are located farther away from the BS, their effective edaiva
channel gains (including long-term pathloss and shonttiading) are potentially smaller
than that of groug<;. The former groups are therefore likely to be in disadveedag posi-
tion, having fewer chances to gain access into the avaitallie spectrum. As such, in this
second example we imposg = 1, as = 2, ag = 3 to ensure a fairer allocation in terms
of bandwidth to the disadvantaged (inferior) groupsandK3. The remaining subcarri-
ers are then open for competition among the three groups. Weefer to this example as
Inferior-fair Bandwidth Allocation (IBA). From Fig. 3.5dt can be seen that the sum rates
achieved by the BC-SO and BC-GA schemes are 6flyaway from optimality whereas
the simple RCBC-SO design attains even more #4 of the optimal throughput. In ad-
dition, the total bandwidth has been shared more fairly agribe multicast groups, as can
be seenin Fig. 3.5b. Note that the valueagin this example are chosen for an illustrative
purpose only and they are completely adjustable at theddisorof the system designer.
If the channel condition of the worst user in grolify or K3 remains unfavorable for a
relatively long period of time, it becomes necessary tojiestdhe value oty, to avoid an
unacceptable sacrifice in the system throughput (one, fbamee, may opt to increasg
and decreases, as).

Even more strictly, a totally fair bandwidth allocation faf three multicast groups can
be enforced by setting; = as = a3 = 9/3 = 3, in which case each group will be given
exactly a third of the accessible bandwidth regardlesssakispective channel state. This
example shall be referred to as Equal Bandwidth AllocatieBA). Fig. 3.6a illustrates
that the sum rates obtained by the proposed solutions ayeclase to that offered by the
optimal search, with both the BC-SO and the BC-GA algoritlatisieving more thaf7%
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Figure 3.5: Performance in the IBA example.

of the optimal throughput and that for the RCBC-SO solutiein above)1%. Regarding
the distribution of available bandwidth, Fig. 3.6b verifteat subcarriers have been shared
equally among individual multicast groups by all the schemeder investigation in this
third example.

The above numerical results have clearly confirmed that bgepty adjusting the min-

imum numbers of subcarriers allocated to individual makicgroups, the design formula-
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Figure 3.6: Performance in the EBA example.

tion and proposed schemes offer a more flexibility in cohtrglthe share of available radio
spectrum given to each group and, at the same time, stikeela high system throughput.
In particular, the BC-GA algorithm, with an appropriate @®oof parameters, always of-
fers the highest attainable data rate among the three mlspoBhis is expected since the
BC-GA scheme performs a robust global search for jointlynoak solution of subcarriers

and power, as opposed to separate optimization of thoseaviable sets in the BC-SO and

39



RCBC-SO solutions. Moreover, the RCBC-SO design expegefice lowest throughput

among the three at the benefit of having a significantly lowenmutational complexity.

3.6 Concluding Remarks

This chapter proposed three efficient low-complexity resewllocation schemes for
OFDMA-based multicast wireless systems. The novelty irpttoposed schemes is that the
issue of controllable and flexible distribution of the amble radio spectrum among mul-
ticast groups was explicitly taken into account. In the saf@aoptimization schemes, the
subcarrier allocation ensures minimum numbers of sulararto be assigned to individual
groups according to their respective channel gains andpgsaes, while power is allo-
cated in a water-filling fashion. With the scheme based omtbdified genetic algorithm,
the jointly optimal subcarrier-power allocation is itévaty evolved through a global search
while satisfying the imposed bandwidth constraints amafigrént multicast groups. Nu-
merical examples showed that the proposed designs canlizeditio attain a high total
sum rate while at the same time distributing the availabledinédth more flexibly and
fairly among multicast groups. The computational compieaf our proposed approaches

has been analyzed, and their benefits have also been confisrmednerical examples.
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Chapter 4

Optimal Resource Allocation for
OFDMA-based Cognitive Radio
Multicast Networks

In November2002, the Federal Communications Commission (FCC) publishepart
on the current management of the precious radio spectruounas in the United States.

One of the main findings stated in the report is [32]

“In many bands, spectrum access is a more significant protilamphysical
scarcity of spectrum, in large part due to legacy commantieamtrol regula-

tion that limits the ability of potential spectrum users twan such access.”

Simply put, it has been confirmed that much of the licensedtspm lies idle at any given
time and location, and that the spectrum shortage reswlis fhe spectrum management
policy rather than the physical scarcity of the usable fezmies. Spectrum utilization
can thus be significantly improved by allowing secondaryraige access spectrum holes
unoccupied by the primary users at given locations and tirGegnitive radio [33, 34] has
been identified as an efficient technology to promote thia ol exploiting the existence
of the spectrum portions unoccupied by the primary (or kegl) users. Potentially, while
the primary users have priority access to the spectrum, ébenslary (or unlicensed or
cognitive) users have restricted access, subject to arearet degradation on the primary
users’ performance [35]. In spectrum sharing environmehts key design challenges of
a cognitive radio network are therefore to guarantee a gtioteof the primary users from
excessive interference induced by the secondary userslbasite meet some Quality-of-

Service (QoS) requirements for the latter [36, 37].
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Chapter 4, which examines the design of a dynamic resoulmeatibn algorithm for
OFDMA-based multicast cognitive radio networks with prisnaser activity (or subchan-
nel availability) consideration, is organized as folldwSection 4.1 reviews related works
on the similar subject in literature and also highlights diigginal research contributions
of this study. Section 4.2 presents the system model undsideration. Also formulated
in this section is the resource allocation problem for OFDiEsed multicast secondary
networks where primary user activities are taken into acto8ection 4.3 introduces the
dual optimization method, an effective approach to dedh witarge class of multi-carrier
resource allocation problems. In Section 4.4, an iteraieme, derived from the dual
framework to resolve the design under investigation, igppsed. Section 4.5 provides
numerical examples to verify performance of the devisedt®sl. Finally, Section 4.6

concludes the chapter with several remarks.

4.1 Introduction

4.1.1 Spectrum Pooling Approach for Opportunistic Spectrum Access

Spectrum pooling is an opportunistic spectrum access apprtnat enables public ac-
cess to the already licensed frequency bands [40, 41]. Téie laea is to merge spectral
ranges from different spectrum owners (for example, mujjjteunked radios) into a com-
mon pool, from which the secondary users may temporarily spactral resources during
idle periods of licensed users. In effect, the licensedesysioesnot need to be changed
while the secondary users access unused resources. Amogguossible technologies for
unlicensed users’ transmission in spectrum-pooling ragisiems, orthogonal frequency
division multiplexing (OFDM) has already been widely renaged as a highly promising
candidate, mainly due to its great flexibility in dynamigadlllocating the unused spectrum
among secondary users as well as its ability to monitor tleetsgl activities of licensed
users at no extra cost [42]. However, it has been shown thploging OFDM also affects
the performance of a cognitive radio network, for instarmaysing mutual interference
between the primary and secondary users due to the nongorihtity of respective trans-
mitted signals [43, 44].

1A version of this chapter has been presented aR@t® IEEE Wireless Communications and Network-
ing Conference (WCN@9) held in Budapest, Hungary [38]. Further development of rdmults has been
submitted for publication as a regular paper in the IEEE Jaations on Vehicular Technology [39].

42



4.1.2 Resource Allocation in OFDM-based Cognitive Radio $yems

Resource allocation for OFDM-based cognitive radio nekwdnas been examined
in [45], where an optimal scheme, derived via Lagrangiamidation, is proposed to max-
imize the downlink capacity of a single cognitive user wigjlearanteeing the interference
to the primary user being below a specified threshold. The&kwbf46] extends [45] to
multiuser scenarios, in which discrete sum rate of the ssrgnnetwork is maximized
constrained on the interference to the primary user bandsko on the total transmitted
power. Subject to the per-subchannel power constraints t@primary users interference
limits), the study in [47] proposes a partitioned iterativater-filling algorithm that en-
hances the capacity of an OFDM cognitive radio system. Egrthe issue of downlink
channel assignment and power control for FDMA-based cvgnitetworks has been ad-
dressed in [48], wherein a set of base stations make oppstrtugpectrum access to serve
the fixed-location wireless users within their cells. To im@xe the total number of active
users that can be supported while guaranteeing the miningmalgo-interference-plus-
noise ratio (SINR) requirements of secondary users andpatstecting the primary users,
suboptimal schemes are suggested for the formulated nvixeger program. Considering
networks with the coexistence of multiple primary and seleon links through OFDMA-
based air-interface, reference [49] utilizes the dual &awrk from [50] to provide central-
ized and distributed algorithms for improving the totaliaghble sum rate of secondary net-
works subject to interference temperature constraintsifépe at primary users’ receivers.

While the previous related studies implicitly assume thatdesignated spectrum for
secondary usage is fixed and always available, the work ¢ifigéstigates another impor-
tant aspect of subchannel availability or primary usewégtin an OFDM cognitive radio
system. Here, cognitive radio can be realized as a riskyr@mvient where the licensed
users may, at any time, come back and take up the frequendg lcamrently available for
secondary access. In such scenarios, the power alreadstédvby unlicensed users in
those bands becomes wasted. By referring to a risk-retudehamd upon defining a gen-
eral rate-loss function which gives a decrease in totaluinput whenever primary users
reoccupy the temporarily accessible subchannels, a probleptimally allocating power
for a single cognitive user is formulated incorporating thkability or the availability of
OFDM subchannels. For the special case of linear rate logki-level water-filling solu-

tion for the resulting convex program has been derived if, [5dt other types of rate-loss
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functions are not yet investigated.

4.1.3 Research Contributions

Different from all the aforementioned works which only cimes unicast transmission,
this research studies resource allocation in a secondaBM&based multicast network
where the patterns of primary user activities on the aviladdio spectrum are dynamic.
As an efficient means of transmitting the same content toiphaiiteceivers while minimiz-
ing the network resource usage, multicasting [25, 26] iarbfean attractive transmission
technique for secondary networks who only have a limite@ssto the available spectrum.
However, in the multi-group/multi-user settings, the peai of joint subcarrier assignment
and power distribution usually turns out to be non-conveskimg the solution derived
in [51] no longer applicable. As well, performing an direghaustive search to find the
global optimal solutions is certainly impractical in theseses as computational complexity
of such approach is prohibitively demanding. Motivatedhmsy shortcomings of the existing
designs, we propose in this work a dual optimization schearedficiently solve the chal-
lenging resource allocation in a cognitive OFDMA networksigting of multiple multicast
groups.

Adopting a similar risk-return model of [51] to account fbetprimary user activities,
our proposed subcarrier assignment and power allocatiati@otargets at maximizing the
expected sum rate of all secondary users in an OFDMA-baggtta@ radio multicast net-
work, while satisfying the tolerable interference levaduieed to individual licensed users.
Specifically, the original non-convex optimization prahblés solved effectively in the dual
domain with global optimum obtained in the limit as the numdblesubcarriers goes to in-
finity. More significantly, it is shown that the proposed aggmh has only linear complexity
in the total number of subcarriers, resulting in a huge rédaodn computational burden.
These features are certainly attractive for practical OFBDIbdsed systems that deploy a
large number of subcarriers. Further, the dual approacdepted here is valid for both uni-
cast and multicast scenarios, and is applicable for a winlgeraf rate-loss functions among
which linear being a special case. As well, the mutual ieterice between secondary and
primary networks, which is an important factor, is expliciquantified. The effects of ad-
jacent subcarrier nulling technique [43], used to decrélasemutual interference, on the

proposed design are also carefully analyzed.
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4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a primary base station (BS) that transmits (@oé¢ssarily OFDM) signals
to its V primary users, each of which occupies a predetermined émwbandB}(f) (n=
1,---, N)in the available spectrum. To implement efficient opposticispectrum access,
a secondary BS is permitted to empleyOFDM subcarriers to transmit downlink traffic
flows, each to one distinct multicast group consisting obsdary users, over the temporar-
ily unused/available frequency bands. Information reiggrthe availability of these bands
is made known at the secondary BS either by means of siggditim the primary BS, or
as the result of spectrum sensing performed by the secomfaitself. Notice that since
licensed users have priority access to the radio specthemurused frequency bands need,
at any time, to be handed back to the primary network uponastqT herefore, depending
on the activity of primary users, there is a chance that thgtearily unused spectrum
becomes reoccupied.

Assume that each secondary user receives one traffic flovina¢ agnd hence it belongs
to only one multicast group. L/, and|M,| (9 = 1,--- , G) denote the user set of group
g and its cardinality, respectively. Theth group is unicast ifA/,| = 1, whereas it is
multicast if [M,| > 1. Thus, the system framework presented here is applicabileeto
both unicast and multicast transmissions. Clearly, allgbeondary users belong to the
setM = UgG:1 Mgy, and | M| = Ele |M,| is the total number of users in the cognitive
multicast network. LetB denote the total bandwidth available for secondary usaug, a
also assume that each subchannel has an equal bandwilth-ofB/ K. The system setup
is depicted in Fig. 4.1a with the distribution of access#pectrum shown in Fig. 4.1b.

As the consequence of having two coexisting networks, thBI@Bignals from sec-
ondary BS, which are intended for its own serviced usershtriigerfere the reception
at the primary users’ receivers. Upon definiﬁ’g“k as the power spent for transmitting
to secondary uset: in group g on subcarrierk and denotindgl’; the OFDM symbol du-

ration, the power spectral density (PSD) of the subcatrisignal can be modeled as

. . 2
Pi(f) = PoiTs (Slfr;{f) , m € M,. Then, the interference caused by this signal
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onto primary usen is given as [43]
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(n

whered,, ) = | fx — fn| represents the spectral distance between subcéaraed the center
frequency of primary uset, andggg denotes the channel from secondary BS to primary
usern. Clearly, interferencé."” depends on bott” and P, ;.

In addition, the coexistence of primary users and multigastips of secondary users
may cause interference induced by the signals from prim&ywhich are destined to pri-
mary users, onto secondary users’ frequency banngﬁ_fgtbe the channel from primary
BS to secondary usen in groupg on subcarriek, and@%(eﬂ'w) be the PSD of the signal
transmitted from primary BS to primary user Then, the interference power caused by
this signal onto secondary userc M, on subcarriek can be computed as [43]

d™ 4+ B, /2

n n k
) = aESE [ ek du, 4.2
d,"’ —Bs /2

whereE{Ix(w)} = 52 [T @%l)](ejw) (%)2 d¢ is the PSD of primary user
n’s signal afterK-FFT processing.

In this work, the resource allocation of secondary netwstkdcomplished in a central-
ized manner with perfect channel state information of athary and secondary users in the
system being assumed (for example, via training and fed&dtfemm the users through ded-
icated channels). We further assume that the channel comglitemain unchanged during
the allocation period. Hence, this model is particularlid/éor slowly-varying channels
where the channel gains do not vary too significantly oveefisuch as in high data rate
systems and/or environments with reduced degrees of rydlilb, 6]. With the perfect link
information available, it is therefore possible to deterenihe maximum rate at which an
individual secondary user can reliably receive data, abagahe corresponding subcarrier
over which the data shall be transmitted on. The channeblbigrinterference-plus-noise
ratio (CSINR) of secondary uset € M, on subcarriek can be shown to be

L

T(NoBs +320=1 T k)

m,

wherehi?k is the corresponding channel coefficient avgiis the one-sided PSD of additive
white Gaussian noise (AWGN). The paramdieepresents the signal-to-noise ratio (SNR)
gap to the capacity limit, which is a function of the desirdttlBror-Rate (BER), coding
gain and noise margin [52]. The maximum attainable rate cbisgary usefm < M, on

subcarrierk is then
B, .
Tmk = E 10g2(1 + OémePm’k). (44)
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Similar to the study in Chapter 3, the conventional multi¢ceensmission approach is
also followed here by enforcing the secondary BS to tranainibhe lowest rate of all the
users within a group, which is determined by the user withsthallest CSINR [27]. This
assures that the multicast services can be providedl the subscribed users. Let

Yok = D G (4.5)

be the equivalent CSINR of groupon subcarriek. Then, the maximum rate at which all
secondary users of groypare able to decode the data transmitted on that same swocarri
is

§ B;

Tok = g5 logo (1 + 79,6 Ly k)5 (4.6)
whereF, ;. denotes power allocated to grogipn subcarriek. Since all the secondary users
in a group receive the same rate, the aggregate rate tré@dnotgroupg on subcarrieik
is scaled by the group size as

Ry,k = Z Fak = |Mg| Pg - (4.7)
meMgy

4.2.2 Problem Formulation with Primary User Activity Consideration

In a cognitive radio environment, there is likely a delaynfrthe moment that a chan-
nel is made available for secondary usage to the time thadg¢bendary network is fully
aware of that accessibility. The time delay could be duedoekample, the efficiency of
spectrum sensing algorithms performed by the cognitivevordt This effect is of partic-
ular concern if the patterns of spectrum usage by primarysuse greatly dynamic, for
instance, frequent occurrences of releasing and reoaugm@rtain bands. Consequently,
secondary BS may carry out the resource allocation at themutime framet with the
available information (regarding, for example, locatiafispectrum holes, link conditions,
interference, etc.) valid at time— At. During the time delayAt > 0, it is possible that
primary users may have come back and taken up the subchdhatelsere once available
at timet — At. As this is the case, performance of current resource aitocéor secondary
network can be severely affected.

To account for the primary user activities (or equivalenthe availability of OFDM
subchannels), we refer to the risk-return model in which groallocated to a frequency
band is considered an investment in that band [51]. In thideh@ognitive radio environ-

ment can be thought as a risky environment where the primsgysumay return to take up
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the available band at any time. In such cases, the secondary power investment in that
band becomes wasted, representing a loss in the data régeextby the secondary users,
possibly due to, for instance, other better allocation se®that could have been utilized,
or an increase in the amount of interference caused to pyiosars when the unused bands
are reoccupied. In order to model this loss, we define a ragdl@”) which is a function of
the power invested by cognitive network. Strictly,P) is required to satisfy the following

two conditions:
(i) L(P)>0for P >0, and
(i) L(P)=0for P =0.

Given the probabilityp, that the subchannél is taken up by the primary users in the

current time frame, the expected rate-loss can be written as
E{ARy1} = orL(Pyp). (4.8)

Then, the expected rate transmitted from secondary BS tggron subcarriek becomes

E{Ryr} = Ryr—E{ARyx}
M,
= Pl og 1 vpye) — kLR @9)
The goal of this study is to devise a subcarrier assignmeahpawer allocation policy
that maximizes the expected sum rate of all multicast grafpsecondary users, while
satisfying constraints on the tolerable interference lle¥eeach individual primary user.

Specifically, the design problem can be formulated as falow

G K

wg| M,
max Y Y % logo (1 + vy £ Py k) — ok L(Py1) (4.10)
(S0 R —
G K
st S S PRI <I(in=1,-- N, (4.11)
g=1k=1
Pp>0;9=1,---,G k=1,--- K, (4.12)
PyiPy k= 0; Vg' # g. (4.13)

In this formulation, weightv, > 0 reflects the priority designated to grogjand is obliged
to satisfyzle wy = 1. Constraint (4.11) expresses the tolerable interferemws bt the

receiver of primary usen, with It(ff) representing the interference temperature threshold.
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Constraints (4.12)-(4.13) enforce a disjoint subchangslgament in OFDMA systems,
that is, one subcarrier is permitted to be assigned to at orestgroup at a time [3]. It
is note-worthy that the optimization problem (4.10)—(3.t3NP-hard since it requires the
allocation of an optimal set of subcarriers to each multigesup of secondary users. Com-
plexity needed to directly solve this combinatorial problecreases, at least, exponentially
with the number of subcarries. Such prohibitively high computational effort is required
even for a simplified case as discussed in Appendix C. Moretive multiple constraints
in (4.11) make it even more challenging to derive an analysolution for problem (4.10)—
(4.13).

In the following sections, we will first introduce the dualtimpization method for non-
convex multicarrier resource allocation. Then, we will\wsHmww the optimization problem
(4.10)—(4.13) can be effectively resolved in the dual dométh virtually zero duality gap,
and thereby global optimal solutions can be obtained inithi¢ &s the number of subcarri-
ers goes to infinity. Further, we establish that the complefithe proposed dual scheme is
only linear in the total number of subcarriers, and thusesg@nting a significant reduction
in computational burden at the BS, where it is desirable thtfie optimal solutions rapidly

to mitigate the fluctuations of wireless channels.

4.3 Dual Optimization of Non-convex Multicarrier ResourceAl-
location

Consider the problem of optimally allocating resources imuticarrier system with
M users and< subcarriers. The objective and constraints of the optitiwmaconsist of a
number of individual functions, each corresponding to ditb@K subcarriers, and can be

expressed as

K
max X 4.14
B, kZ:l Fr(xi) (4.14)
K
s.t. Z hk(Xk) <P,

k=1

wheref;(-) areRM — R (not necessarily concave) functiods,(-) areR™ — RN (not
necessarily convex) functions, and consBridenotes theV-vector of constraints.

The idea of dual optimization is to solve (4.14) by first fongiits Lagrangian dual,
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which is defined as [16]

K K
E({Xk}, )\) = Z fk(xk) — AT (Z hk(xk) — P) s (415)
k=1 k=1
whereX = [\, , Ay]T > 0is a vector of Lagrange dual variables.

Then, upon defining the dual objective 85A) = max(,,, L({xx},A), the dual

optimization problem of (4.14) becomes

m}i\n D(N), (4.16)
st. >0

The Lagrange dual problem is a convex optimization problednich can be solved
very efficiently in practice. This is the case whether or met primal problem is convex.
Nevertheless, solving a dual problem is not always equiNatesolving the primal one. Let
f*andD* denote the primal and the dual optimal values, respectivdign the difference
d = D* — f* is defined as the optimal duality gap. It has been proven froatityf theory
thatd > 0 always holds. In particular, whefy(x;)’s are concave anh(x;)’s are convex
(that is, problem (4.14) is convex), strong duality is guéead, which impliesi = 0.
In such cases, the primal and dual problems have the sanmabptalue and thus the
globally optimal solution can be derived in the dual domambagrangian decomposition.
However, this gap in general is not always zero and the opoiation of the dual problem
only gives the best upper bound on that of the primal.

Interestingly enough, it has been shown in [50, 53] that @f/éime multicarrier opti-
mization problem (4.14) is non-convex, the duality gap ig0zé either of the following

conditions is met.
Condition 1 xj(X) = argmaxy, L£({x;},A) is continuous at optima\*.
Condition 2 The optimal value o+, f(x) is concave irP.

It turns out that for the non-convex problem with a generatfas in (4.14), Condition
2 in the above, called the frequency-sharing condition,[BIways satisfied in the limit as
the number of subcarriels approaches infinity. A more general theoretical justifmaif
this observation can be found in [18, Sec. 5.1.6]. Signifigathis important result allows
the original challenging non-convex problem to be effidiesblved in the dual domain

with a virtually negligible duality gap for a realisticallgrge number of subcarriers.
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4.4 Practically Optimal Subcarrier and Power Allocation via
Duality

It can be observed that the particular structure of problérhQ)—(4.13) satisfies the
frequency-sharing condition, and hence its global optinuan be obtained in the dual
domain by an iterative method, at a significantly reduced matational complexity [50].
In brief, for a fixed Lagrange dual variable set, it is possitd first decompose (4.10)—
(4.13) by Lagrangian into several unconstrained per-taneep allocation subproblems,
each of which can be solved by water-filling or exhaustive@deaOnce the optimal dis-
tribution of powers is found for all subcarriers, the Lagyamual variables are updated by
a subgradient-based or an ellipsoid method. The proceduepeated until convergence,
and the optimal solution of subcarrier and power allocatbiained in the dual domain
becomes that of the primal problem (4.10)—(4.13) as the mumbsubcarriers tends to be

large.

4.4.1 Resource Allocation for Linear Loss Function

For the purpose of demonstration, let us for now consideneali rate-loss function
L(P, ;) = C- P, whereC is the normalized average cost per unit power for the seecgnda
users to utilize the resource. Note that the intention t@sha linear function is to simplify
the analysis while giving a better understanding of the psegd approach. The dual method
presented here is as well applicable for other types oflostefunction, which shall be

discussed in a later section. With this linear loss, theathje (4.10) becomes

L M, |
>N % 10gs(1 + Yy 1Py k) — CbrPy . (4.17)
g=1 k=1

The exclusive channel assignment constraint (4.12)-J4a8 be expressed &% ), €
S, where domaii$ isdefinedas = {P,, >0, 9=1,--- |G, k=1,--- K| Py Py =

0, V¢’ # g}. Over the domaii®, the Lagrangian of problem (4.10)-(4.11) is given as

G K IM,|
L{Pyr},A) = > % logy (1 + vk Pyk) — COrPyk
g=1k=1
N G K
S (S P -1V, (4.18)
n=1 g=1 k=1
whereX = [A1,---, Ay]T = 0is the vector of dual variables.
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Now, thanks to the disjoint subchannel constraint in OFDlbSsed systems, it is pos-
sible to decompose the Lagrange dual function of (4.18) ktmdependent optimization
problems, one for each subcarrigras follows:

D) = {Prfgésﬁ({P Kt A)

K N
= Y DN+ Y aaI, (4.19)
k=1 n=1

where the per-subcarrier problem is

a
M
Dr(A) = max > {w logy (1 + g,k Py k)

N
- (Z AT + C’gzbk) Pg,k}, (4.20)
n=1

fork=1,--- K.

For each subcarrigt, there is at mostong, ,, > Oforallg = 1,--- ,G. Therefore, the
optimal group assignment for subcarriecan be found by first deriving: optimal power
allocations, one for each of the tot@l groups, and then selecting the one that maximizes
Dy(X). Assume that multicast groupis active on subcarriet. For a fixed\, the objective
of the maximization in (4.20) is a concave function/f;.. Hence, from the Karush-Kuhn-
Tucker conditions [16], the optimal power allocation cardegised as

+
P;vk = <% - ﬁ) , (4.21)
wherex™ = max(z,0). Apparently, this is a form of water-filling where the watevé! is

K(Cér+ SN Al log2

Yok = (4.22)
wg| M,|

Then, by searching over alf possible group assignments for subcarkerthe optimal

1 1\*
Lbhygp | =— = —
Y0,k Vg,k

al 1 1\*
ST -1 <— - —> : (4.23)
— Y0,k Yg,k

fork = 1,---, K. This is achieved when the power allocation on subcatrisr Py« , =

value of (4.20) is actually

M
Dj(X\) = max {M logy
g K

Pg’i’k and P, = 0 for all g # g*, whereg* represents the group being allocated the
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Table 4.1: Subcarrier and power allocation by dual optitieramethod

THE PROPOSED DUAL SCHEME

1: Initialize (A1,...,AN)

2. Repeat

3 fork=1,....K

4 computeP;,k for all groupsg = 1,...,G by (4.21)

5: pick groupg* that gives minimum oy () as in (4.23)
6 assign subcarriét to groupg*

7 setPy- i := P, and Py :=0, Vg # g*

8 end

9 update(\q, ..., An) according to (4.24)

10: Until convergence oA

subcarrietk. From (4.21) and (4.22), it is worth mentioning that the edition depends not
only on the CSINR and the number of group users, but also camugability of subchannel
k as represented by .

Once (4.23) is solved for all subcarriers & 1,--- | K), the overall Lagrange dual
function D(A) in (4.19) can be evaluated for the fixad Finally, it remains to find\* > 0
that minimizesD(A). This can be efficiently done by iteratively updatingutilizing a
subgradient-based or an ellipsoid method until convergearic\. At that point, the sum
interference, induced by transmission from secondary B&ltof its multicast groups, to
each primary user’s frequency band also converges, andiyppoptimal powers have
been distributed to the eligible multicast groups.

The update o may be performed as follows:

J’_
AFD = (A(t) (;g;; ZZPQ kﬂ”)) : (4.24)

g=1k=1

forn =1,---,N,wheres® > (is a sequence of scalar step sizes. This subgradient update
is guaranteed to converge to the optitalas long ag(®) is chosen to be sufficiently small.
A popular choice is thai® is square summable but not absolute summable, for instance,
5® = 2 for some constant > 0.

The overall proposed dual scheme is summarized in TableNétk that the search for
the best pairs of subcarriers and multicast groups (in L3r8&% has the form of a Greedy

Algorithm [54]. It is also important to stress out that as tluenber of subcarriers goes to
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infinity, the gap between primal and dual optimal solutioasigshes quickly to zero. In
practice, OFDM systems employ very large number of subeariffor example, as many
as4096), thus the optimal solution, obtained in the dual domainh®y/groposed scheme,
virtually becomes a global optimum of the primal probleml(}—(4.13), with a negligible
duality gap. Evidently, this demonstrates the practicéihoglity achieved by our proposed

design.

4.4.2 Complexity Analysis

For a fixed\, solving problem (4.19) requirg8( K GG) executions. An ellipsoid method
used to updaté\ converges inO(N?) iterations. Therefore, the total complexity of the
proposed dual scheme @&(K GN?), which is onlylinear in the number of subcarriers.
Since the number of subcarriers is often large in practicaharios, a huge reduction in
computational burden is expected from the proposed duahselas compared to, at least,
O(KG*X) operations (for a simple case with only = 1 primary user) by an optimal ex-
haustive search. Certainly, this is a highly desirableufeadf adaptive algorithms designed
for wireless communication systems where resolutionsafeed to be found within a very

short time due to the dynamics of wireless channels.

4.4.3 Application of Dual Method to Other Types of Rate-los$-unction

As seen before, the choice of a linear rate-loss functionesittie problem more straight-
forward to analyze and a water-filling solution of power carobtained as in (4.21). How-
ever, other rate-loss functions such as those illustratdelg. 4.2 could also be possible,
and the proposed dual scheme is completely applicable mcages.

If L(P, ) is concave and differentiable, a closed-form solution Far per-subcarrier
problem can be obtained. For instance lleéF, ;) = C -log(FP, i) then the objective of the
maximization in the per-subcarrier problem is also a coadawnction of P, ;. Solving a
guadratic equation will yield an analytical solution foetbptimaIP;’k. On the other hand,
if the rate-loss function is not concave (for instance, egmtial L(P, ) = C - (efs+ — 1)),
an exhaustive search is normally required to determine ghdien of the per-subcarrier
problem. Nevertheless, since this problem is unconstuaiités easier to handle than the
original one. Indeed, any other form of the rate-loss fuorctdnly leads to a difference
in the resolution of per-subcarrier problems, whereastakosteps in the proposed dual

scheme still remain unchanged.
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Figure 4.2: Some common rate-loss functions.

4.4.4 Effects of Adjacent Subcarrier Nulling Technique

The study in [43] proposes the method of dynamically deatitig subcarriers as a
countermeasure to reduce the amount of interference framndary to primary bands.
Essentially, the suggested approach provides flexibledgbhands between primary and
secondary users by nulling subcarriers adjacent to theapyimsers’ bands. However,
this benefit comes at the cost of sacrificing bandwidth andseguently, throughput of
secondary users. Itis therefore critical to balance théraditting requirements of reducing
interference and achieving the highest possible througbfggecondary users.

The computational complexity needed to find the optimal tsmhsg in the proposed
dual scheme can be further reduced by applying the adjacéctgier nulling method
since the number of subcarrieks decreases. As well, more power can be distributed into
the far-away subcarriers for a given interference threisht@). However, nulling adjacent
subcarriers also reduces the available degree of freedbmhvs the number of available
subcarriers for possible transmission from the second&yddits own users, and in turn
leads to a decrease in the throughput achieved by all cegmiulticast groups. For this
reason, only the deactivation of a few adjacent subcardersach side of primary users’

bands are normally recommended.
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4.5 Numerical Examples
4.5.1 Simulation Setup and Assumptions

We consider a wireless system in which the primary BS comoates with/NV primary
users. The primary-user frequency bands are predeternriribd available spectrum. All
the primary user signals are assumed to be ellipticallyréittevhite noise with equal am-
plitude Ppyy = 1. To exploit temporary unused spectrum holes, a secondaris Bso
allowed to simultaneously transmit & = 2 multicast groups, each respectively consists
of |[M;| = 5,|Ma| = 3 secondary users. The number of OFDM subcarriers used by the
secondary BS i€, and the unused frequency bands are located on the sides aféiady
occupied bands. Moreover, the probability that primarysiseoccupy unused subchannel
k is assumed to be for all k.

In the computation of attainable sum rat&éd) sets of independent channel coefficients
{gg}l}, {g}:5.} and{n7% } are randomly generated according to the Rayleigh distoibut
The average channel gains, the noise power of each subicired®©FDM symbol duration,
and the individual subcarrier bandwidth are all normalized. It is further assumed that
perfect coding is employed, which means that 1. Since all the spectral distancég)
can be determined, it is possible to compute the interfmfk(é‘), Jf)f%€ and the CSINR
of individual secondary uset,, ;.. Then, the equivalent CSINR of groug, on subcarrier
k is simply 74 x = min,en, o,k IN addition, both groups are assumed to have equal
priority w; = ws = 0.5. For brevity, the numerical examples are only performedtier

case of linear rate-loss functidn( P, ) = C - Py ..

4 5.2 Simulation Results

In order to confirm the practical optimality achieved by thegosed dual scheme,
we first study a simple case witN = 1 primary user,K = 8 OFDM subcarriers and
L(P, 1) = 0. Fig. 4.3 plots the actual achieved throughput by both tra dptimization
and the direct exhaustive search. As can be seen, the twouaes are almost indistin-
guishable. The very small gap between the primal optimurainbtl by exhaustive search
and the dual optimum is also shown in Table 4.2. Note that treditgt gap is already
insignificant even with onlg active subcarriers. Furthermore, we examine the case of mul
tiple primary usersV = 2, a larger number of OFDM subcarriels = 36 and a positive

rate loss. Since it is too complex to carry out an exhaustaech to find the optimal so-
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Figure 4.3: Comparison of dual optimization and exhaustigarch methods fov =
1,K =8,L(P; ;) =0.

Table 4.2: Average duality gap fo¥ =1, K =8, L(FP, ;) =0

Interf. limit Iy, 0.0100 | 0.0400 | 0.0700 | 0.1000 | 0.1300 | 0.1600 | 0.1900
Abs. gap|D* — f*| (x1073) | 1.1831| 0.0250 | 0.2934| 0.0009| 0.0003 | 0.3043| 0.0004
Rel. gap|D*f:f*|(><10*3) 5.1783| 0.0465| 0.3966| 0.0010| 0.0003| 0.2654| 0.0004

lutions of (4.10)—(4.13) in this case, we instead verifyt tGandition 2 stated in Section
4.3 is met. For a randomly chosen instance of channels amddifierent values ot” and
¢, Fig. 4.4 demonstrates that the total expected rate-surmtiabality is indeed a concave
function of Iy, = [It(ﬁ),lt(i)]. It is expected that the concavity of optimal throughputhwit
respect taly,, becomes even more visible as the number of subcarfieis much larger
than36. From Condition 2, this observation implies a negligiblality gap and, again, in-
dicates that the solution obtained by the proposed dualadeghvirtually the primal global
optimum. Therefore, in what follows, all the simulationults are presented for this more
practical scenario witlv = 2 primary users and& = 36 OFDM subcarriers.

AssumingC = 0.1 and¢ = 0.02, Figs. 4.5a and 4.5b illustrate the actual convergence
process of the sum interference introduced to each primsey and that of the achieved
data rate for a snapshot of channel at interference thrtd&sll{ﬁ%l = 11;(}21) = Iy, = 0.1, re-

spectively. As can be seen, the dual optimization schemeecges very fast (after only
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Figure 4.4: Concavity of the optimal throughput r= 2, K = 36, L(P, ;) > 0.
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Figure 4.5: Convergence process of the proposed dual scheme

few hundred of iterations) and the constraints on interfegelimits are met with equal-
ity. Together with the above-confirmed practical optinyalihis quick-converging feature
certainly makes the proposed design highly attractive factical wireless applications.
To clearly evaluate the effect of adjacent subcarrier ngliechnique, Fig. 4.6 plots
the total system throughput (assuming no rate loss) as welidividual group rates ob-

tained by the proposed scheme, with and without nullingagjasubcarriers on each side
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Figure 4.6: Effect of adjacent subcarrier nulling (with@eate-loss assumed).

of the primary users’ bands. Note that only deactivatingnd2 adjacent subcarriers are
considered in the simulations. It is clear that the multigmeup with more user members
(that is, group)M;) achieves a higher rate as it is allocated more subchamméig unused
spectrum. Moreover, although the attainable rates inltheulling and2—nulling cases
actually decrease as the adjacent subcarriers are assigreegower even when their re-
spective channel conditions are very good, the degradiiaminor. This is possibly due
to the compensation provided by the so-called multiusegrdity, and to the fact that the
equivalent CSINR of each multicast group is determined t®r wdth the worst channel
condition.

Finally, the consequences of varying different rate-laaameters on the system through-
put are assessed. Figs. 4.7, 4.8 and 4.9 exhibit the bebafiachieved data rate for several
selected values daf', ¢ andIy,. It is apparent that increasing rate-loss (that is, by msre
ing C and/or¢) results in a decrease in the attained throughput. In peeticif the OFDM
subchannels are too busy or secondary access of the agai&sgalurces is too costly, the
achievable data rates of cognitive radio network may evemwageh zero. Clearly, the
performance of resource management algorithms designeddaitive radio network de-
pends very much on the activities of primary users on thetgpecavailable for secondary

access, which are quantified by a loss in the achieved susi rate
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4.6 Concluding Remarks

In this chapter, we have proposed a dual scheme for the &lacaf subcarriers and

power to maximize the expected throughput of a secondamyanktemploying OFDMA,
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Figure 4.9: Attained system throughput for a fix@d= 0.2.

subject to tolerable interference at the primary users gnitive radio settings. The solu-
tion also takes into account the subchannel availabilittherprimary users’ activities by
incorporating a rate-loss function in the design. Globalmality can be achieved by the
devised scheme for a realistically large number of OFDM auipers. Further, the pro-
posed dual optimization method can handle both unicast asiticast transmissions, and
its complexity is only linear in the number of subcarriersheTeffects of nulling adjacent
subcarriers on the proposed design have also been investiddumerical results confirms

the potential benefits of our proposed approach.
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Chapter 5

Conclusion

5.1 Summary

Much of the existing work, relating to the problems of reseuallocation in OFDMA-
based wireless systems, focuses on finding efficient subcassignment and power con-
trol schemes. In systems employing multicast transmissiom present solutions in lit-
erature are not always applied. Further, when the numberF@ND subcarriers utilized
is practically large, the existing approaches are, as limstcessible since they involve
prohibitively high computational effort. The aim of thisettis is therefore to provide effec-
tive and affordable mechanisms to share out the availaBleurees in multicast wireless
systems deploying OFDMA technology. Through the applwatf various mathematical
optimization techniques such as genetic algorithm anddragian dual optimization, sub-
optimal and optimal solutions with high performance andofetcceptable complexity have
been presented for different system models. Specificathhave studied the resource man-
agement problems in two contexts, formally described themmathematical optimization
programs, and subsequently provided the solution methdus.novelties of the proposed
designs have been confirmed and their performance have béérd/by simulation with
the illustration of numerical examples.

In the first design, we aim at maximizing the total sum rates @nventional OFDMA-
based multicast network while ensuring a flexible and effectontrol of the spectrum
shares among individual multicast groups. Three novelrmelsewhich are shown to offer
high system throughput with significantly reduced compaoiteti complexity, have been de-
vised. The first two solutions are based on separate optilmizaf subcarriers and power,
while the last one is obtained with a modified genetic alganit In the separate opti-

mization schemes, the subcarrier allocation ensures ramimumbers of subcarriers to be
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assigned to individual groups according to their respeativannel gains and group sizes,
while power is distributed in a water-filling fashion. Withe scheme based on the modi-
fied genetic algorithm, the jointly optimal subcarrier-govallocation is iteratively evolved
through a global search while satisfying the imposed badtihwtonstraints among differ-
ent multicast groups. The proposed approaches, whose egitypis totally affordable,
are particularly relevant for cost-effective and delagsséive wireless applications which
require the resource allocation to be completed within atghme due to the dynamics of
wireless channels.

In the second design, we consider the aspect of primary wseity or subchannel
availability in optimally managing the resources of an OFBidased cognitive radio mul-
ticast network. For this purpose, a risk-return model ispned and a general rate loss
function, which gives the rate loss whenever primary useosacupy the temporarily avail-
able subchannels, is defined. Taking the maximization ofettpeected sum rate of sec-
ondary multicast groups as the design objective, a prdigtioptimal subcarrier and power
allocation scheme is proposed under constraints on theabdéeinterference thresholds at
individual primary user’s frequency bands and also on theadyics of primary users in
the accessible radio spectrum. Specifically, the origihallenging non-convex optimiza-
tion problem is solved effectively via a dual optimizatiaarhework, and as the number
of subcarriers becomes realistically large, the duality gatween primal and dual opti-
mal solutions turns out to be negligible. Even more attvatyj complexity of the derived
scheme grows only linearly in the number of subcarriersiesgnting a huge reduction in
computational burden. Accordingly, it can be claimed thatproposed solution is capable
of achieving the global optimality with a fast computatibitiene in practical systems in

which a large number of OFDM subcarriers is normally depibye

5.2 Future Work

Throughout this work, we have assumed that various parasstieh as the number of
users in individual multicast groups, the channel gainstaednterference thresholds are
fixed. In practical systems, however, the number of activeraumay be highly dynamic
due to users leaving and joining the systems. Further, mikegiuality and the interference
levels may vary quickly, especially in environments inamlva high degree of mobility.

Under those circumstances, the solutions, once computatiddixed scenarios, may no
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longer be valid. A more appropriate and practical approacthdcinvolve the application of
stochastic optimization in analyzing such cases [55, 56].

Moreover, it is note-worthy that the power control and subenassignment schemes
presented in this work are centralized, where the basestittates and assigns subcarrier
as well as transmitted power levels to its users based omdtamce, their channel qualities.
The resource allocation can also be accomplished in alaigdd manner, in which users
compete for the subchannels and update their powers autwslynindependent of the
base station, based on the perceived service quality. mdiatributed settings, the wireless
users can be realized as selfish agents or players who tryaniza their utilities (for
example, the corresponding throughput). Hence, gameytteid be a more powerful

tool to study such scenarios [57, 58].
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Appendix A

ldeal Structure of an OFDM System
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Figure A.1: Structure of an OFDM system. Taken from [1, p]387

Block diagram of an ideal OFDM transceiver is depicted in RdL. On the transmitter
side, the input bit stream is first modulated by a Quadraturplude Modulator (QAM)

to create a symbol streab of V complex symbols. A serial-to-parallel converter is used
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to split this stream of symbols inty parallel QAM symbolsX|[0], X[1],...,X[N — 1] to
be transmitted over each of tié sub-carriers. These frequency components are converted

into time samples by an Inverse-FFT (IFFT), yielding an OFBWwhbol which consists of

N elements:
1 N-1 i/
zn] = — Yy X[V 0<n<N-1. (A1)
UF >
More generally, the lengti¥ vectorX can be written as
X = [X[0,X[1],...,X[(Nact — 1)/2],0,0,...
0,0, X[(Nact —1)/2+1],...,X[Nact — 1]], (A.2)

which represents one OFDM symbol, where the number of astiecarriers conveying
information isN,. (that is, there arév,.; QAM symbols), while the other carriers are set
to zero to avoid spectral overlapping. This can also be thbofjas a form of up-sampling,
as the rate at the output of the IFFT will be increased. Théapeefix is then added as a
guard interval to the OFDM symbol. The role of cyclic prefixdseliminate inter-symbol
interference between data blocks as it ensures the chanipeltas a circular convolution.
The parallel-to-serial converter is employed to reordettitme samples before passing them
through a digital-to-analog (D/A) converter to obtain tleeséband OFDM signal(t). This
signal is then upconverted to frequengyand sent to the channel.

The transmitted signal is filtered by channel impulse resppnorrupted by noise and
the signals(¢) is received at the receiver front end. Here, the receivaubsig first down-
converted to baseband before being passed through a I@fifi@sto remove all the high-
frequency components. The resulting continuous-timeasig(t) is then converted to a
digital signal by an analog-to-digital (A/D) converter. & hyclic prefix of this digital sig-
nal is removed, and the remaining serial time samples aredbeverted intaV parallel
symbolsz[0], £[1], ..., Z[N — 1]. An FFT, whose outputX[0], X[1],...,X[N — 1] will
be parallel-to-serial converted, is used to obtain scadegiens of the original symbols. Fi-
nally, the symbol strearX is demodulated by a QAM demodulator to recover the original
data. Inthe case when up-sampling is considered, to aveutrsppoverlap, the output of the
N-point FFT, will conveyN,.; sub-carriers of data, while the other carriers will be eqoal
zero plus the additive channel noise. The samples contpadditive channel noise can be
removed before parallel-to-serial conversion. This of@nas a form of down-sampling,

as it is the inverse of the up-sampling process (by zero pgjldit the transmitter.
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Appendix B

Capacity of Multicarrier Multicast
Systems

Consider a conventional multicast transmission from BS ¢poaip of K active users
over M OFDM subcarriers Upon definingX,im) (m=1,--- ,M; k=1,--- | K) the
random variable representing the signal-to-noise ratiRBof userk on subcarrierm
and denotingX((f)"b) = min{X}m),Xz(m),--- ,X}é”)} the group equivalent SNR on that
same subcarrier, the multicast transmission rate at whg&h&smits to all thé users on

subcarriern can be written as
R = log, (1 n X&”) . (B.1)

The system multicast capacity over &l subcarriers is then

M
Cuc =Y K- Rije. (B.2)

m=1

The ergodic capacity for multicast service now becomes

M
e{Cuct = D &{K tog, (14+x() }, (B.3)
m=1
For Rayleigh fading channels, we have the following result.

Proposition B.0.1 Assume thatX,im),k: = 1,---, K are i.i.d exponential random vari-
ables with parameteB", the ergodic capacity defined in (B.3) only depends36r in
the limit asK — oco. If we further assume that® = 3 = ... = (M) the ergodic

capacity increases linearly with/ in the limit asK — oo.

1A version of this appendix has been presented in [21].
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Proof B.0.1 The proof is based on [59]. From the pdf & ™ which is

f@) = oo 7 (B.4)

the pdf ofX ((f;) can be derived via order statistics as

_ Kz

K
f(l)(x) = We p(m) . (BS)

The ergodic capacity multi-carrier multicast system carekpressed as
. (m)
> i}
(m)
5{K-10g2 (1+x) }

K / logy (14 ) f)(z)dx
0

E{Cnuc} = €&

—N—

Il
M=

m=1

I
M=

3
[N

K2 00 _ _Kz_
— / logy (1+x)e ™ dx (B.6)
0

1
M=

(m)

3
Il

Applying the result in [59] and by the change of variable= t — % (B.6) simplifies to

M o —u

= . (m) _c

E{Cmc} log, e m;ﬁ /0 - m?udu. (B.7)
AsK — oo, (B.7) becomes
M

Jim E{Cuc} = logze-y B (B.8)

If we further assume that(™) = 3, ¥m, then (B.8) evaluates to
Klim E{Cyc} = logye- M - B. (B.9)

This completes the proof.

For Ricean fading channels, analyzing the ergodic multicapacity is challenging
since the Ricean distribution involves the modified Bessetfion. Instead, we claim that
a similar result applies for the case of Ricean fading anidyitrwith simulation results in
the following.

Assuming that the average SNR is normalized. td-igs. B.1 and B.2 demonstrate

the dependence of multicast ergodic capacity on the grazes sind on the number of
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subcarriers, respectively. As the group siZeincreases, the capacity becomes saturated
and independent ok for multicast systems employinty/ = 10 subcarriers. However, the
capacity of a multicast system withi = 100 users employing conventional transmission

increases linearly with the number of subcarriers.
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Appendix C

Multi-level Water-filling for
Non-convex Multicarrier Resource
Allocation

In this appendix, we shall establish that although it is iiidsgo directly derive an op-
timal solution for the design problem (4.10)—(4.13) in thiénal domain, the complexity
of such approach is actually exponential in the number of MFDbcarriers. For simplic-
ity, let us consider the case of = 1 primary user and zero rate-log§P, ;) = 0. The

optimization problem can now be reduced to

wy|My|
max ————1ogy (1 + v¢.x Py i (C.1)
ps 23 R e n
G K
¥ 1
s.t. Zngvk < It(h)’ (CZ)
g=1k=1
PgJQZO;g:l,"',G,kT:l,"',K, (CS)
PyiPy 1 =0;Y9 #g. (C.4)

Let S, denote the set of subcarriers allocated to tone grouor any fixed channel as-
signmentS,, problem (C.1)—(C.4) is convex and thus its optimal soluttan be determined

from the KKT conditions as follows.

M, 1"
Py = (M - —> : (€-5)
, KIilog2 Yg.k
(1), G I
B Ith + 2921 Zke{SQ:Pg,k>0} ﬁ (C 6)
n = G ngVIgHSg‘ .
Zgzl T Klog2

Clearly, this is a form of multi-level waterfilling whereihé¢ number of used OFDM sub-

channels needs to be optimized until all powers are podi®¢ As finding optimal sub-
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channel assignment amonggroups of secondary users requit@® searches, the overall
optimization require€) (K G*) operations which is exponentially complex.

Also notice that the analytical solution in the above ddidrais possible due to the
many simplified assumptions. In the presence of a posititeelogs function and multiple
primary users, the optimal search in the primal domain wdnddar more complicated.
This emphasizes the need of having more suitable appro&xkégiently solve the design
problem (4.10)—(4.13).
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