L b

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

A

BRI L ETAL AR LR Ll e i) L TE RS R Y

University of Alberta

DESIGN AND IMPLEMENTATION OF AN OBIECT DATABASE FOR INIURY
SURVEILLANCE

Adriana Manas
©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton. Alberta
Fall 1997

ivl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque nationale
du Canada

Acquisitions et)
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4
Canada

Your file Votre référence

Qur file Notre référence

The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

[

Canadia

0-612-22632-8

University of Alberta

Library Release Form

Name of Author: Adriana Manas

Title of Thesis: Design and Implementation of an Object Database for Injury
Surveillance

Degree: Master of Science

Year this Degree Granted: 1997

Permission is hereby grante to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private. scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis. and except as hereinbefore provided. neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Adriana
11144 28 Avenue Apt.303
Edmonton. Alberta.
Canada T6J 4)\I2

atd

Date: }QISU ne /..(.CH‘-F

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Design and Implemen-
tation of an Object Database for Injury Surveillance submitted by Adriana
Maiias in partial fulfillment of the requirements for the degree of Master of Science.

..............

Prof. Ling Liu (Examiner)

To my husband. Alberto
who helps me achieve all my dreams.

REIcE LR A LR T

Abstract

Injury is one of the most under-recognized public health problems. Reduction of in-
jury is more likely to occur if data are available on causative factors. circumstances
and populations at risk. This requires timely collection of data. their organization
to enable cross-referencing and access. and the dissemination of these data in a wayv
that is useful to health providers and researchers. The Dynamic Injury Data Project
(DIDP) addresses these issues as a collaborative effort between the Department of
Public Health (Faculty of Medicine and Oral Health). the Department of Computing
Science (Faculty of Science) and the Faculty of Business. The ohjective of the project
is to develop a system that will capture and link real-time data from emergency
medical services. hospital. police. fire. utilities and administrative sources to facili-
tate studies in trauma outcomes research. medical quality improvement and injury
prevention strategies.

There are essentially two components to the system being developed. The Data
Collection component utilizes pen-based hand-held computers to be emploved by the
emergency medical services and hospital personnel to capture the most important
patient-related information encompassing all pre-hospital. hospital and rehabilitative
care. The Database Server component of the system stores the collected data and
allows sophisticated analysis of the data. This thesis deals with the analysis. design
and implementation of an object oriented database server for the DIDP. The server
provides persistent storage of the data. ensure its integrity. and provide a mechanism

for the applications to interact with the data.

Acknowledgements

First. [thank my husband. Alberto. for all his love. patience and understanding. |
also thank my family in Argentina for all their support and encouragement. Specially
[want to thank my mom, my dad. Maria Eugenia and Lito for the thousands of
e-mails that made me feel so close to them. Thanks also to Cecilia. who is not onlyv
my sister but my best friend.

I also want to take this opportunity to thank my supervisor, Dr. Tamer Ozsu.
for his guidance and funding. and Dr. Louis Hugo Francescutti for his insight in
injury surveillance and his continuous enthusiasm and support during the course of
my thesis. Thanks also go to Dr. Duane Szafron for his advice in object oriented
concepts. | am also grateful to Dr. Ling Liu for taking the time to read and comment
on this thesis. and to Dr. Jeff Pelletier who chaired my thesis defense.

Help from my colleagues in the Dvnamic Injury Data Project. Trevor Strome and
Linda Nykolyn. and from the members of the Database Research Group. is appreci-
ated. [also would like to thank Sundari Voruganti for all her support. company and
friendship. I also acknowledge support from the Department of Computing Science

in the form of a teaching assistantship and the M.Sc. Research Award.

CER MPPEEA @ T TR e - g 0

Contents

1 Introduction 1
1.1 The Dvnamic Injury Data Project 1

1.2 Motivation e e 2
1.3 Scopeofthe Thesis 3

1.4 Thesis Organization 4

2 Background 6
2.1 Medical Informaticso 6
2.2 Public Health Surveillance Systems 6
2.2.1 Utilization of Surveillance Data T

2.2.2 Planning a Surveillance System S

2.2.3 Sources of SurveillanceData 9

2.3 Injury Surveillance Svstems 11
231 TheFacts 12

232 Related Worko 12

233 The Challenge. 14

2.4 Object-Oriented Database Systems 15
2.4.1 DMandatory Features 16

242 Optional Features 21

243 Open Choices e 22

2.5 Summary ... o e e e e e e 23

3 The Booch Methodology 24
3.1 TheNotation 24

3.1.1 Class Diagrams 25

-rye

41}

3.1.2 Object Diagrams 24
3.1.3 Interaction Diagrams 30
3.1.4 State Transition Diagrams 31
3.1.5 Module Diagrams oL 31
3.1.6 Process Diagrams 31
3.2 The Methodology L. 31
3.2.1 Requirements Analvsis 32
3.22 Domain Analysis L 32
3.23 System Design oL 36
3.3 Summary e e e e e 10
Requirements Analysis 41
4.1 Pauent'sFlowo 42
4.2 System Architectire 44
4.2.1 Data Processing Architecture 45
4.3 Database Requirements. 17
4.3.1 The Datah. se Server Charter 48
4.4 Sunumnary ... L L e e 14
The Design 50
5.1 Design Tool - Rational Rose 50
5.2 TheModel 51
5.2.1 General Classes 51
5.2.2 Patient Identification and Health Information 55
323 Visits Information L0000 57
3.2.4 Medications. Antibioticsand I\Vs L. 39
5.2.5 Diagnostic Images and Lab Exams 61
5.2.6 Invasive Therapy. Instrumentation and Filuids 61
5.2.7 Incidents and Personnel 64
5.2.8 Other Assessments 67
5.2.9 Gastrointestinal Assessment 69

Ut
(V]
—
o
9]
0}
jau’
=t
—
Ll
"/,
o
-
<
o]
=1
73
w

<
%)
P
3
s
7
17
1]
73}
2
L]
jo]
ot
(=2}
€O

SR P T e

5.2.11 Respiratory Assessment

5.2.12 Vital Signs Assessment
5.2.13 OR Anaesthesia and Procedures
5.2.14 EMS Specific Information

5.3 Summary e e e

6 Implementation Issues

6.1 Overview.
6.2 Database Roots and Extents
6.3 Basic and Extended Types
6.4 The Class Interfaces
6.4.1 Object Creation and Validation
6.4.2 Object Deletion
6.4.3 Attribute Retrieval and Modification
6.4.4 Classes with Extent
6.4.5 Relationships oL
6.4.6 Printing Methods oL
6.5 Otherlssues
6.5.1 The \isits Hierarchy Problem
6.5.2 Static Functionsin C++
6.5.3 Cascade Deletion
6.6 Summary

7 Conclusions and Future Work

A Class Specifications

93

104

List of Figures

3.1 Class Category i e
32 Class o o e
3.3 Association Relationship L.
3.4 UsesRelationship
3.5 Has Relationship
3.6 Inherits Relationship
3.7 Abstract Adornment Lo
3.8 Class Cardinality
3.9 Relationship Cardinality
3.10 Object L L L
300 Link oo
302 Message
1.1 Patitent's Flow
1.2 Svstem Architecture L
1.3 Data Processing Architecture
5.1 DIDP Main Diagram
52 General Classes
5.3 Patient Identification and Health Information
54 Visits Information.o oL
5.5 Medications. Antibioticsand IVs
5.6 Diagnostic Images and Lab Exams
5.7 Invasive Therapy. Instrumentation and Fluids
5.8 Incidents and Personnel
5.9 A possible solution for the critical incident problem

10
A1

(1) Wt

[el)
b
o

.13
.14
15
.16
A7

Qv v v O

W

-~

6.1
6.2
6.3
6.4
6.5
6.6

Other Assessments v o v v v v v v vt
Gastrointestinal Assessment
Central Nervous System Assessment
First approach in the design of spinal precautions
Respiratory Assessment
Vital Signs Assessment oL
OR Anaesthesia and Procedures

EMS Specific Informationo 000

Sample application program
didplnit(): how the database root is created
A method for retrieving the extentof aclass
An insert() method for the class Color
A valins() method for the class Color

The visits hierarchy oo 0L

. e -

Chapter 1

Introduction

Injury is one of the most under-recognized public health problems in the world today
[Fra97]. Three and a half million people die. and seventy eight million are disabled
every vear as a result of injuries. Injury is the fifth leading cause of death for all age
groups. and the leading cause for individuals under forty four years of age in Canada
and the United States. More children over the age of one die from injuries than from
cancer. heart disease. respiratory disorders. diabetes or Acquired Immune Deficiency
Svndrome { AIDS .

Most injuries are not only predictable but preventable [FSHI91i. Reduction of
injury is more likelv to occur if the causative factors. circumstances and populations
at risk are known. These data can be used in planning. developing and implementing

intervention strategies.

1.1 The Dynamic Injury Data Project

The Dynamic Injury Data Project (DIDP) is a collaborative effort between the De-
partment of Public Health (Faculty of Medicine and Oral Health). the Department
of Computing Science (Faculty of Science) and the Faculty of Business. The goal
of the project is to develop a system that will capture and link real-time data from
emergency medical services. hospital. police. fire. utilities and administrative sources
to facilitate studies in trauma outcomes research. medical quality improvement and
injury prevention strategies.

When fully implemented. the system will permit sophisticated analysis of injury

trends focusing on the groups of people who are injured. the causes and circumstances.

and the geographical locations of the incidents. The health community will have ac-
cess to a multitude of data previously impossible or extremely difficult to integrate
into analysis of injury occurrence and causes. The treatment data of the injuries will
provide information regarding clinical practice guidelines by unveiling which treat-
ments and procedures result in the best outcomes (e.g. shorter stay in hospital, less
time off work). This information can then be used for medical quality improvement
initiatives. Furthermore. diagnostic imaging and surgical interventions information.
coupled with computer reconstruction and simulation techniques. can contribute to
studies of the biomechanics of injuries. This potential for analysis will help researchers
in synthesizing many more tvpes and sources of data into a larger picture of the causes
of injury and more insight into effective injury prevention interventions. Furthermore.
electronic collection of data could allow sophisticated analysis by means of data min-
ing techniques that would reveal unpredictable patterns and previously unrecorded
associations.

There are essentially two components to the system heing developed. The data
collection component utilizes pen-based hand-held computers to be emploved hy the
emergency medical services and the hospital personnel to capture the most important
patient-related information encompassing all pre-hospital. hospital and rehabilitative
care. The database server component of the system stores the collected data and
allows sophisticated analysis of the data.

This thesis deals with the analysis of the system requirements and the design and

implementation of the server component of the system.

1.2 Motivation

Most injury surveillance systems today rely on the analvsis of routinelv collected
mortality and hospitalization data. Such svstems have a number of deficiencies. First.
these data are collected for administrative purposes only and do not contain detailed
data needed for injury surveillance. For example. the circumstances in which certain
injuries occur are very important in order to develop injury prevention strategies
but are not relevant for administrative purposes and thus most of the time are not

collected. Second. it is difficult for the research community to access such data.

A as—

AREFIRTAS AT VAT Y

Usually the data are only stored in paper form which makes it difficult and time
consuming to analyze. In the few cases in which the data are stored electronically.
those systems reside in a central office where the bureaucracy needed to access it is
such that the data become outdated by the time the researchers get it. if they get it
at all.

Despite the numerous recommendations by a variety of stake-holders. little progress
has been made in the development of efficient injury surveillance systems [FSH91].
There is a demonstrated need in public health today for the development of such new.
accurate. timely and accessible systems [GRT+94].

The DIDP system will meet the criteria for evaluation of surveillance systems
proposed by the Center for Disease Control and Prevention in the United States

[Eval83}:

e Simplicity. The d¢sign should be simple and the resulting svstem should be

easy to use.

e Flexibility. The sy *em should accommodate changes in information needs

and operating conditiuns.

e Acceptability. The system should have the features that will encourage indi-

viduals and organizations to use the svstem on a regular basis.

e Timeliness. The svstem should provide up-to-date information at any time.

The DIDP system will collect data from the scene of the injury all the way through
the time of the patient discharge and integration into the society. These data will not
only consist of regular formatted data but also of multimedia data as well. Multimedia
refers to the integration of structurally formatted data. textual descriptions. images.

audio and video.

1.3 Scope of the Thesis

This thesis deals with the analysis. design and implementation of an object-oriented

database server for the Dvnamic Injury Data Project. The server will provide per-

sistent storage of the data. ensure its integrity. and provide a mechanism for the

applications to interact with the data. The major contributions of this thesis are:

e The analysis of the requirements necessary to develop the DIDP database server
meeting the criteria mentioned earlier and the definition of the required data

sets for injury surveillance.

o The definition of the system and data processing architectures for the DIDP
system. These are initial architectures that could be easily adapted in the

future if needed.

o The design of a detailed object-oriented model for the DIDP database. The
model is general enough to be implemented in any object-oriented database
system. The object-oriented approach was chosen because of its superior capa-

bility to represent multimedia data.

o The design of the database server mechanisms to ensure the consistency and

encapsulation of the data.

o The implementation of the database server in the form of a class library to

enable access of application programs and end users to the data.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 gives the background necessary to un-
derstand the rest of this thesis. Concepts in medical informatics. public health and
injury surveillance systems. and object-oriented databases are explained. Chapter
3 gives an overview of the Booch Methodology. which is the software development
methodology used by the DIDP project to develop the database server. Chapter 4
describes the requirements analysis. The flow of a patient through the real system.
and the system and data processing architectures are described. The database server
scope and responsibilities are also specified in this chapter. The design of a precise
object-oriented model for the DIDP database is presented in Chapter 5. Implemen-
tation details of the server are addressed in Chapter 6. A detailed description of the

class interfaces is provided. Some problems that arose during the project due to the

W WG IR TR e e

AREEL RS Ml A d bR i ATt

implementation tools used. as well as their solutions are also discussed. (unclusions

and future work are presented in Chapter 7.

e e

Chapter 2

Background

2.1 Medical Informatics

Medical informatics refers to the application of information technology to enhance
the quality of health care. Drs. Greenes and Shortliffe formally define Medical Infor-
matics as ~... the field that concerns itself with the cognitive. information processing.
and communication tasks of medical practice. education and research. including the
information science and the technology to support these tasks.” [GS90]. They point
out that although medical informatics is an intrinsically interdisciplinary field with
a highlyv applied focus. it also addresses a number of fundamental research problems
and planning and policy issues.

Medical informatics relies on computers to provide improved patient care. With
new medical informatics applications and improved communication technology. health
care providers will be able to access their hospital-based data and move across net-
works to other departments. institutions and data sources. They will be able to access
information when. where and how theyv need it. As Ball and Douglas state ~health
care informatics is not a wildly futuristic vision. It is an evolving discipline now. In
the 1990s. health care will realize the promise of [medical] informatics in education.

research. administration and patient care.” [BD90].

2.2 Public Health Surveillance Systems

Public health surveillance is *... the ongoing systematic collection. analysis and in-

terpretation of outcome-specific data for use in the planning. implementation and

6

B m——

Ldbia bt SRR Lt S andas Rk SRR

evaluation of public health practice.” [TC94]. A surveillance systcm has the capacity
for data collection. analysis and timely dissemination of the analvzed information to

persons responsible for the development of prevention and control programs.

2.2.1 Utilization of Surveillance Data

Public health surveillance data are used to assess the public health needs of the com-
munity. to evaluate existing programs. and to conduct research. The data show what
the problems are. who is affected and where prevention activities should be directed.
These data can also be used to evaluate the effectiveness of existing prevention pro-
grams. and to help researchers in identifving areas of interest for further investigation.
The most important questions the data should be able to answer are who. where and

when. According to Thacker [TC94] the uses of surveillance data include:

¢ Quantitative estimates of the magnitude of a health problem.

e Portrayal of the natural history of a health problem.
Surveillance data can show how the health problem evolved indicating the dif-

ferent rates and populations affected.

e Detection of epidemics.
Epidemics are not detected by analysis of routinely collected data but are identi-
fied through the alertness of the health providers. The existence of a surveillance
svstem permits the conveyance of the information to give a prompt response to

the problem.

¢ Documentation of the distribution and spread of a health event.
The geographic patterns of a health event can help in tryving to identify the

causative factors.

¢ Facilitating epidemiologic and laboratory research.
The identification of the populations at risk can lead to further epidemiologic
and laboratory research. sometimes using the individuals identified as subjects

in those studies.

e Testing of hypothesis.
Surveillance data could be used to determine whether or not a particular action

(e.g. a national vaccine program) vield the expected results.

e Evaluation of control and prevention measures.

With routinely collected data, health officials can examine the effect of health

policies.

e Monitoring of changes in infectious agents.
The ability to monitor the changes of infectious agents permits health officials
to facilitate prevention activities including notifving clinicians about proper

treatment procedures.

¢ Monitoring of isolation activities.
When suspicion arises of a possible spread of a serious disease. quarantines can
be imposed. The people on quarantine would be monitored for a certain amount

of time to ensure that the spread of the disease would not occur.

e Detection of changes in health practice.
The detection of changes in health practice can lead to further investigation
to learn the cause of the change and to study the impact of the change in the

outcomes and costs assoctated with health care.

¢ Planning.
With knowledge about the changes in the population structure and the con-
ditions that affect them. health officials can plan to optimize the available re-

sources for health care.

2.2.2 Planning a Surveillance System

The first step towards establishing a surveillance system is to have a clear under-
standing of what is expected from the system. A public health surveillance system
may be established to meet a variety of objectives including assessment of the health
status. establishment of public health priorities, evaluation of programs. and conduct

of research.

gy A L TR b

SR N 2

Surveillance systems monitor the occurrence and outcomes of health events such
as injury and disease. Theyv monitor the frequency of the illness or injury. usually
measured in terms of number of cases. incidence or prevalence: the severity of the
condition. measured in case-fatality ratios. mortality, hospitalization and disability
rates; and the impact of the condition, measured in terms of cost. Surveillance systems
can also be utilized to monitor risk factors associated with certain illnesses or injuries
and are used to monitor treatments that are the direct result of certain health events.

There are many health events that could potentially be tracked using a surveillance
svstem. However. it is impossible to develop a surveillance system for every possible
health problem. Ideally. resources will be allocated to the development of surveillance
syvstems to monitor ~high priority”™ health events. Although not an exact science. there
are several indicators that are useful for identifying high priority health events such as
frequency. severity. costs (direct and indirect), preventability, communicability. and
public interest.

Once the purpose and need of a surveillance system has been identified. methods
for obtaining. analvzing. disseminating and using the information should bhe deter-

mined and implemented.

2.2.3 Sources of Surveillance Data

This section describes the characteristics of five types of health information sources
in which data is collected routinely and is generally available for analvsis. As more
information sources become available. effective surveillance for a specific health event
will rely on the analysis and synthesis of information from a variety of sources. each

of which have different strengths and limitations.

Notifiable Disease Reporting

Reporting on notifiable diseases at the national level started in many countries over
one hundred years ago. The list of diseases for which notification is recommended
has changed over time. and although there is overlap. the list varies from country to
country and from region to region.

The results of the reports are collated and published nationally. but its primary

purpose is to direct local prevention and control programs. The problem with this

B R et P S e ol od R At

reporting mechanism is that. although many diseases or conditions are considered
notifiable. compliance is poor in many countries and sanctions are rarely enforced.
In spite of its limitations. surveillance systems based on reporting of notifiable
conditions are a mainstay of public health surveillance. Unlike other sources of rou-
tinely collected data, information from notifiable conditions is available quickly and
from all regions. In the future, reporting of notifiable conditions will be based on
computerized databases developed for billing or other purposes. However. the util-
ity of these svstems is limited at present as they do not usually used the standard

International Classification of Disease (ICD} codes.

Vital Statistics

Data collected at the time of birth and at the time of death is one of the cornerstones
of surveillance. Vital statistics are an important source of information as it is the only
health-related data available in many countries in a standard format. More than SO
countries report vital events to the World Health Organization coded and tabulated
according to the International Classification of Diseases (ICD).

The usefulness of vital statistics for surveillance of a particular health event de-
pends on the characteristics of the event and the procedures used to analvze the
data. Although birth and death certificates are issued shortly after the event. results
of processing the data and producing a final report at a national level can take several
vears [TCY4].

In spite of the limitations. vital statistics are an important source of information
for surveillance at the local. national and international level. Although differences in
rates do not always reflect differences in disease and injury. routine analyvsis of the

birth/death information can highlight areas where further investigation is necessary.

Registries

Registries differ from other data sources for surveillance in that information from
multiple sources are linked together for each individual over time. These sources
include hospital discharge reports. treatment records, pathology reports and death
certificates. Information from registries have been widely used for research purposes.

but in many cases theyv have also been used for surveillance and related activities.

10

s PR, R TIATWLRRAEETRTE RS . r T

The most successful registries are those that have realistic purposes and where
the collected data are accurate and limited to essential information. Even when data
collection appears to be straight-forward. the time and resources required to develop

a registry are often underestimated.

Surveys

Surveys can provide useful information in assessing prevalence of health conditions
and potential risk factors. and for monitoring the changes in prevalence over time.
They are also used to assess knowledge. attitudes and health practices in relation
to certain conditions. The people surveved are usually queried once and are not
monitored individually after that. Surveys can be conducted through questionnaires
and personal or telephone interviews. The survey sample has to be representative of

the source population to provide representative results.

Administrative Data Collection Systems

Administrative information that is routinely collected about episodes of care (e.q.
hospitalizations. visits to emergency rooms and health care providers. etc.) can also
be used for surveillance purposes. In most cases these data are computerized for
billing purposes only. but since they include diagnosis information. theyv can also
be used for surveillance. Data that include personal identifiers is important so that
statistics can be calculated on the basis of persons rather than on episodes of care.
Special precautions are needed to ensure the confidentiality of the individuals whose
identifiers are stored in the computerized data. Although most administrative data
are available only for certain types of health care (e.g. hospitalizations). analysis of

administrative data is useful for public health surveillance and program planning.

2.3 Injury Surveillance Systems

Surveillance systems for infectious diseases have existed for decades. Although injuries
have long been identified as a2 major public health problem. surveillance systems that
monitor and control injuries are only in their infancy [TC94].

An injury is “any specific and identifiable bodily impairment or damage resulting

11

from acute exposure to thermal. mechanical. electrical. or chemical energy. or from
the ahsence of essentials such as heat or oxygen.” [Fra97]. Many people and many
physicians regard injuries as accidents [FSH91]. Injuries are nor accidents: accidents

are random events while injuries are predictable and preventable [FSH91].

2.3.1 The Facts

Accurate and timely information is the cornerstone of effective injury prevention
and control. Yet. up to 97 percent of all injuries that require medical attention are
never recorded in any comprehensive data set for use in injury surveillance [WFP96].
Garrison et al [GRT+94] claims that the failure to record these potential surveillance
data impedes assessment of a community's health care needs.

Mortality data has been extensively used to design injury prevention programs.
but deaths are just a small part of the problem. It has been estimated that for every
injury death. there are as many as 330 visits to the hospital emergency departments
[RBB92]. Other studies show that injury deaths account for less that 0.2 percent of
all injured patients [WFPP95] and sometimes even less than 0.1 percent [RRTB92..

Hospital discharge data has also been used for injury surveillance. but the lack of
information about external cause of injury limits its usefulness for prevention planning
[RBBY2|. Furthermore. the information provided by these discharge reports only
account for less that 2.5 percent of the injured population each vear [WFPP93].

Data for emergency departments have been used in several major studies [RBB92;.
But. unlike hospital discharges. there is no standardized reporting svstem and the
tvpe of data obtainable from emergency departments is not well documented. Fur-
thermore. this information is not usually stored at the emergency department and is
only retrievable searching through the hospital paper records. which can be a cum-

bersome procedure.

2.3.2 Related Work

To solve the lack of information on causal factors of injuries. Ribbeck et al [RRTB92
proposed a method to assign external cause of injury codes (E-codes. a subset of the
International Classification of Disease. 9th revision codes) to all injury patients seen in

a large volume emergency department. An E-code assignment sheet was designed for

12

use by the triage nurse of the emergency department. This sheet contained a checklist
with the frequently occurring codes of injury. The registered nurse at the triage
desk recorded the cause of injury as the patient first encounter as well as the chief
complaint. vital signs and treatment priority. This study demonstrated the feasibility
of collecting data on causal factors of injuries in large emergency departments without
much difficulty.

Because 80 to 90 percent of all injured persons that seek medical attention are
cared for at emergency departments [WFPP93], most efforts have focused on de-
veloping injury surveillance systems based on data generated by these departments.
Garrison et al [GRT+94] identify emergency department surveillance as a way of doc-
umenting illness and injury patterns and for responding to health care challenges in
the community. In their work they examine the overall concept of emergency depart-
ment surveillance and related issues. and propose a national strategy for implementing
this tvpe of surveillance.

Runyvan et at [RBB92] have conducted a study to determine the routine record-
keeping practices in hospital emergency departments to assess the adequacy of these
information for injury surveillance and prevention planning. The study demonstrates
that the type of data collected in different emergency departments vary considerably.
[t also shows the absence of information about the external causes of injury. The au-
thors conclude that efforts to standardized the record-keeping process would enhance
any use of emergency data. They also point out that the development of methodolo-
gies to secure the necessary information has potential not only for surveillance and
research but to ease the burden of record-keeping among busy clinicians and to help
hospitals with concerns about quality of care and cost reimbursement.

Williams et al [WFPP95] develop an injury surveillance system based on the emer-
gency department log. The emergency log was modified for the collection of injury
related data such as the external cause of injury. A list of injury causes was devel-
oped on the basis of review of existing literature and pilot tests. The log data were
entered into a computerized database. and descriptive analysis was performed. The
list of injury causes was successful in 93 percent of the emergency department cases
during the pilots. The authors conclude that the expansion of emergency department

logs for collection of injury data require minimal training and costs and provide an

13

excellent source for injury surveillance.

Williams et al [WFP96] extend their work by proposing a more complete emer-
gency based injury surveillance system. The idea was to link the emergency depart-
ment logs with the existing computerized hospital records. They created a system
to merge the files by the hospital identification number and the date of service as
their key merge variables. Although some problems were encountered, more than 97
percent of the patients seen in the emergency department had additional data after
the merge. With this system, significantly more data can be examined to help in
injury prevention and planning.

Many efforts have also been focused on the development of trauma registries
[TC94]. Trauma is defined as ~blunt or penetrating injuries or burns™ [PM39]: this
definition excludes other types of injuries such as poisonings. asphyxiations. immer-
sion or exposures to extreme temperatures. Some professionals claim that data related
to all injuries can not be captured as most hospitals do not have sufficient resources
for this task [PM89]. They also claim that trauma registries can serve as a principal
tool for the systematic audit of patient care provided by hospitals and trauma centers

and as a potential source of part of the data needed by injury surveillance [PM89].

2.3.3 The Challenge

Development of an injury surveillance system is not an easy task. Some of the im-
portant issues that need resolution include defining the data set to be captured and
defining the injured population. Currently. there is no standard and easv accessi-
ble mechanism to obtain information on incidence. demographics. tvpe. and cause
of injury. To be effective. a surveillance system must achieve a balance between
completeness and practicality.

Although some efforts have been made to implement better injury surveillance
svstems. they have two major drawbacks. First. the data collection is onlv focused in
emergency departments. not considering other data generated in emergency medical
services or the rest of the hospital. Second. the data is collected in paper form and
subsequently entered in some type of database. This methodology duplicates the
effort (and costs) of collecting data. delays the availability of the data to be used by

the health care providers during the patient visits to the hospital. and introduces the

L el ekt e otk s A dib Attt IR L LR

possibility of errors and/or loss of data.
There is a demonstrated need in public health for the development of new. ac-
curate. timely and accessible injury surveillance systems. The DIDP challenge is to

create a system that:

e collects all the data needed for injury surveillance;
e provides the latest computer technology:
o facilitates the health providers’ job in the data collection:

makes data available at the same time in which is being collected: and

helps in administrative tasks. eliminating the need to enter the same data more

than once, and thus, preventing errors.

2.4 Object-Oriented Database Systems

Database management syst-ms (DBMS) provide many advantages over the traditional
file processing approach [E2/89]. Thev have been used for many vears in many areas
including business. engineering. medicine. law. and education. to name a few. Not
only do they provide standard services such as data abstraction. support for multiple
users. redundancy control. access control. backup and recovery. but they also provide
the ability to go beyond the simple retrieval of information to high-level access through
a powerful query mechanism.

The DIDP system. when fully implemented, will not only consist of regular for-
matted data. but of multimedia data such as image. audio and video as well. Since
the relational model. which is the currently the most popular model for a variety of
applications. has difficulties in representing the complex data present in multimedia
applications [Sch96]. an object-oriented DBMS was chosen for the DIDP project.

[n the following sections we present the main features and characteristics of object-
oriented DBMSs. These features are separated into three groups following the organi-
zation of Atkinson’s et al [ABD+89] “Object-Oriented Database System Manifesto™.

The groups are:

15

¢ Mandatory features that a svstem must comply with in order to be termed

object-oriented DBMS:

e Optional features that can be added to improve the system. but which are

not mandatory; and,

e Open choices that the designer selects from a number of options.

2.4.1 Mandatory Features

An object-oriented DBMS must have the characteristics of a DBMS and of an object-
oriented system [ABD+89]. To be a DBMS it must support persistence. secondary
storage management. concurrency. recovery and an ad hoc query facility. In order
to be an object-oriented system it must support complex objects. object identity.
encapsulation. types or classes, inheritance, overriding and late binding, extensibility

and computational completeness.

Persistence

Persistence is the ability to make the data survive past the execution of a process in
order to be reused by another process. The persistence should be orthogonal to the
type of data. that is. each object must be able to become persistent independently of
its tvpe and without any explicit translation. Also. the user should not have to move

or copy the data to make it persistent.

Secondary Storage Management

This feature prevents the user from having to write code to manage certain aspects of
the physical level of the system. Secondary storage management is a classical feature
of DBMSs that include index management. data clustering. data buflering. access
path selection and query optimization. None of these are visible to the user: they are
simply performance features. They provide a clear independence hetween the logical

and physical level of the svstem.

Concurrency

The system must accommodate multiple users accessing the system at the same time.
It should. therefore. provide a mechanism to ensure the atomicity of a sequence of

operations (i.e. transactions) and controlled sharing of data.

Recovery

The system should provide a mechanism to recover from software or hardware failures:

that is. the svstem should bring itself back to some coherent state upon recovery.

Ad Hoc Query Facility

The objective of the query facility is to allow the user to ask queries to the database
declaratively. Atkinson et al [ABD+89] define three characteristics that a query

facility should have:

e [t should be able to express in a few words or mouse clicks non-trivial queries

concisely. [t has to emphasize the what and not the hou.
e [t should be efficient. It should have some form of query optimization.

e It should be application independent. It should work on any possible database.

eliminating the need to write additional operations on user-defined tvpes.

Complex Objects

Complex objects are built by applying constructors to simpler objects [BM93]. Simple
objects are integers. real numbers. characters. variable length strings. and booleans.
The minimal set of constructors that a system must provide include sets. lists and
tuples. Sets are very important as they are a natural way of representing real world
collections. Tuple constructors provide a natural means of representing attributes in
an entity. Lists or Arrays are sets with ordering on the elements and are necessary in
some applications where matrices or time series data are needed.

Object constructors must be orthogonal. that is. they should be applicable to any
object. In the relational model constructors are not orthogonal as set constructors

can only applied to tuples and tuples can only be applied to atomic values.

I

e s r RTTRTE L

Object Identity

Every object must be identified with a single object identifier (OID). which must be
independent of the values of the object attributes. By using OIDs. objects can share
other objects, and a general object network can be built [BM93].

Because of this concept, two notions of equivalence exist: identity equality and
value equality. Two objects are identical if they are the same object (i.e. the object
identifiers are the same). Two objects are equal if the values of the attributes of both
objects are recursively equal. This means that two identical objects are equal but the

inverse is not necessary true.

Encapsulation

The idea of encapsulation comes from the necessity of clearly distinguish between
specification and implementation, and the need for modularity. Modularity is an es-
sential principle for designing and implementing complex software where a team of
programmers is involved [BM93]. It is also important for supporting object autho-
rization and protection mechanisms.

Encapsulation in programming languages derive from the concept of abstract data
tvpe where an object consists of an interface and an implementation. The inferface
is the specification of the operations that can be invoked on the object and it is the
only visible part of the object. The implementation has a data and a procedural
part. The data represent the state of the object. and the procedural part describes
the implementation of each operation in some programming language. '

Whether the structural part is part of the interface is a matter of debate in object-
oriented DBMSs. while in the programming language approach the structure is clearly
part of the implementation. Although proper encapsulation is achieved when data
are part of the implementation. there are cases where encapsulation is not needed and
the use of the system could be significantly simplified if encapsulation is violated in
special circumstances [ABD+389]. For example. with ad-hoc queries. encapsulation can
be eliminated as issues on maintainability are not important. Thus. an encapsulation
mechanism must be provided by any object-oriented DBMS. but there are some cases

where its enforcement is not appropriate.

I~

- T T——

Types or Classes

Object-oriented systems can be divided in two categories: those that support the
concept of type and those that support the concept of class.

A type summarizes the common features of a set of objects with similar charac-
teristics. This concept corresponds with the concept of abstract data type. A type
has two parts: an interface and an implementation. The interface consist in a list of
operations and their signatures, and it is the only visible part for the users of the type.
The implementation consists of the data part, which describes the internal structure
of the object’s data. and the procedures that implement the operations defined in the
interface. In programming languages. types are used to increase the programmer’s
productivity. ensuring the correctness of the programs. If the type svstem is carefully
designed. the type checking is done at compilation time: otherwise it could be deferred
until run-time. In type-based systems. types can not be modified in run-time.

A class specification is the same as that of a type. but it is more of a run-time
notion {ABD-+39j. It contains a new operator that allows the creation of new objects.
Also. a class has its extension (i.e. the set of objects that are instances of the class)
attached. The user can manipulate this extension by applying certain operations.
Classes are not created to check the correctness of a program but to create and
manipulate objects.

An object-oriented DBMS has to provide one of these two forms of data structur-
ing. However. it is not necessary for the system to automatically maintain the extent
of a type. Consider. for example. the Date type that can be used by many users in
many databases. It does not make sense to automatically maintain the set of all the
dates used in the system. On the other hand. in the case of a type such as Patient.

it might be nice for the system to maintain the patient extent.

Inheritance

The concept of inheritance is the most important concept of object oriented program-
ming {BMY3]. With this mechanism a type called a subtype can be defined on the
basis of the definition of another type called a supertype. The subtype inherits the

attributes and behavior of its supertvpe. In addition. a subtype can have its own

19

attributes and behavior which are not inherited. Inheritance provides code reuse and

maintainability.
Overriding, Overloading and Late Binding

There are cases where one wants to use the same name for different operations. One
common example is the draw operation. This operation takes an object as input and
draws it on the screen. Different types of objects are displayed differently (e.g. a
line. a circle. a rectangle). This forces the programmer to be aware of the type of the
object in order to invoke the correct draw operation. For example. if a programmer
wants to draw all the objects in a set whose type is unknown until run-time. in a

conventional svstem. he/she would have to write:

for x in X do
begin
case of type (x)
line: draw-line(x);
circle: draw-circle(x);
rectangle: draw-rectangle(x);
end

end

In an object-oriented system. the drau operation is defined at the most general
drawable type in the syvstem. and then the implementation of the operation is redefined
for each subtype according to the type necessity (this redefinition is called overriding).
This results on a single name (draw) denoting more than one program (that is called
overloading). Therefore. to draw the set of elements in the set. the programmer
applies the draw operation to each of them. and the system will pick the appropriate

implementation at run-time.
for x in X do draw(x);

Although the implementors would have to write the same amount of code. the
application programmer does not have to worry about the different programs for

drawing. Also. the code is simpler. as it does not have any case or if statements. anl

20

BTN T et

if another type is later added. the existing application programs do not need to be
modified.

In order to support this feature the system can not bind operation names to pro-
grams at compile-time. They must be resolved at run-time. This delaved translation

is called late binding.

Extensibility

Every DBMS come with a set of predefined types. These tvpes can be used by the
programmer to write their applications. Anobject-oriented DBMS must be ertensible.
that is. it should provide a mechanism to define new types and there should be no
distinction in usage between the system defined and the user defined types. However.
it is not required that the collection of type constructors (tuples. sets. lists. etc.} be

extensible.

Computational Completeness

An object-oriented DBMS is computational complete if one can express any com-
putable function using the data manipulation language of the system. The most
common way to introduce computational completeness is to provide a reasonable
connection to existing programming languages [ABD+89]. Being computational coni-
plete. ohject-oriented DBMSs are more powerful than traditional svstems which only

store and retrieve data and perform simple computations on atomic values.

2.4.2 Optional Features

This group includes those features that improve the system. but which do not have to
be included in an object-oriented DBMS. These features include multiple inheritance.

type checking. distribution. design transactions and versions.

Multiple Inheritance

With single inheritance. each subtype has exactly one supertype. With multiple
inheritance a type can have more than one supertype. Because there is no consensus
among the programming languages regarding this issue, this feature is considered

optional for object-oriented DBMSs.

Type Checking

The amount of type checking at compile time is left open. The more type checking

that can be performed. the better it is since this will prevent run-time errors.

Distribution

The distribution of the database should be orthogonal to the chject-oriented nature

of the system. An object-oriented DBMS may or may not be distributed.

Design Transactions

In many new applications. the classical transaction model is not satisfactory: trans-
actions tend to be long and the usual serializability criterion is not adequate. Many
object-oriented DBMSs provide design transactions (i.e. long and nested transac-

tions).
Versions

Versioning is a characteristic that many new applications such as CAD/CAM or
CASE need. Thus. object-oriented DBMSs could provide a versioning mechanism to

satisfv this need.

2.4.3 Open Choices

In this group we include those features where no consensus have been made by the
scientific community and where the different approaches do not make a system more

or less object-oriented.

Programming Paradigm

There is no reason to impose one programming paradigm over another. Any pro-
gramming paradigm could be chosen for the system. One solution might be to make
the system independent of the programming style and provide multiple programming
paradigms. The choice of syntax is also free and people could argue forever which

one to choose.

e - vy

PO I e el UL Sl o ot TE L T ol e

Representation System

The representation system is the set of atomic types and constructors provided by
the system. Although there is a minimal set of atomic types and constructors that
has to be provided, this representation system could be extended in many different

ways.
Uniformity

The degree of uniformity of these systems is another open issue. At the implementa-
tion level one should decide whether type information should be stored as objects or
not. This decision should be made based on the performance and ease of implemen-
tation. At the programming language level. one should decide if types are first class

entities in the semantic of the language or not.

2.5 Summary

In this chapter. many concepts that are needed to understand the rest of this thesis are
introduced. First. an overview on medical informatics and general concepts on public
health surveillance svstems are explained. Then. specific issues on injury surveillance
syvstems and related work in the area are discussed. Object-oriented DBMISs are also

presented at the end of the chapter.

Chapter 3
The Booch Methodology

Development of a complex svstem such as DIDP involves accommodation of many
and diversified requirements. Using a software development methodology provides a
standardized means of presenting and communicating the system requirements and
design decisions. The Booch Methodology [Booch93] was chosen as the analysis and
design methodology for the DIDP system.

The Booch Methodology is one of the most popular methodologies for object-
oriented analysis and design. It provides an expressive notation and a set of heuristics
needed by most businesses to produce working systems efficiently. It provides a model
that allows developers to enhance. correct and maintain the same consistent model
from the beginning of analysis through implementation. The advantage of having this
unique model is that there is no throwaway work and the analysts and implementors
can use the same specifications thus preventing misunderstandings. Changes to the
system only have to be done in this unique model instead of changing multiple models
and documents which greatly simplifies the maintenance of the system. The model
and the system evolve together providing updated documentation at any time.

This chapter describes the Booch Methodology based on some parts of the struc-
ture of White and Goldberg's “Using the Booch Method: A Rational Approach”
[WG94].

3.1 The Notation

As Booch mentions [Booch93]: “The fact that this notation is detailed does not

mean that every aspect of it must be used at all times™. He also emphasizes that the

.)1

e T ids it ana il R e LU R PRI T S

notation is not an end in itself and that one should apply only those elements of the
notation that are needed and nothing more. In this section the focus is on a subset
of the notation used in this project. For a complete description of the notation the
reader can refer to Booch's book [Booch93].

The notation consists of six different diagrams that will be introduced in the

following sections.

3.1.1 Class Diagrams

The class diagram is the core diagram in the Booch notation. It shows the existence
of classes and their relationships. Class diagrams can contain class categories. classes

or a combination of the two.

Class Category

Class categories (Figure 3.1) serve to divide the svstem into logical units. They are
formed by a group of logically related classes that have low interaction with the
classes of other categories. Class categories can also contain other class categories.
For certain diagrams it is useful to show some of the classes contained by the class
category. If we do not want to show any we can simply drop the separating line and
only show the category name. Classes in a category might need classes that belong
to another category. The using relationship icon is used to indicate such relationship
(See ~Uses Relationship™ later in this section). If the category is used by all of the

other categories we indicate it with the key word global in the category icon.

| CategoryName [AnotherCategory
2 Class A : !

* Class B | ;

. E lglobal

Figure 3.1: Class Category

Class

A class captures the common structure and behavior of a set of objects. It is an
abstraction of a real-world entity. When one of these entities exists in the real world.

it is an instance of the class and is called object. The major attributes. operations

and constraints of the class can be specified inside the class icon (Figure 3.21. If we
do not want to show any of these properties we can simply drop the separating line

and only show the class name.

-~
= N
/ ClassName ‘\’

’ attributes //
N constraints
~~_ Operations() “
\ J
\ L~
\ -

Figure 3.2: Class

Association Relationship

An association is a connection between two classes (Figure 3.3). It is the most generic

type of relationship. Associations are always bidirectional.

kN /,’\-_,/\\\
, Person \ / City
s 7/ /
4 live. (4
‘\ : live ~ .
-~ ~—
~ ‘ N
T~ ! Pt
N _ -~

Figure 3.3: Association Relationship

Uses Relationship

A use relationship between two classes denotes that a service from the target class is
being used by the source class. or that operations of the source class have signatures
whose return class or arguments are objects of the target class (Figure 3.4). The class

with the circle end of the relationship is the source and the other one is the target.

,’_,’\\\ /’“_,/\\\
? ’ - -—
{ / Person) / Age)
’ Ve / s/ /
(} 4 2
\\\ v \\
N } ~
/——‘/' H T~
-~ -

Figure 3.4: Uses Relationship

26

Has Relationship

A has relationship is used to show the whole-part relationship between two classes
(Figure 3.5). It is also known as aggregation relationship. The class with the circle
end of the has relationship is called the aggregate class. The class at the target end of
the has relationship is the part whose instances are owned or contained by the objects
of the aggregate class. The main difference with the uses relationship is that in the
has relationship the aggregate objects own their parts. This means that when an
object is deleted in the aggregate class all the objects that are owned by that object
must be deleted as well. as they are just part of that object.

-~ ~
—— e ——~ -~

y - N~ p S N~
— -
y Car N Y Wheel \
v / Ve /
14 ¢ ‘
“ - N
~ \ ~ \
N] N j
i T t T —
~- N

Figure 3.5: Has Relationship

Inheritance Relationshin

An inheritance relationship is used between two classes to show a is-a relationship
hetween them (Figure 3.6). When a class inherits from another class it means that
it shares its structure and behavior. The arrowhead points toward the base class (or
superclass). The other class is called the subclass.

P o~
_——— " ——~
-~ ;

Bear /' Mamal
/ / /

Figure 3.6: Inherits Relationship

Abstract Adornment

Abstract classes do not have instances and are used to define commonalities among
a group of classes. In order to identify an abstract class a letter “A” inside a triangle

is used (Figure 3.7}

\l -—— /Jv
W P -

\ ///
Y

Figure 3.7: Abstract Adornment

Cardinality Adornment

Cardinality can be specified for classes and for relationships. The possible cardinality

values are:
Value Description
l One instance
n Unlimited number
0..n Zero or more
l.n One or more
to..1 Zero or one
<literal> Exact number
<literal>..n Exact number or more
<literal>..<literal> | Specified range

[f cardinality is applied to a class it means that the class is only allowed to have
that number of instances (Figure 3.8). If no cardinality is specified for a class the

default value is n.

-
ST~ N

ClassName ~
7 {0..n} /

/

’

Figure 3.8: Class Cardinality

When cardinality is applied to a relationship it indicates the number of links
between the instances of the source and the target class (Figure 3.9). There is no

default value for unspecified relationship cardinalities.

WV A S s e

— s —_ .
. -7~ , - N

. Source)
(/ 0.1 n
~_ o ~
)

1 o= ! o=

Figure 3.9: Relationship Cardinality

3.1.2 Object Diagrams

Object diagrams are used to show a snapshot in time of a transitory group of events
over a certain configuration of objects. Each object diagram represents interactions
or structural relationships that may occur among a certain number of objects.
Object diagrams are used to show the different use cases or scenarios and to
understand the behavior of the system. Jacobson [Jac92] defines a use case as “a
particular form or pattern or exemplar of usage, a scenario that begins with some
user of the system initiating some transaction or sequence of interrelated events.” In
the DIDP system the action of dispatching an ambulance is an example of a use case.

The essential elements of an object diagram are objects. links and messages.

Object

Each object represents an instance of its class. The object icon is similar to the class
icon except that it has a solid line as a boundary (Figure 3.10). If multiple instances

of the same class are used the multiple objects icon can be used.

/4/7\/\\/\/
W /) /
~ ~ e

Figure 3.10: Object

Link

Objects interact with other objects through their links. A link is an instance of any
relationship that exists between two classes (e.g. has or uses relationship). It is

analogous to an object being an instance of a class. A link may exist between two

29

i e et T Ly

objects only if the classes of those objects have a relationship between them. The
existence of a link means that the objects can communicate: one can send messages
to the other. An object can also send messages to itself; that means that an object
may be linked to itself. The link is represented by a line between the objects (Figure

3.11).

Figure 3.11: Link

Message

The message icon shows the direction in which a message is sent (Figure 3.12). Mes-
sages go generally in one direction but can also be bi-directional. To show the order of
the events the messages can have a sequence number (starting at one). If no sequence

number is specified the message can be transmitted at any time relative to all other

/ Gbisct A //?bjét\ B\/

—_—

TN

Figure 3.12: Message

messages.

N

3.1.3 Interaction Diagrams

Interaction diagrams are an alternative to object diagrams. They are also used to
represent the scenarios or use cases. The relative order of the messages is easier to

follow but they do not show links or attribute values as in object diagrams.

30

3.1.4 State Transition Diagrams

Each class can have associated a state transition diagram. These diagrams show
the event-ordered behavior of the instances of that class. A state transition diagram

should only be supplied for classes that have significant event-ordered behavior.

3.1.5 Module Diagrams

Module diagrams show how classes and objects are allocated to modules in the phys-
ical model of the system (i.e. the collection of directories and files that composed the
svstem). The use of these types of diagrams depends on the implementation language
since not all languages support this concept. For example Ada supports all the mod-
ule tvpes in the Booch Methodology. C++ only supports the concept of simple files

and Smalltalk does not support the concept of module at all.

3.1.6 Process Diagrams

Process diagrams show how processes are allocated to the processors in the physical
model. These diagrams are only needed if the process structure of the svstem needs

to be represented.

3.2 The Methodology

In the past. many methodologies have used a rigid series of steps. These methodologies
require the completion of one step before continuing with the next one. The problem
with this approach is that in reality developers use an iterative process rather than
a linear one. The Booch Methodology provides an iterative process based on three
mini-steps. This means that the developers will do a little bit of analysis. a little
bit of design. a little bit of coding. cycle back and do it again. All the steps of the
methodology are completed but in a series of cycles instead of in large leaps. The

Booch Methodology consists of three steps:

e Requirements analysis
e Domain analysis

e Svstem design

31

3.2.1 Requirements Analysis

The objective of the requirements analysis is to determine what the customer wants
the system to do. In this step the key functionality and the scope of the system
domain must be defined. requirements analysis is a contract between the customer
and the developers on what the system will do. It is not, however, a fixed contract.
As the development goes on there might be changes. but the requirements analysis
will serve as a starting point and a reference on what the system is supposed to do.

U'se case analysis is a method to describe system functions. The collection of all
the use cases of a system describes the complete functionality of such system. During
this step the developers and the domain experts work together defining all the key
use cases of the system. These use cases will be used later to define the classes and
operations.

There are no formal steps for requirements analysis because this process can be
very different from one situation to another. The only keyv for a good requirements

definition is a good understanding of the problem domain and the customer needs.

Deliverables of Requirement Analysis

The methodology requires two formal products from the requirements analyvsis:

¢ System charter, which is a description of the responsibilities and the scope of

the syvstem.

¢ System function statement, which is the collection of the kev use cases of

the svstem.

3.2.2 Domain Analysis

The objective of the domain analyvsis is to define a precise object oriented model of the
part of real world that is relevant to the svstem. During this step all data and major
operations of the system are identified and added into the model. This process also
solves all the problems of vocabulary that might arise in the requirements analvsis
and any contradicting requirements that might exist. Good communication skills play

a key role for this step. The following steps are performed during domain analysis:

3

Defining classes

Defining relationships

Defining operations

Finding attributes
e Defining inheritance

Validation and iteration

Defining Classes

The goal of this step is to identify the major classes of the system. The focus must be
on identifving those classes that reveal more about the problem domain. The idea is
not to obtain all the classcs of the system but to get a starting point for the analysis.
The Booch Methodology is a highly iterative process and as we get deeper into the
analyvsis more classes will appear.

One way of discovering ey classes is to find the nouns in the problem statement.
as thev often correspond to classes. Although this is a very useful trick it is important
to maintain the focus at the logical level without payving attention to implementation
characteristics. We have to concentrate in the whats and not in the hows. It is also
important to avoid contextual information present in the problem statement that is
irrelevant to the system responsibilities. We have to be careful with the ambiguity of
the natural language as well.

Another important thing to keep in mind is the choice of meaningful names for the
classes. A good name should bring to mind the abstraction that is being represented
without any further knowledge. Names must be singular nouns (unless the class
represents a collection) or an adjective and a noun. The inability to name a class
means that something is not clear about that class or the abstraction we are tryving
to represent is not a class but something else (e.g. relationship. attribute).

During this step we also have to start building the project’s data dictionary.
A data dictionary is a central repository for the domain entities. including classes.
attributes. relationships and operations, that are found during the analysis and design.

As the key classes are discovered we add them into the data dictionary-.

33

Once all the initial classes are defined. the semantics of these classes must be
identified. This means that we have to provide a short definition for each class and

also have to note any rules or constraints that we know about the class.

Defining Relationships

Classes are not isolated entities. They relate to each other to form the structure of
the system. The goal of this step is to identify those relationships. There are two
tvpes of relationships we have to identify: association and aggregation (also known as
has relationship). For an explanation of each of these relationships see Section 3.1.1.

It is important to choose meaningful names for the relationships. The name
must provide significant semantic information. Names of relationships are usually
noun phrases that denote the nature of the relationship. They do not need to be
unique in the system, but only within their own context. The inability to name
a relationship could be a sign of incompleteness or that more than one relationship
was mistakenly gathered together. When it is difficult to define a relationship. further
analysis might show that new classes and relationships need to be added. This refining
of relationships is a very important step in the process.

Similarly. we also have to provide a short definition for each relationship capturing
any rules or constraints that we know about. We also have to define the cardinality
of the relationships. The cardinality shows whether it is mandatory that an instance
of the source contains an instance of the target. and the maximum number of tar-
get objects that the source can contain at any one time. For more information on

cardinalities see Section 3.1.1.

Defining Operations

The goal of this step is to identify the operations needed to support the svstem
functions. In order to determine which operations are needed. each class should be
examined. [t is also during this step that the use cases defined in the requirement
analysis are expanded into detailed scenarios using object diagrams. Modeling sce-
narios show how objects collaborate in the use case and identify the operations needed
in each object.

Each operation should perform one simple function. Too many inputs and outputs

34

et

AR e e e e .

should be avoided. This may indicate that the operation is doing too many things
and it should be split into two or more simpler ones. Input switches also have to be
avoided as they are often a sign of non-primitive functions. Choosing a representative
name for the operation is also important. The name should reflect the outcome of
the function. The operations must be added to the class specification including any

information about the arguments and return value.

Finding Attributes

During this step the properties of the classes will be defined. The properties that de-
scribe a class are known as attributes. An attribute is like an aggregation relationship.
where the label is the attribute name and the cardinality is exactly one.

In order to find these attributes each class must be examined. Unlike classes
and relationships. attributes are often not mentioned in the problem statement. The
knowledge about the problem domain has to be used to define them. Adjectives that
describe the object are usually good candidates for attributes. We have to keep in
mind the problem domain and do not add unnecessary attributes to the classes. The
color of the eves of a person can be an attribute of the class Person. but it might
not be pertinent to the actual problem domain.

The attributes must be added to the class specification including their tyvpes.
Any attribute that is derivable from other attributes. if specified. must be noted as

derivable.

Defining Inheritance
The goal of this step is to generalize and specialize the classes with similar domain

tvpes. [here are two ways of doing this:

¢ Identifying superclasses. When common data or behavior is found among a
group of classes we can gather that common information in one class and make

the other classes subclasses of this new superclass.

o Identifying subclasses. If a subset of attributes or operations only apply to

a subset of the instances of the class it is useful to define a subclass.

35

Validation and Iteration

To validate the model we have to check that all the classes. relationships. operations
and attributes that we have defined are sufficient to implement the svstem defined in
the system charter specified during the requirement analysis.

There are two ways of validating the model: by using object diagrams and by
checking key outputs. In both cases we have to pick one or more scenarios/key
outputs respectively and check that we have enough information in the model to
implement them.

Once the validation has been done we have to consider if we still have to iterate
all the steps in order to refine the model or if we have finished with the domain
analysis and can move to design. We can stop analysis and go to design when. after
iterating and walked through all the scenarios. we have not found any more classes.
relationships. operations or attributes. It should be remembered that this is a highly

iterative process and we can come back to the domain analyvsis at any time.
Deliverables of Domain Analysis
The deliverables of domain analysis include:

Class diagrams identifving the different classes of the svstem with their rela-

tionships.

e Class specifications for all the classes. They must include all the informa-
tion regarding each class including its relationships. superclasses. attributes and

operations.

e Object diagrams showing the use cases defined in the requirement analysis.

Object diagrams or interactions diagrams can be used.

e Data dictionary listing all the entities in the domain including classes. rela-

tionships and attributes.

3.2.3 System Design

Analysis focuses on understanding the domain: design focuses on how to implement

those requirements.

36

ST TR e m e e

An iterative approach during design is even more important than during analyvsis.
Tryving to make a complete design in one step is far too complex to obtain a good
quality system. Also using an iterative approach will allow users to see working
versions of the software earlier. The following steps are performed during the System

Design:
e Defining the initial architecture.
e Planning executable releases.
e Developing executable releases.

Defining The Initial Architecture

The internal structure or organization of a system is called architecture. When a
system has a clean. well organized architecture it is easy to understand. test. maintain.
and extend. Usually architectures are organized in layers. Each layer uses the services
of the layers below and has no knowledge of the layers above. This facilitates changing
each of these lavers at any time without affecting the rest of the syvstem (as long as
the interface between them is maintained). There are two main tasks involved in

defining the initial architecture:

¢ Choosing major service software. We have to decide which service software
will be used during implementation. This software may include an operating
system. a database manager. device interfaces. graphical user interfaces (GUlIs).
etc. This decision has to be made early in the design process as it will be a

starting point for the remainder of the design decisions.

e Defining class categories. When new classes are added for implementation
purposes. the system grows. New class categories may have to be created to
contain these classes. It is important to keep the logical and physical aspects
of the syvstem independent of each other. This will facilitate the portability of
the domain part of the syvstem across multiple platforms and will also help in
the reusability of the classes used only for implementation (e.g. the interface

library).

37

Rl

Planning Executable Releases

As with design. trying to implement the whole system in one step is far too complex
to obtain a good quality system. Instead. it is better to build the system in a series
of executable releases. An executable release is a mini-system that performs a group
of related functions and tasks.

An incremental plan to build the system using several executable releases has to
be defined. Eventually these releases will be integrated to provide a complete system.
One approach for planning executable releases is to try to reduce development risk.
This means that each release should eliminate some risk in the project. Risk areas
are those areas in the system’s design or requirements that are possibly incomplete
or incorrect. The customer may not be sure about a certain part of the system and
will need to see the system working to make sure that that part of the system is what
he/she really needs. Alsc new services. hardware or another systems that were not
tried will be tested to see if they comply with what was expected of them or if there
is a need to replace them.

The erecutable release ; tn should contain the goal of the release. the classes to be
implemented. the use cases to be implemented and the required inputs and outputs.
Testing will be done after each release to ensure that the goals of the executable

release are met.

Developing Executable Releases
In order to develop an executable release the following tasks have to be performed:

¢ Adding control classes. Control classes model functionality that is not
present in any of the classes of the system. Thev make different objects col-
laborate to provide certain behavior. Instances of control classes are usually

temporal and only last during the execution of an activity.

¢ Detailing the implementation of operations. Many operations are suffi-
ciently simple to be detailed during analysis. Other operations. in particular
those that involve many objects. need further definition. New object diagrams
will be developed for these operations. Also. for some complex operations. ob-

ject diagrams might not be sufficient to illustrate the steps of the operation.

BA

In these cases. an algorithm will provide a better definition of the operation.
Pseudo code or the implementation language could be used to express this al-

gorithm.

¢ Implementing relationships. There are two issues to consider: naviga-
tional paths and containment. During analysis, associations are defined between
classes. These relationships are bi-directional, but some of them are traversed
only in one direction. During design we add the navigation paths to the associ-
ations. We also have to define how all the relationships between classes will be
implemented: by containing the object or by pointers or references. Also some
container classes might need to be defined in order to implement One-to-Many

and Many-to-Many relationships (e.g. the class Set).

¢ Defining access control. During analysis one could assume that every class
has access to every attribute and operation of any other class. During design
we try encapsulate each class so that the implementation is completely hidden

from its public interface. This will help localize all the effects of change.

Deliverables of System Design

The deliverables of system design include:

e Completed class diagrams that show the new implementation classes and

the categories added to the system.

e Completed class specifications which show the implementation details added
such as algorithms to carry out operations. members added to the classes for

internal operation and access control of the members.
¢ Design object diagrams for the non-trivial operations.
e Executable release plans

o Architectural descriptions which describe the choices of hardware and soft-

ware for the system.

34

3.3 Summary

In this chapter the Booch methodology is introduced. This software development
methodology provides a standardized means of presenting and communicating the
system requirements and design decisions for the DIDP system. The Booch notation is
explained focusing in the subset of the notation used in this project. Each of the three
steps of the methodology (i.e. requirements analysis. domain analysis and system

design) is discussed in detail. The deliverables for each step are also presented.

10

At @ TR TR TARE e oy e

Chapter 4

Requirements Analysis

The first step in defining the requirements of the DIDP system is to understand the
problem domain and what is expected from the system. In order to achieve this goal

several activities are performed:

¢ Reading the project proposal. The first task was to know what the goal of
the DIDP project was. The proposal provided a starting point in defining the

scope of the svstem.

¢ Observing the real system. Seeing the environment and conditions in which
the users of the system work provided a good idea about some of the charac-
teristics that the system must comply. For example. it is not uncommon that
paramedics make notes on small pieces of paper while treating the patient and
they complete the formal report later once the patient is in the hospital. This
means that the data is not always entered in the system in the same sequence as
it happens in real life and thus the validation mechanisms should contemplate

this situation.

¢ Consulting with domain experts. Many paramedics. doctors and nurses
were interviewed during this process. It is very important to understand that
each professional in the health system has a different need in order to build a
syvstem that satisfies all its users. For example. doctors use more free-format

forms while nurses use charts in order to enter information.

¢ Revising forms. Many paper forms that are used in the hospital and in the

ambulances were reviewed in an attempt to become more familiar with the

i

vocabulary and the type of data collected. Forms that are no longer used were

also revised to understand why they were discarded.

4.1 Patient’s Flow

In this section we explain the process that is followed when a patient is injured and
911 is called until the patient is discharged from the hospital and reintegrated into

the society (see Figure 4.1).

Emergency Medical Service (EMS). Injuries can happen anywhere: at home.
at work. on the road. Once 911 is called, an ambulance is dispatched to the
scene of the injury. This ambulance could be an air or ground ambulance de-
pending on the location of the incident. The emergency medical technicians
and paramedics in the ambulance serve as an extension of the physicians in the
field and work under medical direction. The difference between an emergency
medical technician and a paramedic is that paramedics can perform more ad-
vanced procedures such as intubating the airway and giving medications. [t is
important that the injured person is treated in the first hour of being injured
to have a better chance of survival. The Emergency Medical Service (EMS) has
the responsibility of transporting the patient to a hospital as soon as possible

and to stabilize the patient’s condition on the way to the hospital.

Emergency Room (ER). Once the ambulance arrives at the hospital the patient
is brought into the Emergency Room (ER). Emergency departments have many
tyvpes of professionals such as emergency doctors. nurses. specialists-orthopedics.
respiratory/orthopedic/x-ray technicians. and students in these areas. An emer-
gency doctor assesses the patient and if the patient has a only minor injury
he/she is sent home after receiving the necessary treatment. In more severe
cases the patient is referred to specialists within the hospital and could be
transfered to the Operating Room (OR). the Intensive Care Unit (ICU) or to
the Ward.

Operating Room (OR). Patients that need surgerv will be brought to the Oper-

ating Room {OR). Anaesthetists. surgeons and nurses are among the tvpe of

42

- e———

EMS

Admissions

/N

ER —> OR

N Y

Ward &> ICU

AN

\ Rehab —

Hospital

Admissions

Figure 4.1: Patient’s Flow

13

personnel we can find in this unit. Once the patient is operated he/she can be
transfered to the ICU or the Ward depending on his/her condition. [t could
happen that a patient needs more than one surgery and is thus transfered back

and forth from the ICU/Ward to the OR.

Intensive Care Unit (ICU). Patients that need stabilization and close observa-
tion are brought to the Intensive Care Unit (ICU). Here special nurses and

doctors take care of them until they are well enough to go to the Ward or die.

Ward. Patients are sent to the Ward when they are not well enough to go home or
to rehabilitation but they do not need very close observations as to send them
to the ICU. Nurses. technicians and doctors work here. They are capable of
taking care of orthopedic and internal injuries. Once the patient is recovered

he/she is discharged and sent home or is transfered to the Rehabilitation unit.

Rehabilitation. The objective of the Rehabilitation unit is to give back to the pa-
tients the skills theyv had before the injury. Occupational therapists. physio-
therapists and speec: therapists are part of a team devoted to maximize the
skills an injured per<un can gain. Once a patient is rehabilitated he/she is sent

home.

There are other units in the hospital such as Laboratory Services. Radiology De-
partment. etc. that provide support to all the professionals working in the units
mentioned above. Also the Admissions Office takes care of the administrative part of

the hospital.

4.2 System Architecture

Figure 4.2 illustrates all the major elements in our architecture. We have one or more
hand-held computers in each of the hospital units and in the ambulances. These
units communicare with the database server through a network. A few details about
this network should be mentioned. From the system’s perspective the choice of a
particular network is not important as long as it provides a reliable service. The

presence of hand-held computers suggests that a wireless network could be used. As

14

Figure 4.2: System Architecture

observed during analysis. the way of capturing data will be much easier using these
units because of the nature of the activities performed by the users of the system. For
example. there is usually no space in an operating room to place a desktop computer.
If a wireless network is not used. the hand-held units could be used stand-alone and

then the collected data downloaded to the database server with a certain frequency.

4.2.1 Data Processing Architecture

The data processing architecture of the system. including some components not vet
developed. is depicted in Figure 4.3. The data collection component of the architecture
utilizes pen-based hand-held computers to be emploved by the emergency medical
services and the hospital personnel to capture the most important patient-related
information. The database server component of the system stores the collected data
and allows sophisticated analysis of the data through a visual query interface. The
mapper component will link the data collection and database server components so

that data could be transfered between them.

IR s ol T

B]

i ' End Users J :

Applications Canlfet‘cation
y y
A 4
Mapper

z »

: : y v
i Visual Query

Interface Database Server

| $

ObjectStore

1
\Dita/l

Figure 4.3: Data Processing Architecture

The object-oriented DBMS used to develop the database server is ObjectStore
{Obj95]. ObjectStore has been used in many applications where high performance.
reliability. concurrency and scalability are among the rigorous requirements to be met.
and where conventional databases are unable to meet user requirements due to their
limited ability to accommodate complex data and relationships [Obj97]. ObjectStore
provides native support for extended data types such as image. free text. video. audio.
time series. spatial and HT ML objects. as well as for the extended relationships among
non-tabular unstructed data. This enables the building of applications that would be
difficult or impossible to implement with conventional relational or object-relational
DBMISs.

This thesis deals with the database server layver of the architecture. The data
collection component is being developed in the Department of Public Health Sciences
at the University of Alberta. Future Work. as discussed in Chapter 7. includes the
development of the visual query interface. the mapper, and several other applications

to interact with the database server and provide services to the end users.

16

4.3 Database Requirements

After a careful analysis of all the data gathered in each of the different units of the
hospital and the EMS we define the minimum data set for each of them. A minimum
data set is composed of the least number of items of information which provide most
of the data required by the majority of the users. For this phase of the project we
focus on the information gathered in the EMS, ER. ICU, OR and the Admissions
office.

There is significant commonality in the data requirements of each unit. even if the
commonalities are exhibited at different levels of detail. The type of collected data

can be classified into the following groups:

e Patient identification and health information. Includes demographics
information about the patients. medications taken on a regular basis. medic

alerts. allergies and other medical problems the patients have.

¢ General information about the visits to the hospital/EMS. Includes
detailed chronological information about the visits of the patients to the differ-
ent units. information needed by the Workers' Compensations Board and Social

Services. and information on the incidents in which the patients were injured.

e Medications, antibiotics and IVs. Includes all the medications. antibiotics

and IVs provided to the patients.

e Diagnostic images and lab exams. Includes the laboratory exams and

images ordered for the patients including their results.

e Invasive therapy, instrumentation and fluids. Includes the genito-urinary
procedures done to the patients. the instrumentation applied and the input/output

fluid assessments.

e Critical incidents and personnel. Includes the critical incidents occurred

to the patients and the personnel contacted during the patients’ visits.

¢ Gastrointestinal assessment. Includes gastrointestinal exams. ostomy. stoma

and stool assessments.

e Central nervous system assessment. Includes general central nervous sys-
tem assessments, pain assessments. spinal precautions applied to the patients

and intercranial probe readings.

e Respiratory assessment. Includes chest exams, respiration support devices

applied, airway procedures done and ventilator control readings.

e Vital Signs assessment. Includes pulse. respiration. blood pressure. pupil.

skin and Glasgow comma scale assessments.

e Other assessments. Includes injury and cardiovascular system assessments

and musculoskeletal devices applied.

e Specific information about OR anaesthesia and procedures. Includes
pre-assessments of the patients before the operations, anaesthesia setup infor-

mation. operation procedures done and monitor readings during the operations.

e Specific information about the EMS visit. Includes general assessments

and treatments done and information about the ambulance runs.

4.3.1 The Database Server Charter

In order to conclude the requirements analysis we have to define the scope and re-
sponsibilities of the database server. The keyv responsibilities of the database server

include:

e To provide persistent (i.e. permanent) storage for the data collected from the
scene of the injury to the time the patient is discharged and re-integrated into

the society. In this first version of the server we consider the information gath-

ered in the EMS. ER. ICU. OR and the Admissions office.

e To ensure the integrity of the data enforcing the corresponding integrity con-

straints.

e To provide the necessary recovery mechanisms in case of hardware or software

failures.

AN

e To provide a mechanism that keeps track of when a user performs an operation

on the data.

o To provide a uniform interface for the application programmers to write appli-

cations that interact with the database server.

4.4 Summary

In this chapter the requirements analysis is presented. The activities performed to
understand the problem domain, and the flow of a patient since he/she is injured
to the time of discharge from the hospital and reintegration into the society are dis-
cussed. The system and data processing architecture is introduced. The database
requirements and the scope and responsibilities of the database server are also ex-

plained.

19

Chapter 5
The Design

Database design involves the definition of a precise object-oriented model of the DIDP
system and its environment. The DIDP database design was kept simple and flexible
to accommodate future changes in information needs and operating conditions. The
programming language and database chosen for implementation (C++/ObjectStore)
also influenced the design.

In the following sections the motivations behind each design decision and the

influence of the implement=-tion on the design are discussed.

5.1 Design Tool - Rational Rose

Automated tools help free analysts and designers from some of the tedious tasks of
modeling so that thev can concentrate on the truly creative aspects of analysis and
design. There are certain things that these tools can do and others that they can
not. Automated tools can. for example. enforce conventions. help with consistency
checking of the model. tell whether or not a certain state in a state transition diagram
is reachable and take care of the data dictionary. On the other hand. an automated
tool can not tell when a new class has to be defined or how to simplify certain
structures: that needs human insight.

For the DIDP system Rational Rose/C++ [Rose93] was chosen as the visual mod-
eling tool. Rational Rose supports the Booch notation and it is specifically designed
for C++ developers who need to keep their application model synchronized with the
implementation [Rose97]. Although Rational Rose provides C++ code generation.

this feature was not used in this project since it only provides support for mapping

50

A, 4

SE AL 208 S0k PRI P

persistent objects to a relational DBMS. not to the object-oriented DBMS that was

used in this project.

5.2 The Model

The overview of the DIDP model is depicted on Figure 5.1. For each of the functional
groups identified during the requirements analysis there is one class category. There
is also an extra category called General Classes that contains the classes that are
used by all the categories in the model.

The classes contained in a category are private and can not be accessed from any
other category. Then only exceptions are those classes listed in the category icons
that are offered as public. If a categorv needs one of the classes offered as public
by another category. a use relationship has to be specified between the two. For
example, the classes contained in the EMS Specific Information category can access
the classes Next Of Kin and Patient contained in the Patient [dentification and
Health Information category. The classes contained in the General Classes category
can be accessed by all the classes in the model because the category is marked as
global.

Each category in the diagram has a class diagram associated with it. We de-
scribe each of these diagrams in the following sections. The complete set of class

specifications are listed in Appendix A.

5.2.1 General Classes

As mentioned before. the General Classes category contains the classes that are used
by all the categories in the model (see Figure 5.2).

We assume the existence of certain basic data types such as integer, positive
(or unsigned) integer, real, boolean, date, time and string that are not shown
in the diagrams but are defined in the class specifications for completeness.

In order to provide a basic auditing mechanism. an abstract class called Security
was defined. This is the root class of the model and every class inherits from it either
directly or through its superclass. Security provides a method called TimeStamp()

that updates the date/time and user id stored in the object that calls it. Objects can

51

jauuosiad
U sjueppu)

0!

AN

pue juswnijsuy

spin|
_> BIBY} BAJSEAL)

PBIEPIO Swex3 ge

swex3j ge pue
| _sebvw) sojsoube)g

!

SAl pue sajlojqliuy
suoyedipeN

SjUBWISSAsSSY JaY)
Siuswssessy oI

12q0i6

SBSSE|Q [BIOUBD)

JUBLISSasSY
|eujsajujollsesy
..... SDIIONEED)

USIA Wun
IISIA HO
ISIA.NDI
)ISIA Nun Bay |eljdsoy
ISIA WU 1e)D |ejidsoH

NSIA U3
NSIA SW3

L .. UONELLIOIU SUSIA

usjed
upj J0 IXaN

yiieeH pue
uonedynuap jusjied

weibejg ulew daia

el

JUBWISSASSY WaSAS
SNOAIBN |eIUBD
L SHPRONIRAURD

e

A

S

-

JuBLLSSASSY
~ Aojeadssy

JUBWSSBSSY
subils jenp

§8.nPadold

puB ejsayiseeuy YO

uojlewojuy
o|o8ds SW3

Figure 5.1: DIDP Main Diagram

1

invoke this method when they are created or each time thev are being modified to
record who created /modified the object and when. This mechanism has its limita-
tions. as discussed in Chapter 7, but serves as a basic auditing tool that will help to
develop a more extensive auditing mechanism in a future version of the system.

The abstract class Named Object provides the common attributes and behavior
needed by all the classes that have name as an attribute. In particular. it simplifies
the implementation of those subclasses of Named Object that do not have any extra
attributes or behavior other than the ones inherited. There are many of these classes
in the model where the only difference among them is their semantic definition. For
example Color and Drug Type have exactly the same attributes and behavior. but
they are used to model very different entities.

The abstract class Descripted Object works exactly like Named Object ex-
cept that it provides the attributes and behavior needed by the classes that have
description as an attribute instead of name.

The abstract class Ranged Value provides the common attributes and behavior
for those classes that have a name and a range of valid values. For example. every
laboratory exam has a name and a range of possible valid values for the result.

Because the inheritance relationships between the four classes discussed so far and
their subclasses do not give any insight in the problem domain itself. they are not
shown in the rest of the diagrams. For a detailed inheritance information see the class
specifications in Appendix A.

The classes Age. Pname and Address are considered ertended fypes. This means
that the extents of these classes are not maintained. and that the objects of these
classes only exists as part of other objects by physical containment instead of pointers
or references. Age represents the age of a person in years and months. Pname
represents a person name. including the first name. middle name. surname and title.
Address represents any regular postal address including street number. street name.
apartment number. postal code and city. It also stores the latitude and longitude
coordinates of the location to be used by a Global Positioning Syvstem in the future
(see Chapter 7).

An instance of the class ICD9 Code represents a particular International Clas-

sification of Disease. 9th revision code. These codes have widespread international

33

<7 N
- \
,/
)
/
ovoo mOO_

uoibayoioew

AN

, uoibay
\. Apog

//\

19iq0 .
voazomoo /

-———
/\

/ 10elgo
\ pawenN

7

N o

//J %

\ /.
v Aunosg /

sasse|) |esauan)

T e o smhdea g

_@ouinolg

JREE ‘-

N\ N
- {
{ \
]
\
\ (1]
\\rl 2T
\\ {
e
P u
e 1
f/
)
/
mmsnn< ’
> - IR

Se AR Bive s e . e se.

General Classes

5.2:

igure 5

F

TR NG e e a e, e

use to summarize anatomical diagnoses [Mac84] and are commonly used in discharge
summary sheets.

We define a Body Region as any external region of the human body (e.g. chest.
leg. head. etc.). A body region can have a macro region. For example the macro
region for hand is arm. A body region has one or more body parts. A Body Part
represents any part of the human body. It could be the skin of a body region. a joint.
a bone. a blood vessel, a nerve. 2 muscle. a tendon. a ligament or an internal organ.

The class Color represents any color that a substance may have. The class
Province and City are used to represent provinces and cities used throughout the

model.

5.2.2 Patient Identification and Health Information

The Patient Identification and Health Information category contains the classes used
to identifyv the patients and to maintain their health history (see Figure 5.3).

The abstract class Person includes information such as the name of the person.
the home address and home telephone number. A Patient is any person that visits
the hospital/EMS seeking attention. Each patient is identified by a patient identi-
fication number which is unique for the individual and is maintained through the
different visits of the patient the hospital/EMS more than once. Other information
about the patient includes the gender. date of birth. health care number. blue cross
number. and the name of the family physician. If the patient is a native. the treaty
number and the Band he/she belongs to has to be identified. If a patient dies the
date/time and cause of death are also recorded. A Next Of Kin has to be specified
for each patient when possible. The active next of kin is the one with the latest date
of assessment. The system maintains the previous nexts of kin for historical purposes.

For every health condition that a patient has. the system records the date/time
in which the condition was first assessed and the date/time since when the condition
is no longer valid. This is necessary to know what the hospital/EMS personnel knew
about a patient at a certain point in time and to maintain a history of the patient’s
health conditions. The abstract class Medical Condition provides the attributes
and behavior necessary to comply with this requirement.

The classes Medic Alert. Health Problem and Allergy represent all the medic

Jt
Y]

PR \«/,_

o \ ﬂ -
f ///
“ Ny o em s e mmemmmm T -» vompuoy)
/. uoweapap - Y jeoipepy ¢
_ enbay P N
‘///\) /I\\ S - \ ’
u e ‘
.- t\\\ / P - ,. \
{ \ { \
v //v ! /,,v
)
’ ’ ;. Wwejqold ’
_ ABieyy / A WieeH
TN T TNV
§
RN
P (PN
B u. -4 { AN i \
- \ . . \ | RN { N
~ U0 | 4 h \ / vlytll’l- N
~ ~
6))) s 5 P8I Juslied S/ _ Mely opa
/ 19))Y ’ . PN e A Ny
{ weney / walqoid , % - N7
. JUhed ‘. _UueeH luslied , e
/ 7 ‘ u //,.C B \\\
//)1 -— AN —., /—\ e \
= //// —‘ -7 ‘ ' ’ _f
./!,‘ - uy ~..
by ® ')
u / / / ’
R A luehed \ AU JOXBN 4
" e St SO
{ (= el
i ~s .
))
/ /
_ pueg s
S e .
=7 \ AN
\
))
\ uosieg -

N

uojieurIoju| yieaH pue uojiedyiuap] Jualied

ion

356

Patient Identification and Health Informat

5.3

igure 5.

e AGE W - Artmtmin s ametie o e m b e e % g adeirme ki tmoan o s en s d ..

alerts. health problems and allergies a patient might have. The classes Patient
Medic Alert. Patient Health Problem and Patient Allergy represent the medic
alerts. health problems and allergies the patients have/had.

Each object of the class Regular Medication represents a medication that a
patient takes on a regular basis. The information stored includes the name of the

medication. the dose and frequency in which it is taken.

5.2.3 Visits Information

The Visits Information category contains the classes used to keep all the general
information related to the patients” visits to the hospital/EMS (see Figure 5.4).

Every patient can visit the hospital more than once. A Patient Visit represents a
particular visit of a patient. Within the hospital. the patient can visit many units (i.e.
ER. ICU, OR). The design considers EMS as one of these units since data collection
is very similar in all of them. The information related to a visit includes the weight
and height of the patient. the date/time the patient arrived/left the hospital and the
date/time of admission/discharge if the patient was admitted.

If a patient is injured while working. certain information is recorded for the Work-
ers’ Compensation Board (WCB). A WCB Claim keeps information about the pa-
tient’s occupation. his/her social insurance number and the name of current emplover.
If the patient is under social assistance. some information is recorded for Social Ser-
vices. Social Service Info keeps information such as the number of social service
and the name of the social worker that is related to the patient.

A Valuable represents any valuable that a patient might have when he/she arrives
at the hospital (e.g. a ring. a watch. a wallet. etc.). Each instance of Patient
Valuables represents a collection of all the Valuables that a patient had at check-in
including the amount of cash (if any) and the name of the person who kept these
valuables if they were not left with the patient.

Something very important to record for each patient visit is the information re-
garding the incident in which the patient was injured. This information is kept in
Incident Info. The information recorded includes: whether the incident was indoors
or outdoors, all the Safety Devices that the patient was using during the incident

and the external Causes of injury. Each instance of Cause represents a different

P

P
{

\

]

/

_ USIAY
///\\II
-7\

——~

{ \

\ N

)

/ /

(_saswa
N7~

P A}
PR PR S \
-7 \ e~ \ { N
{ NS { . \ RN
) Y Y / eomeg
’ ’ / ’ _ Apjesg /
_ _USIANDL 7 _._USIAHI 1 LR
Sy ~nEs sy 0 oy
~7 7) x\\ \
{ N
!
')
/ /
s us asne) /
- o~ Y / -
i \ u e Sl ~ - 7N
N e . \
__ //\ T \ ﬂ N
/o NsAWN s roT ")
{_ Bay jendsoy / \ ~a /
Tl LT ! _ \V U\, elqenep
- yd N T T~
‘.Ul luaptoul ¢ -
N\ } o._/ ! Ny e
. - e \
N - /_ - ‘, \
I'd - -~ . -~
(N pmae” 0, Sa1qeniE b
, -~ [o b =7 SO|geniep
/) \ D __ lueled v
¢ Usawn) ¢ ST
~_ [BID[eNdsoH L GUsinuened /@~
Seof T //;ﬂﬁ,,, 1 T PPN
! e 170, \
’ //
Y. AN /) oujeameg
e / \ |eipog \
{ u - AN -
\ /// .— 0 JPEN -
]) SN \
¢ . ! hS
«_ VsiAwn ‘e - i >
e ST A)
l S weogom
{ N
L L RN

UlEaH pUE UONEDJjIUSP] UBlEd wou)

R

~

/I\‘

_weneq

/

uopewIoj) SUSIA

S vt sV

———iben ead g e

ion

Visits Informati

5.4:

igure 5

F

e

E-code. The E-codes are a subset of the ICD9 codes that are used for codifying the
external causes of injury. Ribbeck et al [RRTB92] have first shown that E-coding ix
a valuable method for injury surveillance that can be easily performed in Emergency
Departments. and that its value is essential for injury prevention research.

In different units, different information is recorded. In a first draft of the design
one class was created per possible unit visit: ER visit, ICU Visit, OR Visit and
EMS Visit. However. there are many commonalities among them which suggests
the creation of superclasses. An instance of the abstract class Unit Visit represents
a visit to any unit. There are certain activities such as giving drugs or inserting [\s
that could be performed in every unit. An instance of the abstract class Hospital
Gral Unit Visit represents a visit to any hospital unit. Certain things such as
diagnostic images or lab exams are done in the hospital and can not be done in the
EMS. An instance of the abstract class Hospital Reg Unit Visit represents a visit
to any unit in the hospital that is not OR. OR has particular data requirements that

are difterent from the rest of the hospital units.

5.2.4 Medications, Antibiotics and IVs

The Medications. Antibiotics and [1's category contains the classes used to keep in-
formation about the medications. antibiotics and [V's given to the patients during
their visits (see Figure 5.3).

The class Drug represents all the drugs that can be given to a patient. The
information stored includes: the name of the drug. its Drug Type. the recommended
dose per kilogram and any other relevant information about it.

The abstract class Drug Given represents any drug that was given to a patient.
The information recorded includes the given Drug. the Drug Route by which it
was administered. the dose. the date/time that started and ended. and the schedule
on which it was given. if any. A Medication Given represents any drug given
to the patient that is not an antibiotic. As we can see in the figure. medications
can be administered in any unit. but antibiotics can only be administered in the
hospital units. An Antibiotic Given represents any antibiotic administered to the
patient. Sometimes. in order to decide which antibiotic should be given to a patient.

a laboratory exam is ordered. The system keeps track of the relationship between the

34

/

?o:ms_oz_ SHSIA WOk)

{ USIA e
~.__Wun (e jendsoy }

T - L

d
/I.\

PR
——— \

(sesse|Q (e10u8D woyy)

/ uobey

_ Apog
///\\.Il\\—/

~

/
__Uolnog Al 7
~< /

/\\II\

:Amsmmm ,,,
ge pue sabew) mo_.mocmm,_o wos})
/ pesspig)
__wex3zgey v
L0f

aimny

{ \ [}
\ RN /\
/) uewg) b
_ o onojgnuy - - \ -7
~ AL
u \\
DAY
\ r// u
) yooo
/ /
\uanp Brug
RN - . /

/ uaalb
uy

\ \ B
i ~7

{
\ .
(uoyewioju SHSIA Woij)
/S T s
__WsIiAun
-

e A LT
°

/

~

SAl puE safjo|qiuy ‘suoyieaipaly

_uonieaipay

/

ST

)

/

~

v
\

~.

/
. 8oy bruq /

8dAL Brug ¢

~ -

ics and IVs

1ot

Medications. Antibi

igure 3.5

F

60

Antibiotics Given and the Lab Exams (cultures) associated with them.
The information recorded for each IV done to a patient includes: the date/time it
started and ended, the IV Solution given, the Body Region where it was inserted.

the size of the needle used, and the rate infused in mm/hour.

5.2.5 Diagnostic Images and Lab Exams

The Diagnostic Images and Lab Erams category contains the classes used to keep
information regarding the diagnostic images and laboratory exams ordered for the
patients during their visits (see Figure 3.6).

Every Image Ordered for a patient is kept in the system. The information
recorded includes: the type of Image ordered. the Body Part affected. the date/time
it was ordered. the date/time it was done. and a textual description of the results. In
the future the actual image will be stored together with this information (see Chapter
7).

A Lab Exam represents a laboratory exam that could be ordered for a patient.
Every laboratory exam has a name and a range of possible values for its result. The
svstem groups these laboratory exams into different Lab Exam Types. For every
Lab Exam Ordered for a patient the type of Lab Exam. the date/time when it was
ordered. the date/time the sample was taken (if any), the results. and the date/time

these results were available are stored.

5.2.6 Invasive Therapy, Instrumentation and Fluids

The Invasive Therapy. Instrumentation and Fluids category contains the classes used
to keep information regarding the genito-urinary procedures that are performed. the
instrumentation applied. and the input/output fluid assessments of the patient (see
Figure 3.7).

A GU Procedure represents a genito-urinary procedure that could be done to
a patient in any regular hospital unit (i.e. ER and ICU). For each GU Procedure
Done to a patient the tvpe of GU Procedure and the date/time it started and
ended, is stored. An Instrument represents any instrument that could be applied to

a patient. For each Instrument Applied to a patient the type of Instrument. the

swex3 qeq pue sabew) ansoubeiq

[T RS VPV Y e

P 1
[,/
, ™
/! \g
_odAf wex3 qeq
T~ - /
//\ - - i
\ TN
] I [
s -
{ // R { //
v , > |
=\ /) (sesse|) jesouas) woyy))
- \\ { / \\ ¢ vlrn_Ubl.r\lU‘I w\\
L
{ f/ N abew / __ ledhpog J
/) -
/ J |
_ o wex3gqe)
I/ -
-7 —
- u
\\\. A . /<
TR e | P U\ |
~
-~
)
palepiQ 7 4 Y
wexjqel 4 u', peispiQ ebew; /
N7 ,/m\:/ \.\.\ N - /
N | L
' - vy o~
\ Q
\ =~
(Uoeusioju) SISIA woy)
/ ISIA
\. Wun jeio jendsoy
N ST e L /

ic Images and Lab Exams

lagnost

Di

5.6:

igure 5

F

6:

——r = g

/! adA) \
‘P induy /

~

So —I\

L / -7 / R PR . \
“\ - S \.\ N S ”\ ‘ ,/ 5\ ,r » o ,/;
" {sasse|D) |piBULD) WO mmmmm BJIOUSE) WO b
-) \A SSBIQ [PI6UDY) _V \ \x SSEIQ [8J8UBY) | _v , anpasorg)’
== \ , usi 59:0 / _ _o_oo \ EmEE.m:_ _ uoibay >uom v v no /
Se N ! = - A S \\.y/\ N e
)) ' ' —
/ Ve
__Pnigindy) 7
RN ~———
~t
u -
P Y
u i PR e !
——— /’ \ t /,/
t h e \ J AN
, >, u L Ny ;
ni4 ueNBlu T g e ™ / auog
{ » _.u,_a_,m_m. ' / us_u_ Indino \b ;) peyddy x _ _81npadoid N9 \
S~ e \ Em_.mn_ ’ \, _Juawnisyy ~N -~
~7 -~ ! c\ - ~u
I C . / - -~ \
\
- \.\
\.
I .- N la - >\
PV ANY e A
~o \ N

Eo_.m::o_c_ m:mSI:._.o:v
.\ ISIA
::: je1n _s_%oz ¥

s [

/.\

/

\
\

spin|4 pue uopeuaswnysuy] ‘Adesay) aniseau]

~

\ ~
(uonewiouy siisiA wouy)

\ NSIA
.:5 Bay _SamoI Y

A

/
\

fe . 6s ma g i A o A B A Ay ¢ b ¢ o ke 8 o T

d Fluids

on an

v, Instrumentat

: Invasive Therap

{

igure 3.

F

date/time of application. the Body Region where it was applied and the date time
it was removed is recorded.

An Input Fluid represents any fluid that could be given to a patient. These
fluids are grouped into different Input Fluid Types. Each time a fluid is given to
a patient, an instance of Patient Intaken Fluid is created and the type of Input
Fluid, the date/time of assessment and amount of fluid is recorded.

An Output Fluid is any fluid that could come out of a patient’s body. Each
time a fluid comes out of a patient, an instance of Patient Output Fluid is created.
The information recorded includes: the type of Output Fluid, the date/time of
assessment and the amount. consistency and Color of the fluid. If the fluid comes
out from a particular instrument that was applied to the patient. the relationship

between the Patient Qutput Fluid and the Instrument Applied is recorded.

5.2.7 Incidents and Personnel

The Incidents and Personnel category contains the classes used to keep information
regarding the critical incidents occurred to patients and the personnel contacted dur-
ing the patients’ visits (see Figure 5.8).

Every Personnel Contacted during a patient’s visits i1s recorded by the system.
The information recorded includes: the Personnel Type contacted. the name of
the personnel. the date/time he/she was called. and the date/time he/she made the
contact.

For every Critical Incident Occurred to a patient. the date/time of the inci-
dent. the Critical Incident and the Critical Incident Reason is recorded.

As depicted in Figure 5.8. every Critical Incident has a set of possible Critical
Incident Reasons. What the figure does not show. however. is that only a Critical
Incident Reason that belongs to the set of possible reasons for a Critical Incident
can be chosen as the incident reason for a Critical Incident Occurred.

This problem is solved in the Booch notation by creating a dashed line between
the Critical Incident Occurred and the reasons relationship and eliminating the
incident reason and the incident relationships. The dashed line means that Critical
Incident Occurred is associated with a pair of Critical Incident-Critical Inci-

dent Reason. We found some problems with this notation. If the model had an m-n

61

(
\

~

N

-\ ~
P \ P A\
l P ’ {
// - \ // N
- suoseel - !--iw Y
s U C\ /
’ (uoseay ’
_luapiouy feauy [/ _ _luepiouy ey
SNl T [A
b
usplauy uoseal uapioul
_-u
o_T)
T \
\ N
) >
))
/ /
(pa8IN230 ’
__luepjou| jedyun 7
NP
\\
B \\
-7 - // \\..\,
e BV_, [
i o
i RS
(uopeunioju) sysiA wouy)
/
/ ISIA ,/
. N feso jeydsoy
TR,

~ -

|auuosi1ad pue sjuapiou|

/
_adA[(suuosiag /’
oo ~ - :.\

N

1

-7 N -

v -~

\)

e e

/

/ pajoejuon e
u A __ Ieuuosied /

-

Incidents and Personnel

5.8:

igure 5

F

relationship between Critical Incident Occurred and Critical Incident Reason.
using this notation would imply that we can have many Critical Incident-Critical
Incident Reason pairs associated to a unique Critical Incident Occurred with-
out indicating that the Critical Incident must be the same in all the pairs. Another
drawback is that it could happen that we do not want to specify a reason every time
an incident occurs. and this notation enforces to take at least one reason.

One way of solving this problem is to create an extra class that contains all
the valid pairs of Critical Incident - Critical Incident Reason and creating a

relationship between Critical Incident Occurred and this new class (see figure

5.9).
|
|
— s~ |
R N |
/! Critical Incident |
p Occured / 1
(|
\\ .
. - |
\1 /q\// I'
. N _// ;
: -n ‘
E
! —— T ,—\\1_,"\ TN
% - Critical Incident ™\ - Justified " /' Critical Incident ™
i K Reason A n -/ Incident s 1 ,
H AN r_——\
i Ry \ ~ ' ~ .
: ~ : \\ 1 AN
i — \ — .
- - 1 - - ~ -
! ~ /// \ /// AN ///
!
i
|

Figure 5.9: A possible solution for the critical incident problem

This would be good solution if each class were a flat structure. as in the relational
model. because any n-m relationship would have to be implemented as a separate
flat structure. With complex structures (i.e. objects). an n-m relationship can be
implemented using sets without the necessity of any extra structures. Thus. inserting
a new class is not a very good approach. This would force the model to have things
that do not exist in the real world and also would make the implementation more

complex. Furthermore. the n-m case mentioned before would not be solved by this

66

method. and neither the enforcement of at least one reason.

What is needed to solve this problem is to show in the diagram the restriction
of the incident reason relationship. For this purpose, we propose a new element in
the notation: A dotted arrow between the relationship that has a restriction (i.e.
incident reason) and the restriction relationship (i.e. reasons). The head of the arrow
will point towards the restriction relationship. This would be read as: a Critical
Incident Occurred can be associated with a Critical Incident Reason if and only
if that reason belongs to the set of reasons valid for the Critical Incident associated
with the Critical Incident Occurred. This solution works for n-m relationships
and does not enforce the model to choose a reason if it is not needed. This notation
is not presented in the diagram because the diagrams were generated using Rational

Rose which does not support this notation or allows free hand drawing.

5.2.8 Other Assessments

The Other Assessments category contains the classes used to keep information re-
garding injury. musculoskeletal and central vascular system assessments done to the
patients during their visits (see Figure 5.10).

For every Injury a patient presents. the date/time of the assessment. the affected
Body Part and the ICD9 Code that applies have to be recorded.

A Musskel Device represents a musculoskeletal device that could be applied to a
patient. A Musskel Assessment represents a musculoskeletal device that is applied
to a patient. The type of Musskel Device. the Body Region where it is applied
and the date/time of application and removal have to be recorded.

A CVS Assessment represents a cardiovascular system assessment done to a
patient in any regular hospital unit. For every CVS Assessment. the date/time of
assessment and the juglar venous pressure (JV'P) have to be specified. Each time a
CVS Assessment is done. a Heart Assessment and a CVS Pulse Assessment
for each side of the body are also done. A Heart Assessment stores the different type
of heart sounds found during the patient’s heart assessment and the best way to apply
the monitor leads in order to obtain the best configuration of the electrocardiogram
(ECG) pattern. A CVS Pulse Assessment specifies which side of the body is being

assessed and if a pulse is present or absent in different locations of the hody.

o

\

~

/ WBWssassy

_8sInd Y /

/ .

[

N e -y

\\\)
T .r
N | =
\v \ JUBLISSaSSY
_ ueey ¢
=~) \.I/\\
!
\
I S
| \
) N
/) luslissassy \V
__ SN [
//C. R Y
la -~
\
— AN
\
(o sustA wos) >
/

/
|

NSIA Y

Ny =_5 bay [endsoH Y,

SN T
-

/

, 8%mneq
C (8NsSn

N

N

e ——

/

T

R \ L I i - Y
_, ,/ _\ h _r _\ ’ _/
v Amommm_o jessuan Eoe Ammwmm_o jeleuay Eo_: Awmmmm_o jesausp Eoi
SE|Q jeisusp | p >
/ {_ uoibay Apog % :mm %om \ . mnoo moo_
N P -
AN
\
f/
J) _ //
/ WBswssassy))
v jewsSnpy / / ’
Soea ot \ kinfu) /
l// \\A// v\\
U u
i
- \kv.:
/ \
\ S
: -l s won)
_\ HSIA \
w. hun e .m_amoz Y

N ’ -~

SJUBWISSASSY JaY)0

e e g e Al e s

ettt ke e et m i e

Other Assessments

igure 5.10

F

(FEN

5.2.9 GGastrointestinal Assessment

The Gastrointestinal Assessment category contains the classes used to keep informa-
tion regarding the gastrointestinal exams, and the stool, ostomy and stoma assess-
ments done to the patients during their visits (see Figure 5.11).

A Gi Exam represents a gastrointestinal exam done to a patient in any regular
hospital unit. For everyv Gi Exam the following information has to be specified:
the date/time of assessment, the shape of the abdomen, the bowel sounds. if the
patient is nauseated or has cramps. and the results of the peritoneal lavage and rectal
examination if they were done. Also. for each abdomen quadrant. an assessment
indicating the rigidness. distension and tenderness of the zone has to be done. Each
instance of Gi Quadrant Assessment represents the assessment of an abdomen
quadrant for a patient.

The stool. ostomy and stoma assessments are only done in the ICU. For each
Stool Assessment the date/time of assessment and the Color and consistency of
the stool have to be recorded. For each ostomy done to a patient an Ostomy As-
sessment is recorded. The information regarding an ostomy includes: the date/time
of assessment. the type of ostomy and the abdomen quadrant where it was done. If
a mocous fistula was also done. the abdomen quadrant where it is located also has to
be specified. For a Stoma Assessment the date/time of assessment. the integrity

and the associated ostomy have to be recorded.

5.2.10 Central Nervous System Assessment

The Central Nervous System Assessment category contains the classes used to keep in-
formation regarding the general central nervous system (CNS) and pain assessments.
the intercranial probe control and the spinal precautions applied to the patients dur-
ing their visits (see Figure 5.12).

For each Pain Assessment done in any regular hospital unit. the date/time of
assessment. the Body Region assessed. the severity. intensity and description of the
pain are recorded.

A CNS Assessment represents a central nervous system general assessment

done to a patient in any regular hospital unit. For every CNS Assessment. the

i

PES
s \ - \
_\ \ - - |
~N
| o~ !
/) |
/ Juowssesse 7 ;
_ lempenbpn /. Juswssessy
) o BWOIS
v 1//.1 g DR
u
3
27N L k
—_——_
a\ ,/ @77
v ~ N P -
) {
/ ’)
__ wexgp /7 ;
S~ s / / luswssessy
Moo u i v Awoiso
RN
e - //
- /Fl \(V —
/ \
\ .
~
| N
) {ojuj siisiA wios) \.Ail!l.l- S
(USIA ’
_un Bay jendsoy /
SN el L

JUBWISSAsSY [eulISajuloLSeD)

7 {o4u1 sysip woy)
o BSIANDL

—~

Noo

- /

O N
\ N
(sasse|D [esausy) woyy))

~

\ 1009 /

/ JuBuISSassy \\
AN jools /

TSR

- -

Gastrointestinal Assessment

igure 3.11

F

date/time of assessment has to be specified. Each time a CNS Assessment is done.
the Reflexes and Movements for each side of the patient’s body are assessed. An
instance of Reflexes specifies which side of the body is being assessed and if the
reflexes are normal, absent or brisk for different parts of the body. An instance of
Movements specifies which side of the body is being assessed and characterizes the
movement of the arm and leg for that side.

The intercranial probe (ICP) control is only performed in the ICU. Each instance
of ICP Control represents an intercranial probe inserted to a patient. Each assess-
ment of the probe is recorded in ICP Reading.

The abstract class Spinal Prec represents any spinal precaution applied to a
patient. The date/time of application and removal is recorded. The Cervical Prec.
Thoracic Prec and Lumbar Prec represent. respectively. a cervical. thoracic and
lumbar precaution applied to the patient. For the cervical precautions the information
stored includes: if a hard collar or sandbags were used. if the patient’s head of the
bed was up 30 degrees and if the patient was prevented to lie on one side. For the
thoracic and lumbar precautions no further information has to be specified.

The design of the spinal precautions hierarchy was influenced by the use of C++
in the implementation. The first approach in the design is shown in Figure 3.13.
For implementing the relationship between Hospital Gral Unit Visit and Spinal
Prec a set of pointers to objects of tvpe Spinal Prec had to be used. The problem
is that when one of these objects is removed from the set. the object’s class is not
known. since C++ does not know its type at runtime. This means that it is not
known if we are dealing with a cervical. thoracic or lumbar precaution. Although
this problem could be solved adding an extra attribute indicating the name of the
class to which the object belongs to. and then casting the pointer retrieved from the
set to the correct class. the space. performance and programming complexity of such
solution is not justifiable. Instead. we decided to decompose the relationship in three:

one for cervical. one for thoracic and one for lumbar precautions.

5.2.11 Respiratory Assessment

The Respiratory Assessment category contains the classes used to keep information

regarding the chest exams. respiration support devices applied. ventilator control and

IR

R —

JUBWISSASSY WB)SAS SNOAIBN |esjud)

- - \ ~ N
N . \ o ,
AN P \ { N { \
TN (\ \ U -
A \ “ N Y \) !)
=~ / / s
) N , Bupesy) { sueswenopy ¢ /
/ 4 \ dol / ol ! N A
_ 981d feuidg Tes e !
~ P \\ ~-u N
Pl \\ \ v/d
L@~ \ N
o7 \
' . .mmm%,_mm@weos
) ,v . \oibey Apog 7
_o::oo doi , I A /!
P AV S !

7 \ o N T ul o~
//v v //v \ N \ —— \
S omd /) oaig _ , ewssessy ' ! AN

_ 0joeIO0 _ |edAe - \ ’
r//. L w:,.,\\ - /_ _\.,o/.\\ e ,_ -~ mZ\O ! \ JUBWISSASSY \v
/C u —— \ = \C /(- c—m& \\
™ b~
Mo_c_ SISIA Eoi u /S
,, \
! . ,
\\9,_ \u/', \,V_,
\ \ -
\ AN) lomsisawoy N,
;o susipwoy) N s—— e T T,
/ USIA \ f n Boyy udson ¢
r
. Jun jeio _s.%o: Y, e J m : ., H \
/\\\ T~

Central Nervous Svstem Assessment

5.12:

igure 5

F

o

f-

-
—_——~—_

\\\
Hospital Gral
Unit Visit 7

/
/

o~ L
/ Spinal Prec "\
e /

/ -

! o —— ~
—— — - P e
ST L =T // Lumbar Prec ™
., Cervical Prec ;. Thoracic ’
4 /7 Prec 4 f
{ cot f -~ '
~o S \ S ;
N) N I \ T ——
=~ 1 o — N_-
_~~ N

Figure 5.13: First approach in the design of spinal precautions

airway procedures done to the patients during their visits (see Figure 5.14).

For every Chest Exam performed on a patient in any regular hospital unit the
following information has to be specified: the date/time of assessment. whether the
airway is clear. obstructed or intubated. how the chest expansion is and the position
of the trachea. A Lung Exam is also conducted each time the chest is examined.
and the results of the auscultation and percussion for each of the six lobes of the
lungs are recorded.

An Airway Proc Done represents an airway procedure that was done to a
patient. For each procedure done, the type of Airway Procedure and the date/time
when it was done is recorded. Each instance of Respiration Support represents
a respiration support device applied to a patient. For each device the date/time
of application/removal and the type of Resp Support Device applied have to be
recorded. If a patient is under ventilator assistance. the values of the ventilator
settings have to be recorded. Each instance of Ventilator Control represents an

assessment of the settings of the ventilator at a particular point in time.

/' lonuoy 7
\ lojejlluep /

e~

N~

, s \ - \ JIE |
. N (. (N
_) , .\g \f)
/" ampasoiy y aIne : .
\ Aemigy i _ poddng mmmm / A wex3 6un7 ;7
Tl g RN Ty el S
-1 =4 ~ 1
u .~
o) Ui~ |
.\) \ T .~ ! -~ TN
N. \ - s |
, N { N - \
/) | /J { S
{ 8@:%%22 / /" yoddng /7 \, b
Sl e \. uoyendsey ‘ /
~4 c,\//\\i o7 //im._mxw —mrm_,_ \
\ e T -
/ -
i -~
s o0
A 3 sl T AN
\ < f '\
, - RN T N
) (oJu) SHSIA Woyy) \1 S e e e 1l\w _(ojuy susiA woug})
/ I WSIA /
WSIA i ISt
. i fendsoy /7 v, Wun Bay jeidsoy
T R AN - g

Jjuawissassy Alojelidsay

)

tory Assessment

Ira

igure 5.14: Respi

F

5.2.12 Vital Signs Assessment

The Vital Signs Assessment category contains the classes used to keep information
regarding the vital signs of the patients during their visits (see Figure 5.15).

The vital signs of the patients are assessed in every unit in the hospital and the
EMS. Although each unit assesses a different set of vital signs, many commonalities
found leaded to the creation of superclasses.

Each instance of the abstract class Basic Vital Signs represents a vital signs as-
sessment for a patient. The date/time of assessment, the body temperature. a Pulse.
Blood Pressure and Respiration assessment are recorded. A Pulse assessment
includes the pulse reading (i.e. heart rate) and the position. volume and rhythm of
that pulse. A Blood Pressure assessment includes the systolic and diastolic blood
pressure. the side of the body and position in which the blood pressure was assessed.
A Respiration assessment includes the amount of breaths per second and the depth,
quality and rhythm of the respiration.

During a patient’s visit to the OR. the assessment of these basic vital signs is
sufficient. Each instance of the Or Vital Signs represents a vital signs assessment
for a patient during his/her visit to the OR. Although the class Or Vital Signs does
not add any more attributes or behavior to the Basic Vital Signs. this class has to
be created in order to associate it with an OR Visit. If the Basic Vital Signs were
associated with OR Visit. every subclass would have inherited this relationship too.
and that is not correct.

Each instance of the abstract class Extended Vital Signs represents a more
comprehensive vital signs assessment for a patient. It inherits from Basic Vital
Signs and adds a Skin. Pupil and Ges (Glasgow Comma Scale) assessment. It also
provides the calculation of the Revised Trauma Score. A Skin assessment includes
the color. moisture. turgor, general and extremities temperature of the skin. A Pupil
assessment includes the side of the body being assessed (i.e. left or right) and the size
and response of the pupil. A Gces assessment includes the Glasgow Comma Scale eve
opening. verbal and motor response of the patient and provides the Glasgow Comma
Scale score.

During a patient’s visit to the ER. the assessment of these extended vital signs is

{

|

)
\

e \ e L
\ . _/,

f
s

juawissassy subis |eyA

\ \ o \ -
wes m__mk,..e@:) (oguy susia uion)) (ojul sisiA wox) w
\C_USIANDI \ ‘L _VSIA Y3 \ ‘. _USIASKW3 \
~ e e Y P RN
-~ — ~ F ~— F
-7 Ay BEASN vy A7
-~ \ -~ \ — \ T \ o \
\ { \ { \ { N —_ N
T) ™) ™y .))
subig feA — \ subig ; Y sufiig S sufig . / mcm_m JeUA \
_a_omam noj ¢ oo feuAng s AN L R B v _felaswg v N _a_om m wEm \
SN — N~ N \//.,\..i/\~
/
- / -7 PR
AN . { Eaitid \
R - \ ” N { NY
\ ~ RN
! ™, N) sub y—————hju SYSIA wou))
/ T (om0 " ¥ wsinwo
ST ! subig yn
pepuaixg
- / - /
- \ N2t T
= ! -
\ .
\ 1/\ \ e
/ w N
/ dn \\ ~a
A __\\n_l/\\ _ , / emssaig !
~ _ YAl poog” s
) Y . e
/ /
\ :_xw 4
- N7~ \\ L -
\\,1/ » wcm_m . — . \\\ /,
T \ \.\r YA Jlseg ek N
{ rﬁ\ i RN o7 / \ N
\ L -))
! % { asind .
/ \
v :o:m._ammm \ = !
N .. \\ -

Assessment

igns

Vital Si

5.13:

igure 5

F

6

[

enough. Ems Vital Signs. Er Vital Signs and Icu Vital Signs each represents
a vital signs assessment for a patient during his/her visit to the EMS. ER and ICU
respectively.

For the ICU and EMS visits, specific vital signs for each unit are also assessed.
Each instance of the Ems Special Vital Signs includes the glucose level and oxygen
saturation of the patient and some values needed to calculate the Pre Hospital Index.
Each instance of the Icu Special Vital Signs includes the cardiac index. the central
venous pressure, the pulmonary artery pressure, the pulmonary and systemic vascular
resistance index and the wedge. If a cooling or warming blanket is used it is also

indicated.

5.2.13 OR Anaesthesia and Procedures

The OR Anaesthesia and Procedures category contains the classes used to keep infor-
mation regarding the assessment of the patients prior to the operations. the operation
and anaesthesia setup information. the monitor readings during the operations and
the procedures done to the patients during their visits to the OR (see Figure 5.16).

Before any visit to the OR. a Pre Assessment of the patient needs to be done.
The information recorded includes: the date/time of assessment. the class of risk of
the operation. the amount of blood units available. the date/time of the last meal and
the dental risk of the patient. If the operation is an emergency. the fact is also recorded
in the pre assessment. A Dentition Assessment. a Pre Airway Exam and an
Anaesthetic History assessment also have to be done prior to the operation. Each
instance of the Dentition Assessment represents a patient’s tooth with a certain
problem (e.g. missing, capped. loose. etc). The most important information recorded
in the Pre Airway Exam includes the anticipation of difficult intubation and the
neck mobility. The Anaesthetic History records any previous anaesthetic problems
of the patient or his/her family.

The operation and anaesthesia Setup Info includes: the Gas Type. anaesthesia
Technique and Monitors and equipment used during the operation. the Position
of the patient and how he/she was connected to the equipment (i.e. the Circuit).
Whether the patient’s eyes were tapped, lubbed and/or padded is also specified with

the setup information.

P N N
\, N .z R . ,r
(sesse|] |essueD) wIoy))) N
ST s 4 /
P _ bedApog _ adAjsen
—— 1 S~ PR .\\ RN l/\\
{ - T . i
(sesse() (B18ULY) WOl}) e
/T T T P { \
/ - ~
,r/ouoomm_o_ PN ud-T | ~
SO - ~ =~ \))
~ ™~ \ / 4
Uy o _ enbjuyoay \
/) ainpasorg) A
" 10 ’
e
_/ -
N7 /.
tu N
77) ™
T L / suoQ y
\ -< __einpedoiy -
/) wewssessy DT
__uonpueq” ,
//\\ll’\: , yy
- - I e
. oy e
b \ T _—\\\ ~7
\ s ‘ A
\ uswssassy \Y_;: -)
\g. Od 17 (o1 susip wou) -,
—— Ve
o) __VWI"o /]
\\\)/ N T~
‘\ -— u PRSI
\ N r/ - - !
/) t //
s wexy / by s u
_ femuyaug ¢ ey \ # I
ot { « ¢ Bupeey ST
~ \ > ‘. oluened /
; Koy TNl T
_ Ooneyiseeuy ¢
i//\\.!l ~
S2INPadoid puk ejsayisaeuy HO

/
\

. Y
¢ L
\ RN
))
/
. uowsod ¢
\\\)/
\\ . ﬂr
\ N
))
[/
A unonp ’
/l/\\/l\\
u e Y
T ,f
| RN
))
/ ’
\ 10}UoN /
AT A
-
-7 N
Y {
i \
— = ~
])
/
. Buipesy o
N - o/

OR Anaesthesia and Procedures

igure 5.16

F

e
1 -

An Or Procedure is fullv defined by a Body Part and ICD9 Code. Every
Procedure Done to a patient during an OR Visit and all the monitor readings
done during the operation have to be recorded. Each instance of Patient Or Read-
ing represents one of these readings. The date/time of assessment. the type of Or

Reading being assessed and its value are recorded.

5.2.14 EMS Specific Information

The EMS Specific Information category contains the classes used to keep information
regarding the ambulance runs and the general assessments and treatments done to
the patients during their visits to the EMS (see Figure 5.17).

Each EMS Visit has one ambulance run associated with it. Each instance of Run
Info represents an ambulance run. The information recorded includes: the reason
for the call. the date/time of the 911 call. the date/time of ambulance dispatch. the
date/time the ambulance arrive/left the scene and the date/time of the ambulance
arrival at the destination. The response level (emergency medical service. basic or
advanced life support). the type of response and transport. the total kilometers of
the run and the name of the policeman/woman that attend the call. if any. are also
recorded. For every run. which Vehicle was assigned to the run. who the Dispatcher
of the call was. the Crew Members in the ambulance. and the destination Facility
are also recorded. The facilities are grouped by Facility Type.

[f a patient is a minor or unable to give consent. a Next Of Kin has to authorize
the transport or treatment of that patient. Every Treatment Done to the patient
during the EMS Visit has to be recorded. The type of Treatment and the date/time
it was done are stored.

Every possible Diagnosis is identified by an ICD9 Code. The svstem also
records if the diagnosis is considered or not an injury. if only a specific Body Region
applies to that diagnosis and the Macro Diagnosis to which it belongs. The possible
Diagnosis Modifiers that apply for a particular diagnosis are also stored. During the
EMS Visit the patient’s condition is assessed. Each instance of the class General
Assessment includes: the date/time of the assessment. the Diagnosis. the Body
Region affected and a Diagnosis Modifier if needed.

We have in this diagram a problem similar to thar described in Section 5.2.7. In

0

- TN
27N\ —— \
e -7 ,r ” N
1 ~.) N
Ammmmm_o |BJ8UBY) | Eoi \ adA) \V
P N \ Apoey
, muoo 8001 , ot \ . \ RN ;
/— /\ { \ { N ~ }
) ™))
, sisoubeig /
_ ooeN / R % EmE_mE 1 \\
N R \\ - -
u -5\ — ~7 - /— I— \\C/
i { (sessey)) jelauay woy) R L
u . .
) Y / cm_mom)) N
/ \ 0 /
__Sisoubeig PN v 8 ! u ,\f fwoey <
AP uojBeyoy)oeds 0 } Ay BN
u 1 a4 \ '
‘, \. /0
slajjipous ,, uojjeuissp
e uojbe) /) ewg) /
u _ luswea)) -ty
- \ N1 - - - | - -
o~ = { -
{ _z / U u \ rA”
\ // ~ ~\) :‘
/| selpop e :V/,.\\ \ o uny T
. m_mocmm.o \ 1~ JeHPOW Juswssesse ¢ S TN VTR
o= U ! Juswssessy , \,
_ leleuen /
N T~ R
u \ /) L /_
1 U o \
-\ N \ h
\ - g \ I ® - \’ ‘ J h
f A /
_ (uopeuso)®-- { C { o[dIyaA
ylleeH u:_w :o__S;_Emm_.Eo_.mn_ wouy} (uorewojuy siisIA Wwoy) oS
ol y N
" :_v_ jo saz ¥ J ~— . _A., ISIANSW3 7
\ -) //,/ \\ v./y.\\
Agpazuoyine
uopewoguf alyoadg SWI

J

7/
)
Sl RE

1aquisy
Mo

~ Pr

e -

/\

on

.17: EMS Specific Informati

igure 5

F

this case a General Assessment can be associated with a Diagnosis Modifier
if and only if that modifier belongs to the set of modifiers valid for the Diagnosis
associated with the General Assessment. Introducing the same notation as hefore.
we would need to trace a dotted arrow from the assessment modifier to the modifiers
relationship. We do not present this notation in the diagram because the diagrams
were generated using Rational Rose which does not support this notation or free hand
drawing.

A restriction also exists for the region relationship. If General Assessment is
associated with a Diagnosis that could only be applied to a specific Body Region.
General Assessment could only be associated with that Body Region and no
other. In any other case no restriction applies. This restriction can not be represented
in the Booch notation. However. introducing a new notation for a problem that is so
specific to this problem domain does not make sense. Perhaps a good idea might be
to generalize the notation we introduced before so that it just represents a restriction
between relationships without specifving which that restriction is. This will tell the
person who is reading the diagram that there is a restriction and that the details
are in the Class Specifications. Instead of a dotted arrow. we can use a dotted line
with no arrow head between the two relationships with and “R™ adornment meaning

Restriction.

5.3 Summary

In this chapter a precise object-oriented model for the DIDP syvstem is described.
For each functional group identified in the requirements analysis. one class category
with its correspondent class diagram is defined. The motivations behind each design
decision and the influence of the implementation tools (C++/ObjectStore) in the
design are discussed. A side issue in this chapter is the introduction of new elements
to the Booch notation to deal with particular modeling problems. In the following

chapter the issues regarding the DIDP database implementation are discussed.

Chapter 6

Implementation Issues

The design presented in Chapter 3 is sufficiently general to be implemented on most
object-oriented DBMSs. In this chapter we describe the actual implementation of the
DIDP database. The implementation language is C++ [Str91. Lip91]. The specific
implementation of the language used is the Solaris 2.5. SPARCompiler C++ Version

4.0.1. The DBMS used is ObjectStore Version 4.0.

6.1 Overview

The database server functionality is provided though a group of libraries. There is one
library per class category created in the design. Each of these libraries implements
the classes of the class diagram associated with the correspondent class category.
The database server is organized as several libraries so that the application pro-
grams would only have to link-edit ! the libraries they need. The general library has
to be link-edited by every application program as it provides the implementation of
basic and extended types. and classes that are used by most of the other libraries. Un-
fortunately. the idea of only link-editing some of the libraries does not work because
of the way ObjectStore manages relationships. ObjectStore always needs to have the
implementation of both classes that are related in order to link-edit a program. Since
the classes in the general library have relationships with classes in almost every other

library. and since the general library is always link-edited. this means that we also

‘Link-edit is the process by which several files of machine code are combined to form a single
program. These files may be the result of several different compilations. and one or more may
be library files of routines provided by the system and available to any program that needs them
[ASU88].

e
[

B S it 20 L oliad

#include <didp.hh>
void didplnit();
int main(int, char **argy)
{
didplnit();
os_database *dbl=o0s_database::open(getenv("'DB"));

OS_BEGIN_TXN(tx1, 0, os_transaction::update)

OS_END_TXN(tx1)

dbl—close();
return 0;

Figure 6.1: Sample application program

need to link-edit every other library related to it. Thus. all the libraries have to be
link-edited to every application program that uses the DIDP database server.
Figure 6.1 shows a sample application program that uses the services of the DIDP
database server. Three important things have to be noticed. First. every application
program that uses the DIDP libraries has to include the didp.hh header. Second.
the first statement in the program has to be the call to the function didp/nit().
which performs the general initialization necessary to use the libraries and creates the
database if it does not exist. Third. the path to the location of the database to be used
by the application program has to be specified in an environment variable called DB.
The didpInit() function checks if an ObjectStore database exists in the DB location.
and if it does not. it creates a new one. The application programmer is responsible
for opening/closing the database and for defining the transaction boundaries of the

application. For details on how transactions work in ObjectStore see {Obj95].

OS_BEGIN_TXN(create_dictionary,0,0s_transaction::update)

if ({(dbl—find_root("Didproot"))) {
dbl—create_root("'Didp_root")
—rset_value(&os_Dictionary<String,void*>::create(db1,200,
os_Dictionary<String,void*>::signal_dup_keys |
os_Dictionary<String,void*>::pick from_empty_returns_null));

}
OS_END_TXN(create_dictionary)

Figure 6.2: didplnit(): how the database root is created

6.2 Database Roots and Extents

With ObjectStore. any C++ object can be made persistent and handled the same way
as transient objects. Once persistent. an object can be accessed either by navigation
from other persistent objects or by giving it a persistent name. These names are
called database roots. or entry points.

The set of all objects that belong to a class is called the ertent of the class.
ObjectStore does not automatically maintain the extents of classes: theyv have to be
maintained manually. Extents are essential for queries which search over a particular
class. The DIDP database server maintains the needed extents automatically as
persistent parameterized sets.

Once an extent is created there must be a mechanism to locate it. That is why
each extent is usually associated with a database root. In the DIDP database. there
are 138 classes and extents of 50 of them have to be maintained. This poses a
problem since ObjectStore recommends not to have more than 10 database roots
because of performance reasons. The problem is solved in the DIDP database using
a dictionary as the only database root. The key element of the dictionary is a String
that represents the name of a class, and the second element is a pointer-to-void that

points to the persistent parameterized set that represents the extent of that class.

<

The darabase root and the dictionary are created when the database is tirst created
in the didpInit() function (see Figure 6.2). No duplicate values are allowed in the key
element of the dictionary so that every class has one and only one extent.

With this approach, the extent of any class in the schema can be found simply by
retrieving the database root, called Didp_root, and looking into the dictionary for the
name of the class. Each class is responsible for creating its own extent and adding it
to the dictionary. Also. every class that maintains its extent should provide a static
method that returns this extent. A sample method for retrieving the extent of a class

called ClassName is shown in Figure 6.3.

6.3 Basic and Extended Types

The design assumes the existence of certain basic data types. Some of these types
are provided by C++. others by ObjectStore and others had to be implemented.
The tvpes Int. Unsigned Int and Real are implemented using the C++ int. un-
signed int and double types respectively. The type Bool is implemented using the
ObjectStore os_boolean type.

Date. Time and String had to be implemented. Date represents any date
between 1.1.1753 and 31.12.9999. Time represents any point in time starting at
1.1.1902 at 00:00:00 hours. It considers day time savings and the different time
zones. String represents anv character string. Each of these classes provides a
group of constructors. print methods. a method indicating if the object is null. a
set of arithmetic operators and specific methods related to the class. The default
constructors for Date and Time create the current date and time respectively. The
default constructor for String creates an empty character string. Date provides a
validation method that returns true if the parameters passed are valid for creating a
date. or false if not. If invalid parameters are passed to the constructors a null date
is created.

The ertended tvpes Age. Pname and Address are implemented similar to the
basic data types. Theyv provide a set of constructors. print methods. a method in-
dicating if the object is null. a set of arithmetic operators. one or more validation

methods for the constructor parameters and specific methods related to the class. If

(VA
[\

os_Set<ClassNamex>x* ClassName::getExtent(os_database *db1)

{

//Check if the database exists and is open
assert(dbl—is_open());

// Retrieve the database root

os_Dictiorary<String,void*>= DidpExtents =
(os_Dictionary<String,void*>x)
dbl—find_root("Didp root")—get_value();

// Retrieve the extent of the class
os_Set<ClassName=> = TheExtent = (os_Set<ClassNamex>=)
DidpExtents—pick(""ClassName");

7/ If the ~vtent does not exist, create it
if (!TheExtent) {
os Set<(lassNamex>4& extent =
os_Set<ClassName=>::create(dbl,
os_collection::pick _from_empty_returns_null
os_collection::maintain_cursors);
DidpExtents—insert("ClassName", &extent);
TheExtent = &extent;

}

// Return the extent of the class
return T heExtent;

Figure 6.3: A method for retrieving the extent of a class

~6

invalid parameters are passed to the constructors a null object is created.

6.4 The Class Interfaces

Every class in the DIDP database, except the basic and extended types described
in the previous section, has a similar interface. Obviously, each class has specific
needs and thus specific methods. but there are many commonalities among the class
interfaces. In this section we describe this common interface and the motivation

behind each implementation decision.

6.4.1 Object Creation and Validation

When a constructor of a class is invoked in C++, the memory needed by the object
is already allocated. that is. the object is already created. ObjectStore overrides the
new method provided by C++ so that the objects that belong to classes marked as
persistent are created in persistent memory (i.e. the database). This means that by
the time a constructor is called. there is an object created in the database. In order
to maintain consistency in the DIDP database. the parameters passed to initialize
the attributes of the object need to be validated to ensure that the created object
has values that do not put the database in an inconsistent state. One solution might
be to return a success/failure code so that the programmer deletes the created object
if it is inconsistent. This would be a simple but not an efficient solution. Anyway.
C++ does not allow constructors to return any value. The application programmer
would have to inspect the object to see whether or not it consistent. This means that
the application programmer should know the validation procedures for each class.
and thus. the advantages of encapsulation of object-oriented programming would be
useless. Another solution is to provide a static validation method. The program-
mer would have to invoke the validation method and according to the result decide
whether to invoke the new method or to display an error message. In this case the
programmer does not need to be aware of the validation procedure but he/she is still
in charge of maintaining the consistency of the database. The programmer can create
an inconsistent object and put the database in an inconsistent state on purpose or

by mistake. It is preferable to remove this responsibility from the programmer. For

Color= Color::insert(os_database =dbl, const String& colorname)
{
// Check if the database exists and is open
assert(dbl—is_open());

// Validated the parameters
if (Color::valins(dbl,colorname) # OK)
return NULL;

// Creates and initializes the object

Color xelement = new(dbl, Color::get_os_typespec())
Color(colorname);

assert(element # 0);

// Inserts the new object in the extent
os_Set<Colorx> *extent = Color::getExtent(dbl);
extent—insert(element);

// Returns a pointer to the new object
return element;

Figure 6.4: An insert() method for the class Color

this reason. in order to create objects in the DIDP database. every class provides a
static method called insert(). This is the only way to create objects in a class. as
the class constructors are hidden as protected methods. The insert/) method has as
parameters a reference to the database in which the object is going to be created and
the values necessary to initialize the attributes of the object. If the database exists
and is open. and the values are valid. the object is created (i.e. the new method and
constructor are invoked). If the class maintains its extent. the object is also added to
the class extent. The insert() method returns a pointer to the created object. If no
object was created because the validation failed. it returns a null pointer.

The problem with this approach is that if there is an error and the insert returns

a null pointer. the programmer would not know what the problem was. If the insert()

S
7

Error= Color::valins(os_database *db1, const String& colorname) |
{ :
// Check if the database exist and is open l

. |
assert(dbl—is_open());

// Check that the parameter is not null |
Error xerr = NULL; :
if (colorname == "") {

err = new Error(NULLVAL, INS, "ColorName");

assert(err # 0);

return err;

}

// Check that the color is not already created

if (Color::exists(dbl,colorname)) {
err = new Error(DUPLICATED, INS, "ColorName");
assert(err # 0);
return err,

}

// Returns an Ok code
return NULL;

Figure 6.5: A valins() method for the class Color

method returns an error code. the programmer would not have a pointer to the created
object and would not been able to manipulate that object without having to query
the database to find the object. The solution is to provide a static method called
valins() for every class. whose return tyvpe is a pointer to Error. This method has
exactly the same parameters as the insert method and does the validation of the
parameters. If an error is found. it creates an instance of the class Error and returns
a pointer to it. if not. it returns a null pointer.

Every possible error is codified. Every instance of Error stores the ErrorType.
the Operation that caused the error (i.e. insert, modify, delete) and the Attribute for

which the invalid value was intended to. It also provides a printLine(} method that

9

the application programmer could use to show the error to the final user. Figures 6.}
and 6.5 show the insert() and valins() methods for the class Color.

With these two static methods we ensure the consistency of the DIDP database
and free the application programmer to concentrate on the semantics of his/her pro-

grams instead of taking care of the consistency of the database.

6.4.2 Object Deletion

Problems similar to those found in object creation were found for object deletion.
When an object invokes its destructor. that object is deleted. In order to maintain
consistency in the DIDP database. we need to be sure that no object is pointing to the
object we want to delete. The problem is not dangling pointers. ObjectStore takes
care of that assigning null to the pointers that are pointing to the deleted object.
The problem is the logical consistency of the database. For example. every injury
is uniquely identified by a Body Region and an ICD9 Code. If after creating an
instance in Injury we delete the ICD9 Code that is associated with it. the injury
definition would be incomplete and inconsistent. as it must be associated with an
ICDY code. and thus the whole database would be in an inconsistent state. Because
this validation must be made before deleting the object. it can not be made in the
class destructor. as once the destructor execution starts there is no way to cancel
the deletion operation. For this reason. in order to delete objects from the DIDP
database. every class provides a static method called erase(). This is the only way to
delete objects from the database as the destructor of the class is hidden as a protected
method. If an error is found during the validations. an Error object is created and a
pointer to it is returned. If no error is found. the object is deleted (i.e. its destructor

is invoked) and a null pointer indicating that the operation was successful is returned.

6.4.3 Attribute Retrieval and Modification

Everv attribute of every class is private. This means that no method/program can
access the attributes of any class except through its interface. Every attribute that
a class wants other classes/programs to see has a getAttribute Vame() method that
returns the attribute value. Also. every attribute that the class allows to be modified

has a modAttribute Vame() associated. This modification method validates the new

40

value before modifving the attribute in the database. If an error is found during the
validation. an Error object is created and a pointer to it is returned. If no error is
found. the new value is assigned to the attribute and a null pointer indicating that

the operation was successful is returned.

6.4.4 Classes with Extent

We can divide the classes in the DIDP database into two categories: the Passive
classes and the Active classes. Passive classes are those classes whose instances rep-
resent things from the real world that have no relevance in the system unless they
are referenced by an object that belongs to an Active class. The extents of the Pas-
sive classes must exist before the system can be used. For example. for every native
patient. the band to which he/she belongs to has to be specified. Each instance of
the class Band represents a different native band. When an instance of Patient is
created to represent a native patient. the object that represents the Band to which
the native belongs to has to exist in order to reference it from the Patient object.
The native bands by themselves have no relevance to the system. but determining
which band each patient belongs to. is relevant. Band is a Passtve class and Patient
is an Active class.

The extent of everv passive class and the extents of the classes Patient and
RunlInfo are maintained by the DIDP database server to facilitate queries. Every
other class can be accessed navigating through other objects.

All the classes whose extents are maintained have four standard static methods:
getErtent(). erists(]. get(). and printClass(). getErtent() returns a pointer to the
set that contains pointers to all the objects that belong to the class extent. ezists(,
returns true if an object that contains the values passed as parameters exists in the
class extent and false otherwise. get() returns a pointer to the object that contains
the values passed as parameters if any exist in the class extent. If none is found. a
null pointer is returned. printClass() prints all the objects in the extent to the output

stream passed as a parameter.

91

6.4.5 Relationships

Relationships were implemented using the mechanisms ObjectStore provides. Ob-
jectStore supports One-to-One, One-to-Many and Many-to-Many relationships. It
represents relationships using pointers and collections. One-to-One relationships are
represented by a pointer on each side. One-to-Many and Many-to-One relationships
are represented by a collection from the one side and a pointer from the many
side. Many-to-Vany relationships are represented by collections on both sides. Ob-
jectStore relationships ensure referential integrity 2 for participating objects. When
code modiﬁes-one side of the relationship the other side is automatically updated by
ObjectStore therefore guaranteeing referential integrity. Although this integrity can
be maintained by the programmer via explicit code in the applications. ObjectStore
takes care of it saving time and preventing programming errors.

The DIDP database scrver keeps the relationship members of the classes private.
Every class provides the correspondent gef() methods for those relationships members
that want other classes/programs to see.

One-to-Many and Ma: -to-One relationships are always created by passing a
pointer to an object of the ~lass on the one side to the insert() method of the object
in the many side. For example. in order to create an instance of PatientAllergy.
a pointer to Patient is required in its insert() method. This method will invoke the
constructor of the class and will create the link between the two objects. ObjectStore
takes care of the inverse relationship. This means that a pointer to the Patien-
tAllergy object will be automatically inserted in the collection maintained by the
Patient object to represent the relationship. If the PatientAllergy object is later
deleted. ObjectStore will remove the pointer from the collection in Patient so that
no dangling references are left.

One-to-One relationships work in a similar manner. One of the classes in the
relationship is chosen to require a pointer to an object in the other class in its insert()
method. The rest of the mechanism is the same as the one described above.

When a Many-to-Many relationship exists between two classes. only one of the

classes in the relationship is responsible to create the links between the objects of the

p -
“The term integrity refers to the accuracy or validity of data. To ensure referential integrity
means to ensure that no cbject has a reference (i.e. pointer) to a non-existent object.

92

two classes. For this purpose. this class provides an addClassName/(j and a remoce-
ClassName() methods that create and remove the relationship between the two. For
example. Patient Valuables has a Many-to-Many relationship with Valuable. Pa-
tient Valuables provides two methods called addValuable() and removelaluable()

that create and delete the links between these two classes.

6.4.6 Printing Methods

Every class provides a printLine() and a static printSet() method. printLine() prints
the object to the output stream passed as a parameter. The static method printSet(
prints all the objects in the set passed as a parameter to the output stream indicated.
The set passed as a parameter is a set of pointers to objects that belongs to the
class to which the printSet() method belongs to. printSet() is used to implement the

printClass() method.

6.5 Other Issues

In this section we describe some particular problems found during implementation
due to the implementation tools used (i.e. C++/ObjectStore) and how they were

solved.

6.5.1 The Visits Hierarchy Problem

The visits inheritance hierarchy is created to group all the attributes and behavior that
the EMS Visit. ER Visit. OR Visit and ICU Visit classes have in common. As
depicted in Figure 6.6. Patient Visit has a One-to-Many relationship with the Unit
Visit class. This means that every patient can visit many units during his/her visit to
the hospital/EMS. As described before. a One-to-Wany relationship is implemented
using a pointer on the many side and a set of pointers in the one side. Thus. every
ohject that belongs to ER Visit. OR Visit. EMS Visit and ICU Visit ® has a
pointer to one object of Patient Visit. and every object of Patient Visit has a set

of pointers of type Unit Visit.

3These are the only non-abstract classes in the hierarchy. and thus. the only ones that can be
instantiated.

93

T ———r TN
// Patient Visit ™ / UnitVisit
s A n'/
N P'_—'\
~. ‘ ~
\ — -
\\, -7 ?z/,
'\ —— -~
/ Hospital Gral ™,
il Unit Visit =/
N
\ -)
‘\W’//,R , /\\
4 " ’ EMS Visit
/\\ s \ ~o
y Hospltal Heg N o
s Unit Visit / | T
\ \
\
/ \
o~ N ~—
T - e -= OR Visit
./ ERVisit " /e visit ™™ , /
7 . ./ =
~o ~o IS
! — — N T
// - N // - -

Figure 6.6: The visits hierarchy

The problem is that we only know that Patient Visit has a set of pointers of
tvpe Unit Visit. but we do not know at runtime if a pointer is a pointer to an object
of tvpe ER Visit. ICU Visit. OR Visit or EMS Visit. This happens because
C++ objects do not know their type at runtime.

One solution would be to create four relationships: one for ER Visit. one for ICU
Visit. one for OR Visit and one for EMS Visit. Although this approach is used for
the spinal precautions (see Section 5.2.10). it can not be used in this context because
there are some methods in Hospital Reg Unit Visit. Hospital Gral Unit Visit
and Unit Visit that need to know to which Patient Visit the object belongs to.
and if the relationship is in the leaves of the hierarchy the superclasses are not aware
of it. For example. in the Hospital Reg Unit Visit we need to validate that the
date/time that the patient enters/leaves a unit is between the date/time the patient

enters/leaves the hospital. and this data is stored in Patient Visit.

44

To solve this problem an extra attribute is added to Unit Visit called {'ni. This
attribute indicates to which class the object belongs to and is initialized with the
correct value when the object is created. Although the attribute is private. the class
interface provides a getUnit() method that returns its value. Each time a pointer is
retrieved from the set in Patient Visit, the programmer only has to ask to which
class the pointer belongs and cast the pointer to the correct type. In order to avoid
this inconvenience to the application programmer, the Patient Visit class provides
four methods called getErVisit(). getlcuVisits(), getOrVisits() and getEmsVisits()
that take care of the casting and return the set of ER Visit. ICU Visit. OR Visit
and EMS Visit respectively. With this approach this implementation problem is

completely hidden from the application programmer.

6.5.2 Static Functions in C++

Many static methods are used in the DIDP database schema (e.g. insert(). getEx-
tent(). etc.). The implementation of many of these methods are very similar from one
class to the other.

For example. the implementation of getErtent() is exactly the same for every class
except that there are some os_Set declarations in its body that need a parameter
indicating the type of the objects in the set. This parameter should be the name of the
class to which the method is bound at runtime. For example. for Color::getErtent().
the os_Set declarations would look like: os_Set<Color*>. Unfortunately there is
no way to do this in C++ static functions.

The other problem posed by static functions in C++ are the calls to other static
functions. Assume that there are two static methods MethodA{) and MethodB()
that belongs to ClassX. where MethodA () invokes MethodB() within its body. Fur-
ther assume that ClassX has a subclass. ClassY. that redefines MethodB(). When
ClassY::Method4 () is invoked. we expect this method to invoke the redefined MethodB().
Unfortunately. this is not the case. The MethodB() from ClassX is invoked.

Since the implementation of many of these methods are so similar. duplicating
the code is not an efficient solution. Any change that has to be done to one of these
methods in the future would mean changing every implementation in every class. In

order to solve this problem we used macros. Thus. although every class has to declare

95

Rt et A

the method in its header. there is a unique implementation. Among the functions
implemented as macros. we have: getEztent(). get(), exists(). printClass(). printSet;)
and insert(). This approach saves hundreds of lines of code and simplifies the future

changes to the methods.

6.5.3 Cascade Deletion

Every time a Patient object is deleted from the database, we also want to delete all
the information related to him/her. That means that all the objects that belong to
the Patient object have to be deleted as well. ObjectStore provides a mechanism that
automatically takes care of this issue. The problem is that it requires the destructors
of the classes to be public. As explained in Section 6.4.2, the DIDP database server
keeps the destructors of the classes protected. For this reason, this ObjectStore facility
is not used. and the cascade deletion was implemented manually. Each erase() method
invokes the erase(} methods of the objects it owns before invoking its own destructor.

and thus achieving the required cascade deletion.

6.6 Summary

In this chapter the implementation details of the DIDP database server are discussed.
An explanation on how the libraries that support the database server functionality
are organized. and a sample on how the application programs that use the services
of the DIDP database server should look like. are provided. The solution of the
database root problem and the handling of class extents is also explained. Some
details on the implementation of basic and extended types are discussed. Also. a
detailed description of the class interfaces is provided. Some problems found due to
the implementation tools used. and how they were solved are also mentioned at the

end of the chapter.

6

R e A A e A EE A St

Chapter 7

Conclusions and Future Work

This thesis describes the analvsis. design and implementation of an object-oriented
database server for the Dynamic Injury Data Project (DIDP). This server provides
persistent storage of the data. ensures its integrity, and provides a mechanism for the
applications to interact with the data.

The major contributions of this thesis can be summarized as follows:

¢ The analysis of the requirements necessary to develop an object-oriented database
server for the the DIDP system. The constraints specific to the problem domain

were identified during this process.

e The definition of the minimum data sets for injury surveillance in each of the

hospital units and the emergency medical services.

e The definition of the initial system and data processing architectures for the
DIDP svstem. Since the database server is designed and implemented as in-
dependent as possible from these architectures. it could be easily extended or

modified in the future if needed.

¢ The design of a detailed object-oriented model for the DIDP database. The
model is sufficiently general to be implemented in any object-oriented DBMS.
The documentation for the model is stored in Rational Rose so that it could be

easily modified if changes are needed.

o The introduction of new elements in the Booch's notation to deal with particular

modeling problems found during the model definition.

th

e The design and implementation of the database server mechanisms to ensure

the consistency and encapsulation of the data.

e The successful implementation of the database server in the form of a library

to enable access of application programs and end users to the data.

This work is only the initial step towards the development of the DIDP system.
In the future. there are a number of modifications and enhancements that can be

introduced:

e Multimedia data.

The current versior. of the database server only supports text and regular for-
matted data. Nevertheless. the database server is designed considering the
requirements needed to include multimedia data. For example, the complex
nature of multimed a data was considered when choosing the database model:
that is one of the reasons for selecting an object-oriented approach. In the fu-
ture. multimedia data such as the images ordered for the patients (e.g. X-rays.
CT Scans) and video -f the scenes of the incidents. could be easily added to the

database.

¢ Global positioning system (GPS).
This feature will allow to exactly locate where an injury occurred. There are
many ways of collecting the GPS information. In urban settings. the system
could ask for the address where the incident took place and translate this address
into geographic coordinates. In rural areas where an address could not he
entered. GPS units could be used to identify the location. There are two ways
of implementing the use of GPS units. One is to install hand-held GPS units
in the ambulances and have the EMS personnel take note of the location of
the injury and enter the information into the computer. The second one is
to interface the GPS units directly with the computer to entire eliminate the
manual entry of the GPS information. Both have their pros and cons. The first
solution is easier to implement and less expensive, but could introduce errors.

The second solution is more expensive but prevents errors in entering the data.

95

. T AT Lyt e AEEWEIRE T G 1T A e L au

Mk ash bt L LN TL B L P T

Despite the solution adopted. GPS information will be very useful in developing

injury intervention strategies.

Visual query interface.

A visual query interface should be developed in order to allow end users to
perform queries in an easy and friendly manner. In particular, the support of
content-based queries of images and video would open endless possibilities in
the study of injuries. For example. the automatic recognition of certain patterns

in an X-ray could help with the diagnosis of certain conditions.

Performance optimization.

In the current version of the database server. ObjectStore clustering and index-
ing is not considered. as the type of queries that would be regularly performed
is not vet identified. During the pilot testing of the database. access patterns
should be studied in order to add optimization mechanisms to improve perfor-

maripce.

Improvement of the audit mechanism.

The audit mechanism provided by the current version of the database server has
several limitations. First. only the last user that makes a modification on the
object is recorded instead of having detailed information of the evolution of the
operations. Second. when an object is modified. the older values of the object
are lost. It could be useful to know not only that a modification was done.
but exactly which changes were made to the data. The last problem is that
when an object is deleted. all the information including the audit information is
lost. A solution might be to make only a logical deletion of the object. marking
it as deleted. and offering the database administrator a process to physically
delete the objects once that the audit information has been used. A more
comprehensive audit mechanism has to be implemented in a future version of
the database server in order to solve these problems. The complexity of such a

svstemn will be determined by the need of the DIDP svstem to audit its data.

Security features.

Maintaining patient confidentiality is a very important issue. In order to limit

94

WA ey, 4

access to the database server a fingerprint mechanism will be implemented.
Access will then be monitored by the system requiring personnel to have their
fingerprints electronically digitalized. A fingerprint scanner will verify the user

identity. Several levels of security will be provided for different users.

Voice data collection.

Although using hand-held pen-based computers greatly simplifies the data col-
lection. there are environments where voice data collection could be useful. An
example might be the data collection in the EMS where the paramedics could
collect the data at the same time that they are providing treatment to the pa-
tient. The data could be “dictated™ to the computer using voice commands
and key words that the computer would have pre-stored. The use of voice data

collection could greatly improve the collection of data in specific environments.

Direct connection of medical equipment to the DIDP system.

Instead of having the nurses collecting data from devices that are connected
to the patients and entering manually these data into the DIDP database. the
devices connected to the patient could interface with the DIDP svstem sending

the necessary changes in the patients’ condition automatically when needed.

Treatment guidelines.

Instead of having the common practices for injury treatment loaded into the
DIDP database. the database server should be able to retrieve the needed in-
formation from existing repositories. Once an injury is diagnosed. the server
will be able to show the doctors the latest procedures that have to be followed
for treating that particular injury. This interconnection can be accomplished

either by simple triggers or by sophisticated Al-based learning techniques.

100

Bibliography

[ABD+89] Atkinson M., Bancihon F.. DeWitt D.. Dittrich K.. Maier D. and

[ASUSS]

(BD9O]

[BM93]

[Booch93;

'ENRO]

[Evalss]

[FSHYL!

[Fra97]

Zdonik S.. “The Object-Oriented Database System Manifesto™. Proceed-
ings of lst International Conference on Deductive and Object-Oriented

Databases (DOOD). Kyoto. Japan. December 1989.

Aho A.V.. R. Sethi. J.D. Ullman. “Compilers. principles. techniques and
tools™, Addison-Wesley. 1988.

Ball M.J. and Douglas J.V.. “Healthcare Informatics™. Healthcare Infor-

matics Magazine. May 1990.

Bertino E. and L. Martino. “Object-Oriented Database Svstems: Con-

cepts and Architectures”. Addison-\Vesleyv. 1993.

Booch G.. =Object-Oriented Analysis and Design with Applications™.

Benjamin/Cummings. 1993.

Elmasri R.. S.B. Navathe. “Fundamentals of Database Systems™. Ben-

jamin/Cummins. 19389.

Centers for Disease Control. “Guidelines for Evaluating Surveillance Sys-

tems”. MMWR. Vol.37. No.S-5. May 1988.

Francescutti L.H.. L.D. Saunders and S.M. Hamilton. “Why are there
so many injuries? Why aren’t we stopping them?”. Canadian Medical

Association Journal. 144(1). pp.57-61. 1991.

Francescutti L.H.. “Injury Control: Are you accountable?”, The Canadian

Journal of CME. pp.109-119. January 1997.

101

(GRT+94} Garrison H.G.. C.W. Runyan. J.E. Tintinalli. C.\W. Barber. W.C. Bor-
dlev, S.W. Hargarten. D.A. Pollock and H.B. Weiss. “Emergency De-
partment Surveillance: An Examination of the Issues and a Proposal for

a Nation Strategy”, Annals of Emergency Medicine. 24(3). pp.849-833.
1994.

[GS90] Greenes R.A. and Shortliffe E.H.. “Medical Informatics: An Emerging
Discipline with Academic and Institutional Perspectives”. Journal of the

American Medical Association 263(8):1114-1120. 1990.

[Jac92] Jacobson I.. “Object Oriented Software Engineering. A Use Case Driven

Approach™. Addison-Wesley. 1992.

[Lip9l] Lippman S.B., “C++ Primer”, 2nd Edition, AT&T Bell Laboratories,
December 1991.

[Macs4 Mackenzie E.J.. ~Injury Severity Scales: Overview and Directions for

[

Future Research™. American Journal of Emergency Medicine. Vol.2. No.6.
pp-537-549. 1984.

[Obj95] ObjectStore Release 4.0. Object Design Inc.. C++ API User Guide. June
1995.

[0Obj97] Object Design. Inc. Home Page. http://www.odi.com/AboutObjectDesign/

[PM39] Pollock D.A. and P.W. McClain. ~Trauma Registries: Current Status
and Future Prospects™. Journal of The American Medical Association.

Vol.262. No. 16. October 1989.

[RBBY2] Runyan C.W.. J.M. Bowling and S.I. Bangdiwala. “Emergency Depart-
ment Record Keeping and the Potential for Injury Surveillance™. The

Journal of Trauma. Vol.32. No. 2. 1992.

[RRTB92] Ribbeck B.M.. Runge J.W., Thomason M.H.. Baker J.\WW.. “Injury Surveil-
lance: A Method for Recording E Codes for Injured Emergency Depart-

ment Patients”. Annals of Emergency Medicine. 21:37-40. January 1992.

102

(Rose95]

[Rose97]

[Sch96]

[Str91]

[TC94]

[WFP96]

[WFPP95!

WG4

Rational Rose Release 2.7. Rational Software Corporation. [sing Rational

Rose/C++ documentation set. May 1993.

Rational Software Corporation Home Page.

http://www.rational.com/pst/products/rosecpp.html

Schone M.. “A Generic Type System for an Object Oriented Multimedia
Database System™, Master's thesis, University of Alberta. Department of

Computing Science. 1996.

Stroustrup B.. “The C++ Programming Language™. Addison-Wesley.
1991.

S.M. Teusch and R.E. Churchil (editors). *Principles and practice of pub-

lic health surveillance™. Oxford University Press, 1994.

Williams J.M.. P.M. Furbee and J.E. Prescott. “Development of an Emer-
gency Department-Based Injury Surveillance System™. Annals of Emer-

gency Medicine. 27:1. January 1996.

Williams J.M.. P.M. Furbee. J.E. Prescott and D.J. Paulson. "The Emer-
gency Department Log as a Simple Injury Surveillance Tool”. Annals of

Emergency Medicine. 25:5. Mayv 1995.

White [.. M. Goldberg. “Using the Booch Method: A Rational Ap-

proach™. Benjamin/Cummings. 1994.

103

—— v -

Appendix A

Class Specifications

The following are the class specifications for the DIDP model. The classes are grouped
by category and inside each category they are shown alphabetically. The order of the

categories is:
1. Incidents and Persoinel
2. Central Nervous System Assessment
3. Visits Information
1. Other Assessments
5. OR Anaesthesia and Procedures
6. Gastrointestinal Assessment
. Diagnostic Images and Lab Exams

. Patient Identification and Health Information

.

9. Medications. Antibiotics and Ivs

10. Invasive Therapy. Instrumentation and Fluids
11. Vital Signs Assessment

12. EMS Specific Information

13. Respiratory Assessment

14. General Classes

10+

Fe oA RER e S Tt

Class name:

Critical Incident

Category: Incidents and Personnel
Documentation:)) .

Represents a critical incident that might occur to a patient.
Export Control: Public
Cardinality: n
Hierarchy: . .

Superclasses: Descripted Object
State machine: No .
Concurrency: . Sequential
Persistence: Persistent
Class name: .

Critical Incident Occured
Category: Incidents and Personnel
Documentation: .)

Represents a critical incident that occured to a patient.
Export Control: Public
Cardinality: n
Hierarchy:]

Superclasses: Security
Associations:

Critical Incident Reason incident reason
We must validate that the reason chosen is in the set of reasons allowed for
the critical incident chosen.

Critical Incident incident

Private Interface:)
Has—A Relationships:)
Time Timelncident
Date/Time of the critical incident.

State machine: No)
Concurrency: . Sequential
Persistence: Persistent

Class name: .

Critical Incident Reason
Category: Incidents and Personnel
Documentation: . .

Represents a reason why a critical incident might occur.
Export Control: Public
Cardinality: n
Hierarchy: .)

Superclasses: Descripted Object
Associations:

Critical Incident reasons
State machine: No i
Concurrency: Sequential
Persistence: Persistent

105

Class name:

Personnel Contacted

Category: Incidents and Personnel
Documentation: . . .
Represents a personnel contacted during a patient’s visit.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:

Personnel Type

Private Interface:)
Has-A Relationships:
Pname Name
Name of the person contacted.

Time TimeCalled
Date/Time the person was called.

Time TimeContact)
Date/Time the person did the contact. It must be >= TimeCalled.

State machine: No)
Concurrency: . Sequential
Persistence: Persistent
Class name:
Personnel Type
Category: Incidents and Personnel
Documentation: .)
Represents a type of personnel in the hospital.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object
State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:
CNS Assessment
Category: Central Nervous System Assessment
Documentation: .
Represents an assessment of a patient’s central nervous system.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Public Interface:
Has-A Relationships:
Reflexes
Movements

Private Interface:
Has-A Relationships:

106

String Comments
Comments on the CNS assessment.

Time TimeAssessment
Date/Time of assessment.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Cervical Prec
Category: Central Nervous System Assessment
Documentation: . .
Represents a cervical spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Spinal Prec

Private Interface:
Has-A Relationships:

Bool HardCollar)] .
Was a hard collar used for the cervical precaution of the patient?
Bool HeadUp
Was the patient’s head of bed up 30 degrees?
Bool NoSideLying .)
Was the patient prevented to lie on one side?
Bool SandBags .) .
Were sand bags used for the cervical precaution of the patient?
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
ICP Control
Category: Central Nervous System Assessment
Documentation: .)
Represents an intracranial pressure probe inserted to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superciasses: Security

Public Interface:
Has-A Relationships:
ICP Reading

Private Interface:
Has-A Relationships:
Time Timelnserted
Date/Time the probe was inserted.

Time TimeRemoved .
Date/Time the probe was removed. It must be >= Timelnserted

107

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: .
ICP Reading
Category: Central Nervous System Assessment
Documentation:)
Represents an intracranial pressure probe reading of a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Public Interface:
Operations:
Cpp ()

Private Interface:)
Has-A Relationships: . .
Enum DrainManipulation
Indicates the drain manipulation mode. The possible values are: Open
intermittent, Open continously.

Unsigned Int lcpReading
Intracranial pressure reading. Values: 0-120 Hg.
Unsigned Int MapProbe

Mean arterial pressure measured through the probe. Values: 0-200 Hg

Time TimeAssessment
Date/Time of assessment. It must be between the D/T the probe was
inserted and D/T the probe was removed.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Lumbar Prec
Category: Central Nervous System Assessment
Documentation:)
Represents a lumbar spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Spinal Prec
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Movements
Category: Central Nervous System Assessment
Documentation:

Represents a movement assessment of a patient for one side of the body.

e A o TRl EEEION 2

Export Control: Public

Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has-A Relationships:
MovementTy Arm
Movement of the arm.

MovementTy Leg
Movement of the leg.

SideTy Side

Side of the body assessed.
State machine: No)
Concurrency:) Sequential
Persistence: Persistent
Class name:
Pain Assessment
Category: Central Nervous System Assessment
Documentation: .
Represents a pain assessment of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Body Region

Private Interface:
Has-A Relationships: o
String = Description
Description of the pain.

Enum_ Intensity)
Intensity of the pain. The possible values are: Light, Moderate, Severe.

Unsigned Int Severi
Severity of the pain. Values: 1-10.

Time TimeAssessment
Date/Time of assessment.

State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:
Reflexes
Category: Central Nervous System Assessment
Documentation:
Represents a reflexes assessment of a patient for one side of the body.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

109

Private Interface:
Has-A Relationships:
ReflexTy Ankle
Reflexes of the ankle.

ReflexTy Biceps
Reflexes of the biceps.

ReflexTy Knee
Reflexes of the knee.

ReflexTy Plantar
Reflexes of the plantar.

SideTy Side
Side of the body assessed.

ReflexTy Supinator
Reflexes of the supinator.

ReflexTy Triceps
Reflexes of the triceps.

State machine: No .
Concurrency:) Sequential
Persistence: Persistent
Class name:
Spinal Prec
Category: Central Nervous System Assessment
Documentation:)))
Represents a spinal precaution applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has—A Relationships:)
Time TimeApplied
Date/Time the precaution was applied.

Time TimeRemoved)
Date/Time the precaution was removed. It must be >= TimeApplied

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Thoracic Prec
Category: Central Nervous System Assessment
Documentation:)
Represents a thoracic spinal precaution applied to a patient.
Export Control: Pubilic
Cardinality: n
Hierarchy:
Superclasses: Spinal Prec
State machine: No

Concurrency: Sequential

110

Persistence:

Class name:

Cause

Category:
Documentation:

Persistent

Visits Information

Represents a cause that might produce an incident.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Private Interface:)
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

EMS Visit

Category:
Documentation:

Public

n

Descripted Object
String Ecode

E-code that corresponds to the cause. The picture is NNN.N where N is a
number between 0 and 9.

No
) Sequential
Persistent

Visits Information

Represents a visit of a patient to the EMS.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has-A Relationships:

Private Interface:
Has—-A Relationships:

Public
n
Unit Visit

Treatment Done

General Assessment

Run info

Ems Vital Signs

Next of Kin "authorizedBy o)
Person that authorized the transport or the treatment of the patient is s/he is
a minor or is unable to give consent.

String ~ DiagnosticCode .
Diagnostic code of the patient if the service uses them.
Strin InvoiceNo

Numger assigned to the trip in the dispatch log or number of the invoice
issued to patient.

String PCR
Patient Care Report Number. It can have up to 6 digits.

String ReasonForAmbulance .
Most important problem the patient describes.

Pname ReceivingPhysician .
Name of the receiving physician in the facility.

Enum Transfer . .
If patient was transported from one facility to another, indicates whether the

i1

RS bmmtaate o 4

patient was an in-patient (currently admitted into the facility) or an out patient
(not admitted). Values: None,In, Out.

B R e ek L B

State machine:
Concurrency:
Persistence:

Class name:
ER Visit

Category:
Documentation:

No

. Sequential
Persistent

Visits Information

Represents a visit of a patient to the ER.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:)
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n

Hospital Reg Unit Visit

Er Vital Signs

No)
Sequential

Persistent

Hospital Gral Unit Visit

Category:
Documentation:

Visits Information

Represents a visit of a patient to any unit in the hospital.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:]
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n

Unit Visit

Image Ordered
Lab Exam Ordered
Respiration Support
Airway Proc Done
Ventilator Control

njury
Musskel Assessment
Personne! Contacted
Critical Incident Occured
Antibiotic Given
Instrument Applied
Patient Output Fluid
Patient intaken Fluid
Cervical Prec

Thoracic Prec

Lumbar Prec

No

Sequential
Persistent

12

Hospital Reg Unit Visit

Category: Visits Information

Documentation:)
Represents a visit of a patient to any regular unit in the hospital.

Export Control: Public

Cardinality: n

Hierarchy: . .
Superclasses: Hospital Gral Unit Visit

Public Interface:

Has-A Relationships:
GU Procedure Done
Chest Exam
CVS Assessment
CNS Assessment
Gi Exam
Pain Assessment

Private Interface. .
Has—~A Relationships:

Time TimeEnterUnit
Date/Time the patient entered the unit.
Time TimelLeftUnit
Date/Time the patient left the unit. It must be >= TimeEnterUnit.
State machine: No
Concurrency: . Sequential
Persistence: Persistent
Class name:
ICU Visit
Category: Visits Information
Documentation:
Represents a visit of a patient to the ICU.
Export Control: Public
Cardinality: n
Hierarchy: . .
Superclasses: Hospital Reg Unit Visit

Public Interface:
Has-A Relationships:

ICP Control
Stool Assessment
Ostomy Assessment
lcu Vital Signs
State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:
Incident Info
Category: Visits Information
Documentation:)
Information related to the environment where a patient was injured.
Export Control: Public
Cardinality: n

Hierarchy:

Superclasses: Security
Associations:

Cause
Safety Device

Private Interface. .
Has-A Relationships:)
Enum Setting . . .)
Indicates if the activity being done when the patient was injured was being
done outdoors or indoors. Values: Outdoors, Indoors.

State machine: No .
Concurrency:) Sequential
Persistence: Persistent
Class name: =
Visit

Category: Visits Information
Documentation:

Represents a visit of a patient to the OR.
Export Control: Public
Cardinality: n
Hierarchy: . o

Superclasses: Hospital Gral Unit Visit

Public Interface:)
Has—-A Relationships:
Setup Info .
Patient Or Reading
Procedure Done
Pre Assessment
Or Vital Signs

Private Interface:.)
Has-A Relationships:
Pname Anaesthetist
Name of the anaesthetist.

Time EndAnaesthesia
Date/Time anaesthesia ended. Must be >= TimeAnaesthesiaStart.

Time EndOperation
Date/Time operation ended. Must be >= TimeOperationStart.

Time Star:Anaesthesia
Date/Time anaesthesia started.

Time StartOperation
Date/Time operation started. Must be >= TimeAnaesthesiaStart.

Pname Surgeon
Name of the surgeon.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name:

Patient Valuables

Category: Visits Information

114

Documentation:])]
Represents the valuables a patient had when s/he arrived to the hospital.

Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Security
Associations:
Valuable

Private Interface: .
Has—A Relationships:
Real MoneyAmount
Amount of money the patient had when s/he arrived to the hospital if any.

Pname PersonLeftWith
Name of the person to which the valuables were left with if any.

State machine: No .
Concurrency: . Sequential
Persistence: Persistent
Class name: . .

Patient Visit
Category: Visits Information
Documentation:) o

Represents a patient visit to the health system.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security

Public Interface:)

Has-A Relationships: _
WCB Claim
Social Service Info
Incident Info
Patient Valuables
Unit Visit

Operations:
Bmi ()

Private Interface:
Has—A Relationships:
Time Admission
Date/Time patient was admitted to the hospital.

Time Arrive
Date/Time patient arrived to the hospital.

Time Discharge
Date/Time patient was dishcarged from the hospital.

Unsigned Int HeightCm
Height of the patient in cm.

Time Left
Date/Time patient left the hospital.

Unsigned Int ~ VisitNo
Visit Number of the patient to the health system (i.e. EMS and/or Hospital).

Unsigned Int WeightKg
Weight of the patient in kg.

115

State machine: No

Concurrency: . Sequential

Persistence: Persistent

Class name: .
Safety Device

Category: Visits Information

Documentation:) . . o
Represent a safety device that a patient might have used during an incident.

Export Control: Public

Cardinality: n

Hierarchy: .)
Superclasses: Descripted Object

State machine: No

Concurrency: . Sequential

Persistence: Peisistent

Class name; .
Social Service Info

Category: Visits Information

Documentation:)
_In_forrréation needed by the social services for a patient if s/he receiving social assistance when
injured.

Export Control: Publ..

Cardinality: n

Hierarchy:
Superclasses: Security

Private Interface:
Has-A Relationships:
String SocialServiceNo)))
Social services number for the patient. The picture is ANNNNN, where A is a
capital letter and N is a number between 0 and 9.

Pname SocialWorker]
Social worker name associated with the patient.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: =~

Unit Visit
Category: Visits Information
Documentation:)

Represents a visit of a patient to any unit of the health system.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Public Interface:
Has-A Relationships: "

116

———

State machine:
Concurrency:
Persistence:

Class name:

Valuable

Category:
Documentation:

Medication given

No

Persistent

Sequential

Visits Information

Represents a valuable a patient might have when arrives to the hospital.

Export Control:
Cardinality:
Hierarchy:
Superciasses:
State machine:
Concurrency:
Persistence:

Class name:

CB Claim

Category:
Documentation:

Public

n

Descripted Object

No .
Sequential

Persistent

Visits Information

Represents a WCB claim. This type of claims are used for patients injured while working.

Export Control:
Cardinality:
Hierarchy:
~ Superclasses:
Private Interface:
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n
Security
String BusTelNo
Business telephone number of the person.
String Employer
Patient ’'s employer name.
String Occupation
Ocuppation of the patient.
String Sin
Social Insurance Number of the patient. If amlicable the Department of
Veteran'a Affairs Number or the Regimental Number.
No
. Sequential
Persistent

VS Assessment

Category:
Documentation:

Other Assessments

Represents an assessment of a patient’s cardiovascular system.

Export Control:
Cardinality:
Hierarchy:

Public
n

Superclasses: Security
Public Interface:
Has—A Relationships:
Cvs Pulse Assessment
Heart Assessment

Private Interface: .
Has-A Relationships:
String Comments
Comments on the CVS exam.

Enum Jvp .
Juglar venous pressure. The possible values are: Normal, Increased,
Decreased.

Time TimeAssessment
Date/Time of assesssment.

State machine: No .
Concurrency:) Sequential
Persistence: Persistent
Class name:
Cvs Pulse Assessment
Category: Other Assessments
Documentation:)
Represents an assessment of a patient's CVS pulse for one side of the body.
Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Security

Private Interface:
Has-A Relationships:
CvsPulseTy Brachial
Brachial pulse.

CvsPulseTy Carotid
Carotid pulse.

rohwn o WA RN e ®

CvsPulseTy Dorsalispedis
Dorsalispedis pulse.

CvsPulseTy Femoral
: Femoral pulse.

CvsPulseTy Posterotibial
Posterotibial pulse.

CvsPulseTy Radial
Radial pulse.

SideTy Side
Side of the body assessed.

State machine: No

Concurrency:) Sequential
Persistence: Persistent

Class name:

Heart Assessment

LI

Category: Other Assessments

Documentation:
Represents an assessment of a patient’s heart.
Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Security

Private Interface: .
Has~A Relationships:)
Enum Monitorl.ead . .
How the leads are applied to the patient in order to obtain the best
configuration of the ECG pattern. The possible values are: |, Il, 1ll, MLCI.

Bool Murmur
Is murmur present in the heart sound?

Bool Rub
Is there a presence of a rub sound?

Bool S1
Is sound S1 present?

Bool S2
Is sound S2 present?
Bool S3
Is sound S3 present?
Bool S4
Is sound S4 present?
State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name:
Injury
Category: Other Assessments
Documentation:
Represents an assessment of a patient’s injury.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Body Part

Private Interface:
Has-A Relationships:
Time TimeAssessment
Date/Time of assessment.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name:

Musskel Assessment

119

-

Category: Other Assessments
Documentation:)) ,
Represents an assessment of a musculo skeletal device applied to a patient.

Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security
Associations:

Musskel Device
Body Region

Private Interface: .
Has-A Relationships: .
Time TimeApplied .
Date/Time the device was applied.

Time TimeRemoved . .
Date/Time the device was removed. it must be >= TimeApplied.
Unsigned Int _ Weightkg
Weight used in the device in kg if applicable.
State machine: No)
Concurrency: . Sequential
Persistence: Persistent
Class name: .
Musskel Device
Category: Other Assessments
Documentation:
Represents a musculo skeletai device.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Anaesthetic History

Category: OR Anaesthesia and Procedures
Documentation:

Represents an assessment of the anaesthetic history of a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:
String Comments
Comments on the patient's anaesthetic history.

Bool FamilyHx)
Were there any anaesthetics problems in the family?

Enum PersonalHx

Personal anaesthetic history of the patient. The possible values are: No

120

grevious general anaesthetic, No {Jroblems previous general anaesthetic,

roblems previous general anaesthetic.
State machine: No
Concurrency: . Sequential
Persistence: Persistent
Class name:
Circuit
Category: OR Anaesthesia and Procedures
Documentation: _
Represents a circuit by which a patient might be contected to the equipment during an operation.
Export Control: Public
Cardinality: n
Hierarchy: . .
Superclasses: Descripted Object
State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:
Dentition Assessment
Category: OR Anaesthesia and Procedures
Documentation:
Represents an assessment of a patient's tooth.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has~A Relationships: .
Bool Bridge
Does the tooth have a bridge?

Bool Capped
Is the tooth capped?
Bool Chipped

Is the tooth chipped?

Bool Denture
Is the tooth a denture?

Bool Loose
Is the tooth loose?

Bool Missing
Is the tooth missing?

Enum Tooth

Name of the tooth. The possible values are: 11-URCI, 12-URTI, 13-URS,
21-ULCI, 22-ULTI, 23-ULS, 41-WRCI, 42-WRTI, 43-WRS, 31-WLCI,
32-WLTI, 33-WLS. Where: U:Upper, W: Lower, R:Right, L:Left, C:Central,
T:Lateral, S:Cuspid, I:incisor.

State machine: No
Concurrency: Sequential
Persistence: Persistent

Class name:

Gas Type

Category: OR Anaesthesia and Procedures
Documentation:) o

Represents a gas type that might be used for anaesthesia in an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
State machine: No
Concurrency: . Sequential
Persistence: Persistent
Class name:

Monitor
Category: OR Anaesthesia and Procedures
Documentation:) .

Represents a monitor or equipment that might be used in an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Der cripted Object
State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:

Or Procedure
Category: OR Anaesthesia and Procedures
Documentation: .)

Represents an operation procedure that might be done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object
Associations:

ICD9 Code
Body Part

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .

Or Reading
Category: OR Anaesthesia and Procedures
Documentation: .

Represents a reading that can be done during an operation.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Ranged Value

State machine: No

Concurrency: . Sequential
Persistence: Persistent
Class name: .
Patient Or Reading
Category: OR Anaesthesia and Procedures
Documentation:) .)
Represents a monitor or equipment reading done during an operation of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Or Reading

Private Interface:)
Has-A Relationships:
Time TimeAssessment
Date/Time of assessement.

Real Value
Value of the reading. It must be between the lower and upper bound for the
reading.
State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name;
Position
Category: OR Anaesthesia and Procedures
Documentation:) .)
Represents a position that a patient might have during an operation.
Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Descripted Obiject
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Pre Airway Exam
Category: OR Anaesthesia and Procedures
Documentation:)
Represents an airway exam done to the patient before an operation.
Export Controf: Public
Cardinality: n
Hierarchy:
Superciasses: Security

Private Interface:
Has-A Relationships:
Bool AnticipateDifficultintubation
Is there any anticipation of difficult intubation?

123

R LI 2 eh UL Ty

Enum AoExtension .
Atlantoccipital extension. The possible values are: Zero, Half, Full.

Enum Mallampati)
Ease of intubation. The possible values are: |, I, {ll, IV.

Unsigned Int MouthQOpening
Mouth opening in cm.

Enum NeckMobilityExtension)
How much the patient can extend his neck. The possible values are: 0 cm, <
25cm, >=2.5¢cm.

Enum NeckMobilityFlex

HO\g much the patient flex his neck. The possible values are: 0 cm, <5 cm,
>=o CcMm.

Bool PriorDifficultintubation

Was there a prior difficult intubation?

Bool Prominentlncisors
Does the patient have prominent incisors?

Enum Thyromental .)) _
Distance between the thyroid cartilage and the tip of the chin. The possible
values are: < 6 cm, >= 6 cm.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Pre Assessment
Category: OR Anaesthesia and Procedures
Documentation:))
Represents a general preassessment done to a patient before going to an operation.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Public Interface:
Has-A Relationships:
Anaesthetic History

Pre Airway Exam
Dentition Assessment

Private Interface:
Has-A Relationships:
Unsigned Int Asa
Class of Risk of operation. The possible values are: 1,2,3,4,5,6.

Bool _DentalRisk
Has the patient informed about any dental risk?

Bool Emergency
Is the operation an emergency operation?

Bool GoodDentition
Does the patient have a good dentition?

Time NpoStatus
Date/Time of last meal.

124

FALTRTTTE 0y Ty

R A o A S

Time TimeAssessment
Date/Time of assessment.

Unsigned Int XMatch .
How many units of blood are available for the patient.
State machine: No
Concurrency:] Sequential
Persistence: Persistent
Class name:
Procedure Done
Category: OR Anaesthesia and Procedures
Documentation: .)
Represents an operation procedure done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superciasses: Security
Associations:

Or Procedure

Private Interface: .
Has-A Relationships:
String Comments
Comments on the procedure.

State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:
Setup Info
Category: OR Anaesthesia and Procedures
Documentation:)
Represents the anaesthesia setup information for a patient's operation.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Circuit
Gas Type
Position
Monitor
Technique

Private Interface:
Has-A Relationships:

Bool EyesLubed
Were the patient’s eyes lubed?
Bool EyesPadded

Were the patient’s eyes padded?

Bool EyesTapped
Were the patient’s eyes tapped?

State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name:
Technique
Category: OR Anaesthesia and Procedures
Documentation: . . .))
Represents an anaesthesia technique that might be used in an operation.
Export Control: Public
Cardinality: n
Hierarchy: . .
Supercilasses: Descripted Object
State machine: No)
Concurrency:) Sequential
Persistence: Persistent
Class name:
Gi Exam
Category: Gastrointestinal Assessment
Documentation:)))
Represents a gastrointestinal exam of a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Public Interface:
Has-A Relationships:
Gi quadrant assessment

Private Interface:
Has—A Relationships:
Enum AbShape
Shape of the abdomen. The posssible values are: Flat, Round, Obese.

Enum BowelSounds
Bowel sounds. The posssible values are: Absent, Normal, Hyperactive,
Hypoactive.

String Comments)
Comments on the gastrointestinal exam.

Bool Cramping
Does the patient have cramps?

Bool _ Nausated
Is the patient nausated?

Strin Peritoneailavage
Results of the peritoneal lavage.

Strin RectalExamination
Resuits of the rectal examination.

Time TimeAssessment
Date/Time of assessment.

126

PNTE AP LSRR T e N e

State machine: No

Concurrency:) Sequential
Persistence: Persistent
Class name:
Gi quadrant assessment
Category: Gastrointestinal Assessment
Documentation: . . .
Represents a gastrointestinal quadrant assessment of a patient.
Export Control: Public
Cardinality: n
Hierarchy:]
Superclasses: Security

Private Interface:)
Has-A Relationships:
Bool Distended
Is the zone distended?

QuadrantTy GiQuadrant
Abdomen quadrant assessed.

Enum Rigidness) .
Rigidness of the zone. The possible values are: Soft, Firm, Rigid.

Bool Tender
Is the zone tender?

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Ostomy Assessment
Category: Gastrointestinal Assessment
Documentation:

Represents an assessment of a patient’s ostomy. An ostomy is an opening created by a surgeon
into the intestine from the outside of the body.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Public Interface:
Has-A Relationships:
Stoma Assessment

Private Interface:
Has-A Relationships:
QuadrantTy FistulaQuadrant
Abdomen quadrant where the mocous fistula was done if any.

QuadrantTy OstomyQuadrant
Abdomen quadrant where the ostomy was done.

Enum OstomyTylpe .
Type of ostomy done. The possible values are: Colostomy, lleostomy.

Time TimeAssessment
Date/Time of assessment.

127

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name:

Stoma Assessment
Category: . Gastrointestinal Assessment
Documentation: .

Represents an assessment of a patient's stoma.
Export Control: Public
Cardinality: n
Hierarchy:]

Superclasses: Security

Private Interface:]
Has-A Relationships:
Bool Bloody
Is the stoma bloody?

Bool Dusky
Is the stoma dusky?
Enum

Integrity
Integrity of the stoma. The possible values are: Normal, Prolapsed, Recesed.

Tire TimeAssessment
Date/Time of assessment.

State machine: No)
Concurrency: Sequential
Persistence: Pers stent
Class name:

Stool Assessment
Category: Gastrointestinal Assessment
Documentation:

Represents an assessment of a patient’s stool.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security
Associations:

Color

Private Interface:
Has-A Relationships:
Enum Consistency
Consistency of the stool. The posssibie values are: Diarrea, Diarrea Mucosy.
Formed, Constipated, Chyme, Melena.

Time TimeAssessment
Date/Time of assessment.

State machine: No
Concurrency: Sequential
Persistence: Persistent

Class name:

Image
Category: Diagnostics Images and Lab Exams
Documemation:

Represents an image that might be ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy: . .

Superclasses: Descripted Object
State machine: No
Concurrency:] Sequential
Persistence: Persistent
Class name:

Image Ordered
Category: Diagnostics Images and Lab Exams
Documentation:

Represents an image ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security
Associations:

Body Part
Image

Private Interface:
Has-A Relationships:
Strin Result
Result of the image.

Time TimeDone
Date/Time the image was done. It must be >= TimeOrdered.
Time TimeOrdered
Date/Time the image was ordered.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Lab Exam
Category: Diagnostics Images and Lab Exams
Documentation:
Represents a lab exam that might be ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Ranged Value
State machine: No
Concurrency: Sequential

Persistence: Persistent

129

Class name:

Lab Exam Ordered

Category: Diagnostics Images and Lab Exams
Documentation: .

Represents a lab exam ordered for a patient.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security
Associations:

Lab Exam

Private Interface:)
Has-A Relationships:

eal Result .
Result of the lab exam. It must be in the allowed range for the lab exam.
Time TimeOrdered

Date/Time the exam was ordered.

Time TimeResult
Date/Time the result of the exam reached the unit. It must be >=
TimeOrdered and >= TimeSample taken (if there was a sample taken).

Time TimeSampleTaken
Date/Time the sample was taken if any. It must be >= TimeOrdered and <=
TimeResult.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Lab Exam Type
Category: Diagnostics Images and Lab Exams
Documentation:
Represents a lab exam type.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object
Public Interface:
Has—-A Relationships:
Lab Exam
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Allergy
Category: Patient Identification and Health Information
Documentation:
Represents an allergy a patient might have.
Export Control: Public
Cardinality: n

130

haaiana o St N LE R

Hierarchy:

Superclasses: Descripted Object
State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:
Band
Category: Patient Identification and Health Information
Documentation:
Represents an indian band.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Named Object
Associations:
Patient
State machine: No .
Concurrency:) Sequential
Persistence: Persistent
Class name:
Health Problem
Category: Patient Identification and Heaith Information
Documentation:) .
Represents a health problem a patient might have.
Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Descripted Object
Associations:

Patient Health Problem

Private Interface: .
Has—A Relationships:
Enum ProblemType
Type of health problem. The possible values are: Respiratory,
Cardiovascular, Neurological, Gi/Hepatic/Renal, Metabolic/Endocrine, Other.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:

Medic Alert
Category: Patient Identification and Health Information
Documentation:)

Represents a medic alert that a patient might have.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Descripted Object

131

T e .

Associations:

Patient Medic Alert

State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name:, e

Medical Condition
Category: . Patient Identification and Heaith Information
Documentation: . .

Represents a medical condition that a patient has.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security

Private Interface:
Has—-A Relationships:
String Comments) .
Comments on the patient's medical condition.

Time TimeFirstAssessed
Date/Time the medical condition was first assessed.
Time Timelnactivation
Date/Time since when the medical condition is no longer valid. Must be >=
TimeFirstAssessed.

State machine: No]

Concurrency: Sequential

Persistence: Persistent

Class name: .

Next of Kin
Category: Patient Identification and Health information
Documentation:

Represents a next of kin of a patient. When one patient has more than one next of kin, the one with
the last date of assessment is the valid.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Person

Private Interface:
Has-A Relationships:
Date DateAssessment
Date the next of kin was assessed.

Enum Relationship]
Relationship of the next of kin with the patient. Values: Mother, Father.
Daughther, Son, Brother, Sister, Other.

State machine: No .
Concurrency:) Sequential
Persistence: Persistent

Class name:

132

Patient

Category:
Documentation:)
Represents a patient.

Export Control:
Cardinaiity:
Hierarchy:
Superclasses:
Public Interface: .
Has-A Relationships:

Operations:

Private Interface:)
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Patient Identification and Health Information

Public
n

Person

Patient Allergy

Patient Visit_

Patient Medic Alert
Regular Medication
Patient Health Problem
Next of Kin

Bmi ()
PatientAge ()
getHeightCm
getWeightKg

Date Birthdate
Date of birth of the patient.

String BlueCrossNumber
Blue Cross number of the patient if any. The picture is NNNNN~NNNN where
N is a number between 0 and 8.

String CauseOfDdeath
Cause of death of the patient.

Bool Estimated
Indicates if the birthdate is estimated or real.

Pname FamilyPhisician
Name of the family phisician if any.

Enum Gender)
Gender of the patient. The possible values are: Male, Female.

Strin HealthCareNumber
Health care number of the patient. The picture is NNNNN-NNNN where N is
a number between 0 and 9.

String Patientid]
id that identifies the patient in the hospital. It can have up to 8 digits.
Time TimeDeath
Date/Time of death of the patient.
Unsi?ned int _TreatyNumber
g)'rea;j y number of the patient in case the s/he is a native and belongs to a
and.
No
Sequential
Persistent

Patient Allergy

133

Category: Patient Identification and Health information
Documentation:
Represents an allergy that a patient has.

Export Control: Public
Cardinality: n
Hierarchy: . »
Superclasses: Medical Condition
Associations:
Allergy

Private Interface:
Has—-A Relationships:
String Reaction
Reaction of the patient to the allergy.

State machine: No

Concurrency:) Sequential
Persistence: Persistent

Class name:

Patient Health Problem
Category: Patent Identification and Health Information
Documentation:

Represents a health problem that a patient has.
Export Control: Public
Cardinality: n
Hierarchy:)

Superclasses: Medical Condition
State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name: .

Patient Medic Alert
Category: Patient Identification and Health Information
Documentation:)

Represent a medical alert that a patient has.
Export Control: Public
Cardinality: n
Hierarchy:)

Superclasses: Medical Condition
State machine: No
Concurrency: . Sequential
Persistence: Persistent
Class name:

Person
Category: Patient Identification and Health Information
Documentation:

Represents a person.

Export Control: Public
Cardinality: n

134

Apeimiiam ¢ n'feu s '8 T WL

Hierarchy:
Superclasses:
Private Interface:
Has-A Reiationships:

State machine:
Concurrency:
Persistence:

Class name:

Regular Me

Category:
Documentation:

Security

Address HomeAddress
Home address of the person.

String HomeTelNo
Home telephone number of the person. It has the picture (NNN)NNN-NNNN

where N is a number between 0 and 9.

Pname PersonName
Name of the person.

No

Sequential
Persistent
dication

Patient Identification and Health Information

Represents a medication that a patient takes on a regular basis.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Private Interface:
Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n
Medical Condition

Real Dose)
Dose of the medication the patient takes each time.

WUnitTy ~ DoseUnits)
Dose units of the medication the patient takes each time.

String Frequency)
Frequency on which the patient takes the medication.

String MedicationName
Name of the medication the patient takes.
No

. Sequential
Persistent

Antibiotic Given

Category:
Documentation:

Medications, Antibiotics and Vs

Represents an antibiotic given to a patient.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Associations:

State machine:

Public
n

Drug Given

Lab Exam Ordered Culture
No

Concurrency: Sequential

Persistence: Persistent
Class name:
Drug
Category: Medications, Antibiotics and IVs
Documentation: ; .
Represents a drug that can be administered to a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Named Object

Private Interface:
Has-A Relationships:
String Comments
Comments on the use of the drug.

Real ProtocolDoseKg
Dose of the drug that is suggested per kg.

WUnitTy ProtocolUnits .
Units in 'which the protocol dose is expressed.

State machine: No .
Concurrency: . Sequential
Persistence: Persistent
Class name: .
Drug Given
Category: Medications, Antibiotics and IVs
Documentation:)
Represents a drug given to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
Drug Route
Drug

Private Interface:
Has—A Relationships:
Real Dose .
Dose of the drug given to the patient.

Enum Schedule

Schedule on which the drug was administered. The possible values are:
Q1H, Q2H, Q4H, Q6H, Q8H, Q12H, QD, Premed, Prn.

Time TimeEnded
Date/Time the drug was suspended. It must be >= TimeStarted.
Time TimeStarted

Date/Time the drug was given or started.

WUNIitT Units
Units of the dose given to the patient.

136

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name:
Drug Route
Category: Medications, Antibiotics and IVs
Documentation: . .
Represents a route by which a drug can be administered to a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Drug Type
Category: Medications, Antibiotics and IVs
Documentation:
Represents a type of drug.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object

Public Interface:
Has-A Relationships:

Drug
State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name:
Category: Medications, Antibiotics and IVs
Documentation:
Represents an [V given to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:
IV Solution
Body Region

Private Interface:
Has-A Relationships: .
Unsigned Int Rate
Rate infused in mnvhour.

Real SizeUsed
Size of the needle used in the IV. The range must be between 0.0 and 30.0.

137

Time TimeEnded)
Date/Time the IV was removed. It must be >= TimeStarted.

Time TimeStarted
Date/Time the 1V started.

Unsigned Int _ UnsuccessfulAttempts
Unsuccessful attempts in putting the IV.

State machine: No)
Concurrency: . Sequential
Persistence: Persistent
Class name: .
IV Solution
Category: Medications, Antibiotics and IVs
Documentation:
Represents a solution that might be given in an IV.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Named Object
State machine: No
Concurrency: . Sequential
Persistence: Persistent
Class name: . .
Medication given
Category: Medications, Antibiotics and Vs
Documentation:))
Represents a medication given to a patient. It can be any type of drug except antibiotics.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Drug Given
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:
GU Procedure
Category: Invasive Therapy, Instrument and Fluids
Documentation:]
Represents a genito-urinary procedure that might be done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent

Class name:

AR A L SRR TNl Rl R T oL BTN

B

GU Procedure Done

Category: Invasive Therapy, Instrument and Fiuids
Documentation:) .)
Represents a genito—urinary procedure done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Security
Associations:

GU Procedure

Private Interface:)
Has-A Relationships:

Time TimeEnded)
Date/Time the procedure ended. It must be >= TimeStarted.
Time TimeStarted
Date/Time the procedure started.
State machine: No .
Concurrency:) Sequential
Persistence: Persistent
Class name: .
Input Fluid
Category: Invasive Therapy, Instrument and Fluids
Documentation:))) .
Represents a fiuid that might be intaken by a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Ranged Value
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Input Fluid Type
Category: Invasive Therapy, Instrument and Fluids
Documentation: . i
Represents a type of fluid that might be intaken by a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Named Object

Public Interface:
Has-A Relationships:

Input Fluid
State machine: No
Concurrency: Sequential
Persistence: Persistent

Class name:

139

L DLt ¢

Iinstrument

Category: invasive Therapy, Instrument and Fluids
Documentation:))) .
Represents an instrument that might be inserted/applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy: . .
Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Instrument Applied
Category: Invasive Therapy, instrument and Fluids
Documnentation: . .
Represents an instrument that was applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:
Instrument
Body Region

Private Interface:
Has-A Relationships:
Striny Comments .)
Com.nents on the instrument inserted/applied to the patient.

Unsigned int . Number
Number that identifies the instrument.

Time TimeApplied .
Date/Time the instrument was inserted/applied.

Time TimeRemoved
Date/Time the instrument was removed. It must be >= Timelnserted.

State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name: .
Output Fluid
Category: Invasive Therapy, instrument and Fluids
Documentation:
Represents a fluid that might come out of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Ranged Value
State machine: No
Concurrency: Sequential

Persistence: Persistent

140

Class name:

Patient Intaken Fluid

Category: invasive Therapy, Instrument and Fluids
Documentation: o .

Represents an assessment of a fluid intaken by a patient.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security
Associations:

Input Fluid

Private Interface:)
Has-A Relationships:
Time TimeAssessment
Date/Time of assessment.

Real Value)
a\mé)unt of the intaken fluid assessed. It must be in the allowed range for the
uid.
State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name: .
Patient Output Fluid
Category: Invasive Therapy, Instrument and Fluids
Documentation: .
Represents an assessment of a fluid that came out of a patient.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Associations:
Color
Output Fiuid

Public Interface:
Has—A Relationships:
Instrument Applied

Private Interface:
Has—-A Relationships:
Enum AssessmentAmount) .
Assessment of the amount of output fluid. The possible values are: Small,
Moderate, Large.

Enum Consistency
Consistency of the output fluid. The possible vaiues are: Mucosy,
Sedimented, Colonized, Thick, Watery, Sticky.

Time TimeAssessment
Date/Time of assessment.

Real Value
ﬁ\mc?unt of the output fluid assessed. It must be in the allowed range for the
uid.

141

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name; . .
Basic Vital Signs
Category: Vital Signs Assessment
Documentation: o .
Represents an assessment of the basic vita! signs of a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Public Interface:
Has—-A Relationships:
Pulse
Respiration
Blood Pressure

Private Interface:
Has-A Relationships:
Unsigned Int BodyTemperature

Temperature of the body. Values: 0-50 C.

Time TimeAssessment
Date/Time of asessment.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Blood Pressure
Category: Vital Signs Assessment
Documentation:

Represents an assessment of a patient’s blood pressure.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Public Interface:

Operations:

Map ()

Private Interface:
Has-A Relationships:
Unsigned Int Diastolic
Patient’s diastolic blood pressure. Values: 0-200 Hg.

Enum Position .
Position where the blood pressure was taken. The possible values are:
Elevated, Fowler, Supine.

SideTy Side
Side of the body where the blood pressure was taken.

Unsigned int Systolic
Patient’s systolic blood pressure. Values: 0-300 Hg.

R atatiatt b hathe L bl

State machine: No

Concurrency: Sequential
Persistence: Persistent
Class name: . . .
Ems Special Vital Signs
Category: Vital Signs Assessment
Documentation: . . .
Represents an assessment of special vital signs of a patient that are only assessed in the EMS.
Export Control: Public
Cardinality: n
Hierarchy:)
Superclasses: Security

Private Interface:
Has-A Relationships:
Real Glucose
Glucose level of the patient. Values: 0.0-15.0.

Unsigned Int O2Saturation
Oxygen saturation percent. Values: 0-100 %
Enum PhiConsiousness .
Pre—hosgital index consiousness. The possible values are: Not Assessed,
Normal(0), Confused/Combative(3), No inteligible words(5).
Enum PhiPenetration .
Pre—~hospital index Benetration. The possible values are: Not Assessed,
NotPenetration(0), Penetration(4).
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: _ .
Ems Vital Signs
Category: Vital Signs Assessment
Documentation:)
Represents a vital signs assessment done in the EMS.
Export Control: Pubilic
Cardinality: n
Hierarchy:)
Superclasses: Extended Vital Signs

Public Interface:
Has-A Relationships:
Ems Special Vital Signs

Operations:
PreHospitalindex ()

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:, .

Er Vital Signs
Category: Vital Signs Assessment

143

i ntaie ot o

bttt e o le o b RL Y

Documentation:)
Represents a vital signs assessment done in the ER.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Extended Vital Signs
State machine: o .
Concurrency: . Sequential
Persistence: Persistent
Class name: . .
Extended Vital Signs
Category: Vital Signs Assessment
Documentation:) .
Represents an assessment of the extended vital signs of a patient.
Export Control: Public
Cardinality: n
Hierarchy:)
Superciasses: Basic Vital Signs

Public Interface:
Has-A Relationships:

r§kin' |
upi
Ges
Operations: .
RevisedTraumaScore ()
State machine: No .
Concurrency: . Sequential
Persistence: Persistent
Class name:
Gces
Category: Vital Signs Assessment
Documentation:
Represents an assessment of a patient's Glasgow Comma Scale.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Public Interface:
Operations:

GlasgowCommaScale ()

Private Interface:
Has-A Relationships:
Unsigned Int EyeOpening .
Patient’s glas%ov_v comma scale eye opening. The possible values are:
1:None, 2:To Pain, 3:To Voice, 4:Spontaneous.

Unsigned Int MotorResponse)

Patient’'s glasgow comma scale motor response. The possible values are:
1:None, 2:Extension (pain), 3:Flexion (pain), 4:Withdraw, 5:Localize pain,
6:0Obey commands.

Unsigned Int VerbalResponse)

Patient’s grl]asgow comma scale verbal response. The possible values for
atients whose age > 1 year old: 1:None, 2:Incomprehensive words,
:Innapropiate words, 4:Confused, 5:0riented. If patient is < 1 year old

values are 1,2,3,4,5.

144

State machine: No i
Concurrency: Sequential
Persistence: Persistent

Class name:

Icu Special Vital Signs

Category: Vital Signs Assessment
Documentation: .]
Represents an assessment of special vital signs of a patient that are only assessed in the {CU.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface: .
Has—A Relationships:
Enum Blanket)
Trpe of blanket that the patient is using. The possible values are: Cooling
blanket, Warming blanket, Warming blanket with rectal probe.

Unsigned Int Ci
Cardiac index. Values: 0-10 Dynes/Sec/Cm2.

Unsigned Int Cv?
Central venous pressure. Values: 0-30 Hg.

Unsigned Int Mpap
Mean pulmonary arterial pressure. Values: 0-70 Hg.

Unsigned Int . . PabDiastolic
Pulmonary artery diastolic. Values: 0-60 Hg.

Unsigned Int PaSystolic
Pulmonary artery systolic. Values: 0-90 Hg.

Unsigned Int Pvri
Puimonary vascular resistance index. Values: 0~500 Dynes/Sec/Cm2.

Unsigned Int Svri_
Systemic vascular resistance index. Values: 0-3000 Dynes/ Sec/Cm2.

Unsigned Int Wedge
Wedge. Values: 0-40 Dynes/Sec/Cm2.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: .
Icu Vital Signs
Category: Vital Signs Assessment
Documentation:
Represents a vital signs assessment done in the ICU.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Extended Vital Signs

Public Interface:

145

Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

lcu Special Vital Signs

No .
. Sequential
Persistent

Or Vital Signs

Category:
Documentation:

Vital Signs Assessment

Represents a vital signs assessment done in the OR.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
State machine:
Concurrency:
Persistence:

Class name:

Pulse

Category:
Documentation:

Public
n

Basic Vital Signs
No

) Sequential
Persistent

Vital Signs Assessment

Represents an assessment of a patient’s puise.

Export Control:
Cardinality:
Hierarchy:
Supercilasses:
Private Interface:

Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name;

Pupil

Category:
Documentation:

Pub! -
n

Security

Enum Position

Pasition on which the patient’s pulse was assessed. The possible values are:

Radial, Femoral, Pedal, Apical, Monitor.

Unsigned Int PulseRead
Patient’s pulse reading. Values: 0-250 hr (heart rate).

Enum R

hythm
Rhythm of the pgttient’s pulse. The possible values are: Reguiar, Irregular.

Enum Volume

Volume of the patient's pulse. The possible vaiues are: Easy palpable,

Thready, Bounding.

No .
. Sequential
Persistent

Vital Signs Assessment

Represents an assessment of a patient’s pupil.

Export Control:

Public

146

Rt daen SET R L A g

Cardinality: n
Hierarchy:)
Superclasses: Security
Private Interface:
Has—A Relationships: .
Bool LightResponse
Did the pupil respond to light?

Enum Response . .
ges%onse of the patient's pupil. The possible values are: Normal, Sluggish,
ixed.

SideTy Side
Side of the body assessed.

Unsigned Int Size
Size of the patient's pupil. Values: 1-6 mm.

State machine: No i
Concurrency:) Sequential
Persistence: Persistent
Class name: _ .
Respiration
Category: Vital Signs Assessment
Documentation: .)
Represents an assessment of a patient’s respiration.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has-A Relationships:)
Bool Assisted .
Was the patient’s respiration assisted?

Enum Depth)
Depth of the patient’s respiration. The possible values are: Adequate,
Shallow, Deep.

Enum Quality
Quality of the patient’s respiration. The possible values are: Non-laboured,
Laboured, Dyspneic, Short of breath.

Unsigned Int Respirations)
Breaths per minute of the patient. Values: 0—-60 bpm (breaths per minute).
Enum Rhythm

Rhythm of the patient’s respiration. The possible values are: Regular,
Paradoxical, Hyperventilating, Hypoventilating.

State machine: No
Concurrency: . Sequential
Persistence: Persistent

Class name:
kin
Category: Vital Signs Assessment

Documentation:])
Represents an assessment of a patient’s skin.

147

F LT L TV T U

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Private Interface: .
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Public
n
Security

Enum Color
Color of the patient's skin. The possible values are: Normal, Pale, Flushed,
Cyanose, Grey, Jaundice, Other.

Enum Moisture .
Moisture of the patient's skin. The possible values are: Dry, Moist,
Disphoretic.

Skin TemperatureTy PerTemperature
Temperature of the patient’s extremities skin.

Skin TemperatureTy Temperature
Temperature of the patient’s skin.

Enum Turgor
Turgor of the patient’s skin. The possible values are: Normal, Tentled.

No
) Sequential
Persistent

Crew Member

Category:
Documentation:

EMS Specific Information

Represents a possible member for an ambulance crew.

Exponrt Control:
Cardinality:
Hierarchy:
Superclasses:
Associations:

Private Interface:
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Diagnosis

Category:
Documentation:

Public
n
Security
Run Info
Pname Name
Name of the crew member.
String ~ RegistrationNo
Registration number of the crew member. it can have up to 6 digits.
No

. Sequential
Persistent

EMS Specific Information

Represents a diagnosis that might be assessed to a patient.

Export Control:
Cardinality:

Public
n

RRE R et a B Bl S T

Hierarchy:

Superclasses: Descripted Object
Associations:
ICDS Code
Public Interface:
Has-A Relationships:
Diagnosis Modifier modifiers

Private Interface: .
Has—A Relationships: .
Bool Injury .
Is the diagnosis considered as an injury?

State machine: No)
Concurrency:) Sequential
Persistence: Persistent
Class name: . co
Diagnosis Modifier
Category: EMS Specific Information
Documentation: . .
Represents a modifier that a diagnosis might have.
Export Control: Public
Cardinality: n
Hierarchy:))
Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Dispatcher
Category: EMS Specific information
Documentation:
Represents a dispatcher.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Named Object
Associations:
Run info

Private Interface:
Has-A Relationships:
Unsigned Int DistrictNo
Ambulance district code.

String ServiceNo

Service identification number assigned by the Emergency Health Services.
Thg Blcture is ANNN, where A is a capital letter and N is a number between 0
and 9.

State machine: No
Concurrency: Sequential
Persistence: Persistent

149

Class name:

Facility

Category: EMS Specific Information
Documentation:)

Represents a facility to which a patient might be transported.
Export Control: Public
Cardinality: n
Hierarchy:)

Superclasses: Named Object
Associations:

Run Info destination

Private Interface: .
Has-A Relationships:)
Address FacilityAddress
Address of the facility.

State machine: No

Concurrency:) Sequential
Persistence: Persistent
Class name: |
Facility Type
Category: EMS Specific Information
Documentation:
Represent a type of facilty.
Export Control: Public
Cardinality: n
Hierarchy:
Superciasses: Descripted Object

Public Interface:)
Has-A Relationships:

Facility
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

General Assessment
Category: EMS Specific Information
Documentation:

General assessment of a patient.

Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Assaociations:
Diagnosis
Diagnosis Modifier assessment modifier

We must validate that the modifier chosen is in the set of modifiers allowed
for the diagnosis chosen.

Body Region egion

r
We must check if the diagnosis has a specific re%ion to which it applied. In
that case the region of the assessment must be the same. In any other case

150

Mol

Private Interface:
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Macro Diag

Category:
Documentation:

any region can be selected.

Time TimeAssessment
Date/Time of assessment.

No

Sequential
Persistent

nosis

EMS Specific Information

Represents a macro diagnosis.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Public Interface:
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Run Info

Category:
Documentation:

Public
n
Descripted Object
Diagnosis
No

Sequential
Persistent

EMS Specific Information

Represents an ambulance ride.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Associations:

Private Interface:
Has—-A Relationships:

Public
n
Security

Vehicle

Address Destination
Address of the destination. If the patient is
system will copy the address of the facility.

Pname PoliceName
Police name in case the call was attended

String ReasonForCall
Reason why the ambulance was called.

Enum ResponselLevel
Level of care dispatched to the call. The é)
Life Support), BLS (Basic Life Support),

Strin RunNo

transported to a known facility the

by a police officer.

ossible values are: ALS (Advances

MR (Emergency Medical Rescue).

Numger assigned to the run. it can have up to 6 digits.

151

Piaaan a IPLS Y Siel SRS B

State machine:
Concurrency:
Persistence:

Class name:

Treatment

Category:
Documentation:

Time TimeArriveDestination
Date/Time at which the unit arrived at its destination. It must be >=
TimeLeftScene.

Time TimeArriveScene))
Date/Time at which the unit arrived to the scene. It must be >=TimeDispatch.

Time TimeCalledReceived)
Date and Time the called was received by the dispatcher.

Time TimeDispatch . .
Date/Time at which the unit left the station to respond the call or the unit
acknowledc?gd the call from the dispatcher. It must be >=
TimeCalledReceived.

Time TimeLeaveScene
Date/Time at which the unit left the scene or the call was cancelled. It must
be >= TimelLeaveScene.

Unsigned Int TotalKm
To*al km for the trip.

Enum TypeOfResponse)
Indicates the type of response. The possible values are: Emergency (lights
and siren), Non-emergency.

Enum TypeOfTransport)

Ind cates the type of transport. The possible values are: Emergency (lights
andg siren), Non-emergency, No transport.

No

Sequential
Pers .tent

EMS Specific Information

Represents a treatment that a patient might receive.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
State machine:
Concurrency:
Persistence:

Class name:

Public
n

Descripted Object
No

. Sequential
Persistent

Treatment Done

Category:
Documentation:

EMS Specific Information

Represents a treatment that was done to a patient.

Export Control:
Cardinality:
Hierarchy:
Superclasses:
Associations:

Public
n

Security

Ay L L e -

e -~

R T L

Treatment

Private Interface:
Has-A Relationships:
Time TimeAssessment
Date/Time the treatment was done.

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name;

Vehicle
Category: EMS Specific Information
Documentation:

Represents a vehicle that can be sent to a call.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Security

Private Interface:
Has-A Relationships:

String EhsVehicleld
gq :-._lltssngned to the vehicle by Emergency Health Services. It can have up to 6
igits.
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:
Airway Proc Done
Category: Respiratory Assessment
Documentation:
Represents an airway procedure done to a patient.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security
Associations:

Airway Procedure

Private Interface:
Has—-A Relationships:
Time TimeDone
Date/Time the airway procedure was done.

State machine: No

Concurrency: Sequential
Persistence: Persistent

Class name:

Airway Procedure

Category: Respiratory Assessment
Documentation:)))
Represents an airway procedure that might be done to a patient.

Export Control: Public

Cardinality: n

Hierarchy:) .
Superclasses: Descripted Object

State machine: No .

Concurrency: . Sequential

Persistence: Persistent

Class name:

Chest Exam

Category: Respiratory Assessment
Documentation: . o
Represents a patient’s chest examination.

Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security
Public Interface: .
Has-A Relationships:
Lung Exam

Private Interface:. .
Has—-A Relationships:)
Enum Airway .
Airway assessment. The possible values are: Clear, Obstructed, Intubated.

Enum ChestExpansion) .
Assessment of the expansion of the chest. The possible values are: Right =
Left, Right < Left, Right > Left.

String Comments
Comments on the chest exam.

Time TimeAssessment
Date/Time of assessment.

Enum Trachea
Position of the trachea. The possible values are: Central, Left, Right.

State machine: No)
Concurrency: Sequential
Persistence: Persistent
Class name:

Lung Exam
Category: Respiratory Assessment
Documentation:)

Represents a patient’s lung exam.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:
AuscultationTy AuscultationLIN
Results of the auscultation for Lingular Lobe.

154

AusculitationTy AuscultationLLL
Results of the auscultation for The Left Lower Lobe.

AuscultationTy AuscultationLUL
Results of the auscultation for the Left Upper Lobe.

AuscultationTy AuscultationRLL
Results of the auscuitation for the Right Lower Lobe.

AuscultationTy AusculitationRML
Results of the auscultation for the Right Medium Lobe.

AuscultationTy AuscultationRUL
Results of the auscultation for the Right Upper Lobe.

PercussionTy PercussionLIN
Result of the percussion for the Lingular Lobe.

PercussionTy Percussionl_LL
Result of the percussion for the Left Lower Lobe.

PercussionTy PercussionLUP
Result of the percussion for the Left Upper Lobe.

PercussionTy PercussionRLL
Result of the percussion for the Right Lower Lobe.

PercussionTy PercussionRML
Result of the percussion for the Right Medium Lobe.

PercussionTy ~ PercussionRUL
Result of the percussion for the Right Upper Lobe.

State machine: No ’
Concurrency: Sequential
Persistence: Persistent

Class name: .

Resp Support Device
Category: Respiratory Assessment
Documentation:

Represents a respiratory support device.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Descripted Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name: _ .

Respiration Support
Category: Respiratory Assessment
Documentation:

Represents a respiratory device applied to a patient.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security
Associations:

-

Private Interface:

Has—-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Resp Support Device

Time TimeApplied
Date/Time the support was applied.

Time TimeRemoved
Date/Time the support was removed. It must be >= TimeApplied.
No

) Sequential
Persistent

Ventilator Control

Category:
Documentation:

Respiratory Assessment

Represents an assessment of the values of a ventilator applied to a patient.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:

Address

Category:

Public

n

Security

Unsigned Int Ac

Assist Control. Values: 0-30.

Unsi?ned Int Fio2

Fraction of Oxygen control. Values: 0-100%
Unsigned Int Imv

Intermittent mechanical ventilation control. Values: 0-30.
Unsigned Int Peep

Peep control. Values: 0-20.

Unsigned Int Pip

Pip control. Values: 0-60 cm H20.

Unsigned Int

Pressure support control. Values 0-30.

Time TimeAssessment
Date/Time of assessment.

Unsigned Int vt
Voiume tidal control. Values: 0-1000.

Enum Weaning

Weamnsg Brocedure why controls were changed. The possible values are: Nil,
IMV, P agger, T-piece, Cpap, Plugging Trial, Plugged, Extubated.

No

] Sequential
Persistent

General Classes

156

L T

Documentation:

Represents an address.

Export Control:
Cardinality:
Hierarchy:
_ Superclasses:
Private Interface:
Has-A Relationships:

State machine:
Concurrency:
Persistence:

Class name:
Age

Category:
Documentation:

Public

n

Security

Strinr? AptNo .
Apartiment number of the address if any.

Real . lLatitude
Geographical latitude of the address. The value must be >= ~99 and <= 99
and might have till 6 decimal values.

Real _ Longitud
Geographical longitud of the address. The value must be >= -999 and <=
999 and might have till 6 decimal values.

String PostalCode i
Postal code of the address. The picture is ANA NAN, where A must be a
capital letter and N must be a number between 0 and 9.

String StreetName
Name of the Street of the address.
String StreetNo
Street Number of the address.
No
) Sequential
Persistent

General Classes

Represents the age of a person.

Export Control:
Cardinality:
Hierarchy:

Superclasses:
Private Interface:

Has-~A Relationships:

Public
n

Security

Unsigned Int MonthsOld
Unsigned Int YearsOld

State machine: No

Concurrency: Sequential

Persistence: Persistent

Class name: .

AuscultationTy
Category: General Classes
Documentation:

Represents the result
Bronchiole, Rub.

Export Control:
Cardinality:

of the auscultation of a lung part.Values: Normal, Crackles, Wheezes,

Public
5

Hierarchy:

Superclasses: none
State machine: No
Concurrency:) Sequential
Persistence: Transient
Class name:

Body Part
Category: General Classes
Documentation:

Represents a part of the human body.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Named Object

Private Interface:]
Has-A Relationships:
Enum PartTyp
Type of the bod Rﬁpart The possible values are: Skin, Joint, Bone, Blood

essel, Nerve, Muscle, Tendon, Ligament, Internal Organ.

State machine: No .
Concurrency:) Sequential
Persistence: Per sistent
Class name: .

Body Region
Category: General Classes
Documentation:

Represents an external region of the human body.
Export Control: Public
Cardinality: n
Hierarchy: .

Superclasses: Named Object
Associations:

Diagnosis specificRegion

Public Interface:
Has-A Relationships:
Body Part
Body Region macroRegion
Macro body reglon of the body region. For example "Hand" has as a
Macro_region "A

State machine: No
Concurrency:] Sequential
Persistence: Persistent

Class name:

Bool

Category: General Classes
Documentatlon :
Represents a boolean value.

e TS T N Rt .

TEEET TR W

Export Control: Public
n

Cardinality:
Hierarchy:
Superclasses: none
State machine: No)
Concurrency: Sequential
Persistence: Transient
Class name:
City
Category: General Classes
Documentation: .
Represents a city where an address might be located.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Named Object

Public Interface:
Has-A Relationships:

Address

State machine: No .
Concurrency: Sequential
Persistence: Persistent
Class name:

Color
Category: General Classes
Documentation:)

Represents a color that a substance might have.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object
State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

CvsPulseTy
Category: General Classes
Documentation:

Represents an CVS pulse assessment. Values: Pulse present, Puise absent.
Export Control: Public
Cardinality: 2
Hierarchy:

Superclasses: none
State machine: No
Concurrency:) Sequential
Persistence: Transient
Class name:

Date

134

Category: General Classes
Documentation:

Represents a date between 1.1.1753 and 31.12.9999.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none

Private Interface:)
Has-A Relationships:
Unsigned Int Juinul
Julian day number.

State machine: No)
Concurrency: . Sequential
Persistence: Persistent

Class name:

Descripted Object

Category: General Classes
Documentation:))
Represents an object that has a description.
Export Control: Public
Cardinality: n
Hierarchy: .
Superclasses: Security

Private Interface:
Has-A Relationships: .
String =~ Description
Description of the object.

State machine: No
Concurrency: . Sequential
Persistence: Persistent
Class name:

Enum
Category: General Classes
Documentation:

Represents an enumerated list of values.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

ICD9 Code
Category: General Classes
Documentation:

IRepresents an ICD9 code.

160

Export Control: Public

Cardinality: n
Hierarchy: . .
Superclasses: Descripted Object
Associations:
injury

Private Interface:)
Has-A Relationships:
String lcd9Code)
ICDS code. The picture is NNN.N where N is a number between 0 and 9.

State machine: No .
Concurrency: . Sequential
Persistence: Persistent
Class name:

Int
Category: General Classes
Documentation:

Represents an integer number.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none
State machine: No .
Concurrency:) Sequential
Persistence: Transient
Class name:

MovementTy
Category: General Classes
Documentation:

Represents an extremity movement assessment. Values: Normal power, Mild weakness, Severe
weakness, Spastic flexion, Extension, No response.

Export Control: Public
Cardinality: 6
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name: .

Named Object
Category: General Classes
Documentation:

Represents an object that has a name.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Security

Private Interface:
Has-A Relationships:

161

String Name
Name of the object.

State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name: .
PercussionTy
Category: General Classes
Documentation:)
Represents the result of the percussion of a lung part. Values: Timpanic, Dull, Resonant, Hyper.
Export Control: Public
Cardinality: 4
Hierarchy:
Superclasses: none
State machine: No .
Concurrency: Sequential
Persistence: Transient
Class name:
Pname
Category: General Classes
Documentation:
Represents the name of a person.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: Security

Private Interface:
Has~A Relationships:
Strin MiddleName
Middie name of a person.

String Name
First name of a person.

String Surname
Surname of a person.

Enum Title
Title of a person. The possible values are: Mr. Mrs. Miss Ms. Dr.

State machine: No
Concurrency: Sequential
Persistence: Persistent
Class name:

Province
Category: General Classes
Documentation: .

Represents a province where a city might be located.
Export Control: Public
Cardinality: n

162

R Al asbat bl bl

el oo e §

Hierarchy: .
Superclasses: Named Object
Public Interface:
Has-A Relationships:
City

Private Interface:
Has-A Relationships:
Strin ShortName))
Short name for the province. The picture is: AA where A is a capital letter.

State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:

QuadrantTy
Category: General Classes
Documentation:

Represents an abdomen quadrant. Values: Right Upper, Right Lower, Left Upper, Left Lower.
Export Control: Public
Cardinality: 4
Hierarchy:

Superclasses: none
State machine: No
Concurrency:] Sequential
Persistence: Transient
Class name:

Ranged Value
Category: General Classes
Documentation: .

Represents an object that has a lower an upper bound.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: Named Object

Private Interface:
Has-A Relationships:
Real From

Lower bound of the range.
Real To
Upper bound of the range.
String. ~ Units
Units'in which the values of From/To are expressed.
State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:
Real

Category: General Classes

163

.

—

Alnan i oo TR INEE 200

Documentation:
Represents a real number.

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
State machine: No
Concurrency:) Sequential
Persistence: Transient
Class name:
ReflexTy
Category: General Classes
Documentation: .
Represents a reflex assessment. Values: Normal, Absent, Brisk.
Export Control: Pubiic
Cardinality: 3
Hierarchy:
Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:
Security
Category: Gen- -al Classes
Documentation:))
Main class of the system where the security is defined. All the classes inherit from this class.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Public Interface:
Operations:

TimeStamp()

Private Interface:
Has-A Relationships:
Time OpTime
Time when the operation was performed.

String User)
Name of the user that performed the operation.
Unsiqned Int Userld
Unix 1d of the user that performed the operation.

State machine: No

Concurrency: Sequential

Persistence: Persistent

Class name:

SideTy
Category: General Classes
Documentation:

Represents a side of the Body. Values: Left, Right.

164

Export Control: gublic

Cardinality:
Hierarchy:

Superclasses: none
State machine: No .
Concurrency: . Sequential
Persistence: Transient
Class name:

SKin TemperatureTy
Category: General Classes
Documentation:)

Represents a skin temperature assessment. Values: Hot, Warm, Cool, Cold.
Export Control: Public
Cardinality: 4
Hierarchy:

Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:

String
Category: General Classes
Documentation:

Represents any string of ASCII characters.
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none

Private Interface:
Has-A Relationships:

{Unspecified) strRep

State machine: No
Concurrency:) Sequential
Persistence: Persistent
Class name:

Time
Category: General Classes
Documentation: .

Represents any instant in time since 1.1.1901
Export Control: Public
Cardinality: n
Hierarchy:

Superclasses: none

Private Interface:
Has-A Relationships:
Unsigned Int sec
Seconds since 1.1.1901 in GMT.

State machine: No

165

Concurrency: Sequential

Persistence: Persistent
Class name;
Unsigned Int
Category: General Classes
Documentation: L
Represents a positive integer number.
Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient
Class name:
WUnitTy
Category: General Classes
Documentation:)) .
Represents a weight unit used by medications. Values: Microgram, Miligram, Gram.
Export Control: Public
Cardinality: 3
Hierarchy:
Superclasses: none
State machine: No
Concurrency: Sequential
Persistence: Transient

166

