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Abstract

Process monitoring involves ensuring that the process systems are run safely and op-

erated in the most profitable manner. On the other hand, causal modelling involves

studying the causal interactions among the variables in a process system. The knowl-

edge of these interactions is useful in process monitoring, root cause analysis of process

anomalies, and devising optimum operation strategies. Both these applications can

greatly benefit from data-driven models when it is difficult to obtain models for the

studied system based on the first principles.

In this thesis, we develop and present probabilistic models for process monitoring

and causal modelling applications. The models developed in thesis enjoy an important

benefit of probabilistic modelling that it allows one to define very general models that

subsume several special cases. This in turn has two advantages, (i) a result derived

for the general model can be reduced to special cases if required, alleviating the need

to study special cases in isolation and (ii) if the special cases turn out to be different

competing hypotheses about the data generating process, the users can then leverage

Bayesian analysis to select between the competing hypotheses.

The probabilistic models developed for process monitoring address two extreme

cases of monitoring problems, (i) monitoring unimodal systems and (ii) monitoring

multi-modal systems. For monitoring unimodal systems, we define a general model

that encompasses several linear Gaussian models as special cases. This allows us to

develop a monitoring procedure based on the general model and reduce it to special

cases if desired. In addition, we attempt to theoretically understand the connections
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between the linear Gaussian models and classical multivariate techniques such as

principal component analysis in the context of process monitoring. For monitoring

multi-modal systems, we propose a two-layer model that consists of a convex combi-

nation of linear Gaussian models in the layers stacked one above the other. This model

scales well when compared to the probabilistic models used for process monitoring in

the literature to approximate non-Gaussian distributions. Furthermore, we illustrate

the two-layer model for process monitoring using a lab-scale and an industrial case

study.

In causal modelling, we address two important problems, (i) identification of

time-lagged causal interactions in the presence of instantaneous/contemporaneous

interactions among the variables and (ii) modelling long-term interactions for time-

varying systems. Granger causality analysis is a most commonly used approach for

studying time-lagged causal interactions. However, if the presence of contemporane-

ous interactions is not properly accounted for, the Granger causality analysis tech-

niques tend to identify spurious time-lagged interactions. In this thesis, we propose a

model for representing the time-lagged and contemporaneous interactions explicitly

and perform Bayesian analysis to determine the presence and absence of both types

of interactions. The approach is found to be more robust to the presence of contem-

poraneous interactions when compared to the traditional Granger causality analy-

sis techniques. When studying the long-term effects of process variables on process

performance indicators using the routine operation data from the process systems,

time-varying nature of the process systems affects the correct identification of the

effects. To address this problem, we propose a time-varying parameters model and

a Bayesian analysis approach to recover the time-varying effects. We illustrate the

causal modelling approaches developed in this thesis using industrial case studies.

iii



Preface

This thesis is an original work conducted by Rahul Raveendran. The materials pre-
sented in this thesis resulted from the research projects conducted under the super-
vision of Dr. Biao Huang.

Chapters 1, 2 and 7 of this thesis was prepared by Rahul Raveendran.
Chapter 3 of this thesis has been published as “Raveendran, R., Kodamana,

H., & Huang, B. (2018). Process monitoring using a generalized probabilistic linear
latent variable model” in Automatica, 96, 73-83.

Chapter 4 of this thesis has been published as “Raveendran, R., & Huang,
B. (2017). Two-layered mixture Bayesian probabilistic PCA for dynamic process mon-
itoring” in Journal of Process Control, 57, 148-163.

Chapter 5 of this thesis has been published as “Raveendran, R., & Huang,
B. (2018). Variational Bayesian approach for causality and contemporaneous corre-
lation features inference in industrial process data” in IEEE Transactions on Cyber-
netics, (99), 1-11.

Chapter 6 of this thesis has been submitted to IEEE Transactions on Control
Systems Technology as “Raveendran, R., Mitchell, W., & Huang, B. (2019). A
variational Bayesian causal analysis approach for time-varying systems” and it is
under review.

Rahul Raveendran was responsible for the idea development, deriving theoretical
results, performing simulation studies and manuscript preparation for all the publi-
cations listed above. Dr. Biao Huang is a supervisory author of all the publications
listed above. Dr. Hariprasad Kodamana helped by providing valuable and critical feed-
back on the work and correcting manuscript for publishing the materials in Chapter
3. Warren Mitchell played a similar role for submitting the materials in Chapter 6 for

iv



review, as Dr. Hariprasad Kodamana did for Chapter 3.

v



Acknowledgements

First and foremost, I would like to take this opportunity to express my deep gratitude
towards my thesis advisor Prof. Biao Huang for his guidance, motivation, giving me
freedom to explore different research topics and yet making sure that I stayed focused
on completing the tasks at hand in a timely manner and sparing his invaluable time
reviewing my work promptly. I am also thankful to him for instilling confidence in
me and entrusting me with challenging yet interesting industrial problems during my
Ph. D. I am greatly indebted to Dr. Huang for his benevolent and unfailing financial
support without which this work would not have been possible.

My special thanks to Dr. Hariprasad Kodamana and Warren Mitchell for their
constant encouragement, critical feedback and spending their invaluable time helping
me with reviewing my papers.

I am truly grateful to Spartan Controls for hosting me at their office and giving me
exposure to several real-world problems. I learnt a lot from discussions and working
with Warren Mitchell, Dr. Hailei Jiang, Dr. Anuj Narang, Shabnam Sedghi and others
from the Advanced Process Control team at Spartan Controls, which I thoroughly
enjoyed. It was great pleasure working with Agustin Vicente and Mengqi Fang from
University of Alberta, who were also hosted by Spartan Controls at their office. I
am also thankful to Eric Lau, Eliyya Shukeir, Dr. Fei Qi and Seraphina Kwak from
Suncor Energy for again exposing me to challenging real-world industrial problems.

I would like to gratefully acknowledge the Department of Chemical Engineering,
University of Alberta for giving me the opportunity to pursue my Doctoral degree and
providing me with the best of the facilities and resources. Special thanks to Prof. Ken
Cadian and Prof. Vinay Prasad, for giving me an opportunity to co-teach CH E 472
with Ajay Ganesh. I thoroughly enjoyed teaching and working with Ajay.

vi



I would like to acknowledge the financial support from Natural Sciences and En-
gineering Research Council (NSERC) of Canada.

This work would not have been possible also without the help of several members
of the Computer Process Control group. I would like to acknowledge the help given
by Dr. Nabil Magbool Jan, Yanjun Ma, Dr. Fadi Ibrahim, Terry Runyon, Dr. Ruben
Gonzalez and several other past and present members from the group.

Arnab, Richa, Anupam, Ashwin, Sanat, Gokul, Rishik, Nabil, Geetesh, Gail,
Wesley had been great room-mates who took special care of me and made my stay in
Edmonton enjoyable. My journey through graduate studies would have felt long and
arduous without the great company of my friends, Shruti, Sushmitha, Vishal, Arun,
Rishik, Shekar, Sahil and others.

Last but not the least, I would like to express my deepest gratitude towards my
parents, my sister and her family for their unconditional love and support.

vii



Contents

1 Introduction 1
1.1 Statistical Process Monitoring and Causality Analysis . . . . . . . . . 1

1.1.1 Statistical Process Monitoring . . . . . . . . . . . . . . . . . . 1
1.1.2 Causality Analysis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Statistical Process Monitoring Techniques . . . . . . . . . . . . . . . 4
1.2.1 Univariate and Multivariate Control Charts . . . . . . . . . . 5
1.2.2 Process Monitoring using Latent Variable Models . . . . . . . 7
1.2.3 Process Monitoring using Probabilistic Latent Variable Models 10
1.2.4 Process Monitoring Problems Addressed in this Thesis . . . . 11

1.3 Causal Modelling Techniques . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Static Bayesian Networks . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Granger Causality Analysis . . . . . . . . . . . . . . . . . . . 14
1.3.3 Causal Modelling Problems Addressed in this Thesis . . . . . 16

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Preliminaries 20
2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 D-Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Markov Blanket . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Bayes Rule of Inference . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 Bayesian Network Representation of Data-Driven Models . . . 27

2.2 Conjugate Exponential Family Graphical Models . . . . . . . . . . . 34
2.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 36

viii



2.3.1 Expectation Maximization Algorithm . . . . . . . . . . . . . . 38
2.4 Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.1 Variational Bayesian Expectation Maximization Algorithm . . 49
2.4.2 Hyperparameter Selection . . . . . . . . . . . . . . . . . . . . 58
2.4.3 Model Selection or Dimension Reduction through Automatic

Relevance Determination . . . . . . . . . . . . . . . . . . . . . 62
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Process monitoring using probabilistic models 66
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 PCA based monitoring . . . . . . . . . . . . . . . . . . . . . . 67
3.1.2 CCA based monitoring . . . . . . . . . . . . . . . . . . . . . . 69

3.2 GPLLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Control Charts based on the GPLLVM . . . . . . . . . . . . . . . . . 73

3.3.1 Monitoring the latent variables . . . . . . . . . . . . . . . . . 73
3.3.2 Monitoring the model residuals . . . . . . . . . . . . . . . . . 76
3.3.3 Other possible monitoring statistics . . . . . . . . . . . . . . . 79

3.4 Classical Multivariate Techniques vs. Their Probabilistic Counterparts 81
3.5 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Multi-modal and dynamic process monitoring using probabilistic
models 92
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.1 Organization of this chapter . . . . . . . . . . . . . . . . . . . 93
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 PPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2 Mixture PPCA . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.3 Dynamic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 A straightforward extension . . . . . . . . . . . . . . . . . . . 96
4.3.2 The proposed solution strategy . . . . . . . . . . . . . . . . . 97

ix



4.4 Formulation of the Proposed Model . . . . . . . . . . . . . . . . . . . 99
4.4.1 Mixture Bayesian PPCA . . . . . . . . . . . . . . . . . . . . . 99
4.4.2 Two-layer mixture Bayesian PPCA . . . . . . . . . . . . . . . 100
4.4.3 Collapsing the two-layer model to form a mixture Gaussian model103
4.4.4 Comments on the proposed model . . . . . . . . . . . . . . . 104

4.5 Fault Detection Using the Proposed Model . . . . . . . . . . . . . . . 106
4.5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Case study 1: Sulphur Recovery Unit (SRU) . . . . . . . . . . . . . . 108
4.6.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 111
4.6.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Case study 2: Three-phase flow system . . . . . . . . . . . . . . . . . 119
4.7.1 Process description . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 123

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 An Approach for Causality Analysis and Contemporaneous Corre-
lation Features Inference from Industrial Process Data 128
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.1 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 Bayesian Regularization . . . . . . . . . . . . . . . . . . . . . 133

5.3 Bayesian Network of the Proposed Model . . . . . . . . . . . . . . . . 133
5.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.1 Variational Posterior distribution . . . . . . . . . . . . . . . . 136
5.4.2 Model Evidence and the Posterior Update Rules . . . . . . . . 137

5.5 Implementation Details and Model Reduction . . . . . . . . . . . . . 139
5.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6.1 Simulation Case Study . . . . . . . . . . . . . . . . . . . . . . 143
5.6.2 Industrial Case Study . . . . . . . . . . . . . . . . . . . . . . 146

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

x



6 A Causal Analysis Approach for Time-Varying Systems 152
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1 Summary of the Main Contributions . . . . . . . . . . . . . . 156
6.1.2 Relevant Works . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 VBEM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Hypothesis Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4 Initialization and Hyper-Parameter Tuning . . . . . . . . . . . . . . . 164
6.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5.1 Steam Assisted Gravity Drainage Wells . . . . . . . . . . . . . 167
6.5.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7 Conclusions and Recommendations 180
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.2.1 Process Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.2 Causal Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography 184

A Proofs of Propositions in Preliminaries 193
A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B Estimation Approach for the GPLLVM 198
B.1 Maximum likelihood estimation of the GPLLVM using the EM algorithm198
B.2 Woodbury Matrix Identity . . . . . . . . . . . . . . . . . . . . . . . . 199
B.3 Matrix B is an Idempotent Matrix . . . . . . . . . . . . . . . . . . . 199

C Supplementary Information for the Identification of the Two-Layer
Mixture Bayesian PPCA model 200

xi



C.1 Estimation of the mixture Bayesian PPCA
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.1.1 E-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
C.1.2 M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
C.1.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.1.4 Initial guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.1.5 Determining dimension of latent variables . . . . . . . . . . . 205

C.2 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 205

D Estimation Approach for the Hybrid Model 207
D.1 The VBEM algorithm for the estimation of the hybrid model . . . . . 207

E Supplementary Materials for Causal Modelling Based on the
TVPM 209
E.1 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
E.2 VBEM Algorithm: Estimation of the TVPM . . . . . . . . . . . . . . 214

xii



List of Tables

2.1 EM algorithm for the estimation of the PPCA model . . . . . . . . . 45
2.2 VBEM algorithm for the estimation of the Bayesian PPCA model . . 57

3.1 A selected few other monitoring options that can be implemented from
the GPLLVM of a system . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Fraction of type I error or false positives resulting from the control charts 88

4.1 The approach for estimating the two-layer mixture Bayesian PPCA
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Tags used for process monitoring . . . . . . . . . . . . . . . . . . . . 110
4.3 Data summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 Performances achieved by the base case models . . . . . . . . . . . . 112
4.5 Comparison of fault detection results . . . . . . . . . . . . . . . . . . 115
4.6 Tags used for process monitoring . . . . . . . . . . . . . . . . . . . . 121
4.7 The set point values of air water flow rates used for generating the

datasets from the NOCs . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.8 Description of the datasets from the considered fault cases . . . . . . 122
4.9 The overall performance obtained from the base case models . . . . . 123
4.10 Comparison of the overall performances . . . . . . . . . . . . . . . . . 126
4.11 Comparison of the fault detection time by different models on different

fault cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.2 Simulated model and data characteristics . . . . . . . . . . . . . . . . 144
5.3 Tags used for the analysis and their descriptions . . . . . . . . . . . . 148

xiii



6.1 The relative effects of well bore subcool and steam chamber pressure
on production identified at different values of α∗ . . . . . . . . . . . . 177

6.2 Well 1: Variability in production unexplained by the TVPM with dif-
ferent values of α∗ and by the time-invariant linear regression model . 178

B.1 Recursive update expressions for estimating the parameters of GPLLVM198

C.1 Estimation algorithm for mixture Bayesian PPCA . . . . . . . . . . . 204

D.1 Lower Bound Expression . . . . . . . . . . . . . . . . . . . . . . . . . 207
D.2 Update Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

E.1 LKL: During the estimation stage (top) and the hypothesis testing
stage (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

E.2 Update expressions: During the estimation stage . . . . . . . . . . . . 215
E.3 Update expressions: During the hypothesis testing stage . . . . . . . 216

xiv



List of Figures

1.1 Example of a univariate control chart. Green solid line corresponds to
the expected value of the process, red dashed lines correspond to the
upper and lower control limits and the data points highlighted by the
red circles are the anomalies detected by the chart. . . . . . . . . . . 6

1.2 Multivariate monitoring approach. . . . . . . . . . . . . . . . . . . . 7
1.3 Illustrations of the PCA based monitoring approach. Left: Monitoring

model from PCA with 1-D latent variable for monitoring 2-D observed
variables. Right: Monitoring model from PCA with 2-D latent variables
for monitoring 3-D observed variables. . . . . . . . . . . . . . . . . . 9

1.4 A hierarchical Bayesian network representing the interactions among
the observed variables . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Dynamic Bayesian network used to represent the interactions among
the observed variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Example of a Bayesian network. . . . . . . . . . . . . . . . . . . . . . 22
2.2 Example of a directed graph with cycles. Such graphs cannot be con-

sidered as Bayesian networks. . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Four possible configurations that two directly unconnected distinct

subsets of nodes A and C can be connected through a distinct subset
of nodes B in a BN. The nodes within A, B and C can be connected
among themselves through arbitrary BNs. Multiple nodes from A can
be connected to multiple nodes in B, however, the direction of arcs has
to remain the same across all the connections and the same applies to
connections between B and C. . . . . . . . . . . . . . . . . . . . . . . 24

xv



2.4 An arbitrary BN with a subset of nodes V . Markov blanket of V is
given by the subset consisting of shaded nodes that are of all the parent
nodes of V , all the children nodes of V and all the other parent nodes
of its children nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 A two variable Bayesian network. . . . . . . . . . . . . . . . . . . . . 27
2.6 Bayesian network representation of the multivariate linear regression

model with N observations. . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Bayesian network representation of a first order vector autoregressive

model of a sequence of observations of length T . . . . . . . . . . . . . 30
2.8 Bayesian network representation of a state-space model of a sequence

of observations of length T . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Bayesian network representation of the PPCA model. To obtain the ac-

tual network, the structure within the rectangular enclosure or within
the rectangular plate has to be simply repeated ∀n ∈ [1, N ]. . . . . . 32

2.10 Bayesian network representation of the Bayesian probabilistic principal
component analysis model. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 LLB estimate vs. the number of iterations during the ML estimation
of the PPCA model using the EM algorithm. It can be seen that LLB

estimate increases with each iteration. . . . . . . . . . . . . . . . . . 46
2.12 Model selection based on the model evidence/likelihood of the compet-

ing models. X-axis corresponds to the space of observable data. Y-axis
corresponds to the model evidence. . . . . . . . . . . . . . . . . . . . 48

2.13 Lower bound estimate against the number of iterations during the
VBEM estimation of the Bayesian PPCA model. . . . . . . . . . . . 58

2.14 Effect of α∗ and β∗ on the penalty added to the parameter estimates. Left: Ef-
fect of decreasing β∗ on the penalty and right: Effect of increasing α∗

on the penalty. Dashed arrows indicate the direction of increase in the
penalty term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.15 Selection of α∗ through cross-validation. In this case, Bayesian op-
timization is employed to select α∗ that minimizes the negative log
likelihood in the validation dataset. . . . . . . . . . . . . . . . . . . . 62

xvi



2.16 Model reduction by Bayesian optimization. The parameter r represents
the number of latent variables excluded from the original model. . . . 64

3.1 Bayesian network representation of the GPLLVM . . . . . . . . . . . 71
3.2 Statics obtained from PCA and PPCA: T 2 (top) and Q (bottom) . . 89
3.3 Statics obtained from CCA and PCCA: T 2

y (top) and T 2
x (bottom) . . 90

4.1 Illustrative representation of the two-layer mixture PPCA model. . . 98
4.2 Schematic representation of the proposed model and the flow of esti-

mation. Data and the latent variables in the model are represented by
encircled nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Units of sulphur handling plant . . . . . . . . . . . . . . . . . . . . . 109
4.4 Schematic representation of a sulphur recovery unit . . . . . . . . . . 110
4.5 Control chart of the PPCA model . . . . . . . . . . . . . . . . . . . . 112
4.6 Control chart of the dynamic PPCA model . . . . . . . . . . . . . . . 113
4.7 The posterior distribution of the local models given the observation. X

- axis: training observations . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Log likelihood of the parameters in the validation set when the number

of components in the second layer was increased . . . . . . . . . . . . 115
4.9 Typical control chart obtained using the mixture PPCA model . . . . 117
4.10 Typical control chart obtained using the mixture dynamic PPCA model118
4.11 Typical control chart obtained using the two-layer mixture Bayesian

PPCA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.12 Schematic of the three-phase flow system. . . . . . . . . . . . . . . . 119
4.13 Posterior distribution of the local models given the observation. X -

axis: training observations . . . . . . . . . . . . . . . . . . . . . . . . 124
4.14 Log likelihood of the model parameters in the validation set when the

number of components in the second layer was increased . . . . . . . 124

5.1 Bayesian network of the proposed model . . . . . . . . . . . . . . . . 135

xvii



5.2 Summary of results for the simulation case study: the accuracy of
causal connections inference (top) and accuracy of model selection
(bottom). Panels separated by the dashed lines present result for differ-
ent noise levels σ−1 and each panel presents the results for six different
run lengths as indicated in x-label. Acronyms of the estimation ap-
proach followed by acronyms of model types are used as legends. For
model selection, legends followed by L indicate the model order se-
lection accuracy and the one followed by K indicates the correlation
features selection accuracy . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Simplified schematic diagram of the sulphur recovery unit . . . . . . 146
5.4 Normalized AG flow rate during two different periods of operation: Pe-

riod I (left) and Period II (right). . . . . . . . . . . . . . . . . . . . . 147
5.5 Summary of the results for the industrial case study: for period I using

the proposed method (top left), for period I using the VAR model
estimated under the ML framework (top right), for period II using the
proposed method (bottom left) and for period II using the VAR model
estimated under the ML framework (bottom right). Rows correspond
tp outputs and columns correspond to inputs. Variables X1 and X1

in the inputs correspond to the latent variables. Bright yellow squares
correspond to the presence of connections (non-zero coefficients) in all
the 100 sampled windows, dark blue squares correspond to the absence
of connections in all the windows and white squares correspond to the
unavailability of the results. . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Penalty added to the changes in parameters: Left: for increasing values
of β∗ and Right: for increasing values of α∗ . . . . . . . . . . . . . . . 165

6.2 Hyper-parameter, α∗ tuning strategy . . . . . . . . . . . . . . . . . . 166
6.3 Schematic of a SAGD well pair . . . . . . . . . . . . . . . . . . . . . 168

xviii



6.4 (i): Postulated graphical model among production rate, well bore sub-
cool and steam chamber pressure and (ii): Total effect of well bore
subcool and steam chamber pressure on production rate. Green arrows
correspond to positive effect and red arrows correspond to negative effect.171

6.5 Well 1: Time trends of the process variables and KPI. . . . . . . . . . 172
6.6 Well 1: Spread of the estimated total effect of well bore subcool on the

production rates at different time instants. α∗ is varied from 0.4 to 1.6. 173
6.7 Well 1: Spread of the estimated total effect of steam chamber pressure

on the production rates at different time instants. α∗ is varied from
0.4 to 1.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.8 Well 1: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 175

6.9 (i) Well 1: Median of total effects identified using the TVPM based
approach with α∗ = 0.4 and (ii) total effect identified using the time-
invariant linear regression models estimated under the ML approach. 179

E.1 Well 2: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 209

E.2 Well 3: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 210

E.3 Well 4: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 210

E.4 Well 5: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 211

E.5 Well 6: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 211

E.6 Well 7: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗. . . . 212

xix



E.7 For wells 2 to 7 (top to bottom): (i) Median of total effects identified
using the TVPM based approach and (ii) total effect identified using
the time-invariant linear regression models estimated under the ML
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xx



Chapter 1

Introduction

1.1 Statistical Process Monitoring and Causality
Analysis

Today, process industries as a major part of their digital transformation strategy strive
to leverage cloud storage and analytics platforms to store and perform analytics on
their operational data. Industries are on a constant lookout for use cases for their
operational data to derive business value out of it. This thesis develops and presents
new data-driven models for two important uses cases for the operational data namely,
(i) statistical process monitoring (SPM) and (ii) causality analysis.

1.1.1 Statistical Process Monitoring

SPM involves defining statistical control or an operating limits for the measured pro-
cess variables or the features derived from the process variables and ensuring that
the variables and the features do not violate the defined limits. SPM techniques can
benefit from stored or archived operational data for deriving these control limits. Con-
sider that the stored operational data consists of data during the periods when the
process operations were more cost-effective and energy efficient or when the process
and process equipment were operated more reliably. Data-driven models can be used
to identify these sweet spots in the data and the operating envelope for the process
variables during these periods. Once the operating envelope is identified, the SPM
techniques can be deployed online to monitor the process and alert the operations
team when the process drifts away from these sweet spots. The operations team can
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then take necessary actions to bring the process back to the desired operating con-
ditions. Thus, SPM helps the operations team to (i) ensure safe operation of process
and manufacturing facilities, (ii) reduce anomalies in product quality, (iii) reduce
unprecedented production downtime, (iv) strictly meet emission standards and (v)
ensure that the process and process equipment are operated reliably. SPM can be
applied to process systems at many levels as discussed below,

1. Monitoring of quality variables or key performance indicators (KPIs): Perfor-
mance of a process unit or a facility is often quantified by means of a manageable
number of KPIs, which can be easily measure or estimated and monitored. The
KPIs typically include production rates, cost of production and processing, en-
ergy efficiency, emission levels, production downtime, etc. SPM allows anoma-
lies in the KPIs to be detected, addressed and eventually, the rate of anomalies
to be decreased.

2. Monitoring of features generated from the intelligent control systems: Modern
industrial control systems may possess several interconnected layers that make
use of process measurements and interact with process systems to ensure that
the systems perform well to meet targets set on the aforementioned KPIs. Data
acquisition, inferential or soft sensors, regulatory control and supervisory con-
trol are some of the commonly found layers in the industrial process control
systems and more sophisticated systems may also consist of fault detection,
fault diagnosis, data reconciliation and equipment health monitoring layers,
etc. These layers generate features that are representative of the performance
of the process systems and may also generate features representative of their
own performances. For example, controller error in the regulatory control layer,
prediction error in the inferential sensors and fault signatures generated by the
fault detection, diagnosis and equipment health monitoring layers. These layers
can typically benefit from SPM techniques to monitor the generated features.

3. Monitoring of measured process variables: In addition to monitoring the KPIs
and the features derived from the measured process variables, the process vari-
ables can themselves be monitored using the SPM techniques. In this case, SPM
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techniques indirectly ensure that the KPIs and the features are within the de-
sired limits by ensuring that the variables used to derive them are within the
desired limits. This approach also helps the operations team and the control
systems recognize when some of the process variables are approaching their
safety limits, sensor failures when the measurements are out of the reasonable
range, etc.

1.1.2 Causality Analysis

When it becomes challenging to understand and determine how the process variables
interact with each other from the first principles knowledge of the process, data-
driven causal modelling techniques prove to be vital. Causal models may allow us to
reconstruct the process networks or identify the strengths of different interactions in
the postulated process networks from the operational data. The knowledge of these
causal interactions can help improve process operations in the following ways at the
very least,

1. Assume that we can postulate or identify a reasonable network that encodes
how the process variables affect the key performance indicators (KPIs) of a
process. Quantifying the strengths of interactions in this network can give us a
perspective on relative effect of each process variable on the KPIs. This infor-
mation can further be utilized to optimize the process KPIs in multiple ways,
for example, (i) the influential variables can be controlled such that they affect
the KPIs in a desired manner, (ii) closed-loop control or optimization frame-
works for the KPIs can be designed with the most influential variables as the
manipulated variables, etc.

2. Consider an occurrence of an event where the process drifts away from the sweet
spots mentioned earlier. The knowledge of where the problem originated and
how it eventually led the process to drift away are imperative for the operations
team to take the right sequence of actions to bring the process back to the
normal operation. An approach that classifies the process variables as causes
or effects or both or neither from the data during these upsets would provide
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a starting point for the operations team to investigate, identify the root cause
and speed up the recovery process.

3. A causal hierarchical network that assigns different hierarchies to the process
variables based on their cause and effect relationships can give rise to a sys-
tematic statistical process monitoring strategy. Process variables can then be
monitored from the top to the bottom of the hierarchical tree. This strategy
allows the process abnormalities to be detected during its initial stages from
the top layer variables in the tree before they propagate to the bottom levels of
the tree.

Statistical process monitoring and causality analysis for applications in industrial
process systems are among the active academic research areas. In the following sec-
tions, we review the techniques that are relevant to the models developed in this
thesis.

The remainder of this chapter is organized as follows: In sections 1.2 and 1.3,
we review the existing literature relevant to the models developed in this thesis and
motivate the need for the developed models. In section 1.4, we provide the outline of
this thesis. In section 1.5, we present the summary contributions made in this thesis.

1.2 Statistical Process Monitoring Techniques

There exist numerous techniques for statistical process monitoring in the literature,
especially, the ones based on the data-driven models borrowed from chemometrics,
statistics and different areas of machine learning. It would be incredibly challenging
to review the existing techniques comprehensively and yet keep the discussion focused
on the models developed in this thesis. For the readers who are interested in different
available techniques, we refer them to more comprehensive texts and review articles
[1, 2, 3, 4, 5, 6]. Instead, in this section, we stick to the techniques that are relevant
to the development of the models presented in this thesis.
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1.2.1 Univariate and Multivariate Control Charts

Univariate control charts (or Shewhart charts[7]) are the earliest of the SPM tech-
niques. They are typically used to monitor the sample means or direct measurements
of the quality variables. A simplest form of univariate charts relies on defining upper
and lower control limits around the expected value of the monitored statistic and de-
tecting the anomalies that lie outside the control limits as illustrated in Fig. 1.1. The
control limits are derived either from process expertise or based on the cumulative dis-
tribution function (CDF) of the monitored statistic with a desired rejection rate. The
rejection rate determines the theoretical value of the percentage of false detections
when all the samples generated from the process follow the assumed null distribu-
tion. It is usual to assume the monitored variables are Gaussian distributed and de-
termine the control limits based on their variance or standard deviation. When their
variance is unknown, it is estimated from the data collected from the periods when the
process is considered to be normal and the control limits are derived from the CDF
of Student’s t-distribution. Other common variants or relatively more advanced ver-
sions of univariate charts monitor exponentially weighted moving average (EWMA)
[8, 9] or cumulative sum (CUMSUM) [10] of the quality variable. The EWMA and
CUMSUM charts tend to be more sensitive and can be made to detect even small
changes or gradual drifts in the sample mean.
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Figure 1.1: Example of a univariate control chart. Green solid line corresponds to the
expected value of the process, red dashed lines correspond to the upper and lower
control limits and the data points highlighted by the red circles are the anomalies
detected by the chart.

When a large number of variables are monitored and the monitored variables are
correlated, univariate control charts become ineffective as illustrated in Fig. 1.2.1. In-
stead, multivariate control charts can be utilized. Multivariate control charts convert
multivariate variables into univariate or bivariate statistics that can then be managed
and monitored with one or two control charts. A basic version [11] of multivariate
charts involves monitoring the Hotelling’s T 2 statistic [12], which is given by the
covariance normalized quadratic distance between the actual observation and the ex-
pected values of the monitored variables. It defines an elliptical or a hyper-elliptical
control limit around the expected values of the monitored variables depending upon
the dimension of the monitored variable. When the covariance matrix of the moni-
tored variables is available or estimated from a large number of samples, the control
limits are derived from the CDF of χ2 distribution. When it is estimated from a lesser
number of samples, the control limits are derived from the CDF of Hotelling’s T 2 dis-
tribution. The CUMSUM [13, 14, 15] or EMWA [16] version of multivariate charts
are also available for process monitoring in the literature.
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1.2.2 Process Monitoring using Latent Variable Models

Latent variable models describe the observed variables as a function of the lower
dimension latent or hidden variables. The popular multivariate latent variable tech-
niques used for monitoring include principal component analysis (PCA), factor analy-
sis (FA), partial least squares (PLS) method and canonical correlation analysis (CCA)
[17, 18, 19, 5, 20, 21, 22, 23, 24, 3, 5, 25].

PCA is probably the most popular classical multivariate technique used for process
monitoring applications in the literature. The PCA can be performed by subjecting
the sample covariance matrix to eigendecomposition. From eigendecomposition, two
sets of axes from the orthonormal basis that explains the spread of the observations
can be obtained, namely, (i) principal components (PCs) and (ii) minor components
(MCs) as illustrated in Fig. 1.3. Each axis in the basis explains a fraction of variance in
the total variance of the observed data. The axes in the basis can be ordered from the
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one that explains the maximum variance to the one that explains the minimum vari-
ance. The PCs explain the systematic variance in the observed variables. Projection of
the actual observation on to the space spanned by the PCs gives the underlying latent
variables. The MCs explain the measurement noise variance or the residual variance
of the PCA model. For example, in the 2-dimension (2-D) observation case illustrated
in Fig. 1.3, y1 and y2 represent the axes of the actual observed variables and PC and
MC are axes in the orthogonal basis identified by the application of PCA. In this
case, the axis PC explains the systematic variance in y1 and y2 and MC explains the
variance of the residuals in the relationship between y1 and y2 identified by the PCA
model.

PCA has certain advantages over the multivariate charts that we reviewed before
including, (i) it models the covariance of the variables parsimoniously depending on
the number of axes retained as PCs, (ii) control charts for Hotelling’s T 2 statistic
can be established when the sample covariance matrix is ill-conditioned, which is
not possible with the previously described methods as they need the inverse of the
sample covariance matrix, (iii) it can distinguish between the systematic variance and
variance due to measurement noise when the measurement noise of the monitored
variables have the same magnitude of variance and (iv) using PCA, high dimension
variables can be mapped onto the lower dimension latent variables space, which in
many cases aids data visualization.

Typically, two different control charts are used in the PCA based monitoring
approach, (i) T 2 chart[12] and (iii) SPE or Q chart[26]. T 2 chart is used to monitor
the latent variables. The latent variables extracted from the PCA are uncorrelated and
have zero mean and a full rank diagonal covariance, which allows the implementation
of T 2 chart. SPE chart monitors the space of model residuals. The T 2 chart can
detect the instances when the latent variables drift far away from the origin and the
SPE chart can detect the instances when the model residuals are out of the desired
bounds as illustrated in Fig. 1.3.
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Figure 1.3: Illustrations of the PCA based monitoring approach. Left: Monitor-
ing model from PCA with 1-D latent variable for monitoring 2-D observed vari-
ables. Right: Monitoring model from PCA with 2-D latent variables for monitoring
3-D observed variables.

The FA based approach is very similar to the PCA based approach, except that it
allows monitored variables to have different magnitudes of noise variance. The PLS
and CCA techniques are used when the observed variables can be split into two dis-
tinct subsets (Eg. inputs and outputs). They can provide dimension reduction on
both the subsets. CCA extracts latent variables from both the subsets such that they
are maximally correlated while PLS method maximizes the covariance between the
latent variables obtained from both the subsets [27]. For process monitoring applica-
tions, in all these approaches, the extracted lower dimension variables and the model
residuals or the reconstruction residuals of the original observations from the model
are monitored. These techniques can also be used for process monitoring when the
observations are serially/temporally correlated. In such cases, the usual trick is to
treat a sequence of observation as a data point instead of treating every single ob-
servation as a data point. The resulting models are called the dynamic PCA model,
dynamic CCA model and so on [18, 19].
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1.2.3 Process Monitoring using Probabilistic Latent Variable
Models

Classical latent variable techniques discussed above also have their probabilistic coun-
terparts. For instance, probabilistic PCA (PPCA) [28] and probabilistic CCA (PCCA)
[29] models are the probabilistic counterparts of PCA and CCA, respectively. Prob-
abilistic models define a distribution over the observed variables. In addition to that,
by the use of the rules of probability theory they allow one to assess all forms of
uncertainties in the model including the uncertainty in the extracted latent variables,
parameters and model structure.

Let us take an example of a probabilistic model, the PPCA model. It assumes that
the observed variables (yn ∈ RD) are generated by a linear combination of the lower
dimension latent variables (xn ∈ RK) and corrupted by the additive noise (en ∈ RD)
as shown below,

yn = µy +Wzn + en

zn
i.i.d∼ N (0, IK)

en
i.i.d∼ N (0, σID)

(1.1)

where W is a matrix of coefficients of the latent variables and µy is the mean of the
observations. The PPCA model assigns a distribution (prior distribution) over the
latent variable and the measurement noise, thereby, explicitly defining a distribution
over the observed variables. The latent variable are considered to follow a multivari-
ate Gaussian distribution with zero mean and identity covariance of size K and the
measurement noise are considered to follow a multivariate Gaussian distribution with
zero mean and diagonal covariance with all its diagonal elements equal to σ. The
model allows the inference of the conditional distribution (posterior distribution) of
the latent variables given the observations. Thus, one can assess the uncertainties in
the extracted latent variables. Similarly, if one wishes to assess the uncertainties in
the parameters of the model, W , µy and σ, one can also prior distributions over these
parameters and infer their posteriors by the use of rules of probabilistic inference. We
will return back to this topic in chapter 2 of this thesis.

Briefly, the advantages of the probabilistic modelling include: 1) They explicitly
define the modelling assumptions to describe the data generation process, 2) they
provide feasible frameworks to accommodate different distribution assumptions to
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handle specific data characteristics, for instance, outliers [30], multi-modality [31],
and missing data [32] and 3) they allow users to incorporate prior distributions for the
parameters and perform Bayesian analysis [33], which can be used to select between
multiple competing models that best describe the observed data. The probabilistic
latent variable models have also been shown to be applicable for process monitoring
in the literature by leveraging the above mentioned advantages [30, 34, 35, 36, 37, 38].

1.2.4 Process Monitoring Problems Addressed in this Thesis

This thesis addresses the following two problems in process monitoring using the
probabilistic models,

1. Classical multivariate techniques and their probabilistic counterparts have been
compared for process monitoring applications in the literature using simulation
case studies. For example, comparison of PCA and PPCA for process moni-
toring [37]. However, there exists no standard or rigorous procedure that in-
cludes monitoring statistics, their null distributions and control limits for de-
ploying probabilistic models for process monitoring unlike their classical coun-
terparts. In addition, questions such as ‘is there any advantage or difference
in using probabilistic models when compared to using classical counterparts
for process monitoring?’ has not been answered previously. In this thesis, we
address these problems for linear Gaussian models. We define a general model
such that for most of the common probabilistic models including PPCA, PCCA
and probabilistic factor analyser (PFA), these problems can be addressed un-
der a unified framework. We derive the process monitoring procedure for the
general model and show that this procedure can be reduced to special cases if
required. Furthermore, through the derived results, we theoretically compare
the classical and probabilistic models for process monitoring.

2. For monitoring multi-modal systems, mixture models that are expressed as a
convex combination of linear Gaussian models have been proposed in the lit-
erature [30, 34, 35, 36]. These models retain a structural simplicity and let
the users control the model complexity based on the number of local models
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considered. Increasing the number of local models in the mixture allows one
to approximate complex data distributions. However, such approaches do not
scale well. They suffer from local optima convergence and increased compu-
tational complexity. Instead, we propose a modelling approach inspired from
multi-layer neural networks, a two-layer mixture model formed by stacking the
mixture models one above the other. We find the proposed approach to be more
promising and outperform single layer models in multiple fronts.

1.3 Causal Modelling Techniques

Causal modelling is a broad area of research and there exists multiple definitions of
causality and numerous causal modelling approaches. In this section, we review two
causal modelling approaches that are relevant to the problems addressed in this thesis,
one based on static Bayesian networks and the other is based on Granger causality
networks, which can be seen as a special case of dynamic Bayesian networks.

1.3.1 Static Bayesian Networks

Bayesian networks are directed acyclic graphs (DAGs). In Bayesian networks, the
variables are represented as nodes and the interactions among the variables are rep-
resented by means of directed arcs. Bayesian networks are a special class of proba-
bilistic graphical models (PGMs) that are in general used to define a join distribution
over a set of variables as we will see in chapter 2. However, in the context of causal
modelling, the variables or nodes in a Bayesian network can be viewed as causes and
effects. In a Bayesian network that consists of variables y1 and y2, variable y1 is said
to be a direct cause variable to y2 if there exists a directed arc from y1 pointing to
y2.

Bayesian networks can be used to construct a hierarchical tree of variables as the
one shown in Fig. 1.4. In the hierarchical tree, the variables in level 1 are the direct
cause variables to variables in level 2, the variables in level 2 are the the direct cause
variables to variables in level 3 and so forth. In this network, any systematic change
will first start with the variables in level 1, then propagates to level 2, then to level 3
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and so on. The joint distribution over the system of these variables can be obtained
as a product of marginal distribution of variables in level 1, conditional distribution
of variables at level 2 given the ones at level 1, conditional of level 3 variables given
the ones at level 2, and so on until the conditional of ones at level k given the ones
at level k − 1.

Modelling the joint distribution of the process variables from process data using
the hierarchical Bayesian networks that assign cause and effect roles to the process
variables has been found to be attractive in process monitoring applications in the
literature [39, 40]. By establishing the statistical control limits from the marginal
distribution of the level 1 variables and the conditionals of the lower level variables,
any undesirable systematic change in the process system can be detected and tracked
from the top of the network. However, these hierarchical networks can also be applied
in industrial process systems for applications other than process monitoring. One
other application could be studying the strengths of causal effects of one variable
on the other variable in the network or inferring the effect of fixing or changing one
variable on the other, known as the interventional analysis [41, 42].

The hierarchical network identification problem has two sub objectives, (i) deter-
mining the topology of the network and (ii) identification of the conditional distribu-
tions or relationships. Though there exist algorithms, determining the topology of the
network from data is a relatively harder problem [43, 44, 45]. When there is sufficient
domain knowledge available, one may potentially postulate different topologies and
validate them against data. In this thesis, we are however interested in the problem
of learning conditional distributions or parameters in a static causal network and
study the strengths of causal interactions among the variables assuming the topology
is available from the domain knowledge. Even though, this is a simpler problem com-
pared to the topology identification problem, several data quality issues associated
with the process routine operation data can confound the analysis significantly. In
this thesis, we are interested in addressing such issues.
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Figure 1.4: A hierarchical Bayesian network representing the interactions among the
observed variables

1.3.2 Granger Causality Analysis

In dynamic systems, a notion of causality introduced by Granger [46] is widely used
for defining the causal dependencies among the variables. The Granger causality is
defined based on the idea that the cause improves the prediction accuracy of the
effect. If a variable y1 is said to Granger cause a variable y2, y2 should be predicted
more accurately using the past states of both y1 and y2 than by using the past
states of y2 alone. The existence or absence of this causal relationship can be tested
by constructing two different prediction models for y2, one based on just the past
observations of y2 and the other based on the past observations of both y1 and y2. By
subjecting the prediction accuracies of both the models to statistical tests to determine
if the latter model really improves the prediction accuracy of y2, one can comment on
the presence or absence of the causal relationship. Typically, univariate or bivariate
linear auto-regressive models are used for testing the presence of Granger causality.

For multivariate systems, the idea of Granger causality analysis is extended to
study the causal interactions with the use of linear vector auto-regressive (VAR)
models [47, 48, 49, 50]. The linear VAR model for a multivariate process yt ∈ RD is
defined as the following,

yt =
L∑
l=1

W (l)yt−l + et (1.2)

where yt−l are the lagged versions of yt, L is the maximum lag, W (l) ∈ RD×D is a
matrix of VAR model coefficients for lag l and et ∈ RD is a multivariate Gaussian
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white noise process. In the above model, a variable yj (jth dimension variable in
yt) is said to not directly Granger cause a variable yi (ith dimension variable in yt)
if the entry in ith row and jth column of W (l) is effectively zero ∀l ∈ [1, L] as in
that case, the past observations of yj do not help in predicting the future values
of yi [51]. Therefore, by testing the significance of the coefficients or by estimating
the model through the penalized estimation approaches (to distinguish between zero
and non-zero coefficients), one can comment on the presence or the absence of direct
causal relationships between any pair of variables in the linear dynamic systems.

The resulting causal networks for this type of approach can be viewed as a special
case of dynamic Bayesian networks as the one shown in Fig. 1.5. The model shown
in Eqn. (1.2) defines a conditional distribution on the multivariate process given its
past. This conditional distribution can be expressed in the form of Bayesian net-
works. In the resulting Bayesian networks, the direct causal relationships is expressed
through direct arcs from the past states of the multivariate variables to the current
states of those. In this representation shown in Fig. 1.5, the nodes with subscript p
represent the past states of the variables and the nodes with subscript c represent the
current states of the variables. In this network, a direct arc from the past states of
a variable to the current state of another variable indicates the presence of a direct
causal Granger causal influence from the former on the latter. For the example in
Fig. 1.5, y1 directly Granger causes y2 but not y3 and yD.

b
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y3p

yDpyDp - Past states of yD yDc - Current state of yD

Figure 1.5: Dynamic Bayesian network used to represent the interactions among the
observed variables.
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The Granger causality network reconstruction approaches have been found to be
promising for process monitoring and data analysis applications such as root cause
analysis of process abnormalities in the literature [52, 53, 54].

1.3.3 Causal Modelling Problems Addressed in this Thesis

In this thesis, we propose models to address two important issues in the causal mod-
elling approaches discussed above,

1. The Granger causality analysis approaches only account for time-lagged causa-
tion. The existence of instantaneous/contemporaneous correlations among the
variables can result in incorrect causal network reconstruction when using the
traditional Granger causality analysis approaches. For instance, when identify-
ing auto-regressive models from data, contemporaneous relationships tend to
disguise themselves as time-lagged causations as shown in [55]. In process sys-
tems, it is hard to classify some of the interactions as time-lagged causations due
to practical sampling and data historization rates. Slow sampling rates may not
allow us to observe dead-time and dynamics in some of the interactions. There-
fore, it is reasonable to expect both types of effective interactions to be present
in the data. To address the problem of time-lagged causal network reconstruc-
tion in the presence of contemporaneous correlations among the variables in a
linear system, we propose an approach in this thesis.

2. Both for causal network reconstruction and quantifying the interactions or
learning the conditional distributions in a postulated causal network, experi-
mental data are more suitable. However, it is expensive to conduct experiments
in process systems as the experiments interfere with the routine operation. On
the other hand, routine operation data are easy to obtain from the process his-
torian. Nevertheless, one may have to be wary of data quality issues in routine
operation data when they are used for causal modelling. One such issue is time-
varying nature of the process systems and its effect on the observed data. For
example, the relationship between a KPI of a plant and the process variables
may vary with changes in the operating modes, physical plant modifications,
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equipment fouling, etc. The effect of time-varying nature of the process can
be severe especially when studying long-term data. In this thesis, we present a
time-varying parameters model based approach that can be potentially applied
to quantify long-term causal interactions in a postulated causal network.

1.4 Thesis Outline

The rest of this thesis is organized as follows,
In chapter 2, we present the preliminaries required to define and develop the esti-

mation algorithms for a class of probabilistic graphical models known as the conjugate
exponential family graphical models (CEFGMs), which is a special class of Bayesian
networks. All the models developed and studied in this thesis can be shown to belong
to CEFGMs. We introduce Bayesian networks and CEFGMs and illustrate how the
data-driven models can be expressed graphically using the Bayesian networks. In this
thesis, we utilize the expectation maximization (EM) algorithm for the maximum like-
lihood estimation and the variational Bayesian expectation maximization (VBEM)
algorithm for approximate Bayesian analysis of the developed models. Therefore, we
illustrate these algorithms using the PPCA model as a case study.

In chapter 3, we define a generalized probabilistic linear latent variable model
(GPLLVM) that under specific restrictions reduces to various probabilistic linear
models used for process monitoring. For the defined model, we rigorously derive the
monitoring statistics and their respective null distributions. Monitoring statistics of
the defined model also reduce to the monitoring statistics of various probabilistic
models when restricted with the corresponding conditions. We show the equivalence
between the classical multivariate techniques for process monitoring and their proba-
bilistic counterparts, which is obtained by restricting the generalized model. We also
provide an estimation approach based on the EM algorithm for the GPLLVM. The
results presented in the chapter are verified using numerical simulation examples.

In chapter 4, a two-layer mixture Bayesian probabilistic principal component anal-
yser model is developed and proposed for process monitoring. It is suitable for the
data driven process monitoring applications where data with non-Gaussian distri-
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bution and temporal correlated observations are encountered. Model development
involves preprocessing the original observation matrix to make it suitable for building
dynamic models, followed by two stages of estimation. In the first stage, the data
is divided into a manageable number of clusters using a mixture model and in the
second stage, a mixture model is built over each cluster. This strategy provides a
scalable mixture model that is given by a convex combination of multiple local mod-
els. It has the potential to provide a parsimonious model and be less susceptible to
local optima convergence compared to the existing approaches that build mixture
models in a single stage. Dimension reduction during the estimation is automated
using the Bayesian regularization approach. The proposed model essentially provides
a probability density function for the monitored variables. It is deployed for process
monitoring and the performance highlights are demonstrated in two real datasets, one
is from a sulphur handling facility and the other is a publicly available experimental
dataset.

In chapter 5, a hybrid model is proposed to simultaneously identify causal con-
nections and features responsible for contemporaneous correlations in a multivariate
process. The hybrid model is formed by combining the vector auto-regressive ex-
ogenous model (VARX) and the factor analysis (FA) model. The parameters of the
resulting model are regularized using the hierarchical prior distributions. The model
is estimated using the VBEM algorithm. The estimation is initiated with a complex
model which is then systematically reduced to a simpler model that retains only
the parameters corresponding to significant causal connections and contemporaneous
correlations. Model reduction is carried out through a series of deterministic jumps
from complex models to simpler models using a relevance criterion. The approach is
illustrated with a number of simulated examples and an industrial case study using
the data from the sulphur handling facility.

In chapter 6, we present a causal modelling approach for the time-varying sys-
tems. The approach relies on the time-varying parameter models (TVPMs) estimated
using the VBEM algorithm. We incorporate a hypothesis switching procedure in com-
bination with the VBEM algorithm that allows us to infer the time-varying strengths
of causal effects of the inputs on the outputs of the system. We illustrate the proposed
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approach using the production data from steam assisted gravity drainage (SAGD)
wells. We find the time-varying model based approach to produce more consistent
results across multiple case studies for the studied system as compared to the time-
invariant model based approach.

In chapter 7, we conclude the thesis and present the recommendations for future
research directions both in process monitoring and causal modelling.

1.5 Main Contributions

This thesis develops and presents the following four probabilistic models,

1. The generalized probabilistic linear latent variable model, which can be applied
for unimodal process monitoring.

2. The two-layer mixture Bayesian probabilistic principal component analyser
model, which scales well to describe the non-Gaussian data distributions and
can be applied for multi-modal process monitoring.

3. A hybrid model that is formed by combining the vector auto-regressive and
factor analyser models and the thesis also presents an approximate Bayesian
analysis procedure for the developed model, which can be applied to study
the casual and contemporaneous interactions among the variables in a linear
system.

4. A time-varying parameters model and the thesis also presents an approximate
Bayesian analysis procedure for the developed model, which can be applied to
study the time-varying causal strengths in a postulated causal network.
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Chapter 2

Preliminaries

The purpose of this chapter is to present the preliminaries required to easily follow
the subsequent chapters in this thesis. All the models developed in this thesis for
process monitoring and causal modelling applications can be defined using Bayesian
networks (BNs), a class of probabilistic graphical models (PGMs). To be more specific,
the developed models belong to the conjugate exponential family graphical models
(CEFGMs), a special classs of BNs. We provide a brief introduction to BNs and CE-
FGMs. Then, we illustrate how the data-driven models can be defined using BNs with
examples including time series models and multivariate statistical models. In addi-
tion, we take a popular example in process monitoring applications in the literature,
principal component analysis (PCA) and show how a maximum likelihood (ML) and
a Bayesian version of the PCA model can be defined using the BNs.

CEFGMs are amenable either to the exact maximum likelihood estimation through
approaches such as the gradient descent algorithms and the expectation maximiza-
tion (EM) algorithm [56, 57] or to approximate maximum likelihood estimation
through algorithms such as the variational expectation maximization (VEM) ap-
proaches [58, 59]. They are also amenable either to the exact Bayesian analysis or to
approximate Bayesian analysis through Markov chain Monte Carlo (MCMC) sampling
approaches such Gibbs sampling and deterministic techniques such as the variational
Bayesian expectation maximization (VBEM) algorithm [60]. This makes the whole
exercise of defining and estimating new models that belong to CEFGMs more con-
venient. In this thesis, we predominantly utilize the EM and the VBEM algorithms
for estimating the models developed. Therefore, we illustrate these algorithms in this
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chapter for estimating the maximum likelihood (ML) and Bayesian versions of the
PCA model, which were originally presented in [28, 33].

2.1 Bayesian Networks

Most data-driven models can be expressed graphically by means of the probabilis-
tic graphical models (PGMs). Data-driven models involve many interacting variables
that include observed data, latent variables, parameters and hyper-parameters. PGMs
can be used to elegantly represent these interactions and visualize the dependence
and independence relationships among these variables. The knowledge of these in-
teractions in turn, aids in deriving a tractable estimation or inference or prediction
algorithms for the data-driven models [41, 61, 62, 63, 64, 65]. There are two well-
known classes of PGMs, namely, (i) Markov random field or Markov networks and
(ii) Bayesian networks [41]. Markov networks are undirected graphical models and
Bayesian networks are directed acyclic graphical models (DAGs).

A BN defines a joint distribution over a set of random variables as a product of
set of conditional distributions. Fig. 2.1 shows an example of a BN. This particular
network defines a joint distribution over the random variables, a, b, c, d and e. To
understand how the joint distribution is defined by this network, we need to familiarize
ourselves with some more terminologies associated with the BNs. In a BN, the random
variables are denoted by encircled nodes and the interactions among the nodes are
represented by directed arcs. The node at the tail end of a directed arc is commonly
termed as a parent node of the node at the head end of the arc. Consequently, the
node at the head end of an arc is termed as a child node of the node at the tail end of
the arc. For example in Fig. 2.1, node d is a child node of a and a is a parent node of
d. The joint distribution of all the variables in a BN can be expressed as a product of a
set of conditional distributions of all the nodes given their respective parent nodes. In
the case of Fig. 2.1, those conditional distributions are given by p (e|c, d) (e given its
parents c and d), p (c|a) (c given its only parent a), p (d|a, b) (d given its parents a
and b), p (a) and p (b)∗. Conditional distributions of a and b are not conditioned on

∗Note that the function p(.) takes the probability mass function form in the case of discrete
random variables and it take the probability density function form in the case of continues random
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any of the other variables in the network as they have no parents.

a b

c d

e

Figure 2.1: Example of a Bayesian network.

Mathematically, the joint distribution defined by the BN in Fig. 2.1 can be rep-
resented as the following,

p (a, b, c, d, e) = p (e|c, d) p (c|a) p (d|a, b) p (a) p (b) (2.1)

where p (a, b, c, d, e) is the joint distribution of a, b, c, d and e. BNs encode an impor-
tant assumption about the interactions among the variables in the network. A node in
a BN becomes independent of all of its non-descendants given its parent nodes. This
can be understood by comparing the joint distribution defined by the chain rule of
probability against the one defined by the BNs. For example, for the variables in the
network shown in Fig. 2.1, one way of expressing the joint distribution by the chain
rule of probability is as follows,

p (a, b, c, d, e) = p (e|c, d, a, b) p (c|d, a, b) p (d|a, b) p (a|b) p (b) (2.2)

When comparing to the conditional distributions of e in Eqn. (2.2), the conditional
distribution of e in Eqn. (2.1) does not include variables a and b. This is because
the variables a and b are non-descendants of e and e becomes conditionally indepen-
dent of them given it parents c and d. Similar simplification can be observed in the
other conditional distributions in Eqn. (2.1). Therefore, we can ideally simplify the
conditionals in Eqn. (2.2) with the knowledge of the BN to the ones in Eqn. (2.1).

The structure of a BN has to respect one important constraint. Only DAGs can
be considered as BNs. In a DAG, by definition, if we were to start from an arbitrary

variables
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node and travel along the direction of the directed arcs across the graph/network, we
would never be able to reach the node that we initially started from. For example, in
the BN shown in Fig. 2.1, if we start from the node a and by following the direction
of the directed arcs, we can reach c, d and e, however, cannot reach back to a. Same
will be the case when we start from any other node in the network. On the other
hand, the graph shown in Fig. 2.2 is an example of a graph with cycles. By starting
from node a, we can reach back to a. Such graphs cannot be considered as BNs.

a

b c

Figure 2.2: Example of a directed graph with cycles. Such graphs cannot be considered
as Bayesian networks.

2.1.1 D-Separation

It is important to understand the nature of dependence and independence relation-
ships among the variables to devise inference algorithms for the BNs. Inference refers
to the problem identifying a probable state of a node or the probable states of a set of
nodes in the network given a partial or complete information of the states of the rest
of the nodes in the network. D-separation is a principle that defines the dependence
and independence rules among the variables in PGMs. More precisely, D-separation
allows one to infer the role of a subset of nodes that connects two distinct subsets of
nodes in a network, whether the two distinct subsets remain independent or depen-
dent under the following cases, (i) nodes in the connecting subsets are observed or
given and (ii) nodes in the connecting subsets are unobserved or not given.

Let A, B and C be three distinct subsets of nodes in a BN, B be the subset that
connects both A and C and there exist no direct connections between A and C. As
illustrated in Fig. 2.3, both A and C can be connected through B in the following four
possible configurations, (i) directed arcs from A to B and from B to C, (ii) directed
arcs from C to B and from B to A, (iii) directed arcs from B to both A and C,
and (iv) directed arcs from both A and C to B. In these cases, we are interested in
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identifying if A and C are a priori independent (i.e., D-separated) or dependent on
each other and if A and C are conditionally independent given B (i.e., D-separated
by B) or conditionally dependent given B. For all four cases, the nature dependence
and independence relationships or D-separation rules are described in proposition 1.

A B C

A B C

A B C

A B C

(i)

(ii)

(iii)

(iv)

Figure 2.3: Four possible configurations that two directly unconnected distinct subsets
of nodes A and C can be connected through a distinct subset of nodes B in a BN. The
nodes within A, B and C can be connected among themselves through arbitrary
BNs. Multiple nodes from A can be connected to multiple nodes in B, however, the
direction of arcs has to remain the same across all the connections and the same
applies to connections between B and C.

Proposition 1. D-separation rules: For the four networks shown in Fig. 2.3, the
following independence and dependence rules hold,

• For Fig. 2.3 (i), A and C may not be independent a priori, however, they become
conditionally independent given B, i.e., p(C|A,B) = p(C|B) and p(A|B,C) =
p(A|B) or in other words, B D-separates A and C.

• For Fig. 2.3 (ii), A and C may not be independent a priori, however, they become
conditionally independent given B, i.e., p(C|A,B) = p(C|B) and p(A|B,C) =
p(A|B) or in other words, B D-separates A and C.

• For Fig. 2.3 (iii), A and C may not be independent a priori, however, they be-
come conditionally independent given B, i.e., p(C|A,B) = p(C|B) and p(A|B,C) =
p(A|B) or in other words, B D-separates A and C.

• For Fig. 2.3 (iv), A and C are independent a priori, however, may become
dependent on each other given B (i.e., B cannot D-separate A and C).

A proof of proposition 1 is provided in section. A.1 of Appendix. A.
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2.1.2 Markov Blanket

Markov blanket of an arbitrary subset of nodes in a PGM refers to a minimal distinct
subset of nodes in the graph that D-separates the subset concerned from the rest
of the graph. This D-separation implies that given the complete information or the
states of its Markov blanket, any additional information about the nodes outside the
Markov blanket will add no valuable information to infer the states of the subset
concerned. Therefore, for the purpose of inference, it is useful to define the Markov
blanket of a node or a subset of nodes in a graphical model. For a BN, the Markov
blanket of an arbitrary subset of nodes can be defined as stated in proposition 2.

Proposition 2. In a BN, Markov blanket of an arbitrary subset of nodes is given by
a distinct subset consisting of all of its parent nodes, all of its children nodes and the
set of all the other parent nodes of its children nodes as illustrated in Fig. 2.4.

V

Figure 2.4: An arbitrary BN with a subset of nodes V . Markov blanket of V is given
by the subset consisting of shaded nodes that are of all the parent nodes of V , all the
children nodes of V and all the other parent nodes of its children nodes.

A proof of proposition 2 is provided in section A.2 of Appendix A. We will be using
the concepts, D-separation and Markov blanket when deriving a tractable estimation
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algorithms for the maximum likelihood and Bayesian version of the PCA model in
this thesis chapter and for the models developed in the subsequent chapters.

2.1.3 Bayes Rule of Inference

The Bayes Rule of Inference is a fundamental building block in many algorithms
devised for inference in BNs. The Bayes rule can be seen as a direct consequence of
the chain of rule of probability. Consider a BN of two variables a and b shown in
Fig. 2.5. The joint distribution of a and b is defined by the BN as the following,

p (a, b) = p (b|a) p (a) (2.3)

where the conditional distribution, p (b|a), can be used to predict the probable state of
b given a. In addition, we are also often interested in the inverse inference problem, i.e.,
determining the probable state of a given b, which requires the conditional distribution
p (b|a).

Using the chain probability, the joint distribution of a and b can be expressed
equivalently in two ways as the following

p (a, b) = p (b|a) p (a) = p (a|b) p (b) (2.4)

We can rearrange the above equation to obtain the conditional distribution of a given
b as the following,

p (a|b) = p (b|a) p (a)
p (b)

(2.5)

The above equation is known as the Bayes rule or the Bayes theorem. The terms
p (b|a), p (a) and p (a|b) are referred to as the likelihood, prior distribution and pos-
terior distribution of a respectively. The term p (b) is referred to as the marginal
distribution of b, which can be obtained by marginalizing or integrating out a from
the joint distribution of a and b as the following,

p (b) =

∫
b

p (b|a) p (a) db (2.6)
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b

a

Figure 2.5: A two variable Bayesian network.

2.1.4 Bayesian Network Representation of Data-Driven Mod-
els

There is an advantage in defining different models under a common framework such
as the BNs. This would allow one to develop model estimation algorithms and state
inference algorithms for the general framework and deduce the algorithms for any
special case if needed. Furthermore, an algorithm developed for a particular model can
be extended to be applied on a model that can be expressed under the same family. In
this subsection, we will attempt to express and visualize some of the commonly used
data-driven models in the process data analysis literature in the form of BNs. We pick
the following four examples to show how they can be expressed as BNs, (i) multivariate
linear regression model, (ii) vector autoregressive model, (iii) state space model, (iv)
maximum likelihood or probabilistic principal component analysis (PPCA) model
and (v) Bayesian PPCA model.

Example 1: Multivariate Linear Regression Model

Consider a set of N output observations Y ,
{
y1, ...yn ∈ RD, ..., yN

}
∈ RD×N , a

set of N input observations U ,
{
u1, ...un ∈ RP , ..., uN

}
∈ RP×N obtained from

a linear system, each output observation belongs to a D-dimension real space and
each input observation belongs to a P -dimension real space. Any arbitrary input and
output observation n can be related by the multivariate linear regression model as
the following,

yn = θun + en (2.7)

where θ ∈ RD×P is the parameter matrix, and en ∈ RD is the D-dimension measure-
ment noise in yn. Assume en is independent and identically distributed and follows a
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multivariate Gaussian distribution with zero mean and covariance Σe as the following,

en
i.i.d∼ N (0,Σe) (2.8)

This model can be interpreted as a probabilistic model for the outputs of the sys-
tem. Given the fixed parameters, θ and Σe and the inputs of the system, the proba-
bility distribution over the outputs can be expressed as shown below,

yn
i.i.d∼ N (θun,Σe) (2.9)

where yn is shown to follow multivariate Gaussian distribution with mean θun and
covariance Σe. For the set of N observations from the system, the joint distribution
can be expressed as the following,

p (Y |U, θ,Σe) =
N∏

n=1

p (yn|θ, un,Σe) (2.10)

where the joint distribution of all the output observations are expressed as the product
of marginal distributions of the individual observations given the parameters θ and
Σe, and the inputs. The individual marginal distributions take the distribution form
shown in Eqn. (2.9). The joint distribution shown in Eqn. (2.10) can be represented
using a BN as shown in Fig. 2.6. The only random variable in the network, yn, is
denoted by the encircled node and the deterministic variables and the parameters
that take fixed values are denoted by the plain nodes. To denote the repetition of
nodes for N different observations, those nodes that are to be repeated are contained
within a rectangular plate in the graphical representation.

yn

un Σe

θ

n = 1, ...N

Figure 2.6: Bayesian network representation of the multivariate linear regression
model with N observations.
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Example 2: Vector Autoregressive Model

Consider a system with a D-dimension output and the generation of those outputs
can be described by the first order auto regressive model of the following form,

yt = θyt−1 + et (2.11)

where yt ∈ RD is the output observed at time instant t, it depends on the output at
the previous time instant t− 1, yt−1, θ ∈ RD×D is the coefficient matrix, and et is the
additive measurement noise at time instant t. The additive noise is independent and
identically distributed and follows multivariate Gaussian distribution with zero mean
and covariance Σe as the following,

et
i.i.d∼ N (0,Σe) (2.12)

This would allow us to represent the probability distribution of the output at t as
shown below,

yt
i.i.d∼ N (θyt−1,Σe) (2.13)

Further, the joint distribution of the time series of length T can be written as the
product of conditional distributions of the outputs at each time instant given their
previous observation as the following,

p (Y |θ,Σe) = p (y1|Σe)
T∏
t=2

p (yt|θ, yt−1,Σe) (2.14)

where p (y1|Σe) represents the distribution of the output at time instant one. It is
simply assumed to follows multivariate Gaussian distribution with mean zero and
covariance Σe. The joint distribution shown in Eqn. (2.14) can be represented using
a BN as shown in Fig. 2.7.
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y1 y2 yt−1
b b b b b byt yTyT−1

θ

Σe

Figure 2.7: Bayesian network representation of a first order vector autoregressive
model of a sequence of observations of length T .

Example 3: State Space Model

Consider a system that can be described using the state space model shown below,

zt = Ω1zt−1 + Ω2ut + ϵt (2.15)

yt = Ω3zt + Ω4ut + et (2.16)

where zt ∈ RK corresponds to the K-dimension states at time instant t and it can
be expressed in terms of the states at previous time instant t − 1, zt−1 and the P -
dimension inputs at time instant t, ut ∈ RP , yt ∈ RD are the outputs of the system at
t and they can be expressed in terms of zt and ut, and ϵt and et are the additive noise
terms in the state transition model and the output model at t respectively. The model
parameters are given by Ω1 ∈ RK×K , Ω2 ∈ RK×P , Ω3 ∈ RD×K , and Ω4 ∈ RD×P .

The additive noise in both state transition and output models follow multivariate
Gaussian distribution with zero mean, and Σϵ and Σe covariances respectively as
shown below,

ϵt
i.i.d∼ N (0,Σϵ) (2.17)

et
i.i.d∼ N (0,Σe) (2.18)

For this model, we can express the conditional distributions of the states and the
outputs at t as the following,

zt ∼ N (Ω1zt−1 + Ω2ut,Σϵ) (2.19)

yt ∼ N (Ω3zt + Ω4ut,Σe) (2.20)
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The joint distribution of the states, Z ,
{
z0, z1, ...zt ∈ RK , ..., zT

}
∈ RK×T+1 of

length T + 1 and the outputs, Y ,
{
y1, ...yt ∈ RD, ..., yT

}
∈ RD×T of length T given

the inputs, U ,
{
u1, ...ut ∈ RP , ..., uT

}
∈ RP×T and the model parameters can be

expressed as the following,

p (Y, Z|U,Ω1,Ω2,Ω3,Ω4,Σe,Σϵ) = p (z0|Σϵ)
∏T

t=1 p (zt|zt−1, ut,Ω1,Ω2,Σϵ)×
p (yt|zt, ut,Ω3,Ω4,Σe)

(2.21)
where z0 is simply assumed to follow multivariate Gaussian distribution with mean
zero and covariance Σe. This joint distribution can also be represented as a BN as
shown in Fig. 2.8.

y1 y2 yt−1 yt yTyT−1

z1 z2 zt−1 zt zT−1 zT

u1 u2 ut−1 ut uT−1 uT

b b b b bb

Ω3,Ω4,Σe

Ω1,Ω2,Σϵ

z0

Σϵ

Figure 2.8: Bayesian network representation of a state-space model of a sequence of
observations of length T .

Example 4: Probabilistic Principal Component Analyser Model

Consider a set of N output observations Y =
{
y1, ..., yn ∈ RD, ..., yN

}
∈ RD×N from

a system. The PPCA model assumes that these observations are generated from the
lower dimension latent variables. Let Z =

{
z1, ..., zn ∈ RK , ..., zN

}
∈ RK×N be the

set of N lower dimension latent variables with K < D. In the PPCA model, each
output observation is expressed as a linear combination of the corresponding lower
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dimension latent variables as the following,

yn = Wzn + en

zn
i.i.d∼ N (0, IK)

en
i.i.d∼ N (0, σID)

(2.22)

where W ∈ RD×K is the projection or the coefficient or the loading matrix, en is
the measurement noise in the observation and it follows multivariate Gaussian dis-
tribution with zero mean and covariance σID (diagonal matrix with all its diagonal
elements given by σ), and zn follows a multivariate Gaussian distribution with zero
mean and identity covariance. The subscripts K and D represent the respective sizes
of the identity matrices IK and ID, respectively. The measurement noise and latent
variable are assumed to be mutually independent.

The joint distribution of the observations and the latent variables are given by
the model shown in Equation (2.22) as the following,

p (Y, Z|W,σ) = p (Y |W,Z, σ) p (Z) =
N∏

n=1

p (yn|W, zn, σ) p(zn) (2.23)

where the conditional distribution of yn, p (yn|W, zn, σ) is a multivariate Gaussian
distribution with mean Wzn and covariance σID and the marginal distribution of zn,
p(zn) is a multivariate Gaussian distribution with mean zero and covariance σIK . A
BN representation of the PPCA model for N observations is shown in Fig. 2.9.

zn

yn

n = 1, ..., N

σ

W

Figure 2.9: Bayesian network representation of the PPCA model. To obtain the actual
network, the structure within the rectangular enclosure or within the rectangular plate
has to be simply repeated ∀n ∈ [1, N ].

Example 5: Bayesian Probabilistic Principal Component Analysis

So far, we have treated the parameters in the models as fixed quantities. However, we
can also impose our belief on the parameters by defining the probability distributions
of the parameters and perform Bayesian analysis. For illustration, we extend the

32



PPCAmodel to a Bayesian version and call it the Bayesian PPCAmodel. We treat the
parameter W as a random variable by defining the prior distribution for W . Consider
that each column of W , wk, is multivariate Gaussian distributed with zero mean and
ν−1
k ID covariance as the following,

wk ∼ N
(
0, ν−1

k ID
)

(2.24)

where νk is a scalar parameter representing the inverse of variance of each element in
wk and ID is an identity matrix of dimension D. In addition, we can also treat νk as a
random variable and assume it to follow a gamma distribution with shape parameter
α∗ and rate parameter β∗ as shown below†,

νk ∼ Ga (α∗, β∗) (2.25)

We can represent the resulting model as a BN as shown in Fig. 2.10. The parameter
ν represents the collection of parameters ν1 to νK , each corresponding to the respective
column ofW . We can expand the network to show each column ofW and each element
of ν. However, for simplicity, we will retain a simpler representation as shown in
Fig. 2.10. If desired, we can go on and define a distribution for α∗ and β∗ and so
forth. However, the analysis will then become more and more complex to infer or
estimate the parameters given the data. Similarly, we can also define a distribution
for σ. However, for the purpose of illustration, we will stick to the simpler case shown
in Fig. 2.10.

yn

zn

n = 1, ..., N

σ

W

ν α∗, β∗

Figure 2.10: Bayesian network representation of the Bayesian probabilistic principal
component analysis model.

†This particular choice of the prior distributions make the Bayesian PPCA fall under the class
of CEFGMs as we will see in section 2.2 of this chapter.
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2.2 Conjugate Exponential Family Graphical Mod-
els

Definition 1. Exponential family distributions: They are a family of distributions
that can be expressed as the following,

p (x|η) = h (x) exp
{
ηTT (x)− A (η)

}
(2.26)

where p (x|η) is the probability density or the mass function of the distribution of the
random variable x with parameters η. T (x) is a function of x that maps x to a real
valued vector of the same size as η and h(x) is a function of x that maps x to a real
valued scalar. A (η) is the cumulant function that normalizes the integration of p (x|η)
over its support to one. Given, η and T (x), we can determine A (η) as the following,

A (η) = ln

∫
h (x) exp

{
ηTT (x)

}
dx (2.27)

In this thesis, all the considered prior distributions of the random variables belong
to the exponential family. The exponential family includes most commonly used and
many naturally occurring distributions such as normal, gamma, χ2, exponential, beta,
geometric, etc. As an example of an exponential family distribution, we discuss the
univariate Gaussian distribution below,

Example: Univariate Gaussian Distribution

Let us consider a random variable x that follows a univariate Gaussian distribution
with mean µ and variance 1

ζ
. Its probability density function is given as the following,

p (x|µ, ζ) =
√
ζ√
2π

exp

{
−ζ
2
(x− µ)2

}
(2.28)

We can rewrite the above function in the form shown in Eqn. (2.26) as illustrated
below,

p (x|µ, ζ) =
√
ζ√
2π

exp

{
−ζ
2
x2 − ζµ2

2
+ ζµx

}
(2.29)

p (x|µ, ζ) =
√
ζ√
2π

exp

{[
ζµ

− ζ
2

]T [
x
x2

]
− ζµ2

2

}
(2.30)
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It can be seen that the above expression resembles the form shown in Eqn. (2.26)
with the following parametrization,

h (x) =

√
ζ√
2π

(2.31)

η =

[
ζµ

− ζ
2

]
(2.32)

T (x) =

[
x
x2

]
(2.33)

A (η) = − η21
4η2

(2.34)

Definition 2. Conjugate prior distribution for the likelihood: Prior distribution of a
random variable is called the conjugate prior distribution for its likelihood when both
the posterior and the prior belong to the same distribution family.

For illustration, let us recall the univariate Gaussian distribution shown in Eqn. (2.28). This
forms the likelihood function for the parameters µ and ζ. Let µ be a fixed parameter
and consider ζ to be a random variable that follows a gamma distribution with shape
parameter κ∗ and rate parameter ϕ∗. This prior distribution has the following density
function,

p (ζ|κ∗, ϕ∗) =
(ϕ∗)κ

∗

Γ (κ∗)
(ζ)κ

∗−1 exp (−ϕ∗ζ) (2.35)

where Γ represents the gamma function. Using the Bayes rule of probability, we
express the posterior of ζ as the following,

p (ζ|x, µ, κ∗, ϕ∗) =
p (x|µ, ζ) p (ζ|κ∗, ϕ∗)

p (x|µ, κ∗, ϕ∗)
(2.36)

The term in the denominator is independent of ζ. Therefore, the posterior can be
expressed as the following,

p (ζ|x, µ, κ∗, ϕ∗) ∝ p (x|µ, ζ) p (ζ|κ∗, ϕ∗) (2.37)

Replacing the likelihood and the prior by their respective density functions and sim-
plifying further leads to the following,

p (ζ|x, µ, κ∗, ϕ∗) ∝
√
ζ√
2π

exp

{
−ζ
2
(x− µ)2

}
(ϕ∗)κ

∗

Γ (κ∗)
(ζ)κ

∗−1 exp {−ϕ∗ζ} (2.38)
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p (ζ|x, µ, κ∗, ϕ∗) ∝ ζκ
∗+ 1

2
−1 exp

{
−

(
(x− µ)2

2
+ ϕ∗

)
ζ

}
(2.39)

where the above expression very much resembles the density function of the gamma
distribution family without the normalizing constant. Therefore, the posterior distri-
bution of ζ can be expressed as the gamma distribution of the following form,

ζ|x, µ, κ∗, ϕ∗ ∼ Ga (κ, ϕ) (2.40)

where
κ = κ∗ +

1

2
, ϕ = ϕ∗ +

1

2
(x− µ)2 (2.41)

In this example, both the prior distribution and the posterior distribution of ζ belong
to the gamma distribution family. Therefore, the prior distribution of ζ can be called
as the conjugate prior for its Gaussian likelihood.

Definition 3. Conjugate exponential family graphical models (CEFGMs): It refers
to the BNs with exponential family distributions as the prior distributions of all the
random variable nodes and the prior distributions of the nodes are conjugate for their
conditional likelihood, defined by the prior distributions of their children nodes.

As an example for CEFGMs, the Bayesian PPCA model discussed in this chapter
also belongs to CEFGMs among the others. All the prior distributions, p (Y |Z,W, σ),
p (Z), p (W |ν), and p (ν|α∗, β∗) fall under the exponential family. The prior p (Z)
is conjugate for its conditional likelihood p (Y |Z,W, σ), p (W |ν) is conjugate for its
conditional likelihood p (Y |Z,W, σ), and p (ν|α∗, β∗) is conjugate for p (W |ν).

2.3 Maximum Likelihood Estimation

When the parameters are treated as fixed quantities, the maximum likelihood (ML)
approach is one of the commonly used approaches for parameter estimation in the case
of probabilistic models. The ML approach seeks to obtain parameters that maximize
the likelihood function, which is the conditional distribution of the observed data
given the parameters. In this section, we illustrate the maximum likelihood estimation
approach for the PPCA model defined in Fig. 2.9 using the EM algorithm.
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For the PPCA model, the likelihood function of the parameters is given by the
conditional distribution of Y given the parameters W and σ, p (Y |W,σ). There the
objective of the maximum likelihood estimation translates into the following,

WML, σML = max
W,σ

p (Y |W,σ) (2.42)

where WML and σML are the ML parameter estimates that maximize the likelihood
function p (Y |W,σ). Alternatively, we could also choose parameters that maximize any
monotonic transformation of the likelihood function. For example, we could choose
parameters that maximize the natural logarithm of the likelihood as the following,

WML, σML = max
W,σ

ln p (Y |W,σ) (2.43)

The estimates that maximize the monotonic transformation will also be the maxi-
mizers of the likelihood function. The transformation often makes the optimization
more convenient. For example, the natural logarithm greatly simplifies the form of
the likelihood functions such as the density function of the Gaussian distribution that
includes an exponential term.

For our PPCA model, we can obtain the likelihood function or the conditional
distribution of the observed data given the parameters by integrating out the latent
variables from the joint distribution of the observations and the latent variables as
the following,

p (Y |W,σ) =
∫
Z

p (Y |Z,W, σ) p (Z) dZ (2.44)

Expanding the above expression for all the N observations leads to the following,

p (Y |W,σ) =
N∏

n=1

∫
zn

p (yn|zn,W, σ) p (zn) dzn (2.45)

In the above expression, when substituting the conditional distributions dictated by
the PPCA model, we can obtain the following expression,

p (Y |W,σ) =
N∏

n=1

∫
zn

1

(2πσ)
D
2
exp

{
− 1

2σ
(yn −Wzn)

T (yn −Wzn)
}
×

1

(2π)
K
2
exp

{
−1

2
zTn zn

}
dzn

(2.46)

Integrating out zn from the above expression gives the form of the marginal distri-
bution of the observations or the likelihood function of the model parameters as the
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following,

p (Y |W,σ) =
N∏

n=1

1

(2π)
D
2 |WW T + σID|

exp

{
−1

2
yTn
(
WW T + σID

)−1
yn

}
(2.47)

The resulting likelihood function is a product of individual conditional distributions of
the observations. The individual conditional distributions are given by a multivariate
Gaussian distribution with zero mean and WW T + σID covariance. The functional
form of the likelihood shown in Eqn. (2.47) is non-linear in terms of W and σ. We
can utilize any optimization algorithm to obtain the parameters that maximize the
likelihood. The natural log transform of the likelihood will simply it to an extent
and yet would require implementation of an optimization algorithm to estimate the
parameters of the model.

2.3.1 Expectation Maximization Algorithm

The EM algorithm [56] (for tutorial see [57]) is an optimization approach for the
maximum likelihood estimation. For some models such as the PPCA model, it avoids
implementation complexities associated with the gradient based optimization algo-
rithms and it can provide a simple iterative procedure with explicit update expressions
for the parameters in each iteration.

Implementation of the EM algorithm involves the following steps,

1. The first advancing step of deriving the EM algorithm involves identifying a
lower bound function for the natural log of the likelihood function (log likelihood
function) in terms of the joint distribution of the observed data and the latent
variables in the model and a proxy posterior distribution of the latent variables.

2. The second advancing step involves deriving the posterior distribution of the
latent variables in terms of the observed data and the model parameters using
the Bayes rule of inference. This will not be achievable for CEFGMs where
the latent variables cannot be marginalized from the joint distribution of the
observed data and the latent variables. In such cases, approximate inference
techniques can be applied (e.g. variational EM algorithm[58, 59]). However,
for the PPCA model, we can marginalize the latent variables from the joint
distribution as shown in Eqn. (2.47).
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3. The third advancing step involves replacing the proxy posterior distribution
with the posterior distribution derived in step 2 and deducing the lower bound
expression. If the exact posterior distribution is available, the lower bound func-
tion becomes equal to the log likelihood function.

4. The fourth advancing step involves deriving the update expressions for the pa-
rameters of the models such that it maximizes the lower bound function. In
the case of PPCA model, the parameter updates can be achieved through ex-
plicit update expressions. For some complex models, the parameter updates
may require implementation of the optimization algorithms.

5. The fifth advancing step involves implementation of the EM algorithm through
an iterative procedure where the parameters and the posterior distribution of
the latent variables are updated recursively.

We illustrate these steps for the PPCA model in the rest of this section.

Lower Bound of the Log Likelihood Function

We derive the lower bound of the log likelihood function for the PPCA model using
proposition 3 presented below,

Proposition 3. A functional can be defined in terms of the joint distribution of the
observed data and latent variables and q (Z) that lower bounds the likelihood function
of the parameters as the following,

ln p (Y |W,σ) ≥
∫
Z

q (Z) ln
p (Y |W,Z, σ) p (Z)

q (Z)
dZ (2.48)

where q (Z) satisfies the properties of a probability density function defined over
Z. When q (Z) is equal to the actual posterior of Z, p (Z|Y,W, σ), the lower bound
defined above becomes exactly equal to the log likelihood function as shown below,

ln p (Y |W,σ) =
∫
Z

q (Z) ln
p (Y |W,Z, σ) p (Z)

q (Z)
dZ (2.49)

Proof. Apart from expressing the joint distribution of the data and the latent vari-
ables using the BN defined in Fig. (2.9), we can also express it in terms of p (Y |W,σ),
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which is consistent with the chain rule of probability, as the following,

p (Y, Z|W,σ) = p (Z|Y,W, σ) p (Y |W,σ) = p (Y |W,Z, σ) p (Z) (2.50)

The likelihood function can then be expressed by rearranging the terms in the above
expression as the following,

p (Y |W,σ) = p (Y |W,Z, σ) p (Z)
p (Z|Y,W, σ)

(2.51)

By taking the natural logarithm on both sides results in the following,

ln p (Y |W,σ) = ln
p (Y |W,Z, σ) p (Z)
p (Z|Y,W, σ)

(2.52)

Although the terms in the RHS involve Z, the log likelihood functions shown above in
Eqn. (2.52) is independent of Z. This fact can also be verified from Eqn. (2.47). There-
fore, taking the expectation of the log likelihood with respect to the function q (Z)

will results in the log likelihood itself. This leads to the following equality,

ln p (Y |W,σ) =
∫
Z

q (Z) ln
p (Y |W,Z, σ) p (Z)
p (Z|Y,W, σ)

dZ (2.53)

Now, we can multiply and divide the terms inside the natural logarithm on the RHS
by q (Z) without altering the outcome to obtain the following,

ln p (Y |W,σ) =
∫
Z

q (Z) ln
p (Y |W,Z, σ) p (Z) q (Z)
p (Z|Y,W, σ) q (Z)

dZ (2.54)

Further, the above expression can be split into the summation of the following two
terms,

ln p (Y |W,σ) =
∫
Z

q (Z) ln
p (Y |W,Z, σ) p (Z)

q (Z)
dZ︸ ︷︷ ︸

LLB

+

∫
Z

q (Z) ln
q (Z)

p (Z|Y,W, σ)
dZ︸ ︷︷ ︸

KL divergence

(2.55)
where we name one of the terms in the summation as LLB and the other term is
the Kullback-Leibler (KL) divergence between the two distributions of Z, q (Z) and
p (Z|Y,W, σ). The KL divergence is a measure of distance between two distributions
and it is always positive. Therefore, the term LLB lower bounds the log likelihood,
ln p (Y |W,σ) as expressed below,

ln p (Y |W,σ) ≥ LLB (2.56)
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When q (Z) becomes exactly equal to p (Z|Y,W, σ), the KL divergence term in Eqn. (2.55)
becomes zero as the term within the natural logarithm becomes one. A direct con-
sequence of this is that, LLB becomes equal to the log likelihood. This leads to the
following results,

ln p (Y |W,σ) = LLB (2.57)

and

ln p (Y |W,σ) =
∫
Z

q (Z) ln p (Y |W,Z, σ) dZ +

∫
Z

q (Z) ln
p (Z)

q (Z)
dZ (2.58)

when
q (Z) = p (Z|Y,W, σ) (2.59)

This completes the proof of proposition 3.

Posterior Distribution of the Latent Variables

We illustrate the derivation of the posterior distribution of the latent variables for
the PPCA model through lemma 1.

Lemma 1. The posterior distribution of the latent variable zn corresponding to the
observation yn is given by a multivariate Gaussian distribution with mean ẑn =

1
σ
ΣzW

Tyn and covariance Σz = σ
[
W TW + σIK

]−1

Proof. From the knowledge of the BN of the model, we can express the posterior
distribution of the latent variables, p (Z|Y,W, σ) in a more simplified form. The poste-
rior of the latent variable zn is independent of the other latent variables as its Markov
blanket in the network is given by its only child yn and the other parents of yn,W and
σ. This holds true ∀n. Therefore, the posterior of each latent variable is independent
of the posteriors of the other latent variables and the joint posterior can be expressed
as the following,

p (Z|Y,W, σ) =
N∏

n=1

p (zn|yn,W, σ) (2.60)

Using the Bayes rule, each individual posterior distribution can be expressed as,

p (zn|yn,W, σ) =
p (yn|zn,W, σ) p (zn)

p (yn|W,σ)
(2.61)
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The marginal distribution of yn, p (yn|W,σ), in the denominator of the above expres-
sion is independent of zn and constant with respect to zn. Therefore, the posterior
distribution is proportional to the terms in the numerator as the following,

p (zn|yn,W, σ) ∝ p (yn|zn,W, σ) p (zn) (2.62)

Now, we can substitute the distribution forms of the likelihood and the prior to obtain
the following expression,

p (zn|yn,W, σ) ∝
1

(2πσ)
D
2

exp

{
− 1

2σ
(yn −Wzn)

T (yn −Wzn)

}
1

(2π)
K
2

exp

{
−1

2
zTn zn

}
(2.63)

The above expression can be further simplified by removing the constant terms and
retaining only the terms that involve zn.

p (zn|yn,W, σ) ∝ exp

{
− 1

2σ
zTnW

TWzn +
1

σ
yTnWzn −

1

2
zTn zn

}
(2.64)

p (zn|yn,W, σ) ∝ exp

{
−1

2
zTn

(
1

σ
W TW + IK

)
zn +

1

σ
yTnWzn

}
(2.65)

The exponential term in the above expression is quadratic in zn. We can simplify this
in the form of multivariate Gaussian distribution as the following,

p (zn|yn,W, σ) ∝ exp

{
−1

2
(zn − ẑn)

T (Σz)
−1 (zn − ẑn)

}
(2.66)

where
ẑn =

1

σ
ΣzW

Tyn, Σz = σ
[
W TW + σIK

]−1 (2.67)

This completes the proof of Lemma 1.

Deducing the lower bound expression

Now that we know the form of the posterior distribution, we can evaluate the lower
bound using Eqn. (2.58). The step includes making use of the right distribution form
for the proxy posterior of the latent variables in the LLB expression and deducing
LLB. For the PPCA case, this translates into q(zn) taking the form of the probability
density function of a multivariate Gaussian distribution with mean ẑn and covariance
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Σz. Now, we can deduce the expression in Eqn. (2.58) that includes two terms. Sub-
stituting the right form of q(Z) allows us to deduce the first term as the following,∫

Z

q (Z) ln p (Y |W,Z, σ) =
N∑

n=1

∫
zn

q (zn|ẑn,Σz) ln p (yn|W, zn, σ)

= −DN
2

ln 2π − DN

2
lnσ − 1

2σ

N∑
n=1

yTn yn +
1

σ

N∑
n=1

yTnWẑn

− 1

2σ

N∑
n=1

tr
{
W TW

[
ẑnẑn

T + Σz

]}
(2.68)

The second term can be deduced as the following,∫
Z

q (Z) ln
p (Z)

q (Z)
= −

N∑
n=1

KL (q (zn|ẑn,Σz) ||p (zn|0, IK))

= −N
2
tr (Σz)−

1

2

N∑
n=1

ẑTn ẑn +
KN

2
+
N

2
ln |Σz| (2.69)

The final expression for the log likelihood as a summation of the above two terms can
be expressed as the following,

ln p(Y |W,σ) = LLB

= −DN
2

ln 2π − DN

2
lnσ − 1

2σ

N∑
n=1

yTn yn +
1

σ

N∑
n=1

yTnWẑn

− 1

2σ

N∑
n=1

tr
{
W TW

[
ẑnẑn

T + Σz

]}
− N

2
tr (Σz)−

1

2

N∑
n=1

ẑTn ẑn +
KN

2
+
N

2
ln |Σz| (2.70)

The above expression for the log likelihood is relatively simpler in terms of the pa-
rameters W and σ when compared to the one derived in Eqn. (2.47). However, this
simplicity is a result of introducing additional parameters ẑ and Σz in the likelihood
expression. These additional parameters in turn depend on W and σ and therefore,
the level of non-linearity with respect to W and σ remains the same as that of the
original log likelihood expression. However, the advantage of the log likelihood ex-
pression shown in Eqn. (2.70) is that it allows deriving explicit update expressions for
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the parameters in terms of the parameters of the posterior distribution of the latent
variables and the posterior distribution of the latent variables in terms of the model
parameters. These explicit update expressions removes the implementation complex-
ities associated with the gradient based optimization approaches such as optimal step
length selection.

Parameter Updates

The optimal values of the parameters that maximize the log likelihood can be obtained
by equating the derivatives of the log likelihood with respect to the parameters to
zero. For the PPCA case, When equating the derivative of the log likelihood with
respect to W to zero yields the following update expression for W ,

dLLB

dW
= 0 ⇒

W =
N∑

n=1

ynẑ
T
n

{
N∑

n=1

[
ẑnẑ

T
n + Σz

]}−1

(2.71)

When equating the derivative of the log likelihood with respect to σ to zero yields
the following update expression for σ,

dLLB

dσ
= 0 ⇒

σ =

∑N
n=1 y

T
n yn +

∑N
n=1 tr

{
W TW

[
ẑnẑ

T
n + Σz

]}
− 2

∑N
n=1 y

T
nWẑn

DN
(2.72)

Implementation of the EM algorithm

The update expressions for W and σ can be seen to be dependent on the parame-
ters of the posterior distribution of Z, ẑ and Σz. Similarly, the posterior parameter
updates for Z depends on the model parameters as shown in Eqn. (2.67). Each of
these updates takes the log likelihood function to a stationary point that is a local
maxima with respect to the updated quantity. This can be verified from the hessian
of the log likelihood with respect to the updated quantity. The hessian will always
remain negative definite in the case of the PPCA model. As with each update, the
log likelihood function is maximized and it is bounded by the maximum value of the
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log likelihood function, when the updates are implemented iteratively, the estimate
of the log likelihood eventually converges.

The EM algorithm implements the expectation and the maximization steps al-
ternatively through multiple iterations. The expectation step involves updating the
posterior distribution of the latent variables and evaluating the log-likelihood func-
tion. The maximization step involves updating the parameters that maximizes the log-
likelihood function. The EM algorithm for the PPCA model is shown in Table. 2.1. To
start with, we have to initialize the parameters W and σ. In the expectation step, we
update q (Z) based on the recent estimates of W and σ as shown in Eqn. (2.67) and
perform the expectation respect to q (Z) to evaluate LLB as shown in Eqn. (2.70). In
the maximization step, we update the parameters W and σ.

Table 2.1: EM algorithm for the estimation of the PPCA model
Initialize W and σ
repeat until convergence (check for the convergence of LLB)

Expectation step:
Update q (Z) based on the recent estimates of W and σ using Eqn. (2.67)
Evaluate LLB using the recent update of q (Z) using Eqn. (2.70)

Maximization step:
Update W and σ using equations (2.71) and (2.72)

end repeat

Simulation Example

For the purpose of illustration we simulated a 4-dimension dataset from a PPCA
model with the following parameters,

W =

[
0.36 −0.07 0.86 0.36
0.67 0.71 −0.16 −0.13

]T
, σ = 0.01 (2.73)

where the parameter W contains two independent column vectors. From the dimen-
sions of W , this model can be pictured to explain four dimension observations with
two dimension latent variables. We simulated N = 700 observations. From the sim-
ulated observations, we estimated the model parameters. We assumed that we know
the dimension of the latent variables a priori as two and proceeded to estimate the
model shown in Eqn. (2.73). Fig. 2.11 shows the estimate of LLB against the number
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of iterations in the EM algorithm. It can be seen that the estimate of LLB improves
with each iteration. After around 400 iterations, it saturates. By having a threshold
on the rate of increase, we can assess the convergence.

0 100 200 300 400 500 600 700
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Figure 2.11: LLB estimate vs. the number of iterations during the ML estimation of
the PPCA model using the EM algorithm. It can be seen that LLB estimate increases
with each iteration.

The ML parameter estimates resulted from the estimation exercise is shown below,

WML ≈
[
0.1721 −0.2559 0.8623 0.3763
0.7481 0.6740 0.0661 −0.0397

]T
, σML ≈ 0.0096 (2.74)

where the subscript ML indicates that WML and σML are the ML estimates. The
estimate of the variance parameter σML can be seen to be very close to the actual σ
with which we simulated the data. The estimate of WML appears to be completely
different from the actualW . However, this difference is due to the rotational ambiguity
in the estimated coefficient matrix. We can estimate the rotational matrix R as shown
below,

W ≈ WMLR (2.75)

R ≈
[
0.9767 −0.2567
0.2611 0.9550

]
(2.76)

The matrix R, excluding minor numerical discrepancies, is an orthonormal matrix
and this can be verified as shown below,

RTR ≈ I2 (2.77)
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This suggests that the estimate WML spans the same subspace as W . This rotational
ambiguity will be compensated by the rotation in Z without affecting the identifica-
tion of the actual subspace.

2.4 Bayesian Analysis

In Bayesian analysis, the objective is to infer the posterior distributions of the un-
knowns in the model given the data. Let Y be the observed data, M be the model
structure used to describe the data and Θ be the set of unknown parameters and la-
tent variables in the model. In the case of Bayesian PPCA presented in Fig. 2.10, M
corresponds to the space of PPCA models with different latent variable dimensions,
K and Θ corresponds to the set {Z,W}.

The posterior distribution of the unknowns using the Bayes rule of probability
can ideally be obtained as the following,

p (Θ|Y,M) =
p (Y |Θ,M) p (Θ|M)

p (Y |M)
(2.78)

where p (Θ|Y,M), p (Y |Θ,M) and p (Θ|M) are the posterior, likelihood and prior
of Θ respectively. The term in the denominator is the marginal distribution of the
data given the model structure and it can also be interpreted as the likelihood of the
considered model structure. It is also referred to as the model evidence. It can be
obtained by integrating out Θ from the joint distribution term in the numerator as
the following,

p (Y |M) =

∫
Θ

p (Y |Θ,M) p (Θ|M) dΘ (2.79)

When we have several different competing models, we can choose the model that
has the maximum model evidence. The characteristics of the model evidence is shown
Fig. 2.12. The illustration in Fig. 2.12 is adapted from [60, 66]. X-axis in the figure
corresponds to space of observable data and Y-axis corresponds to the model evi-
dence. Model evidences of three models with different complexities are illustrated. Let
us say that we are interested in identifying a model that best describes the observed
data Ygiven. Let Msimple be a simpler model, Mmoderate be a moderately complex
model andMcomplex be a complex model. For example, in our case, Msimple,Mmoderate
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and Mcomplex can be PPCA models with latent variable dimensions Ksimple, Kmoderate

and Kcomplex where Ksimple < Kmoderate < Kcomplex. Since p (Y |M) is a probability
density or a mass function, integration/summation of p (Y |M) over the space of Y
should be equal to one. Mcomplex can describe a wider range of datasets as Kcomplex

will provide more degrees of freedom for the covariance matrix defined by the PPCA
model. Therefore, p (Y |Mcomplex) should be more spread out over the space of Y
compared to the likelihoods of the other two models. The likelihood p (Y |Msimple)

would be more skewed as it can only explain specific datasets as Ksimple will provide
lesser number of degrees of freedom for the covariance matrix defined by the PPCA
model. The likelihood p (Y |Mmoderate) will fall somewhere in-between, neither skewed
nor more spread out. This property of p (Y |M) becomes handy in model selection in
Bayesian analysis. If our dataset can be described well by a simpler model, the likeli-
hood of the simpler model will be much higher than the complex ones. If the dataset
falls in the space where the likelihood of the simpler model is very low, then we would
have no option other than describing the dataset with the complex ones. In this il-
lustration, Ygiven falls in the space where the simple model has a very low likelihood
and the moderately complex model has a better likelihood the data than the complex
model. If we were to pick one model among the three, we would pick Mmoderate to
be the appropriate model for describing Ygiven. In this thesis, we make use of this
particular advantage of Bayesian analysis for model selection.

Space of YYgiven

p (Ygiven|Mappropriate)

p (Y |M)

Likelihood of a complex model

Likelihood of a moderately complex model

Likelihood of a simple model

p (Y |Mcomplex)

p (Y |Mmoderate)

p (Y |Msimple)

Figure 2.12: Model selection based on the model evidence/likelihood of the competing
models. X-axis corresponds to the space of observable data. Y-axis corresponds to the
model evidence.
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One of the well recognized challenges in Bayesian estimation is that often the
posterior distribution p (Θ|Y,M) will not have a recognizable form and the integral
for estimating the model evidence shown in Eqn. (2.79) will be intractable. In these
cases, we will have to move to approximate Bayesian estimation approaches. The
approximate Bayesian estimation approaches can be classified into two categories, i)
sampling based approaches and ii) deterministic approaches. In this thesis, we will
predominantly make use of a deterministic algorithm called the VBEM algorithm. For
the CEFGMs, the VBEM algorithm is one of the computationally efficient approaches
and it provides a tractable estimation procedure [67, 68]. The VBEM approach has
been illustrated for models that belong to the CEFGMs in the literature [67, 68, 69,
70, 71, 72] for its ability to identify the appropriate model structures and parameter
estimates.

2.4.1 Variational Bayesian Expectation Maximization Algo-
rithm

Recall the Bayesian PPCA model presented in Fig. 2.10. The joint distribution of all
the variables in this model can be expressed as the following,

p (Y, Z,W, ν|α∗, β∗, σ) = p (Y |Z,W, σ) p (Z) p (W |ν) p (ν|α∗, β∗)

=
K∏
k=1

p (wk|νk) p (νk|α∗, β∗)
N∏

n=1

p (yn|W, zn, σ) p (zn) (2.80)

To be more accurate, we should include the model structure, M, or the number of
latent variables in the model, K, in the above joint distribution expression. However,
let us take the case of a fixed model structure and ignore the specification of M
for now. For this model, the Bayesian analysis translates into obtaining the posterior
distribution p (Z,W, ν|Y, α∗, β∗, σ). This posterior distribution can be expressed using
the Bayes rule of probability as the following,

p (Z,W, ν|Y, α∗, β∗, σ) =
p (Y |Z,W, σ) p (Z) p (W |ν) p (ν|α∗, β∗)

p (Y |σ, α∗, β∗)
(2.81)

We can express the posterior like in our previous examples in terms of the numerator
in the above expression,

p (Z,W, ν|Y, α∗, β∗, σ) ∝ p (Y |Z,W, σ) p (Z) p (W |ν) p (ν|α∗, β∗) (2.82)
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However, unlike in our previous examples, recognizing the functional form of the
posterior from the terms on the RHS of the above equation will be challenging. In
fact, in the case of Bayesian PPCA model, it will not have a recognizable form. Also,
the integration to obtain the model evidence in the denominator of Eqn. (2.81) is not
tractable. Therefore, we will have to utilize approximate Bayesian analysis techniques
such as the VBEM algorithm.

Similar to the EM algorithm, the VBEM algorithm can also be implemented for
a model that belongs to CEFGMs using the following steps,

1. The first advancing step is deriving the VBEM algorithm requires approximat-
ing the posterior distributions of the unknowns and deciding the structure of
the approximated posterior distributions.

2. The second advancing step involves deriving a functional that lower bounds
the log model evidence in terms of the joint distribution of the variables in the
model and the approximated posterior distributions.

3. The third advancing step involves determining the distribution families of the
approximated posterior distributions.

4. The fourth advancing step involves deducing the lower bound expression with
the determined posterior distribution families.

5. The fifth advancing step involves deriving the update expressions for the pos-
terior distributions and the fixed parameters in the model.

6. The sixth advancing step involves implementation of an iterative procedure
using the update expressions derived in the previous step.

We illustrate these steps for the Bayesian PPCA model in the rest of this section.

Approximate Posterior Distribution

The VBEM algorithm requires us to to approximate the joint posterior distribution as
product of individual distributions of the unknowns. To estimate the Bayesian PPCA
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model using the VBEM algorithm, we would have to make the following approxima-
tion,

p (Z,W, ν|Y, α∗, β∗, σ) ≈ q (Z) q (W ) q (ν) (2.83)

where q (Z), q (W ) and q (ν) are the approximated posterior distributions of Z,W and
ν respectively. By expressing the joint posterior as a product of individual posterior
distributions, we made an approximation that Z, W and ν are mutually independent
given Y . However for the network shown in Fig. 2.10, the D-separation rules suggest
thatW and Z are not independent given Y as they are co-parents of Y , andW and ν
are not independent as they share a parent-child relationship. These approximations
come as a trade off for the tractability.

Lower Bound on the Log Model Evidence

We present the derivation of the lower bound on the log model evidence of the
Bayesian PPCA model through Proposition 4.

Proposition 4. Lower bound on the model evidence: The natural logarithm of the
model evidence can be expressed as a sum of two terms, i) a term that lower bounds
the log model evidence and ii) the KL divergence between the approximated posterior
distribution and the actual posterior distribution of the unknowns. For the Bayesian
PPCA model, this translates into the following,

ln p (Y |α∗, β∗, σ) = LV B +KL (q (ν) q (W ) q (Z) ||p (ν,W,Z|Y, α∗, β∗, σ)) (2.84)

and
ln p (Y |α∗, β∗, σ) ≥ LV B (2.85)

where LV B is the functional of the posterior distributions q (ν), q (W ) and q (Z) and
the joint distribution of all the variables in the network, referred to as the variational
lower bound.

Proof. From Eqn. (2.81), using the same trick in the proof of proposition 3, we can
obtain the following expression,

ln p (Y |α∗, β∗, σ) =

∫
ν

q (ν)

∫
W

q (W )

∫
Z

q (Z) ln
p (Y, Z,W, ν|α∗, β∗, σ)

q (ν) q (W ) q (Z)
dνdWdZ
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+

∫
ν

q (ν)

∫
W

q (W )

∫
Z

q (Z) ln
q (ν) q (W ) q (Z)

p (W,Z, ν|Y, α∗, β∗, σ)
dνdWdZ (2.86)

where the first term is LV B and the second term is the KL divergence between the
approximated posterior and the actual posterior distributions of the unknowns as
expressed below,

ln p (Y |α∗, β∗, σ) = LV B +KL (q (Z) q (W ) q (ν) ||p (Z,W, ν|Y, α∗, β∗, σ)) (2.87)

Since the KL divergence is always positive, the term LV B lower bounds the log model
evidence, ln p (Y |α∗, β∗, σ). Therefore, we can state the following,

ln p (Y |α∗, β∗, σ) ≥ LV B (2.88)

This completes the proof of Proposition 4.
The term LV B can further be expanded by splitting the integral as a summation

of multiple integrals based on the assumption of factorized posterior distributions as
the following,

LV B =

∫
ν

q (ν) ln
p (ν|α∗, β∗)

q (ν)
dν +

∫
ν

q (ν)

∫
W

q (W ) ln
p (W |ν)
q (W )

dνdW

+

∫
Z

q (Z) ln
p (Z)

q (Z)
dZ +

∫
W

q (W )

∫
Z

q (Z) ln p (Y |W,Z, σ) dWdZ (2.89)

Distribution Families of the Approximated Posteriors

D-separation rules dictate that each of q(W ), q(ν) and q(Z) can be factored fur-
ther. The rows of W become independent of each other given Y as each row is a
parent of a particular of dimension of Y and does not share its child with any other
rows of W . Additionally, W is already assumed to be independent of its parent ν and
the co-parents Z with which it shares its children Y . Therefore, we can express q(W )

as a product of multiple factors as the following,

q (W ) =
D∏

d=1

q
(
wd|ŵd,Σwd

)
(2.90)

where wd is the dth column of W . Similarly, q (ν) can be expressed as a product of
multiple factors as the following,

q (ν) =
K∏
k=1

q (νk|α, βk) (2.91)
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where νk is the parent of column wk and it does not share its child with any other
νi̸=k. The posterior of the latent variable Z can also be expressed as a product of
multiple factors as the following,

q (Z) =
N∏

n=1

q (zn|ẑn,Σz) (2.92)

where q (zn) is the posterior of zn and zn does not share its only child yn with any
zi̸=n. Further, these factors will also belong to the same distribution families as that of
the respective priors due to conjugacy. Factor q

(
wd|ŵd,Σwd

)
is a multivariate Gaus-

sian distribution with mean ŵd and covariance Σwd , factor q (νk|α, βk) is a gamma
distribution with parameters α and βk, and factor q (zn|ẑn,Σz) is a multivariate Gaus-
sian distribution with mean ẑn and covariance Σz

‡,§.

Deducing the Lower Bound Expression

For the Bayesian PPCA model, this amounts to deducing the LV B expression from
Eqn. (2.89). The integrals in Eqn. (2.89) are tractable. In fact, for all the CEFGMs, the
variational Bayesian lower bound expressions are deducible. The details of deducing
all the terms in Eqn. (2.89) are shown below,
Term I: ∫

ν

q (ν) ln
p (ν|α∗, β∗)

q (ν)
dν = −

K∑
k=1

KL (q (νk|α, βk) ||p (νk|α∗, β∗))

= −
K∑
k=1

α ln βk +Kα∗ ln β∗ +K ln
Γ (α)

Γ (α∗)

−
K∑
k=1

(α− α∗) (Ψ (α)− ln βk) +
K∑
k=1

α

(
1− β∗

βk

)
(2.93)

Term II: ∫
W

q (W ) ln
p (W |ν)
q (W )

dW

‡Note that the shape parameter in the gamma distribution, α does not take any subscript. This
is because α1 = α2 = ... = αK = α and it will become clear why this is the case in the subsequent
derivations

§Note that the covariance of zn, Σz is independent of the value that n takes. This is because
Σz1 = Σz2 = ... = Σzn = Σz and it will become clear why this is the case in the subsequent
derivations
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= −
D∑

d=1

KL

(
q
(
wd|ŵd,Σwd

)
||p
(
wd|0,

(
diag

(
[ν1, ..., νK ]

T
))−1

))

= −1

2

D∑
d=1

tr (diag ([ν1, ..., νK ] Σwd))− 1

2

D∑
d=1

ŵddiag ([ν1, ..., νK ])
(
ŵd
)T

+
KD

2
+
D

2

K∑
k=1

ln νk +
1

2

D∑
d=1

ln |ΣW d | (2.94)

∫
ν

q (ν)

∫
W

q (W ) ln
p (W |ν)
q (W )

dνdW

= −1

2

D∑
d=1

tr (ΛΣwd)− 1

2

D∑
d=1

ŵdΛ
(
ŵd
)T

+
KD

2
+
D

2

K∑
k=1

(Ψ (α)− ln βk) +
1

2

D∑
d=1

ln |Σwd | (2.95)

where
Λ = diag

([
α

β1
, ...,

α

βK

])
(2.96)

Term III: ∫
Z

q (Z) ln
p (Z)

q (Z)
dZ = −

N∑
n=1

KL (q (zn|ẑn,Σz) ||p (zn|0, IK))

= −N
2
tr (Σz)−

1

2

N∑
n=1

ẑTn ẑn +
KN

2
+
N

2
ln |Σz| (2.97)

Term IV: ∫
W

q (W )

∫
Z

q (Z) ln p (Y |W,Z, σ) dZdW

= −DN
2

ln 2π − DN

2
lnσ − 1

2σ

N∑
n=1

yTn yn +
1

σ

N∑
n=1

yTn Ŵ ẑn

− 1

2σ

N∑
n=1

D∑
d=1

tr
{[
ẑnẑ

T
n + Σzn

] [(
ŵd
)T
ŵd + Σwd

]}
(2.98)

The lower bound expression LV B may never become equal to the model evidence. This
is due to the gap between the approximated posterior distribution and the actual
posterior distribution. The gap will be equal to the KL divergence between the ap-
proximated posterior distribution and the actual posterior distribution as shown in
proposition 4. The summation of the lower bound term and the KL divergence term
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is bounded by the log model evidence. If we minimize the KL divergence term, it
will take the lower bound closer to the model evidence. Conversely, if we maximize
the lower bound, it will minimize the KL divergence between the approximated pos-
terior and the actual posterior. The VBEM algorithm maximizes the lower bound
with respect to the approximated posterior distributions such that we get a reason-
able approximation of the log model evidence in terms of the lower bound and also
the posterior distributions of the unknowns that are practically closer to the actual
posterior distribution.

Posterior and Parameter Updates

The lower bound expression is not necessarily concave for all CEFGMs. However,
they are concave with respect to each individual posterior distributions and the model
parameters when the rest of the posteriors and the model parameters are fixed. For
instance, for the Bayesian PPCA model, this can be verified from the first order
and second derivates of the lower bound expression with respect to the individual
posteriors and the parameters. The VBEM algorithm makes use of this property
and allows one to derive updates for the individual posterior distributions and the
parameters. Implementing these updates iteratively maximizes the lower bound.

The updates for the posterior distributions and the parameters can be derived
by taking the derivative of LV B with respect to the posteriors distributions and the
parameters and equating the derivatives to zero. For the Bayesian PPCA model, the
update expressions can be obtained as shown below,
Update expression for q (Z)¶:

dLV B

dq (Z)
= 0 ⇒ ln q (Z) = ln p (Z) +

∫
W

q (W ) ln p (Y |W,Z, σ) dW

ln q (zn|ẑn,Σz) ∝ ln p (zn) +

∫
W

q (W ) ln p (yn|W, zn, σ) dW

Σz = σ

[
D∑

d=1

{(
ŵd
)T
ŵd + Σwd

}
+ σIK

]−1

ẑn =
1

σ
ΣzŴ

Tyn (2.99)

¶Notice the expression for Σz, it is independent of n, which was previously pointed in foot note ‡
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Update expression for q (W ):

dLV B

dq (W )
= 0 ⇒ ln q (W )

= ln p (W |ν) +
∫
ν

q (ν) ln p (W |ν) dν +
∫
Z

q (Z) ln p (Y |W,Z, σ) dZ

ln q
(
wd|ŵd,Σwd

)
∝ ln p

(
wd|ν

)
+

∫
ν

q (ν) ln p
(
wd|ν

)
dν

+

∫
Z

q (Z) ln p (Y |W,Z, σ) dZ

Σwd = σ

[
N∑

n=1

{
ẑnẑ

T
n + Σz

}
+ σΛ

]−1

(
ŵd
)T

=
1

σ
Σwd ẑny

d
n (2.100)

Update expression for q (ν)‖:

dLV B

dq (ν)
= 0 ⇒ ln q (ν) = ln p (ν|α∗, β∗) +

∫
W

q (W ) ln
p (W |ν)
q (W )

dW

ln q (νk|α, βk) ∝ ln p (νk|α∗, β∗) +

∫
W

q (W ) ln p (W |ν) dW

α = α∗ +
D

2

βk = β∗ +
1

2

D∑
d=1

[(
ŵd

k

)2
+ Σk

wd
k

]
(2.101)

Update expression for σ:
dLV B

dσ
= 0 ⇒

σ =∑N
n=1 y

T
n yn +

∑N
n=1 tr

([∑D
d=1

{(
ŵd
)T
ŵd + Σwd

}] [
ẑnẑ

T
n + Σz

])
− 2

∑N
n=1 y

T
n Ŵ ẑn

ND
(2.102)

‖Notice the expression for α, it is independent of k , which was previously pointed in footnote §
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Implementation of the VBEM Algorithm

Implementing the update expressions derived above iteratively amounts to the VBEM
estimation algorithm for the Bayesian PPCA model. One form of implementation is
shown in Table. 2.4.1. In the expectation step of the algorithm, all the posteriors are
updated and in the maximization step, the parameters are updated. These updates are
carried out until LV B converges. Updates in each iteration maximizes LV B and LV B

is bounded by the actual log model evidence. Therefore, the algorithm is guaranteed
to converge. As stated before, the lower bound may not be concave for a given model
and therefore, it may not converge to a global maxima. In this case, the estimation
has to be repeated with several different initial guesses.

Table 2.2: VBEM algorithm for the estimation of the Bayesian PPCA model
Initialize q (W ), σ, α∗ and β∗

repeat until convergence (check for the convergence of LV B)
Expectation step:
Update q (ν)
Update q (Z)
Update q (W )
Obtain the expression for LV B

Maximization step
Estimate σ that maximizes LV B

end repeat

Simulation Example

Recall our simulation example in Eqn. (2.73). We implemented the VBEM algorithm
derived above to estimate this model from the simulated data. We fixed the number
of latent variables in this case to 3 and we fixed the hyperparameters α∗ and β∗ to
1 and estimated the model parameters. Fig. 2.13 shows the LV B estimates against
the number of iterations. It can be seen that LV B improves with each iteration and
converges after a few hundreds of iterations. For this case, the parameter estimates
obtained are shown in Eqn. (2.103). These parameters correspond to the posterior
mean of the loading matrix (Ŵ ) and the optimal estimate of the variance parameter
σ that maximizes LV B. We are not ready to interpret the parameters as we do not
have the optimal choice for the hyperparameters yet. In the next subsection, we will
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discuss hyperparameter selection.
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Figure 2.13: Lower bound estimate against the number of iterations during the VBEM
estimation of the Bayesian PPCA model.

WV B =

 −0.2306 0.2016 −0.8642 −0.3717
−0.0154 0.0158 0.0095 −0.0038
0.7316 0.6916 −0.0024 −0.0693

T

, σV B = 0.0094 (2.103)

2.4.2 Hyperparameter Selection

Selection of hyperparameters plays an important role in the estimation and further
analysis. If a researcher has a reasonable guess or belief about the range in which
the parameters lie, the belief can be incorporated through the appropriate choice of
hyperparameters. The effect of hyperparameters on the parameter estimates can be
understood from the update expressions for the posterior of the parameters. When
compared to the maximum likelihood update expression in Eqn. (2.71), the only
extra term that appears in the update expression in the VBEM algorithm shown in
Eqn. (2.100), is Λ. The term Λ adds a penalty or a regularization for each column of
the coefficient matrix. For column one, it adds the penalty α

β1
, for column two, it adds

α
β2

and so forth. For an arbitrary column k, it adds the penalty α
βk
, which is given by,

α

βk
=

α∗ + D
2

β∗ + 1
2

∑D
d=1

[(
ŵd

k

)2
+ Σk

wd
k

] (2.104)
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where α and βk are expressed in terms of their update expressions shown in Eq. (2.101). This
can also be equivalently represented as the following,

α

βk
=

α∗ + D
2

β∗ + 1
2

∑D
d=1E

((
wd

k

)2) (2.105)

where E
((
wd

k

)2) is the posterior expectation of
(
wd

k

)2, which is given by the sum of
squared posterior mean and posterior variance.

The effect of choice of the hyperparameters on the penalty added to the parameter
estimates is illustrated in Fig. 2.14. The plots in Fig. 2.14 illustrate this for two cases,
one for decreasing β∗ on the left panel and the other for increasing α∗. Y-axis in
the plots corresponds to the penalty term added and the x-axis corresponds to the
sum of expected value of the square of coefficients. For a fixed value of α∗, when
β∗ is decreased, as shown by the direction of the dashed arrow, the penalty on the
smaller valued coefficients increases rapidly and the penalty on the larger valued
coefficients does not increase appreciably. This effect regularizes the smaller valued
coefficients significantly and forces them to converge to zero and leaves the larger
valued coefficients relatively unaffected. The scale of parameters that one wants to
regularize can be dictated by the choice of α∗ and remains proportional to α∗. If we
increase α∗, then the larger valued coefficients will also be penalized. This can be
observed from the panel on the right. As we increase α∗ for a fixed value of β∗, we can
see that the penalty increases also for the larger valued coefficients. The penalty curve
in this case inflates along the diagonal direction as indicated by the dashed arrow on
the right panel. Therefore, the strategy for hyperparameter selection really depends
on the purpose of the analysis. If one wants to infer the significance of the parameters
in the model for a fixed value of alpha (depending on the scale of parameters that is
considered to be significant), one can start with a higher value of β∗ and continue to
decrease β∗ until all the insignificant parameters approach to zero. If one is interested
in a variable selection problem as in the regression analysis, keeping β∗ to a lower value
and changing α∗ incrementally would allow one to analyse the relative importance of
the predictors in the model. At low values of α∗, lower valued coefficients converge
close to zero, as we increase α∗, more and more parameters will start converging to
zero.
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Figure 2.14: Effect of α∗ and β∗ on the penalty added to the parameter esti-
mates. Left: Effect of decreasing β∗ on the penalty and right: Effect of increasing
α∗ on the penalty. Dashed arrows indicate the direction of increase in the penalty
term.

Hyperparameter Selection Through Cross-Validation

One of the strategies for hyperparameter selection is cross-validation. Simplest form
of cross-validation involves splitting the available training data into two subsets, one
for training the model, referred to as the training set and the other for validation,
referred to as the validation set. The models are identified using the training set with
different choices of hyperparameters and validated against the validation set. The
choice of hyperparameters that provide the best validation performance is retained
for further use. In this thesis, we use the log likelihood of the parameters in the val-
idation set as the validation criteria. The optimal hyperparameter can be obtained
using any stochastic optimization approach or a grid search technique that does not
require the exact model between the log likelihood in the validation set and the hyper-
parameters. Here, we illustrate the use of Bayesian optimization using the ‘Bayesopt’
function in MATLAB for hyperparameter selection. Bayesian optimization is a sur-
rogate model based optimization approach.

The ‘Bayesopt’ function in MATLAB performs minimization of the objective func-
tion with respect to the decision variable. Therefore, instead of maximizing the log
likelihood, we pose the problem as a minimization problem for the negative log like-
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lihood as shown below,

α∗
selected = min

α∗
− ln

{
Nval∏
n=1

p
(
yn|0,WV BW

T
V B + σV BID

)}
(2.106)

where
∏Nval

n=1 p
(
yn|0,WV BW

T
V B + σV BID

)
refers to the Gaussian likelihood of the pa-

rameters with mean zero and covariance WV BW
T
V B + σV BID and Nval refers to the

number of validation data points. The negative log likelihood is optimized with re-
spect to α∗ for a fixed value of β∗.

Simulation Example

We performed validation based hyperparameter selection for the Bayesian PPCA
simulation example. We simulated additional 300 data points from the same model
shown in Eqn. (2.73) and used them for validation. We fixed the value of β∗ to 10−1

for this case and optimized the log likelihood with respect to α∗. Fig. 2.15 shows
the optimization results for our simulation example. It shows the surrogate model
prediction trend for the negative log likelihood with respect to α∗ after 50 iterations
(corresponding to the 50 sampled points). The blue dots correspond to the sampled
points in those 50 iterations, the red trend shows the surrogate model predictions, the
cyan trends correspond to the uncertainty bounds on the model prediction and the
blue trends correspond to the uncertainty bounds on the modelling uncertainty. It
can be seen that the negative log likelihood continues to decrease with increase in
α∗ till ≈ 100.5 and increases with increase in α∗ beyond ≈ 100.5. For α∗ ≤ 100.5, the
model must be over-fitting the training samples. For α∗ ≥ 100.5, the model must be
under-fitting the training samples. Therefore, ≈ 100.5 is a good choice for α∗.
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Figure 2.15: Selection of α∗ through cross-validation. In this case, Bayesian opti-
mization is employed to select α∗ that minimizes the negative log likelihood in the
validation dataset.

2.4.3 Model Selection or Dimension Reduction through Au-
tomatic Relevance Determination

For our simulation case study, we simulated data from a PPCA model with 2 dimen-
sion latent variables. In reality, we may not know the ideal number latent variables to
choose when estimating the model from a given dataset. We started with a Bayesian
PPCA model with 3-dimension latent variables. This model is the most complex
PPCA model that we can choose for a 4 dimension dataset. However, this model may
not be ideal for the given dataset. In this subsection, we address the problem of model
selection.

We start with a reasonably complex model and estimate the model parameters for
an optimal choice of the hyperparameters (through cross-validation). This complex
model can be systematically simplified to a simpler version that is more suitable for
the given dataset. For the Bayesian PPCA model, simplifying amounts to reducing
the dimension of the latent variables or equivalently, to setting some of the columns of
the coefficient matrix to zero. We can determine whether setting a particular column
to zero fits the dataset better or leaving as it is fits the dataset better. This is a
hypothesis selection problem for an arbitrary column k of the loading matrix i.e.,
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which of the following hypothesis is more suitable for modelling the given dataset,

H0 : wk ∼ N
(
0, ν−1

k I
)
, νk ∼ Ga (α∗, β∗)

H1 : wk ∼ δ (0)
(2.107)

where H0 is the hypothesis defined by the Bayesian PPCA model for the column k
of W and H1 is a Dirac delta distribution which assigns zero density to any wk other
than zero column.

The VBEM algorithm provides us with a lower bound on the log model evidence
for the complex model that was initially chosen. We switch the hypotheses of the
columns of W one by one and assess if the variational lower bound of the reduced
model improves with dimension reduction. If it improves, then we can retain the
reduced dimension model. If it does not improve we can stop reducing the dimension
of the model. The choice of which column of W should be removed or assigned to H1

first can be determined by the relative significance of the columns of W . The sum
of square of posterior means of the elements in a column (

∑D
d=1E

((
wd

k

)2)) helps us
determine the significance of that particular column. If it is high, then the column
contains significantly non-zero coefficients. If it is close to zero, then the column
contains coefficients close to zero. We prioritize and switch the hypothesis of those
relatively insignificant columns first. If r number of columns to be removed from the
loading matrix, then it will be the r relatively insignificant columns. We can formulate
the selection of r as an optimization problem shown below,

Kselected = min
K=Kinitial−r

−LV B (K) (2.108)

where Kselected is the number of retained columns or the dimension of the latent
variables and Kinitial is the dimension of the latent variables of the complex model
that we started with. This optimization picks the latent variable dimension for which
the variational lower bound is maximum. We can use the same ‘Bayesopt’ function
to solve the above optimization problem. Every time the dimension is reduced, the
parameters have to the re-optimized. However, this re-optimization may not take
many number of iterations as we would start from an already converged model.
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Simulation Example

The optimization result for our simulation example is shown in Fig. 2.16. It can
be seen from the trend that negative LV B has the minimum value when r is equal
to 1. We initially started with a model of 3 latent variables. Now, with r = 1, we
exclude one of the latent variables from the model. Therefore, the latent variables
dimension becomes 2. The parameter estimates of the reduced model are shown in
Eqn. (2.109). The subscript V BR corresponds to the parameters estimates of the re-
duced model. The variance estimate σV BR lies close to the actual σ with which we gen-
erated the data. Similar to the ML estimates, WV BR also has a rotational ambiguity,
which can be verified from the estimated rotational matrix shown in Eqn. (2.110). The
rotational matrix is approximately an orthonormal matrix. Therefore, the estimated
loading matrix spans the same subspace as the original subspace from which the data
was generated.
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Figure 2.16: Model reduction by Bayesian optimization. The parameter r represents
the number of latent variables excluded from the original model.

WV BR ≈
[
−0.2306 0.2016 −0.8640 −0.3716
0.7315 0.6915 −0.0024 −0.0693

]T
, σV BR ≈ 0.0097 (2.109)

R ≈
[
−0.9951 0.1805
0.1831 0.9732

]
(2.110)
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2.5 Summary

This chapter reviewed the fundamentals associated with the BNs and CEFGMs. Then,
we showed how data-driven models can be defined using the BNs. To illustrate the
ML estimation and Bayesian analysis algorithms used in this thesis, we formulated
ML and Bayesian version of the PCA model. The EM and VBEM algorithms are com-
monly used algorithms for the ML estimation and Bayesian analysis of data-driven
models that belong to the CEFGMs. We illustrated these algorithms for the formu-
lated PCA models. Followed by the estimation algorithms, we presented a strategy for
hyperparameter selection in the case of Bayesian models and showed how Bayesian
analysis can be utilized to obtain an appropriate model for the given dataset.
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Chapter 3

Process monitoring using
probabilistic models

In this chapter, we intend to investigate the use of probabilistic linear-in-parameters
models for process monitoring and study their connection with the classical multi-
variate techniques in the context of process monitoring. We find that there lies an
incentive for defining a general model that encompasses various probabilistic mod-
els. Instead of looking at monitoring based on individual models in isolation, it allows
us to develop the monitoring approaches just for the general model, which can then
be reduced effortlessly to the special cases if desired. This reduction is feasible due to
linearity.

The following are the objectives of this chapter, 1) define a generalized proba-
bilistic linear latent variable model (GPLLVM) that subsumes several probabilistic
counterparts of the classical multivariate techniques, 2) develop monitoring statis-
tics based on the GPLLVM, 3) restrict the model to the special cases and study
the equivalence between the classical multivariate techniques and their probabilistic
counterparts in the context of monitoring, and 4) present an approach based on the
EM algorithm for estimating the maximum likelihood parameters of the GPLLVM. In
addition, as a part of this exercise, we flag some common issues related to the moni-
toring statistics presented in the existing literature for monitoring approaches based
on the probabilistic latent variable models.

This chapter is organized as follows: In section 3.1, we present the preliminar-
ies where we briefly review classical multivariate techniques based monitoring ap-
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proaches. In section 3.2, we define the GPLLVM. In section 3.3, we develop the
monitoring charts for process monitoring based on the GPLLVM. In section 3.4, we
show the equivalence between the monitoring methods based on the probabilistic
latent variable models and the classical multivariate techniques. In section 3.5, we
show the numerical simulations verifying the presented results and in section 3.6, we
provide the concluding remarks. We also provide the EM algorithm for estimating
the parameters of the GPLLVM in Appendix B.1 for completeness.

Recurring and the commonly used notations in this chapter: R is the space of real
numbers, IP is the identity matrix of size P ×P , E(.) and Cov(.) are the expectation
and covariance operators respectively, diag(.) is the operator that converts a vector
into a diagonal matrix and vice versa, N (µ,Σ) represents the multivariate normal
distribution with mean µ and covariance Σ and superscript T corresponds to the
transpose operator. Other notations used in this chapter are described when they are
first introduced.

3.1 Preliminaries

In this section, we provide a brief review of the principal component analysis (PCA)
and canonical correlation analysis (CCA) based monitoring approaches that is neces-
sary to appreciate some of the key results presented in this chapter.

3.1.1 PCA based monitoring

Consider a system with P -dimension outputs. Let Y , {y1, . . . , yn ∈ RP , . . . , yN} ∈

RP×N be a set of N mean-centred observations of the outputs with sample covariance
matrix Σ̃yy ≽ 0, measured during the normal operation of the system. In the PCA
based monitoring approach, Σ̃yy is decomposed using SVD/eigendecomposition as the
following,

Σ̃yy = ηKΛKη
T
K + η∼KΛ∼Kη

T
∼K (3.1)

where RK×K ∋ ΛK ≻ 0 is a diagonal matrix with K, (K < P ), principal eigenvalues
of Σ̃yy as diagonal elements and R(P−K)×(P−K) ∋ Λ∼K ≽ 0 is a diagonal matrix with
(P −K) minor eigenvalues of Σ̃yy as diagonal elements. Matrices ηK ∈ RP×K and
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η∼K ∈ RP×∼K are composed of orthonormal eigenvectors as columns corresponding
to the eigenvalues in ΛK and Λ∼K respectively. Then, the minor eigenvectors are
discarded and using ηK , the data is projected onto the lower dimension latent space
as the following,

SK = ηTKY (3.2)

where SK = {s1, . . . , sn ∈ RK , . . . , sN} ∈ RK×N is the set of N lower (K) dimension
latent variables corresponding to the N observations. The latent variables are linearly
uncorrelated and their covariance is given by ΛK = diag (λ1, λ2, ..., λK).

The model developed from the normal data is deployed to monitor the routine
operation data. Typically, two different statistics, namely, 1) Hotelling’s T 2 [12], and
2) Q or SPE [26] are monitored to check the conformity of the new data to the normal
operation. T 2 is the normalized sum of square of latent variables. For an observation
yn, the T 2 statistic is defined as the following,

T 2
n = ||Λ− 1

2
K sn||2 = sTnΛ

−1
K sn = yTn ηKΛ

−1
K ηTKyn (3.3)

The Q statistic is the sum of square of the residuals obtained with the optimal least
squares reconstruction. When the observations are reconstructed from the lower di-
mensional latent variables, the optimal reconstruction for an observation in the least
squares sense is given by,

ŷn = ηKsnK = ηKη
T
Kyn (3.4)

where ŷn is the reconstruction of yn given the model. The reconstruction residual, rn
is given by,

rn = (IP − ηKη
T
K)yn (3.5)

and the Q statistic based on the reconstruction residuals is defined as the following,

Qn = ||rn||2 = rTn rn = yTn
(
IP − ηKη

T
K

)
yn (3.6)

Remark 1. It can also be shown that PCA is an optimal solution to the following
problem,

min
ηK

ΣN
n=1||rn||2 (3.7)

subject to
ηTKηK = IK (3.8)
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The null distribution of the T 2 statistic is a χ2 distribution with K degrees of free-
dom. The Q statistic is reducible to a nonnegative sum of χ2 random variables, and
for its cumulative distribution function, several approximations are available in the
literature (for a recent review, see [73]). Generally, the approximation provided in
[74] is used for obtaining the control limits by following [26].

3.1.2 CCA based monitoring

Consider a system with P -dimension outputs and L-dimension inputs. Let N mean-
centred observations of output are given by Y and of inputs are given by X ,
{x1, . . . , xn ∈ RL, . . . , xN} ∈ RL×N from the normal operation of the system, their
respective sample covariance matrices are given by Σ̃yy ≻ 0 and Σ̃xx ≻ 0 and the sam-
ple cross-covariance matrix between the outputs and the inputs is given by Σ̃yx. CCA
extracts linearly independent latent variables from X and Y using the linear projec-
tion matrices ζx ∈ RL×J and ζy ∈ RP×J , (J = min(L, P )) respectively, such that the
correlation between the latent variables from X and Y is maximized. When Σ̃xx and
Σ̃yy are invertible, the projection matrices can be obtained as the following,

ζy = Σ̃
− 1

2
yy βy, ζx = Σ̃

− 1
2

xx βx (3.9)

resulting from the decomposition shown below,

Σ̃
− 1

2
yy Σ̃yxΣ̃

− 1
2

xx = βyΓβ
T
x (3.10)

where RJ×J ∋ Γ ≽ 0 is a diagonal matrix with the singular values that are also
the estimates of the correlations between the latent variables from Y and X, and
the matrices βy ∈ RP×J and βx ∈ RL×J contain orthonormal eigenvectors spanning
the basis of the row and the column spaces of the matrix on the left hand side of
Eqn. (3.10) respectively. Due to orthonormal eigenvectors, the projection matrices
obey the following relationships,

ζTy Σ̃yyζy = IJ , ζ
T
x Σ̃xxζx = IJ (3.11)

If K, K < J , correlations are found to be significant, the first K latent variables
from X, SxK , and Y , SyK , are obtained as the following,

SyK = ζTyKY, SxK = ζTxKX (3.12)
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where the matrices ζyK ∈ RP×K and ζxK ∈ RL×K are composed of first K retained
columns of ζy and ζx, respectively.

The latent variables extracted from X and Y have identity covariance (which is
evident from Eqn. (3.11)). For process monitoring, T 2 statistics are defined for the
latent variables extracted from the inputs and the outputs separately as,

T 2
yn = yTn ζyKζ

T
yKyn, T

2
xn = xTnζxKζ

T
xKxn (3.13)

Remark 2. It can also be shown that CCA is an optimal solution to the following
problem,

min
ζyK ,ζyK

ΣN
n=1 ||ζTyKyn − ζTxKxn||2 (3.14)

subject to
ζTyKΣ̃yyζyK = ζTxKΣ̃xxζxK = IK (3.15)

Hence, the monitoring statistic for the model residuals should be ||ζTyKyn−ζTxKxn||2. How-
ever, as in Eqn. (3.6), the Q statistic based on the reconstruction residuals has also
been used in the literature for CCA based monitoring[19].

Similar to PCA, the null distributions of both T 2
yn and T 2

xn are a χ2 distribution
with K degrees of freedom. However, when PCA and CCA based monitoring models
are developed from a finite number of observations, Hotelling’s T 2 distribution is
defined as the null distribution from which the control limits are obtained to monitor
the T 2 statistic (for details, see [3]).

Remark 3. Motivated by the use of PCA and CCA in subspace identification for
dynamic modelling, both are also used in dynamic process monitoring. In fact, CCA is
generally used for dynamic process monitoring. For modelling dynamic processes using
PCA and CCA, the sample covariances and cross-covariances of the lag augmented
observations are used.

This completes our brief review of the two popular classical multivariate techniques
used for monitoring. In the next section, we will define the GPLLVM and the special
cases subsumed by the model, which will help us discuss probabilistic models based
monitoring.
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3.2 GPLLVM

Consider a system with the output observations Y that are affected by the input
observations X and U , {u1, . . . , un ∈ RM , . . . , uN} ∈ RM×N . We assume that Y , X,
and U are measured and Y and X are mean centered. We define the GPLLVM that
models Y as presented below:

Definition 4. Generalized probabilistic linear latent variable model:
A GPLLVM that models output observations Y given the input observations X that
are corrupted by noise, and the deterministic input observations U , is represented as:

yn = Wzn + Fun + ϵyn, ϵyn
i.i.d∼ N (0, ψy)

xn = V zn + ϵxn, ϵxn
i.i.d∼ N (0, ψx)

zn
i.i.d∼ N (0, IK)

(3.16)

where zn ∈ RK is the latent variable such that K < min(P,L), W ∈ RP×K and
F ∈ RP×M are the coefficient matrices of zn and un in the relationship that generates
the output yn, V ∈ RL×K is the coefficient matrix of zn in the relationship that
generates the input xn, and ϵyn ∈ Rp and ϵxn ∈ RL are the noise terms that are
multivariate Gaussian distributed with zero mean and covariances ψy ≻ 0 and ψx ≻ 0

respectively and W , F and V are full column rank matrices.

Fig. 3.1 shows the Bayesian network representation of the GPLLVM. GPLLVM
also falls under the conjugate exponential family graphical models. The prior distribu-
tion of zn is a multivariate Gaussian distribution and it is conjugate to its likelihood
that defines the distributions of yn and xn.

yn xn

znun

n = 1,..., N

V

Ψx

W

Ψy

F

Figure 3.1: Bayesian network representation of the GPLLVM
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Remark 4. From Eqn. (3.16), the joint distribution of yn and xn given zn takes the
following form: [

yn
xn

]
∼ N

([
Wzn + Fun

V zn

]
,

[
ψy 0
0 ψx

])
(3.17)

and when the latent variables are marginalized from Eqn. (3.17), the joint distribution
of yn and xn takes the following form:[

yn
xn

]
i.i.d∼ N

([
Fun
0

]
,

[
WW T + ψy WV T

VW T V V T + ψx

])
(3.18)

The GPLLVM defined in Eqn. (3.16) subsumes probabilistic variants of several mul-
tivariate techniques used for process monitoring. We point out a few special cases of
the model below. However, it should be noted that the special cases are not limited
to the ones pointed out.

When there are no inputs and the output noise covariance, ψy is diagonal, the
model reduces to the case of probabilistic factor analyzer model as shown below,

yn = Wzn + ϵyn, zn
i.i.d∼ N (0, IK) , ϵyn

i.i.d∼ N (0, ψy) (3.19)

and when ψy is isotropic (ψy = σ2I), Eqn. (3.19) reduces to the case of PPCA model
[28] as shown below,

yn = Wzn + ϵyn, zn
i.i.d∼ N (0, IK) , ϵyn

i.i.d∼ N
(
0, σ2I

)
(3.20)

When there are no deterministic inputs, U , the model defined in Eqn. (3.16) reduces
to the case of PCCA model [29] as shown below,

yn = Wzn + ϵyn, ϵyn
i.i.d∼ N (0, ψy)

xn = V zn + ϵxn, ϵxn
i.i.d∼ N (0, ψx)

zn
i.i.d∼ N (0, IK)

(3.21)

When there are only inputs un and the latent variables are dropped from the model,
the model defined in Eqn. (3.16) reduces to the well known multiple linear regression
(MLR) model,

yn = Fun + ϵyn, ϵyn
i.i.d∼ N (0, ψy) (3.22)

Also, the conditional distribution p(yn−Fun|xn) obtained from the GPLLVM can be
shown to be equivalent to an error in inputs and error in outputs MLR model with
outputs yn − Fun and inputs xn.
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Remark 5. There have been attempts in the literature [75, 76, 77] to develop prob-
abilistic version of PLS. These models can also be seen as the special cases of the
GPLLVM. However, we caution the readers from interpreting the models proposed
in the mentioned references to be probabilistic counterparts of the traditional PLS
models as their maximum likelihood estimates may not yield similar results as that
of traditional PLS algorithms. Traditional PLS algorithms maximize the covariance
between the latent variables extracted from the inputs and outputs [78], whereas the
maximum likelihood estimation of the PCCA which is the special case of the GPLLVM
maximizes the correlation between the latent variables extracted from the inputs and
outputs [29].

Given Y , X and U , the parameters (W , V , F , ψy and ψx) of the GPLLVM can
be estimated using the EM algorithm. The E-step and the M-step recursive update
expressions are provided in Appendix B.1.

Now that we have introduced the GPLLVM, we proceed to derive the control
charts for process monitoring in the next section.

3.3 Control Charts based on the GPLLVM

To monitor the process based on the GPLLVM developed from the normal opera-
tion data, we propose various monitoring statistics. They include monitoring statis-
tics based on, 1) the latent variables projected from the observed variables, and 2)
the reconstruction residuals of the observed variables from the projected latent vari-
ables. We also enlist different possible monitoring statistics that leverage the general
structure of the GPLLVM and can be used depending upon the user’s need.

3.3.1 Monitoring the latent variables

In this subsection, we derive statistics for monitoring the variability in the latent
variables extracted from the GPLLVM. Theorem 1 presented in this section helps us
achieve that. Below, we present a lemma which will be useful in proving theorem 1.

Lemma 2. Given yn, xn and un, the posterior distribution of zn of a GPLLVM is
a multivariate Gaussian distribution with mean, µzn|yn,xn,un and covariance, Σz|y,x as
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shown below,
zn|yn, xn, un

i.i.d∼ N
(
µzn|yn,xn,un ,Σzn|yn,xn,un

)
(3.23)

where
µzn|yn,xn,un = Φ

[
W Tψ−1

y (yn − Fun) + V Tψ−1
x xn

]
(3.24)

Σzn|yn,xn,un = Σz|y,x = Φ (3.25)

Φ =
[
W Tψ−1

y W + V Tψ−1
x V + IK

]−1 (3.26)

Proof. From the Bayes rule, we can infer the posterior distribution of zn given xn,
un and yn as the following,

p (zn|yn, xn, un) ∝ p (yn, xn|zn, un) p (zn) (3.27)

Substituting the expression for the likelihood of zn shown in Eqn. (3.17) and the prior
distribution of zn shown in Eqn. (3.16) in Eqn. (3.27) yields the following,

p (zn|yn, xn, un) ∝ exp

{
−1

2
(yn −Wzn − Fun)

T ψ−1
y (yn −Wzn − Fun)

}
× exp

{
−1

2
(xn − V zn)

T ψ−1
x (xn − V zn)

}
exp

{
−1

2
zTn zn

}
(3.28)

Rewriting the exponents on the RHS of the above equation as a quadratic function
in zn and dropping the other constant terms yield the following,

p (zn|yn, xn, un) ∝ exp

{
−1

2
zTnΦ

−1zn

}
exp

{
zTn
[
W Tψ−1

y (yn − Fun) + V Tψ−1
x xn

]}
(3.29)

Further, performing square completion yields,

p (zn|yn, xn, un) ∝ exp

{
−1

2
µT
zn|yn,xn,un

Σ−1
z|y,xµzn|yn,xn,un

}
(3.30)

where the expressions for µzn|yn,xn,un , Σz|y,x and Φ are the same as the ones shown in
equations (3.24), (3.25) and (3.26) respectively.

Theorem 1. When GPLLVM defines the true distribution of the observations with
the exact parameters, to check if the latent variable zn lies outside the normal operation
region with (1− α)× 100% confidence level, α ∈ [0, 1], it is sufficient to verify if the
following inequality is violated,

µT
zn|yn,xn,un

[IK − Φ]−1 µzn|yn,xn,un ≤ χ−2
(1−α;K) (3.31)
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where µzn|yn,xn,un is the posterior mean and Φ is the posterior covariance of the latent
variable given xn, yn and un, and χ−2

(1−α;K) refers to inverse of chi-squared distribution
with K degrees of freedom.

Proof. The proof contains two parts: 1) We argue that it is sufficient to monitor
µzn|yn,xn,un by making use of the results presented in Lemma 2, and 2) we show that
µT
zn|yn,xn,un

[IK − Φ]−1 µzn|yn,xn,un follows the chi-squared distribution with K-degrees
of freedom.

Part 1: From equations (3.24), (3.25) and (3.26), it can be seen that µzn|yn,xn,un

changes with n and Σzn|yn,xn,un does not. Therefore, the only random component in the
posterior distribution of zn is the mean parameter and for monitoring the variability
in zn, it is sufficient to monitor only µzn|yn,xn,un .

Part 2: From Eqn. (3.24), µzn|yn,xn,un is given by a linear combination of the ob-
servations. From Eqn. (3.18), the observations follow a multivariate normal distribu-
tion and therefore, µzn|yn,xn,un will also follow a multivariate normal distribution. We
proceed to show that the covariance of µzn|yn,xn,un is [IK − Φ] making the LHS of
Eqn. (3.31) a χ2 random variable with K degrees of freedom.

If the GPLLVM defines the true distribution of the observations, the expected
value and the covariance of µzn|yn,xn,un as the following,

E
(
µzn|yn,xn,un

)
= ΦW Tψ−1

y E (yn − Fun) + ΦV Tψ−1
x E (xn) = 0 (3.32)

Cov(µzn|yn,xn,un) = E
(
µzn|yn,xn,unµ

T
zn|yn,xn,un

)
= ΦW Tψ−1

y E
[
(yn − Fun) (yn − Fun)

T
]
ψ−1
y WΦ + ΦV Tψ−1

x E
[
xnx

T
n

]
ψ−1
x V Φ

+ΦV Tψ−1
x E

[
xn (yn − Fun)

T
]
ψ−1
y WΦ+ΦW Tψ−1

y E
[
(yn − Fun) x

T
n

]
ψ−1
x V Φ (3.33)

Simplifying Eqn. (3.33) yields,

Cov(µzn|yn,xn,un) =
[
W Tψ−1

y W + V Tψ−1
x V

]
Φ

Cov(µzn|yn,xn,un) =
[
Φ−1 − IK

]
Φ

Cov(µzn|yn,xn,un) = IK − Φ (3.34)
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As the dimension and the covariance of µzn|yn,xn,un are K and IK − Φ respectively,
the term on the LHS of Eqn. (3.31) follows χ2 distribution with K degrees of free-
dom. Therefore, verifying the inequality in Eqn. (3.31) that µzn|yn,xn,un obtained from
the normal operation data will be flagged as faulty with the rate exactly equal to α
when the number of monitored samples tends to ∞.

3.3.2 Monitoring the model residuals

In this subsection, we derive the statistic for monitoring the variability in the model
residuals of the GPLLVM. The GPLLVM can be used to predict/reconstruct yn and
xn from zn and un. As zn is not observed, µzn|yn,xn,un can be used to reconstruct yn
and xn. However, the reconstruction from µzn|yn,xn,un may not be deemed optimal as
the distribution of µzn|yn,xn,un is relatively skewed more toward the origin compared
to the distribution of zn. This can be seen from the difference between the covari-
ances of zn (Eqn. (3.16)) and µzn|yn,xn,un (Eqn. (3.34)). Instead, we can obtain the
optimal reconstruction for the observations in the weighted least squares sense from
the following formulation,

min
zn

(yn − Fun −Wzn)
T ψ−1

y (yn − Fun −Wzn) + (xn − V zn)
T ψ−1

x (xn − V zn)

(3.35)
Monitoring the value function of Eqn. (3.35) provides a means to check on how well
the observation can be reconstructed by the GPLLVM. Theorem 2 presented in this
section help us to achieve a framework for monitoring the model residuals. Before
presenting Theorem 2, we derive the value function of Eqn. (3.35) in the lemma
presented below, which is essentially the optimal weighted least squares estimate of
zn.

Lemma 3. The optimal estimate of zn that minimizes the weighted least squares
residuals objective function shown in Eqn. (3.35) is given by,

ẑn|yn,xn
= [IK − Φ]−1 Φ

[
ψ−1
y W
ψ−1
x V

]T [
yn − Fun

xn

]
(3.36)

Proof. Taking the derivative of the objective function shown in Eqn. (3.35) and
equating it to zero yields the following,

ẑn|xn,yn =
[
W Tψ−1

y W + V TψxV
]−1 [

W Tψ−1
y (yn − Fun) + V Tψ−1

x xn
]

(3.37)
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From the expression for Φ shown in Eqn. (3.26), the following can be obtained,

W Tψ−1
y W + V TψxV = Φ−1 − Ik = Φ−1 [IK − Φ] (3.38)

and [
W Tψ−1

y W + V TψxV
]−1

= [IK − Φ]−1 Φ (3.39)

Substituting Eqn. (3.39) in Eqn. (3.37) and writing the second multiplier on the
RHS of Eqn. (3.37) in a matrix form yield the estimate of zn in the form shown in
Eqn. (3.36).

Theorem 2. The optimal value of the value function of Eqn. (3.35) reduces to a
non-negative sum of χ2 random variables. Further, when the GPLLVM defines the
true distribution of the observations with the exact parameters, the value function of
Eqn. (3.35) becomes a χ2 random variable. If the degrees of freedom of the former is
K1,and the latter is K2, then K1,K2 < P + L.

Proof. The proof contains three parts, 1) we derive a compact representation of
the value function of Eqn. (3.35), 2) we show that it indeed reduces to a non-negative
sum of χ2 random variables, and 3) when GPLLVM defines the true distribution of
the observations, we show that it further simplifies to a χ2 random variable.

Part 1: Substituting the optimal weighted least squares estimate of zn shown in
Eqn. (3.36) in Eqn. (3.35) leads the value function to a compact form give below,

YT
nAYn, Yn

i.i.d∼ N (0,Σ) (3.40)

where
Yn =

[
yn − Fun

xn

]
(3.41)

A =

[
ψy

ψx

]−1

−
[
ψ−1
y W
ψ−1
x V

]
[IK − Φ]−1 Φ

[
ψ−1
y W
ψ−1
x V

]T
(3.42)

A ≽ 0 follows from the fact that the sum of square of residuals will always be
greater than or equal to zero. Let Ψ−1 =

[
ψ−1
y

ψ−1
x

]
and V = Ψ− 1

2

[
W
V

]
. Then,

A can be written as,

A = Ψ− 1
2

{
IP+L − V(VTV)−1VT

}
Ψ− 1

2 (3.43)
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where the term in the middle,
{
IP+L − V(VTV)−1VT

}
is an idempotent matrix.

Part 2: In this part, we show that the compact form in Eqn. (3.40) reduces to a
non-negative sum of χ2 random variables through a series of algebraic manipulations.

The compact form can be replaced by a quadratic function on the whitened ob-
servations as the following,

YT
nAYn = Y ′T

n BY ′

n (3.44)

where
B = Σ

1
2AΣ

1
2 , (3.45)

and Y ′
n is the whitened observation such that

Y ′

n = Σ− 1
2Yn (3.46)

Matrix B ≽ 0 is symmetric. Therefore, B can be decomposed and Eqn. (3.44) can be
rewritten as the following,

YT
nAYn = Y ′T

n UK1SK1UK1

TY ′

n = ZT
n SK1Zn (3.47)

which is indeed a non-negative sum of K1 chi-square random variables with the diag-
onal elements of SK1 being the positive weights as the following results hold,

E
(
ZnZT

n

)
= UK1

T IUK1 = I (3.48)

Zn
i.i.d∼ N (0, IK1) (3.49)

SK1 is a diagonal matrix with K1 non-zero eigenvalues of B and UK1 is a matrix with
corresponding eigenvectors. Now, recall Eqn. (3.43): As idempotent matrices are rank
deficient unless they are identity matrices, the multiplication in Eqn. (3.43) always
leads to rank deficient matrix since V(VTV)−1V is a non-zero matrix. Therefore, A
and B are rank deficient and K1 < P + L.

A comment regarding the practical approach for monitoring the non-negative sum
of χ2 random variables is provided in Remark 6.

Part 3: When the GPLLVM defines the true distribution of the observations, the
covariance of the observations in Eqn. (3.45) can be replaced by,

Σ =

[
WW T + ψy WV T

VW T V V T + ψx

]
(3.50)
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The resulting matrix B becomes idempotent (For proof refer to Appendix B.3). As an
idempotent matrix has all of its eigenvalues to be either zeros or ones, the following
result emerges,

YT
nAYn = ZT

n SK2Zn = ZT
n IK2Zn, Zn

i.i.d∼ N (0, IK2) (3.51)

which is a χ2 random variable with K2 degrees of freedom. With similar arguments
presented in Part 2, K2 can be shown to be < P + L.

Remark 6. Any reasonable approximation of cumulative distribution function of
non-negative sum of χ2 random variables can be used to define the control limit
for the statistic in Eqn. (3.47) and subsequently for monitoring. For such cases in our
numerical simulations, we use Imhof’s method [79] to identify the control limit using
the package ‘CompQuadForm’ [80].

Remark 7. From Theorem 2, an important implication of monitoring the model
residuals of the GPLLVM (or any probabilistic linear latent variable model with mul-
tivariate Gaussian additive noise) is that the monitoring statistic simplifies to a χ2

random variable. Hence, similar to the approach for monitoring the latent variables,
the residuals can also be monitored through the following relationship,

YT
nAYn ≤ χ−2

(1−α;K2)
(3.52)

3.3.3 Other possible monitoring statistics

In addition to the statistics presented in subsections 4.1 and 4.2, one can choose to
monitor the other aspects of the system or monitor the system when only partial
information is available by deriving the specific statistics. For instance, 1) monitor
the variability in observed yn and xn directly as the model defines a distribution for
the observations, 2) monitor the variability in zn when it is inferred from a partial
set of observations (either from xn alone or from yn and un alone), 3) monitor the
discrepancy between zn inferred just from xn and zn inferred just from yn and un,
among the other possibilities. Here, we illustrate the monitoring of variability in zn
when it is inferred only from yn and un and enlist the above discussed possibilities in
Table 3.1.
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Eqn. (3.23) shows the posterior of zn given yn, xn and un. We can also infer
the posterior distribution of zn when given only yn and un by marginalizing xn from
Eqn. (3.23) as the following,

zn|yn, un
i.i.d∼ N

(
µzn|yn,un ,Σzn|yn,un

)
(3.53)

µzn|yn,un = Φy

[
W Tψ−1

y (yn − Fun)
]

(3.54)

Σzn|yn,un = Σz|y = Φy (3.55)

where
Φy =

[
W Tψ−1

y W + IK
]−1 (3.56)

Notice that when V = 0, Eqn. (3.23) reduces to Eqn. (3.53). Similarly, the posterior
of zn given xn alone can be obtained by letting W = 0 in Eqn. (3.23). By following a
similar procedure as illustrated in Theorem 1, we can derive the monitoring statistic
for monitoring the variability in zn given yn and un to be the following,

µT
zn|yn,un

[IK − Φy]
−1 µzn|yn,un (3.57)

as presented in row 1 of Table 3.1.
Now that we have discussed the monitoring options using the GPLLVM, in the

following section, we proceed to show the connection between the proposed monitoring
statistics and the classical monitoring statistics under specific conditions.

Table 3.1: A selected few other monitoring options that can be implemented from
the GPLLVM of a system
S. NO. Monitored aspect Statistic to be monitored Null distribution

1 Variability in zninferred from
yn and un alone µT

zn|yn,un
[IK − Φy]

−1 µzn|yn,un ∼ χ2
K

2 Variability in zn inferred from
xn alone µT

zn|xn
[IK − Φx]

−1 µzn|xn ∼ χ2
K

3 Variability in observed yn and xn YT
nΣ

−1Yn ∼ χ2
(P+L)

4 Discrepancy between zn inferred
from xn and from yn and un

||[IK − Φy]
− 1

2µzn|yn,un − [IK − Φx]
− 1

2µzn|xn ||2 +ve sum of χ2 RVs

Note: µzn|xn = Φx

[
V Tψ−1

x xn
]
and Φx =

[
V Tψ−1

x V + IK
]−1
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3.4 Classical Multivariate Techniques vs. Their Prob-
abilistic Counterparts

As introduced, the GPLLVM subsumes the probabilistic counterparts of many multi-
variate techniques used for monitoring. Specific restrictions imposed on the GPLLVM
give rise to the probabilistic models such as PPCA, PCCA, etc., and the monitoring
statistics derived in the previous section will also seamlessly reduce to their cor-
responding monitoring statistics. We compare the monitoring statistics and their
null distributions corresponding to each special case against their classical counter-
parts. We restrict our presentation to two popular special cases of the GPLLVM
namely, PPCA and PCCA through theorems 3 and 4. We start with claim 1, which
will prove to be useful for the exposition of the proceeding results. Followed by that,
we present lemmas 4 and 5 where we derive the important intermediate results to
prove theorems 3 and 4. Then, we present theorems 3 and 4.

Claim 1. In Eqn. (3.16) of the GPLLVM,

1. when F = 0, V = 0 and ψy = σ2I, the following holds true,

WML = ηK
(
ΛK − σ2IK

) 1
2 R (3.58)

σ2
ML =

1

P −K

P∑
i=K+1

λi (3.59)

where WML and σ2
ML are the maximum likelihood estimates of W and σ2 of the

model, respectively, R is an arbitrary rotational matrix and λi, i ∈ [K + 1, P ]

correspond to minor eigenvalues of Σ̃yy and

2. when only F = 0, the following holds true,

WML = Σ̃yyζyKMy, VML = Σ̃xxζxKMx (3.60)

ψyML = Σ̃yy −WML (WML)
T (3.61)

ψxML = Σ̃xx − VML (VML)
T (3.62)

where VML, ψxML and ψyML are the maximum likelihood estimates of V , ψx and
ψy, respectively, My, Mx ∈ RK×K are arbitrary matrices such that MyM

T
x = ΓK
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with spectral norms lesser than one. ΓK is the diagonal matrix with first K
canonical correlations as its diagonal elements.

Proof.

1. Under the given restrictions in claim 1. 1, the GPLLVM reduces to the PPCA
model presented in [28] and employing the results presented in section 3.2 of
[28] yields the results presented above.

2. Under the given restrictions in claim 1. 2, the GPLLVM reduces to the PCCA
model presented in [29] and employing the theorem 2 in [29] yields the results
presented above.

Lemma 4. Under the conditions stated and with the maximum likelihood estimates
of the parameters shown in Claim 1.1, the following identities hold,

[IK − Φy]
−1 = IK + σ2RT

(
ΛK − σ2IK

)
R (3.63)

1

σ2
WΦy = ηK

(
ΛK − σ2IK

) 1
2 (ΛK)

−1R (3.64)

Proof. The expression for Φy shown in Eqn. (3.56) reduces to the following under
the conditions stated in Claim 1.1,

Φy =

[
1

σ2
W TW + IK

]−1

(3.65)

Substituting the maximum likelihood estimate ofW shown in Eqn. (3.58) in the above
equation leads to the following,

Φy =

[
1

σ2
RT
(
ΛK − σ2IK

)
R + IK

]−1

(3.66)

Further simplification leads to

Φy = σ2RTΛ−1
K R (3.67)

Using the above expression for Φy, the LHS of Eqn. (3.63) can be written as,

[IK − Φy]
−1 =

[
IK − σ2RTΛ−1

K R
]−1 (3.68)
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Applying the Woodbury matrix identity shown in Eqn. (B.1) of appendix B in the
above equation with M1 = IK , M2 = −σ2RT , M3 = Λ−1

K and M4 = R yields the
result shown in Eqn. (3.63).

Similarly, using the expression for Φy shown in Eqn. (3.67) in the LHS of Eqn. (3.64)
leads to the following,

1

σ2
WΦy = WRTΛ−1

K R (3.69)

Now, substituting the maximum likelihood estimate of W as shown in Eqn. (3.58) in
the above equation yields the result shown in Eqn. (3.64).

Lemma 5. Under the conditions stated and the maximum likelihood estimates of the
parameters shown in Claim 1. 2, the following identities hold,

[IK − Φy]
−1 =

[
MT

y My

]−1 (3.70)

ΦyW
Tψ−1

y =MT
y ζ

T
yK (3.71)

Proof. Under the conditions stated in Claim 1. 2 and from the result provided
in Eqn. (3.61), the following holds,

W Tψ−1
y W = W T

[
Σ̃yy −WW T

]−1

W (3.72)

Applying the identity shown in Eqn. (B.1) of appendix B in the above equation with
M1 = Σ̃yy, M2 = −W , M3 = IK and M4 = W T , yields the following,

W Tψ−1
y W = W T Σ̃−1

yyW +W T Σ̃−1
yyW

[
IK −W T Σ̃−1

yyW
]−1

W T Σ̃−1
yyW (3.73)

From the maximum likelihood estimate of W shown in Eqn. (3.61), the following
holds,

W T Σ̃−1
yyW =MT

y ζ
T
ykΣ̃yyζykMy =MT

y My (3.74)

Substituting the above equation in Eqn. (3.73) leads to the following,

W Tψ−1
y W =MT

y

{
IK +My

[
IK −MT

y My

]−1
MT

y

}
My (3.75)

By applying the identity shown in Eqn. (B.1) of appendix B with M1 = IK , M2 =

−My, M3 = IK and M4 =MT
y , the following can be obtained,

W Tψ−1
y W =MT

y

[
IK −MyM

T
y

]−1
My (3.76)
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Substituting the RHS of Eqn. (3.76) in the expression for Φy shown in Eqn. (3.56)
yields the following,

Φy =
{
IK +MT

y

[
IK −MyM

T
y

]−1
My

}−1

(3.77)

By applying the identity shown in Eqn. (B.1) of appendix B with M1 = IK , M2 =

−MT
y , M3 = IK and M4 =My, the following can be obtained,

Φy =
{[
IK −MT

y My

]−1
}−1

=
[
IK −MT

y My

]
(3.78)

Using the above result for Φy, it is straightforward to see that the identity shown in
Eqn. (3.70) holds.

Next we show that the identity shown in Eqn. (3.71) holds. From the maximum
likelihood estimate of Φy, the following holds,

W Tψ−1
y = W T

[
Σ̃yy −WW T

]−1

(3.79)

Applying the identity shown in Eqn. (B.1) of appendix B in the above equation with
M1 = Σ̃yy, M2 = −W , M3 = IK and M4 = W T and with the maximum likelihood
estimate of W shown in Eqn. (3.60), the following can be obtained,

W Tψ−1
y =MT

y ζ
T
yK +MT

y My

[
IK −MT

y My

]−1
MT

y ζ
T
yK (3.80)

Pre-multiplying the above expression by the expression for Φy obtained in Eqn. (3.78)
yields the identity shown in Eqn. (3.71).

Theorem 3. When the GPLLVM is restricted by the conditions: F = 0, V = 0 and
ψy = σ2I, under the maximum likelihood parameter estimates, the statistics presented
for monitoring the latent variables and the residuals in equations (3.31) and (3.40)
are equivalent to the T 2 statistic in Eqn. (3.3) and the Q statistic in Eqn. (3.6) of the
classical PCA based monitoring approach respectively.

Proof. Under the restrictions given in theorem 3, the statistics presented in Eqn. (3.31)
and (3.40) reduce to

1

σ2
yTnWΦy [IK − Φy]

−1 ΦyW
Tyn

1

σ2
, and (3.81)
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1

σ2
yTn

[
IP −W

[
W TW

]−1
W T

]
yn, (3.82)

respectively. Alternatively, these conditions can also be derived rigorously by start-
ing from the restricted model instead of starting with the results obtained for the
GPLLVM.

Making use of the results presented in lemma 4 simplifies the proof of equiv-
alence. Substituting the results presented in equations (3.58), (3.63) and (3.64) to
(3.81) and (3.82) reduces the statistics to the following,

yTn ηK (ΛK)
−1 ηTKyn, and (3.83)

1

σ2
yTn
[
IP − ηKη

T
K

]
yn, (3.84)

respectively. We observe that Eqn. (3.83) is identical to the statistic presented in
Eqn. (3.3) while Eqn. (3.84) is scaled by 1/σ2 with respect to the statistic presented
in Eqn. (3.6). The scaling is due to the employment of the weighted least square
solution as in Eqn. (3.35). However, it will not have any barring on the monitoring
procedure as the control limit corresponding to the statistic will also be scaled with
the same factor.

Remark 8. In the classical PCA based monitoring, the Q statistic is shown to be
non-negative sum of χ2 random variables by making use of sample covariance of Y
[26]. However, in the probabilistic model based monitoring, if the model covariance
is used, it may lead to different control limits for monitoring the residuals unless the
model covariance is same as the sample covariance.

Remark 9. In the literature, PPCA model based monitoring has been considered and
the relevant statistics were presented as:
For monitoring the latent variables [37]:

1

σ2
yTnWΦyΦyW

Tyn
1

σ2
, and (3.85)

and for monitoring the model residuals [35, 37]:
1

σ2
yTn

(
IP − 1

σ2
WΦyW

T

)(
IP − 1

σ2
WΦyW

T

)
yn (3.86)

opposed to the statistics presented in equations (3.81) and (3.82) of this chapter. The
differences arise from the following aspects:
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1. They assumed the null distribution of the estimate of the latent variable zn to
be N (0, IK). However, as we have presented in Eqn. (3.81), the covariance of
the estimate of zn is IK − Φy, affecting the derived statistic in Eqn. (3.85)

2. They considered the estimate from the posterior, p (ϵyn|yn) to be the residual,
affecting the derived statistic in Eqn. (3.86). However, it should be noted that the
likelihood p (yn|ϵyn) has a covariance WW T which is non-invertible, rendering
the posterior, p (ϵyn|yn), to be intractable. Further, the computed residual ϵyn is
a suboptimal reconstruction residual for yn in the least squares sense.

In the classical CCA based monitoring approach, two sets of latent variables are
defined separately for the outputs and the inputs and can be monitored by monitoring
the T 2

y and T 2
x statistics shown in Eqn. (3.13). As in Eqn. (3.16), the GPLLVM uses a

same set of latent variables for both the inputs and the outputs. However, the latent
variables from the GPLLVM can be inferred by conditioning either the outputs or
the inputs separately and monitored as shown in Table 3.1.

Theorem 4. When the GPLLVM is restricted by the conditions: F = 0, under the
maximum likelihood parameter estimates, the statistics presented in rows 1 and 2
of Table 3.1 for monitoring the latent variables inferred separately from the outputs
and the inputs are equivalent to T 2

y and T 2
x statistics of the CCA based monitoring

approaches shown in Eqn. (3.13) respectively.

Proof. For brevity, we only illustrate the equivalence between the statistic presented
in row 1 of Table 3.1 under the conditions imposed by theorem 4 and the T 2

y statistic
of CCA presented in Eqn. (3.13).

The statistic presented in row 1 of Table 3.1 under the conditions imposed by
theorem 4 reduces to,

yTnψ
−1
y WΦy [IK − Φy]

−1 ΦyW
Tψ−1

y yn (3.87)

Substituting the results shown in lemma 5, i.e., substituting equations (3.70) and (3.71)
in Eqn. (3.87), the monitoring statistic reduces to the following form:

yTn ζyKζ
T
yKyn (3.88)
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which is identical to the T 2
y statistic of CCA shown in Eqn. (3.13). Similar procedure

would also yield equivalence of the statistic in row 2 of Table 3.1 and the T 2
x statistic

of the CCA based monitoring approach shown in Eqn. (3.13) are equivalent.

3.5 Simulation Example

In this section, we validate, 1) the results presented in section 3.3, and 2) the results
presented in section 3.4, by means of numerical simulation examples.

1) We consider a GPLLVM with the following parameters:

W =

[
2.3 −2.9 1.8
1.5 2.4 −3.1

]T
, V =

[
1.2 3.2 1.3
−2.3 1.7 −2.4

]T

F =
[
2.6 1.7 −3.3

]T
, U ∼ N (0, 1) , Z ∼ N (0, I2)

ψy =

 0.8 0.2 0.3
0.2 0.5 −0.4
0.3 −0.4 0.9

 , ψx =

 0.8 0.4 0.3
0.4 0.9 −0.2
0.3 −0.2 0.8


Using the above model, we simulated Y and X. Followed by that, we performed

monitoring on the simulated Y and X by means of various statistics presented in
theorems 1 and 2 and Table 3.1. The statistics were monitored using the control lim-
its derived from the corresponding null distributions with the desired α values. By
performing 50 Monte-Carlo simulations each with 105 samples, we present the result-
ing fraction of false positives in Table 3.2. Results indicate that the fraction of false
positives concurs with the considered α values. These numerical results verify the
results presented in section 3.3.
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Table 3.2: Fraction of type I error or false positives resulting from the control charts
S. NO Monitored aspect α = 5× 10−2 α = 5× 10−3

1 Variability in zn inferred from
yn, un and xn

5× 10−2 ± 1.9× 10−3 5× 10−3 ± 6.3× 10−4

2 Model residual statistic 5× 10−2 ± 1.9× 10−3 5× 10−3 ± 5.6× 10−4

3 Variability in zn inferred from
yn and un alone 4.9× 10−2 ± 2.1× 10−3 5× 10−3 ± 6.4× 10−4

4 Variability in zn inferred from
xn alone 5× 10−2 ± 1.8× 10−3 5× 10−3 ± 6.8× 10−4

5 Variability in observed yn and xn 5× 10−2 ± 1.9× 10−3 5× 10−3 ± 5.8× 10−4

6 Discrepancy between zn inferred
from xn and from yn and un

5× 10−2 ± 2.3× 10−3 5× 10−3 ± 5.4× 10−4

2) We simulated Y andX from a normal distribution with the following covariance
matrices:

Σyy =


2.3 0.6 −1.4 0.6
0.6 7 −3.6 1.1
−1.4 −3.6 7.2 −2.1
0.6 1.1 −2.1 2.8

 Σyx =


1.2 0.3 −0.7 0.3
0.3 3.5 −1.8 0.6
−0.7 −1.8 3.6 −1
0.3 0.6 −1.1 −1.4



Σxx =


3 −0.8 1.8 0.6

−0.8 2.8 −2 0
1.8 −2 4.6 0
0.6 0 0 1.3


We deployed the GPLLVM model based monitoring approach for monitoring Y with
the PPCA restrictions and for monitoring both Y and X with the PCCA restric-
tions. In parallel, we also deployed the classical PCA and CCA based monitoring
approaches for comparison. In both cases, we considered the number of latent vari-
ables to be 2 and computed the respective monitoring statistics. Figure 3.2 compares
the T 2 and Q statistics obtained from PCA and PPCA respectively. Along the similar
line, Figure 3.3 compares the T 2

x and T 2
y statistics obtained from CCA and PCCA. In

both the figures the circle marker and asterisk marker indicate the statistics obtained
from the classical technique and the probabilistic counterparts that are calculated
from the GPLLVM under corresponding restrictions respectively. It can be seen from
the figures that the statistics extracted from the classical techniques and the GPLLVM
with corresponding restrictions are equivalent, verifying the results presented in sec-
tion 3.4.
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Figure 3.2: Statics obtained from PCA and PPCA: T 2 (top) and Q (bottom)
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Figure 3.3: Statics obtained from CCA and PCCA: T 2
y (top) and T 2

x (bottom)

3.6 Summary

In this chapter, we proposed a unified probabilistic linear latent variable model that
subsumes several commonly used linear models for process monitoring and derived
monitoring statistics based on the same. This helps the researchers to view the var-
ious techniques for process monitoring under the same framework instead of looking
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at them in isolation. The study provided insights into the equivalence of the clas-
sical multivariate techniques and their probabilistic counterparts by restricting the
generalized model to the special cases. Ignoring the algorithmic differences in esti-
mating the classical models and their probabilistic counterparts, there will not be
any differences in the statistics derived for monitoring from both. Therefore, the real
advantage of using the probabilistic models will only be with extending the models to
deal with different data characteristics or distributions. The focus of the next chapter
is to exploit this particular advantage of the probabilistic models.
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Chapter 4

Multi-modal and dynamic process
monitoring using probabilistic
models

4.1 Introduction

In this chapter, we explore the possibility of extending the linear Gaussian models
to obtain a model to approximate the non-Gaussian distributions. We develop a new
probabilistic model that makes use of the probabilistic variant of the popular mul-
tivariate technique, principal component analysis (PCA), the probabilistic principal
component analyser (PPCA) model, as a building block.

Due to its popularity, several extensions and modifications of the PCA based ap-
proach are available in the literature for process monitoring applications. One of the
widely considered extensions is the application of PCA to monitor a finite sequence
of observations [81, 19, 82]. The resulting monitoring model is called the dynamic
PCA model and it is suitable for handling temporally correlated observations. The
probabilistic version of PCA, the PPCA model allows the formulation of a mixture
model, known as the mixture PPCA model [31]. The mixture PPCA model consists
of a convex combination of several local PPCA models and it can be utilized for fault
detection when the process variables tend to have multi-modal spreads or follow a
non-Gaussian distribution as illustrated by several authors [83, 84, 35, 85]. One of the
other approaches that applies PCA for monitoring multi-modal processes utilizes the
Gaussian mixture model to section the data into several clusters and uses PCA to
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model the data within each of the clusters [86]. A non-parametric PCA based model
obtained through kernel trick, called the kernel PCA model can be used to describe
the non-Gaussian distributions and has been previously considered for process moni-
toring [87]. The ideas of kernel PCA and dynamic PCA can be combined to address
the process monitoring problems when the data with temporal correlated observa-
tions and non-Gaussian distribution are encountered [88]. However, for the industrial
applications with a large historical database, implementation of the non-parametric
approach is not computationally viable.

We find that combining the ideas of dynamic PCA and mixture PPCA could be
a potential solution for monitoring multi-modal processes with temporally correlated
observations. However, if we were to apply such models for process monitoring, we
need to address the following challenges, 1) lack of scalability of the mixture PPCA
model for large scale high dimension data without local optima convergence and over-
fitting issues and 2) difficulty in selecting the appropriate dimension for the latent
variables in the model. We address the scalability challenge by a two-stage estimation
approach and the dimension selection challenge through the Bayesian regularization
approach. The proposed solution strategy has the potential to provide a scalable
mixture model. We call the resulting model from the proposed approach as the two-
layer mixture Bayesian PPCA model. We illustrate the applicability of this model in
a couple of case studies.

4.1.1 Organization of this chapter

In section 4.2, we provide a brief introduction to the PCA based models used in
process monitoring application. In section 4.3, we introduce the proposed modelling
strategy. In section 4.4, we present the formulation of the proposed model. In sec-
tion 4.5, we show the process monitoring scheme using the proposed model. In sec-
tions 4.6 and 4.7, we present two case studies and highlight the performance of the
proposed model by comparing it with the performances of the other PCA models. In
section 4.8, we provide the concluding remarks.
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4.2 Background

In this section, we provide a brief introduction to the PPCA, dynamic PCA and
mixture PPCA models. These models are relevant for the development of the proposed
model in this chapter.

4.2.1 PPCA

PPCA is a latent variable model. It uses lower dimensional latent variables to ex-
plain the generative process of the observations. Consider a set of observations Y =

{y1, y2, .., yN} ∈ RN×D and the corresponding latent variables Z = {z1, z2, .., zN} ∈

RN×M , the PPCA model relates the observations and the latent variables through a
linear relationship of the following form,

yn = Wzn + µ+ en, ∀n (4.1)

where yn ∈ RD, zn ∈ RM , M < D, W ∈ RD×M is the loading matrix of the model
and µ ∈ RD is the mean of the observations. Noise (en ∈ RD) in the observations are
considered to be independent and identically distributed and follow a multivariate
Gaussian distribution with zero mean and isotropic covariance σ2ID. The latent vari-
ables are considered to follow a multivariate Gaussian with zero mean and identity
covariance (zn

i.i.d∼ N (0, IM)). From Eqn. (4.1), we can interpret the distribution of
the observations given the latent variables as the following,

p
(
Y |Z,W, µ, σ2

)
=

N∏
n=1

N
(
yn|Wzn + µ, σ2ID

)
(4.2)

where each observation yn is shown to follow a multivariate Gaussian distribution
with mean Wzn + µ and covariance σ2ID.

The marginal distribution of the observations can be obtained by marginalizing
the latent variables from the joint distribution of the observations and latent variables
as the following,

p
(
Y |W,µ, σ2

)
=

∫
Z

p
(
Y |Z,W, µ, σ2

)
p (Z) dZ

=

∫
Z

N∏
n=1

N
(
yn|Wzn + µ, σ2ID

)
N (zn|0, IM) dZ
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= N
(
yn|µ,WW

′
+ σ2ID

)
(4.3)

where the distribution of the set of observations is given by a product of marginal
distributions of the individual observations, which is given by a multivariate Gaussian
distribution with mean µ and covariance WW

′
+ σ2ID.

4.2.2 Mixture PPCA

The PPCA model allows the construction of the mixture PPCA model. The mixture
PPCA model consists of a convex combination of a finite number of local PPCA
models. Let us consider a mixture PPCA model with S local models. When each local
model s ∈ S explains πs proportion of the total observations, the prior probability of
an observation yn being explained by a local model s is given by,

p (sn = s) = πs (4.4)

where
S∑

s=1

p (sn = s) =
S∑

s=1

πs = 1 (4.5)

where sn ∈ [1, S] is a categorical variable and it follows a categorical distribution with
parameters, π = {π1, π2, ..., πS}. Therefore, the distribution of the observations is
given by a mixture PPCA model as the following,

p
(
Y |Z,W, µ, σ2

)
=

N∏
n=1

S∑
s=1

N
(
yn|W szsn + µs, σ2ID

)
p (sn = s)

=
N∏

n=1

S∑
s=1

N
(
yn|W szn + µs, σ2ID

)
πs (4.6)

where each local model s has its own parameters, {W s, µs}. When fitted to a dataset,
the mixture PPCA model divides the dataset into clusters (in this case, into S clus-
ters). A probability measure q(sn = s)∀s, n that indicates the posterior probability
of an observation belonging to a particular cluster is also obtained along with the
parameters of the model when fitted to a dataset. The mixture PPCA model is suit-
able for monitoring multi-modal processes where each local model can be used to
describe a particular operating mode. In addition, when a sufficient number of local
models are allowed, the mixture PPCA model can be used as an approximation for
any non-Gaussian distributions.
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4.2.3 Dynamic PCA

The dynamic PCA model is obtained through the following steps, 1) the observations
over a time window are stacked together to form the lag augmented data matrix
and 2) then, PCA is applied on the space of lag augmented observations. Consider
an observation sequence, {y1, y2, ..., yn, ..., yN}, where yn is a vector of observations
at time instant n. When we augment the l past observations with the observations
at each time instant, the resulting lag augmented observations form a matrix of the
following form,

X = [x1, x2, ..., xn, ..., xN−l−1] =


yl+1 . . yN−1 yN
yl . . yN−2 yN−1

. . . . .

. . . . .
y1 . . yN−l−1 yN−l

 (4.7)

where xn corresponds to a vector of lag augmented observations. If large enough l is
chosen, the columns of X will become mutually independent. Then, PCA is applied
on the space of variable xn to obtain the dynamic PCA model. This amounts to
modelling the covariance of xn. The model captures the temporal correlations among
the variables up to lag l. In the probabilistic version, the dynamic PPCA model can
be obtained by using Eqn. (4.1) to model xn shown in Eqn. (4.7).

4.3 Proposed Model
4.3.1 A straightforward extension

Combining the ideas of dynamic PCA and mixture PPCA model to form a mixture
model that can be named as the mixture dynamic PPCA model is a straightforward
extension. It can be obtained by fitting the model shown in Eqn. (4.6) to X instead
of Y .

X (instead of Y ) in Eqn. (4.7) using the model shown in Eqn. (4.6). However, in
doing so, one has to address the following challenges,

1. Scalability of the model to incorporate a large number of local models: In the
past, the success of mixture PPCA and dynamic PCA models has been demonstrated
only on the simulation studies that require a known and a smaller number of local
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models. Data from industrial processes may require a mixture model with a large
number of local models to approximate the true data distribution. Currently, the
popular estimation approaches such as the expectation maximization (EM) algorithm
and the variational Bayesian expectation maximization (VBEM) algorithm available
for estimating the mixture models are prone to local optima convergence [31, 69]. They
require a good initial guess for the model parameters and cluster identities. It is
difficult to provide a reliable initial guess when we have a large number of local
models and high dimension observations.

2. Dimension reduction: The dynamic model has to handle the augmented obser-
vations of higher dimension when compared to the original observations. Dimension
reduction is essential to make sure that the model captures only the appropriate
amount of variance and leaves the noise in the observations to the noise part of the
model. Dimension reduction is an inbuilt property of these models as they model the
observations as a function of lower dimension latent variables. However, the dimen-
sion of the latent variables has to be defined by the users a priori. In the mixture
version, this means, the users have to choose the appropriate dimension for the latent
variables of each local model. This would be a tedious task if carried out on a trial
and error basis.

4.3.2 The proposed solution strategy

We address the above-mentioned challenges in building the mixture model in the
following ways,

1. Divide and conquer strategy that addresses the scalability challenge: Instead
of trying to fit a mixture model with a large number of local models at once, we
divide this task between two stages. We split the data into several subsets known
as the clusters at the first stage. In the second stage, we fit mixture models with a
manageable number of local models to each of the identified clusters. By combining
the mixture models fitted to each of the clusters, we obtain a model for the entire
dataset with a large number of local models. Illustrative example of this approach is
provided in Fig. 4.1. In the first stage, the data is divided into two clusters and in the
second stage to each cluster, mixture models with three local models are fitted for
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the case illustrated in Fig. 4.1. At the end, the number of local models for the data
becomes six, however, at a given stage, only a model with two or three local models
is identified. We are motivated to incorporate this idea mainly because, we will be in
a better position to generate good initial guesses when we try to fit a mixture model
with a smaller number of local models as opposed to a model with a large number of
local models.

We achieve both clustering in the first stage and mixture model fitting in the
second stage using the mixture PPCA models. In the first stage, the model divides
the data into clusters and also provides dimension reduction. In the second stage, the
models are fitted to the clusters with lower dimension latent variables obtained in the
first stage. We show that the models fitted in the both stages can be collapsed to form a
mixture Gaussian model that consists of a large number of local models. We point out
the advantages of this model over a mixture dynamic PPCA model that is estimated
in a single stage such as the role of divide and conquer strategy in reducing the risk of
local optima convergence and obtaining a parsimonious model. The proposed model
is similar to that of deep mixture of factor analysers proposed in [89], however, our
model differs by the use of PPCA models as the building blocks.

Stage 1 Stage 2

True distribution Fitted distribution

Figure 4.1: Illustrative representation of the two-layer mixture PPCA model.

2. The Bayesian regularization approach that addresses the dimension reduction
challenge: To automate the process of dimension reduction in the both stages of
model estimation, we incorporate a Bayesian regularization approach that penalizes
the the loading parameters of the local models as previously illustrated in [69, 35,
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33]. It incorporates a prior distribution for each column of the loading matrices of
the local models. The prior distribution penalizes the insignificant columns of the
loading matrices during the estimation stage. The columns corresponding to the latent
variables that are insignificant in explaining the observations converge close to zero
during the estimation. At the end of the estimation, the dimension of the latent
variables in each local model can be inferred by identifying the number of non-zero
columns in the loading matrices.

4.4 Formulation of the Proposed Model

In this section, we present the following, 1) incorporation of the Bayesian regulariza-
tion approach to obtain the mixture Bayesian PPCA model, 2) formulation of the
two-layer mixture Bayesian PPCA model, 3) a procedure for obtaining a mixture
model by collapsing the two-layer model and 4) finally, the potential advantages and
disadvantages of the proposed modelling strategy.

4.4.1 Mixture Bayesian PPCA

Loading matrix W s ∈ RD×M is the important parameter in determining the la-
tent variable dimension of the local model s in the mixture PPCA model shown in
Eqn. (4.6). It can be seen that the contribution of the latent variables in explaining
the observations solely depends on the loading parameters. When a particular column
m ∈ M of the loading matrix W s contains only zero entries, the contribution from
that latent dimension m in explaining the observations becomes negligible. Therefore,
one way to achieve automatic dimension reduction is by regularizing the columns of
W s such that the insignificant entries are penalized. This in turn favours zero (or
close to zero) entries on the columns of W s corresponding to the insignificant latent
variables. The regularization can be achieved by incorporating the hierarchical prior
distributions for the columns of W s.

In this work, each column of W s is considered to follow a multivariate Gaussian
distribution prior as the following,

W s
m|νsm ∼ N

(
0, νs−1

m ID
)

(4.8)

99



whereW s
m is themth column of the loading matrix,W s and νsm is the precision variable

(inverse of variance) and ID is an identity matrix of dimension D. The precision
variable νsm is assumed to follow gamma distribution as the following,

νsm|a∗, b∗ ∼ Γ (a∗, b∗) (4.9)

where a∗ and b∗ are the scale and rate parameters of the Gamma distribution respec-
tively. We call the resulting model, the mixture Bayesian PPCA model. For estimating
this model, we follow a similar approach used to estimate Bayesian mixture latent
variable models in [69, 35, 67] and the detailed derivation for this is given in C.1 of
appendix C. The approach for inferring the zero columns in the loading matrix after
the estimation is provided in C.1.5 of appendix C.

4.4.2 Two-layer mixture Bayesian PPCA

In this subsection, we discuss how the two-layer model is obtained. Originally, we
want a model for our data X as a function of some latent variable T as the following,

X = f (T ) (4.10)

where f is the desired function, however, it may be complicated in nature. It is when
the idea of two-layer model becomes useful. Instead of identifying f directly, we may
identify two relatively simpler models and recover the original function f from the
simpler models. The idea is to identify a model for an intermediate variable Z as a
function of T and a model for X as a function of Z as the following,

X = g (Z) , Z = h (T ) (4.11)

where g and h are simpler functions compared to f . Then, we recover the original
function f as the following,

X = f (T ) = g (h (T )) (4.12)

When Z and T are observed variables, we can afford to estimate h first and then,
g. However, in our case, both Z and T are latent variables and therefore, from X,
we need to estimate g and infer Z at first and then, from Z we need to estimate h
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and infer T . In our case, both g and f are mixture Bayesian PPCA models. X is the
augmented observation matrix obtained using Eqn. (4.7). In the first layer model, X
takes the position of the output Y and Z takes the position of the latent variables
(Z) in Eqn. (4.6). In the second layer models, Z takes the position of the output Y
and T takes the position of the latent variables in Eqn. (4.6).

Data

First layer
latent variables

Second layer
latent variables

b b b

b b b b b b b b b

X

Z1 Z2 ZS

T 11 T 21 T c1 T 12 T 22 T c2 T 1S T 2S T cS

Model Estimation

g h

Estimate g

Infer Z

Estimate h

Infer T

Figure 4.2: Schematic representation of the proposed model and the flow of estima-
tion. Data and the latent variables in the model are represented by encircled nodes.

Schematic representation of the model and the estimation flow is shown in Fig. 4.2. We
start with a mixture Bayesian PPCA model with an arbitrarily small number of local
modes (S) to fit the data X. This model is equivalent to g in the above illustra-
tion. The resulting model is defined by the parameters {W s, µs, πs, σ2} ∀s and also
the posterior probability measure q (sn = s) ∀n, s. We can split the data, X into S
clusters as, {X1, X2, ..., Xs, ..., XS}, where, Xs refers to a cluster of observations and
s ∈ [1, S]. The clustering can be achieved using q (sn = s) ∀n, s. For whichever s, an
observation xn has the highest value of q(sn = s), it is assigned to that particular clus-
ter. From the first layer model, we can sample the latent variables {Z1, Z2, ..., ZS}

corresponding to the clusters {X1, X2, ..., XS} from the posterior distribution of the
latent variables.

In the second layer, to Zs, ∀s ∈ [1, S], we fit a mixture Bayesian PPCA model of
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the following form,

p(zsn|tn,W, µ, β) =
C∑

cs=1

N
(
zsn|W cstc

s

n + µcs , βsI
)
p (csn = cs) , zsn ∈ Zs (4.13)

where tcsn is the latent variable for the second layer that describes zsn ∈ Zs, the mixture
model above contains C local models and the proportion of data explained by each
model is given by p (csn = cs) = πcs . Sum of the proportions of the data explained by
each local model should be equal to one as shown below,

C∑
cs=1

p (csn = cs) =
C∑

cs=1

πcs = 1 (4.14)

The approach discussed till here is summarized in Table. 4.1, which constitutes the
procedure for estimating the two-layer model.

Table 4.1: The approach for estimating the two-layer mixture Bayesian PPCA model
Step 1 Define parameters: Lag l, cardinality of mixture models S and C,

reasonable latent variable dimension
M(< the dimension of augmented observations) for the first layer
model and regularization parameters a∗ and b∗

Step 2 Obtain the augmented observations X from the original observations
as shown in Eqn. (4.7)

Step 3 Fit a mixture Bayesian PPCA model with S local models to X
using the algorithm provided in section C.1 of appendix C

Step 4 Infer dimension of the latent variable in the local models using
the procedure shown in section C.1.5 of appendix C

Step 5 Divide X into S clusters,
{
X1, X2, ..., XS

}
using q (sn = s) ∀n, s

Step 6 Sample the latent variables
{
Z1, Z2, ..., ZS

}
Step 7 For s = 1 : S
Step 8 Define parameter: Reasonable latent variable dimension

P (< the dimension of Zs)
Step 9 Fit a mixture Bayesian PPCA model with C local models to Zs

using the algorithm in section C.1 of appendix C
Step 10 Infer the dimension of the latent variables in the local models using

the procedure in section C.1.5 of appendix C
Step 11 End For
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4.4.3 Collapsing the two-layer model to form a mixture Gaus-
sian model

In this subsection, we show that the models identified in two stages can be com-
bined/collapsed to form a single layer mixture model. The models can be collapsed
to obtain a model of the following form,

p(X|µ,Σ, π) =
N∏

n=1

K∑
k=1

N (xn|µk,Σk)p(kn = k) (4.15)

where
K∑
k=1

p(kn = k) =
K∑
k=1

πk = 1 (4.16)

where the distribution of each observation xn is given by a Gaussian mixture model
with K = S ×C local models, µk and Σk are the mean and covariance parameters of
the local model k ∈ K and πk is the proportion of data explained by the local model
k ∈ K.

From the first layer model, the observation xn is Gaussian distributed when con-
ditioned on zsn and s as the following,

p(xn|zsn,W s, µs, σ2) = N (xn|W szsn + µs, σ2I) (4.17)

The latent variable zsn, is also Gaussian distributed when conditioned on tc
s

n and cs

from Eqn. (4.13) of the second layer models as the following,

p(zsn|tc
s

n ,W
cs , µcs , βs) = N

(
zsn|W cstc

s

n + µcs , βsI
)

(4.18)

The above two distributions when multiplied give the joint distribution of xn and
zsn. When the latent variable zsn is marginalized from the joint distribution, we can
obtain,

p
(
xn|tc

s

n ,W
s, µs, σ2,W cs , µcs , βs

)
=

∫
zsn

p
(
xn, z

s
n|tc

s

n ,W
s, µs, σ2,W cs , µcs , βs,

)
dzsn

= N
(
xn|W s

(
W cstc

s

n + µcs
)
+ µs,W sβsW s′ + σ2I

)
(4.19)
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Further, we know that the prior of tcsn is a multivariate Gaussian with zero mean
and identity covariance. Therefore, tcsn can also be marginalized to obtain the distri-
bution of the observation xn given a combination of s and cs as the following,

p
(
xn|W s, µs, σ2,W cs , µcs , βs

)
=

∫
tcsn

p
(
xn, t

cs

n |W s, µs, σ2,W cs , µcs , βs
)
dtc

s

n

= N
(
xn|W sµc + µs,W s

(
βs +W csW cs

′)
W s

′

+ σ2I
)

(4.20)

Similarly, for each combination of s and c, we can obtain a local Gaussian model
for the observations. In total, there will be K = S × C local models. When k ∈

K corresponds to a particular combination of s and cs, the proportion of the data
explained by it (πk) is given by,

πk = πsπcs (4.21)

This is because the local model s in the first layer explains πs portion of the data
and of which, πcs portion of the data is explained by the local model cs in the sec-
ond layer. The mean and covariance parameters of each local model k ∈ K from
Eqn. (4.20) can be expressed as,

µk = W sµcs + µs, Σk = W s

(
βs +W csW cs

′
)
W s

′

+ σ2I (4.22)

where k in the above equation corresponds to a particular combination of s and cs.

4.4.4 Comments on the proposed model

By observing µk and Σk in Eqn. (4.22), it can be seen that the local models in the
collapsed model resulting from a common first layer local model s share common
parameters, whereas, in the conventional mixture PPCA model, each local model is
defined by its own parameters. Therefore, in comparison, the proposed model may
require a lesser number of parameters to define a mixture model with a single layer
model of a similar complexity. This is true under certain conditions as shown in the
following proposition,

Proposition 5. A mixture PPCA model with K local models and P as the dimension
of the latent variables in each local model fitted to observations with dimension D has
more loading and mean parameters compared to a two-layer model with S local models
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in the first layer, C local models for each s ∈ S in the second layer, M as the
dimension of the latent variables in the first layer and P as the dimension of the
latent variables in the second layer when,

C

(
1− 1

r1

)
1

r2
≥ 1 (4.23)

K = SC (4.24)

where r1 = M
D

and r2 = P
M

are the dimension reduction ratios in the first and second
layers respectively.

The proof for the above proposition is provided in section C.2 of appendix C. From
Eqn. (4.23), it can be seen that through appropriate dimension reduction ratios and
the choice of number of local models in the second stage, we can always obtain a
parsimonious model.

Estimating a mixture model requires a good initialization of cluster identities
of the observations to avoid convergence to local optima. Generally, the K-means
clustering algorithm is used as an initializer (more details on the initialization is
provided in C.1.4). However, the K-means clustering algorithm is also susceptible to
convergence to local optima as the number of clusters increases. Therefore, estimating
a mixture model with a large number of local models in a single stage inevitably suffers
from convergence to local optima. The proposed model development strategy involves
only identifying a smaller number of local models in each of the two stages compared
to the single stage model identification approaches. Therefore, we expect the proposed
strategy to be more robust to convergence issues.

The proposed model also has some disadvantages. The above derivation of the
collapsed mixture model is consistent only when the observations can be clustered
into S perfect (hard) clusters in the first layer. If a set of observations are shared
between the clusters, assigning observations strictly to individual clusters may not al-
ways be reasonable. Other drawback is that the numbers of local models in each layer
have to be decided by the users. However, this problem can be addressed through
cross validation. In our work, the number of local models in the first layer is arbi-
trarily chosen. The number of local models in the second layer is chosen based on the
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log likelihood of the parameters of the collapsed mixture model in validation data
(ln p(Xval|µ,Σ, π), where, Xval is the validation set).

4.5 Fault Detection Using the Proposed Model

The model obtained in Eqn. (4.15) from the normal operating data of the process
gives the probability density function (PDF) for the observations generated from the
normal operating conditions (NOC). We define a likelihood based threshold for fault
detection using the following definition of the probability density function,∫

x: p(x|µ,Σ,π)≥δ

p (x|µ,Σ, π) dx = γ, γ ∈ [0, 1] (4.25)

where, 100γ% represents the percentage of normal operating data that have the prob-
ability density value greater than or equal to δ. A δ value corresponding to a particular
γ obtained using the definition in Eqn. (4.25) would contain 100γ% of the normal
operating data points and exclude 100(1−γ)% of the normal operating data points. If
the following rules in equation (4.26) and (4.27) are deployed for fault detection with
an assumption that the new observations are always generated from the same distri-
bution as of the data used for training the model, then we can have a fault detection
system with a false positive rate of γ.

xnew ∈ Normal if p (xnew|µ,Σ, π) > δ (4.26)

xnew ∈ Faulty if p (xnew|µ,Σ, π) < δ (4.27)

This approach has been previously used for fault detection with the Gaussian mixture
models and kernel density models in [90] and [39] respectively. To obtain a δ that cor-
responds to a specific γ, we need the integration in Eqn. (4.25) to be tractable. How-
ever, it cannot be achieved analytically for many PDFs. This problem is overcome by
generating a large number of samples from the PDFs and identifying a δ that encom-
passes 100γ% of the generated samples. In our implementation δ values are obtained
correspond to 100γ% = 99.97%. In our study, the proposed model and all the other
compared models are deployed for fault detection using the above-mentioned proce-
dure. In the implementation, we may encounter numerical underflow if we directly
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use the likelihood values for monitoring. Instead, the log likelihood can be used. Here,
we used the negative log likelihood values as a test static as shown below,

xnew ∈ Faulty if − ln p (xnew|µ,Σ, π) > − ln δ = δ′ (4.28)

When the negative log likelihood of a new observation is greater than δ′, the obser-
vation is declared faulty. Since log is a monotonic function, the rule in Eqn (4.27)
remains intact.

4.5.1 Performance metrics

Three performance metrics were used to evaluate and compare the performance of
the proposed model when deployed for fault detection.

Percentage of false positives:

The percentage of false positives is computed as,

False positives (%) =
Number of alarm instances in fault free test data

Number of fault free observations in the test data
× 100

(4.29)
Lower values of the percentage of false positives correspond to better performance of
the deployed technique as it gives less nuisance to the operators in the plant.

Fault detection rate:

The fault detection rate is computed as,

Detection rate(%) =
Number of alarm intants in the faulty observations

Total number of faulty observations
× 100

(4.30)
Higher detection rate for a fault means that the technique is better at detecting that
particular fault.

Time of fault detection:

For faults where the exact time of fault occurrence is unknown, we use the time
instant at which the PPCA model detects the fault as a reference. This metric is
calculated by taking the difference between the reference value and the time instant
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at which the fault is detected by the proposed model. In these cases, higher values
correspond earlier detection.

For faults where the exact time of fault occurrence is known, the time of fault
detection is computed by taking the difference between the time of fault detection
(first alarm) and the time of fault occurrence. In these cases, lower values correspond
to earlier detection.

4.6 Case study 1: Sulphur Recovery Unit (SRU)

Our first case study is an SO2 breakthrough detection problem in a sulphur handling
plant. Previously, Gonzalez et al. [39] studied this problem using kernel density esti-
mation and Bayesian networks by monitoring multiple sulphur recovery units (SRUs)
and a tail gas treatment unit (TGTU). We monitor an SRU which is a known con-
tributor for SO2 breakthrough once in the past.

4.6.1 Process description

The sulphur handling plant is an integral part of the oil sands upgrading process. It
provides control over the sulphur emission. The plant considered here recovers sulphur
present in upstream amine acid gas (AAG) and sour water acid gas (SWAG). The
units of the plant are shown in Fig. 4.3, which includes 1) multiple sulphur recovery
units (SRUs), 2) a tail gas treatment unit (TGTU) and 3) a thermal oxidizer unit
(TOU). The majority of the sulphur content present in the acid gases is recovered in
the form of elemental sulphur in the SRUs. The gas leaving the SRUs is called the tail
gas that contains sulphur in the form of SO2, which is then reduced to H2S by means
of catalytic reactors in the TGTU and recovered through amine absorption. The
remaining gas is thermally oxidized in the TOU and sent to stack.

SO2 breakthrough, i.e, SO2 leaving the TGTU unconverted is one of the undesir-
able events that happens in the TGTU. It was found that the faults in the SRUs have
been the major contributors to the SO2 breakthrough problems historically. When
the faults in SRUs are detected early, the tail gas leaving the SRUs can be bypassed to
TOU to avoid a potential SO2 breakthrough problems in the TGTU. We deployed the
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developed fault detection tool to detect one such fault that led to SO2 breakthrough
in the past.

Amine acid gas

Sour water acid gas

Sulphur
recovery units

Tail gas Bypass

Tail gas
treatment unit

Thermal
oxidizer unit

Stack

Figure 4.3: Units of sulphur handling plant

Sulphur recovery unit

A simplified schematic diagram of an SRU is shown in Fig. 4.4. The SRU draws com-
bustion air in proportion to the acid gases entering the unit. Before the reaction stage,
reactants entering the catalytic reactors are preheated in a preheating furnace. The
reaction mixture leaving the furnace is sent through two catalytic reactors. Sulphur
components present in the acid gases are converted to elemental sulphur form in the
catalytic reactors. The elemental sulphur is then condensed in a sulphur condenser
and recovered. The gas leaving the plant after the recovery of sulphur is called the
tail gas. The tail gas leaving the plant contains traces of SO2, which is further treated
in the TGTU.

We are aware of one of the SO2 breakthrough incidents that happened in the
past because of a blockage in the sulphur condenser. This blockage led to increase
in the concentration of sulphur components in the tail gas. Highly concentrated tail
gas eventually led to SO2 breakthrough problem in the TGTU. We set up the fault
detection problem to detect this particular event from the data.
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Figure 4.4: Schematic representation of a sulphur recovery unit

Data description

The data that belong to the year when the fault occurred was chosen for the study. We
had the observations for the variables listed in Table. 4.2 available to us. Among the
variables that are listed, pressure drop is a calculated variable from the pressure
measurements upstream and downstream of the SRU and all the other variables are
measured variables.

Table 4.2: Tags used for process monitoring
Tag number Tag

1 AAG controller
2 SWAG controller
3 AAG flow rate
4 Air demand
5 Air controller

6 Pressure drop
(Back pressure - down stream pressure)

7 SO2 concentration
8 H2S concentration
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Table 4.3: Data summary
Plant SRU

Number of tags 8
Period 1 year

Sampling interval 1 minute
Training data 4 months
Validation data 2 months
Testing data 6 months

Number of known faults 1

One year of data was split into two halves. The data from the first six months were
used for training the model and from the second six months were used for testing. The
first half of the data was further split randomly into two sets. Two thirds of it were
used for the training and one third of it was for cross-validation. In the test set, the
exact time of fault occurrence is unknown, however, the day of fault occurrence is
known and the data belonging to that particular day were kept for evaluating the fault
detection ability of the model and the rest of the testing data were used to evaluate
the model in terms of false positives. These details are summarized in Table. 4.3.

4.6.2 Results and discussion
Base case

The PPCA and dynamic PPCA models were used as the base cases for compari-
son. The proposed model was evaluated based on the improvement in performance
achieved from that of the PPCA and dynamic PPCA models. For the dynamic PPCA
model, the lag was set as 14 and this amounts to monitoring a 15 minute multivari-
ate sequence. The fault detection performances of the resulting models are shown in
Table. 4.4.

The percentage false positives given by the dynamic PPCA model was slightly
higher than that of the PPCA model. This could be due to the fact that the dynamic
PPCA model extracts more information about the NOC and expects the test data to
behave accordingly. This could also be the reason that the dynamic model performed
better in terms of time of fault detection. It detected the fault 6 minutes before the
static PPCA model could detect. The control charts obtained from the static and
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the dynamic models are shown in figures 4.5 and 4.6 respectively. The control charts
are shown for the observations closer to the period of fault occurrence. The black
trends in the control charts correspond to the test statistics and the red solid lines
correspond to the fault detection thresholds. It can be seen that the test statistics of
the PPCA and dynamic PPCA models cross their respective thresholds at 565th and
559th minutes respectively.

Table 4.4: Performances achieved by the base case models
Model Components Lags False positives (%) Time of fault detection
PPCA 1 0 1.13 Base case

Dynamic PPCA 1 14 1.16 6 minutes before PPCA
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Figure 4.5: Control chart of the PPCA model
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Figure 4.6: Control chart of the dynamic PPCA model

Model selection for the proposed model

For the proposed model, we need to select the number of local models. The first layer
model was chosen to have four local models. The posterior probabilities of the local
models given the observations are shown in Fig. 4.7. The plots show the posterior
probabilities of the categorical latent variable sn given the observations. Plots corre-
sponding to each of the four local models are shown. If the posterior of a local model
equals one for an observation, then the local model completely owns that particular
observation. From the plots, it can be seen that all the four local models have either
value of one or zero on most of the observations. This gives us an indication that
fixing the number of local models to be four in this particular dataset almost results
in four distinct clusters. Only very few points were shared between the local models
two and three. However, increasing the local models from four to five resulted in more
data points being shared between the clusters. Therefore, we decided to stick with
four local models in the first layer. We started with an initial guess of 10 for the
dimension of the latent variables of the local models. At the end, we obtained two
local models with dimensions 7, one with 8 and the other with 6 through the Bayesian
regularization.
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Figure 4.7: The posterior distribution of the local models given the observation. X -
axis: training observations

In the second layer, as we increased the number of local models, we also computed
the log likelihood of the parameters of the resulting collapsed model in the validation
set. The log likelihood in the validation set is shown in Fig. 4.8. The log likelihood
value kept increasing as we increased the number of local models. However, the value
started to saturate as we increased the number of local models beyond three. There-
fore, we chose second layer models with three local models. Dimension reduction did
not occur in the second layer mixture Bayesian PPCA models. It remained the same
as the initial values, which were chosen to be one less than the dimension of the latent
variables inferred from the first layer model.
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Figure 4.8: Log likelihood of the parameters in the validation set when the number
of components in the second layer was increased

The above-discussion for model selection is for a particular initial guess. How-
ever, we fitted the model with 15 different initial guesses obtained from the k-means
clustering algorithm. In most of the trials, these results were consistent. Therefore,
a model structure with four local models in the first layer and three local models in
the second layer was chosen. This led a mixture model with twelve local models for
characterising the NOC.

4.6.3 Comparison

The proposed model was compared against the mixture PPCA and mixture dynamic
PPCA models both with twelve local models. As the convergence of the models de-
pends on the initial guesses, fifteen different initial guesses based on the k-means
algorithm were provided for all the three models. The resulting models were tested
for the percentage of false positives and the time taken for fault detection.

Table 4.5: Comparison of fault detection results
Mixture PPCA Mixture dynamic PPCA Proposed Model

False positives (%) 3.15 ± 2.68 4.24 ± 3.42 1.74 ± 1.17
Time of detection (minutes) 5.4 ± 3.55 93.1 ± 7.80 91.4 ± 4.54
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The percentage of false positives and the time taken for fault detection are shown
in Table. 4.5. From Table. 4.5, it can be seen that the percentage of false positives
given by the proposed model had less variability with respect to various initial guesses
and also the percentage stayed lower compared to that of the mixture PPCA and the
mixture dynamic PPCA models. One would expect both the proposed model and
the mixture dynamic PPCA model to have similar performances. However, from the
results, it is clearly not the case. The reason for more and the variability in the
percentage of false positive was the difficulty in generating a good initial guesses and
the convergence issue. Every time when the model parameters were estimated, they
converged to different values and in turn, produced results that were very different
from each other. However, as the proposed model fitted a maximum of four local
models at a given stage, the variability in the converged parameters was low and in
turn, produced more consistent results. In addition, when we checked the number of
parameters required for both models, the proposed model was parsimonious. Reduced
model complexity also adds to the lesser percentage of false positives. When it comes
to the percentage of false positives, one would expect more complex model to have
more false positives as the generalizing ability gets poorer with the complexity of
the model. In this perspective, the false positives obtained by the mixture PPCA
model should be lower compared to the proposed model. However, it remained higher
except for few initial guesses where the percentage of false positives was close to
1.31%, whereas, the lowest that could be achieved by the proposed model was 1.44%
and by that of the mixture dynamic PPCA model was 1.63% in the entire exercise.
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Figure 4.9: Typical control chart obtained using the mixture PPCA model

Table. 4.5 shows how early the fault could be detected by the mixture models
compared to the base case PPCA model. As opposed to the false positives, the vari-
ability in the time of fault detection was low in all the three cases. Models fitted with
different initial guesses reacted almost in a similar way to this particular fault. The
time of fault detection in the case of mixture PPCA did not improve much compared
to the base case model and the dynamic PPCA model. However, the mixture dynamic
PPCA model and the proposed model were more sensitive to the fault and detected
the fault almost 90 minutes earlier compared to the base case. In the whole exercise,
the mixture dynamic PPCA model detected the fault 102 minutes ahead of the base
case once, which was the best performance that could be obtained.
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Figure 4.10: Typical control chart obtained using the mixture dynamic PPCA model
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Figure 4.11: Typical control chart obtained using the two-layer mixture Bayesian
PPCA model

The typical control charts obtained from all the three models are shown in fig-
ures 4.9, 4.10 and 4.11. It can be seen that the test statistics cross their respective
thresholds much earlier in the case of dynamic models compared to the static mixture
model. The other common behaviour of the test statistics of the dynamic models as
opposed to the static models was that, once the test statistic crossed the threshold
it remained above the threshold for the majority of the observations. It was the case
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with the dynamic PPCA model, the mixture dynamic PPCA model and the proposed
model, whereas, for the static models, the test statistic dropped below the threshold
for some of the observations after the fault was detected. This corresponds to higher
fault detection percentages given by the dynamic models. However, quantifying the
detection rate was not possible as the exact time of fault occurrence was not known
to us.

4.7 Case study 2: Three-phase flow system

Our second case study is a three-phase flow facility that is kept at Cranfield Uni-
versity. Ruiz-Cárcel et al. [91] had simulated datasets from the experimental setup
to be used as a benchmark case study for fault detection algorithms and made it
publicly available. A detailed description of the process can be found in [91]. Here, a
brief description of the process and the datasets used for the fault detection study is
provided.

4.7.1 Process description
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Figure 4.12: Schematic of the three-phase flow system.
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A simplified schematic of the facility is shown in Fig. 4.12. The schematic shown in
Fig. 4.12 is reproduced only with the minimal information that is required in the
context of the description provided below. For a more detailed flow diagram, readers
are referred to [91]. The set up in Fig. 4.12 is built to provide controlled and measured
flow of air, water and oil to a pressurized system. Air is fed using two compressors to
the system. Oil and water are fed by means of multistage pumps from their respective
storage tanks. All these three components are fed to a 2-phase separator which is kept
at a height of 10.5m from the ground. These three components get mixed and reach
the separator through either of the two risers (2” and 4”) shown in Fig. 4.12. From
the 2-phase separator, partially separated mixture is sent to a 3-phase separator were
almost 100 percentage separation is achieved. Air from the three-phase separator is
released to the atmosphere. Water and oil emulsions are sent to coalescers from where
almost pure water and oil are sent back to their respective storage tanks. The facility
is equipped with sensors that allow various flow, pressure, level and density variables
to be measured. The list of variables used for this study is provided in Table. 4.6. Ruiz-
Cárcel et al. [91] used 23 or 24 (depending on the fault cases) variables for their fault
detection study. However, we found that some of the temperature and level variables
were in different ranges in the training and test data. Therefore, we removed those
variables from the analysis. Also, the observations of tags indicated by * in Table. 4.6
were differenced from their previous observations and used for fault detection. They
indicate changes in pressure and level measurements. This is again for the same reason
that the observations were found to be in different ranges, however, the observations
after differencing fell in a similar range both in the training and test data.
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Table 4.6: Tags used for process monitoring
Tag number Location Tag

1 PT312 Air delivery pressure
2 PT401 Pressure at the bottom of the riser
3 PT408 Pressure at the top of the riser
4 PT403* Pressure in top separator
5 PT501* Pressure in 3 phase separator
6 PT408* Pressure difference (PT401 - PT408)
7 PT403 Differential pressure over VC404
8 FT305 Flow rate of input air
9 FT104 Flow rate of input water
10 FT407 Flow rate at the 4” riser
11 LI405* Level at the top separator
12 FT406 Flow rate of top separator output
13 FT407 Density of the fluid at the 4” riser
14 LI406 Density of top separator output
15 FT104 Density of input water
16 VC302 Position of valve VC302
17 VC101 Position of valve VC101

Data description

In total, seven data files were made available by [91]. Out of the seven, one file was of
three datasets corresponding to the NOCs and the rest six were of files generated from
the faulty operating conditions. Data that correspond to the NOCs were generated for
twenty different combinations of air and water flow rates. Observations were recorded
at one second frequency. Three datasets from the normal operating conditions had
the data recorded for 10372s, 9825s and 13200s respectively. The set point values of
air and water flow rates that were used to generate the data from the NOCs are listed
in Table. 4.7.

Table 4.7: The set point values of air water flow rates used for generating the datasets
from the NOCs

Air flow rate (m3/s) 0.0208 0.0278 0.0347 0.0417
Water flow rate (kg/s) 0.5 1 2 3.5 6

Out of the six fault conditions, the first four fault conditions were considered for
the illustration here. The considered fault types are as follow,
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1. Fault: Air line blockage. A blockage was introduced on the air line using a
manual valve gradually just before the point where all the three components
are mixed.

2. Fault: Water line blockage. A blockage was introduced on the water line using
a manual valve gradually just before the point where all the three components
are mixed.

3. Fault: 2-phase separator input blockage. A blockage was introduced on the input
line to the two-phase separator.

4. Fault: Open direct bypass. The bypass line valve was opened gradually such that
the 3-phase mixture bypasses the riser and the 2-phase separator and reaches
the three-phase separator directly.

Three datasets were generated for each of the four fault cases, one with the changing
operating conditions and the other two with the steady state operating conditions. Ta-
ble. 4.8 shows the number of data points that were available, the start and end times
of the faults introduced and the operating conditions under which the data were
collected.

Table 4.8: Description of the datasets from the considered fault cases
Data set Duration (s) Fault start (s) Fault end (s) Operating conditions

1.1 5811 1566 5181 changing
1.2 4467 657 3777 steady state
1.3 4321 691 3691 steady state
2.1 9192 2244 6616 changing
2.2 3496 476 2656 steady state
2.3 3421 331 2467 steady state
3.1 9090 1136 8352 changing
3.2 6272 333 5871 steady state
3.3 10764 596 9566 steady state
4.1 7208 953 6294 changing
4.2 4451 851 3851 steady state
4.3 3661 241 3241 steady state

All the three normal operating datasets were concatenated. Two thirds of it were
used for training and one third of it was used for validation. The trained model were
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tested on all the twelve datasets shown in Table. 4.8.

4.7.2 Results and discussion
Base case

Similar to the previous case study, we used the PPCA and Dynamic PPCA models
as the base cases for comparison. For the dynamic PPCA model, we set the lag to
be 14. Except for the tags indicated by * Table 4.6, for all the other tags, 14 previ-
ous observations were augmented with the observations at all the time instants. The
estimation of the static PPCA and dynamic PPCA models were initialized with la-
tent variable dimensions 10 and 30 respectively and it converged to latent variable
dimensions 7 and 18 for the respective cases. The overall performance in all the 12
datasets using the estimated models is shown in Table. 4.9. Between the static and
the dynamic model, the dynamic model had a slight gain in detection rate. However,
the obtained gain was accompanied by more false positives.

Table 4.9: The overall performance obtained from the base case models
PPCA DPPCA (lag: 14)

Detection rate (%) 56.75 57.65
False positives (%) 2.84 3.28
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Model selection for the proposed model
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Figure 4.13: Posterior distribution of the local models given the observation. X -
axis: training observations
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Figure 4.14: Log likelihood of the model parameters in the validation set when the
number of components in the second layer was increased

We fitted a mixture model with five local models in the first layer. Each local was
considered to have 30-dimension latent variables. Models converged to dimensions
11, 15, 19, 23, and 25 through the Bayesian regularization respectively. The posterior
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probabilities of the local models given the observations are shown in Fig. 4.13. Again,
for this case, it can be seen that the observations were clustered into almost five
perfect clusters except for few observations that were shared by the local models one
and three. We fixed the number of first layer local models to be five and started
to fit mixture models to the latent variables obtained from the first layer. We kept
increasing the number of second layer models from one. The resulting log likelihood
values of the parameters in the validation set is shown in Fig. 4.14. It can be seen from
the figure that after six local models, the log likelihood value starts to saturate. Taking
this as an indication, the number of second layer local models was fixed to be six. The
resulting collapsed model was of 30 local models.

Comparison

The proposed model was compared with the mixture PPCA and the mixture dy-
namic PPCA models consisting of thirty local models each. All the three models were
initialized with 15 different initial guesses. The overall performances of all the three
models are shown in Table. 4.10. It summarizes the percentage of false positives and
the detection rates obtained by the models for all the 15 different initial guesses. It
can be seen that the proposed model and the mixture dynamic PPCA model outper-
form the other models in terms of the fault detection rate. The proposed model and
the mixture dynamic model detected more faulty observations accurately compared
to the other models. Between the proposed model and the mixture dynamic PPCA
model, in some cases, the mixture dynamic PPCA model outperforms the proposed
model. However, when we look at the false positives resulted from the proposed model
and the mixture dynamic PPCA model, it can be seen that the proposed model clearly
had lesser number of false positives.

When compared with the dynamic PPCA model, the proposed model had a higher
detection rate only at the cost of slight increase in number of false positives. However,
at the same time, the mixture dynamic PPCA model had more number of false
positives. Similar to the previous case study, the variability associated with the results
obtained using the mixture PPCA and the mixture dynamic PPCA models were high
when compared to the proposed model. Again, this indicates that the chances of
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converging to different models with different initial guesses are very high when we try
to fit a mixture model with a large number of local models.

The results for time of fault detection obtained for each individual fault case are
presented in Table. 4.11. The key highlight of the results was, out of 12 cases, there
were 9 cases for which the proposed model or the mixture dynamic PPCA model
detected the faults earlier when compared to the other models.

Table 4.10: Comparison of the overall performances
Mixture PPCA Mixture dynamic PPCA Proposed Model PPCA dynamic PPCA

False positives (%) 3.49 ± 1.43 5.54 ± 1.84 3.38 ± 0.069 2.84 3.28
Detection rate (%) 57.36 ± 3.86 63.99 ± 4.25 62.69 ± 0.10 56.75 57.65

Table 4.11: Comparison of the fault detection time by different models on different
fault cases
Fault case Mixture PPCA Mixture dynamic PPCA Proposed model PPCA Dynamic PPCA

1.1 1830.5±1.03 1573.3±187.78 1487.3±0.87 1832 1832
1.2 1803.6±1.01 1512.3±2.06 1509±0.73 1805 1805
1.3 1940.9±139.6 1791.4±115.99 1815.8±87.71 2106 2106
2.1 3.8452±106 1707.3±316 3641±12.21 3989 3770
2.2 1840±9.50 1818.8±4.45 1818±2.43 1850 1831
2.3 1541.7±14.56 693.5±7.34 692 1539 693
3.1 88.45±29.96 82±1.47 82 95 62
3.2 773±327 663 ±1.07 663±2.67 1090 665
3.3 57.50±30.97 42 59.61±16.66 67 41
4.1 457.38±9.81 471.61±15.99 472 483 457
4.2 428.28±5.85 320.50±11.10 343.46±4.52 436 428
4.3 314.5±1.04 314 314 315 315

4.8 Summary

The purpose of this chapter was to illustrate how the probabilistic latent variable
models can be extended to model the multi-modal processes. In this chapter, the
two-layered mixture Bayesian PPCA model for process monitoring was developed and
evaluated. The model was developed mainly for fault detection applications where the
process data with non-Gaussian distribution and temporally correlated observations
are encountered. For the process data with the above-mentioned characteristics, the
mixture dynamic PPCA model could have been a preferred choice. However, consid-
ering the shortcomings of the mixture dynamic PPCA model, the new model was
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proposed. When the proposed model was applied to two different case studies, we
found that the model manages to achieve the performance achieved by the mixture
dynamic PPCA model in terms of the fault detection rates and the time of fault
detection. The proposed model along with the mixture dynamic PPCA model was
found to clearly outperform the PPCA, dynamic PPCA and mixture PPCA models
in terms of the fault detection rates and the time of fault detection. However, it was
also found that the proposed model had lower false positive percentages compared
to the mixture dynamic PPCA model. The proposed model was also found to give
more consistent fault detection performances with respect to different initial guesses
for the parameters during the model estimation stage.
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Chapter 5

An Approach for Causality
Analysis and Contemporaneous
Correlation Features Inference
from Industrial Process Data

5.1 Introduction

In this chapter, we address the problem of causal network reconstruction from indus-
trial process data in the presence of contemporaneous correlations among the variables
in the data. Depending on the sampling rate and the presence of feedback loops, the
measured process variables may have contemporaneous dependencies in addition to
the casual interactions [92]. We propose a hybrid model to simultaneously mine causal
connections and extract features responsible for contemporaneous correlations among
the process variables from a finite window of observed data. The model consists of
two components: A vector auto-regressive exogenous (VARX) model component as
a predictor and a factor analysis (FA) model component used for modelling the pre-
diction error. The causal connections are inferred through the VARX component and
the contemporaneous correlation features are inferred from the FA component. The
parameters of the resulting hybrid model are regularized using the hierarchical prior
distributions for penalizing the insignificant parameters. It is then estimated under the
variational Bayesian expectation maximization (VBEM) framework. The estimation
is initiated with a complex model which is then systematically reduced to a simpler
model that retains only the parameters corresponding to significant causal connec-
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tions and contemporaneous correlations. Model reduction is carried out through a
series of deterministic switches from complex models to simpler models using a rele-
vance criterion. The approach is illustrated through a number of simulated examples
and an industrial case study.

The vector auto-regressive (VAR) models are widely used to infer the causal con-
nections in multivariate dynamic processes [47, 48, 49, 50]. The use of VAR models
to infer causal connections without accounting for the contemporaneous correlations
may lead to spurious findings as zero lag correlations tend to disguise themselves as
the time-lagged correlations as shown in [55]. The process variables are said to be con-
temporaneously correlated when the prediction errors of those variables from the past
observations tend to be significantly correlated. This in other words refers to the pres-
ence of non-zero off-diagonal elements in the prediction error covariance. There exist
techniques to handle contemporaneous dependencies with the use of structural VAR
modelling [92] or by explicitly modelling the contemporaneous dependencies [55] when
inferring the causal connections. Our approach differs from the existing approaches
by the use of FA model to represent the prediction error covariance. The use of FA
model allows us to extract the latent variables responsible for the contemporaneous
correlations and infer how they influence the observed variables. More importantly, in
the FA model, the prediction error can be expressed as a linear function of the latent
variables. This in turn lets us penalize the causal connections (defined by the linear
VARX model) and the contemporaneous correlations with equal weights through the
Bayesian regularization, without favouring one over the other.

Normally, the significance of the parameters after the convergence of the VBEM
algorithm is determined through the posterior variance of the parameters, the pro-
cedure is known as the automatic relevance determination (ARD). For instance, the
approach [93] that comes closer to our work in terms of the use of VBEM for causal
inference, utilizes the ARD to determine the significant connections. However, the use
of ARD requires a subjective threshold on the posterior variance. Instead we propose
an automatic model reduction strategy that still makes use of the posterior variance,
however, it does not involve subjective thresholds. At first, a reasonably complex
model is estimated under the VBEM framework. It provides the posterior parameter
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estimates and a surrogate estimate for the model evidence. In order to infer the causal
connections and the contemporaneous correlation features, the complex model form
is systematically reduced to a structure that retains only the relevant parameters in
the model. Each switch to a simpler model from a relatively complex model is ac-
cepted only if the surrogate estimate of the model evidence is improved. In addition
to the use of a new model reduction strategy and to the best of our knowledge, there
has been no work done on combining the FA and VARX models to mine causal net-
works and features responsible for contemporaneous correlations simultaneously. The
effectiveness of the VBEM framework and the inclusion of the FA component to the
model is verified by comparing the results against the VAR based approaches under
the maximum likelihood (ML) and the VBEM estimation frameworks.

The potential of the presented approach is not limited to industrial process data
analysis. For instance, it could be utilized in connectivity analysis in brain networks
where the contemporaneous dependency is termed as the functional connectivity and
the causal dependency is termed as the effective connectivity [55] and other areas
such as climatology [94], econometrics [46], human computer interaction, etc.

The remainder of this chapter is organized as follows: In section 5.2, the proposed
model and the chosen Bayesian prior for the model parameters are discussed. In sec-
tion 5.3, the Bayesian network that results after incorporating the prior distributions
is discussed. In section 5.4, the VBEM framework for estimating the proposed model
is discussed. In section 5.5, implementation details and the model reduction strat-
egy are discussed. In section 5.6, the simulated and the industrial case studies are
presented. In section 5.7, concluding remarks are presented.
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5.2 Theory
5.2.1 Proposed Model
Assumptions

We assume that the studied multivariate process can be represented using a finite
discrete linear VARX model as,

y (t) =
L∑
l=1

W (l)y (t− l) +W ′u′ (t) + ϵ (t) (5.1)

where y (t) ∈ RD is an observation of the multivariate process at time, t, u′ (t) ∈ RP is
the known exogenous input that affects the process at t and W (l) ∈ RD×D∀l ∈ [1, L]

and W ′ ∈ RD×P are the parameters of the model. Noise, ϵ (t) is independent and
identically distributed and follows a multivariate Gaussian distribution with zero
mean and Σϵ covariance.

We represent the noise component of the model by the FA model as the following,

ϵ (t) = V x (t) + η (t) (5.2)

where
x (t)

i.i.d∼ N (0, IK) , η (t)
i.i.d∼ N

(
0, diag (σ)−1) (5.3)

where x (t) ∈ RK(<D) is a vector of lower dimension latent variables that are multi-
variate Gaussian distributed with zero mean and identity covariance, V ∈ RD×K is
the loading matrix of the FA model, η (t) ∈ RD is the new noise term which follows
a multivariate Gaussian distribution with zero mean and diagonal covariance, σ is a
vector of precision (inverse of variance) parameters and the operator diag (.) converts
a vector into a diagonal matrix.

The addition of the FA model component does not change the form of the model
shown in (5.1). It lets the noise to follow a conditional Gaussian distribution of the
following form,

ϵ(t)|x (t) i.i.d∼ N
(
V x (t) , diag (σ)−1) (5.4)

If the latent variables are marginalized from the joint distribution of ϵ(t) and x(t),
then the marginal distribution of ϵ(t) can be obtained as the following,

ϵ (t)
i.i.d∼ N (0,Σϵ) , Σϵ = V V T + diag (σ)−1 (5.5)
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Therefore, it is just that the covariance of the noise is parametrized differently by the
use of the FA model component.

Finally, the proposed model can be seen to take the following form,

y (t) =
L∑
l=1

W (l)y (t− l) +W ′u′ (t) + V x (t) + η (t) (5.6)

The FA component in the model captures the correlations among the prediction errors
in V x (t) term and the remaining variance in η (t) term.

Causal connections

In the above model, variable yj is does not directly Granger cause variable yi if the
entries in ith row and jth column of W (l) ∀l ∈ [1, L] are effectively zero as in that
case, the past observations of yj do not help in predicting the current values of yi

[51].

Contemporaneous Correlation

Variables yi and yj of the process are contemporaneously uncorrelated if,

E
(
ϵi(t)ϵj(t)

)
= 0 (5.7)

where E (.) refers to the expectation operation. These expectations give the off-
diagonal elements of the prediction error covariance. It can be seen that the vari-
ables yi and yj of the process are contemporaneously uncorrelated if they do not have
loading parameters that multiply a common latent variable in the above model. This
is true because the covariance between ϵi and ϵj is quantified by the dot product
between the ith and the jth rows of the loading matrix V . Thus, from the structure of
the loading matrix (zeros and non-zero entries), one can infer the features responsible
for contemporaneous correlations and how they influence the observed variables.

Therefore, the problem of mining causal connections and contemporaneous corre-
lation features in the process boils down to inferring the effective non-zero parameters
in the model.
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5.2.2 Bayesian Regularization

In this work, we choose a reasonably complex model and incorporate the prior dis-
tributions for the parameters such that they penalize the model parameters of the
VARX and the FA components with equal weights to let the model converge to a sim-
pler form where only the set of significant parameters remain and the rest converge
close to zero.

We assume that the model parameters follow Gaussian distribution and the pre-
cision parameters (inverse of variance) of the Gaussian distribution follow gamma
distribution. For instance, let us say that θ is one of the model parameters, the prior
distribution of θ is considered to be the following,

θ ∼ N
(
0, ν−1

)
, ν ∼ Ga (α∗, β∗) (5.8)

where θ follows a Gaussian distribution with zero mean and ν−1 variance and ν follows
a gamma distribution with shape and rate parameters α∗ and β∗ respectively.

5.3 Bayesian Network of the Proposed Model

In this section, we describe the prior distributions incorporated for the model param-
eters and the resulting Bayesian network of the model. For convenience, we rewrite
the model shown in (5.6) in the following regression form,

Y = WU + V X + η′ (5.9)

where Y = [y (N + L+ 1) , ..., y(t), .., y(L+ 1)] ∈ RD×N ,
X = [x (N + L+ 1) , ..., x(t), .., x(L+ 1)] ∈ RK×N ,
η′ = [η (N + L+ 1) , ..., η(t), .., η(L+ 1)] ∈ RD×N ,
W = [µ,W (L), ...,W (1),W ′] ∈ RD×Q and U ∈ RQ×N is a matrix that contains all the
known predictors for the output that includes the time-lagged outputs and exogenous
inputs as shown below,

U =


y (N + L) . . . y(t− 1) . . . y(L)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
y(N + 1) . . . y(t− L) . . . y(1)

u′ (N + L+ 1) . . . u′(t) . . . u′(L+ 1)

 (5.10)
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Wherever necessary, we use the notations that combine all the parameters together
and all the predictors together respectively as

F = [W,V ] ∈ RD×M , Z = [U,X]T ∈ RM×N (5.11)

From here onwards, the entries of the matrices Y , Z, X, U , F , W , and V will be
represented by y, z, x, u, f , w, and v, respectively and the rows will be indexed in
the superscript and the columns will be indexed in the subscript.

The joint distribution of the N output observations in terms of the parameters
and the predictors can be represented as

p (Y |Z, F, σ) =
N∏

n=1

N
(
yn|Fzn, diag (σ)−1) (5.12)

where yn and zn are the nth columns of Y and Z, respectively. As previously described,
the latent variables follow a multivariate Gaussian distribution with zero mean and
identity covariance. Consequently, the joint distribution of the latent variables is given
by,

p (X) =
N∏

n=1

N (xn|0, I) (5.13)

where xn is the nth column of X.
Now, we arrive at the important part of the model where we define the prior dis-

tribution for the model parameters. Each regression parameter in the model is con-
sidered to follow a Gaussian distribution with zero mean and a certain precision. The
resulting prior distribution of the parameters is given as follows,

p (F |ν) =
M∏

m=1

D∏
d=1

N
(
fd
m|0,

(
νdm
)−1
)

(5.14)

where fd
m is the entry in the dth row and mth column of F and its precision param-

eter, νdm follows a gamma distribution with shape and rate parameters α∗ and β∗

respectively as the following,

p (ν|α∗, β∗) =
M∏

m=1

D∏
d=1

Ga
(
νdm|α∗, β∗) (5.15)

where ν is the collection of precision parameters. As we impose prior on each param-
eter independently, at the end of the estimation of a fairly complex model, we would
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be able to infer individual effective non zero parameters from where the model order
and the causal connections can be inferred.

For completeness, we also consider the precision parameters of the noise to follow
a gamma distribution with shape and rate parameters κ∗ and ϕ∗, respectively, as the
following,

p (σ|κ∗, ϕ∗) =
D∏

d=1

Ga
(
σd|κ∗, ϕ∗) (5.16)

where σd is the precision of the noise of output in dimension d. With all the prior
probabilities and the likelihood of the parameters defined, the resulting Bayesian
network of the model is shown in Fig. 5.1. All the encircled nodes in the network are
random variables and the other nodes are deterministic. Parameters that have * as
superscript need to be either estimated or defined by the user. The joint likelihood
of the network can be obtained by multiplying the conditional distributions shown in
equations (5.12) - (5.16).

W

yn

xn

σ

V

κ∗, ϕ∗

α∗, β∗

n = 1, ..., N

un

ν

Figure 5.1: Bayesian network of the proposed model

5.4 Estimation

In this section, we discuss the VBEM framework for estimation. We describe how the
posterior of the unknowns is factorized and provide the expressions for the variational
lower bound and the posterior distributions.
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5.4.1 Variational Posterior distribution

The posterior of the parameters and the latent variables in the model is assumed to
be factorisable as the following,

p (F, ν,X, σ|Y, U, α∗, β∗, κ∗, ϕ∗) ≈ q (F ) q (ν) q (X) q (σ) (5.17)

Further, we consider the posterior of the precision parameters to be factorisable as
the following,

q (ν) =
M∏

m=1

D∏
d=1

q
(
νdm
)

(5.18)

The reason for the above factorization is that the posteriors of the precision param-
eters allow us to infer the relevance of each parameter in the model separately as it
will be shown in section 5.5 of this chapter. We also assume that the noise precision
along each dimension to be mutually independent. The resulting posterior of the noise
preciosion parameters is given by,

q (σ) =
D∏

d=1

q
(
σd
)

(5.19)

As a result of the aforementioned assumptions, some more factorizations will be
induced in the network. The regression parameters will become independent along
each output dimension as the following,

q (F ) =
D∏

d=1

q
(
fd
)

(5.20)

where fd is the dth row of F . In addition, the posterior distribution of the latent
variables will also become factorizable as the following,

q (X) =
N∏

n=1

q (xn) (5.21)

As result of the aforementioned factorizations, the posteriors of the precision pa-
rameters of the regression parameters and the precision parameters of the noise will
follow gamma distributions as the following,

q
(
νdm
)
= Ga

(
νdm|α, βd

m

)
, q
(
σd
)
= Ga

(
σd|κ, ϕd

)
(5.22)
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where α and κ are the shape parameters and βd
m and ϕd are the rate parameters of the

posterior gamma distributions of νdm and σd respectively. In addition, the posteriors of
the regression parameters and the latent variables will follow multivariate Gaussian
distributions as the following,

q
(
fd
)
= N

(
fd|f̂d,Σfd

)
, q (xn) = N (xn|x̂n,Σx) (5.23)

where f̂d and x̂n are the mean vectors and Σfd and Σx are the covariance matrices
respectively.

5.4.2 Model Evidence and the Posterior Update Rules
Variational lower bound

The variational lower bound or the surrogate estimate for the model evidence is given
by,

ln p (Y |m) ≥ L =

∫
F

∫
ν

∫
X

∫
σ

q (F ) q (ν) q (X) q (σ)×

ln
p (Y, F, ν,X, σ|U, κ∗, ϕ∗, α∗, β∗)

q (F ) q (ν) q (X) q (σ)
dFdνdXdσ (5.24)

Further, this can be split into a summation of multiple terms as the following∗,

L =
M∑

m=1

D∑
d=1

∫
νdm

q
(
νdm
)
ln
p
(
νdm
)

q (νdm)
dνdm

+
D∑

d=1

∫
νdm

∫
fd

M∏
m=1

q
(
νdm
)
q
(
fd
)
ln
p
(
fd
)

q (fd)
dνdmdf

d

+
D∑

d=1

∫
σd

q
(
σd
)
ln
p
(
σd
)

q (σd)
dσd +

N∑
n=1

∫
xn

q (xn) ln
p (xn)

q (xn)
dxn

+
N∑

n=1

D∑
d=1

∫
xn

∫
fd

∫
σd

q (xn) q
(
fd
)
q
(
σd
)
ln p

(
ydn|fd, zn, σ

d
)
dxndf

ddσd (5.25)

where ydn is the entry in the dth row and nth column of Y . The explicit expression for the
lower bound derived using the above equation is shown in Table. D.1 of Appendix D.

∗Note that the prior and the posterior distributions should be conditioned on their respective
parameters for an accurate representation; however, for the sake of representational simplicity we
have not included them.
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The posterior updates

The posterior update expressions for all the parameters are shown in Table. D.2 of
appendix D. These update expressions can be obtained by taking the derivatives of
the lower bound with respect to the posterior distributions and equating them to
zero. For instance, to obtain the update expression for the posteriors of the precision
parameters, the derivatives of the lower bound expression with respect to the pos-
teriors of the precision parameters are equated to zero. It then leads to the update
expressions of the following form,

ln q
(
νdm
)
∝ ln p

(
νdm
)
+

∫
fd

q
(
fd
)
ln
p
(
fd
)

q (fd)
dfd ∀d,m (5.26)

which can further be deduced to obtain the explicit update equations for the pa-
rameters α and βd

m (of the posteriors) as shown in the first row of Table. D.2 of
appendix D. Similarly, all the updates can be derived and shown to be the ones
presented in Table. D.2 of appendix D.

Updates for the prior parameters

When a reasonable prior knowledge is not available, it is better to optimize the prior
parameters with respect to the given data. For the proposed model, the lower bound
is a concave function of the prior parameters and when setting its derivatives with
respect to the prior parameters to zero, we can obtain the explicit updates that take
the lower bound to its maxima with respect to the prior parameters. The update
expressions for the prior parameters are shown in Table. D.2 of appendix D. Except
for β∗, we optimize all the prior parameters in this fashion and β∗ is chosen based on
cross-validation. It is chosen such that the log likelihood of the model parameters in
the validation set is maximized as illustrated below

β∗
selected = max

β∗

Nval∑
n=1

log

(
N
(
yn|Ŵun, V̂ V̂

T + diag

(
ϕ

κ

)))
(5.27)

where N val is the number of validation samples, Ŵ , V̂ , ϕ and κ are the parameter
estimates shown in Table. D.2 of Appendix D. The best value of β∗ is chosen from
the grid ranging from 10−15 to 1 with an interval of 10−1.

138



5.5 Implementation Details and Model Reduction

In this section, we discuss how the VBEM framework is implemented to learn mod-
els from the data and how the learned model is reduced to a model that retains
only the parameters relevant to significant causal connections and contemporaneous
correlations.

For the VBEM implementation part, a model with a reasonably large L and K

is chosen. Estimation proceeds with an objective of maximizing the lower bound ex-
pression through several iterations. Within each iteration, the parameters are updated
recursively as the update expressions are dependent on the other. Convergence is as-
sumed when the relative change in the lower bound estimate between the successive
iterations becomes negligible. The whole procedure is summarized in steps from 1 to
12 shown in Table. 5.1. As the VBEM framework is prone to local maxima conver-
gence, these steps are repeated several times with different initial guesses. Each time,
the converged posterior estimates of the regression parameters are perturbed using
Gaussian noise to form a new set of initial guess for the next round of estimation.
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Table 5.1: Implementation details
Step
1 Choose a model with a reasonably large L and K
2 Assign values for MaxIter and δ
3 Initial guess for all the posterior and the prior parameters
4 Set all the parameters active
5 L(0) = −∞
6 For Iter = 1:MaxIter
7 Update the active parameters recursively using the VBEM updates
8 Compute the lower bound with the active parameters

and assign it to L(Iter)
9 If |L(Iter)− L(Iter − 1)|/|L(Iter − 1)| ≤ δ
10 Break For
11 End If
12 End For
13 Lold = L (Iter)
14 For p = 1:(D ×M)
15 switch to a simpler model by excluding the posterior parameters

corresponding to an active regression parameter which has
the lowest estimate of

(
ν̂dm
)−1 among all the active regression parameters

16 Compute the lower bound with the active parameters
and assign it to Lnew

17 If Lnew ≥ Lold

18 Accept the switch
19 End If
20 Execute the steps from 5 to 12
21 Lnew = L (Iter)
22 If Lnew ≥ Lold

23 Accept the switch
24 Else
25 Reject the switch and Break For
26 End If
27 Lold = Lnew

28 End For

Once the estimation is complete, the next step is to determine the insignificant pa-
rameters in the model. Here, we follow the automatic relevance determination frame-
work [66, 33, 69] where the estimates of the precision parameters are used to determine
the relevance of the regression parameters. The estimate of the inverse of a precision
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parameter, νdm from the posterior gamma distribution is given by,

(
ν̂dm
)−1

=
βd
m

α
=

β∗ + 1
2

[(
f̂d
m

)2
+ Σfd

m

]
α∗ + 1

2

(5.28)

where f̂d
m and Σfd

m
(mth diagonal element of matrix Σfd) are the posterior mean and

the variance parameters of fd
m respectively. The estimate shown above would be low

for the regression parameters that have the posteriors concentrated around zero, and
high for the rest. By setting a threshold on this estimate heuristically, one can split
the regression parameters into two sets, (i) significant parameters and (ii) insignificant
parameters.

Instead of setting a threshold heuristically, we automate the model reduction
part. We use the estimate,

(
ν̂dm
)−1, to switch from a complex model to a simpler

model. We proceed with irreversible deterministic switches from the converged com-
plex models to simpler models. During each switch, the posterior parameters associ-
ated with a regression parameter that has the lowest estimate of

(
ν̂dm
)−1 is excluded

from the model to form a relatively simpler model. The variational lower bound the
simpler model is estimated after optimizing the parameters in the simpler form. The
switch is accepted only if the new lower bound estimate is higher than the lower bound
estimate for the previous model. When the lower bound estimate stops improving,
the model reduction is also stopped. The entire procedure is summarized in the steps
from 13 to 28 in Table. 5.1.

Although switching to a simpler model means excluding a set of parameters from
the model, one should not have a problem with computing the lower bound estimates
and carrying out the VBEM updates for the remaining parameters. All we have to do
is to remove the parameters and the predictors explicitly from the update expressions
or set them to zero accordingly. For example, to update Σx and x̂n, it is sufficient to
set the parameters excluded in v̂d (estimate of the dth of column of V ) and the columns
and rows corresponding to parameters excluded in Σvd (covariance of the estimate of
the dth of column of V ) to zero. To update f̂d and Σfd , it is sufficient to remove the
predictors corresponding to the dropped parameters. By following the steps outlined
in Table. 5.1, we should be able to start with a complex model and switch to a simpler
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model that retains only the relevant parameters. Ultimately, from the reduced model
obtained using the steps in Table. 5.1, we can directly infer the presence of causal
connections (from the non-zero parameters) and the contemporaneous correlation
features.

5.6 Case Studies

We present two different case studies to demonstrate the proposed approach. One is
a simulation case study and the other is a real industrial case study. The simula-
tion case study is used to check whether the proposed approach can mine the true
causal connections and determine the right number of contemporaneous correlation
features. The industrial case study is used to check whether the model results can
be interpreted physically. In both cases, we compare the results against the condi-
tional Granger causal connections inferred from the VAR model estimated under the
maximum likelihood (ML) framework. For this, we utilize the multivariate Granger
causality toolbox [50]. To select the appropriate model order in the case of the ML
approach, we use the Bayesian information criterion (BIC) available in the toolbox. In
addition, we also compare the results against the causal connections inferred from the
VAR model estimated under the VBEM framework for the simulation case study.
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5.6.1 Simulation Case Study
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Figure 5.2: Summary of results for the simulation case study: the accuracy of causal
connections inference (top) and accuracy of model selection (bottom). Panels sepa-
rated by the dashed lines present result for different noise levels σ−1 and each panel
presents the results for six different run lengths as indicated in x-label. Acronyms of
the estimation approach followed by acronyms of model types are used as legends. For
model selection, legends followed by L indicate the model order selection accuracy
and the one followed by K indicates the correlation features selection accuracy

Model and data description

We constructed multiple stable VAR models and combined it with the FA models to
simulate multiple datasets. The details of the models and the datasets are summarized
in Table. 5.2. We constructed sixty models that have different combinations of L and
K to generate six dimensional datasets. We chose a wide range of sparsity values
for causal connections and the loading matrices of the FA models. Here, the sparsity
is defined as the ratio between the number of active connections or the number of
non-zero parameters and the maximum possible number of connections. These values
were drawn from a uniform distribution with an interval from 0.4 to 0.9 for the VAR
component, and from 0.33 to 0.66 for each column of the FA component. The sparsity
values chosen for the FA model ensures that each column has at least two non-zero
entries. The parameters of the models were drawn from two uniform distributions
with equal probabilities that have intervals from -0.95 to -0.05 and from 0.05 to 0.95
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respectively. Model draws were accepted only if the VAR part passes the stability
test and the FA models have full column rank. We tested the approaches for different
time series lengths and at different noise variances as listed in Table. 5.2. Since our
models have the maximum values of L and K as 3, estimations for all the datasets
were started with a fourth order model with four latent variables in the case of
the proposed model. For the VAR models estimated under the ML and the VBEM
framework, the maximum model order that considered was limited to 4.

Table 5.2: Simulated model and data characteristics
Attribute Value
Number of models 60
Model order (K) 1 to 3
Number of latent variables (L) 1 to 3
Time series dimension (D) 6
Time series run length (N) 50, 100, 250, 500, 1000, 1500
Sparsity of the causal connections ∼ U (0.4, 0.9)
Sparsity of the FA model parameters ∼ U (0.33, 0.66)
Parameters (F ) ∼ U (−0.95, 0.05)&U (0.05, 0.95)
Noise variance (σ−1) 10−8, 10−6, 10−4, 10−2, 1

Results

Fig. 5.2 presents the summary of the results. It presents two different metrics, the
accuracy of causal connections inference and the accuracy of model selection. The
accuracy of causal connections inference is defined by the percentage of correct infer-
ences (presence and absence of connections) made. In the case of the VAR and the
proposed models estimated under the VBEM framework, there were 2160 inferences
(with 36 inferences for each of the 60 models) under each combination of N and σ−1

to be made. For the ML approach, only the inferences of inter-causal connections
among the variables are generated by the toolbox. Therefore, excluding the 6 self
causal connections for each model, there were 1800 inferences to be made by the ML
approach. Model selection accuracy is defined by the percentage of the correct model
structures selected. There were 60 selections under each combination of N and σ−1

to be made.
In terms of the accuracy of causal connections inference, the proposed model

significantly outperformed the other two approaches at σ−1 ≤ 10−2 irrespective of the
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run lengths of the time-series data. At σ−1 = 1, accuracies of the VAR model and
the proposed model under the VBEM framework were not distinguishable, however,
the ML approach performed slightly better. In terms of the accuracy of model order
selection, the proposed model under the VBEM framework performed better than the
other two approaches. At higher noise levels, the accuracies of the other two started
to approach the accuracy of the proposed approach.

The accuracy of contemporaneous correlation features selection by the proposed
model improved with the increase in N , however, dropped significantly at higher noise
levels.

There are two unobserved quantities, noise and the latent variables through which
the system is excited. From the results, it appears that the relative strength of both
plays a crucial role in the performance of each of these approaches. At higher noise
levels, the diagonal elements of the prediction error covariance become more dom-
inant and the excitation of the system is dominated more by the noise term. This
also decreases the relative significance of the contemporaneous interactions which is
the reason why the contemporaneous correlation features selection results deteriorate
with the increased noise levels even though the causal connections were inferred with
higher accuracies. At low noise levels, the latent variables start to dominate, leading
to relatively significant contemporaneous interactions. This was responsible for the
better performance of the proposed model at low noise levels.

The VBEM regularization itself tends to improve the performance of the VAR
model by avoiding the spurious inference of causal connections when the influence
of the latent variables is significant. However, the accuracy of causal connections
inference by the VAR model estimated under the VBEM framework tends to be
4 to 6% lower when compared to the proposed model. This improvement in the
performance of the proposed model could be attributed to the inclusion of the FA
component.

Both false positives and miss detections contributed to the spurious inference
by the ML approach when the contemporaneous interactions were relatively signifi-
cant. At σ−1 = 10−8, false positives and miss detections were 15 times and 6 times
more respectively than at σ−1 = 1.
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5.6.2 Industrial Case Study

Sulphur recovery unit (SRU) with Claus sulphur recovery process is our industrial
case study. SRUs are very common in the sulphur handling plants that control the
sulphur emission. In our case, the unit is a part of the sulphur handling plant that
treats acid gases from the oil sands upgrading process.

Burner Reaction
furnace

Catalytic reactor 1 Catalytic reactor 2
Sulphur

condenser 1

Sulphur
condenser 2

Amine acid gas

Combustion air Air demandUpstream pressure

H2S SO2

Sulphur

Sulphur

Tail gas from other SRUs

Tail gas

Material flow Information flow

Downstream pressure

Figure 5.3: Simplified schematic diagram of the sulphur recovery unit

Process description

The schematic diagram of the unit is shown in Fig. 5.3. The unit recovers sulphur
content from the upstream amine acid gas (AG). AG contains sulphur in the form
of H2S. H2S is oxidized to elemental sulphur through a series of catalytic reactors in
the SRU. The unit draws combustion air for oxidation. Following the oxidation step,
the elemental sulphur is recovered in the sulphur condenser. The tail gas containing
unconverted H2S and SO2 as major components leaves the unit as a by-product. It
is critical to maintain a set ratio of H2S and SO2 concentrations in the tail gas
to maintain a smooth operation of the downstream tail gas treatment unit in the
plant. Solid arrows in Fig. 5.3 indicate the material flow through the equipment in
the unit. Dashed arrows indicate the information flow in the unit which occurs mainly
due to the presence of the control loops. The unit has a feed-forward ratio controller
to draw combustion air in ratio with the AG flow rate. It also has a feedback con-
troller that provides correction to the demanded combustion air flow rate by the feed
forward loop, which is achieved using an air demand analyser that takes H2S and
SO2 concentrations in the tail gas into account. Normally, the feedback controller
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provides minor corrections which are limited by a threshold of 5% of the total com-
bustion air inlet demanded by the feed-forward loop. From the process knowledge,
one would expect both contemporaneous and causal connections to be present in the
system, making the proposed approach more suitable as opposed to the traditional
techniques. As the air demand is instantaneously calculated from the tail gas concen-
tration measurements coming from a noisy instrument, we expect the presence of the
contemporaneous correlation among these variables. Similarly, AG flow, combustion
air flow and the pressure drop (DP) across the unit may have both contemporane-
ous and causal relationships depending on the choice of sampling rate. Downstream
concentrations and air demand are expected to be influenced both causally and con-
temporaneously by either one or more of flow and DP variables due to the process
dynamics.
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0 500 1000 1500
Time (minutes)

0

0.2

0.4

0.6

0.8

1

A
G

 fl
ow

 ra
te

0 500 1000 1500
Time (minutes)

0

0.2

0.4

0.6

0.8

1

A
G

 fl
ow

 ra
te

Figure 5.4: Normalized AG flow rate during two different periods of operation: Period
I (left) and Period II (right).

We used the routine operation data for our analysis. The tags listed in Table. 5.3
were used for the analysis. Out of the used tags, AG depends mainly on the upstream
operations and cannot be predicted using the other tags listed here. Therefore, it was
used as an exogenous input in our analysis and the other tags were considered as
outputs.
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We considered data from two different operating periods for our analysis. During
each period, we had data for 1500 minutes and the data samples were obtained from
the plant historian at one minute frequency. The major and measured disturbance
to the process comes in the form of AG. The normalized values of AG during these
periods are shown in Fig. 5.4 for comparison. During Period I, we had the AG values
varying significantly and during period II, we had a constant AG value with minor
fluctuations. For our analysis, we randomly sampled multiple shorter windows of data
from the operating periods and estimated models from those sampled windows. This
was done for two reasons, 1) to check the consistency of the obtained causal con-
nections and contemporaneous correlations across multiple windows and 2) to avoid
the effect of non-linearity; assuming that within a shorter window, the process can
be approximated by a linear model. Here, we present the results corresponding to
100 randomly sampled windows each with a run length of 500 minutes from both
operating periods. The results presented here correspond to models obtained from
the normalized data within each of the sampled windows.

Table 5.3: Tags used for the analysis and their descriptions
Tag Description Tag Description
AG Amine acid gas flow rate H2S Tail gas H2S concentration
Air Combustion air flow rate SO2 Tail gas SO2 concentration
DP Pressure drop ADA Air demand analyzer
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Figure 5.5: Summary of the results for the industrial case study: for period I using
the proposed method (top left), for period I using the VAR model estimated under
the ML framework (top right), for period II using the proposed method (bottom left)
and for period II using the VAR model estimated under the ML framework (bot-
tom right). Rows correspond tp outputs and columns correspond to inputs. Variables
X1 and X1 in the inputs correspond to the latent variables. Bright yellow squares
correspond to the presence of connections (non-zero coefficients) in all the 100 sam-
pled windows, dark blue squares correspond to the absence of connections in all the
windows and white squares correspond to the unavailability of the results.
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Fig. 5.5 shows the summary of the analysis. In the case of ML approach, the toolbox
provides only the results of inter causal relationships. Therefore, the results on the self
causal connections are not reported for the ML approach. We compare and discuss
the results from the both approaches below for both periods of data.

Period I: The proposed approach indicated that all the output variables were
influenced by their own past observations. Both approaches indicated that Air and
AG causally influence H2S, SO2 and ADA as expected. AG causally influences DP and
Air which is due to the presence of the feed-forward loop and material flow causing
changes in DP, which have been consistently identified by both approaches. H2S,
SO2 and ADA are influenced by a common latent variable as found by the proposed
approach, indicating the contemporaneous relationship as expected. This feature most
likely represents the instrumentation noise.

The ML-VAR approach also indicated the presence of causal connections between
Air and DP, which was not identified by the proposed approach. This, we suspect
to be a contemporaneous relationship disguised as time-lagged causal dependency
in the case of ML approach, however, appeared suppressed in the case of proposed
approach. The potential reason for this could be due to the higher variability in AG
causing the relative strength of the unexplained covariance of DP and Air to be less
significant compared to their individual variances. The reason becomes clearer from
the results for period II where AG has low variability and this contemporaneous
relationship was explained by an additional feature by the proposed approach.

Period II: With low variability in AG, the proposed approach showed the absence
of inter-causal relationships in the system. Two contemporaneous correlation features,
one explaining the correlations among H2S, SO2 and Air and the other explaining
the correlation between Air and DP were found. In the case of ML approach, these
contemporaneous relationships can be seen to disguise themselves as the time lagged
causal connections as both H2S and SO2 were shown to causally affect ADA, Air was
shown to causally affect DP, and AG was shown to affect both Air and DP. It can
also be observed that some of the causal connections were only present in the half of
the sampled intervals (green boxes instead of yellow boxed) but not in all, indicating
that the identified connections by the ML approach could be spurious.
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In both periods, ADA was not found to affect Air by both approaches, indicating
that the corrections provided by the feedback loop were not significant.

5.7 Summary

In this chapter, we presented a hybrid model formed by combining the VARX model
and the FA model for causal network reconstruction. The hybrid model parame-
ters were regularized by the hierarchical prior distributions and estimated under the
VBEM approach. The approach allowed us to reconstruct causal networks in the pres-
ence of contemporaneous correlations among the variables in the data. The approach
outperformed the VAR models estimated under the maximum likelihood approach for
causal network reconstruction in the simulation case studies. In the industrial case
study, the hybrid model reconstructed interpretable causal connections and contem-
poraneous correlation features.
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Chapter 6

A Causal Analysis Approach for
Time-Varying Systems

6.1 Introduction

In this chapter, we present a causal modelling approach for the time-varying sys-
tems. The approach relies on the time-varying parameter models (TVPMs) estimated
under the variational Bayesian expectation maximization (VBEM) framework. We in-
corporate a hypothesis switching procedure followed by the VBEM estimation that
allows us to infer the time-varying strengths of causal influence of the inputs on the
outputs of the system. We illustrate the proposed approach using the production
data from steam assisted gravity drainage (SAGD) wells. The proposed approach was
found to extract consistent causal models of the SAGD system across multiple case
studies and outperform the time-invariant models.

Study of long-term effects of process variables on the key performance indicators
(KPIs) of process systems has the following advantages, it can help (i) optimize the
process KPIs, (ii) design closed loop control or optimization framework for the KPIs,
(iii) understand the anomalies in the KPIs, etc. Long-terms effects can be studied
using causal models between the KPIs and the process variables. The causal mod-
els can be obtained from the first principles understanding of the process, however,
when the process is poorly understood, data-driven models are often the only alter-
natives. One could set up experiments and collect reliable data for causal modelling,
however, experiments affect routine operations and are expensive to conduct in pro-
cess systems. On the other hand, operational data from routine operations are easy
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and inexpensive to obtain. Nevertheless, one may have to be wary of multiple data
quality issues when using the operational data for obtaining the causal models. One
such issue is the time-varying nature of the process systems and its effect on the ob-
served data. For example, the relationship between a KPI of a plant and the process
variables may vary with changes in the operating modes, physical plant modifications,
equipment fouling, etc.

In the exercise of causal modelling, the time-varying nature of the process sys-
tem and its effect on the observed data are often ignored, which may lead to in-
accurate findings. The time-varying nature of the process systems has been well
acknowledged and addressed in some of the other process data-driven applications
in the literature. Examples include: the use of multi-modal modelling and adap-
tive or recursive modelling strategies to account for changes in process operating
modes or the time-varying nature in soft sensor development and process monitoring
[95, 96, 97, 98, 99]. However, this is not the case with the causal modelling of pro-
cess systems from data. To handle time-varying nature of the process systems and
its effect on the observed data, we present a time-varying parameter model (TVPM)
based causal modelling approach in this chapter. We briefly introduce the recurring
symbols and notations below before we present the TVPM utilized in this chapter.

Recurring symbols and notations: The time instant at which a particular mea-
surement is made is represented by a subscript, for instance, t in yt corresponds to
the instant at which the measurement y is made. A particular dimension of a vector
is represented by a superscript, for instance, d in udt corresponds to the dth element
of the vector ut. R and R+ represent the spaces of real and real positive numbers
respectively, and the dimensions (rows × columns) of those spaces are indicated in
superscripts. N , Ga, and δ represent the multivariate normal, univariate gamma,
and univariate delta distributions, respectively. p(a|b) represents the conditional dis-
tribution of a given b. q(a) represents the functional approximation of the posterior
distribution of a. E(.) represents the expectation operation, and diag(.) represents
the operation that converts a vector to a diagonal matrix and vice versa. [a, b] repre-
sents a concatenated matrix or vector (along the rows) formed using the vectors or
matrices a and b of appropriate dimensions. Subscript 1 : t correspond to a collection
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of a particular variable from time instant 1 to t.

Definition 5. Time-varying parameters model (TVPM): Consider a system with a
set of normalized output observations, Y , {y1, ..., yt ∈ R1, ..., yT} ∈ R1×T and a set
of normalized input observations, U , {u1, ..., ut ∈ RD, ..., uT} ∈ RD×T . The TVPM
describing these observations is defined as follows,

yt = θTt ut + et, et ∼ N
(
0, σ2

)
(6.1)

where yt ∈ R1 is the measurement of the output variable at time t, ut ∈ RD×1 are the
measurements of the input variables that are hypothesised to causally influence yt at
time t, and et ∈ R1 is the noise in the measurement, yt and is Gaussian distributed
with mean zero and variance σ2, respectively. θt contains the model coefficients or
the strengths of causal influences at t. The coefficients are allowed to vary with time
and the set of coefficients at different time instants is given by Θ , {θ0, ..., θt ∈

RD, ..., θT} ∈ RD×T+1.

Remark 10. The parameters/coefficients in this model provide the direct causal ef-
fects of inputs on the output. This is because the parameter θdt is essentially the partial
derivative of the output with respect to input ud at time instant t as given below,

∂y

∂ud
|t= θdt ∀ t, d (6.2)

We propose an approach to determine the hypotheses that best match the distri-
butions from which the coefficients are drawn among the ones presented below. The
coefficients for any given combination of 1 ≤ t ≤ T (time) and 1 ≤ d ≤ D (input
dimension) are drawn from either of the following hypotheses that best fits the given
observations,

H0(t, d) : θ
d
t = θdt−1 + ϵdt

H1(t, d) : θ
d
t ∼ δ

(
θdt |θdt−1

) (6.3)

and for any 1 ≤ d ≤ D at t = 0,

H0(0, d) : θ
d
0 = ϵd0

H1(0, d) : θ
d
0 ∼ δ

(
θd0|0

) (6.4)

where
ϵdt ∼ N

(
0, diag(νdt )

−1
)
& νdt ∼ Ga (α∗, β∗) ∀t (6.5)

154



H0(t, d) for any 1 ≤ t ≤ T considers that the coefficient of udt , θdt is time-varying and
given by the summation of θdt−1 and the additive noise ϵdt ; ϵdt is Gaussian distributed
with zero mean and νdt precision, and νdt follows a gamma distribution with shape
parameter α∗ and rate parameter β∗. H1(t, d) for any 1 ≤ t ≤ T considers that, θdt is
drawn from the delta distribution, δ

(
θdt |θdt−1

)
, i.e., θdt = θdt−1 (θd does not change at

t). H0(0, d) considers that, θd0 is drawn from a Gaussian distribution with zero mean
and νd0 precision, and H1(0, d) considers θd0 = 0.

Remark 11. Note that the TVPM shown in Eqn. (6.1) is a multivariate linear re-
gression model with parameters that can vary with time. If ut is of the time lagged
inputs and outputs concatenated together, the model takes the form of the autoregres-
sive exogenous (ARX) model with parameters that can vary with time.

Remark 12. Note that the hypotheses shown in equations (6.3) and (6.4) cover
multiple possibilities. The causal strength of an input can change at all time instants
if drawn from H0 at all the instants or change at only few instants (if drawn from
H0 at those instants) and not change at the rest (if drawn from H1 at the rest of
the instants). If an input variable does not influence Y at all and its coefficients are
drawn from H1 at all the time instants, the causal strength of that particular variable
may remain zero at all time instants from t = 0 to t = T .

We present a methodology to estimate the TVPM and identify the hypotheses for
the coefficients that best fit the data. In the first step, we estimate the TVPM under
the VBEM framework assuming that the coefficients are drawn from H0(t, d) ∀ 0 ≤

t ≤ T & 1 ≤ d ≤ D. The TVPM with the prior distributions defined by H0 falls
under the class of conjugate exponential family graphical models (CEFGMs). The
VBEM estimation provides the posterior distribution of the model parameters and
a lower bound of the log marginal distribution of the data. In the second step, we
incorporate a hypothesis switching approach. The approach switches the hypothesis
of a set of coefficients from H0 to H1 such that the lower bound on the log marginal
distribution of the data is maximized.
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6.1.1 Summary of the Main Contributions

Our approach to causal modelling using the TVPMs is similar to the concept of path
analysis. Path analysis is a well established statistical method to test the consistency
of the observed data with the graphical models containing the hypothesised causal
connections. It has found applications in several fields including biology, psychology,
sociology and linguistics. However, conventional path models seldom consider the
time-varying nature of the process and its effect on the observed data. Therefore, our
proposal can be viewed as a path modelling approach for the time-varying systems
such as chemical processes.

We illustrate the proposed causal modelling approach using the production data
from SAGD wells, commonly used in heavy oil extraction. SAGD is an in-situ thermal
oil sands extraction technique, used to produce bitumen from the oil sands forma-
tion several hundred meters below the earth’s surface. In this application, we define a
causal model for the production rate from a SAGD well based on Darcy’s law. We show
using the case studies that the parameter invariant path models may lead to mislead-
ing conclusions that are inconsistent with the conventional understanding. However,
the proposed approach recovers causal strengths that are physically interpretable
and supports the theoretical understanding of the process causal relations and their
strengths.

The main contributions in this chapter can be summarized as follows: 1) an ap-
proach for causal modelling of the time-varying systems using the TVPMs is proposed,
and 2) an algorithm based on the VBEM framework and a hypothesis switching ap-
proach to infer the time-varying causal strengths is developed and presented, and 3)
production data from SAGD wells has not been studied extensively in the literature
previously and here, we study it using the proposed approach in this chapter.

6.1.2 Relevant Works

The linear TVPMs retain a simple interpretable structure and have the ability to
approximate any form of non-linear process [100]. The TVPMs have been stud-
ied for decades (for example, see [101, 102]) and remains as an important subject
of study, especially in the field of econometrics. Bayesian analysis of the TVPMs
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with the prior distributions for the coefficients (similar to H0) has garnered more
attention recently. The prior distributions regularize the rate of change in coeffi-
cients between the successive time instants, thereby decreasing the prediction bias
of the econometric time series models. The prior distributions for the TVPMs are
designed or chosen to address the following objectives, (i) infer the evolution of coef-
ficients over time, (ii) infer the sparsity of the models/variable selection at different
time instants, (iii) constrain the evolution of the coefficients to be stationary, and
(iv) infer the evolution of a specific subset of parameters in the model over time
[103, 104, 105, 106, 107, 108, 109]. In most of these cited works, full blown Bayesian
analysis has been employed through Markov chain Monte Carlo (MCMC) sampling
approaches. However, the use of MCMC sampling approaches may prevent the ap-
plication of the TVPMs in places where the computational load is of concern. The
VBEM framework when compared to the MCMC sampling approaches, greatly sim-
plifies the Bayesian analysis through functional approximations for the posterior dis-
tribution. Although it involves simplifying the actual posterior distribution through
the mean-field approximation, the VBEM framework has been found to successfully
recover the correct underlying model structures of several statistical models that be-
long to the CEFGMs [67]. Therefore, the implementation of the VBEM algorithm
would make the application of the proposed causal modelling approach viable in
many settings.

The TVPMs with the coefficients evolving through an autoregressive process are in
essence state space or linear dynamic models with coefficients treated as states. Beal
(2013) [67] proposed the treatment of state space models under the VBEM frame-
work. However, they do not assign a prior distribution for the noise covariance of the
states to determine whether the states evolve at a particular time instant or not. Koop
and Korobilis (2018) [110] in their working paper proposed a variational Bayesian filter
for the TVPMs with the prior distributions for the parameter covariance matrix. The
filtering step may alone be suitable for the online prediction scenarios. However, if
the accurate parameter inference is of importance, in addition to filtering, backward
recursion or smoothing will also be necessary for the TVPMs. In this chapter, we
propose a parameter estimation strategy based on the variational Bayesian filtering
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and smoothing for the TVPMs. In addition to the parameter estimation, we pro-
vide a hypothesis switching strategy to infer if the coefficients of the system/causal
strengths of the inputs change at a particular time instant. Our hypothesis testing
strategy is based on the model reduction strategy presented in the previous chap-
ter. In this chapter, we extend the strategy presented previously for the time-varying
causal models.

The rest of the chapter is organized as follows: In section II, we present the VBEM
approach to estimate the TVPM under H0 as the prior distribution for all the coef-
ficients at all the time instants. In section III, we present the hypothesis testing ap-
proach. In Section IV, we discuss the implementation details of the approach used. In
section V, we present a number of SAGD case studies. Finally, in section VI, we
present the concluding remarks.

6.2 Estimation

In this section, we present the VBEM approach for estimating the model shown in
Eqn. (6.1) assuming that the coefficients are drawn from H0(t, d) ∀ 0 ≤ t ≤ T, & 1 ≤

d ≤ D. The joint distribution of the variables given the inputs, noise variance and
the hyper-parameters under this setting is given by,

p (Y,Θ, ν|U, σ, α∗, β∗) = p (θ0|ν0) p (ν0|α∗, β∗)×

T∏
t=1

p (νt|α∗, β∗) p (yt|θt, ut, σ) p (θt|θt−1, νt) (6.6)

where νt =
[
ν1t , ..., ν

D
t

]T ∈ RD×1
+ is the vector of precision parameters at time instant

t, and ν = {ν0, ..., νt, ..., νT} ∈ RD×(T+1)
+ is the collection of precision parameters. Es-

timation of this model amounts to obtaining the posterior distribution of Θ and ν

(p (Θ, ν|Y, U, σ, α∗, β∗)), and the optimal estimate of σ that maximizes the marginal
distribution of the outputs given the inputs, noise variance, and the hyper-parameters
(p (Y |U, σ, α∗, β∗)).
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6.2.1 VBEM Algorithm

In the VBEM algorithm, the joint posterior distribution is approximated by a set of
independent posterior distributions as shown below,

p (Θ, ν|Y, U, σ, α∗, β∗) ≈ q (Θ) q (ν) (6.7)

where q (Θ) and q (ν) are the functional approximations of the posteriors of Θ and
ν. The actual log marginal distribution of the data can be related to the approximated
posterior distribution through a lower bound expression, LV B as the following,

ln p (Y |U, σ, α∗, β∗) =

∫
ν

∫
Θ

q (ν) q (Θ) ln
p (Y,Θ, ν|U, σ, α∗, β∗)

q (ν) q (Θ)
dνdΘ︸ ︷︷ ︸

LV B

+

∫
ν

∫
Θ

q (ν) q (Θ) ln
q (ν) q (Θ)

p (Θ, ν|Y, U, σ, α∗, β∗)
dνdΘ︸ ︷︷ ︸

KL divergence

(6.8)

The lower bound, LV B will be lower than the actual log marginal distribution by the
Kullback-Leibler (KL) divergence between the approximated posterior distribution
and the actual posterior distribution as shown above. Therefore, optimizing the lower
bound with respect to the approximated posterior distribution minimizes the gap be-
tween the lower bound and the actual log marginal distribution, and minimizes the
KL divergence between the approximated posterior and the actual posterior distribu-
tion. LV B can be further expanded as follows,

LV B =

∫
ν

q (ν) ln
p (ν|α∗, β∗)

q (ν)
dν −

∫
Θ

q (Θ) ln q (Θ) dΘ

+

∫
ν

∫
Θ

q (ν) q (Θ) ln p (Y,Θ|ν, σ) dνdΘ (6.9)

The expression above becomes tractable when the posterior distribution belong to
the same distribution families as that of the prior distributions i.e., when q(ν) is a
gamma distribution as of p(ν) and q(Θ) is a multivariate normal distribution as of
p(Θ).

LV B can be optimized by sequentially updating q (ν), q (Θ), and σ. The sequential
update expressions can be obtained by equating the derivatives of the lower bound
with respect to q (ν), q (Θ), and σ to zero. These update expressions take LV B to its
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maxima with respect to the updated quantities. The update expression for q(ν) can
be obtained as the following,

dLV B

dq (ν)
= 0 ⇒ ln q (ν) ∝

∫
Θ

q (Θ) ln p (Y,Θ, ν|U, σ) dΘ (6.10)

The above expression can be simplified to obtain the posterior of νdt ∼ Ga(α, βd
t ) ∀ t, d. The

parameters of the posterior gamma distributions are given in Table E.2 of Appendix E. Sim-
ilarly, the update expression for q(Θ) can be obtained as,

dLV B

dq (Θ)
= 0 ⇒ ln q (Θ) ∝

∫
ν

q (ν) ln p (Y,Θ, ν|U, σ) dν (6.11)

which leads to

q (Θ) ∝ p (Θ0|Λ0)
T∏
t=1

p (yt|θt, ut, σ) p (θt|θt−1,Λt) (6.12)

where Λt = diag

([
α
β1
t
, ..., α

βD
t

]T)
. The above expression for q (Θ) is a linear Gaussian

state space model with statesΘ. Therefore, we can use the Kalman filter and smoother
to estimate the posterior of Θ. We utilize the following forward recursion starting from
t = 0 to t = T to estimate the filtered mean, µt ∀ t and covariance Σt ∀ t of the
coefficients,

N (θt|µt,Σt) ∝∫
θt−1

p (θt−1|µt−1,Σt−1) p (yt|θt, ut, σ) p (θt|θt−1,Λt) dθt−1 (6.13)

The deduced expressions for µt and Σt are provided in Table E.2 of Appendix E. We
utilize the backward recursion of the following form to estimate the joint posterior of
the coefficients at two successive time instants,

N
([

θt
θt+1

]
|
[

θ̂t
θ̂t+1

]
,Σθtθt+1

)
∝

p (θt|µt,Σt) p (θt+1|θt,Λt) p
(
θt+1|θ̂t+1,Σθt+1

)
∫
θt
p (θt|µt,Σt) p (θt+1|θt,Λt+1) dθt

(6.14)

where θ̂t and θ̂t+1 are the posterior mean estimates of the coefficients at t and t +

1, respectively, Σθtθt+1 is the variance-covariance matrix of the coefficients at the
successive time instants t and t+1, and Σθt+1 is the covariance matrix of the coefficients
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at t + 1. The expression for the joint posterior updates are provided in Table E.2 of
Appendix E. Equating the derivative of LV B with respect to σ to zero provides the
update expression for σ which is provided in Table E.2 of Appendix E. Now, we have
the update expressions for the posteriors of Θ and ν, and σ. Implementing these
updates sequentially through multiple iterations takes the LV B to a local optima. To
assess the convergence of the algorithm, improvements in the lower bound can be
tracked until it becomes negligible between the two successive iterations.

Deducing LV B from Eqn. (6.9) is cumbersome due to the entropy term,∫
Θ
q (Θ) ln q (Θ) dΘ. The joint posterior distribution of Θ is a high dimension multi-

variate Gaussian distribution, making the evaluation of the entropy term challeng-
ing. To circumvent this, we use a modified lower bound where Θ is integrated out or
marginalized from the joint distribution. This modified lower bound is called the KL
corrected lower bound in the literature [111, 112] and it upper bounds LV B for the
CEFGMs. The KL corrected lower bound in this case is given by,

LKL = ln

∫
Θ

exp

{∫
ν

q (ν) ln p (Y,Θ, ν|U, σ) dν
}
dΘ ≥ LV B (6.15)

Both LV B and LKL become equal when q (Θ) is at its optimal value. It is a well
established general result that LV B and LKL become equal when the posterior of the
marginalized quantities is at its optimum for the CEFGMs [111, 112]. Therefore, at
each iteration after the q (Θ) update, both lower bounds will be equal and LKL after
the q (Θ) update at each iteration can be assessed for the convergence. Expression for
LKL can be deduced from Eqn. (6.15) as the following,

LKL = R + ln p (y1|u1, σ) +
T∑
t=1

ln p (yt|y1:t−1, ut, σ) (6.16)

where R is a constant term which is independent of the observations. The predic-
tive distribution of yt from the past measurements y1:t−1 at each time instant can
be recursively obtained by integrating out or marginalizing the coefficients as the
following,

p (yt|y1:t−1, ut, σ) ∝∫
θt

∫
θt−1

p (θt−1|µt−1,Σt−1) p (yt|θt, ut, σ) p (θt|θt−1,Λt) dθt−1dθt (6.17)

The resulting expression for LKL is provided in Table E.1 of Appendix E.
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6.3 Hypothesis Switching

After the VBEM estimation, we have the posteriors q(ν) and q(Θ). The expected
values of the square of change is parameter θd at time instant t can be inferred from
the posterior estimate of the precision parameter νdt . This procedure is known as the
automatic relevance determination in the literature [66, 33]. In fact, the inverse of the
posterior estimate of the precision parameter is given by,

1

ν̂dt
=
βd
t

α
=
β∗ + 1

2
E
((
θdt − θdt−1

)2)
α∗ + 1

2

(6.18)

where E
((
θdt − θdt−1

)2) is the expected values of the square of change in parameter
θd at time instant t. We utilize this estimate, which we call the relevance criterion to
switch the prior distributions from H0 to H1. We set a threshold for this estimate and
switch the hypotheses at all t and d with 1

ν̂dt
less than the threshold. The threshold

is selected such that LKL is maximized. This optimization problem is solved using
‘bayesopt’, the Bayesian optimization routine in MATLAB [113, 114, 115].

In the process of switching, evaluation of LKL is not very straightforward. We will
be confronted with the following challenges, (i) some coefficients may not change at a
time instant t and take the same values as at t− 1, (ii) some coefficients which have
remained as zero till t−1may take non-zero values at t, and (iii) some coefficients may
change at both time instants, t− 1 and t. Without loss of generality, the coefficients
can be rearranged and stacked together to form different sets at each time instant. In
the LKL estimation step, we define the following coefficient sets in reference to the
coefficients at time instant t: (i) let θ+t be the set of coefficients that are drawn from
H1 till t−1 and from H0 at t; meaning, they remain as zero before and take non-zero
values at t, (ii) let θ−t and θ−t−1 be the sets of coefficients that are drawn from H0 at
least once till t − 1 and from H1 at t; meaning θ−t = θ−t−1, (iii) let θ∼t be the set of
coefficients that are drawn from H0 at least once till t− 1 and from H0 at t, (iv) let
θ∗t =

[
θ∼t , θ

−
t

]T , (v) let θ#t =
[
θ∼t , θ

+
t

]T , and (vi) let θ&t =
[
θ∼t , θ

−
t , θ

+
t

]T . This would
allow us to estimate p (yt|y1:t−1, ut, σ) in the LKL expression as shown below,

p (yt|y1:t−1, ut, σ) ∝
∫
θt

∫
θt−1

p
(
θ∗t−1|µ∗

t−1,Σ
∗
t−1

)
×
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p
(
yt|θ&t , u&t , σ

)
p

(
θ#|
[
θ∼t−1

0

]
,Λ#

t

)
dθt−1dθt (6.19)

where θ∗t−1 is the realisation of θ∗t at t − 1, µ∗
t−1 and Σ∗

t−1 are its filtered mean and
covariance, u&t are the inputs corresponding to the coefficients θ&, and Λ+

t is a diagonal
matrix with the posterior estimates of the precision parameters of θ+t , and θ∼t−1 is the
realisation of θ∼t at t − 1. The resulting expression for LKL is provided in Table E.1
of Appendix E. The constant term R in Eqn. (6.16) needs to be estimated only for
the set θ#t which are drawn from H0 at t.

With hypothesis switching, the posterior estimates may have to be fine tuned. This
fine tuning requires much lesser number of iterations compared to the VBEM estima-
tion since it is done on an already converged model. To perform the VBEM iterations
in the reduced model setup, we need the update expressions in the reduced model
setup. The update expression for q(ν) is the same as before except that, the updates
are performed only for the coefficient that are drawn from H0. Using the same coef-
ficient sets defined for the LKL evaluation, the recursion for the filtering step can be
modified as,

N
(
θ&t |µ&

t ,Σ
&
t

)
∝
∫
θt−1

p
(
θ∗t−1|µ∗

t−1,Σ
∗
t−1

)
×

p
(
yt|θ&t , u&t , σ

)
p

(
θ#|
[
θ∼t−1

0

]
,Λ#

t

)
dθt−1 (6.20)

where µ&
t and Σ&

t are the filtered mean and covariance of the set θ&t , and their
expressions are provided in Table E.3 of Appendix E.

We define new coefficient sets for the recursion in the smoother step in reference
to the coefficients at time instant t + 1; (i) let θ∼t be the set of coefficients that are
drawn from H0 at least once till t, from H0 at t + 1 and change to θ∼t+1, (ii) let θ−t
and θ−t+1 represent the set of coefficients that are drawn from H0 at least once till t
and from H1 at t+1, and (iii) let θ∗t =

[
θ∼t , θ

−
t

]T , the combined set of coefficients at t
that are drawn from H0 at least once till t. With these new notations, the smoother
step can be expressed as,

N
([

θ∗t
θ∼t+1

]
|
[

θ̂∗t
θ̂∼t+1

]
,Σθ∗t θ

∼
t+1

)
∝
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p (θ∗t |µ∗
t ,Σ

∗
t ) p

(
θ∼t+1|θ∼t ,Λ∼

t+1

)
p

([
θ∼t+1

θ−t

]
|
[
θ̂∼t+1

θ̂−t+1

]
,Σθ∗t+1

)
∫
θ∗t
p (θ∗t |µ∗

t ,Σ
∗
t ) p

(
θ∼t+1|θ∼t ,Λ∼

t+1

) dθ∗t (6.21)

where θ̂∗t and θ̂∼t+1 are the posterior means of θ∗t and θ∼t+1, respectively, Σθ∗t θ
∼
t+1

is the variance-covariance matrix of θ∗t and θ∼t+1, µ∗
t and Σ∗

t are the filtered mean
and covariance of θ∗t , Λ∼

t+1 is a diagonal matrix of the posterior precision parameter
estimates for θ∼t+1, θ̂−t+1 is the posterior mean of θ−t+1, and Σθ∗t+1

is the posterior covari-
ance matrix of θ∗t+1. The expressions for these estimates are provided in Table E.3 of
Appendix E.

6.4 Initialization and Hyper-Parameter Tuning

In our studies, we implement the VBEM updates in each iteration in the following
order, (i) q (Θ) update; filtering step followed by the smoothing step, (ii) evaluation of
LKL for the convergence check; this may not be required for every single iteration and
can be included after every few iterations, (iii) q (ν) update, and (iv) σ update. This
sequence requires only the initialization of σ and βd

t ∀ t, d. We preform grid search for
the initial values that maximize LKL to avoid convergence to the local optima. To
reduce the complexity, the initial values of βd

t ∀ t, d are equated to a constant, κ. We
utilize normalized data for our study, therefore, the choices of σ and κ within the
interval of [0, 1] are reasonable as the actual variance of the output is equal to 1. We
searched for the values of σ and κ with a grid interval of 0.1.

Depending on the choice of the hyper-parameters α∗ and β∗, the prior defined by
H0 penalizes the changes in parameters. For the change in parameter from θdt−1 to θdt ,
it adds the penalty α

βd
t
, which is given by,

α

βd
t

=
α∗ + 1

2

β∗ + 1
2
E
((
θdt − θdt−1

)2) (6.22)

The penalty depends on the expected value of the square of change is parameter. The
effect of choice of the hyper parameters on the penalty added to the parameter changes
are illustrated in Fig. 6.1. The plots in Fig. 6.1 illustrate this for two cases, one for
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decreasing β∗ on the left panel and the other for increasing α∗ on the right panel. Y-
axis in the plots corresponds to the penalty term added and the x-axis corresponds
to the expected value of the square of change in parameter. For a fixed value of α∗,
when β∗ is decreased, as shown by the direction of the dashed arrow, the penalty
on the smaller valued changes increases rapidly and the penalty on the larger val-
ued changes does not increase appreciably. This effect regularizes the smaller valued
changes significantly and forces them to converge to zero and leaves the higher valued
changes relatively unaffected. The scale of changes that one wants to regularize can
be dictated by the choice of α∗. The scale remains proportional to α∗. If we increase
α∗, then the larger valued changes will be penalized. This can be observed from the
panel on the right. As we increase α∗ with a fixed value of β∗ we can see that the
penalty increases even for the larger valued changes. Keeping β∗ to a lower value and
changing α∗ incrementally would allow one to analyse the relative importance of the
changes in parameter. At low values of α∗, lower valued changes converge close to
zero, as we increase α∗ more and more changes start to vanish.

Figure 6.1: Penalty added to the changes in parameters: Left: for increasing values
of β∗ and Right: for increasing values of α∗

We fix β∗ to low values such as 10−8 and we vary α∗ and analyse the estimated
values of the parameters. The hyper-parameter α∗ can be selected through cross-
validation, however, cross-validation for the time-varying systems is not feasible as
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Figure 6.2: Hyper-parameter, α∗ tuning strategy

the training and the test data sets will no longer be drawn from the same popu-
lation. Therefore, we follow a different approach for selecting the range for α∗. We
introduce new signals that are independent of the outputs and inputs of the system
as additional inputs to the model. As we know a priori that the outputs are not
dependent on the newly introduced signals, the coefficients of those signals should be
zero, i.e, the coefficients of those signals should be drawn from H1 at all t. We set the
lowest value of sampled α∗ such that the preferred choice of the prior distributions
for those coefficients is H1 at all t. This approach is illustrated in Fig. 6.2. In our
simulations we include the following signals as the additional inputs, (i) white noise,
(ii) random binary sequence and (iii) sum of sine waves. The maximum value for
sampled α∗ is constrained such that the number of effective parameters in the model
is at least equal to the number of relevant inputs. The number of effective parameters
are given by the number of parameters with H0 as the preferred prior over H1.

6.5 Application

In this section, we present an industrial case study. We provide the causal modelling
results of multiple SAGD wells obtained using the proposed approach. The objective
of this case study is to assess the causal influence of the reservoir parameters (inputs)
on the production rates from the SAGD wells (output). We develop the hypotheses
for the causal relations and the signs of causal strengths (positive or negative) based
on Darcy’s law. We compare the outcomes of the causal modelling exercise against
the hypothesized causal relations. Further, to illustrate the importance of utilizing
the TVPMs, we compare the outcomes against the results obtained using the time-
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invariant multivariate linear regression based path models. The discussion in this
section is organized in the following order, (A) at first, we present a description of
the SAGD system and develop the hypotheses for the potential causal relations, (B)
next, we provide the details of the data utilized in this study, and (C) in the end, we
present the summary of the causal modelling results.

6.5.1 Steam Assisted Gravity Drainage Wells

A simplified schematic of a SAGD well pair is shown in Fig. 6.3. In SAGD, two par-
allel wells, one above the other, are drilled horizontally into the oil pay zone. Steam
is injected continuously through the top well, which is called the injector well. Over
time, a steam chamber develops around the injector well and it lowers the viscos-
ity of the bitumen in the oil sands deposit. In addition to steam injection, residue
gas is also injected through the injector well to help control the steam chamber pres-
sure. Residue gas injection pressure is typically used as a proxy measure for the steam
chamber pressure downhole by the operation. The produced oil and condensed steam
form an available emulsion inventory that is mobilized and moved to the surface by
the producer well. The accumulated emulsion is mobilized by means of an artificial
lift system, quite often an electric submersible pump (ESP). The produced fluids feed
a production separator where an initial gas-oil-water gravity separation occurs. To
measure the production rate of each well in addition to the water cut, the emulsion
stream from each well is diverted to a separator on regular periodic basis. Test sep-
arators provide volumetric measurements for each of the produced fluids including
gas, water and oil for each well at the well pad.

Causal modelling of the SAGD system provides the following benefits, (i) it pro-
vides estimates of the relative causal strengths of the input reservoir parameters
allowing production engineers to set production and operating strategies that will
maximize the production from their field, (ii) helps in assessing the importance of
closed loop production control strategies and (iii) in the cases of production anoma-
lies (such as an anomalous decrease or increase in production), causal modelling can
help determine the root cause, so that adjustments can be made accordingly.

There are two primary methods to maximize the production from the SAGD wells
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Figure 6.3: Schematic of a SAGD well pair

under normal operating conditions, (i) maximising the steam chamber pressure (PR)
while respecting cap-rock pressure constraints. This can be achieved by maximizing
the steam and residue gas injection rates and (ii) optimizing the emulsion level down-
hole (sometimes referred to as subcool optimization). By effectively controlling the
emulsion level slightly above the producer well, a larger reservoir area is exposed to
the latent heat available in the steam, thereby mobilizing additional bitumen and
maximizing production. Allowed to operate too high, and the energy in the steam is
absorbed by emulsion layer rather than the reservoir itself causing suboptimal pro-
duction rates. Operated too low and steam/gas break-through will occur pushing high
temperature vapours and solids at high velocities into the producer well bore. These
abnormal conditions are a known cause of pump and liner damage and is typically
avoided by most producers.

The production from a SAGD well can be modelled using a simple form of Darcy’s
law shown below,

Q =
kA (PR − PW )

µL
(6.23)

where Q is the oil inflow to the producer well bore, PR is the reservoir or steam
chamber pressure, PW is the well bore pressure, µ is the viscosity of the emulsion,
and k, A and L are the permeability of the reservoir, cross sectional area available
to the flow and the length of the well bore, respectively. Based on Darcy’s law, we
postulate the effect of steam chamber pressure (PR) and the well bore subcool (WS)
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on the production rates (F ) from SAGD well as presented below,

1. Effect of steam chamber pressure (PR): Increasing the steam chamber pressure,
increases the pressure gradient, PR − PW . As per Darcy’s law, this increase in
pressure gradient, increases the inflow (Q) from the chamber to the producer
well bore. Therefore, increasing PR leads to increased production, F . The upper
limit for PR is dictated by the pressure at which the cap-rock fractures. Increas-
ing PR, also increases the saturation temperature of steam at the steam chamber
(TS). This leads to the increase in the amount of heat transferred to bitumen in
the reservoir, thus lowering its viscosity and increasing its mobility. Therefore,
increasing PR increases the condensate and bitumen inflow to the producer well
bore and in turn, favours increased F . Increasing TS also causes temperature
at the producer well bore (TW ) to increase due heat transferred from the cham-
ber to the emulsion at the well bore, lowering the viscosity and increasing the
mobility of emulsion above the well bore.

2. Effect of well bore subcool (WS): Well bore subcool is defined as the difference
between the saturation temperature of the steam (Tsat(PW )) corresponding to
the well bore or pump intake pressure (PW ) and the temperature of the emul-
sion at the producer well bore (TW ), WS = Tsat(PW ) − TW . WS is used as a
proxy for the emulsion level downhole as sensor technology to directly measure
the emulsion level in SAGD wells does not yet exist. Practically speaking, a
positive value for WS indicates that there is an available emulsion inventory
downhole to be pumped. The greater the number the higher the emulsion level
is above the producer well bore. WS can be lowered either by lowering PW or
by increasing TW . Lowering PW increases PR − PW and in turn, favours higher
inflow. Increasing TW , lowers the viscosity of the emulsion accumulated in the
well bore and increases its mobility through the well bore. Therefore, lowering
WS leads to increased F . The lower limit for WS is dictated by the steam
breakthrough limit. Steam breakthrough occurs when lowering WS below zero,
allowing steam and produced vapour to flow into the producer well bore. Push-
ing WS to zero takes TW closer to Tsat and exposes the liners and well bore to
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the steam chamber.

Based on the above discussion, we postulated the causal model presented in Fig. 6.4. The
graph in Fig. 6.4. (i) shows that WS has a negative effect (a1) on F , corresponding
to the hypothesis that lowering well bore subcool favours production. It also shows
that PR has a negative effect on WS (a2) and positive effect on F (a2). Increasing PR

increases TS, which in turn causes TW to increase. Increasing TW lowers WS. There-
fore, PR has a negative effect on WS. In addition to PR, well bore pump speed, back
pressure from the production header can also affect WS. PR is affected by different
factors including steam injection rates, steam quality and residue gas injection rates.

The total effects of WS and PR on F can be quantified from the effects a1, a2 and
a3 as shown in Fig. 6.4. (ii). The total effect ofWS is given by a1 and it is hypothesised
to have the negative sign and the total effect of PR is given by a2 + a1 × a3 and it is
hypothesised to have the positive sign. For the causal modelling exercise, we build a
predictive model for WS from PR and the other factors affecting WS and estimate
a1 and build a predictive model for F from PR and WS and estimate a2 and a3. The
predictive models are either based on TVPMs or based on time-invariant multivariate
linear regression models. From the estimated effects a1, a2 and a3, we study the total
effects of WS and PR on F .
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Figure 6.4: (i): Postulated graphical model among production rate, well bore subcool
and steam chamber pressure and (ii): Total effect of well bore subcool and steam
chamber pressure on production rate. Green arrows correspond to positive effect and
red arrows correspond to negative effect.

6.5.2 Data Description

Fig. 6.5 shows the time series trends of the data for one of the case studies, well
1. The green, blue, cyan and magenta trends in the figure correspond to PR, PW ,
TS and WS, respectively. The red trend correspond to F and the blue binary trend
corresponds to the state of production. Periods when the binary trend goes to zero
corresponds to the periods of well shutdown. Markers in the trends correspond to the
instants when the test separator measurements are available. Each time the well is
tested, the test separator’s live production data are available for periods of 2 to 6
hours. The available data was averaged over those periods to calculate F . Data for
the input variables were also obtained by averaging their measurements over those
periods. Well bore temperatures are available at multiple locations along the well bore
via fibre optice based distributed temperature sensors as shown in Fig. 6.3; however,
as one would expect, they are highly correlated. Therefore, we utilized the median of
these temperature measurements to calculate WS.
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Figure 6.5: Well 1: Time trends of the process variables and KPI.

6.5.3 Results

As described in the procedure illustrated in section IV, we vary α∗ and estimate the
effects of PR andWS with respect to their changing values. Additionally, with the use
of TVPMs, the estimated effects may also vary with time. Therefore, we analyse the
estimated effects under two different conditions in this section, (i) at different time
instants, we assess the spread of the estimated effects that occurs due to changes in
α∗ and (ii) at different levels of α∗, we assess the spread of the estimated effects that
occurs due to the time-varying nature of the causal coefficients.

Fig. 6.6 presents the spread of the total effect of well bore subcool on the pro-
duction rates at different time instants obtained from the data presented in Fig. 6.5
using the TVPM based approach. At each time instant, the figure includes a box
plot representing the spread of the estimated effect of the parameter of interest on
production. As we vary the penalizing parameter α∗, with respect to each α∗, we
obtain an estimate of the effect. The box plots essentially show the spread of these
estimates due to changes in α∗. The box plots can be seen more clearly in the panel
inside Fig. 6.6, which is a zoomed-in version of the plot from the 17th of August to
30th of August, 2017. The bottom boundary of the blue box corresponds to the lower
quartile of the estimated effects and the top boundary of the blue box corresponds
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to the upper quartile of the estimated effects. The red line in the middle of the box
corresponds to the median of the estimated effects. The red dots that fall outside the
boxes correspond to outliers in the estimates. A similar plot for the total effect of the
steam chamber pressure on the production rates is shown in Fig. 6.7.

Figure 6.6: Well 1: Spread of the estimated total effect of well bore subcool on the
production rates at different time instants. α∗ is varied from 0.4 to 1.6.

Figure 6.7: Well 1: Spread of the estimated total effect of steam chamber pressure on
the production rates at different time instants. α∗ is varied from 0.4 to 1.6.
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From figures 6.6 and 6.7, it can be seen that during most time instants, the spreads
of the total effect of WS falls on the negative side of the axis and the spreads of the
total effect of PR falls on the positive side of the axis. This is consistent with our
initial belief shown in Fig. 6.4. However, during the period just before the 3rd of
July, the spreads of the effect of WS falls on the positive side of the axis and the
spreads of the effect of PR falls on the negative side of the axis as indicated by the
red ellipses. In Fig. 6.5, it can be seen that the well goes through a long production
shutdown in the month of May and June as marked and indicated as 1. During
this shutdown, an excessive amount of emulsion was accumulated down hole. As
production was re-started, this inventory had to be pumped off prior to reaching
stable operation. This can be seen from the production rate trend in Fig. 6.5, where
the production rate during the end of June, 2017 is almost double in comparison
to the production rates during remaining active production periods. Note that this
abnormally high rate of production altered the correlation among the F , WS and PR

during that period. This was picked up by the TVPM based approach in terms of
changes in signs of the estimated effects. Other than the described anomaly, during
the normal operating conditions, the median and the spread of the effect remained
consistent with our hypotheses. The patterns in the outliers can be seen to vary often
after the 30th of November, 2017 in the effect of PR on F even though the median
and the spread remain the same during that period as can be seen in Fig. 6.7. From
the 30th of November 2017, the production team had decided to ramp up the steam
chamber pressure which was maintained almost constant until then as marked as 2
and indicated in Fig. 6.5. This ramp-up induced dynamics in the operation to which,
the estimates under low values of α∗ were sensitive. These outliers are the effects
estimated at low values of α∗.

Fig. 6.8 presents the spreads of total effects of WS and PR on F estimated at
different levels of α∗. This plot is constructed by collecting the estimated effects at
a fixed value of α∗ (Ex. α∗ = 0.4) for the entire period during which the data are
available and representing the spread of these estimates using a box plot. It is a
better representation to evaluate the long-term effect of an input parameter on the
KPI. Fig. 6.8 shows the spreads of the effects at seven different values of α∗. Except
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for few outliers, the spread is tightly centred around the median that we hardly see
the boxes. If the spread is tightly centred around the median, then the effect remains
constant for long periods of time, only at some time instants it changes, which is
captured by the outliers. If the spread is represented by a fat box as in the case of
effect of PR on F at α∗ = 0.4, then the estimated effect takes a value for some period
and another value for some other period and so on.
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Figure 6.8: Well 1: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.

These box plots in Fig. 6.8 clearly suggests that irrespective of α∗ values, the
median and the spread of the effect of WS fall on the negative side of the axis and
of the effect of PR, they fall on the positive side of the axis. Figures E.1 to E.6 in
the appendix, present this result for 6 additional SAGD wells. In all of the presented
results, this observation is consistent, which goes on to validate our hypotheses that
low subcool and high steam chamber pressure operations favour increased produc-
tion. This finding is true on a long-term basis as the study included data from seven
different wells for a period of nearly 18 months.

From the medians of the effects obtained from Fig. 6.8 and Figures E.1 to E.6 in
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the appendix, we quantify the relative effect of WS and PR on F as the following,

Relative effect of WS(%) = |median of effect of WS|×100%
|median of effect of WS|−|median of effect of PR|

(6.24)
Relative effect of PR(%) = 100−Relative effect of WS(%) (6.25)

The estimated relative effects are summarized in Table 6.1. We observe extreme values
for the relative effects in well 3 and well 5. In well 3, the relative effect of WS reaches
100% and in well 5, the relative effect of PR reaches 94%. Otherwise, the relative effects
of WS and PR range anywhere between 20% and 80%. Therefore, on an average, it is
safe to conclude that both subcool and steam chamber pressure play important roles
in influencing the production in SAGD operations. However as illustrated in Table 6.1,
in each well, one parameter may influence production more than the other.
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Table 6.1: The relative effects of well bore subcool and steam chamber pressure on
production identified at different values of α∗

Well 1 α∗ 0.4 0.6 0.8 1.2 1.4 1.6
Relative effect of WS (%) 70.17 71.23 72.62 73.26 73.28 73.3
Relative effect of PR (%) 29.83 28.77 27.38 26.74 26.72 26.7

Well 2 α∗ 0.4 0.5 0.7 0.9 1 1.1
Relative effect of WS (%) 51.92 48.31 21.84 41.91 41.89 41.86
Relative effect of PR (%) 48.08 51.69 78.16 58.09 58.11 58.14

Well 3 α∗ 0.3 0.5 0.7 0.9 1.1 1.3
Relative effect of WS (%) 88.53 88.36 100 100 100 100
Relative effect of PR (%) 11.47 11.64 0 0 0 0

Well 4 α∗ 0.2 0.25 0.3 0.35 0.4 0.45
Relative effect of WS (%) 61.76 61.76 61.76 61.76 61.76 61.76
Relative effect of PR (%) 38.24 38.24 38.24 38.24 38.24 38.24

Well 5 α∗ 0.32 0.33 0.34 0.35 0.36 0.37
Relative effect of WS (%) 6.1 6.1 6.1 6.1 6.1 6.2
Relative effect of PR (%) 93.9 93.9 93.9 93.9 93.9 93.8

Well 6 α∗ 0.7 0.8 0.9 1.1 1.2 1.3
Relative effect of WS (%) 65.14 56.0 55.16 23 23.11 23.16
Relative effect of PR (%) 34.86 44.0 44.84 77 76.89 76.84

Well 7 α∗ 0.48 0.54 0.6 0.66 0.72 0.78
Relative effect of WS (%) 66.18 70.04 78.86 78.78 78.72 78.06
Relative effect of PR (%) 33.82 29.96 21.14 21.22 21.28 21.94

In the rest of this section, we argue why the TVPM based approach is better
than a time-invariant model based approach for the case of analysing the production
data from SAGD wells. Table 6.2 presents the standard deviation of the prediction
error for TVPM based prediction model for F and time-invariant linear regression
model for F . For lower values of α∗, we expect to see greater numbers of parameter
changes in TVPM and therefore, the model should have more effective parameters. As
we increase α∗, the frequency of parameter changes should decrease and as should
the total number of effective parameters in the model. Standard deviation of the
prediction error also increases with as α∗ increases. At α∗ = 1.6, the model only has
three effective parameters and the standard deviation of the prediction error is only
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0.48. On the other hand, a time-invariant model of similar complexity with three
parameters (coefficients of WS and F and the intercept parameter) has the standard
deviation of the prediction error as 0.96, which is twice that generated by a TVPM
of similar complexity. Therefore, TVPM clearly explains the data better than the
time-invariant model.

Table 6.2: Well 1: Variability in production unexplained by the TVPM with different
values of α∗ and by the time-invariant linear regression model

Time-varying model Time-invariant model
α∗ 0.4 0.6 0.8 1 1.2 1.4 1.6 -
Number of
effective parameters 33 9 9 9 9 3 3 3

Standard deviation of
prediction error 0.124 0.287 0.289 0.292 0.293 0.482 0.482 0.964

Fig. 6.9. (i) provides a graphical representation of the total effects based on the
median values presented in Fig. 6.8 at an α∗ value. Fig. 6.9. (ii) provides a graphical
representation of the total effects estimated based on a time-invariant linear regression
model. The graphs include the magnitudes of the total effects and their signs. Red
arrow represents negative effect and green arrow represents positive effect. The thick-
ness of the arrows in proportional to the magnitude of the effect. The graph obtained
from the TVPM based approach in Fig. 6.9. (i) is consistent with the theoretical un-
derstanding of the process that low subcool and high steam chamber pressure favour
production. The graph obtained from the time-invariant model in Fig. 6.9. (ii) is to-
tally opposite to the theoretical understanding of the process. Fig. E.7 compares both
approaches for six more wells. In all the wells, the sign of effects are consistent when
inferred using the TVPM based approach, whereas the time-invariant model provides
highly inconsistent results.
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Figure 6.9: (i) Well 1: Median of total effects identified using the TVPM based
approach with α∗ = 0.4 and (ii) total effect identified using the time-invariant linear
regression models estimated under the ML approach.

6.6 Summary

In this chapter, we presented a causal modelling approach based on the VBEM frame-
work for the time-varying systems. The data from the time-varying systems were
modelled using the time-varying parameters models (TVPMs). The TVPMs were
estimated under the VBEM framework. Followed by the VBEM estimation, a hy-
pothesis switching procedure was utilized to infer the actual changes in the causal
strengths. The whole approach was validated using the production data from seven
SAGD wells. The approach provided theoretically consistent causal models in all the
seven wells. The results obtained using the production data verified the following
theoretical understandings of the SAGD wells, (i) increasing steam chamber pressure
and (ii) lowering well bore subcool favour increased production. Comparisons against
the time-invariant models revealed the importance of using the TVPMs for causal
analysis of the time-varying systems. Time-invariant models provided inconsistent
results with the understanding of the process as well as provided inconsistent results
across seven SAGD wells.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this thesis, we developed and presented probabilistic models for data-driven process
monitoring and causal modelling applications. The key findings of this thesis can be
summarized as summarized below,

• In chapter 3, we showed that a generalized model can be defined such that it
encompasses most of the linear Gaussian models used for process monitoring
applications in the literature. This greatly simplified the effort required to derive
the process monitoring procedure based on linear Gaussian models. The mon-
itoring procedure was derived based on the generalized model and it was then
shown to reduce to special cases when the model structure was constrained ap-
propriately. Classical multivariate techniques such as principal component anal-
ysis and canonical correlation analysis can also be formulated as probabilistic
models, which can be seen as special cases of the generalized model defined. By
constraining the generalized model to these special cases, we showed that the
resulting monitoring statistics of the probabilistic models will be exactly equiv-
alent to the monitoring statistics derived from their classical counterparts. We
verified the theoretical results using simulation examples. As a part of this exer-
cise, we flagged some of the common misconceptions in the literature regarding
the monitoring statistics and control charts derived based on the probabilistic
models.

• In chapter 4, we discussed how a mixture model formed by convex combination
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of linear Gaussian models is used for process monitoring. We showed stacking
the mixture models one above the other can lead to a parameter efficient two-
layer model. At a given moment, the two-layer modelling approach involved
identification of lesser number of local models when compared to a single layer
model of a similar complexity. This allowed us to provide better initial guesses
for the model parameters and the identification converged to better results. Dur-
ing the model identification stage, we also leveraged a Bayesian regularization
approach for model structure determination. We illustrated the applicability of
the two-layer model in process monitoring applications using a lab-scale and
an industrial case study. The industrial case study was on monitoring of a sul-
phur recovery units to predict downstream sulphur dioxide breakthrough prob-
lems. The two-layer model scaled well to approximate the data distributions in
our case studies when compared to the single layer mixture models. It also had
a better generalization ability when compared to the single layer model.

• In chapter 5, we presented a hybrid model that is formed by a combination of the
vector auto-regressive model and the probabilistic factor analyser model. The
model was used to represent the potential time-lagged and contemporaneous
interactions among the variables in a linear system. The time-lagged causal in-
teractions were represented by means of the vector auto-regressive model com-
ponent and the contemporaneous correlations were represented by means of the
probabilistic factor analyser model. We performed approximate Bayesian anal-
ysis by assigning normal-gamma prior distributions to the model parameters
and using the variational Bayesian expectation maximization algorithm. In the
linear case, the model parameters and causal and contemporaneous interactions
have one to one correspondence. Therefore, determining the zero and non-zero
parameters through the Bayesian analysis was useful in commenting the pos-
sible presence and absence of the causal and contemporaneous interactions. In
the simulation case studies, the overall approach was found to be more robust
to the presence of contemporaneous correlations when attempting to identify
the time-lagged causal interactions as compared to the traditional techniques
for identifying the time-lagged causal interactions. We also illustrated this ap-
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proach by studying the data from the sulphur recovery unit.

• In chapter 6, we presented a time-varying parameters model. The model was
used to study the interactions among the variables in a postulated casual
network. We utilized approximate Bayesian analysis through the variational
Bayesian expectation maximization approach to track the time varying param-
eters in the model. The approach can be utilized to study the causal interactions
among the variables in time-varying systems. For linear systems, the parameters
of the model has one to one correspondence to the strength of direct causal ef-
fects. We illustrated the whole approach in the production from multiple steam
assisted gravity drainage wells. We postulated how the variables in the sys-
tem affect the product rates and estimated the effects using the proposed ap-
proach. The time-invariant linear models were found to give inconsistent results
across case studies. However, the proposed approach was found to produce con-
sistent results for the signs (positive and negative) of causal coefficients across
case studies.

7.2 Recommendations
7.2.1 Process Monitoring

The success of data-driven process monitoring applications rely on how much informa-
tion about the desired operation characteristics can be learnt from the data using the
data-driven models used. This thesis focused on one particular aspect, learning the
distribution of the process variables from the operational data and determining the
statistical bounds from the learnt distribution models. As illustrated in chapter 4 of
this thesis, some applications may need approximating multi-modal or complex data
distributions. To pursue in this direction of modelling the data distributions using
the probabilistic models, we can extend the two-layer model presented in chapter 4
to a multi-layer model. Then, the model will become more powerful in approximating
complex data distributions.

Learning the data distribution is one approach to characterizing the data gen-
eration process. The recent developments in the field of machine learning, particu-
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larly in deep learning, has lead to more powerful methods of characterizing the data
generation process. Two such promising methods that can be explored for process
monitoring applications are variational auto encoders (VAEs) [116] and generative
adversarial networks (GANs) [117]. However, VAEs, GANs and the multi-layer model
discussed earlier are data hungry. These models may need large amounts of data to
achieve better generalizing ability. Process industries do possess huge repositories of
historical data. The questions, “how and how much the research communities can tap
into those repositories?” will determine the level of success that we can achieve with
modern machine learning approaches in process monitoring problems.

7.2.2 Causal Modelling

When applying causal modelling techniques to routine operation data as opposed to
applying them to study experimental data, the users have to exercise caution. The
routine operation data may contain multiple data quality issues such as slow sampling
rates, outliers, data from biased or failed sensors, unobserved confounding variables,
time-varying characteristics, data from multi-modal operations, etc. These data qual-
ity issues may be handled effectively by incorporating appropriate modelling assump-
tions. However, the assumptions may also lead to the scenarios where the users let
their subjective belief or observational bias to significantly influence the identification
results. Addressing this ambiguity will be an interesting pursuit.
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Appendix A

Proofs of Propositions in
Preliminaries

A.1 Proof of Proposition 1

Proof. The proof of the first three statements in proposition 1 can be achieved
by the application of the chain rule of probability. We show the proof for the first
statement and the proofs for the rest of the two can be achieved by following a similar
procedure. The last statement in proposition 1 requires us to show that the statement
cannot be disproved, which show followed by the proof of statement one.

Let us start with the proof of the first statement. The joint distribution of A, B
and C from the structure of the BN shown in Fig. 2.3 (i) can be expressed as the
following,

p (A,B,C) = p (C|B) p (B|A) p (A) (A.1)

Using the chain rule probability, the conditional distribution of A given both B and
C can be expressed as the following,

p (A|B,C) = p (A,B,C)

p (B,C)
(A.2)

where the numerator in the above expression corresponds to the joint distribution of
A, B and C and the denominator corresponds to the joint distribution ofB and C. The
denominator term can be obtained by marginalizing A from the joint distribution of
A, B and C as the following,

p (B,C) =

∫
A

p (A,B,C) dA =

∫
A

p (C|B) p (B|A) p (A) dA (A.3)
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where the integration with respect to A over the support of p(A) corresponds to
marginalization of A. Integration applies to the case when A is a continuous random
variable and the integration has to replaced with the summation over the support of
p(A) when A is a discrete random variable. This marginalization leads to the joint
distribution of B and C of the following form,

p (B,C) = p (C|B) p (B) (A.4)

By substituting equations (A.2) and (A.4) in Eqn. (A.1), we can obtain the conditional
distribution of A given both B and C as the following,

p (A|B,C) = p (C|B) p (B|A) p (A)
p (C|B) p (B)

(A.5)

From the above expression, we can cancel out the common terms in the denominator
and the numerator. This cancels out the dependence on C and from the chain rule of
probability we can obtain the following,

p (A|B,C) = p (B|A) p (A)
p (B)

= p (A|B) (A.6)

Therefore, given B, the dependence of A on C vanishes. By following a similar pro-
cedure to obtain the conditional distribution for C given both A and B, we can also
show that given B, dependence of C on A vanishes. This completes the proof of the
first statement. By following a similar procedure, the second and the third statements
can also be proved.

For the fourth statement, we can start with the joint distribution defined by
the BN and follow the same procedure as shown above to obtain the conditional
distribution of A given both B and C as shown below,

p (A,B,C) = p (B|A,C) p (A) p (C) (A.7)

p (A|B,C) = p (A,B,C)

p (B,C)
(A.8)

p (B,C) =

∫
A

p (A,B,C) dA =

∫
A

p (B|A,C) p (A) p (C) dA (A.9)

p (B,C) = p (B|C) p (C) (A.10)

p (A|B,C) = p (B|A,C) p (A) p (C)
p (B|C) p (C)

(A.11)
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p (A|B,C) = p (B|A,C) p (A)
p (B|C)

(A.12)

From the exercise, we obtain the above expression for the conditional of A given both
B and C. It can be seen from the above expression that the dependence of B on
C both in the numerator and the denominator cannot be removed as C and B are
directly connected. Therefore, in the conditional of A given both B and C, we cannot
remove the dependence on C. We can show the same for the conditional of C given
both A and B that the dependence of A cannot be removed by following the same
procedure. This completes the proof of proposition 1.

A.2 Proof of Proposition 2

Proof. To prove this proposition, we consider an arbitrary BN with a subset of nodes
V as the one shown in Fig. 2.4. Let us say that the set of all the nodes in the network
except V is given by ∼ V , the set of all the parent nodes of V is given by Pa, the set
of all the children nodes of V is given by Ch, the set of all the other parent nodes of
Ch is given by CPa (all the parents of Ch except V ), and the set of all nodes that
excludes just the subset V and the subset Ch is given by ∼ {V,Ch}. In this setting,
Proposition 2 translates into the following mathematical identity.

p (V | ∼ V ) = p (V |Ch, Pa, CPa) (A.13)

where p (V | ∼ V ) is the conditional distribution of V given the rest of the nodes
in the network and it is equal to the conditional distribution of V given the set
{Ch, Pa, CPa}. Given the set {Ch, Pa, CPa}, any information about the rest of the
nodes in the network adds no valuable information for predicting or inferring the
states of V .

Using the chain of probability, we can write the joint distribution of all the nodes
in the network as the following,

p (V,∼ V ) = p (V | ∼ V ) p (∼ V ) (A.14)

where p (V,∼ V ) is the joint distribution of all the nodes in the network and p (∼ V )

is the marginal distribution of the nodes ∼ V . The marginal distribution p (∼ V )
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can be obtained by integrating out V from the joint distribution p (V,∼ V ) as the
following∗,

p (∼ V ) =

∫
V

p (V,∼ V ) dV (A.15)

By exploiting the structure of the BN, we can write the joint distribution as a product
of multiple factors as the following,

p (V,∼ V ) = p (V |Pa) p (Ch|V,CPa) p (∼ {V,Ch}) (A.16)

where p (V |Pa) is the conditional distribution of V given its parents, p (Ch|V,CPa)
is the conditional distribution of Ch given its parents, and p (∼ {V,Ch}) is the joint
distribution of the set ∼ {V,Ch}†. Marginalizing V from the joint distribution shown
in Eqn. (A.16) as shown below,

p (∼ V ) =

∫
V

p (V |Pa) p (Ch|V,CPa) p (∼ {V,Ch}) dV (A.17)

leads to the following,

p (∼ V ) = p (Ch|Pa,CPa) p (∼ {V,Ch}) (A.18)

Now, substituting the above expression in the expression shown for p (V,∼ V ) in
Eqn. (A.14) and replacing the LHS of Eqn. (A.16) using the resulting expression
leads to the following equality,

p (V | ∼ V ) p (Ch|Pa,CPa) p (∼ {V,Ch})
= p (V |Pa) p (Ch|V,CPa) p (∼ {V,Ch}) (A.19)

Simplifying the above expression by cancelling out the common terms in both LHS
and RHS results in the following,

p (V | ∼ V ) p (Ch|Pa,CPa) = p (V |Pa) p (Ch|V,CPa) (A.20)

Further, rearranging the terms leads to the following,

p (V | ∼ V ) =
p (V |Pa) p (Ch|V,CPa)

p (Ch|Pa,CPa)
(A.21)

∗if V is of discrete random variables, integration has to be changed to summation over all the
combination of states that V can take

†Of course, the joint distribution p (∼ {V,Ch}) could be factored into a product of multiple
conditional distributions given the knowledge of the structure of the entire network. For our purposes,
it could be any arbitrary structure that honours the DAG constraint.
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Writing the numerator in the above expression as the joint conditional distribution
of V and Ch using the chain rule results in the following,

p (V | ∼ V ) =
p (V,Ch|Pa,CPa)
p (Ch|Pa,CPa)

(A.22)

Now, factoring the joint conditional distribution using the chain rule into the following
product, p (V |Ch, Pa, CPa) p (Ch|Pa,CPa) leads to

p (V | ∼ V ) =
p (V |Ch, Pa, CPa) p (Ch|Pa,CPa)

p (Ch|Pa,CPa)
(A.23)

The common term in the numerator and the denominator can be cancelled to obtain,

p (V | ∼ V ) = p (V |Ch, Pa, CPa) (A.24)

The above expression implies that V is D-separated from the rest of the network by
Ch, Pa, and CPa. This completes the proof of proposition 2.
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Appendix B

Estimation Approach for the
GPLLVM

B.1 Maximum likelihood estimation of the GPLLVM
using the EM algorithm

The update expressions for obtaining the parameters of GPLLVM using the EM
algorithm are presented in Table B.1.

Table B.1: Recursive update expressions for estimating the parameters of GPLLVM
E-step updates

Σz|y,x,u = Φ =
[
W Tψ−1

y W + V Tψ−1
x V + IK

]−1

µzn|yn,xn,un = Φ
[
W Tψ−1

y (yn − Fun) + V Tψ−1
x xn

]
M-step updates

ψx = 1
N

∑N
n=1

[
xnx

T
n + V

{
µzn|yn,xn,unµ

T
zn|yn,xn,un

+ Φ
}
V T − 2V µzn|yn,xn,unx

T
n

]
ψy =

1
N

∑N
n=1

[
(yn − Fun) (yn − Fun)

T +W
{
µzn|yn,xn,unµ

T
zn|yn,xn,un

+ Φ
}
W T

]
− 2

N

∑N
n=1

[
Wµzn|yn,xn,un (yn − Fun)

T
]

W =
[

1
N

∑N
n=1 (yn − Fun)µ

T
zn|yn,xn,un

] [
1
N

∑N
n=1

{
µzn|yn,xn,unµ

T
zn|yn,xn,un

+ Φ
}]−1

V =
[

1
N

∑N
n=1 xnµ

T
zn|yn,xn,un

] [
1
N

∑N
n=1

{
µzn|yn,xn,unµ

T
zn|yn,xn,un

+ Φ
}]−1

F =
[

1
N

∑N
n=1

(
yn −Wµzn|yn,xn,un

)
uTn

] [
1
N

∑N
n=1 unu

T
n

]−1
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B.2 Woodbury Matrix Identity

Lemma 6. Woodbury Matrix Identity: The following identity holds,

(M1 +M2M3M4)
−1 =

M−1
1 −M−1

1 M2

(
M−1

3 +M4M−1
1 M2

)−1 M4M−1
1

(B.1)

where matrices M1, M2, M3 and M4 are of appropriate sizes that allow matrix
multiplications shown in the above equation and matrices M1 and M3 are invertible.

B.3 Matrix B is an Idempotent Matrix

We can show that the matrix B is an idempotent matrix by showing,

BB = B (B.2)

From equation (3.45), BB can be expressed as,

BB = Σ
1
2AΣAΣ

1
2 (B.3)

Therefore, the equality in equation (B.2) holds if the following is true,

AΣA = A (B.4)

Σ in equation (3.50) can be written in terms V and Ψ as the following,

Σ = Ψ
1
2VVTΨ

1
2 +Ψ (B.5)

Using the above expression for Σ and the expression for A shown in equation (3.43),
the following can be shown,

AΣA = Ψ− 1
2

[
IP+L − V

(
VTV

)−1 VT
]
Ψ− 1

2 (B.6)

which is nothing but A and this again can be verified from equation (3.43). Therefore,
B is an idempotent matrix.
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Appendix C

Supplementary Information for the
Identification of the Two-Layer
Mixture Bayesian PPCA model

C.1 Estimation of the mixture Bayesian PPCA
model

The model estimation consists of estimating the following quantities, 1) the determin-
istic parameters that do not have prior distributions {µ, π, σ2} and 2) the parameters
and the latent variables that have prior distributions {W, ν, s, Z}. For the determin-
istic parameters, point estimates are obtained. For the others that have prior distribu-
tions, the posterior distribution (p (W, ν, Z, s|X,µ, π, σ2, a∗, b∗)) are obtained. We use
the variational approach that is very popular in the case of mixture of latent variable
models [69, 118]. For this model, the variation approach requires us to consider the
following approximation for the posterior distribution,

p
(
Z, s,W, ν|X,µ, π, σ2, a∗, b∗

)
≈ q (W ) q (ν) q (Z|s) q (s) (C.1)

where the factors q (W ) , q (ν) , q (Z|s) and q (s) are the individual posteriors of the
loading parameters, the precision parameters of the loading parameters, the latent
variables given the model identities and the model identities respectively. Further,
it requires the individual posteriors to have the same distribution forms of the pri-
ors. That is, q (W ) has to be a multivariate Gaussian, q (ν) has to be a Gamma
distribution, q (Z|s) has to be a multivariate Gaussian and q (s) has to be a categor-
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ical distribution. The detailed distribution forms of the posteriors are as follows,

q (Z|s) =
N∏

n=1

S∏
s=1

q (zsn|sn = s) =
N∏

n=1

S∏
s=1

N
(
zsn|ẑsn,Σzs

)
(C.2)

q (s) =
N∏

n=1

S∏
s=1

q (sn = s) (C.3)

q (W ) =
S∏

s=1

D∏
d=1

q (W s
d ) =

S∏
s=1

D∏
d=1

N
(
W s

d |Ŵ s
d ,ΣW s

d

)
(C.4)

q (ν) =
S∏

s=1

M∏
m=1

q (νsm) =
S∏

s=1

M∏
m=1

Γ (νsm|a, bsm) (C.5)

where d andm indicate a particular dimension of the observation or a particular row of
the loading matrix and a particular column of the loading matrix respectively. Further,
the variational lower bound for the log marginal distribution of the observations is
defined as a function of the posteriors and the parameters as the following,

ln p
(
X|µ, π, σ2, a∗, b∗

)
≥ F

(
q (Z|s) , q (s) , q (W ) , q (ν) , µ, π, σ2, a∗, b∗

)
(C.6)

where

F ≥
∫
q (W ) q (ν) q (Z|s) q (s) ln p (X,Z, s,W, ν|µ, π, σ

2, a∗, b∗)
q (W ) q (ν) q (Z|s) q (s) dZdsdWdν (C.7)

where the numerator term inside the logarithm is the joint distribution of the obser-
vations, the latent variables and the parameters which in our case is as follows,

p
(
X,Z, s,W, ν|µ, π, σ2, a∗, b∗

)
=

N∏
n=1

p
(
xn|zsn, sn,W s, µ, σ2

)
p (zsn) p (sn = s)

×
S∏

s=1

M∏
m=1

p (W s
m|νsm) p (νsm|a∗, b∗) (C.8)

Estimation proceeds by maximizing the lower bound shown Eqn. (C.7). The E and
M steps of the estimation algorithm are derived and shown below.
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C.1.1 E-step
dF

dq (W s
d )

= 0 ⇒ (C.9)

q (W s
d ) ∝

∫
νs
dνsq (νs) ln p (W s

d |νs) +
∑

s
q (s)

∫
dZq (Z|s) ln p (X|Z,W, s, µ) (C.10)

ΣW s
d
=


N∑

n=1

q (sn = s)

σ2

[
ẑsnẑ

s
n

′
+ ΣZs

]
+


a
bs1

. . . 0

. a
bs2

. . .

. . . . .

. . . . .
0 . . . a

bsM




−1

(C.11)

Ŵ s
d = ΣW s

d

[
N∑

n=1

q (sn = s)

σ2
[xnd − µs

d] ẑ
s
n

′

]
(C.12)

dF
dq(νsm)

= 0 ⇒ ln q (νsm) ∝ ln p (νsm) +
∫
W
dWq (W ) ln p(W |ν)

q(W ) (C.13)

a = a∗ +
D

2
(C.14)

bsm = b∗ +
1

2
SSs (m,m) (C.15)

where

SSs =
D∑

d=1

[
Ŵ s

d

′

Ŵ s
d + ΣW s

d

]
(C.16)

dF
dq(zsn)

= 0 ⇒ ln q (zsn) ∝ ln p (zsn) +
∑

s q (s)
∫
dWq (W ) ln p (X|Z,W, s, µ) (C.17)

ΣZs =

[
1

σ2
SSs + I

]−1

(C.18)

ẑsn =
1

σ2
ΣZs

[
(xn − µs) Ŵ s

]
(C.19)
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dF
dq (sn = s)

= 0 ⇒

ln q (sn = s) ∝ ln p (sn = s) +

∫
dzsnq (z

s
n|sn = s) ln

p (zsn)

q (zsn|sn = s)

+

∫
dzsndW

sq (zsn|sn = s) q(W s) ln p (xn|zsn,W s, sn = s, µs) (C.20)

ln q (sn = s) ∝ ln |ΣZs |+ 1

2σ2
[xn − µs] Ŵ sẑsn

−tr
[(

1

2σ2
SSs + I

)(
ΣZs + ẑsnẑ

s
n

′)
+

1

σ2
(xn − µs) (xn − µs)

]
(C.21)

where
S∑

s=1

q (sn = s) = 1 (C.22)

C.1.2 M-step

dF
dπs = 0 ⇒ πs =

∑N
n=1 q(sn=s)

N
(C.23)

dF
dµs = 0 ⇒ µs = 1∑N

n=1 q(sn=s)

[∑N
n=1 q (sn = s)

(
xn − Ŵ szsn

)]
(C.24)

dF
dσ2

= 0 ⇒

σ2 =
1

ND

S∑
s=1

N∑
n=1

q (sn = s)
[
(xn − µs)

′
(
xn − µs − 2Ŵ szsn

)]

+
1

ND

S∑
s=1

N∑
n=1

q (sn = s)
[
SSs

[
zsnz

s′

n + ΣZs

]]
(C.25)
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C.1.3 Estimation

It can be seen from the update equations that the updates are dependent on each
other. Therefore, the posteriors and the parameters need to be updated recursively
in multiple iterations until convergence. The algorithm for estimation is presented in
Table. C.1.

Table C.1: Estimation algorithm for mixture Bayesian PPCA
Step 1 Initial guess for the variational and deterministic parameters (refer to C.1.4)
Step 2 F(0) = −∞
Step 3 For Iter = 1:MaxIter
Step 4 E-step: update all the posteriors one after the other
Step 5 M-step: update all the deterministic parameter one after the other
Step 6 If |F(Iter)−F(Iter − 1)|/|F(Iter − 1)| ≤ ϵ
Step 7 Break For
Step 8 End If
Step 9 End For

C.1.4 Initial guess

For estimating the mixture PPCA model using the variational EM or the EM al-
gorithm, we need a good initial guess to avoid poor local maxima. Initial guesses
for the parameters of all the local models in the mixture are needed. For any lo-
cal model, this can be obtained from the observations belonging to that particular
local model. However, for this, we need to split and assign the observations to the
local models first. We used k-means clustering algorithm to split and assign the ob-
servations. A PPCA model was fit to the observations to obtain the parameters of
all the local models separately. PPCA model can be obtained either using the EM
algorithm or eigen decomposition as shown in [28]. We used the eigen decomposi-
tion. Still, this initialization strategy does not provide a unique initialization all the
time. It is because the k-means clustering also requires randomized initialization. It
may converge to different solutions with respect to different initializations of which
observation belongs to which cluster. However, this is the maximum control that we
can have over the initial guess. With the k-means clustering followed by estimation
of PPCA for each of the clusters provided by the k-means algorithm, we can obtain
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initial guesses for the mean parameter µs, the loading matrix W s and the proportion
of data explained πs for each of the clusters and the noise variance σ2. In addition to
these, providing positive definite matrices as initial guesses for ΣW s

d
∀s, d is sufficient

to execute the algorithm presented in C.1.3.

C.1.5 Determining dimension of latent variables

Update equation for the posterior of the precision parameter is given by a Gamma
distribution. By evaluating the parameters of the posterior Gamma distribution, de-
cision about the dimension reduction can be made. The posterior expected value of
the precision is given by,

< νsm >=
a

bsm
(C.26)

where a and bsm are the posterior scale and rate parameter for the precision of mth

dimension in sth local model. If the expected value is very high, then it means that
the entries in that particular column of the loading matrix is still closer to zero. So
by setting a threshold for the expected value of the precision variable, zero columns
in the loading matrices can be removed. We utilize the posterior distributions only
to infer the effective dimensions of the loading parameters and we do not retain the
uncertainty information provided by the posteriors for obtaining the two layer model
or for fault detection. Only the posterior means are retained.

C.2 Proof of Proposition 5

Proof. The number of loading parameters required for the mixture PPCA model
is KDP and the number of loading parameters required for the two layer model is
SDM + SCMP . The number of mean parameters required for the mixture PPCA
model is KD and the number of mean parameters required for the two layer model
is SD+SCM . Therefore, our objective is to show the following relationships is true,

KDP − SDM − SCMP ≥ 0 & KD − SD − SCM ≥ 0 (C.27)

where the relationships correspond to the difference between the number of loading
parameters and the difference between the number of mean parameters respectively.
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The first relationship can be reduced to the following by using Eqn. (4.24),

CDP −DM − CMP ≥ 0 (C.28)

which can then be reduced to,

C (D −M)P

DM
≥ 1 (C.29)

which can further be reduced to the following,

C

(
1− 1

r1

)
1

r2
≥ 1 (C.30)

which directly gives the condition shown in Eqn. (4.23) and therefore, it is true. Given
that the first relationship is true, a lower bound for KD can be obtained as the
following,

KD ≥ SDM + SCMP

P
(C.31)

ReplacingKD by its lower bound in the second relationship reduces it to the following,

D (M − P ) ≥ 0 (C.32)

which is true because M > P and therefore, the second relationship is also true.
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Appendix D

Estimation Approach for the
Hybrid Model

D.1 The VBEM algorithm for the estimation of
the hybrid model

The expression obtained for the lower bound is provided in Table. D.1.

Table D.1: Lower Bound Expression
L ≥ −α

∑D
d=1

∑M
m=1 ln β

d
m +DMα∗ ln β∗ +DM ln Γ(α)

Γ(α∗)

+α
∑D

d=1

∑M
m=1

(
1− β∗

βd
m

)
− N

2
tr (ΣX)− 1

2

∑N
n=1 (xn)

T xn +
NK
2

+ N
2
ln |ΣX |+ DM

2
+ 1

2

∑D
d=1 ln |Σfd | − 1

2

∑D
d=1 tr

(
λd
[
Σfd +

(
f̂d
)T

f̂d

])
− (α− α∗)

∑D
d=1

∑M
m=1

(
ψ (α)− ln βd

m

)
+ 1

2

∑D
d=1

∑M
m=1

(
ψ (α)− ln βd

m

)
− κ

∑D
d=1 lnϕ

d +Dκ∗ lnϕ∗ +D ln Γ(κ)
Γ(κ∗)

+κ
∑D

d=1

(
1− ϕ∗

ϕd

)
− (κ− κ∗)

∑D
d=1

(
ψ (κ)− lnϕd

)
+ N

2

∑D
d=1

(
ψ (κ)− lnϕd

)
− ND

2
ln (2π)−

∑N
n=1

∑D
d=1

(ydn)
2
κ

2ϕd

+
∑N

n=1

∑D
d=1 y

d
nf̂

dẑn
κ
ϕd −N

∑D
d=1

κ
2ϕd tr

{[(
f̂d
)T

f̂d + Σfd

]
Σz

}
−
∑N

n=1

∑D
d=1

κ
2ϕd tr

{[(
f̂d
)T

f̂d + Σfd

]
ẑn (ẑn)

T

}
where F̂ =

[
Ŵ , V̂

]
, Ẑ =

[
U, X̂

]T , ΣZ =

[
0 0
0 ΣX

]
, ϵd = diag

([
νd1 , ν

d
2 , ..., ν

d
M

])
,

λd = diag
([

α
βd
1
, α
βd
2
, ..., α

βd
M

])

Update expressions for each of the posterior parameter and the prior parameters
are listed in Table. D.2.
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Table D.2: Update Expressions
Distribution Parameters

q
(
νdm
)

α = α∗ + 1
2
, βd

m = β∗ + 1
2

[(
f̂d
m

)2
+ Σfd

m

]
q
(
σd
)

κ = κ∗ + N
2
, ϕd = ϕ∗ + 1

2

∑N
n=1

(
ydn
)2 −∑N

n=1 y
d
nf̂

dẑn

+1
2

∑N
n=1 tr

{[(
f̂d
)T

f̂d + Σfd

] [
ẑn (ẑn)

T
]}

+1
2

∑N
n=1 tr

{[(
f̂d
)T

f̂d + Σfd

]
[Σz]

}
q
(
fd
)

Σfd =
[∑N

n=1
κ
ϕd ẑn (ẑn)

T + Nκ
ϕd Σz + λd

]−1

f̂d
T
= Σfd

[∑N
n=1 y

d
nẑn

κ
ϕd

]
q (xn) Σx =

[∑D
d=1

((
V̂ d
)T

V̂ d + ΣV d

)
κ
ϕd + I

]−1

x̂n = Σx

[(
yn − ŴU

)T
diag

(
κ
ϕ

)
V̂

]
Prior parameters 1

β∗ = α
DMα∗

∑M
m=1

∑D
d=1

1
βd
m
, 1

ϕ∗ = κ
Dκ∗

∑D
d=1

1
ϕd

ψ (α∗) = ln β∗ + 1
DM

∑M
m=1

∑D
d=1

(
ψ (α)− ln

(
βd
m

))
ψ (κ∗) = lnϕ∗ + 1

D

∑D
d=1

(
ψ (κ)− ln

(
ϕd
))

where F̂ =
[
Ŵ , V̂

]
, Ẑ =

[
U, X̂

]T , ΣZ =

[
0 0
0 ΣX

]
, ϵd = diag

([
νd1 , ν

d
2 , ..., ν

d
M

])
,

λd = diag
([

α
βd
1
, α
βd
2
, ..., α

βd
M

])

208



Appendix E

Supplementary Materials for
Causal Modelling Based on the
TVPM

E.1 Additional Results
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Figure E.1: Well 2: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.
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Figure E.2: Well 3: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.
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Figure E.3: Well 4: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.
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Figure E.4: Well 5: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.
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Figure E.5: Well 6: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.
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Figure E.6: Well 7: Spreads of the estimated total effects of well bore subcool and
steam chamber pressure on production at different values of α∗.
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Figure E.7: For wells 2 to 7 (top to bottom): (i) Median of total effects identified using
the TVPM based approach and (ii) total effect identified using the time-invariant
linear regression models estimated under the ML approach.

213



E.2 VBEM Algorithm: Estimation of the TVPM

Table E.1: LKL: During the estimation stage (top) and the hypothesis testing stage
(bottom)
LKL = −α

∑T
t=0

∑D
d=1 ln β

d
t + (T + 1)Dα∗ ln β∗

+(T + 1)D ln Γ(α)
Γ(α∗)

+ α
∑T

t=0

∑D
d=1

(
1− β∗

βd
t

)
−1

2

∑T
t=0 ln |Λt|+ ln p (y1|u1, σ) +

∑T
t=1 ln p (yt|y1:t−1, ut, σ);

p (y1|u1, σ) = N
(
y1|0, σ−1 + uT1

{
Λ−1

0 + Λ−1
1

}
u1
)

p (yt|y1:t−1, ut, σ) = N
(
yt|uTt µt−1, σ

−1 + uTt
(
Λ−1

t + Σt−1

)
ut
)

LKL = −α
∑T

t=0

∑D#
t

d=1 ln β
d
t +

∑T
t=0

∑D#
t

d=1 α
∗ ln β∗

+
∑T

t=0

∑D#
t

d=1 ln
Γ(α)
Γ(α∗)

+ α
∑T

t=0

∑D#
t

d=1 ln
(
1− β∗

βd
t

)
−1

2

∑T
t=0 ln |Λ

#
t |+ ln p

(
y1|u&1 , σ

)
+
∑T

t=1 ln p
(
yt|y1:t−1, u

&
t , σ

)
;

p
(
y1|u&1 , σ

)
= N (y1|0,M1)

M1 = σ−1 +
(
u&1
)T  (Λ∼

0 )
−1 + (Λ∼

1 )
−1 0 0

0
(
Λ−

0

)−1
0

0 0
(
Λ+

1
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 u&1
p
(
yt|y1:t−1, u

&
t , σ
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= N

(
yt|
(
u&t
)T [ µ∗

t−1

0

]
,M2

)
M2 = σ−1 +

(
u&t
)T  (Λ∼

t )
−1 0 0

0 0 0

0 0
(
Λ+

t

)−1

+

[
Σ∗

t−1 0
0 0

]u&t
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Table E.2: Update expressions: During the estimation stage
α = α∗ + 1

2

βd
0 = β∗ + 1

2

[
Σθ0θ0 (d, d) +

(
θ̂d0

)2]
βd
t = β∗ + 1

2

[
Σθtθt (d, d) +

(
θ̂dt

)2]
+ 1

2

[
Σθt−1θt−1 (d, d) +

(
θ̂dt−1

)2]
−
[
Σθtθt−1 (d, d) +

(
θ̂dt θ̂

d
t−1

)]
∀ t ∈ [1, T ]

Filter:
Σ0 = Λ−1

0

µ0 = 0
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[{

Λ−1
t + Σt−1

}−1
+ σutu

T
t

]−1

∀ t ∈ [1, T ]

µt = Σt
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t + Σt−1

}−1
µt−1 + σutyt

]
∀ t ∈ [1, T ]
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Σθtθt+1 =
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C + CΛt+1Σθt+1Λt+1C CΛt+1Σθt+1

Σθt+1Λt+1C Σθt+1

]
;

C =
[
Σ−1

t + Λt+1

]−1 ∀ t ∈ [T − 1, 0][
θ̂t
θ̂t+1
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= Σθtθt+1
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t µt

− (Λt+1 − Λt+1CΛt+1)µt + Σ−1
θt+1
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;

C =
[
Σ−1

t + Λt+1

]−1 ∀ t ∈ [T − 1, 0]
σ = T∑T

t=1[yTt yt+uT
t {θ̂tθ̂Tt +Σθtθt}ut−2yTt uT

t θ̂t]
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Table E.3: Update expressions: During the hypothesis testing stage
Filter:
Σ&

0 =
(
Λ&

0

)−1

µ&
0 = 0
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