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ABSTRACT
It is a well known fact that minimizing energy consumption
in Wireless Sensor Networks (WSNs) is crucial for its usabil-
ity; and minimizing the flow of data is one way to achieve
that. Most WSN models assume the existence of a base sta-
tion where query results could in principle be cached, how-
ever, the opportunity for re-using such cached data for min-
imizing data traffic in the WSN has not been well explored
thus far. Aiming at filling this gap, we investigate the cache-
aware query processing problem in WSNs. We propose an
approach that first clips an original rectangular query area
into a polygon by selecting a suitably good subset of the
cached queries for reuse. Next, this polygon is partitioned
into rectangular sub-queries that are then submitted to the
WSN. Finding the cost-wise best combination of polygon
clipping and rectangular partitioning amounts to a highly
combinatorial problem that justifies the use of efficient and
effective heuristics. This paper presents algorithms that are
used within a cost-driven optimization search to find a good
“query-plan”. Algorithms for maintaining the cache consis-
tency are also presented. Our proposal does not dependent
on any particular algorithm for processing queries in a WSN;
as long as there is a well-defined a cost-model for the same,
any proposal can be used. Experimental results show that
our heuristic algorithms are orders of magnitude faster than
an exhaustive search, yield no more than 10% loss compared
to the optimal query cost, and are never worse than the two
obvious alternatives, i.e., not using the cache at all or using
all of it.

1. INTRODUCTION
A typical Wireless Sensor Network (WSN) is comprised

of a set of several identical sensor nodes with limited CPU
and storage capacity plus one base station which is assumed
to have more resources, e.g., more CPU power, additional
storage space and a relatively large, or possibly continuous,

∗On sabbatical leave at the University of Alberta.

Technical Report TR 09-05. March 2009. Dept. of
Computing Science. University of Alberta. Canada.
All rights reserved. Submitted for publication.

energy supply. All nodes are able to communicate wirelessly
within a certain range and are assumed to be aware of its
neighbors, i.e., other nodes within its wireless communica-
tion range. No node is assumed to have full knowledge of
the network, including the location of other nodes. The base
station is a partial exception in the sense that it is assumed
to have some high-level knowledge of the WSN, e.g., node
density, wireless range, etc., which is used in the query cost
model. All decisions, such as data packet routing and colli-
sion resolution, are to be made locally by the nodes involved.
Each node is capable of observing its surroundings and cap-
ture one or more measures relative to the same. Many ap-
plications for WSN have been discussed in the literature,
e.g., [4, 15, 22] to name but a few. In a typical example,
nodes are capable of sensing environmental attributes, such
as temperature, light and humidity, allowing researchers to
monitor an area of interest remotely, inconspicuously and
continuously.

Once the WSN is active and nodes are collecting data, a
number of queries can be issued, e.g., spatio-temporal range
queries, join queries and aggregate queries, for which a large
number of algorithms have been proposed, e.g., [1, 3, 11, 14,
20, 19, 25]. Most of those algorithms also assume the exis-
tence of a base station from where queries are injected into
the WSN and to where the queried data is returned. In this
scenario, there exists a clear opportunity for reducing query
cost through caching query results at the base station and
subsequently re-using such cached data when new queries
are posed.

While in a traditional database system the use of cache
is for maximizing the system’s throughput, we aim at min-
imizing the energy cost of query processing. Nonetheless,
even though it is not our main goal, the approaches we pro-
pose will likely also yield some improvement in the WSN
throughput. As well, since our main interest is not in the in-
network query processing itself, we do not make any strong
assumption on how in-network query processing is done,
rather we only assume that a cost model for the adopted
technique is available. Typically, algorithms for query pro-
cessing in WSN borrow the minimum bound rectangle ab-
straction from spatial databases and assume that the query
is a rectangle within the monitored area; we follow suit and
make similar assumptions.

Our main problem in this paper is to minimize the energy
cost of processing a rectangular query Q with respect to a
WSN that requests the most recent values of (possibly all)
sensed attributes of sensor nodes located within Q1. To

1To simplify notation we refer to a query as well as to its



illustrate the potential gain of using cached data consider
for instance the scenario depicted in Figure 1, where Q is
a new query and P = {P1, P2, P3}, represents previously
processed queries. Assuming the cached data is still valid, it
is clear that only nodes located in the “clipped” query region
Q′, need be contacted. Since, the number of nodes within
the area of Q′ is bound to be smaller than those within Q’s
area, processing Q′ is bound to be energy-wise less expensive
than processing Q.

Q’

2

P1

P3

Q

(a) (b)

P

Figure 1: Query Q, and clipped query Q′ after con-
sidering previous queries Pi.

One trivial way to solve this problem is to find the mini-
mum bounding rectangle of Q′, denoted by R(Q′), and pro-
cess the query using R(Q′) instead of Q. Clearly, that would
not necessarily minimize query processing cost as R(Q′)
would often be likely equal to R(Q) (as in the case of Fig-
ure 1).

Another straightforward way to solve this problem is to
“flood” the query area and have only the sensors within
the query area respond to the query. There are two main
drawbacks in this approach. One is that in order to de-
cide whether it should respond or not to the query, a sensor
would need to know whether it is actually inside the query
area. Even though efficient linear time algorithms exist to
answer the point-in-polygon problem [17], they are linear
in the size of the polygon description. In general the con-
tour of the clipped query Q′ can be very complex and also
have holes, that is, its description may be quite large. Re-
call that a node’s CPU is assumed to be fairly limited, i.e.,
even a linear time algorithm on a fairly large input can be
sufficiently demanding to be executed at the node. Another
problem is that the query area may contain a large num-
ber of nodes, and each one (plus possibly others sufficiently
close to the query’s boundary) would receive the potentially
large description of the query’s polygon. This would imply
a potentially large number of large messages flowing in the
network. Given that the the larger the message the more en-
ergy is needed to transmit it, this flooding-based approach
is also non-practical.

Thus a more sophisticated solution is needed to adequately
address the cache-aware query processing problem in WSN
motivated above. The solution we propose assumes a query
processing framework, illustrated in Figure 2, located on
the WSN’s base station, and whose functioning is as fol-
lows. The user poses a query Q at the base station. The
Query Processor requests from the Cache Manager the set
P of previous queries that intersect Q. The Cache Manager
uses the Cache Index to quickly obtain the set P of rele-
vant (cached) queries. (Although other possibilities could
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be used, an obvious alternative for the Cache Index would
be an R∗-tree [2].) The Cache Manager inspects whether
any of the queries in P contain stale data. If needed it
updates the Cache Index, and returns the set P ′ of valid
relevant queries that intersect Q, along with the union re-
spective cached datasets D(P ′i ), ∀P ′i ∈ P ′. Having Q and P ′,
the Query Processor uses the services of a Query Optimizer2

for two inter-dependent tasks aiming at reducing the cost of
processing Q: (1) to determine which set P ′′ ⊆ P ′ to use,
and thus determine the clipped query Q′ and, considering
Q′ and P ′′, (2) to partition Q′ in order to determine a set of
sub-queries Θ. Finally, the Query Processor receives Θ from
the Query Optimizer, submits them to the WSN, combines
their results with the cached datasets of the queries in P ′′

and returns the final query result to the user.

Θ
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Figure 2: Query processing framework within the
base station of a cache-aware WSN.

In the context of this framework, we focus mainly on the
Query Optimizer module, i.e., given a query Q and the set
P ′, we aim at determining the sets P ′′ and Θ that mini-
mize the energy cost for processing Q. To the best of our
knowledge this cache-aware query processing problem has
not been addressed in the related literature. In summary,
this paper presents the following contributions:

• We define the cache-aware query processing problem
and argue that its highly combinatorial nature justifies
the development of efficient sub-optimal solutions.

• We propose cost-oriented heuristic algorithms that are
able to rapidly find good solutions (and often the best
one) to the cache-aware query processing problem.

• Finally, we propose low-overhead algorithms for main-
taining the WSN’s cache current and consistent.

The remainder of the paper is structured as follows. In the
next section we briefly review some of the related research.
In Section 3 we discuss in detail the cached data selection
problem and its inherently complex nature in the context
of in-network query processing. Heuristic algorithms that
are combined to find a cost-wise good strategy for solving

2We do not claim that this is a full-fledged query optimizer
in the usual sense, we use this term simply for the sake of
argumentation.



the cache-aware query processing problem are presented in
Section 4. Next, Section 5 introduces algorithms for main-
taining cache consistency and freshness. Section 6 presents
empirical evidence that our proposed solutions can be both
effective and efficient when compared to the obvious alterna-
tives of not using the cache at all or using all of it. Finally,
section 7 concludes the paper.

2. RELATED WORK
Data caching has been a well-know mechanism for en-

hancing query throughput in database systems in general
for quite some time [9]. In a typical setting, the cache of-
fers much faster access (e.g., nsec. vs. msec.) but is much
smaller than the main storage (e.g., a few MBytes vs. many
GBytes), and it is used so that requests to frequently ac-
cessed data can performed more efficiently. In distributed
database systems data caching can also reduce communi-
cation costs, since the amount of data flowing in the net-
work is minimized. Our problem is similar but, as shall
be clear from our discussion in the forthcoming sections, it
has some important differences. Several new issues, such
as data replacement policy and validation, as well as their
close relations to lower level transaction management, need
be carefully considered when caches are used. A thorough
discussion on the topic with respect to traditional database
systems is beyond the scope of this paper. We note that
in the context of WSN many of these issues have not been
carefully considered yet.

Cache strategies can be classified into two groups [12]:
physical and logical caching. Physical caching, arguably the
most common one, replicates in the (faster) cache pages
or tuples identified as hot spots. In order to identify hot
spots, heuristics based on access frequency and cost/benefit
analyses can be used. Logical caching, on the other hand,
replicates data that belong to query results. For example,
a logical caching mechanism where the main idea is to use
query semantics for organizing the cache was proposed in
[7]. Our approach may be likened to that one in the sense
that the authors model cached data and queries as “geomet-
ric” constraints onto the data space, whereas in our case we
deal with queries as actual polygons in the Euclidean space.
Another difference is that our approach aims at minimizing
data flowing in the WSN using past queries whereas in [7]
the authors aim at optimizing cache usage and replacement
in data servers using the query semantics.

The context in which we consider the use of cache, namely
WSN, is fairly novel itself, and a relatively small number of
papers have been published in this area. Most of them are
related to the networking rather than the database aspect of
the problem. In that context data caching can be applied to
minimizing packet transmissions in the network and conse-
quently reducing power consumption. For instance, in [18]
the authors propose a strategy that emulates a data caching
mechanism by predicting when a sensor’s observed data will
change. Such a technique aims at avoiding requests to re-
dundant data but it might impact negatively the correctness
of query results, because some unpredicted change may not
be propagated in the WSN. Another strategy proposed in
the same paper is to aggregate the flow of redundant (repli-
cated) values in a single message. Again, this may have an
adverse effect on the query result as a single message failure
becomes responsible for several values from different nodes
being lost. While link failures can always affect query pro-

cessing in a WSN, we minimize their effect by placing the
cache on the base station which needs to relay the query
results to the user anyway.

In [8] the authors discuss how to explore a natural hier-
archy of entities within a WSN using an XML framework.
One of the main focus of that work is on the so-called Query-
Evaluate-Gather technique which enables one to not only
find relevant queried data within a node but also how to
gather the missing parts. We, on the other hand, assume
that no data is cached on the actual resource-challenged
sensor nodes. More importantly the authors focus only on
improving query throughput, ignoring the energy cost fac-
tor, whereas in this paper, by virtue of having the cache at
the base station, we focus on minimizing the energy cost of
query processing in the WSN.

A work that assumes a context closer to ours, i.e., it is
database-oriented in nature and geared towards an WSN has
been presented in [16]. The authors assume that the WSN
uses a tree-based routing protocol and propose that sev-
eral nodes in the network to be used for caching data. The
problem of choosing these so-called cache-nodes reduces to
finding a Steiner Minimal Tree (SMT), i.e., a tree that con-
nects all points with minimal length. Since finding an SMT
is a NP-Hard problem, the authors propose a sub-optimal
solution, called Steiner Data Caching Trees (SDCT). Unfor-
tunately the bottleneck of the proposal is that it is as ro-
bust as the cache-nodes, i.e., once they become unavailable
(which can happen for a variety of reasons), not only data is
lost but also another SDCT needs to be reconstructed from
scratch. By relying on the base-station our approach is rel-
atively free from side-effects when individual nodes become
unavailable.

3. CACHE-AWARE QUERY PROCESSING

3.1 Background
Before proceeding further we need to decide on a good

model for the cost of processing queries in a WSN to be used
within the Query Optimizer. In the remainder of this paper
we re-use the SWIP framework for processing rectangular
queries within a WSN [5]. While other query processing
algorithms could be used, the main advantage of using the
SWIP framework is that it offers an intuitive and accurate
model that can be used for guiding the optimization problem
we have. Due to limited space we skip the details of the cost
model and refer to the interested reader to [5]. SWIP’s query
processing approach can be summarized in the following four
major tasks, which form the main components of SWIP’s
cost model:

S1: The query is sent from the base station3 node to a
coordinator node.

S2: The query is partially flooded within the query area.

S3: All nodes in the query area send their data to the co-
ordinator node.

S4: The coordinator node returns the gathered data to the
Base Station node (likely to the same path used in step
(S1)).

3In [5] the query was allowed to be posed from any node.In
our case we assume the more typical case of a single node,
the base station, being always query originator.
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Figure 3: Illustration of the SWIF approach, where SN is a Sensor Node, BS is the base station, the dashed
line is the path traversed by the query (and subsequently by its results) and the query region is denoted by
the marked rectangular areas.

An important observation to be made at this point is that
steps S1 and S4 can be considered (necessary) overheads
to the query cost. Consider Figure 3(b), where the total
queried area is the same as in Figure 3(a), but instead of
one query we use two queries. Each and every node that is
contacted and contributes to the answer in case (a) is also
contacted in case (b). Given that during the local flooding
shortest paths are found we consider the costs of steps S2
and S3 to be comparable in both cases. The main difference
between those two cases is in the costs of steps S1 (mainly)
and S4. In case (a) only one message is sent in step S1,
whereas in case (b) two messages of the same size and routed
through different paths are needed. In step S4, the query
result is returned in a single message for case (a) but also in
two messages, though each one carries less data. It should
be intuitive by now that a larger number of smaller queries
is probably not as good as a smaller number of larger queries
due to the overhead that each query imposes As we shall see
shortly this observation plays a key role in the optimization
process we propose.

Let P be the set of all cached queries each having a pos-
sibly distinct validity period. We assume that all cached
queries are pair-wise disjoint. This is a natural assump-
tion because only the most recent data of any sensor needs
to be cached. In fact, as it shall become clear throughout
the paper, this assumption is enforced by our cache con-
sistency algorithms presented in Section 5. The set P ′ =
{P ′1, P ′2, . . . , P ′M} ⊆ P of queries which are still valid and
such that P ′i

T
Q 6= ∅, ∀P ′i ∈ P ′, is the set of relevant valid

queries with respect to Q. We make the natural assumption
that the resulting data set D(P ′i ) for each query P ′i is cached
in the base station as well. The case of cached queries no
longer valid is discussed in Section 5, but for now it suffices
to ignore them.

The following definitions and Table 1 summarizes some
of the notation used throughout the rest of the paper. Note
that, unless otherwise noted, whenever we refer to a polygon
we mean its boundaries as well as its interior points.

Definition 1. Given two polygons R and T , R
S
T de-

notes the polygon given by the union of all points interior
to R or to T as well all as their boundaries. Similarly,
given a set P of polygons Pi, their union is denoted as
U(P ) =

S
Pi∈P Pi.

Definition 2. Given a polygon R and a set of polygons
S, such that R

T
Si 6= ∅, ∀Si ∈ S, we denote as R ⊕ S the

clipping of R with respect to S. Informally, R ⊕ S is the
portion of R not overlapped by any Si ∈ S.

Definition 3. Given a rectilinear polygon R we denote
as its partition a set ρ(R) of rectangles such that their pair-
wise intersection is null and their union is equal to R.

Notation Meaning

Q A rectangular query wholly contained
within the monitored area

P Set of all relevant queries in the cache,
i.e., {P1, P2, . . . PM}

P ′ Set of relevant valid queries wrt Q ,i.e.,
{P ′i s.t. P ′i ∈ P ∧ P ′i

T
Q 6= ∅}

P ′′ Subset of P ′ (to be determined by the
Query Optimizer module)

Θ Set of queries given by ρ(Q⊕ U(P ′′))
to be submitted to the WSN

D(X) Data set associated with a query X
C(X) Cost (energy-wise) for processing query

X in the WSN

Table 1: Notation.

3.2 The Main Problem(s)
The problem we investigate is how to minimize the cost

of processing a query Q which requests the current obser-
vations of all sensor nodes within Q’s area. Considering
only the set P ′, this amounts to a request for the cur-
rent data from the sensors in the area denoted by Q′ =
Q ⊕ P ′. We can take advantage of previously proposed
algorithms for processing rectangular queries in WSN by
determining Θ = {θ1, θ2, . . . , θT } = ρ(Q′) . Once this is
done, one can use suitable algorithms to execute each sub-
query in Θ, and obtain the answer for Q, i.e., D(Q) =
(
S
θi∈Θ D(θi))

S
(∪P ′

i∈P
D(P ′i )). Under the reasonable as-

sumption that data for previous queries can be obtained at
no cost within the base station, the cost of processing the
original query Q is C(Q) =

P
θi∈Θ C(θi). Hence, our ulti-

mate goal is to determine the set Θ that minimizes C(Q).
However, before setting out to determine Θ one must ques-

tion whether it is wise to use the full set of relevant valid
queries P ′ or rather a subset P ′′ thereof. We claim that very
often one may be better off not using P ′, due to the over-
head that each additional query imposes. For each element



P ′i ∈ P ′ considered for re-use the query area is reduced but
the number of sub-queries in Θ is further increased. How-
ever, each sub-query carries the burden of an inherent over-
head, namely that of dispatching and receiving each query,
thus adding sub-queries in Θ—an unavoidable consequence
of adding P ′i to P ′′—is worth it if and only if the amount of
in-network flow saved is larger than the overhead added.

We illustrate the intuition behind this argument through
Figure 4 which shows two equally feasible alternatives for
clipping and partitioning the instance problem in Figure 1.
For each Q′ we have a partitioning, i.e., a set Θ already
defined. Note that this is just for the sake of illustration,
and in general the set Θ is not unique.

(a) Q′ = Q⊕ P2 (b) Q′ = Q⊕ (P1

S
P2)

Figure 4: Possible partitioning schemes with respect
to Figure 1.

From Figure 4(a) it is quite clear that using P2 reduces
Q’s area considerably and therefore it is likely worth pay-
ing the overhead imposed by the three resulting sub-queries.
However, when P1 and P2 are used at the same time not only
query area is reduced by only a relatively small amount as
compared to the previous case, but it increases the number
of sub-queries from three to five. Thus, in this case, one
would likely be better off not re-using both P1 and P2 but
rather only P2 as the set P ′′ instead. This scenario, although
simplistic, suggests this problem should be explored from an
optimization perspective, and that is exactly the main point
of this paper.

However, the reasoning above assumes one is able to solve
two sub-problems in an efficient manner, namely: clipping
a polygon with respect to another one and partitioning a
rectlinear polygon. We discuss those in the following.

3.3 Query Clipping and Partitioning
For the polygon clipping problem we use the well-known

GPC public implementation4 which is based on a polygon
clipping algorithm presented in [24]. Furthermore, we need
to evaluate the query cost yielded by a given set P ′′.

There are many goals one can aim at when partitioning
a polygon. As discussed earlier each obtained rectangle in
the partitioning of the clipped query will correspond to a
sub-query, and in order to minimize the query processing
overhead we restrict ourselves to finding a minimum cardi-
nality decomposition of Q′. Interestingly, this produces a
positive side-effect; it helps improving query performance
from a networking perspective as well, e.g., by minimizing
the effect of packet collisions in the network.

Covering a rectlinear polygon is a well-known problem in
computational geometry [13] but is not a desired solution
for our context. A covering set allows non-null intersections
among the covering rectangles, which in our setting would
imply that some nodes may be requested to participate in
the same query more than once, thus expending more energy

4http://www.cs.man.ac.uk/∼toby/alan/software/

than needed. While this could be circumvented by somehow
making nodes not respond twice to the same query, there is
a more severe problem. When the polygon has holes, which
may well be the case of Q′, the covering problem has been
proved to be NP-complete [6]. Therefore we settle for finding
a partition of the polygon Q′, i.e., a set of non-intersecting
rectangles whose union is equal to Q′. It is important to
note that in the related literature there is a number of pro-
posals for similar problems under the same denomination.
However, most aim at minimizing other objective functions,
e.g., the edge length of the edges of the partition set, instead
of minimizing the cardinality of the partition set as we do.

There exists a O(v1.5 log v) time optimal algorithm for this
problem, where v is the number of vertices of the polygon
to be partitioned [21]. Unfortunately its implementation
is quite complex. An alternative approximative algorithm,
with complexity O(v log v) and much simpler to implement
has been presented in [23]. Furthermore it has also been ar-
gued in [10] that the partitioning problem has “an Ω(v log v)
lower bound on the time-complexity. The result holds for
any decomposition, optimal or approximative.” That is, the
algorithm we chose, albeit not guaranteed to provide the op-
timal partition is as efficient as it can possibly be in terms
of time complexity. Considering the fact that base station
may not be computationally resourceful, and furthermore
that within a WSN environment one should use every chance
to save energy as opportunistic as it might be, we consider
that settling for a sub-optimal but effective and efficient al-
gorithm is an worthy trade-off.

4. THE CACHE-AWARE QUERY OPTIMI-
ZATION PROBLEM

In order to address the problems discussed in the previous
section, we begin by assuming Q and P ′ are given. How one
determines the set P ′ ⊆ P bears no impact on the following
discussion, and thus we defer a detailed discussion of that
task to Section 5. If C(X) is the cost of processing a query
X, and assuming the use of cached data at the base station
can be done at null cost, the optimization problem at hand
is to find the subset P ′′ and the rectangular partitioning Θ
that minimizes C(Q) =

P
θi∈Θ C(θi). As it shall become

quite clear in the following, this is a highly combinatorial
problem, for which heuristic solutions are justified in the
interest of query processing time.

We now have two problems for which we seek effective and
efficient solutions. One problem is to find the set P ′′ that
yields the optimal query cost assuming a particular polygon
rectangular partitioning algorithm, which turns itself out to
be the second problem.

Given the arguments above, the main problem is we need
to solve is finding which set P ′′ ⊆ P ′ of previous queries
to use. A trivial but impractical way to solve this problem
is by brute-force. In this case one would to consider all

elements of P ′’s powerset, whose cardinality is 2|P
′|, and for

each one find a partition Θ—we discuss how to do this in
the next section—and then select the set P ′′ that minimizes
C(Q). A more practical approach is to start with an empty
(full) set P ′′ and judiciously increase (decrease) its size until
no improvement can be achieved, at which point the best
solution found so far is adopted. This idea forms the core of
the branch-and-bound approach we present in this section.

In our preliminary experiments we rarely saw a case where
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Figure 5: Illustration of the branch-and-bound
search for a good set P ′′ and corresponding set Θ.

using no available cache would be the best option. This
suggests that instead of starting with the original query and
incrementally evaluating the solutions obtained by consider-
ing more and more intersections, it may be more productive
to work the other way around.

We build our search tree by considering P ′′ = P ′, i.e.,
all possible |P ′| intersections between P ′ and Q in the root
node; we define the root node’s height to be 0. Then at
height 1 we consider all possible intersections using |P ′| − 1
elements from P ′. In general, at height K < |P ′| of the
tree, each node represents the intersection between Q and a
set P ′′ containing a unique set of |P ′| − K elements of P ′

Furthermore, each such node will branch out yielding P −K
sub-trees. Clearly, if no branch is pruned and memoization
is used properly, then all elements of P ′’s powerset will be
evaluated, and the one with minimum cost can be chosen as
the best solution. It is important to note that for each one

of 2|P
′| possibilities, one needs to compute a Q′ as well as

its partitioning. While such an exhaustive search is concep-
tually correct and guaranteed to find the optimal solution,
it is not practical. Thus we propose to use a branch-and-
bound technique to find a solution, possibly sub-optimal, to
this search problem.

The search works as follows (we use Figure 5 to support
the explanation). The root node uses P ′′ = P ′, we com-
pute its cost C(Q) and save it as the incumbent cost. Note
that it implies performing both appropriate clipping as well
as partitioning operations. Next we “open” the node cor-
responding to the incumbent solution, i.e., obtain all the
possibilities using |P ′| − 1 intersections and compute their
cost. Any un-opened node, i.e., one not yet explored, that
has a cost lower than the incumbent is a candidate node to
be opened as it indicates a better solution that the current
incumbent one. Following a greedy mode, we choose the
node with lowest cost, update the incumbent cost to that of
the chosen node, and open it, leading us to one level further
down the search tree. In Figure 5, the chosen node is the one
corresponding to using P ′ \ {P ′2}. As long as there are un-
opened nodes with cost lower than the current incumbent,
the search proceeds down the tree. Once all un-opened nodes

fail this test, we return the best solution thus far, i.e., the
set P ′′ and partitioning Θ associated with the node which
yielded the current incumbent cost. In the case of Figure 5,
if none of the newly opened nodes has a better cost than
the current incumbent then the search would stop and re-
port P ′′ = P ′ \ {P ′2} = {P1, P3, P4} and the corresponding
partition of Q⊕ U(P ′′) as the solution for the search.

Algorithm 1 shows the pseudo-code for the searching pro-
cedure just discussed. As we shall confirm shortly if provides
very good solutions at a very small fraction of the exhaustive
search cost.

Algorithm 1 B+B: a branch-and-bound search for P ′′

Input: Q and set P ′

1: create a node and set it as an open incumbent node
2: set P ′′ = P ′

3: compute a set of sub-queries Θ = ρ(Q⊕ U(P ′′))
4: compute the incumbent cost C∗ =

P
θi∈Θ C(θi)

5: set the incumbent solution 〈P ′′,Θ〉
6: while there is at least one open incumbent node do
7: select as incumbent node the node closer to the root

and set it as closed
8: for each element P ′i ∈ P ′′ do
9: set P ′′ = P ′′ \ {P ′i}

10: set Θ = ρ(Q⊕ U(P ′′))
11: compute the cost C =

P
θi∈Θ C(θi)

12: if C ≤ C∗ then
13: set the incumbent solution to 〈P ′′,Θ〉
14: set the current node as an open incumbent node
15: set C∗ = C
16: else
17: set the current node as closed
18: end if
19: end for
20: end while
21: return the incumbent solution

While Algorithm 1 will stop at a locally optimum solution
and typically be much faster than the exhaustive search,
one can be even more aggressive. Another possibility is to
start the search as the branch-and-bound approach does,
i.e., using all intersections. Then at each step remove the
smallest one, i.e., the intersection that contributes the least
to the savings. If this improves the query cost, i.e., the
overhead yielded by the removed query was larger than its
savings, we proceed removing the next smallest intersection,
and so on and so forth as long as the total query cost is not
increasing. This greedy approach is reflected in Algorithm 2.

With Algorithm 2 in mind, one can think of yet another
fairly intuitive alternative. A previous query in set P ′ is
worth using only if it saves more cost than it induces through
the overhead of the resulting sub-queries. Then if one uses
P ′i ∈ P ′ that yields the largest intersection with the current
Q′ chances are that the gain may be larger than the added
overhead. This can be repeated iteratively in a greedy mode.
Using this observation we propose Algorithm 3 which is a
rather simple modification of Algorithm 2.

By the way they start, it is easy to see that the solution
by both the B+B and the GrF algorithms above cannot be
worse than using all of the cache without any further optimi-
zation. Likewise the GrE algorithm cannot deliver a worse
solution than not using any cache at all. Furthermore, one



Algorithm 2 GrF: a greedy search for P ′′

Input: Q and set P ′

1: compute a set of sub-queries Θ = ρ(Q⊕ U(P ′))
2: compute the incumbent cost C∗ =

P
θi∈Θ C(θi)

3: set the incumbent solution to 〈P ′,Θ〉
4: set Q′ = Q
5: repeat
6: find P ′i ∈ P ′ that minimizes the area (Q′

T
P ′i )

7: set P ′ = P ′ \ {P ′i}
8: compute a set of sub-queries Θ = ρ(Q′ ⊕ U(P ′))
9: compute the cost C =

P
θi∈Θ C(θi)

10: if C ≤ C∗ then
11: set C∗ = C
12: set the incumbent solution to 〈P ′,Θ〉
13: set Q′ = Q′ ⊕ P ′i
14: end if
15: until P ′ = ∅ or C > C∗

16: return the incumbent solution

Algorithm 3 GrE: another greedy search for P ′′

Input: Q and set P ′

1: compute the incumbent cost C∗ = C(Q)
2: set P ∗ = ∅
3: set Θ = {Q}
4: set the incumbent solution to 〈P ∗,Θ〉
5: repeat
6: find P ′i ∈ P ′ that maximizes the area (Q

T
P ′i )

7: set P ′ = P ′ \ {P ′i}
8: set P ∗ = P ∗

S
P ′i

9: compute a set of sub-queries Θ = ρ(Q⊕ U(P ∗))
10: compute the cost C =

P
θi∈Θ C(θi)

11: if C ≤ C∗ then
12: set C∗ = C
13: set the incumbent solution to 〈P ∗,Θ〉
14: end if
15: until P ′ = ∅ or C > C∗

16: return the incumbent solution

can anticipate that a bad (greedy) decision by the GrE al-
gorithm is going to be more costly than a bad decision by
the GrF algorithm. In the GrF algorithm the change in the
set P ′′ from one iteration to the next is by construction rel-
atively small whereas in the case of the GrE algorithm it is
exactly the opposite case, hence yielding a bigger change in
the solution. Indeed, this will be confirmed in the experi-
ments we present in Section 6.

5. MAINTAINING CACHE CONSISTENCY
In order for the cache be effective its data needs to be

kept consistent and as fresh as possible. In this section we
discuss the assumptions made about the cached queries and
data, as well as algorithms used within the Cache Manager
module proposed in the query processor’s overall architec-
ture (Figure 2).

We assume that whenever a query is posed the dataset
returned has a validity period (or equivalently an expira-
tion timestamp). Although each sensor can be autonomous
enough to decide on the validity time of its own observa-
tions, we assume that all observations returned by a query
bear the same validity time. In case a query span sensors

Θ
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Cache
Updater

Cache
Index

Query
ProcessorP’, D(P’)

Q

P’, P’’,

Q, P \ P’, P’ \ P’’,Q
P

Cache Manager
(internals)

P \ P’

Θ

Cache 

Figure 6: Detailed view of the Cache Manager’s ar-
chitecture

which have decided on different validity period, we assume
the shortest of them to be the validity period for all the re-
turned dataset. This conservative approach facilitates cache
re-use and allows us to focus on optimizing access to cached
data at the query level, instead of a single observation/single
sensor level.

We envision the internal working of the Cache Manager
(Figure 6) to be as follow. Given a query Q, the Cache
Reader inside the Cache Manager uses an index to quickly
find the set P of all relevant previous queries that intersect
Q. (We make no assumption about which index structure
one uses, though a classical R∗-tree [2] would likely suffice
for the task.) At this point each query Pi ∈ P needs to have
its validity asserted. The relevant and valid queries from P
are put together in a set P ′. The set of relevant but invalid
queries, i..e, P \P ′, is removed from the index by the Cache
Updater to avoid spurious recovery later on and also to avoid
wasting index resources. Note that this cache purging can
be done in parallel to the rest of the query processing. P ′

and the corresponding datasets D(P ′) is then passed on to
Query Processor module for further processing.

As discussed in Section 3.1, not all relevant and valid
cached queries in P ′ will be necessarily used at query pro-
cessing time, i.e., it is possible that the Query Optimizer
module decides to drop elements from P ′. This presents the
opportunity for partially refreshing cached data. Consider a
valid query P ′k ∈ (P ′ \ P ′′) that was dropped by the Query
Optimizer. By construction P ′k

T
Q 6= ∅, and then obtain-

ing the data for Q (in whichever way the Query Optimizer
decides to do so), implies that data for the area P ′k

T
Q will

necessarily be recovered as well. Therefore the Query Pro-
cessor can take advantage of the opportunity to request the
Cache Manager to partially refresh the data cached for each
P ′k. For that the Cache Updater within the Cache Manager
only needs Q and each of the dropped queries P ′k. Figure 7
illustrates a sample scenario, where P1 is partially refreshed.
Note that it has to be partitioned into smaller datasets in or-
der to preserve our simplifying assumption that all the data
within a previous query has the same validity time. Once
this is done, all sub-queries in Θ and respective answers are
also inserted into the Cache Index.

The pseudo-code for this task, comprised of basically two
processes, cache reading and cache updating is described in
Algorithms 4 and 5. Note that the later will require P ′k
to be properly decomposed. Fortunately, this can be easily
accomplished by using the algorithms discussed in Section 4.
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Algorithm 4 Cache reading.

Input: query Q, Cache Index (CI)
1: set P ′ = ∅
2: use CI to obtain P = {Pi such that P ′i

T
Q 6= ∅}

3: for each element Pi in P do
4: if Pi is valid then
5: P ′ = P ′

S
Pi

6: else
7: remove Pi from the cache and update CI
8: end if
9: end for

10: return set P ′

Algorithm 5 Cache updating.

Input: sets P ′, P ′′,Θ and Cache Index (CI)
1: for each element θi in Θ do
2: insert θi into cache and update CI accordingly
3: end for
4: for each element P ′i ∈ P ′ \ P ′′ do
5: remove P ′i from the cache and update CI accordingly
6: set R = P ′i ⊕Q
7: compute all rectangles in ρ(R), insert them into the

cache and update CI accordingly
8: end for

Another possibility for refreshing data is to be more flex-
ible in the filtering of expired (invalid) data. For instance
one may chose to replace data which is still valid but which
will expire relatively soon. The trade-off to be considered in
this case is the increased query processing cost which may
be offset by having data which is fresher for a longer period.
A final remark regarding the Cache Manager is related its
replacement policy. For the time being, we adopt a simple
policy: queries closest to expiration are chosen for eviction
first. Although a few ideas can be immediately suggested, a
policy’s usefulness is determined by the usage pattern, e.g.,
spatial distribution of the queries, which is an aspect out-
side the scope of this paper. Therefore, we defer a thorough
investigation of these particular topic for future research.

6. EXPERIMENTAL RESULTS
In order to evaluate the quality of our solutions we con-

sidered the two orthogonal dimensions of efficiency and ef-
fectiveness with respect to a number of different parameters.

Efficiency is related to query processing time. Query pro-
cessing time can be divided in time spent at the base sta-

tion devising the best query scheme, i.e., which (sub-)queries
to actually submit to the WSN, and time spent within the
WSN forwarding the query and collecting the results. To
simplify our analysis we assume the latter is proportional
to the query cost, i.e., a higher cost means more traffic in
the network which implies more complex scheduling of mes-
sages and the like. Thus, we concentrate on the time spent
within the base station, which turns out to be dominated by
the Query Optimizer module. Since searching for the best
configuration 〈P ′′,Θ〉 is the most intensive process during
query optimization, we measure efficiency by the number of
states explored during the search for the cost-wise optimal
(or good) configuration.

Regarding effectiveness we used the estimated energy cost,
as per the cost model, as the measure of interest. We in-
vestigated the solutions obtained by heuristic approaches
presented in Section 4, as well as by using an exhaustive
search, which served as a baseline reference. Given that the
search space is relatively large and in order to make the ex-
periments practical we stopped the exhaustive search when
it reached 213 states, which was typically at least one or-
der of magnitude larger than the number of states explored
by the heuristic searches. In the few cases where this max-
imum limit was reached the best solution found thus far
was adopted as the optimal one. We compared the cost of
all solutions against two straightforward choices: not using
any cached data at all (i.e., submitting the original query
without any further processing) or using all of the relevant
cached data. As expected, only in very rare and extreme
cases not using cache at all was the best option. Thus, in
the interest of conciseness, we do not detail the results ob-
tained by not using cached data. Nonetheless, recall that
Algorithms 2 and 3, cannot, by their very design, yield a
solution that is worse than using all or using none of the
relevant cached data, respectively.

In all of our experiments we assume the sensor nodes are
uniformly distributed in the monitored area, and so are the
centroids of the queries. The location of the base station
is fixed in the center of the monitored area. (Experiments
not shown here revealed the location of base station does
not have a qualitative influence in the results.) For the sake
of completeness Table 2 presents the values (borrowed from
[5]) which are used in the cost model for the WSN in our
experiments.

Parameter Used Values

Monitored area 1000 m×1000 m
Cost to transmit 1 bit over d meters 50 + 10× d2 nJ
Cost to receive 1 bit 50 nJ
Wireless range radio 50 m
Query message size 32 bytes
Answer tuple size 〈value, timestamp〉 8 bytes

Table 2: Parameters used in WSN model.

We focus on studying the impact of the following param-
eters in our solutions. By varying the number of sensors
(N) we influence the sensor density of the WSN, and con-
sequently amount of data that flows when a query is pro-
cessed. The larger the N the more important role of the
query optimizer will become and the heavier its workload.
Even though the base station can be realistic considered to
be less constrained in terms of resources, one must consider



a limited amount of storage for cached data. We denote this
parameter by M and investigated its effect on the simulated
scenarios. The average size of the queries (S) play an impor-
tant role in our scenario. Larger queries will yield a larger
number of intersections with cached queries, thus more op-
portunity for optimization, which, however, comes at a cost
(searching process). We assume that the size (area) of the
queries follows an exponential distribution in order to ac-
commodate for eventual relatively larger queries. The last
parameter we investigate is the validity period of cached
data (V ), which reflects how dynamic and fresh the cached
data is. In order to evaluate how each of those affected the
algorithms’ performance we adopted a ceteris paribus as-
sumption, i.e., when varying one parameter all others were
kept constant at their default values. All values used for the
parameters above are listed in Table 3.

Parameter Used Values

N (# of sensors × 1,000) 1, 2, 3, 4, 5
M (# of cached queries × 100) 1, 2, 3, 4, 5
S (query size as % of total area) 0.01, 0.25, 1, 4, 16
V (validity period in timestamps) 10, 20, 30, 40, 50

Table 3: Parameters investigated and respective val-
ues (bold face denotes the default values).

Before we started accumulating statistics about the algo-
rithms performance we run the experiments for a“cold-start”
period where enough queries to fill the cache were posed.
Whenever a query was posed, i.e., during the cold-start of
afterwards, the algorithms presented in Section 5 for main-
taining cache consistency were used, and when the cache run
out of space the query closest to expiration, along with its
respective dataset, was evicted.

Finally, effectiveness is measured by the degree of sub-
optimality yielded by each approach as compared to the so-
lution obtained by using an exhaustive search. We measure
efficiency as the number of nodes explored during the opti-
mization process. Obviously, this measure is not applicable
when the full cache is used without any optimization. In
the figures that follow we use the following convention to
denote the origin of the data: “FC” (short for full cache) de-
notes results obtained by using the whole cache without any
optimization, “OPT” denotes results obtained via the ex-
haustive search, “B+B” denotes results obtained using Al-
gorithm 1, and “GrF” and “GrE” denote results obtained
using Algorithms 2 and 3 respectively. The reported figures
are average values obtained for each setting during consec-
utive timestamps, where 10 queries were posed in each such
timestamp.

In our first set of experiments we set all parameters to
their default values and compared how often the cost ob-
tained by each of the heuristic algorithms lost to the optimal
cost found by the exhaustive search and much faster it was.
Thus, although it was possible that the cost reported by an
heuristic algorithm was better than the “optimal” cost found
by the exhaustive search, this happened only a handful of
time during our experiments. Table 4 shows the statistics we
obtained. The table shows B+B’s unarguable superiority, as
in only 7% of the cases its solution was worse than OPT’s,
while while still being two orders of magnitude faster and not
substantially slower than the other greedy heuristics. GrF
and GrE are not as effective as they lose to OPT in about 1/3

of the experiments. Looking further into this data, Figure 8
shows the histograms of the losses by all heuristics with re-
spect to OPT. Note that the first bar of the histogram is for
losses in the range of only (0-1%], i.e., practically negligible
losses. Almost half of the time B+B is not able to tie with
OPT, which happens only 7% of the time, it loses less than
1% in optimality. The other approaches are, as one would
expect, less robust, in particular GrE—recall our previous
discussion on the effect of bad choices by GrE being more
pronounced than bad choices by GrF. In fact, note that in
about 8% of the cases GrE lost to OPT it did so by over
100%.

Tied Worse Average
Algorithm cost cost speedup∗

B+B 93% 7% 98.3%
GrF 73% 27% 99.8%
GrE 66% 34% 99.6%

Table 4: How well each approach performed with
respect to the exhaustive search (OPT). ∗The ex-
haustive search explored on average 1,230 states.
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Algorithm Better Tied Worse

B+B 71% 28% 1%
GrF 67% 30% 3%
GrE 70% 30% N/A

Table 5: How well each approach performed with
respect to using no cache.

Algorithm Better Tied Worse

B+B 46% 54% N/A
GrF 27% 73% N/A
GrE 30% 46% 24%

Table 6: How well each approach performed with
respect to using all of the cache.

Tables 5 and 6 show how the heuristic approaches compare
with respect to the two straightforward optimization-free



alternatives to process Q: not using the cache (P ′′ = ∅) or
using all of it (P ′′ = P ′), while Figures 9 and 10 show the
distribution of the gain. We make two observations from
these results. On the one hand we confirm that using no
cache is very rarely a worthwhile option. On the other hand,
none of the heuristics was able to be as consistently superior
to using all of the cache (Table 6), although B+B was strictly
better almost half of the time and over 40% of the time it
obtained gains upwards of 20%. This leads one to conclude
that even though using P ′′ = P ′ is clearly not always the
best choice it remains an option that should to be considered
depending on the application scenario.
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Figure 9: Histogram of all approaches’ gain with
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The main conclusion at this point is that it is clear that
there is merit in our claim, i.e., that it is worth performing
the optimization search in order to determine good sets P ′′

and Θ. Next we investigate how robust each of the proposed
solutions are with respect to the parameters in Table 3.

The results obtained by varying N are displayed in Fig-
ures 11 and 12. On average B+B’s solution is sub-optimal by
a factor smaller than 2% for all values of N , and it obtained
exploring typically less than 20 states as opposed to over
1,000 ones explored by the exhaustive search. Both greedy
algorithms are driven by the size of the intersections only.
In scenarios with low sensor densities (lower N) this turns
out to be somewhat misleading and affects their effectiveness
noticeably. Nonetheless they are both faster than B+B, re-
quiring no more than a few states to reach a local optimum.
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Figure 11: Query effectiveness when varying num-
ber of number of sensors in the WSN.
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Figure 13: Query effectiveness when varying num-
ber of previous cached queries.

The results also seem to suggest that while B+B is a good
compromise in general, for very dense networks (large values
of N) GrF may actually be a better one (though one must
consider that greedy approaches are typically less stable).

In order to simplify our analysis we measure the cache
size (M) as number of queries. Note that given the values
in Tables 2 and 3, it is easy to estimate the average actual
size (in Bytes) of queries and their answers. When vary-
ing M we observe that while B+B is again stable and very
effective, GrE tend to lose more when dealing with larger
caches (Figure 13). The reason is that while a larger cache
offers more opportunities for optimization it also opens the
door to more bad choices due to greedy short-sightedness.
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previous cached queries.

More interestingly however, using FC becomes a less attrac-
tive alternative with the increase of M , confirming our claim
that trivially using P ′′ = P ′ may often not be worthwhile.
Given that ideally one would like to use as much storage
as possible (within reason) for the cache, our results suggest
that the optimization becomes increasingly important as the
cardinality of P ′ grows. Among the greedy approaches GrF
is actually an interesting option, unlike GrE. In terms of
efficiency (Figure 14), the number of states explored grows
with M since a larger cache yields larger sets of candidates
queries for re-use, thus more choices to be evaluated in the
optimization process. As expected the greedy approaches
are practically not affected in terms of efficiency.
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Figure 15: Query effectiveness when varying query
size.
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Figure 16: Query efficiency when varying query size.
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Figure 17: Query effectiveness when varying
queries’ validity time.
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validity time.

Figures 15 and 16 show the effect of varying the size of
the query. As before B+B offers very good effectiveness with
best overall efficiency. With the increase of S it is clear that
GrE’s effectiveness becomes rather unacceptable, due again
to poor (greedy) optimization choices. On the other hand,
using FC turns out to be a not bad choice. As the size of the
queries increase the optimization quickly becomes a harder
problem. This is due to a larger number of intersections
and a large number of configurations to be considered, and
this is clearly reflected in Figure 16. One aspect that is not
transparent in our experiments is that when queries become
very large at some point the monitored area will be eventu-
ally fully covered by cached queries (unless they have a very
short validity period). Hence, a rather trivial solution to the
optimization problem is to use all of the cache the area of
the new query will be fully covered by cached data.

Our last experiment was varying the validity period (V ).
Figures 17 and 18 do not show a very clear dependence be-
tween this parameter and overall performance. This is not
unexpected, since while having long lived queries can poten-
tially allow for better optimization, the number of cached
queries is limited (by M), i.e., queries still valid will eventu-
ally need to be evicted, forcefully limiting the search space.

In summary, it is clear that the branch-and-bound opti-
mization process is able to almost always offer identical or
very close to optimal query plans at the low cost of exploring
only a very small number of configurations 〈P ′′,Θ〉. While
on the one hand one cannot deny that using all the rele-
vant valid cached data is often a reasonable compromise, in



a domain, such as WSNs, the chance of saving every bit of
energy, as opportunistic as it may be, must be taken. Even
relatively small savings over the long term are worth the
optimization overhead (which incidentally has no impact in
the energy budget of the network as it is performed in the
base station).

7. CONCLUSIONS
In this paper we have investigated the problem of how

to effectively exploit a data cache at the base station of a
WSN. The formalization of the problem calls for answers to
two sub-problems: (1) how to select which queries to use,
and depending on those, (2) how to create the sub-queries
that will be submitted to the WSN. Given the highly com-
binatorial nature of the problem we proposed a few heuris-
tic approaches. The best alternative, which is based on a
branch-and-bound optimization search is very efficient (typ-
ically two orders of magnitude faster than an exhaustive
search) and also effective (typically less than 2% and no more
than 10% sub-optimal). Finally, even though this work re-
used the query processing framework presented in [5], the
solution we propose does not depend on the same. Rather,
any approach can be used as long as it provides the cost
model that is used to guide the search for an optimized
query “plan”. We are currently working on extending the
ideas in this paper to address other types of queries, e.g.,
aggregate queries.
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