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Abstract 

In oil sands mining, off-the-road trucks play a leading role in transporting bulk materials (ores and 

waste). The productivity of truck haulage (also referred to as truck productivity), defined as the 

truck payload per unit time in each truck haulage cycle, is of great interest to the mining industry 

since truck productivity is directly associated with a mine’s overall productivity. Accurate truck 

productivity prediction is significant for making budget decisions and developing mine planning. 

However, the current approach used for predicting truck productivity has four major concerns, 

leading to inaccurate predictions of truck productivity at mine sites. First, the approach (i.e., curve-

fitting) is built based on average values. Second, only one input variable (i.e., haul distance) is 

involved. Third, simple regression method (i.e., least squares) is used to construct prediction 

models. Fourth, temporal resolutions are not considered in building prediction models.  

In response to these concerns, this Ph.D. thesis aims to apply machine learning techniques to 

improving truck productivity prediction accuracy at mine sites. In particular, this thesis focuses on 

developing a unified toolkit for truck productivity prediction in oil sands mining, which consists 

of various machine learning models built based on massive truck haulage data at varying temporal 

resolutions (e.g., per cycle, hour, day, week, and month). These machine learning algorithms were 

employed to train complex relationships between truck productivity and multiple input variables, 

analyze the contributions of input variables to the model output, investigate the effect of temporal 

resolutions on establishing prediction models, and design a unified graphical user interface (GUI). 

The results showed that Gaussian mixture modeling (GMM) efficiently clustered massive truck 

haulage data into three subgroups (i.e., low, medium, and high truck productivity) and significantly 

improved the model accuracy. For example, a multiple linear regression (MLR) model reached a 

coefficient of determination (R2) of 75% based on GMM analysis, which was much higher than 
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the MLR model (23%) before clustering. After that, nonlinear algorithms were used to build more 

complex truck productivity prediction models. The results presented that the tree-based ensemble 

models performed better than single models in predicting truck productivity. Also, the Bayesian 

regularized neural network (BRNN) model outperformed the back propagation neural network 

(BPNN) and extreme learning machine (ELM) models. For these machine learning models without 

considering temporal resolutions, haul distance contributed the most in constructing linear and 

nonlinear relationships. When involving temporal resolutions, the nonlinear relationship between 

inputs and truck productivity progressively diminished with decreasing temporal resolutions (i.e., 

from hourly to monthly). Regardless of the temporal resolutions, the three most influential input 

variables were haul distance, empty speed, and ambient temperature. In addition, mining engineers 

can make more accurate predictions of truck productivity at the weekly resolution compared with 

other resolutions. The feature importance of the four weather-related input variables increased as 

decreasing temporal resolutions. Extreme weather, such as extreme wind speed, precipitation, and 

relative humidity, had a certain effect on truck-shovel allocation at mine sites. Finally, a unified 

GUI was designed and developed for the first time to predict truck productivity at varying temporal 

resolutions. 

Overall, this thesis developed a unified toolkit to improve truck productivity prediction in oil sands 

mining. The findings will help mine management better understand and forecast truck productivity 

for hauling efficiency improvement, strategic decision-making, and cost reductions in oil sands 

mining and other mine sites using truck haulage. 
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Chapter 1. Introduction 

1.1. Research background 

Oil sands mining is a vital pillar of Canada’s national economy (Stringham, 2012). By 2035, it 

will provide more than 905,000 jobs and contribute $2.1 trillion to federal revenues (Honarvar et 

al., 2011b). In oil sands mining, off-the-road truck haulage is the dominant bulk material handling 

method for transporting ores and wastes (Ma et al., 2021). The productivity of truck haulage (or 

referred to as “truck productivity”), is directly related to a mine’s overall productivity (Alarie & 

Gamache, 2002), which significantly affects mine planning (e.g., truck-shovel scheduling, fleet 

sizing, and budget decision), production, income, and expenditure (Chanda & Gardiner, 2010; 

Upadhyay et al., 2020). 

To predict truck productivity, mining engineers usually adopt a curve-fitting approach based on 

historical truck haulage data and then continue extrapolation from the fitted curve (Cervantes et 

al., 2019). As shown in Figure 1.1, the red dots are first obtained by taking the average truck 

productivity in increments of a specific haul distance interval (e.g., 0.2 km). After that, a curve 

fitting is conducted based on these red dots to establish a simple prediction model (i.e., the fitted 

curve) using the least square approach. Finally, this prediction model is employed to predict or 

extrapolate truck productivity in the future when longer haul distance (e.g., > 18 km) occurs as 

mining faces advance. This curve-fitting approach is simple and easy to implement, which has 

been extensively promoted in Alberta’s oil sands mines for strategic planning purposes (Obaia, 

2020). However, there are four concerns with using this curve to predict truck productivity. 
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Figure 1.1 A fitted curve (dashed line) of truck productivity created by the local mining company 

using a curve-fitting approach based on average truck haulage data (red dots). 

First, average data may have a smooth effect and lose the variability of individual truck cycles, 

which potentially cause misleading results (Wackerly et al., 2014). At mine sites, individual truck 

cycles may vary significantly due to changes in truck haulage processes, such as truck type, haul 

route, running speed, and real-site weather (Chanda & Gardiner, 2010; Schexnayder et al., 1999). 

Second, only one input variable (i.e., haul distance) is considered in modeling, which may lead to 

inaccurate truck productivity prediction models. This is because truck productivity can also be 

affected by variables associated with operating mine sites (Chanda & Gardiner, 2010). For 

example, truck speed determines the length of cycle time to affect truck productivity (Schexnayder 

et al., 1999). Likewise, Ma et al. (2023) reported that a rise in ambient temperature (e.g., from 20 

℃ to 40 ℃) induced an increase in truck tire temperature (e.g., from 54 ℃ to 69 ℃), which caused 

tire fatigue damage, thus influencing truck cycle time and truck productivity. Third, the curve-
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fitting approach is limited to building a simple regression between one input (haul distance) and 

one output (truck productivity). However, if multiple input variables are incorporated, there are 

potentially more complex relationships between truck productivity and its input variables (Chanda 

& Gardiner, 2010). These complex relationships require more robust regression methods to build 

rather than a simple regression (i.e., fitted curve). Finally, the temporal scales (or resolutions) of 

real-site weather conditions are not considered in the current method. For instance, according to 

Environmental Canada (MEP, 2023), the maximum precipitation over a week (e.g., 85.30 mm) 

can have a more substantial impact on road conditions and driving habits than an hour (e.g., 14.10 

mm) (Xing et al., 2019). To encapsulate, it may be inaccurate to predict and extrapolate truck 

productivity only from a simple regression based on the average values of truck productivity and 

haul distance. Due to the individual features, multiple influential input variables, potential complex 

relationships, and temporal effects, this curve-fitting approach is no longer appropriate for 

establishing truck productivity prediction models at mine sites. Therefore, additional solutions are 

urgently required to provide an accurate forecast of truck productivity for mining companies.  

To achieve accurate predictions, data-driven machine learning techniques have attracted increasing 

attention in recent years (Ahmed et al., 2020; Hyder et al., 2019; Pao, 2008; Perai et al., 2010). 

Machine learning refers to data-driven analytical algorithms that possesses three major advantages. 

First, it can efficiently deal with massive amounts of data (Kocheturov et al., 2019). In this work, 

historical data for the past six years (2016-2021) are available from two management systems, 

including the Caterpillar’s Vital Information Management System (Siami-Irdemoosa & Dindarloo, 

2015) and Environmental Canada (MEP, 2023). For example, there are approximately 300,000 

data points in 2019 alone. It is challenging to process these data without using machine learning 

(Al-Jarrah et al., 2015; Pu et al., 2019). Second, machine learning can build complex relationships 
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(i.e., prediction models) between multiple input and output variables (Fei et al., 2020; Tsanas & 

Xifara, 2012). For instance, there are potentially multiple influential variables affecting truck 

productivity, such as haul distance, running speed, truck types, destinations, ambient temperature, 

wind speed, and precipitation (Cervantes et al., 2019; Schexnayder et al., 1999; Sun et al., 2018). 

Finally, a toolkit can be developed based on machine learning models to facilitate direct use by 

mining engineers for forecasting truck productivity more easily and quickly. This can alleviate the 

need for complex modeling analysis and intensive computation (Djandja et al., 2023). 

Machine learning provides mining companies with a new solution to forecast truck productivity 

for hauling efficiency improvement, strategic decision making, and cost reductions at mine sites. 

Despites its significance, no studies have been conducted to build truck productivity prediction 

models using machine learning as an alternative to the curve-fitting approach. Therefore, it is of 

great interest to employ machine learning to handle massive real-site data, establishing complex 

relationships, and develop a unified toolkit for better understanding and predict truck productivity 

at mine sites. 

1.2. Literature review 

1.2.1. Definition of Truck productivity 

In open-pit mining, truck productivity (unit: tonnes per hour, tph) is a measure of the amount of 

ores (unit: tonnes) that can be moved by a mining truck in a given period of time (unit: minutes, 

mins) (Ercelebi & Bascetin, 2009), which can be formulated as follows: 

𝑇𝑟𝑢𝑐𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑡𝑝ℎ) = 60 ×
𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝑡𝑜𝑛𝑛𝑒𝑠)

𝑇𝑟𝑢𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛𝑠)
                       (1-1) 

where payload refers to the capacity of a mining truck loaded with ores. Truck cycle time indicates 

the time it takes for a mining truck to complete a haulage cycle. A haulage cycle (shown in Figure 
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1.2) usually consists of four stages: loading, hauling, dumping, and returning. In times of high 

truck volume and low shovel utilization, trucks queue and incur waiting times, including waiting 

time at shovel, waiting time at dump, and spotting time (spotting time refers to the time that a 

shovel with ores already has been waiting for a truck to arrive). As a result, truck cycle time (TCT) 

contains loading time (LT), hauling time (HT), waiting time at dump (WTD), unloading (dumping) 

time (UT), returning time (RT), spotting time (ST), and waiting time at shovel (WTS), which can 

be expressed as 

𝑇𝐶𝑇 = 𝐿𝑇 + 𝐻𝑇 + 𝑊𝑇𝐷 + 𝑈𝑇 + 𝑅𝑇 + 𝑆𝑇 + 𝑊𝑇𝑆                              (1-2) 

For a given truck payload (usually fully loaded), the main reason behind the factors affecting truck 

productivity is the length of truck cycle time. In other words, the various components of cycle time 

(e.g., hauling time) directly determine truck productivity (Chanda & Gardiner, 2010; Smith et al., 

2000).  

 

Figure 1.2 A schematic diagram for a truck cycle in open-pit mines (Solid and dashed arrows 

indicate loaded and unloaded trucks, respectively).  
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1.2.2. Traditional methods to predict truck productivity 

To predict truck productivity, various simulation models and algorithms have been proposed by 

researchers based on sequential tasks performed by trucks at mine sites (Baek & Choi, 2019). 

These methods include, but are not limited to, discrete-event simulation models (Moradi Afrapoli 

et al., 2019), queuing theory (Sembakutti et al., 2017), goal programming (Upadhyay et al., 2020), 

and stochastic programming (Rimélé et al., 2020). These methods estimate truck productivity by 

optimizing truck dispatch (Sun et al., 2018). For example, Soofastaei et al. (2016) investigated the 

effect of payload variance on truck bunching (dispatching problem) and the resulting loss of truck 

productivity using a discrete-event simulation model. Similarly, Moradi Afrapoli et al. (2019) built 

a multi-objective model for real-time truck dispatch to maximize truck and shovel productivity. 

They compared it with a benchmark model and a discrete-event simulation model. Nevertheless, 

there are problems with these methods because of unexpected events during truck haulage, such 

as extreme weather and shovel availability reduction. To ensure accurate simulations, these models 

and algorithms need to be continually updated, resulting in increased time and labor costs (Baek 

& Choi, 2019). 

1.2.3. Basic concept of machine learning 

To address the limitations in simulation methods, machine learning (ML) based on historical data 

has been initiated as a new research direction (Fan et al., 2022, 2023b; Khambra & Shukla, 2023; 

Zabin et al., 2022). Machine learning is a data science category at the intersection of computer 

science, math, and statistics that has made tremendous progress in engineering applications over 

the past two decades (Jordan & Mitchell, 2015). Table 1.1 lists the major developments of machine 

learning throughout its history  (Pu et al., 2019). Machine learning refers to a series of analytical 

data algorithms that automatically build complex relationships between input and output variables 
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(Fei et al., 2020), as illustrated in Figure 1.3. First, machine learning models can be trained by 

capturing the implicit or explicit relationships between existing inputs and outputs in training data 

using various machine learning algorithms. After that, with the established prediction models, 

unknown outputs can be predicted based on new inputs. In other words, the model functions 

between inputs and outputs are described based on training data and machine learning algorithms. 

To build regression models, machine learning algorithms are usually split into two subcategories:  

supervised learning and unsupervised learning algorithms (Alrfou et al., 2022; Yin et al., 2022). 

These two subcategories will be briefly introduced and reviewed in this section.  

Table 1.1 Major developments of machine learning throughout its history.  

Research progress Main purpose 

McCulloch and Pitts (1943) Proposed a hierarchical model of a neural network. 

Rosenblatt (1958) 
Put forward the concept of ‘‘Perceptron”; designed the first 

computer neural network. 

Hubel and Wiesel (1962) 
Put forward the famous ‘‘Hubel-Wiesel biological visual 

model” from research on the cerebral cortex of cats. 

Rumelhart et al. (1986) Published backpropagation algorithm (BP). 

LeCun et al. (1989) 

Proposed a prevailing convolutional neural network (CNN) 

and derived an efficient training method for CNN based on 

BP algorithm. 

Cortes and Vapnik (1995) 
Developments of machine learning models like logistic 

regression, support vector machine, boosting algorithms. 

Hinton and Salakhutdinov (2006) 
Proposed a deep learning model that utilized a multi-layer 

neural network to approximate functions. 
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Figure 1.3 A basic concept of machine learning.  

1.2.3.1. Supervised learning algorithms and relevant applications 

Supervised learning refers to machine learning algorithms that rely on labeled input and output 

variables to construct prediction models (David & James, 1987). Supervised learning algorithms 

usually include, but are not limited to, (1) multiple linear regression (MLR) (Tan et al., 2014); (2) 

support vector regression (SVR) (Zhong et al., 2019); (3) tree-based algorithms such as decision 

tree (DT) (Pu et al., 2018), random forest (RF) (Rodriguez-Galiano et al., 2015), adaptive boosting 

(AdaBoost) (Feng et al., 2020), gradient boosting regression (GBR) (Kaplan et al., 2021), and 

extreme gradient boosting (XGBoost), and (4) artificial neural networks (ANNs) such as back 

propagation neural network (BPNN) (Zou et al., 2009), extreme learning machine (ELM) (Pan et 

al., 2020), and Bayesian regularized neural network (BRNN) (Çetinkaya & Baykan, 2020). These 

algorithms have been extensively applied in many engineering applications. Their concepts and 

relevant applications are briefly reviewed below. 

(1) MLR is a statistical approach for building prediction models in regression problems because 
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of its simple calculation and explicit equation (Li et al., 2015). It has been used in many aspects 

of mining engineering for prediction, such as coal production (Li et al., 2015), blast-induced 

ground vibration (Saadat et al., 2014), and rock fragmentation (Enayatollahi et al., 2014). For 

example, Enayatollahi et al. (2014) built an MLR model for predicting rock fragmentation in 

open-pit mines. The result showed that the coefficient of determination (R2) of this model was 

85%. Similarly, Ghiasi et al. (2016) predicted the number of boulders produced in blasting 

operations of an open-pit mine using MLR. The results showed that the R2 and root mean 

square error values were 89% and 0.19. Nevertheless, MLR is limited to building linear 

relationships between input and output variables. Nonlinear relationships need robust machine 

learning algorithms (e.g., SVR, DT, RF, AdaBoost, GBR, XGBoost, and ANNs) to establish. 

(2) SVR was firstly proposed by Vapnik and Lerner (1963) and developed to be one of tools with 

strong potential in data-driven areas (Cortes & Vapnik, 1995; Rodriguez-Galiano et al., 2015). 

SVR is widely used in mining engineering, such as cost estimation (Nourali & Osanloo, 2019), 

blasting operations (Hasanipanah et al., 2017), drilling risk evaluation (Liang et al., 2019), and 

mining subsidence (Li et al., 2014). These previous studies have demonstrated the great 

potential of SVR in capturing complex input-output relationships and building accurate 

prediction models. For instance, Li et al. (2021) involved 19 input variables to establish a 

prediction model of blasting fragmentation size using SVR. The results showed that the R2 and 

mean square error values for the testing dataset were 83.53% and 0.0035. Akin to Li et al. 

(2021), Huang and Xue (2022) proposed an SVR model to predict flyrock distance based on 

six input variables and 240 blasting events. The model showed a high prediction accuracy, of 

which the R2 attained 92.94%.  

(3) DT, RF, AdaBoost, GBR, and XGBoost are tree-based algorithms for dealing with regression 
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and classification problems (Jun & Cheng, 2017; Liu et al., 2023; Nasir Amin et al., 2023). DT 

is a single-tree model, whereas RF, AdaBoost, GBR, and XGBoost are ensemble learning 

algorithms integrating numerous DT (Erdal, 2013). RF uses a bagging method to overcome the 

shortcomings of high variance and overfitting issues in DT (Ohadi et al., 2020). Unlike RF, 

AdaBoost, GBR, and XGBoost utilize a boosting rather than a bagging method (Aydin & Iban, 

2023). These tree-based algorithms have been applied in the mining industry for predictions 

such as rockburst (Pu et al., 2018), mine subsidence (Lee & Park, 2013), ore sorting (Lessard 

et al., 2014), and rock strength assessment (Liang et al., 2016). Moreover, ensemble learning 

algorithms that integrate numerous DTs can usually enhance model predictability (Dou et al., 

2019). For example, Rodriguez-Galiano et al. (2015) constructed an RF model (integrating 50 

DTs) to forecast mineral prospectivity at mine sites. The study showed that the prediction 

accuracy of the RF model was about 39% higher than that of the single DT model. Likewise, 

Liang et al. (2020) compared the accuracy of a GBR model (integrating 1200 DTs) and a DT 

model in predicting hard rock pillar stability. The results showed that the accuracy of the GBR 

model was 83.1%, whereas the accuracy of the DT model was 59.2%.  

(4) BPNN, ELM, and BRNN are three well-known ANN algorithms. The difference between the 

three algorithms lies in the setting of the weights among the neurons (Goodarzi et al., 2010; 

Liu et al., 2019). BPNN assumes that the weights are fixed values; BRNN assumes that the 

weights are random variables and follow Gaussian distributions, while ELM treats the weights 

as some random values. Therefore, ELM does not require intense computation compared with 

BPNN and BRNN (Fikret Kurnaz & Kaya, 2018; Zhang et al., 2016). These ANNs have been 

extensively applied to many aspects of mining engineering because of their strong ability to 

map nonlinear relationships between input and output variables, thus providing robust 
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predictions (Nguyen et al., 2020; Thai et al., 2021; Trivedi et al., 2014; Xue et al., 2020). For 

example, Trivedi et al. (2014) built a BPNN model to predict the distance covered by blast-

induced flyrock in limestone mines. The results showed that the R2 of the BPNN model was 

98.3%, whereas it was 81.5% in the case of a statistical multiple regression model. Likewise, 

Xue et al. (2020) established five ML models, including a BPNN model and an ELM model, 

for predicting rockburst intensity in deeply buried areas. The study showed that the proposed 

ELM model had a higher average accuracy of 97.57% than the BPNN model (62.13%). Close 

to the research by Trivedi et al. (2014) and Xue et al. (2020), Nguyen et al. (2020) proposed a 

BRNN model to forecast air-blast overpressure induced by blasting at open-pit coal mines. The 

study showed that the BRNN model performed well in predicting overpressure, with an R2 of 

93.6%. 

According to the literature review, it is promising to apply supervised machine learning algorithms 

to build prediction models. Nevertheless, no studies have been found using these algorithms to 

forecast truck productivity in open-pit mining. Thus, it will be worth developing truck productivity 

prediction models using machine learning for better mine planning and decision-making.  

1.2.3.2. Unsupervised learning algorithms and relevant applications 

Unlike supervised learning, unsupervised learning is usually adopted to analyze unlabeled data for 

disclosing hidden data groups or patterns without human intervention (Usama et al., 2019; Xu & 

Saleh, 2021). Clustering is a typical unsupervised learning algorithm that assigns each data point 

into a specific class and extract potential hidden patterns (Alam & Paul, 2020). In clustering, K-

means and Gaussian mixture modeling (GMM) are two extensively applied unsupervised methods 

because they are easy to implement and efficient for dealing with massive data (Capó et al., 2017). 

They identify several classes from a data population and assign data points with more similarities 
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to the same subgroup (Fan et al., 2022). The key distinction between the two methods lies in the 

principles of assigning data points to classes. K-means assumes that each data point falls into the 

specific class where the centroid is closest to it. The centroid is updated iteratively until the squared 

distance sum between the centroid and each data point is minimized (Liu et al., 2020). Unlike K-

means, GMM is known as a probability-based clustering approach that assigns data points to a 

specific class when they have the maximum class posterior probability (Grün & Leisch, 2007). 

These two methods have been shown to effectively deal with massive data and enhance the model 

predictability (Liu et al., 2020). For example, Liu et al. (2020) applied K-means to classify the 

single-crystal superalloy creeping data and developed prediction models of creep rupture life. K-

means recognized eight homogeneous classes that were intimately linked to the creep mechanisms, 

which improved the model accuracy of creep rupture life with an increase in R2 from 71.02% to 

91.76%. Similarly, Ni et al. (2020) adopted GMM to identified two classes (low and high) from 

massive hydrological data and built an XGBoost model for forecasting monthly streamflow. The 

results presented that the model’s performance increased by about 11% based on GMM analysis. 

Lu et al. (2019) also classified building heating data using GMM to identify sub-patterns (including 

six classes). Then, they trained models for predicting the hourly heating load, whose performance 

was enhanced by approximately 20% because of GMM analysis. 

However, based on the current literature, no studies have reported the application of unsupervised 

clustering methods to preprocess massive data obtained from oil sands mines; it is still unknown 

if these methods can be used to improve the model predictability of truck productivity at mine 

sites. 
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1.2.4. Influential parameters affecting truck productivity 

According to the literature review, influential parameters affecting truck productivity often divided 

into two categories: truck haulage-related and weather-related variables (Baek & Choi, 2020; Choi 

et al., 2021; Jung & Choi, 2021). These variables include, but are not limited to, distance (e.g., 

haul distance), running speed (e.g., empty speed), haul routes, truck and shovel numbers, ambient 

temperature, precipitation, wind speed, and relative humidity. These variables are observed by site 

engineers and associated with truck cycle time, thus influencing truck productivity (Chanda & 

Gardiner, 2010). For instance, Cervantes et al. (2019) reported that mining companies often plotted 

a fitted line between haul distance and truck productivity because the increase in haul distance 

directly affects the increase in truck cycle time, thereby reducing truck productivity. According to 

Schexnayder et al. (1999), empty speed determined the travel time from dumping sites to loading 

sites, affecting truck productivity. Also, Ma et al. (2021) reported that high ambient temperature 

could enhance tire temperatures and cause rubber failure of the off-the-road tire at mine sites, thus 

affecting truck productivity and ore production. Moreover, Asamer and Reinthaler (2010) analyzed 

the data from U.S. highway administrations. They demonstrated that heavy precipitation led to a 

35% reduction in running speed, thus increasing travel time. Similarly, relative humidity and wind 

speed may interfere with road conditions (e.g., wetness or dryness) and driver’s vision (Choi & 

Nieto, 2011; Silion & Foşalău, 2014), influencing driving habits and travel time. 

These variables can be obtained from two sources: Vital Information Management System (VIMS) 

(Siami-Irdemoosa & Dindarloo, 2015) and Environmental Canada (MEP, 2023). These two data 

management systems are rich in information related to truck haulage and weather. Nevertheless, 

these data have never been used as training datasets for truck productivity prediction models. 
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1.3. Research objectives 

The overall objective of this thesis aims to apply machine learning techniques to improving truck 

productivity prediction accuracy at mine sites. In particular, this thesis focuses on developing a 

unified toolkit for truck productivity prediction in oil sands mining based on massive historical 

data with varying temporal resolutions. To achieve this overall objective, five sub-objectives are 

proposed as follows: 

(1) To understand and preprocess massive truck haulage data (weather data included) at mine sites. 

(2) To build linear and nonlinear prediction models of truck productivity using machine learning. 

(3) To compare the effect of clustering techniques on improving models’ prediction accuracy. 

(4) To investigate the effect of temporal resolutions on truck productivity predictive modeling. 

(5) To develop a unified toolkit for predicting truck productivity at varying temporal resolutions.  
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Figure 1.4 An overall flowchart illustrating the connection between the five sub-objectives.  

The connection between the five sub-objectives is illustrated in Figure 1.4. As shown in Figure 

1.4, truck haulage data may originate from various sources, such as sensor networks (Gui et al., 

2011), remote sensing (Gu et al., 2010), and wireless communication (Sabniveesu et al., 2015). 

Regardless of the source, truck haulage data at mine sites are unique and massive. From the view 

of statistics, massive data are usually preprocessed by clustering techniques (Dindarloo & Siami-

Irdemoosa, 2017; Shahin et al., 2004). Therefore, the sub-objective #1 is conducted to preprocess 

truck haulage data using clustering methods for potentially improving model predictability. Based 

on the clustering results, the sub-objective #2 performs linear and nonlinear (i.e., MLR, DT, RF, 

GBR, XGBoost, and ANNs) between multiple input variables and truck productivity because these 
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algorithms are commonly used and can provide accurate prediction models for end users (Chanda 

& Gardiner, 2010; Kueh, 2021). Since the effect of different clustering techniques may vary in 

improving prediction accuracy, a comparative study of these clustering techniques is necessary. 

Therefore, the sub-objective #3 compares two widely applied clustering techniques, K-means and 

GMM, to explore their effects on enhancing model accuracy. In sub-objectives #2 and #3, the truck 

productivity prediction models are built based on massive data from numerous individual truck 

cycles, but temporal resolutions have been taken into account in these models. For example, 

weekly precipitation may have a more substantial influence on truck productivity than hourly 

precipitation (Xing et al., 2019). Thus, the sub-objective #4 investigates the effect of temporal 

resolutions on establishing truck productivity prediction models in oil sands mining. To facilitate 

access to the solutions of this Ph.D. research by site engineers and researchers, the sub-objective 

#5 developed and proposed a unified toolkit (i.e., graphical user interface, GUI) based on the best 

prediction models established in the sub-objective #4. This GUI can predict truck productivity at 

varying temporal resolutions, which will be instrumental in making decisions more easily and 

quickly for mining engineers and researchers.  

1.4. Thesis statement and thesis outline 

Thesis statement: Machine learning can deal with massive amounts of data at mine sites, establish 

complex relationships between multiple input and output variables, and is the basis of developing 

a unified toolkit for facilitating direct use by mining engineers. Machine learning can be substituted 

for the current curve-fitting approach used by mining companies to solve the problems of simple 

regression, single variable, and temporal effects.  
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As shown in Figure 1.5, this thesis includes seven chapters, presenting in a paper-based format. 

The summary of each chapter is listed as follows.  

 

Figure 1.5 An overall flowchart showing the outline of this thesis.   

Chapter 1 introduced the research background on the prediction of truck productivity at mine 

sites, highlights the current research problems, and describes the research objectives. To predict 

truck productivity, mining engineers often use a curve-fitting approach based on historical truck 

haulage data and then continue extrapolation from the fitted curve. However, there are four 

concerns with using this curve to forecast truck productivity: (1) insufficient information on the 

averaged data; (2) single input variable; (3) simple regression, and (4) lack of consideration on 

temporal effects. To address these concerns, four improvements are proposed in this research: 

using individual truck cycles, involving multiple influential input variables, building potential 

complex relationships, and considering temporal effects. Therefore, additional solutions are 
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urgently required to provide an accurate forecast of truck productivity. Machine learning can 

handle massive amounts of data and establish complex relationships between multiple input and 

output variables. This research aims to improve truck productivity prediction in oil sands mining 

using machine learning. 

Chapter 2 aimed to handle massive data of truck haulage using Gaussian mixture modeling 

(GMM) for developing a novel and accurate prediction model of truck productivity. In this chapter, 

a large dataset of truck haulage collected at operating mine sites was clustered by GMM into three 

latent classes before the prediction model was built. The labels of these latent classes generated a 

latent variable. Two multiple linear regression (MLR) models were then constructed, including the 

ordinary-MLR (O-MLR) and the GMM-MLR models. The GMM-MLR model incorporated the 

observed input variables and a latent variable in the form of interaction terms. The O-MLR model 

was the baseline model and did not involve the latent variable. The GMM-MLR model performed 

considerably better than the O-MLR model in predicting truck productivity. The interaction terms 

quantitatively measured the differences in how the observed input variables affected truck 

productivity in three classes (high, medium, and low truck productivity). The haul distance was 

the most crucial input variable in the GMM-MLR model. This study provides new insights into 

handling massive data at mine sites and a more accurate prediction model for truck productivity. 

Chapter 3 developed prediction models using tree-based ensemble learning algorithms based on 

the truck haulage dataset to forecast truck productivity. In Chapter 2, GMM was used to preprocess 

the massive truck haulage data and constructed a linear prediction model. In this chapter, two 

nonlinear tree-based ensemble learning algorithms, including random forest (RF) and gradient 

boosting regression (GBR), were proposed in combination with GMM to train prediction models. 

GMM was adopted as a clustering technique to extract a latent variable from the training dataset. 
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MLR and decision tree (DT) as single learning algorithms were used to construct prediction 

models to be compared with the tree-based ensemble models. The results showed that the tree-

based ensemble models performed better than single models in predicting truck productivity with 

and without GMM clustering. Moreover, GMM significantly increased the predictability of truck 

productivity prediction models by considering the latent variable. From the relative importance 

analysis, haul distance was the most influential factor among the observed input variables. Finally, 

the GMM-RF and GMM-GBR models with high accuracy were the proposed models for predicting 

truck productivity at mine sites. 

Chapter 4 established prediction models between truck productivity and its input variables based 

on the real-site dataset using artificial neural networks (ANNs). In addition to the nonlinear tree-

based algorithms in Chapter 3, ANNs are also well-known nonlinear algorithms used to construct 

regression models. For the first time, this chapter used a back propagation neural network (BPNN), 

an extreme learning machine (ELM), and a Bayesian regularized neural network (BRNN) coupled 

with GMM to deal with the complex truck haulage data and build three weighted ensemble (WE) 

models to predict truck productivity. DT, RF, GBM, and extreme gradient boosting (XGBoost) 

were used to build models to be compared with the weighted ensemble models. The results showed 

that the WE-BRNN had a higher accuracy than the WE-BPNN and WE-ELM models. The 

proposed weighted ensemble models performed better than the benchmark models in predicting 

truck productivity, indicating that a weighted ensemble approach based on the GMM analysis 

significantly improved the model accuracy. Based on the relative importance analysis, haul 

distance was the most crucial input variable for predicting truck productivity. This study provides 

a new approach to predicting truck productivity, which will help mining companies make sound 

budget decisions and improve mine planning. 
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Chapter 5 compared the effect of two commonly used clustering techniques on enhancing models’ 

prediction accuracy. GMM is not the only unsupervised clustering method; other methods (e.g., 

K-means) may also improve the model predictability by preprocessing massive data. In this 

chapter, three extreme machine learning algorithms, including ELM, extremely randomized trees 

(ERT), and XGBoost, were employed to train prediction models because they are known for 

providing fast computations. To further decrease computational costs and improve model 

accuracy, this chapter conducted a comparative study of two unsupervised clustering techniques: 

K-means and GMM. The results showed that XGBoost outperformed ELM and ERT in predicting 

mining truck cycle time (equivalent to predicting truck productivity). GMM improved the model 

accuracy significantly, but K-means could not increase the model predictability. 

Chapter 6 investigated the effect of temporal resolutions on building truck productivity prediction 

models. From Chapter 2 to Chapter 5, the predictive model is built on a large amount of individual 

trucking data while ignoring the effect of temporal resolution. This chapter constructed prediction 

models of truck productivity incorporating real-site weather conditions with varying temporal 

resolutions (i.e., hourly, daily, weekly, and monthly) for the first time. After that, the prediction 

models were combined with Shapley Additive exPlanations (SHAP) to offer quantitative and 

qualitative analysis for each input variable’s effect on the model outputs. The results presented 

that the nonlinear relationship between input variables and truck productivity progressively 

diminished with decreasing temporal resolutions (i.e., from hourly to monthly). Mining engineers 

can make more accurate forecasts of truck productivity at the weekly resolution compared with 

other resolutions. Regardless of the temporal resolutions, the three most influential input 

parameters were haul distance, empty speed, and ambient temperature. Extreme weather, such as 

strong wind speed, heavy precipitation, and extreme relative humidity, had a certain effect on 
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truck-shovel allocation at mine sites. Meanwhile, a unified graphical user interface was developed 

to predict hourly, daily, weekly, and monthly truck productivity in open-pit mining. 

Chapter 7 enumerated the main research conclusions, contributions, limitations of this thesis. 

Recommendations for future research are also discussed. 
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Chapter 2. Preprocessing large datasets using Gaussian mixture modeling to 

improve prediction accuracy of truck productivity at mine sites 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as C. Fan, N. Zhang, B. Jiang, W.V. Liu, Preprocessing large 

datasets using Gaussian mixture modeling to improve prediction accuracy of truck productivity at 
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Nomenclatures 

BIC Bayesian information criteria 

C The number of estimated parameters 

EM Expectation-maximization 

fk Probability density function 

GMM Gaussian mixture modeling 

GMM-MLR Gaussian mixture modeling-based multiple linear regression 

k The kth latent classes 

K The number of latent classes 

L Likelihood of a set of data points 

LMG Lindeman, Merenda, and Gold 

m The mth input variable 

M The number of input variables 

M! Factorial of M 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

MEMS Michelin Earthmover Management System 
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MLR Multiple linear regression 

n The nth data point 

N The number of data points 

O-MLR Ordinary-multiple linear regression 

p Permutation of input variables 

P Mixture model 

R2 Coefficient of determination 

RMSE Root mean square error 

tph Tonnes per hour 

VIMS Vital Information Management System 

xm The mth input variable 

y Output variable 

�̅� Mean value of y 

�̂� Predicted value of y 

β0 Intercept of the linear function 

βm Regression coefficient 

γnk Posterior probability 
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ϵ Random error of linear function 

θ Parameter vector of the density function 

λk A set of data points that maximize γnk 

μk Mean vector of the density function 

πk Weight of the kth latent class 

Σk Covariance matrix 

∅ Parameter set of the mixture model 
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2.1. Introduction 

Oil sands mining plays a vital role in Canada’s economy (Sleep et al., 2018). In 2017 alone, it 

contributed CAD$13 billion to the national revenues and created more than 228,000 direct and 

indirect jobs (CAPP, 2018). In oil sands mining, truck haulage is a dominant means of transporting 

ores and wastes (Katta et al., 2019). The productivity of truck haulage (or referred to as truck 

productivity), defined as truck payload per unit time in each truck cycle, is directly related to a 

mine’s overall productivity (Alarie & Gamache, 2002). Therefore, it is of great significance to 

predict truck productivity, which affects a mine’s production, planning, income, and expenditure 

(Alarie & Gamache, 2002; Bartos, 2007). 

To predict truck productivity, researchers attempt to establish data-driven prediction models based 

on historical datasets (Chanda & Gardiner, 2010). The datasets may originate from various 

sources, such as sensor networks (Gui et al., 2011), remote sensing (Gu et al., 2010), wireless 

communication (Sabniveesu et al., 2015), a Vital Information Management System (VIMS) 

(Siami-Irdemoosa & Dindarloo, 2015), and Michelin Earthmover Management System (MEMS) 

(Zhang et al., 2018). Regardless of the source, datasets at mine sites are usually large. For example, 

Baek and Choi (2020) obtained two large datasets from limestone quarries, including 16,217 and 

16,005 data points, respectively. The datasets were used to build prediction models for morning 

and afternoon ore production over two months. Likewise, a dataset collected from oil sands mines 

in this study was even larger, with more than 300,000 data points covering truck haulage 

information for an entire year. 

Large datasets are usually preprocessed by clustering techniques (Dindarloo & Siami-Irdemoosa, 

2017; Shahin et al., 2004). Clustering is a data mining technique that assigns each data point into 

a specific class (Alam & Paul, 2020). In each class, the assigned data points share more similarities 
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than those in the other classes (Yang et al., 2017). Commonly used clustering techniques include 

K-means (Alam & Paul, 2020), hierarchical clustering (Tu et al., 2021), density-based spatial 

clustering (Wang & Hamilton, 2005), and Gaussian mixture modelling (GMM) (Santos et al., 

2017). Of these, GMM is the superior technique for preprocessing large datasets, showing potential 

for handling massive amounts of data from mine sites. GMM is a probability distribution-based 

clustering technique that identifies latent classes from a large dataset (Diaz-Rozo et al., 2020). In 

GMM, each class is assumed to follow a Gaussian distribution. Together, these classes form a 

mixture of Gaussian distributions, which are also known as multi-peak Gaussian distributions 

(Bishop, 2006). According to the central limit theorem (Rice, 1995), large datasets observed in 

engineering often present multi-peak Gaussian distributions. This applies to truck haulage data 

obtained from oil sands mines (Cervantes et al., 2019). For instance, in Figure 2.1, the haul 

distance, ranging from 0 to 10 km, is plotted in a column chart. Each range of haul distance falls 

under a density ranging from 0 to 0.4. The density refers to the fraction of a range divided by the 

total size of data. As shown in Figure 2.1, the column can either be described by superimposed 

density curves of a single Gaussian distribution (Figure 2.1(a)) or a multi-peak Gaussian 

distribution (Figure 2.1(b)). The multi-peak Gaussian distribution presents two peaks of haul 

distance, which includes additional information. Relying on these peaks, GMM has the ability to 

identify latent classes (Ge et al., 2018), thereby increasing model predictability. For example, Lu 

et al. (2019) used GMM to identify four classes from multi-peak heating load data and then built 

prediction models separately based on the datasets included in each class. The research showed 

that the accuracy of prediction models was enhanced by at least 20% based on the identification 

results. Similar to the research by Lu et al. (2019), Ni et al. (2020) obtained large streamflow 

datasets with multi-peak Gaussian distributions and used GMM to divide them into several classes. 
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Each class was then fitted with a single model, and the final prediction was a weighted sum of 

these models. The results showed that the accuracy of the proposed model for streamflow was 

improved by about 11% compared with the prediction models built based on the original large 

datasets. In addition, GMM has the ability to generate latent variables; the latent variable is defined 

as the labels of classes, which can be involved in modeling to improve prediction accuracy (Lubke 

& Luningham, 2017; Parsons, 2020). From the above studies, GMM has advantages for in-depth 

data mining with multi-peak Gaussian distributions (Ye et al., 2019). Thus, GMM may be a more 

suitable option to improve prediction models because large datasets of truck haulage are usually 

under multi-peak Gaussian distributions. However, according to the current literature, no research 

has reported the application of GMM to preprocess large datasets obtained from mine sites; it is 

still unknown if GMM can be used to improve the model predictability of truck productivity at 

mine sites. 

To this end, this study was designed to handle large datasets of truck haulage using GMM for 

developing a novel and accurate prediction model of truck productivity. The large dataset had 

303,712 groups of data, which was collected from active oil sands mines in Northern Alberta, 

Canada. GMM was first used to cluster the large dataset. After that, a latent variable was extracted 

to build the prediction model in conjunction with other input variables (Berlin et al., 2013). 

Because the multiple linear regression (MLR) method is a computationally efficient tool and can 

provide explicit formulae for engineers (Ciulla & D'Amico, 2019), it was adopted to build the 

prediction models. The main contribution of this study was the first application of GMM to 

preprocess massive amounts of data to improve model predictability of truck productivity. 
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Figure 2.1 Data distributions from oil sands mines (using the haul distance as an example). (a) 

Haul distance is described by a single Gaussian distribution; (b) Haul distance is described by a 

multi-peak Gaussian distribution. 

2.2. Methodology 

Figure 2.2 illustrates the flowchart of the overall methodology. A large dataset from the mine data 

management system was split into a training dataset and a testing dataset for model training and 

evaluation. Before the modeling, the training dataset was clustered by GMM into three latent 

classes, and a latent variable was generated by the labels of these classes. Two MLR models were 

then built on the training dataset, including the ordinary-MLR (O-MLR) model and the GMM-
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MLR model. The GMM-MLR model was the proposed model for predicting truck productivity, 

incorporating the latent variable. The O-MLR model was the baseline model without involving the 

latent variable. The testing dataset was used to evaluate the performance of two MLR models. The 

performance of each model was quantified by four commonly used parameters in statistics (Wu et 

al., 2020): the adjusted R2, the root mean square error (RMSE), the mean absolute error (MAE), 

and the mean absolute percentage error (MAPE). Finally, the Lindeman, Merenda, and Gold 

(LMG) method was selected to determine the relative importance of input variables to the GMM-

MLR model since LMG is a simple and efficient method when an MLR model contains few input 

variables (Tian et al., 2016). The abovementioned training process was implemented in RStudio 

software using the R (version 4.1.3) language environment. 
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Figure 2.2 Flowchart showing the execution process of methodology. 

2.2.1. Multiple linear regression (MLR) 

MLR is a common statistical technique for building prediction models (Ciulla & D'Amico, 2019). 

It has been widely applied in the fields of agriculture (Dhulipala & Patil, 2020), environment (Tan 

et al., 2014), and energy (Maaouane et al., 2021) because of its simple structure and efficient 

calculation (Ciulla & D'Amico, 2019). In addition, mining companies often utilize MLR to build 

prediction models because it can provide explicit expressions for engineers to use easily (Cervantes 

et al., 2019; Chanda & Gardiner, 2010). MLR obtains the best-fitting line by minimizing the square 

sum of vertical deviations from data points to a fitted line (Maaouane et al., 2021). This line 
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describes the linear relationship between an output variable and a set of input variables. Suppose 

that 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑀} is the input vector, where M is the number of input variables, and y is the 

output variable. The linear relationship can be expressed as follows: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ +  𝛽𝑚𝑥𝑚 + ⋯ + 𝛽𝑀𝑥𝑀 + 𝜖                     (2-1) 

where β0 is the constant term that denotes the intercept, βm is the regression coefficients linked to 

the mth input variable, and 𝜖 is the random error term. Equation (2-1) represents a prediction model 

based on the MLR method.  

2.2.2. Gaussian mixture modeling (GMM) 

GMM is an unsupervised clustering technique that identifies several latent classes from a data 

population (Bishop, 2006). A set of data points in each class adheres to a specific Gaussian 

distribution. Statistically, GMM generates a mixture model, which is defined as the weighted 

combination of k Gaussians, representing the probability density function of the data population. 

The description of the mixture model is written as follows (Leisch, 2004): 

𝑃(𝑦|𝑥, ∅) = ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜃𝑘)𝐾
𝑘=1      (2-2) 

where 𝑓(𝑦|𝑥, 𝜃𝑘) denotes the probability density function of the kth class; 𝜃𝑘  is the parameter 

vector, which is defined as (𝜇𝑘, Σ𝑘); 𝜇𝑘 and Σ𝑘 are the mean vector and the covariance matrix, 

respectively; the parameter 𝜋𝑘 is the weight of the kth class, also known as the mixture coefficient, 

which is non-negative together with ∑ 𝜋𝑘 = 1𝐾
𝑘=1 ; and ∅ indicates the parameter set of the mixture 

model, which is written as {𝜋𝑘, 𝜃𝑘}. 
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To determine the mixture model, GMM first estimates the parameter set {𝜋𝑘, 𝜃𝑘} from all data 

points. This estimation can be conducted using the expectation-maximization (EM) algorithm to 

maximize log-likelihood (log L) (Fu et al., 2021): 

𝑙𝑜𝑔 𝐿 = ∑ log(𝑃(𝑦|𝑥, 𝜙)𝑁
𝑛=1 ) = ∑ log(𝑁

𝑛=1 ∑ 𝜋𝑘𝑓(𝑦|𝑥, 𝜃𝑘)𝐾
𝑘=1 )              (2-3) 

where N is the number of data points. The EM algorithm determines the parameter set {𝜋𝑘, 𝜃𝑘} 

through an iterative process, mainly including the E-step and the M-step. In the E-step, data points 

are assigned to a class with the maximum posterior probability (Leisch, 2004). Based on the Bayes’ 

theorem (Li et al., 2019), the posterior probability that a data point (xn, yn) belongs to each class is 

given by 

  γ𝑛𝑘 =
𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜃𝑘)

∑ 𝜋𝑘𝑓(𝑦𝑛|𝑥𝑛,𝜃𝑘)𝐾
𝑘=1

                             (2-4) 

The data point is assigned to the kth class when 

𝜆𝑘 = argmax
𝑘𝜖{1,2,…,𝐾}

γ𝑛𝑘                 (2-5) 

where 𝜆𝑘 represents a set of data points that has the maximum posterior probability, γ𝑛𝑘. Later, in 

the M-step, with the γ𝑖𝑘 , the parameter set {𝜋𝑘, 𝜃𝑘} can be further estimated by the likelihood 

setting in Equation (2-3). These two steps are repeated until the maximum log-likelihood is 

reached. As a result, the parameter set can be acquired from the EM process.  

After the parameters set is estimated, GMM starts to determine the optimal number of latent 

classes. In this study, the Bayesian information criterion (BIC) was selected as a metric to optimize 

the number because it has been commonly used in engineering and proved to be superior to other 

methods in a rigorous study (Russell & Raftery, 2009). The BIC formula is shown below: 
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                          𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝐶𝑙𝑜𝑔𝑁            (2-6) 

where C means the number of estimated parameters. The criterion for the optimal number is to 

minimize the BIC value to achieve a more proper mixture model of the data population 

(McLachlan et al., 2019). 

2.2.3. Dataset preparation and preprocessing 

The large dataset contained 303,712 groups of data covering a full year of truck haulage cycles. 

Before the prediction models were built, the dataset was randomly and proportionally split into 

training (75%) and testing datasets (25%). Both the training and testing datasets had five input 

variables observed from the mine sites. These five input variables were chosen because they have 

been noted by practicing engineers at mine sites and are all associated with truck cycle time. They 

were related to haulage operations, haul routes, and meteorological factors, which were also 

selected with reference to the research by Chanda and Gardiner (2010). The observed input 

variables included haul distance (x1, km), empty speed (x2, km/h), destination (x3), ambient 

temperature (x4, ℃), and precipitation (x5, mm/h). The first three variables were monitored and 

identified by the installed sensors on trucks. The remaining two variables were obtained from the 

local meteorological observatory (MEP, 2023). Table 2.1 shows these five input variables, of 

which the haul distance, empty speed, and ambient temperature were continuous variables. The 

destination and precipitation were categorical variables, which means that they had several distinct 

categories. For example, there were three destinations at the mine sites, denoted as D1, D2, and D3. 

Figure 2.3 shows the statistical information about these observed input variables (xm) and the 

output variable (y). In Figure 2.3, the superimposed density curves represent the distribution of 

these variables. The continuous variables, including the haul distance, empty speed, and ambient 

temperature, were represented by the skewed Gaussian and multi-peak Gaussian distributions. 
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Remarkably, the multi-peak Gaussian distributions shown by the haul distance and ambient 

temperature indicated that the original dataset had a mixture of Gaussians, which provided the 

rationale for selecting GMM to preprocess the dataset (Ma et al., 2014). 

By preprocessing the training dataset using GMM, several latent classes were identified from all 

data points, and a latent variable was generated by the labels of classes. This latent variable was 

also a categorical variable with several distinct categories; it was in conjunction with other 

observed input variables to establish the GMM-MLR model. As for the testing dataset, the data 

points were grouped into several classes based on the mixture model obtained in GMM. The results 

of the GMM analysis and the number of latent classes will be explained and discussed in detail in 

Section 2.3.1. 

Table 2.1 The input variables (xm), characteristics, and their descriptions. 

 

Input variable Unit Type Description 

Haul distance (x1) km Continuous 
Listing haul distance for each cycle from a 

loading area to a dumping area 

Empty speed (x2) km/h Continuous 
Listing running speed of empty truck for each 

cycle 

Destination (x3) - Categorical 
Listing three destinations of truck haulage: D1, 

D2, and D3 

Ambient 

temperature (x4) 
℃ Continuous 

Listing ambient temperature per hour at the 

local mining area 

Precipitation (x5) mm/h Categorical 

Listing precipitation per hour at mine sites with 

three categories: no precipitation (P1), 0-1 

mm/h (P2), and larger than 1 mm/h (P3) 
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Figure 2.3 The output variable and observed input variables in the training dataset. (a) The output 

variable (y): truck productivity (unit: tph, tonnes per hour); (b)-(d) show the histograms of the 

continuous variables: haul distance (x1), empty speed (x2), and ambient temperature (x4); (e)-(f) 

show the boxplots of two categorical variables with three categories: destination (x3) and 

precipitation (x5). (“###”: the input information is not disclosed as it is the proprietary property of 

mining companies.) 

2.2.4. Performance criteria for prediction models 

To investigate the effect of GMM on prediction performance, two MLR models were built for 

comparison. One was the GMM-MLR model that considered a latent variable generated from the 
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GMM analysis. The other was the O-MLR model, serving as the baseline model without involving 

the latent variable. To assess the performance of these two models, four performance parameters 

were adopted in this study (Wu et al., 2020). These parameters were RMSE, MAE, MAPE, and 

the adjusted R2. They are calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ 𝑦𝑛 − �̂�𝑛)2𝑁

𝑛=1                  (2-7) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑛 − �̂�𝑛

𝑁
𝑛=1 |                      (2-8) 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑦𝑛−�̂�𝑛

𝑦𝑛

𝑁
𝑛=1 |                                                  (2-9) 

where 𝑦𝑛 is the actual values, indicating the measured truck productivity in the testing dataset; �̂�𝑛 

is the predicted truck productivity. RMSE shows the standard deviation of the residuals between 

actual and predicted values; MAE is used to characterize the absolute error between actual and 

predicted values, while MAPE denotes the relative error (Wu et al., 2020). The adjusted R2 is 

calculated based on R2. Both are shown, respectively, as Equation (2-10)-(2-11): 

𝑅2 = 1 −
∑ (𝑦𝑛−�̂�𝑛)2𝑁

𝑛

∑ (𝑦𝑛−�̅�𝑛)2𝑁
𝑛

                             (2-10) 

𝑅𝑎𝑑𝑗
2 = 1 −

(1−𝑅2)(𝑁−1)

𝑁−𝑀−1
                                                 (2-11) 

where �̅�𝑛 is the mean of actual values and M is the number of input variables. Both R2 and the 

adjusted R2 represent the degree to which data points fit a curve, ranging from 0 to 1. The adjusted 

R2 is generally smaller than R2 because input variables unrelated to the output variable are screened 

when calculating the adjusted R2; therefore, the adjusted R2 indicates the goodness of fit more 
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accurately than R2 (Mittlböck, 2002). The prediction model with a higher adjusted R2 and a lower 

RMSE, MAE, and MAPE has better prediction accuracy. 

2.2.5. The Lindeman, Merenda, and Gold (LMG) method 

To evaluate the contributions of input variables to the proposed GMM-MLR model, a quantitative 

method was introduced to calculate the relative importance of each input variable. This method is 

called the LMG method (Groemping, 2006). It is straightforward and efficient when an MLR 

model contains few input variables (Tian et al., 2016). The LMG method can consider all 

sequences of an input variable entering an MLR model. The relative importance of this input 

variable is calculated by averaging the R2 of all possible orderings, which can be determined 

according to Equation (2-12): 

𝐿𝑀𝐺 =  
1

𝑀!
∑ 𝑠𝑒𝑞{𝑅2(𝑥𝑚|𝑝)}𝑝 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛              (2-12) 

where M! is the factorial of M; p represents the permutation of input variables before entering xm, 

and seq{R2(xm|p)} refers to the R2 of the prediction model after entering xm in the permutation p. 

The relative importance of xm is the average value of R2 under all permutations.  

2.3. Results and discussion 

2.3.1. GMM analysis 

In this study, GMM was applied to cluster the training dataset under the principle of minimizing 

BIC. As a result, the training dataset was clustered into three latent classes, as shown in Figure 2.4. 

In Figure 2.4(a), taking truck productivity as an example, the number of data points was different 

in each class. The boxplot showed that Class 1 (C1) had the lowest number of data points (6,684), 

while Classes 2 and 3 (C2 and C3) had 119,145 and 101,955 data points, respectively. Q1 and Q3 

were the 25th and 75th percentiles in each class, depicting the distribution interval of data points 
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(Patil et al., 2018). Figure 2.4(b) shows the frequency histogram of truck productivity in each latent 

class. According to the definition of GMM (Bishop, 2006), the data points in each latent class are  

 

Figure 2.4 Extraction of three latent classes from the training dataset. (a) Boxplots of three classes; 

(b) Histogram: truck productivity corresponds to three latent classes, which are described by 

Gaussian distributions. 

described by a Gaussian distribution. The mean values of each Gaussian were around 1,166 tph, 

865 tph, and 670 tph. As shown in Figure 2.4, the training dataset was well partitioned into three 
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latent classes. Amid these classes, the value of truck productivity varied significantly, in the order 

of C1 > C2 > C3. This can be known as the high, medium, and low truck productivity at mine sites. 

This is similar to Ni et al. (2020); in their research, the streamflow data were also clustered into 

three latent classes using GMM. A prediction model was then developed for monthly low flow 

forecasting based on the GMM analysis; the R2 of this model was increased from 0.59 to 0.66 

compared to the baseline model without the GMM analysis. This suggests that implementing 

GMM may improve the model accuracy of truck productivity in this study. 

2.3.2. Establishment, interpretation, and comparison of prediction models 

2.3.2.1. O-MLR model 

The O-MLR model was a baseline model established on the training dataset without the 

implementation of GMM. The explicit equation of this model can be written as 

𝑦 =  𝛽0 + ∑ 𝛽𝑚
5
𝑚=1 𝑥𝑚       (2-13) 

where y was the output variable. β0 was the intercept of the equation, and βm was the regression 

coefficients linked to the mth observed input variable (xm). The regression parameters of Equation 

(2-13) can be seen in Table 2.2 presents the observed input variables (xm), regression coefficients 

(βm), significance test results (p-values), and intercept (β0). The observed input variables included 

the haul distance (x1), empty speed (x2), destination (x3), ambient temperature (x4), and 

precipitation (x5). The regression coefficients describe the mathematical relationship between each 

input variable and the output variable (Wei, 1990). For example, the haul distance's regression 

coefficient (β1) was a negative value (-62.70), indicating that the truck productivity was reduced 

by 62.70 tph when the haul distance increased by 1 km. The same result was found by Schexnayder 

et al. (1999); their data proved that the truck productivity dropped by 374 tph when the haul 
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distance rose by 1.3 km. Hence, the truck productivity had a negative relationship with the haul 

distance. The p-values for regression coefficients represent whether these relationships are 

statistically significant (Ge, 2008). In statistics, if a p-value is smaller than a significance level 

(usually 0.05), the relationship between the input and output variables is significant (Iqbal & Sun, 

2014). As shown in Table 2.2, the relationships between three continuous variables (haul distance, 

empty speed, and ambient temperature) and truck productivity were statistically significant 

because their p-values were less than 0.05. Also, two categorical variables (destination and 

precipitation) were significantly related to truck productivity, except for the second category (D2) 

of destination, as its p-value (0.546) was larger than 0.05. In short, almost all the input variables 

had a significant relationship with truck productivity, suggesting the trained O-MLR model can be 

used to predict truck productivity. 

Table 2.2 The regression parameters and significance test results for the O-MLR model. 

Input variable Regression coefficient p-value Significance test 

x1 Haul distance β1 -62.70 < 2×10-16 Reject 

x2 Empty speed β2 4.91 < 2×10-16 Reject 

x4 
Ambient 

temperature 
β4 -1.44 < 2×10-16 

Reject 

x3 
Destination (D2) 

β3 
-0.57 0.546 Accept 

Destination (D3) -11.71 < 2×10-16 Reject 

x5 
Precipitation (P2) 

β5 
-34.31 < 2×10-16 Reject 

Precipitation (P3) -75.51 < 2×10-16 Reject 

Intercept β0 900.20 < 2×10-16 Reject 

Note: If the p-value is less than 0.05, the null hypothesis that x and y are not significantly related 

will be rejected; otherwise, it will be accepted. For example, the p-value (0.546) for the second 

category (D2) of x3 is larger than 0.05; as a result, the null hypothesis is accepted. 
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2.3.2.2. GMM-MLR model (incorporation of a latent variable and its interaction terms) 

After the implementation of GMM, the training dataset was employed to build the GMM-MLR 

model. The explicit expression of this model can be given by  

𝑦 =  𝛽0 + ∑ 𝛽𝑚
5
𝑚=1 𝑥𝑚 + 𝛽6𝑥6 + ∑ 𝛽𝑚+6

5
𝑚=1 (𝑥𝑚 × 𝑥6)         (2-14) 

where β6 was the regression coefficients of the latent variable (x6), and βm+6 was the regression 

coefficients of interaction terms (xm×x6) between the five observed input variables (xm) and the 

latent variable (x6). Compared with Equation (2-13), two more terms were incorporated in 

Equation (2-14), including an independent term and a set of interaction terms. The independent 

term was constituted by a latent variable (x6) and its regression coefficient (β6). The latent variable 

was a categorical variable with three categories (C1, C2, and C3), and the GMM analysis showed 

that it was related to the five observed input variables. Hence, a set of interaction terms was 

considered in the GMM-MLR model between the five observed input variables and the latent 

variable. The interaction term refers to the product of two or more input variables in a regression 

equation (Jaccard et al., 2003). For instance, in Equation (2-14), the haul distance (x1) had an 

interaction term (x1×x6) with the latent variable (x6).  

Table 2.3 lists the detailed regression parameters of Equation (2-14), including the input variables, 

interaction terms, regression coefficients, p-values, and intercept. As shown in Table 2.3, the 

GMM-MLR model incorporated the five observed input variables, a latent variable and five sets 

of interaction terms. The regression coefficients in Table 2.3 will be explained in detail in Section 

2.3.2.3. As for the p-values, almost all the input variables and interaction terms had a significant 

relationship with the truck productivity since their p-values were smaller than 0.05. Thus, the 

established GMM-MLR model can also be applied for predicting truck productivity. 
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Table 2.3 The regression parameters and significance test results for the GMM-MLR model. 

Input variable and interaction term 
Regression 

coefficient 
p-value 

Significance 

test 

x1 Haul distance β1 -105.92 < 2×10-16 Reject 

x2 Empty speed β2 0.52 4.29×10-5 Reject 

x4 Ambient temperature β4 -4.23 < 2×10-16 Reject 

x3 
Destination (D2) 

β3 
-42.20 < 2×10-16 Reject 

Destination (D3) -40.58 < 2×10-16 Reject 

x5 
Precipitation (P2) 

β5 
-44.28 6.26×10-15 Reject 

Precipitation (P3) -71.90 6.58×10-10 Reject 

x6 
Latent variable (C2) 

β6 
-643.08 < 2×10-16 Reject 

Latent variable (C3) -973.95 < 2×10-16 Reject 

x1×x6 
Haul distance × latent variable (C2) 

β7 
8.48 2.28×10-16 Reject 

Haul distance × latent variable (C3) 75.91 < 2×10-16 Reject 

x2×x6 
Empty speed × latent variable (C2) 

β8 
9.68 < 2×10-16 Reject 

Empty speed × latent variable (C3) 4.99 < 2×10-16 Reject 

x4×x6 
Ambient temperature × latent variable (C2) 

β10 
2.22 < 2×10-16 Reject 

Ambient temperature × latent variable (C3) 3.23 < 2×10-16 Reject 

x3×x6 

Destination (D2) × latent variable (C2) 

β9 

51.92 < 2×10-16 Reject 

Destination (D2) × latent variable (C3) 32.95 < 2×10-16 Reject 

Destination (D3) × latent variable (C2) 41.95 < 2×10-16 Reject 

Destination (D3) × latent variable (C3) 20.83 6.78×10-13 Reject 

x5×x6 

Precipitation (P2) × latent variable (C2) 

β11 

11.65 0.046 Reject 

Precipitation (P2) × latent variable (C3) 14.41 0.015 Reject 

Precipitation (P3) × latent variable (C2) -4.74 0.690 Accept 

Precipitation (P3) × latent variable (C3) 25.21 0.037 Reject 

Intercept β0 1,616.21 < 2×10-16 Reject 
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Note: If the p-value is less than 0.05, the null hypothesis that x and y are independent will be 

rejected; otherwise, it will be accepted. For example, the p-value (4.29×10-5) for x1 is less than 

0.05; as a result, the null hypothesis is rejected. 

 

2.3.2.3. Interpretation of interaction terms 

The interaction term implies that the effect of an input variable on an outcome depends not only 

on that particular input variable but on other input variables (Moy et al., 2015). For instance, in 

the GMM-MLR model, the effect of haul distance on truck productivity depended on both the haul 

distance and the latent variable. Furthermore, the GMM analysis demonstrated that the latent 

variable could represent three classes of truck productivity: C1 (high values), C2 (medium values), 

and C3 (low values). This means that the interaction terms can further characterize the effects of 

the five observed input variables on each class of truck productivity. Also, these effects can be 

quantitatively measured through the regression coefficients of the established GMM-MLR model. 

In Table 2.3, there are 11 sets of regression coefficients. Among them, the regression coefficients 

(β1 to β5) for each observed input variable (xm) indicated the effect of the input variable on the 

truck productivity belonging to C1. The regression coefficients (β7 to β11) of each interaction term 

(xm×x6) suggested the effect of the input variable on the truck productivity belonging to C2 and C3. 

As shown in Figure 2.5, the haul distance and precipitation were used as examples to interpret the 

regression coefficients. In Figure 2.5(a), there were three negative values: -105.92 tph, -97.44 tph, 

and -30.01 tph. Of these values, -105.92 was the β1, indicating that the high truck productivity (C1) 

was reduced by 105.92 tph when the haul distance increased by 1 km. The values of -97.44 tph 

and -30.01 tph were calculated from the sum of the β1 (-105.92) and β7 (8.48 and 75.91), meaning 

that the medium (C2) and low (C3) truck productivity decreased by 97.44 tph and 30.01 tph when 

the haul distance rose by 1 km. Likewise, the effects of the precipitation (P2 and P3) on three classes 
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of truck productivity are illustrated in Figure 2.5(b)-(c). In Figure 2.5(b), the high, medium, and 

low truck productivity were reduced by 44.28 tph, 32.63 tph, and 29.87 tph when the precipitation 

(P2) increased by 1 mm/h. In Figure 2.5(c), the effect of the precipitation (P3) on the medium truck 

productivity (C2) was ignored as the p-value of this term was larger than 0.05. The high and low 

truck productivity dropped by 71.90 tph and 46.69 tph, respectively, when the precipitation (P3) 

rose by 1 mm/h. Thus, the interaction terms revealed that the effect of each observed input variable 

on truck productivity was significantly different between the three classes. The finding was similar 

to that in studies by Kyburz et al. (2011) and Lunt (2015), who were interested in the effect of 

treated time on a radiographic damage score for subjects in an early or late treated group. To 

evaluate the difference between the groups, Kyburz et al. (2011) and Lunt (2015) constituted an 

interaction term in a regression model. The results proved that the interaction term could also 

measure the different effects between groups. 

 

Figure 2.5 The effects of the observed input variables on each class of truck productivity (C1, C2, 

and C3 represented the high, medium, and low truck productivity, respectively). (a) The effects of 

the haul distance. (b) The effects of the precipitation (P2). (c) The effects of the precipitation (P3). 



 

46 
 

2.3.2.4. Comparison between O-MLR and GMM-MLR models 

Figure 2.6 shows the scatterplots of the actual (on the vertical axis) and predicted (on the horizontal 

axis) truck productivity. The y = x is a 45-degree diagonal line. The closer the scatters along the y 

= x line, the better the prediction (Liu et al., 2020). As shown in Figure 2.6, the scatters generated 

by the GMM-MLR model were closer along the line, which means that the GMM-MLR model 

performed better than the O-MLR model. To quantitatively evaluate the performance of the 

established models, four parameters were calculated for each model from the testing dataset. The 

results are listed in Table 2.4, which shows that the GMM-MLR model was more accurate than 

the O-MLR model. The GMM-MLR model had a lower RMSE, MAE, and MAPE, and a higher 

adjusted R2, with values of 91.87, 72.58, 0.10, and 0.75. Accordingly, these four performance 

parameters of the O-MLR model were 160.27, 124.31, 0.17, and 0.23. In terms of the adjusted R2 

alone, the accuracy of the GMM-MLR model (the adjusted R2 = 0.75) was three times higher than 

the O-MLR model (the adjusted R2 = 0.23). In other words, the GMM-MLR model performed well 

in predicting truck productivity. After using GMM to preprocess the large dataset, the model 

predictability was considerably enhanced by incorporating the latent variable and its interaction 

terms. This provides new insights and inspiration for engineers to handle massive amounts of 

engineering data in their future work. Similar findings were also noted in the research by Ho Park 

et al. (2021), who incorporated seven input variables and constituted 11 sets of interaction terms 

in a linear regression model for post-event flood waste estimation. The results showed that the 

adjusted R2 of the prediction model was increased from 0.36 to 0.59 when the model was added 

with these input variables and interaction terms. 
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Figure 2.6 Scatterplots of the actual truck productivity in the testing dataset and the predicted truck 

productivity generated by the O-MLR and GMM-MLR models. (a) The O-MLR model; (b) The 

GMM-MLR model. 
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Table 2.4 Performance evaluation by four parameters for the trained models. 

Prediction model  RMSE MAE MAPE Adjusted R2 

GMM-MLR 91.82 72.58 0.10 0.75 

O-MLR  160.27 124.31 0.17 0.23 

 

2.3.3. Relative importance analysis of observed input variables 

In this study, the LMG method was adopted to determine the relative importance of each observed 

input variable. Figure 2.7 shows the relative importance of these observed input variables in the 

GMM-MLR model. The vertical axis represented the five observed input variables; the horizontal 

axis was the relative importance proportion (in percentage) of each one. The relative importance 

for the input variables was ranked as haul distance (54.65%) > empty speed (23.14%) > ambient 

temperature (13.82%) > destination (6.22%) > precipitation (2.18%). Among these variables, the 

haul distance had the highest relative importance, indicating its effect on truck productivity was 

greater than that of other input variables. Cervantes et al. (2019) reported that mining companies 

often plotted a fitted line between haul distance and truck productivity because the increase in haul 

distance directly affects the increase in cycle time, thereby reducing truck productivity. Similar to 

the study by Cervantes et al. (2019), the results from the relative importance analysis also proved 

that the haul distance was a critical input variable in predicting truck productivity. After the haul 

distance, the analysis showed that the empty speed had the second-highest relative importance, 

with a value of 23.14%. According to Schexnayder et al. (1999), the empty speed determined the 

travel time from dumping sites to loading sites, affecting truck productivity. The relative 

importance of the destination was 6.22%, indicating its effect on the truck productivity was not 

significant. This is reasonable since the destination cannot directly affect the payload weight and 

cycle time length (Navarro Torres et al., 2019). The sum of the relative importance of the ambient 
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temperature and precipitation was 16.01%, showing that the meteorological factors had a certain 

contribution to the GMM-MLR model. Similar to the research by Sun et al. (2018), the prediction 

accuracy was enhanced by 5.13% when considering the effect of meteorological factors. To 

summarize, the observed input variables contributed differently to the GMM-MLR model, with 

haul distance being the most crucial input variable. The relative importance analysis can help mine 

engineers to gain a comprehensive understanding of the real-world influences affecting truck 

productivity, thus providing appropriate suggestions and methods to improve truck productivity. 

 

Figure 2.7 The relative importance of the observed input variables in the GMM-MLR model. 

2.3.4. Advantage, limitation, and future improvement of proposed model 

In this study, the GMM-MLR model was the proposed model for predicting truck productivity. 

Unlike previous studies (Baek & Choi, 2020; Chanda & Gardiner, 2010; Sun et al., 2018), this 

proposed model not only considered input variables observed at mine sites but involved 
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unobserved variables (i.e., latent variables) obtained from the GMM analysis. Due to the 

involvement of latent variables, the model accuracy of truck productivity was considerably 

enhanced (e.g., the R2 was increased from 0.23 to 0.75). Despite its better performance, the 

proposed GMM-MLR model had limitations in this study. Much research will be required to 

further the prediction model. For instance, although GMM has advantages in dealing with large 

datasets with multi-peak Gaussian distributions, it is not the only clustering technique 

(Shirkhorshidi et al., 2014). Previous studies have shown that clustering techniques such as K-

means and fuzzy C-means improved model accuracy (Liu et al., 2020; Wu et al., 2009). A 

comparative study between clustering techniques may be helpful to improve prediction models. In 

addition, more input variables, such as tire temperature, wind speed, and elevation, can be 

considered in the future to build prediction models. According to Ma et al. (2021), high tire 

temperature may cause rubber failure, affecting truck speed and cycle time. Likewise, wind speed 

and elevation over the haul route may have an impact on truck speed and driver’s vision (Chanda 

& Gardiner, 2010; Sun et al., 2018). However, these parameters are not included in the currently 

proposed model. Furthermore, the modeling approach used in this study was the MLR method, 

while more robust algorithms, such as support vector machine (Drosou & Koukouvinos, 2017), 

random forest (Cakir et al., 2021), and artificial neural network (Tadeusiewicz, 2015), can also 

provide accurate prediction models. In the future, these algorithms will be used to increase model 

predictability. 

2.4. Conclusions 

This study aimed to handle large datasets of truck haulage at mine sites using Gaussian mixture 

modeling (GMM) for developing a novel and accurate prediction model of truck productivity 

based on multiple linear regression (MLR). The main conclusions are listed below: 
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(1) GMM significantly improved the predictability of the truck productivity prediction model by 

preprocessing large truck haulage datasets. For example, the adjusted R2 of the ordinary-MLR 

(O-MLR) model was only 0.23, whereas the GMM-MLR improved the predictability more 

than three times, with an adjusted R2 of 0.75. This information can provide new insights and 

inspiration for engineers to deal with massive amounts of engineering data in their future work. 

(2) Interaction terms quantitatively measured the significant differences in the effect of an 

observed input variable on truck productivity between classes. For instance, when the haul 

distance increased by 1 km, the high (Class 1), medium (Class 2), and low (Class 3) truck 

productivity dropped by 105.92 tph, 97.44 tph, and 30.01 tph, respectively. Hence, the effect 

of the haul distance on high truck productivity was more significant than that on medium and 

low truck productivity, showing the significant differences between the classes revealed by the 

interaction terms. 

(3) Among the observed input variables, the haul distance was the most crucial input variable of 

the GMM-MLR model. The relative importance of the haul distance was 54.65%, which was 

higher than that of the empty speed (23.14%), destination (6.22%), ambient temperature 

(13.82%), and precipitation (2.18%). The relative importance analysis helps mine engineers to 

gain a comprehensive understanding of the real-world influences affecting truck productivity, 

thus providing appropriate suggestions and methods to improve truck productivity. 

(4) The GMM-MLR model with higher accuracy is expressed as an explicit and straightforward 

equation, which can help mine engineers predict truck productivity at mine sites. 
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Chapter 3. Prediction of truck productivity at mine sites using tree-based 

ensemble models combined with Gaussian mixture modeling 
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Nomenclatures 

BIC Bayesian information criteria 

C Mixture model complexity 

CART Classification and regression tree 

DT Decision tree 

EM Expectation-maximization 

fk Probability density function 

FS Forward stagewise 

GBR Gradient boosting regression 

GMM Gaussian mixture modeling 

GMM-DT Gaussian mixture modeling-based decision tree 

GMM-GBR Gaussian mixture modeling-based gradient boosting regression 

GMM-MLR Gaussian mixture modeling-based multiple linear regression 

GMM-RF Gaussian mixture modeling-based random forest 

k The kth latent classes 

K The number of latent classes 

L Likelihood of a set of data points 
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m The mth input variable 

MAE Mean absolute error 

MAPE Mean absolute percentage error 

ML Machine learning 

MLR Multiple linear regression 

n The nth data point 

N The number of data points 

OOB Out-of-bag 

P Mixture model 

PDF Probability density function 

Q1, Q3 The 25th and 75th percentiles 

R2 Coefficient of determination 

RMSE Root mean square error 

t t-fold cross-validation 

tph Tonnes per hour 

xm The mth input variable 

y Output variable 
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�̅� Mean value of y 

�̂� Predicted value of y 

β0 Intercept of the linear function 

βm Regression coefficient 

γnk Posterior probability 

θ Parameter vector of the density function 

λn A set of data points that maximize γnk 

μk Mean vector of the density function 

πk Weight of the kth latent class 

Σk Covariance matrix 

∅ Parameter set of the mixture model 
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3.1. Introduction 

Alberta’s oil sands mining is essential to Canada’s economy (Giesy et al., 2010). It has been 

estimated that oil sands mining would generate approximately CAD$1.7 trillion in federal and 

provincial taxes over the next two decades (CAPP, 2018). In oil sands mining, truck haulage is the 

dominant bulk material handling means for transporting ores and wastes at operating mine sites 

(Ma et al., 2021). The productivity of truck haulage (also referred to as truck productivity) directly 

relates to a mine’s overall productivity (Alarie & Gamache, 2002). Accurate truck productivity 

prediction at operating mine sites is of great significance for making budget decisions and 

developing sound mine planning (Chanda & Gardiner, 2010). 

To obtain accurate predictions, machine learning (ML) algorithms have received major attention 

and are extensively applied to various mining applications (Lei et al., 2018; Liang et al., 2020; 

Nourali & Osanloo, 2020; Rodriguez-Galiano et al., 2015). ML usually refers to a series of 

analytical data algorithms that automatically build explicit or implicit relationships between output 

and input variables (Fei et al., 2020). ML algorithms mainly include, but are not limited to, multiple 

linear regression (MLR) (Ahmed et al., 2020), decision tree (DT) (Pu et al., 2018), random forest 

(RF) (Rodriguez-Galiano et al., 2015), and gradient boosting regression (GBR) (Kaplan et al., 

2021). Of these, MLR and DT are single learning algorithms that train a single model throughout 

the modelling process, while RF and GBR are known as ensemble learning algorithms (Guo et al., 

2021). Ensemble learning is an ML technique that integrates several base models to gain an 

ensemble model with better performance than a single base model (Erdal, 2013). RF and GBR are 

two widely used tree-based ensemble models that integrate numerous decision trees (DTs) to 

improve model predictability (Dou et al., 2019). For example, Rodriguez-Galiano et al. (2015) 

trained an RF model (the integration of 50 trees) to forecast mineral prospectivity at mine sites. 
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The study showed that the prediction accuracy of the RF model was about 39% higher than that of 

the single DT model. Likewise, Liang et al. (2020) compared the accuracy of a GBR model (the 

integration of 1200 trees) and a DT model in predicting hard rock pillar stability. The results 

showed that the accuracy of the GBR model was 83.1%, whereas the accuracy of the DT model 

was 59.2%. In addition, the literature review shows that the tree-based ensemble models usually 

outperformed the MLR model (Ahmed et al., 2020; Lei et al., 2018). For instance, Lei et al. (2018) 

built two prediction models using the RF and MLR algorithms to forecast the spontaneous 

combustion of coal during underground coal exploitation. The relative prediction error of the RF 

model (2.4%) was lower than that of the MLR model (9.5%). Similarly, Ahmed et al. (2020) 

proposed a GBR model for predicting the calorific value of a lignite deposit in Thar, Pakistan. The 

study showed that the predictability of the GBR model was enhanced by 12.5% compared with the 

MLR model. Close to the research by Lei et al. (2018) and Ahmed et al. (2020), Sun et al. (2021) 

reported that the accuracy of the tree-based ensemble models (e.g., RF and GBR models) was two 

times higher than that of the MLR model when predicting the uniaxial compressive strength of 

coal-grout materials. Therefore, it is promising to apply tree-based ensemble learning algorithms 

to building prediction models. However, according to the current literature, no studies have 

reported the use of tree-based ensemble models to predict truck productivity. 

To this end, the objective of this study was to develop prediction models based on the truck haulage 

dataset using tree-based ensemble learning algorithms to forecast truck productivity. The truck 

haulage dataset contained 298,608 data points. Before modelling, Gaussian mixture modelling 

(GMM) as a clustering approach was first used to preprocess the large dataset since GMM has 

been proved an efficient method for handling massive amounts of data and enhancing model 

prediction accuracy (Diaz-Rozo et al., 2020). After that, RF and GBR were adopted to construct 
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prediction models of truck productivity. Also, MLR and DT as single learning algorithms were 

used to build models to be compared with the tree-based ensemble models. This study offered two 

main contributions: the first application of tree-based ensemble models to predict truck 

productivity and the use of GMM to further increase model predictability. 

3.2. Study framework, methods, and datasets 

3.2.1. Overview of study framework 

Figure 3.1 shows the overview of the study framework. The truck haulage dataset collected from 

operating oil sand mines was divided into training (70%) and testing (30%) datasets. Before the 

prediction models were built, GMM clustered the training dataset into three latent classes. The 

labels of these latent classes constructed a latent variable that was considered to be an additional 

input variable (Berlin et al., 2013). Then, four ML algorithms, including RF, GBR, MLR, and DT, 

were used to build prediction models. Of these, the GMM-RF, GMM-GBR, GMM-MLR, and 

GMM-DT models were established based on the training dataset preprocessed by GMM, 

incorporating the input variables observed at mine sites and a latent variable. Also, the RF, GBR, 

MLR, and DT models were trained based on the observed input variables in the original training 

dataset. The built-in hyperparameters of these models were optimised by a grid search approach 

based on five-fold cross-validation. After that, the testing dataset was used to evaluate the 

performance of these eight prediction models. In this study, four metrics were chosen to quantify 

the prediction performance (Wu et al., 2020): the mean absolute percentage error (MAPE), the 

root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of 

determination (R2). Lastly, the RF algorithm was adopted to analyze the relative importance of the 

observed input variables in predicting truck productivity. 
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Figure 3.1 Schematic diagram of the study framework for predicting truck productivity. 

3.2.2. Machine learning algorithms for building prediction models 

3.2.2.1. Decision tree (DT) 

The DT algorithm, often referred to as classification and regression trees (CART), was proposed 

by Breiman et al. (1984) and constitutes the basis of the RF and GBM models. DT is a decision-

making method that uses a hierarchical tree-shaped architecture, which comprises a root node, 

internal nodes, leaf nodes, and branches for each node (Breiman et al., 1984). As shown in Figure 
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3.2, truck productivity as a continuous output variable is offered as an example to illustrate the 

process of using a DT model. The input variables used in this DT model were haul distance, 

waiting at shovel, ambient temperature, and empty speed. The numbers in each node indicated the 

proportion of a dataset and the mean value of the output variable (Krzywinski & Altman, 2017). 

For example, the root node contained the original dataset with all data points (100%) having the 

mean value of truck productivity (806 tph). As the tree grew, the root node split into new internal 

nodes representing two divided subsets. This split was based on the value of haul distance for 

minimizing the mean square error (MSE) in each subset (Krzywinski & Altman, 2017). As a result, 

subset (a) with a haul distance >= 3.8 km was in the left branch, taking 54% of the original dataset 

and having an average truck productivity of 742 tph; subset (b) with a haul distance < 3.8 km was 

in the right branch, taking 46% of the original dataset and having an average truck productivity of 

880 tph. Likewise, all internal nodes obeyed this growth rule to generate new tree branches and 

nodes until a set of leaf nodes (also known as terminal nodes) with homogeneous datasets was 

created (Liang et al., 2016). The leaf nodes represent the predictions through the path from the root 

to the terminal. In this study, the prediction of truck productivity was a regression problem, and 

the prediction outcome was the mean value offered in each leaf node. 
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Figure 3.2 A representation of the DT model for predicting truck productivity. Two values of each 

node represent the proportion of the dataset belonging to this node and the mean of the output 

variable (e.g., truck productivity, unit: tph (tonne per hour)) in this dataset. 

3.2.2.2. Random forest (RF) 

The RF algorithm is an ensemble method integrating the performance of numerous DT algorithms 

(CART) to classify and predict outcomes (Jun & Cheng, 2017). Compared with DT, RF utilizes a 

bagging method to overcome the shortcomings of high variance and overfitting in the DT 

algorithm (Ohadi et al., 2020). Bagging is short for bootstrapping and aggregation (Breiman, 

2001). As shown in Figure 3.3, bootstrapping is a sampling technique to obtain a subset of each 

tree by randomly resampling the original dataset with replacement. After that, a portion of input 
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variables is randomly selected from the overall input variables as pairwise comparisons for best 

splitting at the root node and internal nodes in each tree. Each tree makes decisions separately, and 

the final prediction of the RF algorithm is reached by averaging the decisions of all trees, which is 

referred to as aggregation (Ohadi et al., 2020). Although this reduces the strength of each tree, it 

decreases the prediction variance of the RF algorithm by considering the ensemble results, thereby 

improving prediction accuracy (Rodriguez-Galiano et al., 2015). In addition, RF provides an 

additional subset as an unseen dataset to assess whether each tree is overfitted (Breiman, 2001). In 

bootstrapping, because of the random sampling with replacement, some data points may be used 

multiple times in subsets, whereas others may never be used. These data points that are not sampled 

for training trees are contained in an out-of-bag (OOB) subset to compute the prediction error for 

each tree (Peters et al., 2007). RF increases the number of trees until the error converges, thus 

avoiding overfitting (Rodriguez-Galiano et al., 2015). In brief, RF offers a robust ensemble 

algorithm through bagging technology, which is superior to the performance of the single DT 

algorithm.  

Furthermore, the RF algorithm analyses the relative importance of input variables. The principle 

is that RF excludes one input variable from the overall input variables and measures the reduction 

in model accuracy based on the OOB error estimate, thereby determining the relative importance 

of this input variable. In this study, RF was adopted to determine the relative importance of input 

variables observed at mine sites in addition to building prediction models. 
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Figure 3.3 An illustration of the concept of the RF algorithm. 

3.2.2.3. Gradient boosting regression (GBR) 

The GBR algorithm is another ensemble approach for classification and regression problems 

(Friedman, 2001). Similar to RF, GBR usually combines a series of DT algorithms (CART) to 

enhance the performance of a single DT algorithm (Breiman, 2001). However, unlike RF, GBR 

adopts a boosting method rather than a bagging method to construct each tree (Friedman, 2001). 

Boosting is a sequential process in which each tree learns, improves, and corrects prediction errors 

made by preceding trees (Simsekler et al., 2021). This is different from what happens during the 

training stage of bagging, as each tree is built into the RF algorithm in an independent and parallel 

way. In boosting, every newly trained tree places emphasis on data points that have been 

incorrectly predicted by previous trees. To achieve an optimal combination of trees in GBR, the 

residual errors of these data points are specified with a loss function that is minimized through a 
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forward stagewise (FS) strategy. In GBR, the loss function refers to the extent to which the 

predicted values deviate from the actual values. The FS strategy is an iterative process of 

minimizing the expected value of the loss function by adding new trees in sequence at each 

iteration without adjusting the parameters of the existing trees, also known as the functional 

gradient descent. The iteration of adding a new tree is terminated when the minimum average value 

of the loss function is acquired. Then, the successively established trees are combined into a strong 

ensemble learner for predicting the final result. 

3.2.2.4. Multiple linear regression (MLR) 

MLR is a commonly used approach for building prediction models in regression problems because 

of its easy calculation and explicit interpretation (Li et al., 2015). It has been utilized in predictions 

for many aspects at mines, such as coal production (Li et al., 2015), blast-induced ground vibration 

(Saadat et al., 2014), and rock fragmentation (Enayatollahi et al., 2014). Unlike DT, RF, and GBR, 

which establish nonlinear relationships, MLR assumes a linear relationship between a set of input 

variables and an output variable. This linear relationship is described as a best-fitted line, which 

can be acquired by minimizing the sum of squares of the vertical deviation from each data point 

to the line (Xie et al., 2021). In this study, the MLR model as a baseline model was compared with 

the models built by tree-based ensemble learning algorithms. 

3.2.3. Datasets preparation and preprocessing 

3.2.3.1. Datasets preparation 

The truck haulage dataset was collected from oil sands mines in Northern Alberta, Canada. It 

contained 298,608 truck cycles generated by transporting ores and covered an entire year of truck 

productivity. This dataset differs slightly in size from the dataset in Chapter 2 mainly because of 

the deeper cleaning of the raw data as the understanding of the real-site data increased. The truck 
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haulage dataset was proportionally and randomly divided into a training dataset (70%) and a 

testing dataset (30%). The training dataset was prepared for constructing prediction models based 

on ML algorithms. The testing dataset, as an unseen dataset, was used to test the model’s prediction 

performance. Tables 3.1 and 3.2 show the statistical information of these two large datasets. The 

primary statistics included the minimum (min.), maximum (max.), median, mean, 25th percentile 

(Q1), and 75th percentile (Q3) values in each dataset. Also, both the training and testing datasets 

had one output variable (y) and seven input variables (xm).  

The output and input variables were directly measured at mine sites. Among them, the output 

variable was truck productivity (y, tph), defined as the truck payload per unit time in each truck 

cycle (Ercelebi & Bascetin, 2009). The observed input variables comprised the haul distance (x1, 

km), empty speed (x2, km/h), ambient temperature (x3, ℃), destination (x4), spotting (x5), waiting 

at shovel (x6), and waiting at dump (x7). These seven input variables were all associated with truck 

cycle time (Chanda & Gardiner, 2010; Fan et al., 2022), which were selected mainly based on the 

experience of practising engineers at mine sites and the availability of data. With the exception of 

the ambient temperature provided by the local weather station (MEP, 2023), the remaining input 

variables were provided by the mine sites. A detailed description of these seven input variables is 

shown in Table 3.3, where the first three inputs (x1, x2, and x3) were continuous variables, and the 

last four inputs (x4, x5, x6, and x7) were categorical variables. Figure 3.4 shows the distribution 

characteristics of these input and output variables. In Figure 3.4(a)-(d), the horizontal axis 

represents the output and input variables, which were plotted in column charts showing specific 

ranges. The vertical axis shows the probability density of each continuous variable. The density 

refers to the portion of each range divided by the total size of data points. Notably, the density 

curves for the continuous variables (e.g., haul distance and ambient temperature) presented multi-
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peak Gaussian distributions, which indicated that the original dataset had a mixture of Gaussian 

distributions (Li et al., 2018). This provided the rationale for adopting GMM to preprocess the 

dataset in this study and will be explained in detail in Section 3.2.3.2. Figure 3.4(e)-(h) shows the 

boxplots of four categorical input variables and the number of data points in each label. In 

summary, all these observed input variables were involved in prediction models. The contribution 

of each observed input variable to the prediction model will be analyzed in Section 3.3.4. 

Despite this, there are still limitations of the dataset in this study. Other potential input variables 

that have not been included can also affect truck cycle time, such as loaded speed (Cervantes et 

al., 2019), elevation (Chanda & Gardiner, 2010), and tire temperature (Ma et al., 2021). Depending 

on availability, these additional input variables may be added to future studies for building 

prediction models of truck productivity.  

Table 3.1 Statistics, output, and input variables of the training dataset (including 209,026 data 

points).  

Statistic y (tph) x1 (km) x2 (km/h) x3 (℃) 
x4 

(label) 

x5 

(label) 

x6 

(label) 

x7 

(label) 

Min. ### 1.00 5.30 -38.00 1 0 0 0 

Q1 ### 3.37 31.30 -10.00 1 0 0 1 

Median ### 4.61 36.80 2.90 2 1 1 1 

Mean ### 4.42 36.88 0.88 2.15 0.65 0.50 0.96 

Q3 ### 5.39 42.40 12.70 3 1 1 1 

Max. ### 18.50 60.00 32.80 3 1 1 1 

(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 
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Table 3.2 Statistics, output, and input variables of the testing dataset (including 89,582 data points).  

Statistic y (tph) x1 (km) x2 (km/h) x3 (℃) 
x4 

(label) 

x5 

(label) 

x6 

(label) 

x7 

(label) 

Min. ### 1.00 5.40 -38.00 1 0 0 0 

Q1 ### 3.38 31.30 -10.00 1 0 0 1 

Median ### 4.61 36.80 2.80 2 1 1 1 

Mean ### 4.42 36.93 0.85 2.15 0.65 0.50 0.96 

Q3 ### 5.39 42.40 12.70 3 1 1 1 

Max. ### 17.73 60.00 32.80 3 1 1 1 

(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 

 

Table 3.3 A detailed description of seven input variables (xm). 

Input variable Type Description 

Haul distance (x1, km) Continuous 
The distance for each loaded truck from a loading 

site to a dumping site 

Empty speed (x2, km/h) Continuous 
The speed of each empty truck returning from a 

dumping site to a loading site 

Ambient temperature 

(x3, ℃) 
Continuous The ambient temperature per hour at mine sites 

Destination (x4) Categorical 
The labels (1, 2, and 3): three destinations of truck 

haulage at mine sites 

Spotting (x5) Categorical 

Two labels (0 and 1): zero (0) and non-zero (1) 

spotting time for each truck (spotting time refers to 

the time that a shovel with ores already has been 

waiting for a truck to arrive (Dzakpata et al., 2016)) 

Waiting at shovel (x6) Categorical 
Two labels (0 and 1): zero (0) and non-zero (1) wait 

time at a shovel for each truck 

Waiting at dump (x7) Categorical 
Two labels (0 and 1): zero (0) and non-zero (1) wait 

time at a dumping site for each truck 
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Figure 3.4 The distribution features of output and input variables in the training dataset. (a) The 

histogram of a continuous output: truck productivity (y, tph); (b)-(d) The histograms of three 

continuous inputs: haul distance (x1), empty speed (x2), and ambient temperature (x3); (e)-(f) The 

boxplots of four categorical inputs: destination (x4), spotting (x5), waiting at shovel (x6), and 

waiting at dump (x7). 

3.2.3.2. Gaussian mixture modeling (GMM) for datasets preprocessing 

GMM is a probability distribution-based clustering approach, which has been proven to be an 

efficient method for preprocessing large datasets of streamflow (Ni et al., 2020), seismic activities 

(Kuyuk et al., 2012), and wind power (Ye et al., 2019). In GMM, data points in a large dataset are 
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assigned into k latent classes, each of which is assumed to follow a specific Gaussian distribution 

(Bishop, 2006). A weighted combination of k Gaussian distributions forms a mixture of Gaussians, 

also known as multi-peak Gaussian distributions, which can be described as a mixture model 

(Leisch, 2004): 

𝑃(𝑦|𝑥, ∅) = ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜃𝑘)𝐾
𝑘=1       (3-1) 

where 𝑃(𝑦|𝑥, ∅) is the mixture model indicating the probability density function (PDF) of the data 

population; 𝑓𝑘(𝑦|𝑥, 𝜃𝑘) represents the PDF of the kth latent class; ∅ denotes the parameter set 

{𝜋𝑘, 𝜃𝑘}. Of these, 𝜋𝑘 is the non-negative weight of the kth class together with ∑ 𝜋𝑘 = 1𝐾
𝑘=1 , 𝜃𝑘 is 

the parameter vector (𝜇𝑘 , Σ𝑘) , and 𝜇𝑘  and Σ𝑘  are the mean vector and covariance matrix, 

respectively. 

To obtain the mixture model, GMM first estimates the parameter set {𝜋𝑘, 𝜃𝑘} and then determines 

the optimal number of the latent classes. The parameter estimation is generally carried out using 

an expectation-maximization (EM) algorithm (Leisch, 2004), which is divided into two steps. In 

E-step, the posterior probability is calculated for a data point (xi, yi) assigned to each class (Leisch, 

2004): 

  γ𝑛𝑘 =
𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜃𝑘)

∑ 𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜃𝑘)𝐾
𝑘=1

                 (3-2) 

This data point belongs to the kth class when  

𝜆𝑘 = argmax
𝑘𝜖{1,2,…,𝐾}

γ𝑛𝑘                                                       (3-3) 
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where 𝜆𝑘 is the set of data points that has the maximum posterior probability, γ𝑛𝑘. With the γ𝑛𝑘, 

{𝜋𝑘, 𝜃𝑘} can be further estimated in the M-step by maximizing the log-likelihood (log L) in 

Equation (3-5) (Leisch, 2004): 

𝜋𝑘 =
1

𝑁
𝑓𝑘 =

1

𝑁
∑ γ𝑛𝑘

𝑁
𝑛=1                                                   (3-4) 

𝑙𝑜𝑔 𝐿 = ∑ log(𝑃(𝑦|𝑥, 𝜙)𝑁
𝑛=1 ) = ∑ log(𝑁

𝑛=1 ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜃𝑘)𝐾
𝑘=1 )                    (3-5) 

where N is the number of data points. The E- and M-steps are iteratively computed until the 

maximum log L is reached. Later, GMM starts to determine the optimal number (k) of latent 

classes by minimizing the Bayesian information criterion (BIC) value (Lu et al., 2019): 

                     𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝐶𝑙𝑜𝑔𝑁                                                (3-6) 

where C is the number of estimated parameters. The BIC method was adopted as a metric since 

it has been shown to outperform other methods in a rigorous study (Russell & Raftery, 2009). 

Finally, the mixture model is obtained from the data population, representing the multi-peak 

Gaussian distribution.  

According to the central limit theorem (Rice, 1995), the observations of many variables in 

engineering often present multi-peak Gaussian distributions. This applies to variables (e.g., the 

haul distance in Figure 3.4) in truck haulage datasets observed from oil sands mines (Cervantes et 

al., 2019). Relying on these peaks, GMM can recognize latent classes and generate latent variables, 

thereby improving model accuracy (Sonta et al., 2018). Thus, GMM was adopted in this study to 

preprocess large datasets before prediction models were built. 
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3.2.4. Performance evaluation for prediction models 

To investigate the predictability of tree-based ensemble models, four ML models (RF, GBR, MLR, 

and DT models) were established for comparison. Of these, the RF and GBR models were tree-

based ensemble models, while the MLR and DT models were baseline models. Moreover, to assess 

the effect of GMM on model performance, four additional ML models (GMM-RF, GMM-GBR, 

GMM-MLR, and GMM-DT models) were constructed on the training dataset preprocessed by 

GMM for comparison. This study used four performance metrics to evaluate these eight prediction 

models, including MAPE, RMSE, MAE, and R2 (Wu et al., 2020). They are written as follows: 

𝑀𝐴𝑃𝐸 =  
100%

𝑁
∑ |

𝑦𝑛−�̂�𝑛

𝑦𝑛

𝑁
𝑛=1 |                                                (3-7) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑛 − �̂�𝑛)2𝑁

𝑛=1                                                (3-8) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑛 − �̂�𝑛

𝑁
𝑛=1 |                                                  (3-9) 

𝑅2 = 1 −
∑ (𝑦𝑛−�̂�𝑛)2𝑁

𝑛

∑ (𝑦𝑛−�̅�𝑛)2𝑁
𝑛

                                                     (3-10) 

where 𝑦𝑛  is the measured values; �̂�𝑛  is the predicted values; and �̅�𝑛  is the mean value of the 

measured values. MAPE shows the percentage of error relative to the measured values, and RMSE 

means the standard deviation of the residuals between the measured and predicted values. MAE is 

the absolute error between the measured and predicted values, and R2 indicates the degree to which 

data points fit a curve, ranging from 0 to 1 (Wu et al., 2020). Overall, the prediction model with a 

higher R2 and a lower MAPE, RMSE, and MAE has better performance. 

3.2.5. Hyperparameters tuning 

Before applying the proposed ML algorithms for predictions, built-in hyperparameters are required 

to be pre-tuned to improve the performance of prediction models (Xue et al., 2021). In this study, 
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the main goal of the hyperparameters tuning is to control the complexity of prediction models, 

making the model less overfitting (Ohadi et al., 2020). Table 3.4 presents the hyperparameters that 

need to be tuned and their search space. For the RF algorithm, the hyperparameters were mtry (the 

number of input variables available for splitting at each node) and min.node.size (the minimum 

number of observations in a leaf node). For the GBR algorithm, the hyperparameters were ntrees 

(the total number of trees in GBR), interaction.depth (the number of splits in each tree), shrinkage 

(learning rate), and n.minobsinnode (the minimum number of observations in a leaf node). 

To obtain the optimal hyperparameters, a grid search method was adopted in this study since it is 

easy to implement and has a sound optimization effect (Erdogan Erten et al., 2021). First, the grid 

search method defines a search space of hyperparameters as a grid. After that, a validation dataset 

is split from the training dataset and subjected to t-fold cross-validation to establish and evaluate 

prediction models based on every position in the grid. The prediction models are constructed using 

t - 1 folds and tested using the remaining one-fold, which repeats t times with different folds used 

as the testing fold. Finally, the t-fold cross-validation performance (the RMSE value used as a 

metric (Sun et al., 2021)) is the average performance calculated in each fold (Qi & Tang, 2018). 

In this study, t was set to be five, which were recommended by Liang et al. (2020) and Wu et al. 

(2020). 
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Table 3.4 Hyperparameters and their search space for the proposed algorithms. 

Algorithm Hyperparameter Type Range, step 

RF 

mtry Integer [1-m*], 1 

min.node.size Integer [4-30], 2 

GBR 

n.trees Integer [400-2800], 200 

interaction.depth Integer [2-10], 1 

shrinkage Float [0.05-0.25], 0.05 

n.minobsinnode Integer [4-14], 1 

* m: the total number of input variables for predicting truck productivity. 

3.3. Results and discussion 

3.3.1. GMM preprocessing 

Figure 3.5 shows the three latent classes identified from the training dataset using GMM 

preprocessing. Taking truck productivity as an example, the vertical axis shows the value of truck 

productivity in each class, and the horizontal axis indicates the labels of three latent classes (i.e., 

1, 2, and 3). In addition, the statistical information of the latent classes is listed in Figure 3.5. Class 

2 had 93,543 data points, which was more than Class 1 (63,117) and Class 3 (52,366). Q1 and Q3 

represent the distribution interval of data points in each class. In Class 3, the value of truck 

productivity was between 875 tph (Q1) to 1,095 tph (Q3), with the median and mean values of 975 

tph and 981 tph, respectively. For Classes 2 and 1, the ranges, median, and mean values of truck 

productivity successively decreased. This means the value of truck productivity varied 

considerably in these three latent classes, in the order of Class 1 < Class 2 < Class 3, representing 

the low, medium, and high truck productivity at operating oil sands mines. This study was similar 

to the research by Lu et al. (2019), in which they identified six latent classes from heating load 
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data using GMM and built a prediction model based on the GMM preprocessing. That research 

showed that the model accuracy was improved by about 20%. Hence, preprocessing of large 

datasets using GMM in this study had the potential to increase model predictability. 

 

Figure 3.5 Identification of three latent classes (represented by labels of 1, 2, and 3) from the 

training dataset using GMM. 

3.3.2. Determination of hyperparameters  

In this study, the hyperparameters of the RF and GBR algorithms were tuned by grid search based 

on the five-fold cross-validation. To assess the effectiveness of using grid search, the RMSE was 

calculated for each combination of hyperparameters in the prescribed search space (Sun et al., 

2021). As shown in Figure 3.6, the RF algorithm (including the RF and GMM-RF models) was 

taken as an example to illustrate the process of obtaining the optimal hyperparameters. In Figure 

3.6(a), for the RF model, the search range of mtry was set as [1, 7]. When mtry approached two, 

the RMSE value significantly dropped (from 154.6 to 137.3). It further decreased to 133.2 when 
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mtry reached three and could not be reduced with the number of input variables. Thus, the optimal 

mtry for the RF model was three. Similarly, the other hyperparameter min.node.size (search range 

was set as [4, 30]) was determined to be 22 when the minimum RMSE value was attained. The 

GMM-RF model was built based on the training dataset after implementing GMM and had the 

same built-in hyperparameter as the baseline model (i.e., the RF model). In Figure 3.6(c)-(d), the 

optimal mtry and min.node.size was selected to be 4 and 16 based on the minimum RMSE values. 

In this study, the number of trees was not tuned in the RF algorithm because the increase in the 

number insignificantly improved the model performance and increased the computational cost. As 

a result, the number of trees was set to the default value (500) for the RF and GMM-RF models. 

Furthermore, this study tuned four hyperparameters for the GBR algorithm. The determination of 

these is shown in Table 3.5 for the GBR and GMM-GBR models, respectively. The results were 

similar to the studies by Naghibi et al. (2017) and Yu et al. (2020) in which the hyperparameters 

tuning reduced the risk of overfitting and improved model accuracy to some extent. The results 

showed that the accuracy of tuned RF and GBR models was 85.6% and 99.9%, which was higher 

than that of untuned RF (84.6%) and GBR (98.9%) models.  

Table 3.5 Determination of hyperparameters for the GBR model and the GMM-GBR model. 

Algorithm ntrees interaction.depth shrinkage n.minobsinnode 

GBR 2600 7 0.15 6 

GMM-GBR 600 8 0.15 14 
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Figure 3.6 Determination of hyperparameters for the RF model and the GMM-RF model. 

3.3.3. Performance comparison and evaluation of prediction models 

3.3.3.1. Comparing RF, GBR, MLR, and DT models 

Figure 3.7 shows the scatterplots of the predicted truck productivity (on the vertical axis) obtained 

from the RF, GBR, MLR, and DT models and the measured truck productivity (on the horizontal 

axis) in the testing and training datasets. The smaller deviation between the predicted and measured 

values, the closer the scatter points along the y = x line (Liu et al., 2020). As shown in Figure 3.7, 

the scatter points generated from the four prediction models were not closely distributed along 

both sides of the line, indicating that the prediction performance of these models was not high. 
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Table 3.6 lists quantitative metrics based on the testing and training datasets to evaluate the 

prediction performance. From Table 3.6, in terms of the testing dataset, the MAPE, RMSE, MAE, 

and R2 were 14.1%, 134.29, 104.66 and 44.05% for the RF model, and 13.96%, 133.42, 103.78, 

and 44.76% for the GBR model. Accordingly, these metrics were 15.10%, 143.56, 112.02, and 

36.06% for the MLR model, and 15.68%, 148.08, 116.01, and 31.96% for the DT model. 

Therefore, the RF and GBR models had lower MAPE, RMSE, and MAE, and higher R2 than those 

of the MLR and DT models, indicating that the tree-based ensemble models performed better than 

the single models in predicting truck productivity. A similar finding was reported in the study by 

Zhang et al. (2021), who established two tree-based ensemble models (the RF and GBR models) 

to estimate diaphragm wall deflections in anisotropic clays. The results showed that the R2 of the 

RF (98.2%) and GBR (98.9%) models was higher than the single DT model (91.4%). To conclude, 

although the RF and GBR models were not as accurate, they outperformed the MLR and DT 

models in predicting truck productivity. 

Table 3.6 Performance of the RF, GBR, MLR, and DT models on testing and training datasets. 

Prediction 

model 

Testing dataset Training dataset 

MAPE (%) RMSE MAE R2 (%) 
MAPE 

(%) 
RMSE MAE R2 (%) 

RF 14.10 134.29 104.66 44.05 13.50 128.83 100.43 48.31 

GBR 13.96 133.42 103.78 44.76 13.58 129.62 101.06 47.67 

MLR 15.10 143.56 112.02 36.06 15.01 143.34 111.67 36.00 

DT 15.68 148.08 116.01 31.96 15.59 147.76 115.64 32.00 
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Figure 3.7 Scatterplots of the measured truck productivity and predicted truck productivity. The 
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RF model evaluated by (a) testing dataset and (b) training dataset; the GBR model evaluated by 

(c) testing dataset and (d) training dataset; the MLR model evaluated by (e) testing dataset and (f) 

training dataset; and the DT model evaluated by (g) testing dataset and (h) training dataset. 

3.3.3.2. Comparing GMM-RF, GMM-GBR, GMM-MLR, and GMM-DT models 

Figure 3.8 shows the scatterplots of the predicted truck productivity obtained from the GMM-RF, 

GMM-GBR, GMM-MLR, and GMM-DT models and the measured truck productivity in the 

testing and training datasets. As shown in Figure 3.8, the scatter points generated from these four 

prediction models were densely distributed along the y = x line, indicating that these prediction 

models performed well in predicting truck productivity. This was related to the GMM 

preprocessing, and its effect on model performance will be evaluated in detail in Section 3.3.3.3. 

Table 3.7 lists quantitative metrics based on the testing and training datasets to evaluate the 

prediction performance. From Table 3.7, in terms of the testing dataset, the GMM-RF model had 

the lowest MAPE, RMSE, and MAE, and the highest R2, with values of 6.77%, 64.33, 49.78, and 

87.16%. Its performance was slightly higher than the GMM-GBR (6.81%, 64.77, 50.10, and 

86.98%), and superior to the GMM-MLR (7.61%, 77.06, 55.17, and 81.57%) and GMM-DT 

models (8.61%, 82.28, 63.35, and 78.99%). Thus, the tree-based ensemble models still 

outperformed the single models in predicting truck productivity. Akin to the study by Chen et al. 

(2021): after implementing GMM, the accuracy of the ensemble model was 12% higher than the 

single model in predicting dam deformation.  
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Figure 3.8 Scatterplots of the measured truck productivity and predicted truck productivity. The 
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GMM-RF model evaluated by (a) testing dataset and (b) training dataset; the GMM-GBR model 

evaluated by (c) testing dataset and (d) training dataset; the GMM-MLR model evaluated by (e) 

testing dataset and (f) training dataset; and the GMM-DT model evaluated by (g) testing dataset 

and (h) training dataset. 

Table 3.7 Performance of the GMM-RF, GMM-GBR, GMM-MLR, and GMM-DT models on 

testing and training datasets. 

Prediction 

model 

Testing dataset Training dataset 

MAPE 

(%) 
RMSE MAE R2 (%) 

MAPE 

(%) 
RMSE MAE R2 (%) 

GMM-RF 6.77 64.33 49.78 87.16 5.89 55.36 43.19 90.46 

GMM-GBR 6.81 64.77 50.10 86.98 6.63 62.92 48.90 87.67 

GMM-MLR 7.61 77.06 55.17 81.57 7.60 77.16 55.21 81.46 

GMM-DT 8.61 82.28 63.35 78.99 8.55 81.90 62.98 79.11 

 

3.3.3.3. Effect of implementing GMM on model performance 

Figure 3.9 shows the performance comparisons of the trained models with and without 

implementing GMM preprocessing. For the ensemble models, the GBR and GMM-GBR models 

were used as examples. In Figure 3.9(b), the GMM-GBR model had lower MAPE, RMSE, and 

MAE, and a higher R2, with the values of 6.81%, 64.77, 50.10, and 86.98%. These four metrics of 

the GBR model were 13.96%, 133.42, 103.78, and 44.76%. In terms of the R2, the accuracy of the 

GMM-GBR model (R2 = 86.98%) was about two times higher than the GBR model (R2 = 44.76%). 

Therefore, the GMM-GBR model performed better than the GBR model in predicting truck 

productivity. Similar research by Ni et al. (2020) proposed a GBR model coupled with GMM for 
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monthly low streamflow forecasting. The research showed that the R2 of the proposed model was 

improved by 12% compared to the GBR model without GMM preprocessing. Also, for the single 

models, the MLR and GMM-MLR models were used as examples. In Figure 3.9(c), in terms of 

the R2, the accuracy of the GMM-MLR model (R2 = 81.57%) was over two times higher than the 

MLR model (R2 = 36.06%). In other words, the GMM-MLR model performed well in predicting 

truck productivity. This information can provide new solutions for mining engineers to handle 

engineering data with multi-peak Gaussian distributions at other mine sites and to build more 

accurate prediction models. To conclude, GMM considerably improved the performance of the 

ensemble and single models by involving a latent variable. The latent variable was a class-related 

categorical variable constructed by the labels of the latent classes. This agreed with studies by Lunt 

(2015) and Kyburz et al. (2011) in which a latent variable was constituted by the labels of early 

and late treated classes for patients and was used in conjunction with other input variables to 

analyze radiographic damage scores accurately.  



 

83 
 

 

Figure 3.9 Performance comparisons of the trained models with and without implementing GMM 

preprocessing based on the testing dataset. (a) comparison between the RF and GMM-RF models; 

(b) comparison between the GBR and GMM-GBR models; (c) comparison between the MLR and 

GMM-MLR models; (d) comparison between the DT and GMM-DT models. 

3.3.4. Relative importance of observed input variables 

In Section 3.3.3.2, the performance of the GMM-RF model was seen to be slightly higher than that 

of the GMM-GBR model, which was significantly better than the GMM-MLR and GMM-DT 

models. This means that among all models in this study, the GMM-RF model was the most 

accurate in predicting truck productivity. The accuracy of prediction models is closely related to 

input variables (Wu et al., 2020). The input variables observed at mine sites directly represented 
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the actual truck haulage process. Thus, this study focused on analyzing the contributions of the 

observed input variables to the GMM-RF model. 

Figure 3.10 shows the relative importance (in percentage) of the observed input variables in the 

GMM-RF model. The relative importance of these seven input variables was ranked as haul 

distance (43.51%) > empty speed (21.77%) > waiting at shovel (18.18%) > ambient temperature 

(12.71%) > destination (2.29%) > spotting (1.03%) > waiting at dump (0.52%). Among these input 

variables, haul distance had the highest relative importance, indicating that it was the most crucial 

input variable for predicting truck productivity. It was reported by Cervantes et al. (2019) that 

mining companies generally observed that haul distance has the most impact on truck productivity 

and often built a fitted line between truck productivity and haul distance. This is because an 

increase in haul distance directly causes an increase in cycle time, thereby decreasing truck 

productivity. Next, empty speed, with a relative importance of 21.77%, played the second most 

important role in predicting truck productivity since empty speed determines a part of cycle time 

(the travel time from a dumping site to a loading site), thus affecting truck productivity 

(Schexnayder et al., 1999). After empty speed, waiting at shovel as a categorical input variable 

had the third-highest relative importance (18.18%). According to Ercelebi and Bascetin (2009), 

when truck fleet size increased from three to five, the wait time at shovel increased from 2.48 min 

to 3.11 min, and shovel utilization was reduced from 0.78 to 0.72. This led to an increase in cycle 

time and a decrease in truck productivity. In their research, wait time at dump varied from 0.54 

min to 0.59 min, indicating that the wait time at dump was shorter than the wait time at shovel. 

Similar to Soofastaei et al. (2016), the spot time is usually around 0.5 min, with only a small impact 

on cycle time. Those on-site observations showed that the wait time at shovel took longer than the 

wait time at dump and spot time, which had a more pronounced effect on cycle time or truck 
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productivity. This applies in the current study: waiting at shovel (18.18%) on truck productivity 

was more significant to truck productivity than spotting (1.03%) and waiting at dump (0.52%). 

Then, the relative importance of ambient temperature was 12.71%, which contributed a lot to the 

model accuracy. Sun et al. (2018) also reported that the model accuracy was enhanced by 5.13% 

when it included the meteorological factor. Lastly, destination made a small contribution (2.29%) 

to the GMM-RF model since it cannot directly affect the cycle time or truck payload (Navarro 

Torres et al., 2019). Overall, the input variables contributed differently to the GMM-RF model, 

with haul distance being the most influential input variable. Also, mining engineers can 

quantitatively assess and select valid input variables based on their relative importance in order to 

accurately predict truck productivity. 

 

Figure 3.10 Relative importance analysis of input variables observed at mine sites. 
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3.4. Conclusions 

For the first time, this study used random forest (RF) and gradient boosting regression (GBR) 

models to predict truck productivity at mine sites and adopted Gaussian mixture modelling (GMM) 

to further improve the model predictability. The main conclusions are summarised below: 

(1) The tree-based ensemble models performed better than single models in predicting truck 

productivity (without and with GMM preprocessing). For example, without GMM 

preprocessing, the R2 of the RF model was 44.05%, which was higher than that of the decision 

tree model (the DT model), with a value of 31.96%. With GMM preprocessing, the R2 of the 

GMM-RF model (87.16%) remained higher than the GMM-DT model (78.99%).  

(2) GMM significantly increased the predictability of truck productivity prediction models (both 

tree-based ensemble models and single models) by considering a latent variable. For instance, 

the R2 of the GMM-GBR model (86.98%) was about two times higher than the GBR model 

(44.76%). Also, the R2 of the GMM-MLR model (81.57%) was over two times higher than the 

MLR model (36.06%). This information can provide new solutions for mining engineers to 

handle engineering data with multi-peak Gaussian distributions at other mine sites and to build 

more accurate prediction models. 

(3) Based on-site observation, haul distance was the most influential variable among the observed 

input variables in predicting truck productivity. The relative importance of haul distance was 

43.51%, which was higher than empty speed (21.77%), waiting at shovel (18.18%), ambient 

temperature (12.71%), destination (2.29%), spotting (1.03%), and waiting at dump (0.52%). 

This information helps mining engineers select valid input variables to accurately predict truck 

productivity. 
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(4) The final proposed prediction models were the highly accurate GMM-RF and GMM-GBR 

models. In this study, the GMM-RF and GMM-GBR models had higher R2, with values of 

87.16% and 86.98%, indicating that these two models had the potential to accurately predict 

truck productivity at mine sites. 
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Chapter 4. Weighted ensembles of artificial neural networks based on 

Gaussian mixture modeling for truck productivity prediction at open-pit mines 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been published as C. Fan, N. Zhang, B. Jiang, W.V. Liu, Weighted ensembles of 

artificial neural networks based on Gaussian mixture modeling for truck productivity prediction at 

open-pit mines, Mining, Metallurgy & Environment. © Springer. 40 (2023) 583-598. 
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Nomenclatures 

ANN Artificial neural network 

aj Output of the hidden layer 

bj Bias term between input and hidden neurons 

bl Bias term between hidden and output neurons 

BIC Bayesian information criteria 

BPNN Back propagation neural network 

BRNN Bayesian regularized neural network 

C Mixture model complexity 

D Data point (x, y) 

DT Decision tree 

ELM Extreme learning machine 

EM Expectation-maximization 

F Loss function 

fk Probability density function 

𝑓(𝑤|𝐷, 𝜇, 𝜎) Posterior probability based on Bayesian theorem 

𝑓(𝑤|𝜇) Prior probability for the weights 
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𝑓(𝐷|𝑤, 𝜎) Likelihood function 

𝑓(𝐷|𝜇, 𝜎) Normalization factor 

GBR Gradient boosting regression 

GMM Gaussian mixture modeling 

k The kth latent classes 

K The number of latent classes 

L Likelihood of a set of data points 

m The mth input variable 

MAE Mean absolute error 

ML Machine learning 

n The nth data point 

N The number of data points 

P Mixture model 

PC Personal computer 

Q1, Q3 The 25th and 75th percentiles 

R2 Coefficient of determination 

RMSE Root mean square error 
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tph Tonnes per hour 

WE-BPNN Weighted ensemble-back propagation neural network 

WE-BRNN Weighted ensemble-Bayesian regularized neural network 

WE-ELM Weighted ensemble-extreme learning machine 

wk The posterior probability for class k 

wmj Weights between input neurons and hidden neurons 

wjl Weights between hidden neurons and output neurons 

XGBoost Extreme gradient boosting 

xm The mth input variable 

y Output variable 

�̅� Mean value of y 

�̂� Predicted value of y 

β0 Intercept of the linear function 

βm Regression coefficient 

γnk Posterior probability 

θ Parameter vector of the density function 

λn A set of data points that maximize γnk 
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μk Mean vector of the density function 

πk Weight of the kth latent class 

Σk Covariance matrix 

∅ Parameter set of the mixture model 

 Regularization penalty term 
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4.1. Introduction 

In open-pit mining operations, truck haulage is the dominant bulk material handling means for 

transporting ores (Ma et al., 2021). The productivity of truck haulage (or referred to as “truck 

productivity”), defined as the truck payload per unit time in each truck haulage cycle, is of great 

interest to mining companies because it directly relates to mine production, operations, and 

planning (e.g., truck-shovel scheduling, fleet sizing, budget decisions, and employment) (Chanda 

& Gardiner, 2010; Upadhyay et al., 2020). 

As for predicting truck productivity, many simulation models and algorithms have been proposed 

by researchers based on sequential tasks performed by trucks (Baek & Choi, 2019). These 

simulation models and algorithms include, but are not limited to discrete-event simulation models 

(Moradi Afrapoli et al., 2019), queuing theory (Sembakutti et al., 2017), goal programming 

(Upadhyay et al., 2020), and stochastic programming (Rimélé et al., 2020). Nevertheless, there are 

problems with these methods because of unexpected events during truck haulage, such as extreme 

weather and shovel availability reduction. To ensure accurate simulations, these models and 

algorithms need to be continually updated, resulting in increased time and labor costs (Baek & 

Choi, 2019). 

In response to these problems, machine learning (ML) based on massive real-site data rather than 

simulation methods has been initiated as a new research direction (Fan et al., 2022, 2023b). ML is 

a collective name for a series of data-driven algorithms that automatically extract knowledge from 

massive amounts of raw data and model complex relationships between inputs and outputs (Pu et 

al., 2019). Among various ML methods, artificial neural networks (ANNs) are well-known 

algorithms that are inspired by interconnected neurons in biological neural networks (Rana et al., 

2020). Currently, commonly used ANNs usually include back propagation neural network (BPNN) 



 

94 
 

(Wu et al., 2020), extreme learning machine (ELM) (Sattar et al., 2019), and Bayesian regularized 

neural network (BRNN) (Demirbay et al., 2020). These ANNs have been extensively applied to 

many aspects of mining engineering because of their strong ability to map nonlinear relationships 

between input and output variables, thus providing robust predictions (Nguyen et al., 2020; Thai 

et al., 2021; Trivedi et al., 2014; Xue et al., 2020). For example, Trivedi et al. (2014) built a BPNN 

model to predict the distance covered by blast-induced flyrock in limestone mines. The results 

showed that the coefficient of determination (R2) of the BPNN model was 98.3%, whereas it was 

81.5% in the case of a statistical multiple regression model. Likewise, Xue et al. (2020) established 

five ML models, including a BPNN model and an ELM model, for predicting rockburst intensity 

in deeply buried areas. The study showed that the proposed ELM model had the highest average 

accuracy of 97.57%, which outperformed the BPNN model (62.13%) and other comparative 

models, such as the random forest (RF) model (63.40%), the gradient boosting regression (GBR) 

model (65.13%), and the decision tree (DT) model (58.79%). Close to the research by Trivedi et 

al. (2014) and Xue et al. (2020), Nguyen et al. (2020) proposed a BRNN model to forecast air-

blast overpressure induced by blasting at open-pit coal mines. The research showed that the BRNN 

model performed well in predicting overpressure, with an R2 of 93.6%. Therefore, the application 

of ANNs to construct accurate prediction models has great potential. Despite this potential, the 

research is scarce in the previous literature on applying ANNs to build prediction models between 

truck productivity and its influencing parameters (i.e., input variables). These input variables 

include, but are not limited to, haul distance, truck speed, and weather conditions (e.g., ambient 

temperature) (Fan et al., 2022, 2023b), which are all associated with truck cycle time and thus 

affect truck productivity (Sun et al., 2018). 
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To this end, this study aims to establish prediction models between truck productivity and its input 

variables based on the real-site dataset using ANNs. The dataset contained more than 290,000 data 

points, which were collected from open-pit mines in Northern Alberta, Canada. Unlike previous 

studies that directly built ANN models (Nguyen et al., 2020; Trivedi et al., 2014; Xue et al., 2020), 

this study first adopted Gaussian mixture modeling (GMM) as a clustering technique to divide the 

dataset into three latent classes to reduce computational complexity. GMM has proven an efficient 

clustering method for massive data and can improve model prediction accuracy (Ji et al., 2014). 

After that, three ANN algorithms, including BPNN, ELM, and BRNN, were used to build 

regression models in each class. Finally, the weighted ensembles of the ANN models in each class 

offered the final prediction of truck productivity. Moreover, as comparative ML methods, DT, RF, 

GBR, and extreme gradient boosting (XGBoost) were also applied to build prediction models.  

The innovation of this paper lies in three aspects. First, an in-depth analysis of the unique and 

massive data from the open pit mines was performed. Second, this study was the first one using 

ANNs to construct complex nonlinear relationships between truck productivity and its influencing 

parameters. Third, for the first time, the prediction accuracy of ANN models was enhanced by 

combining a clustering technique. The contribution of this study is to construct accurate prediction 

models for truck productivity using ANNs combined with GMM based on real-site massive data 

from mine sites. 

4.2. Methodology and data 

4.2.1. Development of proposed model 

Figure 4.1 shows the executive process of building the proposed prediction model in this study. It 

involves data partitioning, modeling methods, and model evaluation, which are described in detail 

in the following five steps. Step 1: The real-site data was randomly and proportionally split into a 
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training dataset (70%) and a testing dataset (30%). The training dataset was prepared for building 

prediction models based on various ML algorithms. The testing dataset was used to validate the 

model’s prediction performance. Step 2: The training dataset was divided into K latent classes by 

an unsupervised clustering model (i.e., GMM). Afterward, the data points in each latent class were 

used to train three regression models (i.e., BPNN, ELM, BRNN) of truck productivity. The latent 

classes were the links between the clustering and regression models. The detailed clustering results 

will be explained in Section 4.3.1. Moreover, a mixture model was obtained from the clustering 

analysis. Step 3: According to the mixture model, the testing dataset was divided into 

corresponding K classes. Also, K posterior probabilities (w1, w2, …, wk, …, wK) were calculated 

for each data point in the testing dataset. This means that each data point had a posterior probability 

corresponding to each class (Grün & Leisch, 2007), which will be explained in Section 4.3.1. Step 

4: The K classes generated from the testing dataset in Step 3 were used to evaluate the performance 

of the prediction models built in Step 2. For instance, Class 1 of the testing dataset was applied to 

assess the performance of three models (i.e., BPNN, ELM, and BRNN) built in Class 1 of the 

training dataset. RMSE (root mean square error), MAE (mean absolute error), and R2 (coefficient 

of determination) were selected as the performance metrics based on the research by Wu et al. 

(2020). Step 5: The entire testing dataset was fed into all the ANN models in Step 4. Each model 

predicted truck productivity in a parallel manner. The final prediction was a weighted ensemble of 

the ANN models from all classes, with the weights being the calculated probabilities in Step 3 (Ni 

et al., 2020). The evaluation of the final prediction will be discussed in detail in Section 4.3.4. The 

overall training process was carried out in RStudio software using the R language (version 4.1.3) 

environment on a personal computer (PC). This PC has a 64-bit operating system with an Intel 

Core i7-12700K (3.60 GHz) processor and 16.0 GB of random-access memory.  
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Figure 4.1 The flowchart of implementing a weighted ensemble of artificial neural network (ANN) 

models (Note: GMM: Gaussian mixture modeling; BPNN: back propagation neural network; ELM: 

extreme learning machine; BRNN: Bayesian regularized neural network; RMSE: root mean 

squared error; MAE: mean absolute error, and R2: coefficient of determination). 

4.2.2. Data collection and preparation 

The data used in this study came from open-pit mines in Alberta, Canada, which have been 

compiled into a tabular dataset and stored in the data management system. Before modeling, the 

tabular dataset was cleaned of blank rows caused by recording errors. Part of the processed dataset 

is listed in Table 4.1, where each row of data was generated from each truck cycle. As shown in 

Table 4.1, the output variable is truck productivity (y) in tonne per hour (tph). The input variables 

consist of haul distance (x1, km), empty speed (x2, km/h), ambient temperature (x3, ℃), and waiting 
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at shovel (x4). These variables were selected because they have been observed by site engineers 

and were associated with truck cycle time according to our previous research (Fan et al., 2022). 

Haul distance represents the distance between a loading site and a dumping site. Empty speed 

refers to the running speed of an unloaded truck returning to the loading site. Empty speed, rather 

than haul (loaded truck) speed, was considered to increase the independence between inputs. 

Ambient temperature is a numeric variable that acts as an environmental influencing factor. 

Waiting at shovel is a binary variable, which contains two labels (0 and 1) indicating that each 

truck has zero or non-zero waiting time at a shovel. Based on our previous research (Fan et al., 

2023b), waiting at shovel as an input impacted truck productivity significantly. The dataset, 

including these input and output variables, was then randomly and proportionally split into a 

training dataset (70%) and a testing dataset (30%).  

Taking the training dataset as an example, the statistical distributions of the included input and 

target variables are shown in Figure 4.2. In Figure 4.2(a)-(d), the horizontal axis indicates the 

numeric variables plotted in histograms with specific ranges; the vertical axis shows the probability 

density, which refers to the fraction of each range divided by the total amount of data. Among 

these input variables, haul distance and ambient temperature present multi-peak Gaussian 

distributions, implying that the dataset collected at mine sites has a mixture of Gaussians (Li et al., 

2018). This suggested the rationale for selecting GMM to cluster the dataset in this study, which 

will be explained in Section 4.2.4. Figure 4.2(a)-(d) also lists the minimum (min), maximum 

(max), mean, and variance (var) values of these numeric variables. Figure 4.2(e) shows the boxplot 

of the binary variable (waiting at shovel) and indicates the data size for each label. Before the 

prediction models were built, the numeric variables in the training and testing datasets were 

rescaled to be in the range of zero to one using min-max data scaling. This is a commonly used 
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method to normalize the statistical distribution of numerical variables to ensure all variables are 

relevant equally (Arachchilage et al., 2023).   

Nevertheless, there are still some limitations to the input variables considered in this study. Other 

input variables have not been considered that can also affect truck cycle time and thus affect truck 

productivity, such as operator habits (Sun et al., 2018), tire properties and rolling resistance (Ma 

et al., 2022), and truck benching (Soofastaei et al., 2016). These variables may be added to build 

the prediction models of truck productivity in future studies based on their availability.  

Table 4.1 Part of the processed dataset after cleaning (the dataset contained 298,608 data points 

covering an entire year of truck haulage cycles). 

Input variable (xm) Target variable (y) 

Haul distance 

(x1, km) 

Empty speed 

(x2, km/h) 

Ambient 

temperature (x3, ℃) 

Waiting at shovel 

(x4, label) 

Truck productivity 

(y, tph) 

3.87 37.8 -38 1 ### 

3.28 37.1 -27 1 ### 

3.64 28.4 -20 1 ### 

5.43 28.3 -13 1 ### 

6.02 35.3 -3.6 0 ### 

4.25 44.6 0.7 1 ### 

4.52 31.9 11.8 0 ### 

2.55 22.3 17.8 0 ### 

4.2 41.8 28.5 1 ### 

2.19 37.6 32.8 0 ### 

(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 

 



 

100 
 

 

Figure 4.2 Statistical distributions of inputs and the output in the training dataset. (a) The frequency 

histogram and density curve of the numeric target variable (y): truck productivity in tonnes per 

hour (tph); (b)-(d) The frequency histograms and density curves of three numeric inputs: haul 

distance (x1) in kilometers (km), empty speed (x2) in kilometers per hour (km/h), and ambient 

temperature (x3) in degrees Celsius (℃); (e) The boxplot of the binary input: waiting at shovel (x4). 

(“###”: the input information is not disclosed as it is the proprietary property of mining companies.) 
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4.2.3. Machine learning methods 

4.2.3.1. Back propagation neural network (BPNN) 

BPNN is a computational method that deals with regression and classification problems to model 

complex nonlinear relationships (Çolak, 2022). BPNN emulates the basic structure of biological 

neural networks, which comprises three layers: input, hidden, and output (Cui & Jing, 2019). As 

shown in Figure 4.3, the prediction of truck productivity is offered as an example to illustrate the 

process of building a BPNN model. The input layer consists of input variables that influence truck 

productivity, including haul distance (x1), empty speed (x2), ambient temperature (x3), and waiting 

at shovel (x4). These input variables, referred to as “neurons” in the input layer, are connected to 

the hidden layer with j neurons. The connection between two neurons is assigned with a weight 

(wmj), and a linear combination of the weights is transformed using an activation function 𝑓(∙) to 

generate the output aj of the hidden layer (Glória et al., 2016): 

𝑎𝑗 = 𝑓(∑ 𝑤𝑚𝑗𝑥𝑚 + 𝑏𝑗)4
𝑚=1 , 𝑗 = 1,2, … , 𝐽                     (4-1) 

where m is the mth input variables; j is the jth hidden neurons, and bj is the bias term. In BPNN, 

the activation function is defined as a function that maps the input to the desired output (Mouloodi 

et al., 2022). After that, the output aj is considered to be new inputs linked to the output layer with 

new estimated weights (wjl). Likewise, the sum of weights is transformed using an activation 

function 𝑔(∙) to generate the final output (y) of the output layer (Glória et al., 2016): 

𝑦 = 𝑔(∑ 𝑤𝑗𝑙𝑎𝑗 + 𝑏𝑙), 𝑙 = 1𝑚
𝑗=1                                              (4-2) 

where l equals 1 since there is only one target variable in this study, and bl is the bias term. In order 

to reduce the prediction error of truck productivity, the final output is backpropagated to update 

the weights and biases during the training process (Wu et al., 2020). In brief, the hidden layer plays 
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a dominant role between the input and output layers, which adds nonlinearity to the system via 

activation functions to model complex relationships (Kramer, 1991). In this study, the BPNN 

model was built using the “nnet” and “caret” packages installed in the R language environment. 

 

Figure 4.3 The basic structure of a multilayer BPNN. 

4.2.3.2. Bayesian regularized neural network (BRNN) 

BRNN is also an ANN algorithm with a multilayer structure for classifying and predicting 

outcomes, which was first proposed by MacKay (1992). The main difference between the standard 

BPNN and BRNN is the setting of weights (Goodarzi et al., 2010). The former assumes that the 

weights are fixed values between neurons, which may cause overfitting issues during the training 

process (e.g., a loss of generalization ability due to a fitting of noise) (Ticknor, 2013). The latter 

assumes the weights are random variables (Goodarzi et al., 2010). Specifically, BRNN considers 

a prior probability distribution (usually forming a Gaussian distribution) for these weights (w) and 
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infers their posterior probability distribution, which can be assessed based on the Bayesian theorem 

(Glória et al., 2016): 

𝑓(𝑤|𝐷, 𝜇, 𝜎) =
𝑓(𝑤|𝜇)𝑓(𝐷|𝑤,𝜎)

𝑓(𝐷|𝜇,𝜎)
                                              (4-3) 

where D represents observed data points (xn, yn), 𝜇 and 𝜎 are the parameter vectors of the Gaussian 

distribution function, 𝑓(𝑤|𝜇)  indicates the prior probability distribution for the weights, 

𝑓(𝐷|𝑤, 𝜎) is the likelihood function, and 𝑓(𝐷|𝜇, 𝜎) is the normalization factor, which guarantees 

that the total probability equals one. The optimal weights can be determined by maximizing the 

posterior probability 𝑓(𝑤|𝐷, 𝜇, 𝜎) under the Bayesian framework (Saini, 2008). With the optimal 

weights, BRNN minimizes the regularized objective function to reduce prediction error and 

improve generalization ability (Shi et al., 2019). In this study, the BRNN model was built using 

the “brnn” and “caret” packages installed in the R language environment. 

4.2.3.3. Extreme learning machine (ELM) 

ELM is another ANN algorithm for the single hidden layer feedforward network that was proposed 

by Huang et al. (2006). ELM has the same structure as BPNN and BRNN, including an input layer, 

a hidden layer, and an output layer. However, the setting of weights and biases in ELM differs 

from BPNN and BRNN (Wang et al., 2021). For BPNN, the parameters (i.e., weights and biases) 

are updated during the training process through back propagation until the fixed parameters are 

determined to form a neural network. For BRNN, the parameters are considered random variables 

following Gaussian distributions that are assessed based on the Bayesian theorem. Unlike these 

parameter estimation methods, ELM assigns random weights to the connections between the input 

and hidden layers and random biases in the hidden layers. Meanwhile, these weights and biases 

remain unchanged during the training process. The weights between the hidden and output layers 



 

104 
 

are the only parameters that need to be learned during the training process. Therefore, compared 

to BPNN and BRNN, ELM converges faster since iterative learning is not required to construct 

the network (Wang et al., 2021). This results in ELM having high learning speeds when dealing 

with large amounts of data (Liu et al., 2021). In this study, the ELM model was built using the 

“elmNN” and “caret” packages installed in the R language environment. 

4.2.3.4. Other machine learning methods 

In this study, four widely used ML methods were also applied as comparative approaches to build 

prediction models of truck productivity, including DT, RF, GBR, and XGBoost. Their basic 

principles are summarized below.  

• DT was proposed by Breiman et al. (1984) and consists of a root node, internal nodes, terminal 

nodes (or leaf nodes), and branches between nodes. DT uses a set of hierarchical decisions on 

input features to make predictions. First, the root node (the whole dataset) is split into two 

internal nodes (subsets) based on an input feature to minimize the mean square error (MSE) in 

each subset (Krzywinski & Altman, 2017). Following this split rule, all internal nodes then 

generate new tree branches and nodes until a set of terminal nodes with homogeneous subsets 

is created. Finally, the terminal nodes indicate the predictions through the path from the root 

to the terminal.  

• RF is an ensemble learning method that integrates numerous DTs to gain an ensemble model 

with better performance (Xue et al., 2020). RF combines a series of DTs through a bagging 

technique to improve the prediction performance (Breiman, 2001). “Bagging” is a portmanteau 

of bootstrapping and aggregating. “Bootstrapping” is a sampling technique that obtains a 

subset for training each DT by randomly sampling the whole dataset with replacement. Then, 
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a portion of input features is randomly sampled from overall input features for best splitting at 

the root and internal nodes in each DT. The final prediction of RF is to average the decisions 

of all DTs, which is called “aggregating”. Also, in bagging, RF retains an additional subset 

(also known as an “out-of-bag” subset) from the training dataset to evaluate whether each DT 

is overfitted. In short, RF offers a robust prediction through the bagging technique, which is 

superior to a single DT (Milad et al., 2022). 

• GBR is also an ensemble learning method that combines a series of DTs for dealing with 

regression and classification problems (Friedman, 2001). Unlike RF, GBR uses a boosting 

technique instead of the bagging technique to generate DTs (Friedman, 2001). Boosting is a 

successive process in which each DT learns, improves, and corrects the prediction errors made 

by the previous DT. This differs from bagging since each DT is built into RF in a parallel and 

independent manner (Ribeiro & dos Santos Coelho, 2020). In boosting, each well-trained DT 

focuses on data that have been inaccurately predicted by the previous DT. The residual errors 

of these data are specified with a loss function F. GBR adopts an iterative process to minimize 

the expectation of the loss function F by adding new DTs in sequence, which is also known as 

functional gradient descent. Finally, these successively trained DTs are combined into an 

ensemble learner to predict the outcome. 

• XGBoost is another tree-based ensemble learning algorithm based on the boosting technique, 

which was proposed by Chen and Guestrin (2016). It is an extension of GBM, aiming to avoid 

overfitting problems as well as improve computational ability (Ribeiro & dos Santos Coelho, 

2020). Unlike GBM, in XGBoost, a regularization penalty term  with weights is added to the 

objective function in addition to the loss function F. This can help to control the model 

complexity, thus preventing overfitting issues (Su et al., 2022). Moreover, XGBoost 



 

106 
 

implements many features, such as parallel and distributed computing (Chen & Guestrin, 

2016), to provide a fast algorithm. In brief, XGBoost effectively integrates numerous weak 

learners (DTs) into one strong learner (ensemble model) and improves the generalization 

ability (Mohammed & Ismail, 2022). 

In this study, the DT, RF, GBR, and XGBoost models were built using packages “rpart”, “ranger”, 

“gbm”, “xgboost” combined with the package “caret” installed in the R language environment. In 

addition to building prediction models of truck productivity, these four tree-based models were 

used to determine the relative importance of each input variable. Further details about the 

principles of determining the relative importance can be found in Vitale et al. (2014), Delen et al. 

(2013), and Onyekwena et al. (2022). 

4.2.4. Gaussian mixture modeling (GMM) 

GMM is a probability distribution-based clustering technique that recognizes latent classes from a 

data population (Bishop, 2006). In GMM, each class is assumed to follow a specific Gaussian 

distribution. The weighted sum of these Gaussians forms a mixture of Gaussians to represent the 

overall probability distribution of the data population. This probability distribution can be written 

as a mixture model (Leisch, 2004): 

𝑃(𝑦|𝑥, ∅) = ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜇𝑘, Σ𝑘)𝐾
𝑘=1                                          (4-4) 

where K is the number of classes. ∅ indicates the parameter set {𝜋𝑘 , 𝜇𝑘, Σ𝑘} of the mixture model. 

Of these, 𝜋𝑘 is the weight of the kth class, which is non-negative together with ∑ 𝜋𝑘 = 1𝐾
𝑘=1 . 𝜇𝑘 

and Σ𝑘 are the mean vector and covariance matrix, respectively. 𝑃(𝑦|𝑥, ∅) is the mixture model. 

𝑓𝑘(𝑦|𝑥, 𝜇𝑘, Σ𝑘) is the probability distribution of the kth class. To determine the mixture model, 

GMM first applies a two-step algorithm, expectation and maximization (EM), to estimate the 
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parameter set {𝜋𝑘, 𝜇𝑘, Σ𝑘}. In E-step, the posterior probability of each data point (xn, yn) assigned 

to each class is calculated (Leisch, 2004): 

  γ𝑛𝑘 =
𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜇𝑘,Σ𝑘)

∑ 𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜇𝑘,Σ𝑘)𝐾
𝑘=1

                                                 (4-5) 

The data point belongs to a specific class k if it has the maximum posterior probability in this kth 

class (Grün & Leisch, 2007). With the γ𝑛𝑘, the parameter set {𝜋𝑘, 𝜇𝑘, Σ𝑘} can be estimated in the 

M-step by maximizing the log-likelihood function (log L) (Leisch, 2004): 

𝑙𝑜𝑔 𝐿 = ∑ log(𝑃(𝑦|𝑥, 𝜙)𝑁
𝑛=1 ) = ∑ log(𝑁

𝑛=1 ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜇𝑘, Σ𝑘)𝐾
𝑘=1 )                 (4-6) 

𝜋𝑘 =
1

𝑁
𝑓𝑘 =

1

𝑁
∑ γ𝑛𝑘

𝑁
𝑛=1                                                     (4-7) 

where N is the number of data points. In GMM, the EM algorithm is an iterative process that 

does not terminate until the maximum log L is reached. After that, the optimal number of latent 

classes is obtained by minimizing the Bayesian information criterion (BIC) value (Mehrjou et 

al., 2016): 

                      𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝐶𝑙𝑜𝑔𝑁                                                 (4-8) 

where C is the number of estimated parameters, indicating the complexity of the mixture model. 

Finally, the mixture model is determined in GMM, showing the overall probability distribution 

of the mixture of Gaussians. 

GMM was adopted in this study mainly because the real-site dataset collected at mine sites presents 

the multi-peak Gaussian distributions, also known as a mixture of Gaussians (Li et al., 2018). For 

example, as shown in Figure 4.2 in Section 4.2.2., both haul distance and ambient temperature 

present a mixture of Gaussians. In addition, GMM has been proven helpful in reducing 
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computational costs and improving model predictability when dealing with large amounts of data, 

such as streamflow (Ni et al., 2020), heat load (Lu et al., 2019), and seismic signals (Kuyuk et al., 

2012). Therefore, GMM was used to identify latent classes in this study.  

4.2.5. Performance metrics 

Three performance metrics were used in this study to quantitatively assess the accuracy of 

prediction models: R2, MAE, and RMSE, which are listed as follows (Huo et al., 2021): 

𝑅2 = 1 −
∑ (𝑦𝑛−�̂�𝑛)2𝑁

𝑛

∑ (𝑦𝑛−�̅�𝑛)2𝑁
𝑛

                                                      (4-9) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑛 − �̂�𝑛

𝑁
𝑛=1 |                                               (4-10) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑛 − �̂�𝑛)2𝑁

𝑛=1                                             (4-11) 

where 𝑦𝑛 is the observed truck productivity; �̂�𝑛 is the predicted truck productivity, and �̅�𝑛 is the 

average value of observed truck productivity. R2 is scaled between 0 and 1, which measures the 

goodness of fit of a regression model and reflects the degree to which data points fit a curve. MAE 

indicates the absolute error mean between the observed and predicted values, and RMSE 

represents the standard deviation of the residuals between the observed and predicted values (Huo 

et al., 2021). In brief, a prediction model with a higher R2 and a lower RMSE and MAE has better 

prediction accuracy. 

4.2.6. Hyperparameters tuning 

For ML algorithms, built-in hyperparameters are required to be tuned during the modeling process 

to reduce the overfitting risks, thus improving the model performance (Wu et al., 2020). In this 

study, for BPNN, the hyperparameters were size (the number of neurons in the hidden layer) and 
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decay (the regularization parameter to avoid overfitting). For ELM, the hyperparameters were nhid 

(the number of neurons in the hidden layer) and actfun (activation function). Finally, for BRNN, 

the hyperparameter was neuron (the number of neurons in the hidden layer).  

Table 4.2 lists these hyperparameters and their search ranges. In this study, a method of five-fold 

cross-validation combined with grid search was used to tune the hyperparameters since this method 

is easy to perform and has good optimization results (Wu et al., 2020). The grid search first defined 

a grid of hyperparameters in each algorithm according to the search ranges. After that, each class 

of the training dataset was randomly partitioned into five folds. Four folds were used to train 

prediction models with the hyperparameters traversing each position in the grid. The remaining 

one fold was used to test the performance of the trained models by calculating the RMSE value 

(Sun et al., 2021). This process was repeated five times with different folds as the test fold. The 

optimal hyperparameters were obtained from the trained model with the lowest RMSE value. 

Table 4.2 Hyperparameters of the ML algorithms and their search ranges in this study. 

Algorithm Hyperparameter Range and step Reference 

BPNN 
size [10-50], 5 

Ripley and Venables (2022) 
decay [0.01-0.1], 0.01 

ELM 
nhid [1-20], 2 

Mouselimis et al. (2022) 
actfun [sin, purelin, transig, radbas] 

BRNN neuron [10-20], 1 Rodriguez and Gianola (2021) 
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4.3. Results and discussion 

4.3.1. Clustering analysis using Gaussian mixture modeling 

Figure 4.4 shows the latent classes identified from the training and testing datasets and the 

relationships between truck productivity and latent classes. As shown in Figure 4.4(a), the training 

dataset with 209,026 data points was clustered into three latent classes: Class 1 (57,848), Class 2 

(93,604), and Class 3 (57,574). Q1 and Q3 are the 25th and 75th percentiles in each class, 

representing the distribution interval of data points. In Class 1, the value of truck productivity 

ranged mainly between 570 tph (Q1) and 715 tph (Q3), with median and mean values of 644 tph 

and 640.7 tph. In Classes 2 and 3, the Q1, Q3, median, and mean values of truck productivity were 

increased successively. This implies that truck productivity varied significantly among these three 

classes, in the order of Class 1 < Class 2 < Class 3, which can be known as low, medium, and high 

truck productivity at mine sites. Likewise, in Figure 4.4(b), based on the mixture model, the testing 

dataset with 89,582 data points was correspondingly partitioned into three latent classes: Class 1 

(24,668), Class 2 (40,286), and Class 3 (24,628). The Q1, Q3, median, and mean values of truck 

productivity were listed in ascending order within these three classes, indicating low, medium, and 

high values of truck productivity. In addition, according to the GMM analysis, each data point in 

the testing dataset was calculated with a probability corresponding to each class (Grün & Leisch, 

2007). As a result, each data point had three probabilities; some of them are listed in Table 4.3 as 

examples. This study was similar to the research by Ni et al. (2020), in which they identified two 

classes (low and high flow) from large streamflow datasets using GMM. Each class was then fitted 

with an XGBoost model, and the final prediction was the weighted ensemble of these XGBoost 

models in all classes. In this study, the weights were the probabilities calculated in the GMM 

analysis. The study showed that the prediction accuracy was improved by approximately 11% after 
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using the weighted ensemble. Therefore, it was promising to apply GMM to identify latent classes 

in this study. 

 

Figure 4.4 Identifying latent classes from the training and testing datasets. (a) Three latent classes 

were identified by GMM clustering from the training dataset; (b) Three latent classes were 

correspondingly identified from the testing dataset based on the mixture model obtained in GMM 

(Note: Q1 and Q3: the 25th and 75th percentiles of each class). 
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Table 4.3 Probabilities calculated for part of the data points in the testing dataset corresponding to 

three classes (the total number of data points in the testing dataset was 89,582). 

Number Class 1 Class 2 Class 3 

1 0.3488 0.3808 0.2704 

2 0.3097 0.4997 0.1906 

3 0.3048 0.3761 0.3191 

4 0.0233 0.3580 0.6187 

5 0.1715 0.5882 0.2403 

6 0.0781 0.2759 0.6460 

7 0.3958 0.4061 0.1981 

8 0.9639 0.0316 0.0045 

9 0.0823 0.7625 0.1552 

10 0.0721 0.6106 0.3173 

 

4.3.2. Determination of hyperparameters 

In this study, the hyperparameters built into the ML models were tuned using a grid search method 

based on five-fold cross-validation. Three ANN models (BPNN, ELM, and BRNN) were built 

based on three latent classes of the training dataset. As a result, a total of nine prediction models 

were required to be tuned for optimal hyperparameters. Table 4.4 shows the determined 

hyperparameters for these prediction models in each class. With the optimal hyperparameters, 

these models were considered the optimal models in the hyperparametric search range for 

predicting truck productivity. This is similar to the research by Moayedi et al. (2019), in which the 

hyperparameters were tuned to avoid overfitting issues and improve the model accuracy, thus 

providing more reliable landslide susceptibility mapping using ANN. Based on the values of R2 
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(98.99% and 97.33%) and RMSE (0.039 and 0.111), the prediction performance of the tuned ANN 

model was higher than that of the untuned ANN model. 

Table 4.4 Optimal hyperparameters for the ML models built in each class of the training dataset.  

Algorithm Hyperparameter Class 1 Class 2 Class 3 

BPNN size 15 20 

0.5 

40 

decay 0.05 0.01 

ELM nhid 8 9 

purelin 

9 

actfun purelin purelin 

BRNN neuron 17 18 18 

 

4.3.3. Performance comparison of ANN models built in each class 

Figure 4.5 shows the scatterplots of the observed (horizontal axis) and predicted (vertical axis) 

truck productivity obtained from the BPNN, ELM, and BRNN models based on Classes 1, 2, and 

3 of the testing dataset. Figure 4.6 shows the scatterplots of the observed and predicted truck 

productivity obtained from the BPNN, ELM, and BRNN models based on Classes 1, 2, and 3 of 

the training dataset. The more minor the deviation between the observed and predicted values, the 

closer are the scatter points along the diagonal (y = x) line (Piñeiro et al., 2008). Taking the results 

in Figure 4.5 as examples, in Classes 1 and 3, the scatter points generated by these three models 

were not evenly distributed on both diagonal sides, indicating that the performance of these three 

models was not high in predicting truck productivity in Classes 1 and 3. In other words, the four 

observed input variables currently available were insufficient for the accurate prediction of truck 

productivity in Class 1 (low values) and Class 3 (high values). This suggests that there are many 

other unobserved influencing factors at mine sites that may affect truck productivity, such as 

equipment overhaul, road maintenance, route changes, and personnel shifts (Alarie & Gamache, 
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2002). However, in Class 2, the scatter points were well distributed along the diagonal line, 

indicating relatively small deviations between the observed and predicted truck productivity. Also, 

RMSE, MAE, and R2 quantified the performance of these models in Class 2. These performance 

metrics were 47.19, 39.76, and 84.39% for the BPNN model, 46.25, 39.21, and 85.01% for the 

ELM model, and 45.94, 38.98, and 85.20% for the BRNN model. Therefore, these three models 

had higher accuracy in predicting the truck productivity of Class 2 (medium values). Although the 

BPNN, ELM, and BRNN models performed differently in these three classes, the BRNN model 

outperformed the other two models. This agreed with the study by Potočnik et al. (2019), who built 

three models (BPNN, ELM, and BRNN) for the short-term prediction of building temperatures. 

The results showed that the RMSE of the BRNN model (0.065) was less than that of the BPNN 

(0.069) and ELM (0.073) models. 
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Figure 4.5 Scatterplots of the observed truck productivity and predicted truck productivity. (a) 

BPNN, (b) ELM, and (c) BRNN models evaluated by Class 1 of the testing dataset; (d) BPNN, (e) 

ELM, and (f) BRNN models evaluated by Class 2 of the testing dataset; (g) BPNN, (h) ELM, and 

(i) BRNN models evaluated by Class 3 of the testing dataset.   
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Figure 4.6 Scatterplots of the observed truck productivity and predicted truck productivity. (a) 

BPNN, (b) ELM, and (c) BRNN models evaluated by Class 1 of the training dataset; (d) BPNN, 

(e) ELM, and (f) BRNN models evaluated by Class 2 of the training dataset; (g) BPNN, (h) ELM, 

and (i) BRNN models evaluated by Class 3 of the training dataset.   

4.3.4. Performance evaluation of weighted ensembles of ANN models 

In Section 4.3.3., three ANN models (i.e., BPNN, ELM, and BRNN) were established in each class 

of the training dataset. The testing dataset with 89,582 data points was then fed into these three 

ANN models to predict truck productivity. After that, the final predictions were provided by the 
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weighted ensembles of these ANN models (which were also referred to as the WE-BPNN, WE-

ELM, and WE-BRNN models in this study) from the three classes.  

To evaluate the performance of the WE-BPNN, WE-ELM, and WE-BRNN models, four 

commonly used ML models were built based on the training dataset as benchmark models. These 

were the DT, RF, GBR, and XGBoost models. Table 4.5 shows the performance comparison of 

these seven prediction models along with the running time. From Table 4.5, the WE-ELM (109.2 

s), DT (77.4 s), and XGBoost (307.2 s) models required shorter running times. This is caused by 

random weights assignment in ELM (Wang et al., 2021), a single tree construction in DT 

(Krzywinski & Altman, 2017), and parallel or distributed algorithms application in XGBoost 

(Chen & Guestrin, 2016). Compared with these models, the running time was much longer for the 

WE-BRNN (14,004.0 s), WE-BPNN (9072.0 s), RF (2726.4 s), and GBR (1998.6 s) models 

because of complex regularization operations (Shi et al., 2019), multiple hyperparameters tuning, 

and more tree constructions (Ribeiro & dos Santos Coelho, 2020) occurring during the modeling 

process. Regarding prediction accuracy, in terms of the testing dataset, the WE-BRNN model had 

the lowest RMSE and MAE and the highest R2 in the three weighted ensemble models, with values 

of 66.23, 46.61, and 86.34%. Accordingly, the three performance metrics of the WE-BPNN and 

WE-ELM models were 69.42, 48.21, and 84.99%, and 69.43, 47.51, and 84.98%. Therefore, the 

WE-BPNN and WE-ELM models were close in performance; however, the WE-BRNN model still 

performed better than these two models in predicting truck productivity. Furthermore, these three 

weighted ensemble models were compared with the other four ML models. Table 4.5 shows that 

although the XGBoost model was the best model of the benchmark models, the R2 of the WE-

BRNN (86.34%), WE-BPNN (84.99%), and WE-ELM (84.98%) models was more than two times 

higher than that of the XGBoost model (42.23%). Hence, based on the GMM analysis, the 
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performance of the proposed WE-BRNN, WE-BPNN, and WE-ELM models was considerably 

better than these benchmark models. This is because GMM is an unsupervised clustering technique 

that enables data with more similarities to be clustered into the same group (or referred to as latent 

class in this study) (Li et al., 2018). Since the prediction models were built on the data with more 

similarities in each class, these models more accurately described the relationships between the 

inputs and output in the corresponding class (Liu et al., 2020). Therefore, the weighted ensemble 

(WE) of these models performed better than the model built based on the original training data. In 

other words, a weighted ensemble approach based on the GMM analysis significantly improved 

the model’s accuracy. A similar finding was reported by Akram et al. (2018), who built a weighted 

ensemble prediction model for indoor localization based on the GMM analysis. The result showed 

that the model accuracy was enhanced from 79% to 89% compared to the baseline model. To 

conclude, the proposed weighted ensemble models with better performance can provide mining 

companies with a new approach to predicting truck productivity. 
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Table 4.5 Comparison of weighted ensembles of ANN models with other machine learning 

models.  

Model Dataset RMSE MAE R2 (%) Running time (s) 

WE-BRNN model 
Training 66.53 46.79 86.24 

14,004.0 
Testing 66.23 46.61 86.34 

WE-BPNN model 
Training 69.63 48.40 84.92 

9,072.0 
Testing 69.42 48.21 84.99 

WE-ELM model 
Training 69.69 47.73 84.88 

109.2 
Testing 69.43 47.51 84.98 

DT model 
Training 138.19 107.76 40.62 

77.4 
Testing 139.03 108.39 39.79 

RF model 
Training 135.70 105.81 42.73 

2726.4 
Testing 137.37 107.04 41.22 

GBR model 
Training 136.43 106.31 42.12 

1998.6 
Testing 136.94 106.68 41.59 

XGBoost model 
Training 134.68 104.96 43.60 

307.2 
Testing 136.18 106.08 42.23 

 

4.3.5. Relative importance analysis 

In this study, the relative importance of the four input variables was provided by four tree-based 

models: DT, RF, GBR, and XGBoost. The results obtained from each model are shown in a radar 

chart in Figure 4.7(a). In Figure 4.7(a), the vertices of the irregular polygons indicate the four input 

variables. The distance of the vertices from the center along the axis is the relative importance of 

each input variable. According to Li et al. (2022), each of the tree-based models provided a set of 

different relative importance due to the different principles of these models. Although the input 

variables with less relative importance were slightly different in these four models, the critical 
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input variable was consistent. As shown in Figure 4.7(a), haul distance had the highest relative 

importance in the four models, indicating that it was the most pivotal input for predicting truck 

productivity. This is in line with site observations (Cervantes et al., 2019); haul distance is often 

cited by mining companies as the main factor affecting truck productivity since it can directly 

affect the cycle time. Figure 4.7(b) shows the average importance score (in percentage) of the four 

input variables in the four models. The relative importance ranking of input variables was haul 

distance (46.07%) > empty speed (19.25%) > ambient temperature (18.23%) > waiting at shovel 

(16.45%). Besides haul distance, the other three input variables also played important roles in 

predicting truck productivity. Empty speed had the second-highest relative importance, with a 

value of 19.25%. This determines the traveling time from dumping sites to loading sites, thus 

influencing truck productivity (Schexnayder et al., 1999). After empty speed, the relative 

importance of ambient temperature (18.23%) was slightly less than that of empty speed (19.25%), 

indicating ambient temperature also played an essential role in predicting truck productivity. 

Ambient temperature can influence operator habits (Sun et al., 2018), tire performance (Ma et al., 

2022), and even road conditions (Svenson & Fjeld, 2017) at mine sites, thus affecting cycle time. 

According to Sun et al. (2018), the prediction accuracy of truck cycle time was enhanced by about 

5% when ambient temperature and other meteorological factors were considered. Lastly, waiting 

at shovel had a relative importance of 16.45%, which also affected truck productivity to some 

extent. In results similar to the study by Ercelebi and Bascetin (2009), the wait time at shovel was 

extended from 2.48 min to 3.11 min when the truck fleet size increased from three trucks to five. 

This resulted in an increase in cycle time and a decrease in truck productivity. In short, according 

to the relative importance analysis in the four models, all four input variables played important 

roles in forecasting truck productivity. Among them, haul distance was the most critical input for 
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predicting truck productivity. This can also be seen by the impact of parameter size on the model 

performance (as shown in Table 4.6). Taking the DT model as example, the model performance 

was continuously improved with each additional input variable. When haul distance was selected 

to be added to the model, the accuracy of the DT model was significantly enhanced (from 20.15% 

to 39.41%). This was consistent with our previous study (Fan et al., 2022). Through this relative 

importance analysis, mining engineers can gain an in-depth understanding of the major real-world 

influences on truck productivity. Based on these results, they can construct more accurate 

prediction models by considering multiple influencing factors related to truck productivity, thus 

providing accurate parameter estimates for mine planning and budgeting decisions.  

Table 4.6 Parameter selection and the corresponding model performance. 

Model Parameter selection RMSE MAE R2 (%) 

DT-1 waiting at shovel 172.11 136.15 7.73 

DT-2 waiting at shovel + ambient temperature 162.70 128.10 17.55 

DT-3 
waiting at shovel + ambient temperature + 

empty speed 
160.11 125.80 20.15 

DT-4 
waiting at shovel + ambient temperature + 

empty speed + haul distance 
139.47 108.81 39.41 
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Figure 4.7 The relative importance of input variables. (a) The relative importance of input variables 

obtained from four tree-based models; (b) The average relative importance score of input variables. 
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4.4. Conclusions 

The truck haulage data from open-pit mine sites are usually massive and multidimensional with 

multi-peak Gaussian distributions. Artificial neural networks (ANNs) are well-known machine 

learning algorithms to handle massive and multidimensional data for building models. Moreover, 

Gaussian mixture modeling (GMM) is a suitable option for processing the data under multi-peak 

Gaussian distributions and enhancing model prediction accuracy. Hence, for the first time, this 

study combined the knowledge of statistics and mining engineering to deal with the complex truck 

haulage data and improve the prediction of truck productivity at mine sites. A back propagation 

neural network (BPNN), an extreme learning machine (ELM), and a Bayesian regularized neural 

network (BRNN) coupled with GMM were adopted to build three weighted ensembles models, 

WE-BPNN, WE-ELM, and WE-BRNN, for predicting truck productivity. The main conclusions 

are summarized as follows: 

(1) The BRNN model outperformed the BPNN and ELM models in predicting low, medium, and 

high values of truck productivity. For example, the RMSE, MAE, and R2 were 45.94, 38.98, 

and 85.20% for the BRNN model, while these metrics were 47.19, 39.76, and 84.39% for the 

BPNN model, and 46.25, 39.21, and 85.01% for the ELM model. 

(2) The WE-BRNN had a higher accuracy than the WE-BPNN and WE-ELM models. For 

instance, in terms of the testing dataset, the WE-BRNN model had the lowest RMSE and MAE 

and the highest R2 in the three weighted ensemble models, with values of 66.23, 46.61, and 

86.34%. Accordingly, the three performance metrics of the WE-BPNN and WE-ELM models 

were 69.42, 48.21, and 84.99%, and 69.43, 47.51, and 84.98%, respectively. 

(3) The proposed weighted ensemble models performed better than the benchmark models in 
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predicting truck productivity, indicating that a weighted ensemble approach based on the 

GMM analysis significantly improved the model’s accuracy. For example, although the 

extreme gradient boosting (XGBoost) model was the best model of the benchmark models, the 

R2 of the WE-BRNN (86.34%), WE-BPNN (84.99%), and WE-ELM (84.98%) models was 

more than two times higher than that of the XGBoost model (42.23%). This analysis provides 

mining companies with a new approach to predicting truck productivity. 

(4) Based on the relative importance analysis, haul distance was the most crucial input variable 

for predicting truck productivity. The relative importance ranking of input variables was haul 

distance (46.07%) > empty speed (19.25%) > ambient temperature (18.23%) > waiting at 

shovel (16.45%). This finding helps mining engineers gain an in-depth understanding of the 

major real-world influences on truck productivity. 
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Chapter 5. Improved extreme machine learning for rapid estimation of mining 

truck cycle time based on feature selection and unsupervised clustering 

techniques 
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Nomenclatures 

ANN Artificial neural network 

ANOVA Analysis of variance 

BIC Bayesian information criteria 

BPNN Back propagation neural network 

BRNN Bayesian regularized neural network 

C The number of estimated parameters 

DT Decision tree 

ELM Extreme learning machine 

EM Expectation-maximization 

ERT Extremely randomized tree 

fk Probability density function 

GBR Gradient boosting regression 

GMM Gaussian mixture modeling 

k The kth latent classes 

K The number of latent classes 

KM K-means 
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L Likelihood of a set of data points 

m The mth input variable 

M The number of input variables 

MAE Mean absolute error 

n The nth data point 

N The number of data points 

NN Neural networks 

p Number of data points in each class clustered by K-means 

P Mixture model 

R2 Coefficient of determination 

RF Random forest 

RFE Recursive feature elimination  

RMSE Root mean square error 

tph Tonnes per hour 

XGBoost Extreme gradient boosting 

xm The mth input variable 

y Output variable 
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�̅� Mean value of y 

�̂� Predicted value of y 

γnk Posterior probability 

θ Parameter vector of the density function 

λk A set of data points that maximize γnk 

μk Mean vector of the density function 

πk Weight of the kth latent class 

Σk Covariance matrix 

∅ Parameter set of the mixture model 
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5.1. Introduction 

Oil sands mining contributes immensely to the national economic output of Canada (Arciszewski 

et al., 2022). The GDP of oil sands mining has been projected at CAD$ 2,106 billion for Canada 

over 25 years (2010 - 2035) (Honarvar et al., 2011a). In oil sands mining, off-the-road trucks play 

a leading role in transporting bulk materials (ores and waste) at open-pit mine sites (Ma et al., 

2023). The time required for a truck to complete a haulage cycle is referred to as truck cycle time, 

consisting of time for loading, hauling, dumping, returning, and waiting (Song et al., 2017). Mining 

truck cycle time is of great interest to the resource industry since it is a critical indicator in assessing 

the maximum productivity achievable between load and dump sites, which directly affects a 

mine’s overall productivity, production targets, planning, and budgets (Cervantes et al., 2019; 

Chanda & Gardiner, 2010).  

To estimate truck cycle time, machine learning has attracted considerable attention because of its 

ability to build data-driven prediction models (Fan et al., 2023b, 2023d). Machine learning is a 

general term for a set of mathematical algorithms that can automatically acquire information from 

historical data and establish input-output relationships (i.e., prediction models) (Arachchilage et 

al., 2023). These algorithms have been successfully employed for various mining applications, 

such as rockburst prediction (Zhou et al., 2016), cement materials (Sahari Moghaddam et al., 

2020), mining safety (Zhou et al., 2019), and waste management (Daware et al., 2022; Fan et al., 

2019). Among these algorithms, extreme learning machine (ELM), extremely randomized trees 

(Extra-trees or ERT), and extreme gradient boosting (XGBoost) are well-known extreme machine 

learning methods for handling massive amounts of data, which are superior in prediction 

performance and time efficiency (Fan et al., 2023d; Wang et al., 2022; Zhang et al., 2023). For 

example, Dhini et al. (2022) proposed an ELM model for fault diagnosis of steam turbines in 
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thermal power plants. The research presented that ELM achieved sound prediction accuracy, with 

a coefficient of determination (R2) of 96.58%. Meanwhile, the computational time of this model 

was 54.81 s, which performed significantly faster than the widely used backpropagation neural 

network (BPNN) model (161.12 s). Likewise, both Chencho et al. (2022) and Saeed et al. (2021) 

built ERT and random forest (RF) models for two-element damage quantification of concrete 

structures and fault detection in wireless sensor networks, respectively. According to Chencho et 

al. (2022), the accuracy of the ERT model (98.5%) was better than that of the RF model (97.5%); 

the computational time of ERT (22.70 s) was considerably shorter than the latter (101.59 s). Saeed 

et al. (2021) also observed that ERT (81.20%) was superior to RF (79.60%) and reduced the 

running time by more than half, from 190 s to 90 s. Moreover, Demir and Sahin (2023) used 

XGBoost and two traditional boosting methods, including gradient boosting regression (GBR) and 

adaptive boosting (AdaBoost), to forecast soil liquefaction in earthquake engineering. Compared 

with GBR and AdaBoost, XGBoost demonstrated the highest prediction accuracy (96.75%) and 

the smallest computational cost (5.15 s). Therefore, these extreme machine learning algorithms 

have substantial potential to build accurate prediction models and provide fast computation for 

mining truck cycle time. 

Nevertheless, no research has been found that uses extreme machine learning algorithms to 

estimate mining truck cycle time based on the current literature review. These extreme algorithms 

may bring vast benefits to predicting truck cycle time, which entails large amounts of real-site 

datasets and complex relationships between numerous inputs and outputs (Fan et al., 2022, 2023b). 

For instance, the dataset in this study contained over 8,600 data points encompassing a full year’s 

truck haulage information. Moreover, many input variables are available at mine sites according 

to the site observation (Fan et al., 2023d; Song et al., 2017), such as haul distance, time-related 
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factors, truck running speeds, haul routes, and meteorological conditions (e.g., ambient 

temperature and precipitation). These usable data and variables may cause a dramatic growth in 

computation costs and high nonlinearity of prediction models (Fan et al., 2022). Extreme 

algorithms can overcome these prominent problems, yet this potential remains unknown.  

To fill this research gap, the purpose of this study was to provide accurate and rapid estimations 

of mining truck cycle time by developing extreme machine learning models based on numerous 

inputs and massive truck haulage data. Unlike previous studies that directly constructed prediction 

models (Arachchilage et al., 2023; Chanda & Gardiner, 2010), this study conducted two prior 

comparative studies before proposing the prediction models: (1) comparing feature selection 

methods and (2) comparing unsupervised clustering techniques. First, three feature selection 

approaches were utilized to determine the optimal subset of input variables, including decision tree 

(DT), analysis of variance (ANOVA), and recursive feature elimination (RFE). These methods can 

remove irrelevant information and noise, thus decreasing computational costs and improving 

prediction performance (Liu et al., 2022). Next, two unsupervised clustering techniques, including 

K-means and Gaussian mixture modeling (GMM), were applied to preprocess the datasets with 

the selected inputs, as these two techniques have been shown to effectively deal with massive data 

and enhance the model predictability (Fan et al., 2023b). Finally, the ELM, ERT, and XGBoost 

models of truck cycle time were built based on feature selection and clustering analysis.  

The novelty of this study stems from four aspects. First, an insightful analysis was carried out on 

unique and massive truck haulage data in open-pit mining. Second, three feature selection methods 

were compared and applied to analyze the real-world factors affecting mining truck cycle time. 

Third, ELM, ERT, and XGBoost were used to provide rapid truck cycle time estimations for the 

first time. Forth, the ELM, ERT, and XGBoost models were combined with K-means and GMM 



 

132 
 

to investigate the influence of clustering techniques on models’ accuracy. This paper contributes 

to the development of extreme hybrid models based on feature selection approaches and clustering 

techniques to estimate mining truck cycle time accurately and rapidly.  

5.2. Methodology and Data Preparation 

5.2.1. Research framework 

Figure 5.1 demonstrates the overall research framework. In Figure 5.1, the data from truck haulage 

in oil sands mine sites were tabulated and separated into two datasets: training and testing. To 

remove irrelevant information in these datasets, three feature selection approaches (DT, ANOVA, 

and RFE) were first applied to select the essential inputs. Next, the best-selected subset was 

classified by K-means and GMM to identify subgroups from massive data, respectively. 

Meanwhile, the labels of these subgroups constituted additional variables and were treated as new 

input variables (i.e., new categorical variables) incorporated with the selected subset to become 

new training datasets (Fan et al., 2022). The testing dataset was correspondingly classified based 

on K-means and GMM analysis. After that, ELM, ERT, and XGBoost were adopted to develop 

prediction models using the new training datasets and the initially selected subset, respectively. 

Finally, the testing dataset was utilized to assess the prediction performance. Four recommended 

performance metrics were recommended (Wu et al., 2020): the root mean square error (RMSE), 

the mean absolute error (MAE), R2, and running time. Overall, the training procedure was 

conducted on a personal computer (PC) using R programming (version 4.1.3) in RStudio software. 

This PC has a 64-bit operating system with 16.0 GB of RAM and an Intel Core i7-12700K (3.60 

GHz) processor.  
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Figure 5.1 Proposed study framework for extreme machine learning models developed in this 

study. 

5.2.2. Data description 

The massive dataset was obtained from operating mine sites in Alberta, Canada. It had 8,683 

groups of data points, each representing a truck haulage cycle recorded for each hour of the year. 

The dataset was partitioned into training (80%) and testing (20%) datasets. This split proportion 

was determined and recommended based on common practice in previous studies (Arachchilage 

et al., 2023). Both these two datasets included an output variable (cycle time, y) and ten input 

variables (xm). These inputs were haul distance (x1, km), empty speed (x2, km/h), ambient 
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temperature (x3, ℃), wind speed (x4, km/h), waiting at shovel (x5), waiting at dump (x6), spotting 

(x7), month (x8), destination (x9), and precipitation (x10). They were selected because mining 

engineers observed these variables at mine sites and used them in previous studies to build 

prediction models (Chanda & Gardiner, 2010; Fan et al., 2023b). Using the training dataset as an 

instance, a detailed description of all inputs and the output is presented in Table 5.1. In Table 5.1, 

the variables are divided into continuous variables (the first five) and categorical variables (the last 

six). Amid them, the inputs related to truck haulage were provided by the mine data management 

system; the weather-related inputs were collected from the local meteorological observatory 

(MEP, 2023). Table 5.1 lists the statistical information of these variables, including minimum, 

mean, and maximum. Besides, the linear correlation (r) between each input and output was 

calculated by the extensively used Pearson correlation coefficient method (Baek & Choi, 2020). 

As shown in Table 1, the correlation between some inputs and truck cycle time is low or even zero, 

such as wind speed (0), waiting at dump (0.05), and spotting (0.08). The contribution of these 

variables in constructing models may be insignificant, but instead, they may increase the 

computational time and reduce the model predictability (Liu et al., 2022). This provided the 

rationale for conducting feature selection analysis (remove or retain these variables) in this study. 

Furthermore, the statistical distribution features of all inputs and the output are presented in Figure 

5.2. Figure 5.2(a)-(e) shows the distribution feature of each continuous variable using a histogram 

with specific columns. The horizontal direction denotes the variables; the vertical direction 

represents the density (proportion), indicating the fraction of each column divided by the total 

number of data points. Figure 5.2(f)-(k) presents the boxplots of six categorical variables. 
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Table 5.1 Descriptions and statistical information for the output (y) and inputs (xm) in this study. 

 

 

 

 

Variable Description Minimum Mean Maximum r 

Cycle time (y, min) 
The time for each truck to finish 

a haulage cycle 
14.67 27.82 78.30 1 

Haul distance (x1, km) 
The distance between loading 

and dumping sites 
1.02 4.47 11.12 0.37 

Empty speed (x2, km/h) 
The truck speed from a dumping 

site to a loading site 
6.40 37.00 59.90 -0.19 

Ambient temperature (x3, 

℃) 

The hourly ambient temperature 

at mine sites 
-38 0.68 32.80 0.13 

Wind speed (x4, km/h) 
The hourly wind speed (at 10 m) 

at mine sites 
0 5.71 34 0 

Waiting at shovel (x5) 

Without and with wait time at a 

shovel for each truck cycle: two 

labels (0 and 1) 

0 0.49 1 0.27 

Waiting at dump (x6) 

Without and with wait time at a 

dumping site for each truck 

cycle: two labels (0 and 1) 

0 0.96 1 0.05 

Spotting (x7) 

Without and with spotting time 

for each truck cycle: two labels 

(0 and 1) 

0 0.63 1 0.08 

Month (x8) 
12 months of the year: twelve 

labels (1-12) 
1 6.55 12 0.15 

Destination (x9) 

Three dumping sites of truck 

haulage at mine sites: the labels 

(1, 2, and 3) 

1 2.19 3 0.14 

Precipitation (x10) 
Without and with hourly 

precipitation: two labels (0 and 1) 
0 0.05 1 0.10 
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Figure 5.2 Distributions with density curves and boxplots for the (a) output and (b)-(k) input 

variables.  
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5.2.3. Feature selection approaches 

Feature selection approaches are broadly classified into wrapped, embedded, and filter methods 

(Boratto et al., 2023; Olu-Ajayi et al., 2023). This study carried out a comparative study of three 

feature selection approaches to determine the optimal subset of input variables. The basic ideas are 

briefly introduced below. The wrapped method, such as RFE, usually adopts specific machine 

learning algorithms (e.g., linear model or RF) to assess subsets of input variables and select the 

best subset that produces the highest performance. RFE works by recursively removing the least 

essential input variables from a specific model (e.g., RF) according to the change in model 

accuracy or some other criterion (e.g., regression coefficients) until the optimal number of inputs 

is achieved (Bahl et al., 2019). The embedded method directly incorporates feature selection into 

the model training of a machine learning algorithm, such as DT. DT selects input variables for the 

best division at the root and internal nodes; simultaneously, it ranks the relative variable 

importance using some criterion (e.g., Gini index) (Zhou et al., 2021). Unlike the wrapped and 

embedded methods, the filter method, such as ANOVA, uses statistical tests (e.g., significance 

tests) to estimate the relevance of input variables, which is independent of any particular machine 

learning method. ANOVA computes the p-value when sequentially adding each input into a 

prediction model (Sheikhan et al., 2013). Meanwhile, the inputs with the lowest p-values (e.g., < 

0.01) are retained, indicating a strong correlation with the output. 

5.2.4. Clustering analysis algorithms 

K-means and GMM are two extensively applied unsupervised clustering techniques since they are 

easy to implement and efficient for dealing with massive data (Capó et al., 2017). They both 

identify several classes from a data population and assign data points with more similarities to the 

same group (Fan et al., 2022). The key distinction between the two techniques lies in the principles 
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of assigning data points to classes. K-means assumes that each data point falls into the specific 

class where the centroid is closest to it. This centroid is updated iteratively until the squared 

distance sum between the centroid and each data point is minimized (Liu et al., 2020). Unlike K-

means, GMM is known as a probability-based clustering approach that assigns data points to a 

specific class when they have the maximum class posterior probability (Grün & Leisch, 2007). 

Detailed information on K-means and GMM is described below.  

5.2.4.1. K-means 

K-means is a distance-based unsupervised clustering approach, which segments a data population 

into K subsets based on the difference in distance between data points. Assuming a group of data 

points {X1, X2, …, Xn}, where Xi indicates the ith data point. K-means finds the centroids {c1, c2, 

…, cK} for K classes that minimize the squared sum of the distance between a data point Xi and its 

closest centroid ck. This distance 𝐷𝑖𝑠(𝑋𝑖, 𝑐𝑘) can be calculated as follows: 

𝐷𝑖𝑠(𝑋𝑖, 𝑐𝑘) = √(𝑋𝑖)2 − (𝑐𝑘)2                                                (5-1) 

Initially, K-means randomly selected K centroids for the total data points. Next, the distance 

between the initial centroid and each data point is computed using Equation (5-1). Under the 

principle of the nearest centroid, the data are assigned to the same latent class that is labeled as 𝐶𝑘, 

which can be expressed as (Liu et al., 2020) 

𝐶𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘∈{1,2,…,𝐾}𝐷𝑖𝑠(𝑋𝑖, 𝑐𝑘)                                           (5-2) 

After that, K-means recalculate the locations of K centroids once all data points are assigned to 

the class 𝐶𝑘 according to the following formula: 

𝑐𝑘
′ = (∑ 𝑋𝑋∈𝐶𝑘

)/𝑝                                                        (5-3) 
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where p denotes the total number of data points in a specific class after K-means clustering. 

K-means conducts this process iteratively (i.e., calculating distance and finding new centroids) 

until these centroids no longer change. Moreover, although the number of K (K > 1) is set by users 

according to corresponding clustering requirements, the optimal number can be determined by the 

gap statistic method, which is suggested by Sinaga and Yang (2020). 

5.2.4.2. Gaussian mixture modeling 

GMM has shown its performance in many aspects of handling massive data, such as streamflow 

prediction (Ni et al., 2020), wind power forecast (Ge et al., 2018), and heat load pattern recognition 

(Lu et al., 2019). GMM models the distribution of a data population by assuming that it comprises 

a mixture of Gaussian distributions. In other words, GMM assumes that the data population is 

generated by finite subsets (i.e., latent classes), each with its own Gaussian distribution (Fan et al., 

2022). The distribution function of the mixture of Gaussians can be formulated as (Leisch, 2004) 

𝑃(𝑦|𝑥, ∅) = ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜇𝑘, Σ𝑘)𝐾
𝑘=1                                           (5-4) 

where 𝑃(𝑦|𝑥, ∅) indicates the distribution function of data points. ∅ denotes the parameter set 

{𝜋𝑘, 𝜇𝑘, Σ𝑘}  of the distribution function. K is the number of latent classes. 𝜋𝑘  is the mixture 

coefficient (non-negative) of the kth latent class with ∑ 𝜋𝑘 = 1𝐾
𝑘=1 . 𝑓𝑘(𝑦|𝑥, 𝜇𝑘, Σ𝑘)  is the 

distribution function of the kth class. 𝜇𝑘 and Σ𝑘 are means and variances.  

GMM aims to estimate the parameter set that constitutes the mixture of Gaussians. To achieve this 

aim, GMM uses a two-step strategy, which is known as Expectation-Maximization (EM). In the 

E-step, the probabilities (γ𝑛𝑘) assigned to latent classes are calculated for each data point (Leisch, 

2004): 
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  γ𝑛𝑘 =
𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜇𝑘,Σ𝑘)

∑ 𝜋𝑘𝑓𝑘(𝑦𝑛|𝑥𝑛,𝜇𝑘,Σ𝑘)𝐾
𝑘=1

                                                 (5-5) 

In the M-step, the parameter set is estimated with the γ𝑛𝑘 through maximizing the log-likelihood 

(log L) (Leisch, 2004): 

𝑙𝑜𝑔 𝐿 = ∑ log(𝑃(𝑦|𝑥, 𝜙)𝑁
𝑛=1 ) = ∑ log(𝑁

𝑛=1 ∑ 𝜋𝑘𝑓𝑘(𝑦|𝑥, 𝜇𝑘, Σ𝑘)𝐾
𝑘=1 )                (5-6) 

where 𝜋𝑘 =
1

𝑁
𝑓𝑘 =

1

𝑁
∑ γ𝑛𝑘

𝑁
𝑛=1 . N refers to the number of data points. In GMM, the EM 

algorithm iteratively estimates the parameters until the maximized log L is attained. Finally, the 

optimal number of latent classes is obtained by the minimization of the Bayesian information 

criterion (BIC) (Mehrjou et al., 2016): 

                      𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝐶𝑙𝑜𝑔𝑁                                               (5-7) 

where C indicates the number of parameters. 

5.2.5. Machine learning algorithms and performance metrics 

This study used three extreme machine learning algorithms (ELM, ERT, and XGBoost) to develop 

prediction models of mining truck cycle time. These extreme algorithms are characterized by 

computational efficiency, whose principles are briefly introduced below: 

ELM is a neural network (NN) algorithm consisting of three layers: an input layer, an output layer, 

and a hidden layer (Fan et al., 2023d), as depicted in Figure 5.3. ELM can handle massive amounts 

of data, solve classification and regression tasks, and construct complex nonlinear relationships 

between inputs and outputs (Huang et al., 2006). Unlike traditional NNs, the built-in parameters 

(e.g., weights between input and hidden nodes) in ELM are not required to be tuned because these 
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parameters are randomly initialized and remain constant throughout the training process (Dhini et 

al., 2022). This makes ELM extremely efficient and fast compared to other ANNs.  

ERT is a tree-based ensemble algorithm that integrates numerous DTs (see Figure 5.4) for 

regression and classification tasks (Saeed et al., 2021). ERT is similar to RF, which builds a series 

of trees in a parallel way based on a bagging technique (i.e., bootstrapping and aggregation 

techniques) to improve model performance (Fan et al., 2023b). “Bootstrapping” indicates a 

sampling method that randomly samples subsets from the initial dataset with a replacement for 

training DTs. Meanwhile, a sample of input variables is arbitrarily selected at each DT node for 

best splitting. “Aggregation” is the averaging of the decisions across all DTs.  

Unlike RF, ERT makes splits at nodes based on entirely random input variables and thresholds. 

This results in more diverse and faster tree growth in ERT, thus enhancing model accuracy and 

generalization capability (Zhang et al., 2023). XGBoost is another tree-based ensemble method 

for solving supervised learning problems, such as regression and classification (Chen & Guestrin, 

2016). Unlike ERT, XGBoost builds a large number of DTs in a sequential manner based on a 

boosting technique, each of which attempts to learn and correct the errors of the preceding tree. In 

addition, XGBoost performs fast computation mainly because it adopts some built-in techniques, 

such as approximate greedy algorithm, parallel processing, and tree pruning (Chen & Guestrin, 

2016). These techniques help to prevent overfitting problems, improve model performance, and 

make the XGBoost algorithm more efficient (Fan et al., 2023d).  

These extreme models were constructed in RStudio with installed packages “elmNN”, “ranger”, 

“xgboost”, and “caret”. To evaluate the model performance, three quantitative indicators were 

used: MAE, RMSE, and R2, which are given below (Huo et al., 2021; Zhu & Xie, 2023): 
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𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑛 − �̂�𝑛

𝑁
𝑛=1 |                                                 (5-8) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑛 − �̂�𝑛)2𝑁

𝑛=1                                              (5-9) 

𝑅2 = 1 −
∑ (𝑦𝑛−�̂�𝑛)2𝑁

𝑛

∑ (𝑦𝑛−�̅�𝑛)2𝑁
𝑛

                                                    (5-10) 

where 𝑦𝑛 is the measured cycle time; �̂�𝑛 denotes the predicted cycle time, and �̅�𝑛 represents the 

mean of measured cycle time. MAE is the mean of absolute errors between the measured cycle 

time and the predicted cycle time. RMSE is the standard deviation of the errors between the 

measured and the predicted cycle time. R2 is a measure of the goodness of fit, ranging from zero 

to one. 

 

Figure 5.3 Typical architecture of the ELM model.  
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Figure 5.4 Typical architecture of the ensemble tree-based models.  

5.3. Results and Discussion 

5.3.1. Feature selection and feature importance  

Three feature selection approaches, including DT, ANOVA, and RFE, were availed in this study 

to remove redundant information (i.e., irrelevant input variables) from the datasets. Then, the input 

variables chosen by each algorithm were applied to build and compare the ML model (e.g., 

XGBoost) to determine the best feature selection method (Liu et al., 2022). Using the RFE 

algorithm as an example, Figure 5.5 illustrates the results of feature selection under the principle 

of minimizing RMSE values. In Figure 5.5, the number of input variables is increased from one to 

ten. When the number reaches five, RMSE drops significantly from 5.90 to 5.19. It descends 

further to 5.00 when the number attains seven and cannot decrease as the number of input variables 



 

144 
 

grows. Therefore, RFE retained seven input variables. These inputs (in Table 5.2) were haul 

distance, empty speed, waiting at shovel, month, destination, ambient temperature, and 

precipitation. From Table 5.2, ANOVA also selected seven input variables, but they were a new 

combination of haul distance, empty speed, waiting at shovel, waiting at dump, spotting, 

precipitation, and month. Compared to RFE and ANOVA, DT only kept six input variables, 

including waiting at shovel, haul distance, empty speed, destination, ambient temperature, and 

spotting. Afterward, these three subsets of inputs and the original inputs were involved in 

constructing four XGBoost models (i.e., RFE-XGBoost, ANOVA-XGBoost, DT-XGBoost, and 

XGBoost), whose performance was evaluated by the testing dataset. In Table 5.2, the RFE-

XGBoost model has the smallest RMSE (5.12), MAE (3.78), and the highest R2 (33.54%), which 

performs better than the DT-XGBoost (5.13, 3.79, and 33.27%), ANOVA-XGBoost (5.15, 3.79, 

and 32.90%), and XGBoost (5.13, 3.79, and 33.37%) models. Moreover, the running time of the 

RFE-XGBoost model (305.4 s) was lower than that of the XGBoost model (320.4 s), although it 

was longer than the ANOVA-XGBoost (300.6 s) and DT-XGBoost models (273.6 s). Akin to the 

study by Liu et al. (2022), they adopted three feature selection methods (including the RFE 

algorithm) to eliminate irrelevant inputs and trained the XGBoost models for estimating the 

buildings’ energy consumption. In terms of the model’s performance and running time, the RFE-

XGBoost had the highest R2 (72.8%) and shortest running time (262 s). In short, RFE was the best 

feature selection method that improved the model performance and removed redundant variables, 

thus reducing the computational cost. 

Furthermore, RFE determined the variable importance of the selected seven inputs by iteratively 

removing the least important features and evaluating the built-in model’s performance (Bahl et al., 

2019). As shown in Figure 5.6, the importance scores (in percentage) of these inputs are ranked as 



 

145 
 

follows: haul distance (32.60%) > empty speed (21.15%) > waiting at shovel (20.00%) > month 

(9.04%) > destination (7.36%) > ambient temperature (6.62%) > precipitation (3.23%). Among 

these inputs, haul distance, empty speed, and waiting at shovel were the most critical variables 

affecting truck cycle time. At mine sites, mining engineers usually built a fitted line (i.e., prediction 

model) between truck cycle time and haul distance because they observed that haul distance had a 

dominant impact on truck cycle time (Cervantes et al., 2019). After haul distance, empty speed 

had the second-highest importance score (21.25%) since it can determine the travel time (a portion 

of cycle time) between dumping and loading sites (Schexnayder et al., 1999). Waiting at shovel 

was a binary variable (zero and non-zero) in this study, with an importance of 20.00%. In 

accordance with Ercelebi and Bascetin (2009), truck cycle time consisted of loading, hauling, 

dumping, returning time, and waiting time at dumps or shovels. Hence, the increase in waiting 

time contributes to a growth in cycle time. Moreover, other inputs influenced the truck cycle time 

to some extent. The variable importance of month was 9.04%, which may be attributed to the 

variations of time-related factors such as ambient temperature and precipitation in different 

months. For example, according to Ma et al. (2023), truck tire temperature escalated from 54 °C 

to 69 °C when the ambient temperature at mine sites increased from 20 °C to 40 °C. This led to a 

reduction in tire performance (e.g., fatigue), thus increasing truck cycle time and decreasing truck 

productivity (Ma et al., 2022). Due to the potential effect of multicollinearity (Paliwal & Kumar, 

2011), the importance of ambient temperature (6.62%) and precipitation (3.23%) was relatively 

lower than that of month (9.04%). Lastly, destination had an importance of 7.36%, which may be 

because destination is associated with truck haul length, thus affecting truck cycle time (Both & 

Dimitrakopoulos, 2020). In addition, the importance can be assessed by investigating the effect of 

input size on the prediction performance, as shown in Table 5.3. For instance, XGBoost showed 
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the largest improvement in R2 (from 17.55% to 33.54%) when the model involved haul distance, 

indicating that it was the most influential input. This agreed with our previous studies (Fan et al., 

2022, 2023d). In brief, the RFE selected seven input variables and provided importance scores for 

each input. These scores help mining engineers gain insight into the main factors influencing truck 

cycle time at mine sites, leading to more accurate predictions of truck cycle time and the estimation 

of overall mine productivity (Fan et al., 2023b).  

 

Figure 5.5 Feature selection analysis using recursive feature elimination based on the training 

dataset.  
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Table 5.2 Comparison of feature selection methods based on the XGBoost models. 

Method Model 
Subset 

Size 
Selected Input 

Performance Metrics Time 

(s) RMSE MAE R2 (%) 

RFE 
RFE-

XGBoost 
7 

Haul distance, empty 

speed, waiting at 

shovel, month, 

destination, ambient 

temperature, 

precipitation 

5.12 3.78 33.63 305.4 

 

ANOVA 

ANOVA-

XGBoost 
7 

Haul distance, empty 

speed, waiting at 

shovel, waiting at 

dump, spotting, 

precipitation, month 

5.15 3.79 32.90 300.6 

DT 
DT-

XGBoost 
6 

Waiting at shovel, 

haul distance, empty 

speed, destination, 

ambient temperature, 

spotting 

5.13 3.79 33.27 273.6 

Null XGBoost 10 

Haul distance, empty 

speed, ambient 

temperature, wind 

speed, waiting at 

shovel, waiting at 

dump, spotting, 

month, destination, 

precipitation 

5.13 3.79 33.37 320.4 
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Figure 5.6 Variable importance analysis based on recursive feature elimination. 

Table 5.3 Different input sizes of input variables and the resulting model performance.  

XGBoost Input Size 
Performance Metrics 

RMSE MAE R2 (%) 

Model 1 Precipitation 6.28 4.76 0.63 

Model 2 Precipitation + ambient temperature 6.17 4.69 3.37 

Model 3 Precipitation + ambient temperature + destination 6.11 4.61 5.21 

Model 4 
Precipitation + ambient temperature + destination + 

month 
6.10 4.59 5.68 

Model 5 
Precipitation + ambient temperature + destination + 

month + waiting at shovel 
5.88 4.43 12.41 

Model 6 
Precipitation + ambient temperature + destination + 

month + waiting at shovel + empty speed 
5.70 4.28 17.55 

Model 7 
Precipitation + ambient temperature + destination + 

month + waiting at shovel + empty speed + haul distance 
5.12 3.78 33.54 
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5.3.2. Clustering analysis based on truck haulage data 

To improve truck cycle time predictions, this study used K-means and GMM to classify the 

massive truck haulage data (including the seven selected inputs by RFE). The clustering analysis 

of these two techniques will be presented as follows. 

5.3.2.1. K-means clustering analysis 

Figure 5.7 shows the clustering results using K-means based on the truck haulage data (training 

dataset). According to the gap statistic method (Tibshirani et al., 2001), two classes were ultimately 

recommended as the optimal number of classes. In Figure 5.7, these two classes are visualized in 

a two-dimensional scatter plot with two primary principal components (PC1 and PC2, with weights 

of 24.4% and 17.9%). This is because principal component analysis extracts predominant features 

from all input variables, which can be utilized to intuitively display the data distributions by a two-

dimensional (2D) graphical demonstration (Fan et al., 2023c). As presented in Fig. 7, it can be 

noted that Class 1 and Class 2 are almost entirely divided into two datasets with different centroids. 

In Class 1, the number of data points was 4,356, whereas the number in Class 2 was 2,591. 

Moreover, using eight boxplots, Fig. 8 illustrates the statistical characteristics of inputs and output 

in these two classes. The first four represent the relationships among the classes and continuous 

variables; the last four show the relationships among the classes and categorical variables. As can 

be seen from these boxplots, for the continuous variables, only ambient temperature (Fig. 8(d)) is 

well split into two classes, with mean values of 10.03 ℃ and -15.04 ℃, respectively. All other 

continuous variables have overlapping distributions in two classes. Likewise, for the categorical 

variables, a clear relationship can be uniquely observed between months and classes (Fig. 8(f)). 

The data points in Class 1 are almost distributed from March to October, while the data points in 

Class 2 are mainly present in January, February, November, and December. This corresponds to 
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the values of ambient temperature in two classes, representing the warm and cold temperatures in 

Northern Alberta, Canada. Therefore, it can be concluded that these two classes recognized by K-

means from the massive truck haulage data were closely related to the ambient temperature. 

Similar results were discovered by Liu et al. (2020), who applied K-means to classify the single-

crystal superalloy creeping data and developed prediction models of creep rupture life. The 

research showed that K-means identified eight homogeneous classes that were intimately 

associated with the creep mechanisms, which further improved the model accuracy of creep 

rupture life with an increase in R2 from 71.02% to 91.76%.   

 

Figure 5.7 Identifying two classes from the K-means clustering (Distribution of data points in each 

class represented by a 2D scatter diagram with two major principal components). 
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Figure 5.8 Boxplots of input variables to corresponding classes based on the K-means clustering.  
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5.3.2.2. GMM clustering analysis 

In addition to K-means, this study adopted the GMM algorithm to classify massive truck haulage 

data. Following the principle of minimizing the BIC value (McLachlan et al., 2019), the optimal 

amount of classes was ascertained. As a result, three classes were extracted from the training 

dataset by GMM, as shown in Figure 5.9. These three classes were visualized in a two-dimensional 

scattering diagram of cycle time and haul distance. The data points in each class were covered by 

an ellipse that represented a Gaussian distribution (Shimizu & Kaneko, 2020). The number of data 

points varied in these three classes. Classes 1 (3,471) and 2 (3,099) had more than 3,000 data 

points, while Class 3 contained 377 data points. Despite this, truck cycle times grow accordingly 

in each class as haul distance increases. This is in agreement with the site observations (Chanda & 

Gardiner, 2010). Furthermore, Figure 5.10 shows the data distribution in each class using 

histograms and boxplots. After conducting GMM analysis, a large amount of truck haulage data 

came from three different populations, each of which followed a standard Gaussian distribution 

(e.g., as evidenced by the density curves) according to the definition of GMM (Fan et al., 2022). 

Figure 5.10(c) presents the relationship between cycle time and classes. Among these classes, truck 

cycle time significantly varied, showing the order: Class 3 > Class 2 > Class 1 (e.g., the mean 

values were 41.26 min, 30.44 min, and 24.02 min). This indicates short, medium, and long truck 

cycle times at mine sites. Hence, these classes extracted by GMM were well linked to truck cycle 

time (i.e., the output variable). This is comparable with the studies of Ni et al. (2020) and Lu et al. 

(2019). In the study of Ni et al. (2020), they adopted GMM to extract two latent classes (low and 

high streamflows) from massive hydrological data and built an XGBoost model for forecasting 

monthly streamflow. The results presented that the model’s performance increased by about 11% 

based on GMM analysis. Similarly, Lu et al. (2019) classified building heating data using GMM 
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to identify sub-patterns (including six classes). After that, they trained models for predicting the 

hourly heating load, whose performance was enhanced by approximately 20% because of GMM 

analysis. 

 

Figure 5.9 Scattering distribution of data points in three classes (represented by a two-dimensional 

scattering plot of cycle time and haul distance). 
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Figure 5.10 Identifying three classes from the GMM analysis. (a) The data in each class follow 

standard Gaussian distributions. (b) Density curves for each class. (c) A boxplot for three classes. 

5.3.3. Evaluation of clustering-based extreme machine learning models 

In Section 5.3.1, seven input variables were selected by RFE. Based on these inputs and the output, 

in Section 5.3.2, two unsupervised clustering techniques, including K-means (abbreviated as KM 

only in models) and GMM, were adopted to identify classes from the massive truck haulage data. 

The labels of these classes constituted additional variables and were considered as new inputs (i.e., 

new categorical variables) incorporated with the selected inputs to become new training datasets 

(Fan et al., 2022, 2023b). After that, the ELM, ERT, and XGBoost algorithms were applied to 

establish prediction models of truck cycle time. With the new training datasets, six hybrid 

prediction models were constructed, which were referred to as the KM-RFE-ELM, KM-RFE-ERT, 

KM-RFE-XGBoost, GMM-RFE-ELM, GMM-RFE-ERT, and GMM-RFE-XGBoost models. 
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Moreover, three baseline models (RFE-ELM, RFE-ERT, and RFE-XGBoost) were built on the 

original dataset (i.e., the seven inputs and the output) and compared to the clustering analysis-

based models. 

Figure 5.11 exhibits the scatter points of measured cycle time (horizontal) from the testing datasets 

and the predicted cycle time (vertical) from these nine prediction models. The more evenly 

distributed these scatter points are along the 45-degree diagonal, the better the forecasting is (Fan 

et al., 2023b). In Figure 5.11(a)-(f), the scatter points from these six prediction models (baseline 

and K means-based models) are dispersedly distributed along the diagonal, especially for the 

longer truck cycle time. This is because many complex factors contribute to the long cycle time at 

mine sites, such as weather changes, equipment overhaul, work shifts, and road maintenance 

(Alarie & Gamache, 2002; Fan et al., 2023d); however, these factors were not included yet as 

inputs due to the data availability, resulting in poor predictions of long cycle time. Compared to 

Figure 5.11(a)-(f), Figure 5.11(g)-(i) shows the scatter points that are uniformly distributed along 

the diagonal, indicating that the GMM-based models worked well in predicting cycle time. It can 

also be seen in Figure 5.12 through three performance metrics: RMSE, MAE, and R2. For instance, 

GMM-RFE-XGBoost had the highest R2 (80.37%) and the least RMSE (2.78) and MAE (1.98). 

Its performance was considerably higher than the KM-RFE-XGBoost (5.14, 3.80, and 33.06%) 

and RFE-XGBoost (5.12, 3.78, and 33.63%) models. Therefore, two findings can be drawn from 

this study: (1) GMM significantly improved the models’ accuracy. This is mainly because the truck 

haulage data usually have a mixture of Gaussian distributions, referred to as multi-peaked 

Gaussian distributions (as shown in Figure 5.2(b) and (d)) (Bishop, 2006). Depending on these 

specific peaks, GMM can recognize classes from massive data and extract corresponding latent 

variables (Ge et al., 2018). In Section 5.3.2.2, the additional variable from GMM analysis was 
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strongly connected with truck cycle time. As a consequence, the model performance can be 

enhanced when combining these latent variables as new inputs in building prediction models. This 

is consistent with our previous studies (Fan et al., 2022, 2023b); for example, the R2 of the truck 

productivity prediction model was increased from 44% to 87% based on GMM analysis. (2) K-

means was unable to increase the models’ predictability. In Section 5.3.2.1, a categorical variable 

with two labels was extracted through K-means analysis, which showed a close relationship with 

ambient temperature. Nevertheless, ambient temperature has been considered an input variable in 

predicting truck cycle time, whose variable importance was 6.62% (see Section 5.3.1). The 

inclusion of the categorical variable obtained from K-means analysis may increase the model’s 

multicollinearity and computational complexity, thus reducing the model's accuracy (Paliwal & 

Kumar, 2011). In summary, GMM performed better than K-means in enhancing the model 

predictability. This study was similar to the results from Virupakshappa and Oruklu (2019); they 

built prediction models for detecting and positioning flaw echoes in ultrasonic data based on three 

unsupervised clustering techniques, including K-means and GMM. The results showed that the 

detection accuracy achieved 93% with GMM, which was higher than that of K-means (89%). 

Furthermore, an additional finding can be obtained by comparing these extreme machine learning 

models: the XGBoost algorithm outperformed the ELM and ERT algorithms in predicting truck 

cycle time. For example, for the baseline models, the R2 of the RFE-XGBoost model was 33.63%, 

while the RFE-ELM and RFE-ERT models were 29.95% and 27.64%. This applies to the 

clustering-based models. For example, the R2 of GMM-RFE-XGBoost was 80.37%, which was 

higher than GMM-RFE-ELM (79.10%) and GMM-RFE-ERT (75.81%). This may be because 

XGBoost constructs a loss function and adopts a gradient descent method to find the optimal 

weights for each feature, thus increasing the model predictability (Chen & Guestrin, 2016). In 
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ELM, the weights are randomly chosen and optimized by a linear algorithm to reduce the residuals 

between predicted and actual values (Huang et al., 2006). As for ERT, it simply averages the 

predictions over all randomized trees (Geurts et al., 2006). This is close to Cao et al. (2022), who 

built the XGBoost and ELM models to predict the deformation and damage of super-high arch 

dams. The research proved that the XGBoost model’s RMSE (0.90) was lower than the ELM 

model (1.10). Janizadeh et al. (2022) also demonstrated that the XGBoost model (R2 = 92%) 

performed better than the ERT model (R2 = 91%) when mapping the flood hazard susceptibility.  

 

Figure 5.11 Scatterplots of the predicted cycle time and measured cycle time from nine prediction 

models.  
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Figure 5.12 Comparisons of extreme machine learning models with and without clustering 

analysis. (a) Trained models using extreme learning machine (ELM). (b) Trained models using 

extremely randomized tree (ERT). (c) Trained models using extreme gradient boosting (XGBoost). 

5.3.4. Rapid estimation of extreme machine learning models 

In the last section (5.3.3), the GMM-based models (i.e., GMM-RFE-XGBoost, GMM-RFE-ELM, 

and GMM-RFE-ERT) performed best in estimating truck cycle time at mine sites. In addition to 

that, these extreme machine learning models had superiority with respect to computational 

efficiency. Figure 5.13 shows the changes in running time and performance of these three models 

when tunning one built-in hyperparameter. Using Figure 5.13(a) as an example, the vertical axis 

includes the RMSE values and running time; the horizontal axis is the amount of hidden neurons 
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(nhid). The green dashed line indicates the location of the lowest RMSE and the corresponding 

optimal hyperparameter. As shown in Figure 5.13(a), the RMSE value drops as the number of 

hidden neurons increases. When the RMSE reached the minimum value (2.87), the optimal number 

of hidden neurons was 22; meanwhile, the running time was only 0.36 s. Likewise, for the GMM-

RFE-ERT and GMM-RFE-XGBoost models, the optimal hyperparameters are displayed in Figure 

5.13(b)-(c). The running times to build these two models were less than one second (0.61 s and 

0.89 s) when tuning one built-in hyperparameter. Moreover, the ELM, ERT, and XGBoost 

algorithms usually contain multiple hyperparameters that need to be tuned. Consequently, the total 

running time for each GMM-based model is listed in Table 5.4. For these three prediction models, 

the running times were 3.2 s, 183.0 s, and 314.4 s, respectively, in the order of GMM-RFE-ELM 

< GMM-RFE-ERT < GMM-RFE-XGBoost. Compared to these extreme models, the other 

commonly used models often need more computational cost. For example, the ANN models, such 

as the Bayesian regularized neural network (BRNN) and BPNN, took a long time (14,004.0 s and 

9,072.0 s) in our previous study (Fan et al., 2023d). Therefore, the extreme machine learning 

models were more computationally efficient for the rapid estimation of truck cycle time. The main 

reason for the fast assessment is the random initialization of weights between the layers in ELM 

(Huang et al., 2006), random selections of features for each tree and splitting thresholds in ERT 

(Zhang et al., 2023), and parallel processing and approximate greedy algorithm for the best split 

in XGBoost (Qiu et al., 2022). The same results were found in the research by Sekhar Roy et al. 

(2018), Chencho et al. (2022), and Liu et al. (2018). They all demonstrated that EML, ERT, and 

XGBoost provided rapid estimations. For instance, Chencho et al. (2022) constructed an ERT 

model for single-element damage quantification of civil engineering structures. The ERT model 

showed powerful performance in computation (the training time was 13.42 s) and prediction (e.g., 
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R2 = 99.9%). To sum up, this study proposed three computationally efficient models that will 

facilitate mining engineers to rapidly estimate truck cycle time and make better decisions. 

 

Figure 5.13 Relationships of model performance (RMSE), hyperparameter tuning, and running 

time of (a) GMM-RFE-ELM, (b) GMM-RFE-ERT, and (c) GMM-RFE-XGBoost models. 
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Table 5.4 Running times of machine learning models between this and previous studies. 

Algorithm Model Input Variable Running Time (s) Reference 

Bayesian regularized 

neural network 

(BRNN) 

BRNN 

Haul distance, 

empty speed, 

ambient 

temperature, 

waiting at shovel 

14,004.0 

Fan et al. 

(2023d) 

Backpropagation 

neural network 

(BPNN) 

BPNN 9,072.0 

Random forest (RF) RF 2,726.4 

Gradient boosting 

regression (GBR) 
GBR 1,998.6 

Extreme learning 

machine (ELM) 

GMM-RFE-

ELM 
Haul distance, 

empty speed, 

waiting at shovel, 

month, destination, 

ambient 

temperature, 

precipitation 

3.2 

This study 
Extremely randomized 

tree (ERT) 
GMM-RFE-ERT 183.0 

Extreme gradient 

boosting (XGBoost) 

GMM-RFE-

XGBoost 
314.4 

 

5.4. Conclusions 

Extreme machine learning is known for handling massive data and providing fast computations, 

such as XGBoost, ELM, and ERT. For the first time, this study applied these extreme machine 

learning algorithms to create prediction models of mining truck cycle time based on massive and 

multidimensional data from mine sites. Moreover, this study investigated and compared the effects 

of three feature selection methods (DT, ANOVA, and RFE) and two unsupervised clustering 

techniques (K-means and GMM) on model performance. The main findings are concluded below: 

(1) RFE (the wrapped method) was the best feature selection method that improved the model 

performance and removed redundant variables. For example, the RFE-XGBoost model 

selected seven input variables from the original dataset, which achieved the lowest RMSE 
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(5.12), MAE (3.78), and the highest R2 (33.63%) compared to the ANOVA-XGBoost (5.15, 

3.79, and 32.90%), DT-XGBoost (5.13, 3.79, 33.27%), and XGBoost (5.13, 3.79, and 33.37%) 

models. 

(2) Among the selected inputs, haul distance, empty speed, and waiting at shovel were the most 

critical variables affecting truck cycle time. The variable importance ranking presents here: 

haul distance (32.60%) > empty speed (21.15%) > waiting at shovel (20.00%) > month (9.04%) 

> destination (7.36%) > ambient temperature (6.62%) > precipitation (3.23%). These scores 

help engineers gain insight into the main factors influencing truck cycle time at mine sites, 

leading to more accurate predictions of truck cycle time and the estimation of overall mine 

productivity. 

(3) GMM performed better than K-means and significantly improved the models’ accuracy. For 

instance, the GMM-RFE-XGBoost model had the highest R2, with values of 80.37%. Its 

performance was considerably better than the RFE-XGBoost (33.63%) and KM-RFE-

XGBoost (33.06%) models.  

(4) The XGBoost algorithm outperformed the ELM and ERT algorithms in predicting truck cycle 

time. For example, the R2 of the GMM-RFE-XGBoost model was 80.37%, which was higher 

than that of the GMM-RFE-ELM (79.10%) and GMM-RFE-ERT (75.81%). 

(5) The extreme hybrid models provided rapid estimations of mining truck cycle time. For the 

GMM-based models, the runtimes were 3.2 s, 183.0 s, and 314.4 s for GMM-RFE-ELM, 

GMM-RFE-ERT, and GMM-RFE-XGBoost, respectively. Among them, the GMM-RFE-

ELM had the shortest running time without decreasing significant accuracy. This will facilitate 

engineers to estimate truck cycle time and make decisions rapidly. 
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Chapter 6. Interpretable data-driven models for assessing truck productivity 

in open-pit mining under rea-site weather conditions with varying temporal 

resolutions 
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Nomenclatures 

AdaBoost Adaptive boosting 

DT Decision tree 

GBR Gradient boosting regression 

GUI Graphical user interface 

MAE Mean absolute error 

MANOBS Manual of Surface Weather Observation Standards 

MLR Multiple linear regression 

n The nth prediction 

N The number of total predictions 

OSM Oil sands magazine 

PDP Partial dependence plot 

R2 Coefficient of determination 

RAM Random access memory 

RF Random forest 

RMSE Root mean square error 

SHAP SHapley Additive exPlanation 
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SVR Support vector regression 

tph Tonnes per hour 

XGBoost Extreme gradient boosting 

y Output variable 

�̅� Mean value of y 

�̂� Predicted value of y 
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6.1. Introduction 

In open-pit mining, off-the-road truck haulage plays a crucial role in facilitating the movement of 

bulk materials (e.g., ore, waste, and overburden) from mining faces to designated locations within 

mine sites (Ma et al., 2023). The productivity of truck haulage (or truck productivity) is a measure 

of the amount of ores (unit: tonnes) that can be moved by a mining truck in a given period of time 

(unit: hours), which is a critical determinant of the overall productivity and cost-effectiveness of 

mining operations (Chanda & Gardiner, 2010; Fan et al., 2022).  

To assess truck productivity, researchers have initiated data-driven modeling to build the 

relationship between truck productivity and vital influencing parameters (Fan et al., 2023b, 2023d; 

Sun et al., 2018). These parameters usually refer to the variables associated with truck haulage 

conditions, such as haul distance, truck types, truck speed, payload, and number of allocated trucks 

(Cervantes et al., 2019; Choi et al., 2022; Fan et al., 2023a). In addition to the truck haulage 

conditions, variables related to real-site weather conditions are seen as essential parameters, such 

as ambient temperature, precipitation, relative humidity, and wind speed (Medinac et al., 2020; 

Sagberg et al., 2015). These weather-related variables affect truck productivity by influencing 

truck cycle time at mine sites (Fan et al., 2023b). For example, Ma et al. (2023) reported that a rise 

in ambient temperature (e.g., from 20 ℃ to 40 ℃) induced an increase in truck tire temperature 

(e.g., from 54 ℃ to 69 ℃), which caused tire fatigue damage and affected truck cycle time. 

Likewise, Asamer and Reinthaler (2010) statistically analyzed the data from U.S. highway 

administrations. They demonstrated that adverse weather conditions (e.g., heavy precipitation) led 

to a 35% reduction in running speed, thus increasing travel time. Similarly, relative humidity and 

wind speed may interfere with road conditions (e.g., wetness or dryness) and driver’s vision (Choi 

& Nieto, 2011; Silion & Foşalău, 2014), influencing driving habits and travel time. With global 
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warming (Chong et al., 2023; Fan et al., 2019) and more frequent extreme weather (Bag et al., 

2022), the impacts of weather-related variables have become increasingly pronounced. For 

instance, according to Environmental Canada (MEP, 2023), the highest ambient temperature 

recorded in the Fort McMurray region, where open-pit mines are widely distributed in Northern 

Alberta, jumped from 33.2 ℃ in 2016 to 40.5 ℃ in 2021.  

Currently, these weather-related variables have been involved in building prediction models of 

truck productivity and have contributed to the model output (Fan et al., 2022, 2023b, 2023d; Sun 

et al., 2018). For example, Sun et al. (2018) built regression models of truck cycle time (equivalent 

to truck productivity) incorporating ambient temperature, relative humidity, and precipitation. The 

research presented that the proposed model achieved a maximum R2 (coefficient of determination) 

of 89%, and the model accuracy was improved by 5.13% with these weather-related variables. In 

our previous studies (Fan et al., 2022, 2023b, 2023d), ambient temperature and precipitation were 

also included to establish prediction models of truck productivity. The results reported that the 

prediction models’ R2 reached 75%-87%, and these two weather variables contributed more than 

15% to the model output. However, the temporal scales (or resolutions) of real-site weather 

conditions were not taken into account in these studies. For instance, the maximum precipitation 

over a week (e.g., 85.30 mm in this study) can have a more substantial impact on road conditions 

and driving habits than an hour (e.g., 14.10 mm in this study) (Xing et al., 2019). There is a notable 

research gap in considering the real-site weather conditions with varying temporal resolutions in 

predicting mine truck productivity. 

To this end, the purpose of this research was to construct truck productivity prediction models 

incorporating real-site weather conditions with varying temporal resolutions. Four datasets 

(including the hourly, daily, weekly, and monthly datasets) were prepared after processing massive 
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raw data from operating open-pit mine sites. With these four datasets, six extensively applied and 

efficient machine learning algorithms were then adopted to train prediction models (Arachchilage 

et al., 2023), including support vector regression (SVR), random forest (RF), adaptive boosting 

(AdaBoost), gradient boosting regression (GBR), extreme gradient boosting (XGBoost), and 

multiple linear regression (MLR). After that, this study employed SHapley Additive exPlanations 

(SHAP) to interpret the best prediction models based on the four datasets since SHAP can provide 

the qualitative and quantitative analysis of each input variable’s effect on model outputs (Lu et al., 

2021). Meanwhile, a unified graphical user interface (GUI) was designed and developed for end 

users.  

The novelty of this study consists of the following four aspects. First, this study innovatively 

explored the effect of temporal resolutions on establishing truck productivity prediction models. 

Second, this study is the first to combine SHAP and machine learning models to decipher the 

influence of input variables on truck productivity at varying temporal resolutions. Third, for the 

first time, this research analyzed the influence of extreme weather on truck productivity and truck-

shovel allocation at mine sites. Fourth, a simple and easy-to-use GUI was first developed to 

estimate hourly, daily, weekly, and monthly truck productivity. This study contributes solutions 

for predicting truck productivity at varying temporal resolutions and a unified GUI for mining 

engineers and researchers to make decisions more easily and quickly. 

6.2. Methodology 

6.2.1. Overall methodological framework 

Figure 6.1 illustrates the general framework of the methodology. Four datasets with varying 

temporal resolutions, including hourly, daily, weekly, and monthly, were used to construct truck 

productivity prediction models in open-pit mining. Before the models were built, due to its fast 



 

169 
 

computation (Fan et al., 2022), MLR was used to evaluate the effect of the three split proportions 

(70/30, 75/25, and 80/20) on model performance and to select the best-split ratio for 

training/testing datasets at each temporal resolution. Next, six machine learning algorithms were 

utilized to build models based on the four training datasets, including AdaBoost, GBR, XGBoost, 

RF, SVR, and MLR. The models’ performance was evaluated by the four indicators recommended 

by Arachchilage et al. (2023): root mean square error (RMSE), mean absolute error (MAE), R2, 

and residual error. After that, the four best prediction models were selected to forecast truck 

productivity at hourly, daily, weekly, and monthly resolutions. Based on these four models, SHAP, 

a widely used approach for model interpretation (Djandja et al., 2023), was adopted to analyze 

how input variables affect the model output and rank these input variables’ importance. Moreover, 

a simple and easy-to-use GUI was provided for mining engineers to assess truck productivity at 

varying temporal resolutions. The models and GUI were developed on a personal computer (a 16.0 

GB of RAM and an Intel Core i7-12700K processor) by applying Scikit-learn (version 1.2.2) and 

Tkinter packages based on a Python language programming environment (version 3.10.9). 
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Figure 6.1 A schematic representation of the study framework for evaluating mining truck 

productivity. (“###”: the input information is not disclosed as it is the proprietary property of 

mining companies.) 

6.2.2. Machine learning algorithms 

This study adopted six machine learning algorithms (AdaBoost, GBR, XGBoost, RF, SVR, and 

MLR) to train prediction models because these algorithms have been extensively used in various 

mining applications, such as ore production prediction (Choi et al., 2022), concrete material design 

(Bangaru et al., 2019), and mining equipment maintenance (Zhang et al., 2022). The principles of 

these algorithms are briefly introduced as follows: 

⚫ RF is an ensemble learning algorithm combining a large amount of single decision trees (DT) 

to gain higher performance (Fan et al., 2023b). RF mainly adopts a bagging technique to 
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generate numerous DTs, as shown in Figure 6.2(a). Bagging randomly selects a series of 

subsets and a fraction of input variables from the original data to train DTs. These DTs are 

trained in a parallel manner and provide predictions for the target variables simultaneously. 

The average prediction of all DTs is the final prediction of the RF model.  

⚫ AdaBoost, GBR, and XGBoost are also tree-based ensemble learning methods integrating 

numerous DTs, as shown in Figure 6.2(b). Unlike RF, these three algorithms utilize a boosting 

rather than a bagging technique (Fan et al., 2023b). In boosting, each DT is generated 

sequentially and focuses on the data points incorrectly predicted by the previous DT. AdaBoost 

assigns higher weights to these data points and prioritizes them in the following DT. The DTs 

in GBR have the same training process as AdaBoost, but GBR uses a gradient descent 

algorithm to find the best direction for each iteration. XGBoost is an optimization of GBR that 

combines additional features, such as regularization techniques and parallel computing, to 

improve model performance, enhance computational efficiency, and avoid overfitting (Fan et 

al., 2023d).  

⚫ SVR is a well-known single-learning algorithm for regression problems (Arachchilage et al., 

2023). As shown in Figure 6.3, SVR creates the optimal hyperplane by maximizing the margin 

to split the space of input variables and make sure the shortest vertical distance between data 

points and the hyperplane. The data points closely distributed along the margins are known as 

support vectors. SVR achieves this by using kernel functions to map the input variables to a 

higher dimensional space. The radial basis function is the most widely used kernel to capture 

nonlinear relationships (Onyekwena et al., 2022). 

⚫ MLR is also a single learning algorithm that presumes a linear relationship between an 
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individual output and multiple input variables (Fan et al., 2022). A best-fitted line can describe 

this linear relationship, which is defined to minimize the sum of square errors of each data 

point from the line. 

For the nonlinear algorithms (AdaBoost, GBR, XGBoost, RF, and SVR), built-in hyperparameters 

need to be adjusted to achieve higher prediction accuracy and control model complexity (Fan et 

al., 2023b; Xue et al., 2021). A sequential model-based optimization (SMBO) algorithm was 

adopted to search the optimal hyperparameters in the modeling because SMBO has shown 

effective optimization results and is computationally inexpensive to the previous study (Bo et al., 

2022). The underlying principle of SMBO is to search the pre-defined hyperparameters space 

sequentially by constructing a surrogate model (e.g., Gaussian process) of the objective function. 

This search process is usually combined with the five-fold cross-validation (in Figure 6.4), which 

splits the training dataset into five folds and iteratively uses four of them as new training datasets 

to train models with a set of hyperparameters. This procedure is iterated five times until each 

remaining fold is taken as the testing dataset. RMSE is used as an indicator to evaluate the model 

performance for each set of hyperparameters (Fan et al., 2023b). 
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Figure 6.2 The basic ideas of two tree-based algorithms: (a) bagging tree and (b) boosted trees.  

 

 

Figure 6.3 The basic idea of the SVR algorithm.  
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Figure 6.4 The visualization for the five-fold cross-validation.  

6.2.3. Performance indicators for evaluating prediction models 

To evaluate and compare the accuracy of prediction models, the four extensively applied indicators 

were adopted because they are easy to implement and calculate and give an intuitive indication of 

the errors between the observed values (𝑦𝑛) and predicted values (�̂�) (Wu et al., 2020). These 

indicators are MAE, RMSE, R2, and residual error, which can be computed based on the following 

equations: 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑛 − �̂�𝑛

𝑁
𝑛=1 |                                                 (6-1) 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑛 − �̂�𝑛)2𝑁

𝑛=1                                               (6-2) 

𝑅2 = 1 −
∑ (𝑦𝑛−�̂�𝑛)2𝑁

𝑛

∑ (𝑦𝑛−�̅�𝑛)2𝑁
𝑛

                                                       (6-3) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 =  𝑦𝑛 − �̂�𝑛                                                (6-4) 
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where n indicates the nth prediction, N is the total number of predictions, and �̅�𝑛 is the mean of 

observed values. A regression model with a larger R2 and smaller MAE, RMSE, and residual error 

represents a better prediction performance (Arachchilage et al., 2023).   

6.2.4. Feature importance analysis method 

To make the prediction models more transparent, the SHAP method was employed in this study 

to interpret these models by a qualitative analysis of the correlation between input variables and 

the output and a quantitative analysis of feature importance (Djandja et al., 2023; Yiu et al., 2022). 

SHAP is a game theory-based approach developed by Lundberg and Lee (2017). Each data point 

of an input variable is treated as a player in a game, in which the profit is the model output (i.e., 

the prediction). Based on this prediction, a unique SHAP value is offered to the input variable for 

that data point, which shows the deviation from the average forecast of all data points (Lu et al., 

2021). The SHAP method can quantify feature importance by averaging the absolute SHAP values 

of each input variable. This method combines the individual contribution of all data points for an 

input variable to obtain a holistic understanding of this input’s importance to the model output 

(Eker et al., 2021). 

6.3. Data Description and Characterization 

Six-year (2016-2021) truck haulage data were collected from Alberta's operating oil sands mines. 

There were 1,625,590 individual truck cycles after erroneous and blank records were removed. It 

is challenging to handle such a massive amount of data; therefore, this study averaged six years of 

data at hourly, daily, weekly, and monthly resolutions to obtain four new datasets. This reduces 

computational costs and enables the investigation of input-output relationships at varying temporal 

resolutions, providing a unique insight into mining planning and decision-making. The variables 

and their statistical information of these four new datasets are presented in Tables 6.1-6.4. Each 
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dataset had eight input variables. Using Table 6.1 as an example, the input variables were haul 

distance (x1), empty speed (x2), number of trucks (x3), number of shovels (x4), ambient temperature 

(x5), humidity (x6), precipitation (x7), and wind speed (x8). These input variables were selected 

based on the site experience, which were correlated with truck cycle time (Chanda & Gardiner, 

2010; Fan et al., 2023b). The distribution characteristics of these nine variables were presented by 

four statistics, including maximum, minimum, mean, and standard deviation. Notably, the amount 

of data points in these four datasets varied significantly. The hourly dataset contained the most 

data points (47,777), much more than the daily (2,028), weekly (302), and monthly (71) datasets. 

From hourly to monthly, the ranges for all variables except precipitation became narrower due to 

data aggregation (Bodesheim et al., 2018). This can also be observed from the boxplots of input 

variables in Figure 6.5. For example, wind speed fell between 0.30 km/h to 145.90 km/h in the 

hourly data, while its range narrowed to 6.00 km/h to 16.30 km/h in the monthly data. Before the 

models were trained, all variables were scaled between zero to one to ensure that they were equal 

in relevance (Arachchilage et al., 2023).  

Table 6.1 Input variables in the hourly data (47,777 data points in total) with statistical information.  

Variable Unit Maximum Minimum Mean 
Standard 

Deviation 

Haul Distance (x1) km 15.62 1.00 4.63 0.78 

Empty Speed (x2) km/h 60.00 8.45 34.30 5.30 

Number of Trucks (x3) - ### ### ### ### 

Number of Shovels (x4) - ### ### ### ### 

Ambient Temperature (x5) ℃ 40.20 -39.70 1.26 14.40 

Humidity (x6) % 96.00 12.00 67.77 17.48 

Precipitation (x7) mm 14.10 0.00 0.04 0.31 

Wind Speed (x8) km/h 145.90 0.30 10.62 6.44 
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(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 

 

Table 6.2 Input variables in the daily data (2,028 data points in total) with statistical information.  

Variable Unit Maximum Minimum Mean 
Standard 

Deviation 

Haul Distance (x1) km 7.25 1.96 4.62 0.71 

Empty Speed (x2) km/h 46.84 15.22 34.29 4.63 

Number of Trucks (x3) - ### ### ### ### 

Number of Shovels (x4) - ### ### ### ### 

Ambient Temperature (x5) ℃ 32.20 -34.90 1.23 14.01 

Humidity (x6) % 94.10 22.90 67.73 13.30 

Precipitation (x7) mm 47.90 0.00 1.04 3.34 

Wind Speed (x8) km/h 29.20 2.00 10.65 4.34 

(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 

 

Table 6.3 Input variables in the weekly data (302 data points in total) with statistical information.  

Variable Unit Maximum Minimum Mean 
Standard 

Deviation 

Haul Distance (x1) km 6.33 2.38 4.62 0.65 

Empty Speed (x2) km/h 43.30 18.33 34.22 4.39 

Number of Trucks (x3) - ### ### ### ### 

Number of Shovels (x4) - ### ### ### ### 

Ambient Temperature (x5) ℃ 25.90 -30.60 1.26 13.61 

Humidity (x6) % 90.00 35.80 67.77 10.94 

Precipitation (x7) mm 85.30 0.0 6.95 10.28 

Wind Speed (x8) km/h 20.20 3.90 10.64 2.76 
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(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 

 

Table 6.4 Input and output variables in the monthly data (71 data points in total) with statistical 

information. 

Variable Unit Maximum Minimum Mean 
Standard 

Deviation 

Haul Distance (x1) km 5.83 3.44 4.60 0.57 

Empty Speed (x2) km/h 41.59 23.39 34.07 3.97 

Number of Trucks (x3) - ### ### ### ### 

Number of Shovels (x4) - ### ### ### ### 

Ambient Temperature (x5) ℃ 19.50 -21.50 1.79 12.75 

Humidity (x6) % 82.10 43.60 67.25 9.09 

Precipitation (x7) mm 141.70 0.50 33.74 31.89 

Wind Speed (x8) km/h 16.30 6.00 10.68 2.02 

(“###”: the input information is not disclosed as it is the proprietary property of mining 

companies.) 
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Figure 6.5 Boxplots of input variables in the (a) hourly, (b) daily, (c) weekly, and (d) monthly 

datasets.  

6.4. Results and Discussion 

6.4.1. Selection of best-split ratio for training and testing datasets 

The best-split ratios for four temporal-resolutions data (i.e., hourly, daily, weekly, and monthly) 

were investigated before building prediction models of truck productivity. Three widely applied 

ratios were chosen for splitting the data into training and testing datasets, including 70/30, 75/25, 

and 80/20, which were suggested by Bui et al. (2020) and Goel et al. (2022). Table 6.5 lists the 

prediction performance of the MLR models in each data resolution based on these three split ratios. 

MLR was employed for modeling due to its advantage of fast computation and less overfitting 
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(Fan et al., 2022). From Table 6.5, using the hourly data as an example, the model had the lowest 

MAE (60.52) and RMSE (79.12) when the split proportion was 75/25 (i.e., 75% and 25% for the 

training dataset and testing dataset). The R2 of the model was 0.56 at both the 75/25 and 70/30 

ratios, but still slightly higher than the R2 at the 80/20 ratio (0.55). This indicates that the split ratio 

had a certain impact on model performance (Ewees et al., 2020), and 75/25 was the best ratio for 

partitioning the hourly data. Similarly, according to the model performance evaluation in Table 

6.5, the best-split ratios for the daily, weekly, and monthly data were 75/25, 80/20, and 70/30, 

respectively. This study is analogous to the previous studies by Fan et al. (2023c) and Nguyen et 

al. (2021). Both studies investigated the effect of split ratio on model performance. The former 

constructed MLR models based on four different split ratios to predict ore production in oil sands 

mining. The results reported that the model showed the highest accuracy (e.g., R2 = 91.87%) when 

the ratio was 80/20. The latter designed nine proportions (the proportion of the training dataset 

was added from 10% to 90%) and demonstrated that 70/30 was the best-split ratio by building and 

evaluating prediction models for soil shear strength in civil constructions. Overall, 75/25, 75/25, 

80/20, and 70/30 were the best-split ratios for hourly, daily, weekly, and monthly data for the 

purpose of building more complex truck productivity prediction models, which will be discussed 

in Section 6.4.2. 
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Table 6.5 Selection of best-split ratio for datasets with varying temporal resolutions based on 

multiple linear regression. 

Dataset Split Ratio 
Performance Evaluation on Testing Dataset 

MAE RMSE R2 

Hourly 

70/30 60.76 79.37 0.56 

75/25 60.52 79.12 0.56 

80/20 60.75 79.63 0.55 

Daily 

70/30 39.58 50.85 0.73 

75/25 39.58 50.51 0.73 

80/20 39.67 50.57 0.72 

Weekly 

70/30 30.89 41.26 0.77 

75/25 30.00 36.15 0.82 

80/20 28.61 34.29 0.85 

Monthly 

70/30 32.54 40.91 0.79 

75/25 36.83 44.40 0.75 

80/20 37.78 46.27 0.73 

 

6.4.2. Selection of best model at varying temporal resolutions 

Section 6.4.1 selected the four best training/testing ratios for splitting hourly, daily, weekly, and 

monthly data. With these split ratios, five more complex models were constructed for each 

temporal resolution to attain potentially higher prediction accuracy, including AdaBoost, GBR, 

XGBoost, RF, and SVR. MLR, as a simple linear model, was also employed to be compared with 

these five nonlinear models. Table 6.6 lists the performance evaluation and comparison of six ML 

models based on training and testing datasets at varying temporal resolutions. 
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As presented in Table 6.6, for the testing dataset, the GBR model showed the highest R2 (0.65) 

and the smallest MAE (53.49) and RMSE (70.15) among the six models built on the hourly data. 

Therefore, GBR was the best model for predicting hourly truck productivity. In particular, GBR 

(RMSE = 70.15) was superior to MLR (RMSE = 79.12), indicating a complex nonlinear 

relationship between the hourly truck productivity and its input variables (Fan et al., 2023b). This 

applies to the models built on the daily data: all the nonlinear models outperformed MLR in 

forecasting daily truck productivity. For example, the RMSE of AdaBoost, GBR, XGBoost, RF, 

and SVR was 50.10, 49.15, 47.30, 48.57, and 45.50, while that of MLR was 50.51. Among them, 

SVR was the best model for forecasting daily truck productivity due to its highest R2 (0.78) and 

lowest MAE (34.29) and RMSE (45.50). Moreover, for the models established on the weekly data, 

SVR (RMSE = 33.83) outperformed MLR (RMSE = 34.29) slightly, but all the tree-based models 

(e.g., GBR with RMSE = 46.92) underperformed MLR. This suggested that the relationship 

between the weekly truck productivity and its input variables was more nearly linear (Fan et al., 

2023d). This was more pronounced in the models trained on the monthly data. Among the six 

models, the five nonlinear models showed overfitting problems; these models performed much 

better on the training dataset than on the testing dataset (Tien Bui et al., 2019). For instance, the 

MAE, RMSE, and R2 of SVR were 17.01, 23.25, and 0.91 on the monthly training dataset; 

conversely, these performance indicators were 35.00, 41.59, and 0.78 on the monthly testing 

dataset. Compared with these nonlinear models, MLR performed relatively well, with less 

overfitting in estimating monthly truck productivity. As a result, MLR was selected as the best 

model for the monthly data. From the hourly to the monthly resolutions, it can be observed that 

the nonlinear relationship between truck productivity and its input variables progressively 

diminished. This can be attributed to two reasons: (1) The aggregation (e.g., the averaged data at 
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varying temporal resolutions in this study) of hourly data into monthly data reduces variability and 

noise, thus smoothing out short-term fluctuations in hourly data (Bodesheim et al., 2018). For 

example, from the hourly to monthly data, the standard deviations of almost all variables decreased 

(e.g., the humidity dropped from 17.48% to 9.09%), as shown in Tables 6.1-6.4. (2) The weather-

related input variables exhibit seasonal and periodic patterns, which may contribute to more linear 

behavior at the monthly level (Nourani et al., 2019). For instance, ambient temperature and 

precipitation in Northern Alberta have a significant increase from May to August each year (Ma 

et al., 2023; MEP, 2023). Similar results were reported by Yuval and Hsieh (2002), who found 

that the RMSE values for the nonlinear and linear models were 0.93 and 1.06 at the daily 

resolution, 0.44 and 0.48 at the weekly resolution, and 0.24 and 0.25 at the monthly resolution 

when simulating precipitation on the British Columbia coast. From the daily to monthly 

resolutions, the performance of the two models became closer, indicating that the input-output 

relationship degenerated from a nonlinear to linear regression. 

Furthermore, Table 6.7 lists the optimal hyperparameters for these best models (hourly-GBR, 

daily-SVR, and weekly-SVR) except MLR (no hyperparameters). Also, Figure 6.6 displays the 

scatter plots and residual errors of the predicted results (vertical) and actual values (horizontal) 

from these best models at varying temporal resolutions. As shown in Figure 6.6, the weekly-SVR 

model had a higher R2 (0.85) than the hourly-GBR (0.65), daily-SVR (0.78), and weekly-SVR 

(0.79) models. This implies that mining engineers can make more accurate estimates of truck 

productivity at the weekly resolution compared with other resolutions, leading to more rational 

decision-making and planning in the week-to-week operations at mine sites. This is comparable to 

Ma et al. (2019) and Singh and Yassine (2018). Ma et al. (2019) built eight prediction models at 

three temporal resolutions to improve the prediction accuracy of air quality. The results observed 
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that the proposed model built at the weekly (RMSE = 7.23) level was more accurate than those at 

the hourly (RMSE = 8.04) and daily (RMSE = 9.69) levels due to the reduction in the data variance. 

Closely, Singh and Yassine (2018) explored the influence of temporal resolutions on household 

energy consumption forecasting. They found that the proposed model achieved the highest 

accuracy at the hourly (81.89%) data instead of the daily (75.88%), weekly (79.23%), and monthly 

(74.74%) data. To encapsulate, GBR, SVR, SVR, and MLR were chosen as the best prediction 

models for hourly, daily, weekly, and monthly resolutions. These models were also the basis for 

the SHAP analysis (impact of input variables on model output, one- and two-way partial 

dependence plots, and feature importance), which will be discussed in Sections 6.4.3 and 6.4.4. 
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Table 6.6 Performance evaluation and comparison of ML models based on the training and testing 

datasets. 

Data Model 

Performance Evaluation 

Time (s) MAE RMSE R2 

Train Test Train Test Train Test 

Hourly 

AdaBoost 54.22 56.94 67.45 73.61 0.68 0.62 865.25 

GBR 50.53 53.49 65.32 70.15 0.70 0.65 1,434.07 

XGBoost 50.70 54.19 65.67 70.93 0.70 0.64 326.52 

RF 51.89 55.40 67.84 72.86 0.68 0.62 2,565.19 

SVR 54.43 54.61 72.16 71.83 0.64 0.63 8,580.23 

MLR 60.96 60.52 79.63 79.12 0.56 0.56 0.02 

Daily 

AdaBoost 40.44 39.68 49.91 50.10 0.75 0.73 100.33 

GBR 37.11 38.69 47.16 49.15 0.78 0.74 76.45 

XGBoost 34.45 37.18 44.19 47.30 0.80 0.76 47.49 

RF 36.04 37.38 46.15 48.57 0.79 0.75 162.02 

SVR 32.19 34.29 43.74 45.50 0.81 0.78 235.76 

MLR 41.22 39.58 53.08 50.51 0.72 0.73 0.01 

Weekly 

AdaBoost 31.24 32.58 36.37 42.50 0.85 0.77 55.67 

GBR 33.93 36.65 43.35 46.92 0.81 0.76 88.40 

XGBoost 29.11 32.19 40.85 44.85 0.81 0.74 35.97 

RF 31.97 31.45 40.83 44.27 0.81 0.75 43.44 

SVR 25.13 26.59 35.39 33.83 0.86 0.85 124.24 

MLR 34.32 28.61 43.65 34.29 0.78 0.85 <0.01 

Monthly 

AdaBoost 10.89 44.50 13.72 54.61 0.97 0.62 48.71 

GBR 2.98 36.11 4.67 47.98 0.99 0.71 28.72 

XGBoost 6.53 40.61 9.12 49.58 0.99 0.69 34.65 

RF 16.41 44.79 19.90 53.98 0.94 0.63 34.36 

SVR 17.04 35.00 23.25 41.59 0.91 0.78 44.76 

MLR 21.85 32.54 27.04 40.91 0.88 0.79 <0.01 
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Figure 6.6 Scatter plots and residual plots of the best models at varying dataset resolutions, 

including (a) Hourly-GBR model, (b) Daily-SVR model, (c) Weekly-SVR model, and (d) 

Monthly-MLR model. 
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Table 6.7 Optimal hyperparameters of the best models at varying temporal resolutions.  

Dataset Model Hyperparameter Optimal Value 

Hourly GBR 

max_depth 7 

learning_rate 0.13 

min_samples_split 10 

min_samples_leaf 2 

n_estimators 261 

Daily SVR 

C 267.41 

gamma 2.62 

epsilon 10 

Weekly SVR 

C 1000 

gamma 0.35 

epsilon 0.001 

 

6.4.3. Feature importance analysis at varying temporal resolutions 

In this study, the SHAP method was utilized to gain an in-depth understanding of how input 

variables affect the model (i.e., the hourly-GBR, daily-SVR, weekly-SVR, and monthly-MLR 

models) output and to pinpoint the most influential input variables at varying temporal resolutions 

(Djandja et al., 2023). The results of the SHAP analysis are presented in Figures 6.7-6.9. Figure 

6.7 shows the qualitative analysis of the input variables’ influence on the hourly, daily, weekly, 

and monthly truck productivity in the four models. To further understand the exact relationships 

between each input and the prediction, the SHAP partial dependence plots (PDPs) are displayed 

in Figure 6.8. Finally, Figure 6.9 gives the quantitative analysis of input variables’ importance 

ranking at varying temporal resolutions.  
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As shown in Figure 6.7, the y-axis indicates the input variables; the x-axis denotes the SHAP 

values. Each dot in the summary plot designates a SHAP value (each data point’s prediction minus 

the average prediction of all data points) for an input variable and a data point in the training 

dataset. The dot’s color represents the input variable’s value for that data point, from low (blue) to 

high (red). Remarkably, the vertical line (zero SHAP value) on the x-axis indicates the average 

prediction of truck productivity. On this basis, a negative SHAP value suggests that an input 

variable’s effect leads to a lower prediction than the average, while a positive SHAP value means 

that its effect contributes to a higher prediction than the average. Using the hourly-GBR model in 

Figure 6.7(a) as an example, the longer the haul distance (red dots), the greater the negative SHAP 

value; reversely (blue dots), the larger the positive SHAP value. This indicates that haul distance 

had a negative relationship with truck productivity. Cervantes et al. (2019) also showed that truck 

productivity decreased with increasing haul distance based on Canada's oil sands company 

database. Likewise, in Figure 6.7(a), ambient temperature, number of trucks, humidity, wind 

speed, and precipitation negatively correlate with truck productivity. A larger number of trucks at 

mine sites causes an increase in the waiting time (e.g., waiting time at shovels or dumps), resulting 

in a longer cycle time and lower truck productivity (Anani & Awuah-Offei, 2013; Fan et al., 

2023b). Weather-related input variables may affect drivers’ vision (Sun et al., 2018), driving habits 

(Sagberg et al., 2015), and road conditions (Medinac et al., 2020), thus increasing cycle time and 

reducing truck productivity. Unlike these inputs, empty speed and number of shovels positively 

influence truck productivity. Empty speed determines the time it takes for a truck to return from 

dump sites to load sites, which can affect cycle time (Fan et al., 2022). Also, increasing the number 

of shovels improves shovel utilization and reduces the waiting time at shovels, thus enhancing 

truck productivity (Ercelebi & Bascetin, 2009). These first indications (the negative and positive 
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relationships) between inputs and the output also apply to the daily-SVR, weekly-SVR, and 

monthly-MLR models in Figure 6.7(b)-(d).  

In addition to the first indications, SHAP offered the one-way PDPs to observe the functional 

relationship (linear, monotonic, or complex nonlinear) between one input variable and the 

prediction. As shown in Figure 6.8(a)-(d), the truck haulage-related input variables in the hourly-

GBR model are used as examples due to the largest amount of data encompassing rich information 

in the hourly dataset (47,777 data points). The PDPs for the weather-related input variables will 

be explained in Section 6.4.4 separately. In Figure 6.8(a), the predicted truck productivity (average 

prediction of truck productivity plus SHAP value) drops at a decreasing rate as haul distance rises 

from 0 to about 4.7 km (turning point), but the predictions are still higher than the average 

prediction (indicating by red dashed line). When haul distance continues to increase, the predicted 

truck productivity is always less than the average prediction. In contrast to the monotonic decrease 

in the prediction and haul distance, Figure 6.8(b) shows a monotonic increase in the prediction and 

empty speed. Notably, when empty speed is above about 34 km/h (turning point), the predicted 

truck productivity is greater than the average prediction. Unlike these two inputs, the number of 

trucks shows a complex nonlinear relationship with the predicted truck productivity in Figure 

6.8(c). The predicted truck productivity presents two peaks (truck numbers around 8 and 20). This 

may be attributed to the change in truck-shovel allocation and the increase in shovel numbers 

(Bakhtavar & Mahmoudi, 2020). However, the predicted truck productivity decreases and falls 

below the average prediction when more than 20 trucks (turning point) are scheduled per hour. 

Figure 6.8(d) also presents a nonlinear relationship between the number of shovels and the 

predicted truck productivity. When the number of shovels exceeds four (turning point) per hour, 

the prediction is over the average prediction and gradually tends to level off. This study is akin to 
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Li (2022); Mangalathu et al. (2022); Ransom et al. (2022), who adopted one-way PDPs to analyze 

the individual effects of input variables on prediction; however, it is still challenging to quantify 

the importance ranking of input variables through PDPs. 

The SHAP method can quantify feature importance by averaging the absolute SHAP values of 

each input variable. As shown in Figure 6.9(a)-(d), the x-axis is the average of the absolute SHAP 

values representing the feature importance; the y-axis is the input variables in descending order of 

importance. The feature importance in Figure 6.9(d) based on the monthly-MLR model was not 

adopted in this study because the model had an overfitting problem that prevented it from 

providing reliable results. From Figure 6.9(a)-(c), regardless of the temporal resolutions, the three 

most critical input variables were haul distance, empty speed, and ambient temperature. For 

instance, for the daily-SVR model, these three inputs’ importance (mean absolute SHAP value) 

were 44.23, 41.99, 21.72, which was higher than that of number of trucks (10.65), humidity (4.66), 

number of shovels (3.98), wind speed (2.92), precipitation (1.40). This echoes our previous studies 

(Fan et al., 2022, 2023b, 2023d). This is mainly because these three inputs are closely related to 

truck cycle time. For instance, it was reported by Ma et al. (2023) that high ambient temperature 

(e.g., from 20 ℃ to 40 ℃) induced the increase in truck tire temperature (e.g., from 54 ℃ to 69 

℃), leading to tire fatigue and affecting truck cycle time. Moreover, it can be observed that the 

importance of the four weather-related input variables (highlighted by the red lines in Figure 6.9) 

increased as decreasing temporal resolutions: hourly (27.47) < daily (30.70) < weekly (34.89). 

This may be associated with data aggregation. First, this study averaged the data at hourly, daily, 

and weekly resolutions to smooth out noise and short-term fluctuations, resulting in more 

pronounced and influential trends and patterns in weather variables over longer time periods 

(Bodesheim et al., 2018; Nourani et al., 2019). For example, for the hourly and weekly models, 
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the importance of ambient temperature, humidity, and wind speed increased from 21.73 to 23.92, 

3.76 to 4.52, and 1.02 to 5.09, respectively. Second, precipitation has a cumulative effect over a 

long time period (Wen et al., 2019). Total precipitation during a week (e.g., maximum 85.30 mm 

in Table 6.3) can have a more substantial effect on road conditions and driving habits than an hour 

(e.g., maximum 14.10 mm in Table 6.1) (Xing et al., 2019). As a result, the importance of 

precipitation enhanced from 0.96 (hourly) to 1.36 (weekly). Similarly, Webb et al. (2003) built 

regression models between ambient temperature and water temperature of the River Exe at varying 

temporal resolutions (e.g., hourly, daily, and weekly). The results showed that the influence 

(explainable variance in percentage) of ambient temperature rose from hourly (67.4%) to daily 

(84.2%) and weekly (92.2%) incrementally. 

 

Figure 6.7 SHAP summary plots of ten input variables and their instances’ impacts on the model 

output.  
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Figure 6.8 Relationships between the truck haulage-related input variables and SHAP values 

represented by one-way partial dependence plots (PDP) from the SHAP analysis based on the 

hourly-GBR model. 
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Figure 6.9 Feature importance analysis for four prediction models at varying temporal resolutions: 

(a) hourly-GBR; (b) daily-SVR; (c) weekly-SVR, and (d) monthly-MLR. The feature importance 

of the monthly-MLR model was not adopted in this study because this model had an overfitting 

problem that prevented it from providing reliable results. 

6.4.4. Effect of extreme weather on truck productivity and truck-shovel allocation 

In the last section, the one-way PDPs (Figure 6.8) were utilized to observe the individual 

relationships between the prediction and the truck haulage-related input variables. Unlike the one-

way PDPs, the SHAP method can also offer two-way PDPs, which show the interactive 

relationships between two input variables and the prediction (Djandja et al., 2023). To provide 

insight into the truck-shovel allocation in extreme weather, this section used two-way PDPs to 

describe the interactions between the prediction and the weather-related input variables and the 

number of trucks (or shovels), as shown in Figures 6.10 and 6.11. 
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In Figures 6.10 and 6.11, the x-axis is the weather variables; the left and right y-axes are the SHAP 

values and the number of trucks (or shovels), respectively. The zero SHAP value (red dashed line) 

on the y-axis indicates the average prediction of truck productivity. The number of trucks (or 

shovels) is denoted by the color bar, ranging from minor (blue) to major (red). The yellowish 

overlay area in each plot represents the hourly weather extremes defined with reference to the 

Manual of Surface Weather Observation Standards (MANOBS, 2021) and Lou et al. (2017); 

Masud et al. (2021); Wheeler and Wilkinson (2004). For example, it is considered heavy rain when 

more than 8 mm of precipitation falls per hour. As shown in Figure 6.10(a), the predicted truck 

productivity (average prediction plus SHAP value) rises (below -12 ℃) and then drops (above -

12 ℃) with ambient temperature. In other words, the predicted truck productivity reaches the 

maximum of around -12 ℃, which is in line with OSM (2021), indicating the optimal mining 

temperature is about -10 ℃ at oil sands mines in Alberta. At the extreme temperature, the predicted 

truck productivity declines dramatically from -30 ℃ to -40 ℃ and 30 ℃ to 40 ℃, but the 

correlation between the number of trucks and the prediction is not significant. In Figure 6.10(b), 

when the relative humidity (in percentage) is lower than 25%, the red dots are more distributed 

above the average prediction than the blue dots, suggesting that allocating more trucks can improve 

truck productivity in the arid working environment. For high relative humidity (>80%), the 

predicted truck productivity drops from the average prediction. This may be because road 

conditions (dryness or wetness) are related to relative humidity (Silion & Foşalău, 2014). After 

relative humidity, Figure 6.10(c) shows a complex nonlinear relationship between the predicted 

truck productivity and wind speed. For the extreme wind speed (>90 km/h), the blue dots are 

located further above the average prediction relative to the red dots, indicating that lowering the 

number of trucks in stormy weather may enhance truck productivity. This is attributed to the fact 
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that storms can affect driving visibility (Choi & Nieto, 2011). Finally, Figure 6.10(d) displays that 

the predicted truck productivity almost decreases to a greater or lesser extent (below the average 

prediction), regardless of the precipitation. Under extreme precipitation (>8 mm/h), the red dots 

are below but closer to the average prediction, which implies that increasing the number of trucks 

during heavy rainfall can mitigate the decrease in truck productivity. These observations also apply 

to the interactions between the prediction and the weather variables and the number of shovels in 

Figure 6.11. Similar research was found by Ramhormozi et al. (2022) and Roh et al. (2016), who 

investigated the effect of extreme weather conditions on truck speed prediction and truck traffic 

volume. For example, Roh et al. (2016) demonstrated that when the cold ambient temperature (-

20 ℃ or lower) interacted with snowfall, truck traffic fell sharply as snowfall increased (15 cm or 

higher). In brief, there were complex nonlinear relationships between the prediction and the 

weather-related input variables. Extreme weather, such as extreme wind speed, relative humidity, 

and precipitation, had a certain effect on truck-shovel allocation. This study is the first to use data-

driven models and methods to investigate truck-shovel allocations in extreme weather, which 

provides new insights into mine planning for mining engineers. 
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Figure 6.10 The interaction between the prediction (hourly truck productivity) and the weather-

related input variables and truck allocation represented by two-way partial dependence plots. 
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Figure 6.11 The interaction between the prediction (hourly truck productivity) and the weather-

related input variables and shovel allocation represented by two-way partial dependence plots. 

6.5. Graphical User Interface for Truck Productivity Prediction 

To facilitate access to the solutions of this study by site engineers and researchers, a unified GUI 

was developed based on the best prediction models retained from Section 6.4.2, which is illustrated 

in Figure 6.12. This GUI consists of four essential parts: GUI title, analysis modes, input data, and 

predict button. The GUI title shows the functional purpose (truck productivity prediction) and the 

current version (version 1.0). The analysis mode contains four radio buttons: Hour, Day, Week, 

and Month, indicating the well-established models (hourly-GBR, daily-SVR, weekly-SVR, and 

monthly-MLR models) for predicting average truck productivity per hour, day, week, and month, 

respectively. The input data lists eight blank input variables that require the users to enter the 
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numerical values manually. These eight inputs include four truck haulage-related inputs (haul 

distance, number of trucks, number of shovels, and empty speed) and four weather-related inputs 

(ambient temperature, humidity, precipitation, and wind speed). Finally, the predict button gives 

the predicted results rapidly based on the input data. The prediction fails when there are blank 

entries or incorrect (e.g., 9,999 km for haul distance) and invalid (e.g., 34.55 for the number of 

trucks) entries. The entire GUI framework was generated using a Tkinter package (Moore, 2021) 

and implemented in a Python-based programming environment (version 3.10.9). To conclude, this 

is the first study to provide a GUI for predicting mining truck productivity at varying temporal 

resolutions. This GUI can alleviate the need for complex modeling analysis and intensive 

computation, which will be instrumental in making decisions more easily and quickly for mining 

engineers and researchers. 
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Figure 6.12 The GUI for assessing hourly, daily, weekly, and monthly truck productivity. (“###”: 

the input information is not disclosed as it is the proprietary property of mining companies.) 

6.6. Limitations and Future Prospective 

This study explored the influence of temporal resolutions on modeling, analyzed the contribution 

of input variables to the model output, and developed a simple and easy-to-use GUI for mining 

engineers. Nevertheless, this study has the following limitations that require further future work to 

improve it. First, both nonlinear and linear models suffered from overfitting problems when 

selecting the best model for the monthly data. For example, the R2 of SVR was 0.91 on the training 

data but 0.71 on the testing data. To reduce overfitting, more data points need to be included in the 

training dataset (Arachchilage et al., 2023). Second, the GUI is required to be further upgraded 
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and optimized in future studies. As more data come, the models in the GUI will be updated to 

improve prediction accuracy and avoid overfitting. Moreover, the GUI will include additional 

features, such as reading tabulated data without manual input, plotting, and automatically 

analyzing the relationships between variables and outputs. Third, more input variables are taken 

into account in the modeling when data avail, such as tire temperature (Ma et al., 2023), solar 

radiation (Modenese et al., 2018), snowfall (Fan et al., 2023c), and road elevation (Medinac et al., 

2020). These variables may influence truck cycle time and truck productivity. For example, Ma et 

al. (2023) reported that an increase in tire temperature leads to rubber failure, decreasing truck tire 

performance and affecting truck cycle time.  

6.7. Conclusions 

Data-driven modeling (i.e., machine learning) has been initiated as a new direction for assessing 

mine truck productivity. This study used six machine learning methods to establish prediction 

models between eight input variables and truck productivity and explored the temporal effects (i.e., 

hourly, daily, weekly, and monthly) on the selection of the best models. Furthermore, SHAP 

(Shapley Additive exPlanations) was utilized as a model interpretation method to analyze how the 

input variables affect the model output and to identify the most influential inputs. The principal 

findings are summarized below: 

(1) The nonlinear relationship between input variables and truck productivity progressively 

diminished with decreasing temporal resolutions (i.e., from hourly to monthly). For example, 

regarding RMSE on the testing datasets, the nonlinear GBR (70.15) performed better than the 

linear MLR (79.12) at the hourly resolution. At the daily resolution, GBR (49.15) performed 

close to but still better than MLR (50.51). However, GBR (46.92) underperformed MLR 

(34.29) at the weekly resolutions and showed more significant overfitting than MLR at the 
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monthly resolution.  

(2) Mining engineers can make more accurate predictions of truck productivity at the weekly 

resolution compared with other resolutions. This study selected the four best models: hourly-

GBR, daily-SVR, weekly-SVR, and monthly-MLR models. For these models, the weekly-SVR 

model had a higher R2 (0.85) than the hourly-GBR (0.65), daily-SVR (0.78), and weekly-SVR 

(0.79) models.  

(3) Regardless of the temporal resolutions, the three most influential input variables were haul 

distance, empty speed, and ambient temperature. For instance, for the daily-SVR model, the 

importance (i.e., mean absolute SHAP value) of these three variables were 44.23, 41.99, 21.72, 

which was higher than that of the number of trucks (10.65), humidity (4.66), number of shovels 

(3.98), wind speed (2.92), and precipitation (1.40). 

(4) The feature importance of the four weather-related input variables increased as decreasing 

temporal resolutions. For example, at the hourly and weekly resolutions, ambient temperature, 

humidity, wind speed, and precipitation’s importance rose from 21.73 to 23.92, 3.76 to 4.52, 

1.02 to 5.09, and 0.96 to 1.36, respectively. In addition, the importance sum of these input 

variables escalated on hourly (27.24), daily (30.70), and weekly resolutions (34.89). 

(5) Extreme weather, such as extreme wind speed, precipitation, and relative humidity, had a 

certain effect on truck-shovel allocation at mine sites. For instance, under extreme precipitation 

(>8 mm/h), increasing the number of trucks during heavy rainfall can mitigate the decrease in 

truck productivity. This study is the first to investigate truck-shovel allocations in extreme 

weather, which provides new insights into mine planning for mining engineers. 

(6) A unified GUI was designed and developed for the first time to predict hourly, daily, weekly, 
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and monthly truck productivity at mine sites. This GUI can alleviate the need for complex 

modeling analysis and intensive computation, which will be instrumental in making decisions 

more easily and quickly for mining engineers and researchers. 
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Chapter 7. Conclusion and future work 

7.1. Conclusions 

Overall, this thesis aims to apply machine learning techniques to improving truck productivity 

prediction accuracy at mine sites. In particular, this thesis focuses on developing a unified toolkit 

for truck productivity prediction in oil sands mining, which consists of various machine learning 

models built based on massive truck haulage data at varying temporal resolutions (e.g., per cycle, 

hour, day, week, and month). The findings will help mine management better understand and 

predict truck productivity for hauling efficiency improvement, strategic decision making, and cost 

reductions in oil sands mining. The main concluding remarks of this thesis are enumerated as 

follows: 

(1) GMM significantly enhanced the model predictability of truck productivity by preprocessing 

massive truck haulage data and performed better than K-means. For example, the R2 of the 

GMM-GBR model (86.98%) was about two times higher than the GBR model (44.76%). 

Moreover, in terms of XGBoost, the R2 of the model was much greater based on GMM analysis 

(80.37%) compared with K-means analysis (33.06%). This information can provide new 

insights and inspiration for engineers to deal with massive amounts of engineering data in their 

future work. 

(2) The tree-based ensemble models performed better than the single DT models in predicting 

truck productivity without and with GMM analysis. For instance, without GMM analysis, the 

R2 of the RF model was 44.05%, which was higher than that of the decision tree model (the 

DT model), with a value of 31.96%. With GMM analysis, the R2 of the GMM-RF model 

(87.16%) remained higher than the GMM-DT model (78.99%).  
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(3) The BRNN model outperformed the BPNN and ELM models in predicting low, medium, and 

high values of truck productivity. For example, the RMSE, MAE, and R2 were 45.94, 38.98, 

and 85.20% for the BRNN model, while these metrics were 47.19, 39.76, and 84.39% for the 

BPNN model, and 46.25, 39.21, and 85.01% for the ELM model.  

(4) Haul distance contributed the most in constructing linear and nonlinear prediction models of 

truck productivity when temporal resolutions were not considered. For example, for the MLR 

model, the relative importance of the haul distance was 54.65%, which was higher than that of 

empty speed (23.14%), destination (6.22%), ambient temperature (13.82%), and precipitation 

(2.18%). As for the RF model, the relative importance of haul distance was 43.51%, which 

was higher than empty speed (21.77%), waiting at shovel (18.18%), ambient temperature 

(12.71%), destination (2.29%), spotting (1.03%), and waiting at dump (0.52%). This finding 

helps mining engineers gain an in-depth understanding of the major real-world influences on 

truck productivity. 

(5) When considering temporal resolutions (e.g., daily and weekly), the three most influential 

input variables were haul distance, empty speed, and ambient temperature regardless of the 

resolutions. For instance, for the daily-SVR model, 44.23, 41.99, 21.72, which was higher than 

that of the number of trucks (10.65), humidity (4.66), number of shovels (3.98), wind speed 

(2.92), and precipitation (1.40). Similarly, for the weekly-SVR model, the importance of these 

three variables were 48.43, 51.07, 23.92, which was greater than that of the number of trucks 

(10.54), wind speed (5.09), humidity (4.52), number of shovels (2.13), and precipitation (1.36). 

(6) Mining engineers can make more accurate predictions of truck productivity at the weekly 

resolution compared with other resolutions. This study selected the four best prediction models 
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for varying temporal resolutions: hourly-GBR, daily-SVR, weekly-SVR, and monthly-MLR 

models. For these models, the weekly-SVR model had a higher R2 (0.85) than the hourly-GBR 

(0.65), daily-SVR (0.78), and weekly-SVR (0.79) models. This helps more rational decision-

making and planning in the week-to-week operations at mine sites. 

(7) Extreme weather, such as extreme wind speed, precipitation, and relative humidity, had a 

certain effect on truck-shovel allocation at mine sites. For example, under extreme precipitation 

(>8 mm/h), increasing the number of trucks during heavy rainfall can mitigate the decrease in 

truck productivity. This research is the first to investigate truck-shovel allocations in extreme 

weather, which provides new insights into mine planning for mining engineers. 

(8) A unified GUI was designed and developed for the first time to predict truck productivity at 

varying temporal resolutions. This GUI is easy to use and consists of four basic modes: hour, 

day, week, and month, which correspond to the well-established models (i.e., hourly-GBR, 

daily-SVR, weekly-SVR, and monthly-MLR models) for predicting average truck productivity 

per hour, day, week, and month, respectively. 

7.2. Key contributions 

The findings from this thesis are significant for mining engineers and researchers in the resource 

industry. The key contributions of this Ph.D. research are summarized below: 

(1) For the first time, unique and massive truck haulage data from the VIMS were used as training 

data for machine learning to build truck productivity prediction models at mine sites. This will 

benefit mining engineers and researchers better understand the dynamic and complex process 

of truck haulage under real-site operating conditions, thus estimating truck productivity more 

accurately.  
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(2) This study first proposed the use of GMM unsupervised clustering to preprocess massive truck 

haulage data for improving the model predictability. Truck haulage data usually present multi-

peak Gaussian distributions, which is the rationale of selecting GMM to handle truck haulage 

data. This also implies that this study provides a potential solution to deal with massive data 

with multi-peak Gaussian distributions from similar engineering problems.  

(3) For the first time, machine learning techniques were employed to construct accurate regression 

models of truck productivity. These machine learning models can replace the traditional curve-

fitting approach in oil sands mining companies to obtain more accurate predictions. Meanwhile, 

the experience associated with the application of machine learning can also be extended to 

other open-pit mines using truck haulage.  

(4) This study innovatively investigated the effect of temporal resolutions on establishing truck 

productivity prediction models in open-pit mining. Real-site weather conditions are often seen 

as variables affecting truck productivity, but temporal resolutions of weather conditions have 

not been considered in previous studies. Understanding the effect of temporal resolutions will 

benefit mining engineers in making more sound forecasts as well as short- and long-term mine 

planning. 

(5) This study was the first to analyze the influence of extreme weather on truck-shovel allocation 

in open-pit mining. Truck-shovel scheduling is a core issue at mine sites as it is associated with 

a mine’s production, profit, and expenditure. Numerous previous studies have been conducted 

to optimize truck-shovel allocation, but truck-shovel allocation under extreme weather has not 

been investigated. With global warming and more frequent extreme weather, this investigation 

is critical because the impact of weather conditions is becoming more pronounced. This study 
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used machine learning techniques to analyze this notable engineering problem, which provides 

mining engineers with new insights into mine planning. 

(6) This study is the first one that crafted a unified GUI to estimate truck productivity at varying 

temporal resolutions. This GUI is a successful example of machine learning committing to real 

impacts in mining engineering. It significantly alleviates the need for complex modeling 

analysis and intensive computation, which will be instrumental in making decisions more 

easily and quickly for mining engineers and researchers.  

7.3. Limitations and future work 

This thesis has developed a toolkit based on machine learning and massive truck haulage data for 

improving truck productivity prediction, but there are still some limitations as listed below. 

(1) In this study, restrained by data availability and proprietorship, only the data acquired from the 

VIMS and Environmental Canada were utilized to train truck productivity prediction models. 

Therefore, additional input variables that have not been involved may affect truck productivity, 

such as truck tire properties (Ma et al., 2023), loaded speed (Fan et al., 2023b), and pavement 

elevation (Chanda & Gardiner, 2010), and driver habits (Sun et al., 2018). For example, Ma et 

al. (2021) reported that high tire temperatures could cause rubber failure of the off-the-road 

tire at mine sites, thus affecting truck productivity. These potential influencing inputs may be 

added to future work to construct truck productivity prediction models at mine sites. 

(2) This study mainly utilized a grid search and a sequential model-based optimization algorithm 

to tune the hyperparameters built in machine learning algorithms. However, there are various 

optimization algorithms that have been proven helpful in tuning hyperparameters, such as  

genetic optimization (Chung & Shin, 2020), whale optimization (Ge et al., 2022), and particle 
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swarm optimization (Bardhan et al., 2022). Therefore, these optimization algorithms will be 

utilized in future work to enhance the generalizability of the prediction model. 

(3) The GUI is required to be further upgraded and optimized in future studies. As more data come, 

the models in the GUI will be re-trained to improve prediction accuracy and avoid overfitting. 

Moreover, this GUI will include additional functions, such as reading tabulated data without 

manual input, plotting, and automatically analyzing the partial relationships between inputs 

and the output. 

(4) The current machine learning models were established based on large amounts of training data, 

leading to a high computational complexity. When new data comes, these machine learning 

algorithms need to be rerun, which takes a lot of time and memory. Online machine learning 

may be the solution to address this challenge, as its only necessary to process a small batch of 

data and keep prediction models updated when new data arrive (Carvajal Soto et al., 2019). 

This ensures the accuracy of prediction models and reduces the need for PC memory. 

(5) Commonly used machine learning algorithms were employed in this study to deal with the 

regression problem. Some more advanced algorithms have yet to be used in open-pit mining 

or other related fields, such as deep neural networks (Yuan et al., 2021), reinforcement learning 

(Marugán, 2023), transfer learning (Ma et al., 2019), and image processing algorithms (Jing et 

al., 2022). These methods have great potential to cope with different types, distributions, and 

variability of data and increase the generalization ability of prediction models. In the future, 

there are many more research efforts to develop intelligent mining using these algorithms. 
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