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ABSTRACT

A first order non—confirming numerical method for fluid flow problems with
a three—point exponential interpolation has been developed. The flow problem is
decnupled into multiple one—dimensional subproblems and assembled to form the
solution. A fully staggered grid and a conservational domain centered at each node
of interest make the decoupling scheme to be first order accurate. It is shown that
the ordinary upwind (or exponentially weighted upstream) scheme is of zeroth order
accuracy. The pressure is deccupled from the velocity field through the perturbation
method due te Patankar. Thomas algerithm is used to solve the resulting algebraic
equations iterativeiy. In addition, a 2-~dimensional direct solver has been developed
based on block matrix inversior to tackle the difficulty that may arise from the
perturbation of the pressure. The 2—dimensional solver uses less memory storage
than band solvers aad the component matrices are inverted to allow fast solutions.
The numerical advantage of the proposed method is tested for the laminar flows in a
torus and in a square driven cavity.

Steady axially—invariant (fully—developed) incompressible flow of Newtcnian
fluids in helical pipes of constant circular cross—section with arbitrary pitch and
arbitrary radius of coil is studied. A loose coiling analysis leads to two dominant
parameters, ramely Dean number, Dn = Re /X, and Germano number, Gn = Re 7,
wkere Re is the Reynolds number, A is the normalized curvature ratio and 7 is the
normalized torsion. The Germano number is embedded in the body-—centered
azimuthal velocity which appears as a group in the governing equations. When
studying the importance of the Germano number effects on the helical flow of large
Dn, a third dimensionless group is evolved, ¥ = 7//ADn. It is found that v is the
controlling parameter governing the flow pattern transition between one— to two—

vortex flows. For Dn < 20, the group 'y* = Gn Dn-? = n/(ARe) takes the place of «.



Numerical simulations with the full Navier—Stokes equations confirmed the
theoretical findings. It is revealed that the torsion effect on the helical flow can be
neglected when 7 < 0.01 for moderate Dn. The critical value for which the secondary
flow pattern changes from two vortices to one vortex is 7* > 0.039 for Dn < 20 and
7> 0.2 for Dn > 20. For a fixed high Dean number and A flows, increasing the
torsion has the effect of changing the relative position of the secondary flow vortices
and the eventual formation of a flow having a Poiseuille type axial velocity with a
superimposed swirling flow. In the orthogonal coordinate system, the secondary flow
is generally of two vortices with sources and sinks. In the small « limit, it is of the
usual two—vortex. In the large -« limit, it is of a two—vortex type but the orientation
the two vortices turned 90° towards the helical axis. In the intermediate range of 7+,
the secondary flow may have only one (lower) vortex. The flow friction factor is
correlated to account for Dn, ) and « effects for Dn < 5000 and v < 0.1.

The stability of the flow is investigated through parabolized governing
equations. It is found that the four—vortex solution can be observed by a
perturbation of the flow field for v < 0.01 and Dn > 130. However, the four—vortex
solution is not stable and it eventually degenerates to the stable two—vortex flow.

Simultaneous developing laminar flow and heat transfer of Newtonian fluids
in the helical pipes of constant circular cross—section are numerically studied. The
governing equations are fully parabolized Navier—Stokes equations written in the
orthogonal helical coordinate system. They are shown to be a good approximation in
the imiting case of loose coiling.

Numerical simulations of shear rates, axial velocity and Nusselt number
agree well with published data of toroidal flow in the developing region. In the limit
of large torsion, the flow and heat transfer characteristics tend to correspond to the
straight pipe case. Both the hydrodyramic and thermal entrance lengths and the

fully—developed heat transfer Nusselt number are correlated for Dn < 5000.
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Chapter 1.

General Introduction



1.0 Thesis Layout

This study is set to investigate the problem of laminar incompressible
Newtcnian fluid flow and forced convective heat transfer in circular helical pipes of
finite pitch.

Chapter 1 gives a general review and re—examinatior of the related previous
literature studies.

In Chapter 2, a novel numerical method is developed. The new method is
based on a 3—point exponential interpolation scheme. The multi—dimensional flow
problem is subdivided into multiple one—dimensional problems. The resuliting
discrete equations are solved iteratively using & tri—diagonal solver. The toroidal
flow problem and a square driven cavity flow problem are solved in Chapter 2.

Chapter 3 deals with the fully—developed laminar flows in helical pipes of
finite pitch. A loose coiling approximation is performed to single out the dominant
flow parameters. With the numerical simulations, conditions for which the torsion
effect is negligible are investigated. The flow pattern transition from two— to one—
vortex flows is characterized for small Dean number flows.

Chapter 4 is a continuation of Chapter 3. The curvaiure ratio and torsion
effect are examined. The flow pattern transition is characterized for large Dean
number flows. The stability of the helical flows is also numerically experimented to
look for possible bifurcations. The orthogonal secondary flow strength and the
representation of the secondary flow are addressed. A correlation equation for the
flow friction factor is developed.

In Chapter 5, the simultaneous developing laminar flow and convective heat
transfer of incompressible Newtonian fluids in helical pipes with a uniform wall
temperature is studied. The parabolization of the governing equations is derived.

Correlations for the fully—developed peripherally averaged Nusselt number and the



hydrodynamic and thermal developing lengths are presented.
Chapter 6 gives a short summary and general conclusions to this study. Some
recommendations are also giver for possible future studies on this subject.

A detailed derivation of the governing equations is given in the Appendix.



1.i Numerical Methods in Fluid Dynamics

The convergence of a numerical scheme is often mistaken by one’s ability to
obtain a solution from the numerical analysis without any concern over the quality
of the solution. A convergent numerical scheme is defined as a scheme in which all
values of the numerical solution approach the exact differential equation solution as
the mesh size approaches zero. This definition stresses that the limit behavior is the
limit of the whole solution of the differential equation, not merely the individual
terms of the equation. Hence apart from the ability to obtain a solution, the
numerical discretization must be consistent.

Consistency is defined as the limit behavior of the discrete equation used in a
numerical scheme to approach the governing differential equation as the mesh size

’ épproaches zero. All the standard discretizations such as central difference, standard
finite element, spectral method, etc. are consistent.

Stability is defined by O’Brien, et al. (1950) and Eddy (1949) in terms of the
growth or decay of roundoff errors. This definition tells us that if a numerical
scheme is stable, then the roundoff error will not grow. Lax & Richtmyer (1956)
define the stability in a more general sense by requiring a bounded extent to which
any component of the initial data can be amplified in the numerical procedure. For
stability analysis, there is a vast amount of literature available, see Richtmyer &
Morton (1967), Holt (1984), Roache (1985), and Sod (1985). The most commonly
used technique to check the linear stability is the von Neur ' analysis, which
employs discrete Fourier transformation and checks the plification factor.
Stability of a non—linear problem is much more difficult to analyze.

The Lax equivalent theorem for a linear system of equations is of
fundamental importance. It states that, for a consistent finite—difference scheme,

stability is a necessary and a sufficient condition for convergence. Actually, this



theorem can be generalized to any discretizations, hence one may replace ‘“finite
difference” with “numerical . When this theorem applies to a non—linear problem,
however, one must make sure that the problem is well-posed. Even for a linear
problem, one cannot construct a stable discretization for an ill-posed problem.

So far, no definition has been given for a numerical scheme in the text. A
numerical scheme is a mathematical transformation of original continuous problem

into a set of discrete algebraic equations. Consider the differential equation,
Lu=1f, xe (1-1)
with a boundary condition:
Bu=g, x¢€d0 (1—-2)

where 6Q is the boundary of the domain Q and is required to be Lipschitz
continuous. L and B are differential operators.
A numerical discretization with a numerical scheme is generally done by first

forming the following weak form of the original differential equation,

S vt de= f wide (1-3)
Qe ne
and
f q® Bu® ds = f o’g ds (1—4)
NNe MNe
where w® and qh are the weighting functions. u® is the approximated form of u

based on the discretized domain Qe of Q.

A standard finite element method would interpolate both u® and w® in the
same way. When the value of w® at each node on the discretized domain e is set to
be arbitrary, the original problem, equations (1—1) and (1—2), reduces to a set of

algebraic equations involving the values of u® at each node on Qe.



1.1.1 Elliptic Problems and Stability

“Wiggles”, or spatial oscillations in a flow solution, have been encountered in
many works where elliptic problems are treated. Even for a linear elliptic type of
equation, the stability of a particular discretization should also be of concern. This
type of stability problem has been extensively studied for one and two dimensions.
The interested reader is referred to Roache (1985), Leonard (1981 & 1987) and
Neuberger (1987). An illustration is presented here to show the instability of a
boundary value problem with a given numerical discretization. Consider the

“one—dimensional flow” equation with a constant velocity in dimensionless form,

Re @ -G3 =0 (1-5)

where Re is the Reynolds number. The boundary conditions are

$(0) = o, $(1) =1 (1-6)

This is a relatively simple problem, the exact solution can be obtained as

__ .XxRe
o) = S5 (1-7)

Since our purpose here is to show the instability of a numerical scheme, we
discretize equation (1-5) by either a central difference or a standard linear finite
element (Galerkin) method. Both numerical methods can render the following

reduced discrete equation centered at the node i:

EERe($101 — b3-1) — (B0y — 205 + ) = 0 (1)

For simplicity, a uniform mesh is assumed. Ax=1/(N—1), N> 2,

1<i<N, ¢; =§(x;), x; = (i—1) Ax. It is easy to show that equation (1-8) is



consistent with equation (1-5) Ly an order of (Ax)?2, i.e., the discretization is second

order accurate. Let
Pe = Ax Re (1-9)

be the “cell Peclet number ”. Define

*=~Pe 2 (1-10)

¢, =0, ¢, =1 (1-10)

can be solved directly to yield

~ (1-12)
1 —

Equation (1—12) is the “numerical” solution of the problem given by
equations (1-5) and (1-6). By solving the discrete equations (1—8) and (1—11)
analytically, we have avoided the issue of the ability to obtain a solution. From
equation (1-12), we can observe that the ‘numerical” solution is oscillatory when
a<0, i.e,, Pe > 2. The exact solution, equation (1-3), on the other hand, is
monotonic in the entire domain, 0 < x < 1. In this regard, the “numerical” solution
is not the solution of the coriginal problem when Pe > 2.

However, as N - o, equation (1-12) reduces to equation (1-7). It follows that
the schemes are convergent. Since it is not always possible to have a fine enough
grid, this theoretical convergence may be not achievable.

Of course, the effect of spatial varying flow velocity and higher dimensions
may quantitatively change such a stability behavior, but the analysis presented here

can occur in multi—dimensional real flow problems as well, for example, Zhong &



Olson (1989). In particular, “wiggles” are present in the solution of the toroidal flow
problem given by Van de Vosse (1987) and Van de Vosse et al. (1989). Needless to

mention that such a type of instability may cause numeric divergence if a good

solver is not used.

1.1.2 The Navier—Stokes equations

Laminar incompressible fluid flow is governed by the dimensionless

momentum and continuity equations. They are given as

%+ Re u-Vu — V2u = — Vp (1~13)
V-u=0 (1—14)
with
xeN

Re is the flow Reynolds number, u is tke velocity vector, p is the dynamic pressure

and t is the time. The non—dimensionalized variables are defined as follows:

—_u’ __a _ d _Re P’

v=2us V=12 = <> &7 P=720s™

_ t’ _ p<L><U>

t =SSy Re—-p—-—ﬂ——— (1-15)

The primed variables are the corresponding dimensional variables, <U> is the
characteristic velocity scale, <L> is the characteristic length, p is the density of the
fluid, p is the dynamic viscosity.

For the case of steady state, i.e., g—? = 0, the existence and the uniqueness of
solutions of equations (1-13) and (1—14) with a Dirichlet boundary condition for u
have been proven, see Thomasset (1981), Girault & Raviart (1986) and Temam

(1979). The interested reader is referred to the original books for proofs.



We define the trilinear form and the bilinear form as follows:

a,(wyu,v) = Rej(; w; %xu'j v; dx

ao(u,v) = j‘; (-5}?; + —Jl‘) -a}f dx

The combined advection and diffusion operator is
a(w;u,v) = a,(w;u,v) + a,(u,v)
The linear divergence form is defined by
b(n,q) =—f Pigdx
19 B
Define the follc-ring Hilbert Space,
V = {v e LXQ); ov e L(Q); v| ,, = 0}
and its subspace V,C V
Vo ={veV|b(v,q) =0,Vqe Q}

where Q is simply the square integrable space, i.e.,

Q = {q e L} ()}

When the following conditions are met

i) b(v,q) satisfies the inf—sup condition:

3 inf sup —"—-]([——ﬁ—b y > B
B>0 qeQ veV Vilylldiiq

(1-15)

(1—-16)

(1-17)

(1-18)

(1-19)

(1—20)

(1—21)

(1—22)



and ii) a(w;u,v) is V, coercive, i.e.,

3V a(viv,v) 2 aljv]|? (1-23)
a>0 veV, v

then the flow equations (1—13) and (1-14), together with a Dirichlet boundary
condition for u, exist at least one pair of solution (u,p) € VxQ.

When the following condition holds,
iii) Re < Re, (1—24)

then the Navier—Stokes equations have a unique solution. Here Re, is a critical flow
Reynolds number for which a flow bifurcation may occur.

Theoretically, conditions i) and ii) can be shown to be satisfied for a
Dirichlet problem. However, numerically, deliberation must be made to satisfy the
two conditions. For a dynamic problem, a Crank—Nicolson or backward Euler for
the time evolution term will yield a stable scheme by applying any standard
discretization on the rest of the terms. For proofs, see Temam (1979). It seems that
the easy way to check the stability for a nonlinear problem is to use the energy
norm method, i.e., requiring the boundedness of the energy norm to be independent

of the mesh size, Temam (1979).

1.1.3. Velocity—pressure coupling and inf—sup condition

A numerical discretization must satisfy the inf-sup condition in order to
render a stable scheme. If the inf—sup condition is not satisfied, the pressure
solution will contain spurious modes. One such an example has been outlined by
Patankar (1980), as the checkerboard effect.

The inf—sup condition was carefully studied in the past two decades and was

implemented in numerical discretizations. For a finite element method and a

10



spectral method, it is satisfied by choosing different functional spaces for the
velocity and the pressure. The procedure, however, is rather complicated. For stable
elements, the reader is referred to Fortin & Fortin (1985), Arnold et al. (1984),
Raviart (1984), Fortin (1981), Bercovier (1977), Taylor & Hood (1973} and
Crouzeix & Raviart (1973). Some numerical analysts take a different approach by
discretizing the domain and the governing equations and then filter the spurious
pressure modes out after each iteration.

Owing to the simple discretization strategy used for the finite difference and
finite volume methods, one must deal with the inf—sup condition in a way other
than imposing it directly. The fully staggered grid of Welch & Hallow (1965) has
been very successful in this regard. For details on the grid staggering, see Patankar
(1980). The staggered grid technique has also been used in the spectral method as
well. If a non—staggered grid is used, the momentum equations must be used
recursively to assist in the elimination of spurious pressure modes. It is also possible
to simply use an upwind scheme on the pressure discretization to avoid the
checkerboard effect, see Temam (1979). The spurious pressure filtering can also be

applied to these methods.

1.1.4 Upwind and a(w;u,v) coercive

Apart from the inf-sup condition, the tri—and bi—linear forms of a(w;u,v)
must be V,—coercive, i.e., the left—hand—side of the equation (1-13) with g% =0
must be weakly elliptic. Theoretically, this is true for a Dirichlet condition for u, see
Temam (1979). However, numerical discretization with a certered scheme does not
satisfy this condition for large Re. When Re is small or the mesh size is fine enough,
then this condition can be satisfied.

Actually, the coercive condition is the same as the stability condition of

section 1.1.1. What is important is that this condition is required by the

11



Navier—Stokes equation and it is not only a numerical requirement. It makes the
“wiggle—free” stability condition a sufficient condition for the convergence of a
scheme as applied to the Navier—Stokes equation.

There are many upwind schemes in use in the computational fluid dynamics.
One can name a few for the finite element method: they are Petrov—Galerkin
method, artificial viscosity method, streamline diffusion method, see Brooks &
Hugues (1982), Fortin & Thomasset (1979), Girault & Raviart (1982 & 1986),
Thomasset (1981), Glowinski {1984) and Johnson (1987).

For finite difference and finite volume methods, the upwinding schemes are
first order upwind, second order upwind, third order upwind (QUICK), two—point
exponential upwind, exponential weighted with source specification, and the less
commonly used three point exponential without imposing length scale. The reader is
referred to Allen & Southwell (1955), Raithby & Torrance (1974), Patankar (1980),
Leonard (1981 & 1987), Neuberger (1987) and De Henau et al. (1989). The
two—point exponential or exponentially weighted, see Patankar (1980) are
commenly used. All the higher order schemes are subje~s to instability and
divergence, see Leonard (1981 & 1987) and Neuberger (1987). However, the
exponentially weighted scheme is subject to large error due to the source—free
specification. On the other hand, the source term specificztion can only be applied
to one dimensional problems. For multi—dimensional problems, care must be taken

10 use any of the schemes mentioned.

12



1.2 Fully Developed Flows in Helically Coiled Circular Pipes

Curved pipes are often used in the chemical process indusiry to enhance the
heat and mass transfer in chemical reactors, heat exchangers and mixers. In health
sciences, they are used in blood oxygenators and in dialysis equipment.

Curved pipes of interest to chemical process industry are helical pipes.
Helical pipes are spirally coiled pipes. A helical pipe having a zero pitch is termed a
torus. Experimental fluid flow in a torus is limited to a single turn. However,
theoretical analysis for fluid flow in a torus can apply as many turns as is desired.
To date most of the studies for fluid flow are for a flow through a torus. The reason
is that there exists a simple orthogonal coordinate system for the case of a torus.

Flow through a helical pipe of finite pitch is of more practical use.

1.2.1 The toroidal flow

The milestone study of the flow in a toroidal pipe is that of Dean (1927 &
1028). Most of the studies for fluid flow in a torus deal with the case of the
curvature ratio A = a/Rc close to zero, where a is the radius of pipe and Rc is the
radius of coil.

The perturbation series has offered an excellent solution approach to the
toroidal flow problem for very small Dn number flows. The perturbation series
solution to the problem started since the initial Dean’s work. We define the
dimensionless velocity field as:

2p
U=—mnu’, v=
o

Qi

’ —_a —
v, wW=_—w (1—25)

/
where a is the radius of the pipe. g%- is the pressure gradient. y is the viscosity of

the fluid. p’ is the pressure. s’ is the axial length variable. v is the dynamic

13



viscosity of the fluid. u, v, w are the axial, radial and circumferen
components and the primed variables are the corresponding dimensionz
The perturbaticn solutions for the axial velocity u and the secondary

function 7 are written respectively as
u=1-r2+ Ku, + K2u, + ...

and

¥ =Ky, + K2, + ...

where

K = (22/Re)(2Wa/v)? = 20(-42; 2272

W is the average axial velocity in a straight pipe of the same radius un
axial pressure gradient (dp’/ds’). p is the density of the fluid. K is

Dean number, in the form first used by Dean. u is the axial velocity. T
of such a solution is that it is cnly valid for small K flows. The transve:

are obtained from the secondary flow stream function as given by

<
i
3
pand
mlm
).

Sl

where h, is the metric coefficient of the axial direction It was found, D

1928), that

P, = 5.176-(4r — 913 —r7)cosf
and

1 .19 3 1 1 .
Uy = gra(Zer — 13 + Ir° — 717 + gpr)sind



Eence the series solution gives rise to a two—vortex secondary flow according
to equation (1-31).
It is found that the dimensionless voiume flux in the pipe depends only on

Dean number and for small Dean number is given by

—2_ = 1—0.0306(z52) + 0.0120(z50* + 05" (1-33)

where Q is the flow rate in the curved pipe and Q, = 7 a2 W is the flow rate in the
straight pipe with the same axial pressure gradient. We see that the effect of
curvature is tc reduce the flux.

For a finite coil radius, the perturbation solution was obtained by Topakoglu

(1967) and is given by
K 2 11 K A2
=1 —0.030575 - A 1—
8; 80575 (37g)" ~50 A (57¢) + 73 (1-34)

It can be seen that for very small K and large A, the flow rate in a curved
pipe can be larger than that in the straight pipe.

One outstanding feature of Dean’s series solution is that the flow rate ratio is
not affected by the first order term O(K), and is decreased by the second order
term O(K2) for a pipe of an almost zero curvature.

The Fanning friction factor is defined by
a !
f=— 707 Q,-a 3 (1-35)

where U is the average axial velocity. p’ is the pressure and s’ is the axial length
variable.
To convert the flow rate ratio to the friction factor ratio, we must consider

the formulation of the perturbation series instead of using equation (1—35) directly.

15



The perturbation series is based on the parameter K, which is defined by equation

(1—-28). The more acceptable variant of Dean number is defined by White (1929) as
Dn = ARe = At 2202 (1~36)

The immediate concern is to relate K with the flow rate ratio and the friction factor

ratio. From equations (1—28) and (1—35), we obtain
= 8) (—25,)2 = 2 ({ Re? 1) (1-37)

On the other hand, if we define f; as the friction factor of a straight pipe

Poiseuille flow having the same flow rate Q as that of the curved pipe, i.e

b ]

f;Re = 16, then we obtain from the equation {1—36)
1 2 2 L
Do’ =) (23)% = A s R 1) (1-38)
Comparing equations (1-37) and (1-38), we obtain
Re2f .z
7Da7= @Y = o)’ (1-39)

Hence, the flow rate ratio for a given pressure gradient and the friction factor ratio

of a given flow rate are related by the following equation:

f
S —
(%)constant pressure drop - (f;) constant flow rate (1—40)

Hence the friction factor ratio is just the reciprocal of the flow rate ratio. It

follows then from equations (1—34) and (1—40) that

(141)

16



Since expression (1—34) is only wvalid for very small K, the discussion is
restricted to a small K. We see that the friction factor in the curved pipe can be
smaller than the straight pipe for reasonably large curvature pipe. For larger K
flows, the friction factor increases with the curvature ratio.

For creeping flow, i.e., K = 0, Chadwick (1983) and Van Dyke (1990) formed
a much longer series for the flow rate ratio. In particular, Van Dyke (1990) worked
out a series convergent in the full range of A {0 < A < 1). These investigators found
that the friction factor in a curved pipe is smaller than that in a straight pipe except
when A is greater than 0.85.

As we bave mentioned, the perturbation series given by equations (1—26) and
(1—27) are only valid for very small K. In order to have a convergent series for a
larger K, deliberation must be made to eliminate the singularities in the series (Van
Dyke, 1978). In searching for higher order terms, Larrain & Benilla (1970) and Van
Dyke (1978) have tried to extend the perturbation series indefinitely. In particular,
Van Dyke attempted to extract the higher K convergent series from his first 12
terms of the Taylor series by extrapolation through Domb—-Sykes plots. The final
friction factor ratio in the high Dean number limit obtained by Van Dyke is given
by

{ - 0.47136 Dt (1—42)
S

Van Dyke suggested that equation (1—42) may be valid for Dn —+ o. However,
comparing with experimental results of White and others, we see that equation
(1-—42) is valid for 25 < Dn < 250 only.

The numerical solutions of the Navier—Stokes equations for fully developed
laminar “>w flow in a torus were conducted extensively in the past twenty years,

starting with McConalogue & Scrivastava (1968). The most comprehensive
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calculations for very large values of Dean numbers for arbitrary values of A were
carried out by Yang & Keller (1986) who obtained solutions for D (= K/4) up to
30 000 and A up to 0.3. The solutions are obtained by Fourier expansion on 6§
direction and finite (central) difference on the radial direction. The symmetry
condition is implied and the continuation technique is used with D as a parameter.
The solution family has four folds or limit points, i.e., five branches of solutions.
Yang & Keller (1986) speculated that there may be countless solutions for
reasonably large D flows bearing a secondary flow pattern of 2n—vortex, where
n=1, 2 --.-. Two— to eight— vortex patterns have been obtained. As they refined
the grid size, the limit points moved towards a higher D. This suggests that all the
solution branches might be separated and no real turning points exist.

Following Nandakumar & Masliyah (1982), Daskopoulos & Lenhoff (1989)
used a geometrical change to study the possible isolated solution branches. The
continuation technique is involved to follow each solution branch with the
parameter D. The symmetry is imposed and ) is set to be zero. The spectral method
is applied to solve the flow problem with the secondary flow stream function and
axial velocity formulation. Owing to the difficulty in discretizing the bi—harmonic
equation of the secondary flow stream function equation, they encountered spurious
modes in the solution. The spurious modes were removed artificially. The
bifurcation map of Daskopoulos & Lenhoff is rather different from that of Yang &
Keller. Furthermore, Daskopoulos & Lenhoff found that only two— and four— vortex
solutions are stable. This explains that only two— and four— vortex solutions can be
obtained with a prescribed symmetry formulation.

The four—vortex solution were first obtained by Nandakumar & Masliyah
and Dennis & Ng (1982). Nandakumar & Masliyah used finite A and documented
the solutions with respect to the physical parameters. Dennis & N g set A to be zero

and used D as the Dean number. Dennis (1980) correlated his two- vortex flow
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friction factor against Dn. His relationship of
{ =0.388 + 0.105 Dn? 4
;= 0.388 + 0.105 Dn (143)

is accepted as an accurate expression for large Dn flows.

Using a spectral method, Yanase et al. (1988) found only two— and four—
vortex solutions similar to those of Nandakumar & Masliyah and Dennis & Ng.
They found further that the four—vortex solution is not stable with respect to
asymmetrical disturbances. This leads to a conclusion that only two—vortex solution
is stable. Although with the same line of discretization as Daskopoulos & Lenhoff,
Yanase et al. did not mention any spurious modes in their solution.

The numerical solutions and experimental results support the relationship of
the type (1—43), which was first proposed by Adler (1934) through his boundary

layer analysis. Adler’s solution is given by

£
;= 0.1064 Dn? (1—44)

which is valid for large Dn but still in laminar flow regime. The same relationship
was used to correlate the experimental data of White by Hasson (1955). Hasson’s

correlation is given by

f
= 0.556 + 0.0969 Dn? (145)

which is the now accepted friction factor relation for smail curvature and large Dn
flows. There are many other correlations, but none of them improved much about

the valid range of Dn.

However, a more recent experimental work by Ramshankar & Sreenivasan
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(1988) claimed to Lave resolved the “Paradox” of the relationships of the friction
factor versus the Dean number in the large Dn range between Van Dyke’s 1/4 power
and the accepted square root. Ramshankar & Sreenivasan attempted to show that
Van Dyke’s relation was the correct one.

The ‘paradox” was addressed by Jayanti & Hewitt (1991) once again
numerically, after Dennis (1980). The claim by Ramshankar & Sreenivasan (1988)
was dismissed by Jayanti & Hewitt through direct numerical evaluation of the
friction factor. The pressure drop measurements of Ramshankar & Sreenivasan were
suspected to be in error. Even if the pressure drop measurements were conducted
properly, Ramshankar & Sreenivasan did not seem to analyze their results correctly.

Dennis & Riley (1991) took a different approach to resolve the paradox by
proving the validity of the boundary layer analysis in the limit of very large Dean
number and zero curvature.

It should be noted that the argument between Van Dyke’s 1 /4 and every one
else’s 1/2 power dependence of the friction factor ratio on the Dean number is
essentially theoretical. When A = 0, the flow is of Poiseuille type as long as it is
laminar. When A is finite but very small, the Dean number should not be very large
prior to the flow becoming turbulent. In any event, Van Dyke (1978) revolutionized
the series solutions from his first 12 terms by pushing the validity range to a
practically useful region. More terms should lead to a better closed form solution.

For small Dn flows, Akiyama and Cheng (1971) obtained a numerical
solution for A - 0. They observed both numerically and experimentally that the
relative constant behavior of the friction factor ratio for Dn < 16 is due to the
compensation of the increasing resistance on the outer bend surface and the
decreasing friction on the inner bend surface.

For more detailed review of the previous studies, the reader can refer to

Berger et al. (1983), Nandakumar & Masliyah (1986) and Berger (1991).
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1.2.2 Laminar flow in 2 helical pipe of non—zero pitch

The study of fluid flow in helical pipes of a circular cross section with an
arbitrary pitch has not been dealt as extensively as its counterpart, the flow in a
torus, i.e., helical pipe of zero pitch in the literature.

The solution of helical flow was first attempted by Truesdell & Adler (1970).
Truesdell & Adler suggested ad hoc quantitative arguments that their numerical
solutions of the toroidal flow were applicable to a helically coiled pipe of moderate
pitch if the curvature ratio is correctly used. The question was addressed more
properly by Manlapaz & Churchill (1980), Murata et al. (1981), Wang (1981),
Germano (1982 & 1989), Kao (1987) and Tuttle (1990). Orthogonal helical
coordinates were first introduced by Germano (1982), and subsequently are used to
solve helical flow problems.

Kao (1987) used the orthogonal coordinates and computed three cases of
helical flows having small torsion and small Dn (Dn < 200). Kao presented velocity
plots and did not make use of the pseudo—secondary flow stream function to show
more clearly the flow pattern. Kao mentioned that only a two—vortex type solution
1s present.

Wang (1981), Murata et al. (1981), Germano (1982 & 1989), Kao (1987) and
Tuttle (1990) obtained perturbation solutions in the curvature ratic A and torsion 7.
The curvature ratio for a helical pipe is defined as A = Rca / [Rc2 + (H/27)?]. The
torsion 7 for a helical pipe is defined as 7= (H/27) a / [Rc? + (H/27)2). Wang
found that the torsion effect is of first order. Murata et al. and Tuttle found that
the torsion effect is of O(A7). Germano (1982) stated that the torsion has second
order effect and in a later study, Germano (1989) stated that no pure torsion of any
order effect is present for a circular helical pipe. Kao stated that the parameter
gt = 7/v 2 A determines whether the torsion can exert a 1% order effect.

The perturbation series solutions for helical flow can be extended from the
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toroidal flow solution with the parameter K. The pseudo—secondary flow secondary

stream function and the transverse velocities are related as

Q:IQ:
[

1
—Fl (1—46)

J’H

Sl

i
E (1—47)

where u, v and w are the dimensionless axial, radial and azimuthal velocity
components in the orthogonal coordinate system, respectively. The dimensionless
quantities are defined by equation (1—25). The perturbation series can be written

from Topakoglu (1967), Wang (1981) and Tuttle (1990) as

u=(1-r2)(1+ %Arsinﬂ) + 5—6(5—1.;3-)@8 — 1016 + 30r¢ — 40r2 + 19)siné +

g Mo e(3rs — 804 — 2412 + 29)cos0 +

(52 2AH yr(20r 12 294r 04 157518455016+ 7630r4—735012+2969)cos 0

(1-48)
and

Y= (—%)r(rﬁ—6r4+9r2—4)cosﬂ + 6‘/?'(5—17{3)%)\—1/ 2n(1 — r2)%(1 — %—Arsinﬂ) +
%A_l/z 3/2r(r1° 9r® + 3018 — 5014 + 41r2 — 13)sinf

(1—49)

From equation (1—49) we observe that the secondary flow consists of two
recirculating cells when (n-A—*K—%) is small. When the torsion is large, the
secondary flow degenerates to one vortex pattern as Wang noted that the transition
- 1
is (xgs > 20

It is clear that the controversy on the torsion effect is simply a difference in
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viewpoint as noted by Tuttle. Germano, Murata et al. and Tuttle looked at torsion
effect on the secondary flow velocity components v and w. Wang, however,
considered the torsion effect from the point of pseudo—secondary flow stream
function, or the body—centered transverse velocity components. Kao, on the other
hand, expanded the series in the same manner but omitted the lowest order terms of
K'/2. Instead of factoring out the lowest order effect of the torsion, Kao gave the

lowest order in K where the lowest order torsion term appears. For a fixed K, Kao

obtained a 1% order in K at which the torsion effect contributes to the secondary

flow.
The flow rate ratio can then be obtained as
' K .2 ,11 K 2 K |2 K 3122
= 1—0.030575 —A 9.2575 +616.92)
3 (578" 450578+ 15 ~ 286l 25755 79) 57e) — 5

(1-50)

The friction factor ratio can then be obtained by taking the inverse of the

flow rate ratic. This leads to

r =1+ 0.03658(1 + 1. 14}A2)(m) + 0.1833A(1 + 2)(3»115,@) -

2—%%{(9.258 - 0.6227A2)(m)“ + 616.92A(1 + §6)‘)(b’7‘6) 31’\2]
(1-51)

From equation (1-51), we observe than the friction factor for flow in a small
curvature helical pipe increases with the pipe torsion. For very small Dean number
flows, i.e. K is very small, the friction factor can be smaller than that of the straight
pipe Poiseuille flow.

The experimental studies were conducted mostly in coiled pipes having a

finite pitch. But none of the experimental studies were conducted under the
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condition of large torsion. The friction factors were then fitted into the category of
toroidal flow as long as the curvature is calculated appropriately. A wide range of
pitch was covered in the experimental work of Mishra & Gupta (1979). They

correlated the friction factor in the following manner:
f _ 4
r =1+ 0.033 (log Dn) (1-52)
S

for the range of 1 < Dn < 3000, Rc > 0.02 Dn and H/Rc < 26.6.
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1.3. Steady Laminar Developing Flow in Helical Pipes

The developing fluid flow was studied only for the toroidal pipes. Solutions
were obtained by Singh (1974), Yao & Berger (1975 & 1988), Yeung (1980) and
Stewartson et al. (1980) using a boundary layer formulation. Berger (1991) gave a
full review on the boundary layer results.

Austin (1971), Humphrey (1977) and Van de Vosse F.N. (1987) carried out a
numerical study for the flow development in curved pipes having a Poiseuille flow at
the inlet with the full Navier—Stokes equations. Patankar et al. (1974) studied the
flow evolvement from a Poiseuille flow in curved pipes. Their results compared
reasonably well with the experimental data. Smith (1976) investigated the
transition of a parabolic flow (Poiseuille flow) in a straight pipe to a curved one
near their junction. Liu (1977) and Soh & Berger (1984) studied the flow
development in a circular torus with a flattish velocity profile (or free—vortex)
entry.

Although only half a domain was used in the numerical calculations, none of
the above investigators found a flow development into a four—vortex solution.

Ckeng & Mok (1986) and Cheng & Yuen (1987) experimentally observed the
flow development into a four—vortex solution from a disturbed velocity field. The
laminar flow developrzent in a torus was also experimentally studied by Hawthorne
(1951), Austin & Seader (1974), Agrawal et al. (1978), Choi et al. (1979), Olson &
Snyder (1983), Olson & Snyder (1985) and Bovendeerd et al. (1987).

Austin & Seader (1974) observed experimentally the hydrodynamic entrance
length and correlated their results by

497 . —2/3 \—
Lu = gof Dn~2/3 y71/6 (1-53)

where Lu =sg . /(2aRe) is the hydrodynamic entrance length for the axial
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velocity to reach 95% of the fully—developed value.

For a torus with a free—vortex inlet, Singh (1974) observed that for a
developing laminar flow, the maximum axial wall shear rate was initially at the
inner wall and crossed over to the outer wallat s’ /a = 1.9 ,» 8’ is the axial length
evaluated from the pipe inlet. For a uniform axial velocity inlet, Singh found that
the crossover occurred at a distance half that of a free—vortex inlet flow.

For a uniform axial velocity entry, Yao & Berger (1975) found that the
secondary boundary layer separated at the inner wall in the developing region of a
torus. They also observed that the hydrodynamic entrance length is proportional to
vDn/X.

From boundary layer analysis in the developing region of a toroidal flow,
Stewartson et al. (1980) found that the axial inner wall shear stress vanished at
Dn s’ / (a Re) = 0.943. Based on their analysis, a boundary layer collision theory
was conjectured.

Yao & Berger (1988) discovered that the crossover point of the axial shear
stress was strongly dependent on the curvature ratio A and that the crossover point

moved downstream as A was increased.

26



1.4. Heat Transfer in Helical Pipes

Numerical solutions and experimental studies have been extensively
conducted for convective heat transfer in a torus and finite elbows. Representative
studies are: Abul-Hamayel & Bell (1979), Akiyama & Cheng (1974), Berg &
Bonilla (1950), Dravid et al. (1971), Janssen & Hoogendoom (1978), Kalb & Seader
(1972), Kubair & Kuloor (1966), Mori & Nakayama (1965 & 1967), Oliver & Asghar
(1976), Owhadi et al. (1968), Patankar et al. (1974), Prusa & Yao (1982), Seban &
McLaughlim (1963), Shchukin (1969), Simon et al. (1977), Singh & Bell (1974),
Tarbell & Samuels (1973), Yao & Berger (1978) and Zapryanov et al. (1980). A
summary of this subject can be found in Manlapaz & Churchill (1981), Nandakumar
& Masliyah (1986) and Berger (1991). There are no extensive studies for the case of
the heat transfer in helical pipes of finite pitch. Manlapaz & Churchill (1981)
attempted to solve the problem for a helical pipe of finite pitch. However, they
obtained very limited results. Their correlations of Nu were based on the previous
studies of a torus.

Akiyama & Cheng (1971) were the first to numerically study heat transfer in
toroidal pipes. They used the boundary vorticity finite difference method to solve
the full axially—invariant transport equations subject to the boundary conditions of
axially uniform heat flux with peripherally constant temperature. They found that
the Nusselt number is a function of the parameter Dn2Pr alone when Pr > 1 and
A~0. Pr = uCp/k is the Prandtl number and Cp is the heat capacity. In a
subsequent study, Akiyama & Cheng (1972) presented simiiar results for the
thermal boundary condition of axially and peripherally uniform wall temperature.
Akiyama & Cheng’s correlation for the Nusselt number with a uniform wall

temperature is given by
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Nu = -0'38‘7 (1 —1.48q + 23.292 — 120q3 + 212q4) (1

S |

where Pr21,q=(Dn?Pr) <f and A<o0l Nu=22B_ %Taq/T)isw
w m

average Nusselt number. h is the peripherally averaged heat transfer coefficient. k

the thermal conductivity. q/ is the peripherally averaged heat flux at the pipe wi
Tw and Ty, are the wall and the average bulk fluid temperatures, respectively.
Kalb & Seader (1972 & 1974) also studied the same problem for the t
boundary conditions. However, Kalb & Seader did not invoke the loose coili
condition for a torus. Kalb & Seader (1974) correlated the heat transfer Nuss

number for the uniform wall temperature as:
Nu = 0.836 Dn"® pr0! (1

for 0.01 < A< 0.1, 80 < Dn < 1200 and 0.7 < Pr < 5.

Dravid et al. (1971) studied both experimentally and numerically lami
heat transfer in the thermal entrance region of a torus subject to the bound:
condition of axially uniform flux with peripherally uniform wall temperature. T1
observed an oscillatory variation in wall temperature and Nusselt number. 1
amplitude of the oscillation decreases with the axial distance. An asymptotic va
is reached at low values of Graetz number. Similar oscillatory behavior v
observed by Balejova et al. (1977) in their experimental work using Newtonian a
non—Newtonian fluids. The cyclic variation was observed by Tarbell & Samu
(1973) in their numerical solutions of the thermally developing convective he
transfer starting with a fully—developed flow under axially and peripherally unifo:
wall temperature condition.

Janssen & Hoogendoorn (1978) presented experimental Nusselt numl
development in the laminar developing flow region (20 < Re < 4000) of a torus :

a wide range of Pr (5 < Pr < 500). They found no significant difference between {



two thermal boundary conditions, i.e., uniformm wall temperature and uniform axial
heat flux. They also observed the oscillatory variation in Nusselt number in the
entrance region. They were the first to give a bound for the thermal entrance length

and it is given by
LNu = s}, / (2 Re 2) < 20 Pr®?/ Dn (1-56)

where s’ is the axial length from the inlet at which the heat transfer Nusselt

85%
number reached 85% of the fully—developed value. They found that the thermal
entrance length is much shorter than that for a straight pipe. This was the reason

that Dravid et al. (1971) suggested that the entrance region for a torus be omitted.
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2.0 SUMMARY

A first order non—conforming numerical method, SEPARATION METHOD,
for fluid flow problems with a 3—point exponential interpolation scheme has been
developed. The flow problem is decoupled into multiple one—dimensional
subproblems and assembled to form the solution. A fully staggered grid and a
conservational domain centered at the node of interest make the decoupling scheme
first order accurate. The discretization of each one—dimensional subproblem is based
on a 3—point interpolation function and a conservational domain centered at the
node of interest. The proposed scheme gives a guaranteed first order accuracy. It is
shown that the traditional upwind (or exponentially weighted upstream) scheme is
actually of zeroth order accuracy. The pressure is decoupled from the velocity field
using the pressure correction method of SIMPLE. Thomas algorithm (tri—diagonal
solver) is used to solve the algebraic equations iteratively. In addition, a
2—dimensional direct solver has been developed based on block matrix inversion to
tackle the difficulty that may arise from the perturbation of the pressure. The
2—dimensional solver uses less memory storage than the band solvers and the
component matrices are inverted to allow fast solutions. The numerical advantage of
the proposed scheme is tested for laminar fluid flows in a torus and in a square
driven cavity. Both two and four vortices solutions for a torus are computed to show
the convergence of the proposed scheme. The convergence rates are compared with
the traditional schemes for the square driven cavity problem. Good behavior of the

proposed scheme is ascertained.
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2.1. INTRODUCTION

The numerical study of fluid flow through direct formulations, i.e. primitive
variable approach, needs special attention. Great strides have been made in the past
two decades. All the methodologies, e.g., finite element, finite difference and finite
volume, gave rise to new issues to be studied. Some of the issues are: the inf—sup
condition of the finite element method (Babuska 1973, Brezzi 1974, Ladyzhenskaya
1969), the checkerboard effect of the finite difference method (Patankar 1980), the
Petrov—Galerkin or streamline weighted scheme (Carey & Oden 1986) and the
upwind differencing scheme (Raithby & Torrance 1974). However, any practical
scheme must use at least a partially direct algebraic equaticas solution strategy in
order to obtain a meaningful solution. This largely restricted the development of
numerical schemes, especially for three dimensional problems, where the full storage
of the coefficient matrices is sometimes beyond the reach of computer memory
required by a direct solver. In this regard, the pressure distribution cannot be easily
solved as it appears in the momentum eguations. This gave the formation of the
pressure correction method of Patankar (1980).

It is well knowr that a convergent numerical scheme must be both consistent
and stable. The consistency is defined as the limit behavior of the discrete equations
used in a numerical scheme to approach the governing differential equation as the
mesh size approaches zero. The stability of a numerical scheme is related to the
solution behavior of the discrete equations. When an iterative method is used, an
unstable scheme may have difficulty in generating solution.

This study intends to develop a scheme which is spurious modes free and
stable. Our attention on the stability will be directed to an accurate representation
of the flow behavior (wiggle—free) rather than the ability to obtain a solution alone.

The strategy of the scheme is focused on making a complex problem easy to deal
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with. At each step, the flow problem is subdivided into multi—subproblems an
best possible choice is used to obtain convergence.

The pressure field is solved with the pressure correction method due
Patankar (1980) to avoid the painstaking solution of the standard finite elem
approach. The popular finite difference and finite volume schemes suffer fr
spurious pressure modes. For higher Reynolds number flows, even the solution of
pressure correction equation is not an easy job (Macharthur & Patankar 19
without a carefully chosen solution algorithm. This will be fully addressed here.
separating the multi—dimensional dependence into multi—subproblems
introducing some extrapolation or first order accuracy—guaranteed exponen
interpolation, we eliminate the stability problem of a traditional centered sche
and simplify the solution procedure without sacrificing too much in accuracy. Ow
to the strategy of the method, we call it the Separation Method.

To obtain a meaningful solution, we decided to give up the conform
property. Instead, the scheme is checked against comsistency. It should be no
that a conforming scheme yields a globally consistent interpolatior for the varial
under consideration. Hence, the variable under consideration at a given point
only one unique interpolation equation no matter to how and/or from where
refers the value at that point. The conforming methods pay full attention to
consistency in the interpolation of the variables and their fluxes. However t
introduce excessive errors when the flow Reynolds number is large. We work fro
different perspective which leads to a good local behavior and a better gle
solution. A three—point interpolation scheme is introduced in this study.
accomimodate the three—point interpolation scheme a conservational domain is us

The following two sections serve as a general guideline for the pIopo

scheme. More details are given in the first numerical example.



2.2. DOMAIN DISCRETIZATION AND NODAL ARRANGEMENTS

Our primary goal here is to establish a centered conservational scheme and
to use fully staggered grid (Harlow & Welch 1965) to maintain both simplicity and
inf—sup condition requirement. For a relatively simple geometry, we discretize the
domain into a relatively uniform mesh where the mesh lines are parallel to the
coordinate lines, i.e., undistorted mesh. The non—equal spacing does not need a
mapping. However, a centered conservational scheme can be obtained by simply
placing the node of interest in the center of the symmetrically chosen domain even
though the actual nodes are not symmetrical with the coordinate axes. We make the
undistorted non—uniform mesh as the general case for discussion in this study.

The numbering of the nodes is based on an appropriate book—keeping. A
good choice of node numbering can be expressed as follows. First, identify the three
curvilinear directions and secondly, number each direction independently, and
record the nodes by a three indexed (i, j, k) tensor related to the three curvilinear
directions. In this way no special attention is needed to keep tracking the
neighboring nodes.

‘The exact conservational domain for each node on or near a boundary,
however, will be considered in the light of the specified boundary condit:on in order
to avoid the introduction of error by requiring values outside the computational
domain. If Dirichlet condition is specified. the nodes next to the boundary will have
a conservational domain bounded by the boundary. For a Neumann boundary, a
node on the boundary will have a symmetrically extrapolated conservational
domain. The above treatment of boundaries can achieve consistency and avoid the
non—consistent accuracy match for finite difference and for finite volume methods.

To fully address the arrangement of nodes for the different primitive

variables, we establish the following convention: when the direction of the velocity
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component of interest (the center nodal variable) coincides with a given coordinate
axis, we denote that direction as the parallel direction, while all other directions
become perpendicular directions. We name the parallel velocity as the velocity of
the voincident axis, while the perpendicular velocity stands for the velocity that is
not in the direction of the axis. This convention will be very convenient as we deal
with the axes one at a time.

The inf—sup condition can be represented as follows:

—foV 1 q
i inf sup > « (2-1)
a>C qeQ eV |1} V”q”Q
Where o is a positive number independent of the mesh size. # is the velocity field. V
is the functional space of 1 and q is a variable taking its value from the functional
space of the pressure, Q.

It 1s known that equation (2—1) can be satisfied by a proper choice of (match
between) V and Q. It is independent of the choice of coordinate system. Equation
(2—1) can be satisfied by arranging the velocity and pressure nodes in the following
manner:

As shown in Figure 2.1, the pressure nodes are located only on the parallel
direction (in one element), exactly at the center of two adjacent velocity nodes. In
other words, when the continuity equation is treated (pressure is the variable of
interest), all the velocity components are presented symmetrically on the nodal axis

away from the center, and cnly the parallel velocity is present on each axis.
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Fig. 2.1. Pressure nodes placement.
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2.3. FORMAL DISCRETIZATION

To carry out the discretization of the flow equsation, the prcolem of interest
must be initially written either in an orthogonal ccordinate cc a non—orthogonal
coordinate system prior to domain discretization. For a steady flow problim, the
Navier—Stokes equation, in a cartesian coordinate system for a given x; direction, is

given by

2 Ju;
?““(axj Pdij + pusnj — pzp) =0 (2-2)

where x; is the cartesian coordinate, p is the pressure and u; is ihe velocity field.
The governing equations can be rewritten in the weak form with an added

weighting funct.on. The weak form governing equation is:

%—J“’ ?'a%(pﬁij + puiu; — p %) widv=20 (2-3)
Qe

where V, is the volume of the conservation domain and w; is a weighting function.

We take w; as
w; € {w; =1if x € conservational domain; w; = J for all other cases}

The multi—dimensionality of equation (2—3) is the most significant obstacle
in developirg a good numerical scheme. To achieve a good behavior, one
dimensional problems are easy to deal with and better understood. To tackle the
multi—dimensionality, we introduce an approximation strategy that allows us to
separate the multi—dimensional problem into multiple one—dimensional
subproblems. Since the node of interest is at tke center of the conservational
domain, we can quadratically approximate the integration over a dimension using

the center value when a derivative is not involved in that dimension. Hence,
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equation (2—3) can be decoupled furtuer to reduce the multi—dimensional problem
into multiple pseudo—one—dimensional problems. Before the decoupling is

performed, the governing equation is regrouped in the following manner:

z Eij = — ‘17— JJJ wi gg— dv (2a)
; e ’
Eij = %,: JJI Wi a—%(puiuj —u %:‘) dv (2—4b)

The decoupling of the multi—dimensional problem is achieved by approximating

equation (2-—4b) by
~ 1 - a z [ J—— —;
Eij * T J Wi 5 ; pURj — 4 iau;) d! (2—4c¢)

where [ is the length of the conservational domain in the x; direction. E;; is the
x;—component of the x;—momentum. Equations (2—4a) and (2-—4b) are a multiple
dimensional problem. After using the approximation to the integration over the
dimensions of x,’s (k # j) by the center nodal value, the multiple integration in
equation (2—4b) is approximated by a single integration as shown by equation
(2—4c), which represents a one—dimensional problem. This leads us to consider one
dimensional discretization only and the resulting discrete equation coefficient
(stiffness) matrix consists of only the node of interest and its two neighbors. This
approximation of equation (2—4b) by (2—4c) is a key element of the method
presented in this Chapter.

For example, the weak form of the two—dimensional Navier—Stokes equation

is given by
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r i) du a
%— JJ wy [p -?x + ——(ax Puxiy — U ——ax") + ——{ay PuxlUy — 4
[

Xy

i [y 1 2+ F2ousny — 1 329 + 32pusuy — p 32)] dx dy = 0

Xy

)] dx dy =0

(2-5a)

The separation of space variables for the x—momentum equation is given by

Exx + Exy-—-—J' P%dxdy
€
Xy

and the momentum components are defined by
1 a du
Exx = JJW —{puyxuy — p —=) dxdy
=mA) x FPlxllx — 4 5o) dxdy

Exy = g£— JJ Wy %uuyux —p %—’5) dxdy

(2—5b)

(2—5¢)

(2-5d)

(2—5¢)

(2-51)

where A¢ = Ax Ay, Ax and Ay are the widths of the conservational domain in x

and y directions, respectively. Equations (2—5e) and (2-5f) are one—dimensional

problems if Exx and Eyy are regarded as source terms.

The quadratic interpolation function in a non—uniform one dimensional grid

can be written as follows:
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(#ia—¢i)(hi+x)hy - (¢i-1~@i)(hr—x)h,
®=¢i+ x (2-6)
hiho(h; + hy)

where h; and h, are the two grid spacings of the node of interest. A brief

illustration of 2 one dimensional nodal arrangement is shown in Figure 2.2.

the XYobE of

interest
1-(-)—1 xe—h é i x=h 1-51
x=-h, 7 x=0 ! x=h,

«—the conservat ional domain—

Fig. 2.2. Nodal arrangement for a2 non—uniform one dimensional mesh.

The space variable x has its origin at the node of interest. The radius of the
conservational domain is h.

The discretization of a one dimensional problem is simple to handle and to
enforce stability. The general conservational domain can be described as follows:

1. For the perpendicular direction, as shown in Figure 2.3, we use the
intersection with the corresponding perpendicular mesh lines of the parallel velocity

as the conservational domain boundary.

u; uj
o o}
- l - -
uj | uj | uj
~— I [T x
R T R T T M
b b
u u;

o
~

Fig. 2.3. Conservational domain setup in a perpendicular direction.



2. For the parallel direction, however, the conservational domain can be
arbitrary. A viable choice would be using the half length of the shorter side as the
conservational radius. An illustration of this situation is shown in Figure 2.2, where

the variable of interest is u.

; and the space variable x is actually X;.

3. If the node of interest is on the perpendicular direction and next to a
Dirichlet boundary (no—slip or known entrance—exit), we can choose the side length
towards the boundary as the radius of the conservational domain. This is shown in

Figure 2.4.

Fig. 2.4. Conservational domain setup next to a Dirichlet boundary

for a perpendicular direction.

Equation (2—4c) is treated using an appropriate interpolation function based
on the three available nodes, such as equation (2—6). Special attention, however,
will be given to the advection dominated subproblems. Since no simple normal mode
exists (although Patankar 1980 claimed to be exact) and the quadratic
interpolation, equation (2—6), cannot b2 used, we employ the following type 3—point

exporential interpolation
¢ = ¢i+a; VX 4 b;x (2-7)

where ¢ is the velocity of interest and u; is the parallel velocity of the x direction

evaluated at the center of the conservational domain or the node of interest, i.
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Leonard (1987) proposed a 3—point exponential scheme and it has the

following form:

¢’ = ¢: + ajfexp(bix) — 1] (2-8)

However, equation (2—8) is rather difficult tc work with and it leads to unstable

solutions when advection is dominant (Leonard 1987).

Corresponding to equation (2-7), the interpolation function can be obtained

using the three available nodes as

—Rel: h

Reu.x
=g+ ale 1 = 1) 4 x(e” "1 - 1)
¢= ¢i + hl(eReu;E2 _ 1) + hz(e-—Reulﬁ )\¢101- ¢ ) +

i- l —
iT?-—l) + ha(e” Reuﬁ 1)

The interpolation equation (2-9) reduces to a standard upwind scheme (but
not the traditional one) for Re-uj— + or —o with the sign taken to be the same as
that of u; in the above equation. It can be shown that when Re-u; - 0, equation
(2—9) reduces to the quadratic interpolation equation (2—6). For a simple upwind
scheme, we can combine the quadratic interpolation equation (2—6) by setting the
off—diagonal terms to be no greater than zero in the resulting stiffness matrices. By
doing so, we can dampen the oscillations while not altering the solution. It is worth
to mention that a traditional centered treatment of the right hand side of equation
(2—4b) for the stiffness matrix does not lead to absolute divergence As a matter of
fact, it can be solved quite successfully with careful arrangements (Nandakumar et
al. 1985).

It is clear that the above strategy results in a quadratic accuracy for a small

flow Reynolds number flow, i.e., ¢ = ¢o + a z+ b 22 + O(z3), and linear accuracy
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for a large Reynolds number flow, i.e., ¢ = ¢o + a z + O(z?). It should be noted
that for the latter case, an ordinary upwind / exponentially weighted
implementation gives only zeroth order accuracy, i.e., ¢ = ¢o+ O(z), in the
interpolation.

An interesting by—product of this 3—point exponential implementation is
that we are able to produce an accuracy equivalent to a total pressure corrected
exponentially weighted scheme of De Henau et al. (1989), while treating a problem
in a multi—dimensional situation. The complexity of the proposed scheme is not
more than the original concepts advanced by Raithby & Torrance (1974) and
Patankar (1980).

The discrete momentum equation can be obtained for an undistorted mesh as

GLIK 555 §sjic + PMIK 55 bsgjic + PPIK 50 bsggye + GIMK 50 by +
GIPK 5y §sjenc + SLIM 5 by + LIP30 by
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= — Cé;;x (P — Pg-1) + Bd;jy (2-10)

where ¢;;, stands for any velocity component at the node (3, j, k). ¢IJK,
$MJIK, ¢PJK, ¢IMK, ¢IPK, ¢I1JM, ¢I1JP, Cd and B¢ are coefficients. (3, j, k) is the
global index for the node of interest. [ is the global index of the parallel direction
with all the perpendicular directional indices fixed. For example for the velocity
component in the direction of i, i.e., ¢ = u;, the pressure term (Ppg — Pg-y) is
equivalent t0 (P;.;j, — Pj.yj)- The pressure p has been treated linearly in order to
satisfy the inf—sup condition. The formulation as described above renders the
coefficients to be similar to that of a 7—point stencil. With the present nodal
arrangement, the required interpolations for the variables that are not currently
under consideration can be made linearly. Best of all, a given interpolation involves
only two points and no extrapolation is used. For example, the coefficient of the

pressure gradient term is,
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Ch.. = — 1 _
¢uk Xg—%3 (2-11)

where xg is the coordinate location with x being of the parallel direction of the
variable of interest.

It is important to note that, for the boundary, the treatment must be
consistent with the interior domain and the boundary condition over—specification
must be avoided. To summarize, we list the treatment of the boundary as follows:

1. Only when the gradient is known can one use a symmetrically
extrapolated grid outside of the domain of interest. Under no other circumstances
should one use a grid point outside the domain of interest.

2. For a Dirichlet velocity boundary condition, all the velocity components
must have a grid point on the boundary. However, the pressure node is not
necessarily placed on the boundary. As a matter of fact, only the interior nodes for
the pressure are present in this scheme for a Dirichlet velocity boundary.

3. In case where the velocity gradient is known on a boundary, the pressure
node can be placed on the boundary, however, the normal velocity component
should not be placed on the boundary.

4. The pressure node must be present on the piessure known boundary,
where the normal velocity is not present. Here we should point out that the
boundary condition for the normal velocity component should not be imposed when
the pressure is known on the boundary. Instead, one must use a deduced boundary
conditior (gradient type) from the continuity equation to fulfill both the boundary
condition requirement of the momentum equation and the continuity equation.

Finally, to solve the discretized equations, we introduce some

under—relaxation F¢, where



(1+Fy) GIIK ;5 $ijic + OMIK 5y &5-5x + SPIK 50 bioyyie + GIMK;, by +
GIPK ;;y &y + $IITM50 byt + PIIP ;50 i5pay

0 «
= F¢'¢IJKijk b3ix — Cdijx (Pp — Pg-1) + Bobyjy (2-12)

¢?jk is the currently available value of ¢ijk. The formed matrix structure is a
7—point difference module.

Owing to the complexity of flow problems, the above treatise is merely a
guideline for the proposed scheme. A more detailed discretization can be found in

the first numerical example.
2.4. ACCURACY AND CONVERGENCE

The accuracy of a numerical scheme depends on the order of interpolation
scheme used and the consistency of the discretization. Since all the non—derivative
terms of the direction under consideration are evaluated at the center node, the
integration is quadratic. The consistency is then of only first order for the weak
form of the Navier—Stokes equation, i.e., equation (2-3). Hence, the accuracy for
the advective (nonlinear) term is linear. Based on past experience, a higher order
approximation could lead to instability (most likely to have oscillation) (Leonard
1987, Neuberger 1987). On the other hand, a lower order approximation, although
may be stable, gives a lower overall accuracy.

The accuracy of the current scheme is to be discussed relatively to the
existing popular upwind / exponentially weighted schemes. Let us first examine the
upwind scheme and the exponential scheme of Raithby & Torrance (1974), which
was claimed to be exact by Patankar (1980). For simplicity, we consider a one
dimensional analogy and assume an advection dominatad flow:

The interpolation formula due to Raithby & Torrance (1974) is given by
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u = u; + [a; exp(Reu*x) — a; exp(Reu*x;) + ] O(x) (12)
with z; < £< z;4 and a; = fu;,u;,,) being a constant.
The consistency for the advective term becomes

ut u.;

i~ unouyy

2h

duu o
dx

= (s + uinus = (uiy + wjug
4h

d d:? d 2 d 2
@+ S+ bl - 20 - P+ PEn@ - b $iuyy
4h
—duu_[dh, (g%)z]h + O(h?) (2-14)
Where h is the radius of the conservational domain, i.e. h = Azf2,

uv*=u, and u = U 1 All the treatments above are traditional except that
14~ -
2 2
Taylor expansion is introduced here to examine the consistency.
The advective term appears to be of a first order consistency if one does not
look at the details o the contents in the square bracket of the equation (2-14). It is,

however, obvious to note that, if
v=a+ fz (2—-15)

neither the interpolation, equation (2—13), nor the consistency, equation (2—14), can
satisfy equation (2—15). Hence the scheme is actually of only constant convergence,
or based on the appearance one may call it a pseudo—first order convergent scheme.
The scheme is likely to experience large error in the boundary layers having sharp

gradients due to the large amount of the numerical dispersion that is evident in the



equation (2—14). However, we are aware that it is customary to call the traditional
upwind / exponentially weighted schemes as being first order.

A reduction in the numerical dispersion present in the 2—point schemes
(traditional upwind / exponentially weighted schemes) could be achieved by
introducing the same interpolation scheme for both the variable of interest and the
parallel velocity u;.

The proposed scheme described here has the interpolation formulae
¢, = ¢i + a; exp(Reusx) + bix; + 2(x2) (2-16)

with zi.1 — zj € z, £ Zin—7; and a; and b; being cons*ant.

The consistency is given by

dug U3¢ — i) — ul(di + &)
dx b

Cu(s + $h - Ey - (e - P+ )
—_ 2h + .o
=48 _ 8% 4 o(h2) (2-17)

The above consistency equation (2—17) not only looks like but it is indeed
first order convergent where only the higher order derivative (second order being the
lowest) is contained in the leading truncated term. It is easy to verify that equation
(2—15) can be exactly satisfied. The current scheme gives the same order of accuracy
as the traditional upwind or expomential scheme would give for a constant
coefficient linear equation. To distinguish from the customary convention of calling
the 2—point schemes first order, the current scheme may be regarded as a second
order scheme. However, we still consider the proposed scheme first order.

By forcing the off—diagonal terms in the stiffness matrices (or difference
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molecule) not to be larger than zero, this scheme has guaranteed stability
optimum convergence. The interpolation and consistency evaluation are accurat
to the second order derivative of the variable of interest. Although a r
sophisticated upwind scheme can reduce the numerical dissipation, it is more f
likely that this would introduce the symptom of an unstable scheme, an oscilla
alien to the exact solution behavior (Neuberger 1987). A quadratic or higher o
scheme for the advective terms alone does not improve the accuracy drasticall:
quadratic scheme wil! have to make use of at least full 27 nodes and hence it
add complexity.

It should be noted that a conforming scheme for this particular setup can
at most two—point interpolation functions. For a teulti—dimensional problem,
use of a two—point interpolation function does not jicid a contorming scheme. '

is a limitation of existing finite volume and control volume mcthods.
2.5. PRESSURE ITERATION

The solution strategy of the pressure is that of the pressure correc
method (Paiankar 1980). By perturbing the pressure field, the resulting chane
velocities is cbtained simply by using Gauss—Seidel iteration. The new pertu
velocity field is then applied to satisfy the continuity. By forcing the contir
equation to be satisfied, we are able to solve for the appropriate pres

perturbation. This procedure can be illustrated as follows:

1_8Ap_ C
Ad =R 5% = @T%K (Apg — Apg.y)

V-(u+ Au) =0

V2 (Ap)=—V-u



where A denote the perturbatior {.e. a numeric difference and Vg is the discrete
Laplacian.

Since the pressure is corrected {perturbed) through the enforcement of the
continuity equation and the velocity field is solved by satisfying the momentum
equations, the order of the approximation on the velocity and the pressure must be
fixed such that the scheme is stable and spurious mode free. It :s w=ll known that
schemes which are at least slightly more accurate in velocity interpolation than in
pressure interpolation can give rise to a stable approximation, Arnold et. al., 1984 1
In view of the type of approximation we use here, a quadratic approximation of
velocity and linear pressure would give a stable scheme. The proof of satisfying the
inf—sup condition is extremely difficult for a staggered grid. Our intention is simply
to approach the conaition. By placing the pressure node of interest exactly in the
symmetric position with the velocity nodes surrounding it, one can ensure that the
continuity is second order accurate in velocity. In the case of a non—uniform grid, a
velocity element has two asymmetric pressure nodes. The pressure approximation is
linear. For the case of a uniform grid, even though the pressure approximation is
seccnd order, past experience tells us that such a setup does converge. And above
all, the checker board effect is eliminated by the staggering.

After the justification of the pressure—velocity approximation, we can now
discuss the practical part of the scheme, which is the solution for the pressure.
Owing to the behavior of the Gauss—Seidel iteraticn, the pressure equation itself
needs special attention. Ii storage permitting, a direct solver is advised. In some
cases, the initial guess is not good and we have to combine a direct solver with an
iterative solver since the round—off error could destroy the convergence at the initial
stage of the iteration. To ease the storage requirement of a direct solver, we have
developed a 2—dimensional 5—point direct sclver based on block matrix inversion

without any pivoting The solution found by the direct solver is then used as the
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initial guess for the sweeping (iterative) solver combined with a tri—diagonal
algorithm.

Finally, we must apply some under relaxation when perturbing the pressure.
We have been successful in using self-adjusting relaxation factor in correcting the
pressure. The relaxation factor range is different from problem to problem. In
general, a more complex problem is iikely to require a smaller relaxation factor. The
relaxation factor in the pressure perturbation equation is, however, different from
that in the velocity field evaluation. Since the initial vaiue (before perturbation) of

the pressure perturbation is uniformly zero, the relaxation factor is introduced in

the following way:

Equation (2—21) can also be written as:
K-Ap = F,-PRH

where the pressure perturbation equation is arranged in the same manner as that for
the momentum equations. PIJK is a coefficient of the same type as that of ¢IJK,
the notation is the same as that of equation (2—10).

In the formulation above, we have directly linked the SIMPLEc and SIMPLE

in the pressure iteration. Qur approach towards the pressure correction is close to

that of SIMPLEc.
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2.6. NUMERICAL PROCEDURE

An important step for a numerical method is the execution of the solution
procedure of the discretized equations. This is a most time/space consuming step.
We adopt an approach that requires minimum storage while using as much direct

solution strategy as possible. The solution procedure is summarized as follows:

oy

. Initialize the velocity and pressure fields.

|2V]

. Discretize the domain as described in the domain discretization section.

3. Establish the matrices for the x; — momentum equation while keeping all the
other components and coefficient: unchanged as described in the formal
discretization section.

4. Solve the discretized equations through sweeping direction with a tri—diagonal

solver and update the velocity component for the purpose of the pressure

correction (step 6€).

5. Repeat 1~3 but for the x; and x; — velocity components.

=]

. Calculate the perturbation of pressure and update the pressure if the continuity is

not satisfied.

~i

. Repeat 2~6 for a given number of inner loop iterations or until a certain criteria is

met. Updating the velocity fie'd.

e ¢]

- Repeat 7 until the continuity is satisfied up to a preset tolerance at the first inner

loop iteration.

0

- Interpolate to obtain the desired values. Store the results and stop.

The inner loop (step 7) is necessary in order to separate the nonlinearity
from velocity—pressure coupling, especially when the Reynolds number is high and
the init'al guess is poor. If storage permitting, store the coefficient matrices and step

7 becownes 2 repetition of step 4 to step 6.
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2.7. SOME COMMENTS ON PRESSURE PERTURBATION AND 2-D SOLVER

The pressure correction equation needs more care than the momentum
equations. If the initial guess is smooth in error, the sweeping among three
dimensions with Thomas algorithm can fit the solution strategy quite well. If the
initial guess is poor, a direct solver becomes essential. Without using a direct solver,
even using the sweeping strategy may require hundreds of sweeps while still leaving
a marginal error. In some cases, it is even very difficult to have the error under
control.

When a good initial guess of the velocity field can be found and used, the
pressure perturbation alone may not be the best approach (Patankar 1980). A
Gauss—Seidel iterated velocity (pseudo—velocity field) can be used in the continuity
equation of the pressure correction equation so that the pressure can be solved
exactly from the given velocity field through the pressure correction equation (now
denoted as the pressure equation). In this case, a direct solver is a must.

To this end, we developed a two—dimensional five—point direct solver based
block matrices inversion. The full stiffness matrix is written in view of one direction,

say, i (index notation) with m grid points as follows.

A 6,0 ... 0
K —_ a2 A2 ﬁ? ... 0 (222/.
0 0 0 ... Ad

where, o; and ;s are vectors containing the off—diagonal terms (lower and
upper hand coefficients) in i—direction. Ays are the block matrices (again
tri—liagonal, but with only scalar quantities) of nxn, with n being the mesh points

of the j—direction. Ay’s are first inverted, so that the overall storage required is
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mxn’. The inversion of Ay’s is performed one at a time starting with A. A is
inverted as A, is appeared alone. When inverting A; (i # 1), the inverted A, i.e.,
A;:l,, must be used first to complete the forward elimination of the global matrix K,
that is, A;l = (A; — o; #,,; A;t))-!. After inversion, Ai’s become, in general, full
matrices of nxn. This solution strategy not only requires less storage than the band
solver, but is more economic as well. Since the pressure equation is solved
intensively, an efficient inversion of the matrix becomes essential.

When solving the pressure correction equation, the direct solver is employed
Arst to obtain a globally smooth solution. This solution is then used as the initial
guess to the sweeping algorithm. The sweeping algorithm is used to smooth the
round—off errors and reduce the global error. The pressure equation or pressure
correction equation solved in this manner will not have any difficulty in keeping the

convergence under control.
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2.8. NUMERICAL EXAMPLE 1.

Laminar flow in curved (toroidal) pipes

A numerical flow problem will be solved to demonstrate the use of the
proposed numerical scheme. In our group, the problem of laminar fluid flow in
helical ducts has been solved with a zero pitch i.e, a torus (Masliyah &
Nandakumar 1979, Nandakumar & Masliyah 1982, Sankar et al. 1988). We shall
treat this flow problem once again using the proposed numerical scheme.

The laminar fluid flow will be that of a developing Newtonian fluid in a torus
having a circular cross section. The momentum equations are parabolized in the
axial flow direction. A sketch of the coordinate set—up and the parameter scaling is

shown in Figure 2.5.

-
N

Fig. 2.5. Toroidal coordinate set up

(7]
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The Navier—Stokes equations are written in the generic toroidal coordinate
system. The radius of the pipe, a, and the average axial velocity, U, are used to

render the various variables dimensionless, that is,

where Re is the Reynolds number, Dn is the Dean number, Rc is the radius
of the coil, A is the curvature ratio, u is the dimensionless axial velocity, v is the
dimensionless radial velocity, w is the dimensionless angular velocity and the
primed variables are the corresponding dimensional quantities.

The dimensionless governing equations become

Continuity equation:

1 ou 1 N
B, s T ih; er T ih,

The general form of the momentum equations:

. 1
Ili'lg_s“uRe $) + Fh—l-%[rhl(vRe ¢ — %)] +

1 &, h
th, e W he ¢ - ;'1"?5) + d¢¢

w

For the various directions, the corresponding quantities ¢, d¢ and S¢ take

the form:

63

ag IhlV! 1 .a(g;w) =0 (2_23)

" (2—24)



s—momentum: ¢ =u

d, = vsinfd + Wcosﬁ)‘Re + A2

&y b3
_ 1 22X, BV aw
S¢ = —B_l'g}sz + B—;—(sm()-ﬁ + coso-ﬁ)

o onctem: =
Y
dp==v:
—_Yp . Asmnb o, w2 2)sinf qu 2 0w 2h,-1 .
Sp=" 7" ~-~(Tu +3) T hy '@ 1250 rhl Acosfw

f~momentum: ¢ =w

. \4 1 2}11‘-1

Acosf 2Acosf gu, 3h,~1 1
Z+R

- _ . v

where h,; is the metric coefficient, h, = 1 + A r sin4.
Together with the boundary conditions:
r=lu=v=w=0
p = 0 at a certair interior puiat (reference).

And the average u across t:¢ pipe is half a unit, i.e.,

j‘ll dA

. 05
J dA
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(2—25a)

(2—25b)

(2—26a)

(2—26b)

(2-27a)

(2—27b)



65

The secondary flow pattern is obtained when the flow is fully developed by

the following:
how =22 (2-28)
where 1 is the secondary flow stream function.

2.8.1. Domain Discretization

Since the domain is regular, we use undistorted non—uniform mesh to
maintain the best results. The three curvilinear directions are those of the three
coordinate axes. Since the governing equations are parabolized, the problem reduces
to a two dimensional problem with extra time—like variable in the axial flow
direction. Hence, the nodal arrangement thereafter is the same as that of a two
dimensional problem. A sketch of the nodal arrangement is shown in Figure 2.6.
Where p and u share the same grid points, w grid is placed symmetrically
surrounding each p grid point in the # direction while v grid points are placed to
symmetrically surround each p grid point in the I direction, i.e.,
0j = §(0J_H +6;) and 1, = $r_, + 1,). The index notations of I and J are used for
bookkeeping the mesh lines of the parallel velocity components of the directions of r
and 4 of the staggered grid.

On the boundary (pipe wall), the pressure grid point is not present. The v
grid is regularly placed (the same rule as that of the interior nodes) and w and u
are placed on the boundary as if half of the r mesh spacing was chopped. Thke nodal
layout is shown in Figure 2.8.

At the center of the pipe, the # direction is not defined. To avoid this type
of singularity, we simply avoid placing any grid point at ihe center. The resulting

mesh near the center looks as if a v node were present at the center. A sketch of
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such a setup is shown in Figure 2.7. When discretizing the nodes near the center,
the variables r, v, and w are assigned their opposite sign when referred cross the
center to the other side.

If we are to compute only half the domain, the horizontal line (0 = —% and
0= %) is the breaking line to form a pseudo—boundary, where the flow is
symmetrical. On such a symmetrical boundary, (u, p) and v grids are arranged
regularly and w grid point is absent. The conservational domain is, however,
symmetrically extended outside of the computational domain. A sketch of the mesh
arrangement is shown in Figure 2.9. This setup allows us to impose the following

type of weak symmetrical conditions easily:

Poprs=bgs 204 Wy io=—wW, o

where ¢ = u, v, p. However, the symmetrical condition for p needs not be imposed
in the pumerical computation. 6, is the angle of the symmetry —w/2 or #/2. §is
the angular incremental of the grid lines cross the symmetry line.

The global numbering of the nodes is shown in Figure 2.6. Locally, the
conservational domain is formed for the best interest of the computation. A sketch
of such setup for a v;; node is shown in Figure 2.10.

2.8.2. Formal Discretization

Since the governing equations can be written in the form of equation (2—8),

we need only :0 identify the decoupling. To illustrate the proposed method, we take

the r—momentum equation and discretize it at the node of v.. in a general

ij
undistorted non—uniform mesh. A sketch of the conservational domain is shown in
Figure 2.10.

The first step is to discretize in the axial direction by using a similar
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approach as that of Patankar & Spalding (1972). The final governing equation
(r—momentum) after discretizing in the s—direction and separating r and @

directions is shown as:

r(hd, 43 uY)y + E,, + E o= rJ J (b5, 428 uUyV)rdrdg (2-29a)

where

E = ————J {= ar[rh 1(v Rev — ——) —Q—h'LlRe}dr (2--29b)
W
and

é
1 h U Ia ¥
Evﬁ = mg JgN{g-o-['f‘l(rW Rev - %)] - a hlw Re}d0 (2'—29C)
S

The superscript U stands for the upstream, A, = (rE-rW)( 0N—05), the subscripts
E, W, N and S svand for the r increasing side, r decreasing side, 6 increasing side
and @ decreasing side of the conservational domain surfaces, respectively,
Tp = %(II + T, fw= D 0J+1, b = 0J and As is the axial step
size. The evaluation of the right hand side of equation (2—29a) is straightforward.
Discretization of equations (2—29b) is given in the Supplement of this Chapter.

The discretized v—momentum equation can be assembled from the individual
one—dimensional subproblems to yield:

VIJ; v.. + VMJ..v. .. + VPJ..v

ij vij ijvi-ij

pu pi‘l]
= VRH;; — ‘lhuj'ri,,2 —

+ VIM;;vy; + VIP v

ij 1+1_] ijvij- ij+1

(2—30)

where hle =14+Ar sin(?j and the coefficient matrix and the right hand

side are given in the Supplement following this Chapter.
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2.8.3. Pressure Perturbation
When the pressure field is perturbed by Ap, the velocity fields will result in
a change. To estimate the velocity change, we apply Gauss—Seidel iteration on the

discretized momentum equations:

thle Api*-lj - Apij

h 1i Ap" - Ap"-
_ J . ij ij-1

Hence, the resulting perturbed velocity field is:

new
Vii =V + Avij
new

By forcing the conuinuity equation to be satisfied, we can solve for the pressure

perturbation, i.e,,

S GGhav) - AW = — [ 92 4 Ashwv)  Abpw) (2-33)

With some unaer—relaxation, the above equation can be rendered to the standard
5—point module pressure perturbation equation after substituting in the velocity

perturbatic;:.:

PI1J;;Ap;;+PMIy; Ap; y+PPJAp; i+ PIMyAp,; +PIP, Ap;;,, = F,-PRH,
(2-34)
where
(rp by j )?

S (g I VI
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2
(z;hyy ;)2 h

PPJ.. = — ; PIM;; = — 1J
ij G (T TV ij (0 00,0, JWIT
2
PIP.. = — Bii341 . PRH.. = FLOWIN.. — FLOWOUT
ij OO0, W ij ij ij
U
h h T.u..
. —1 1I—1j 1—1_] 1i J 1 1]
FLOWIN;; = Fo + yHl_g + x5

rI rI 1 0 9J As

When a good initial guess in the velocity field is used, the pressure
perturbation alone is not the best approach to take for the pressure evaluation (see
Patankar 1980). Following the same method as that of SIMPLER (Patankar 1980),
we can solve for the pressure directly.

Although the pressure is solved by using the above strategy, SIMPLER type
pressure iteration is not recommended. Without the pressure perturbation, the
scheme would be like a simple iteration switching between various variables. The
simple iteration scheme is usually not favorable. Instead, the above pressure
evaluation is used only once to initiate the iteration for a few matching steps at the
start or after we disturbed the velocity field substantially.

The 2—-D solver we developed is especially useful in solving the pressure
perturbation equation. When using the sweeping strategy alone, we found that it is

extremely difficult to obtair convergence.

2.8.4. Termination of Iteration
The stopping criterion for the iteration is crucial in knowing the quality of
the solution obtained. At each iteration, we have controlled the solutions out of the

directional sweeping solver to a relative tolerance of 10-6. Hence the momentum
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equations are satisfied as long as the pressure field is correct.

In order to have a correct przssure field, the velocity field must satisfy the
continuity equation. This gives rise o a stopping criterion which is related to of the
continuity equation.

We use a normal relative error in continuity to define the error index as

follows:

2|PRH,; |
|FLOWIN,;| + |[FLOWOUT]|

y 1

i,]

2

RSD = —1d

where PRH;; is the error in the flow in and out of the conservational domain of pj;
and FLOWIN ij 18 the flow into the conservational domain. In this example, we set
the stopping criterion to be RSD <« 10-5.

A close look at the definition of RSD, we can see that RSD can be
considered as an estimate of the L, norm of the normalized continuity equation

error distribution.

2.8.5. Computational Results
Table 2.1 shows the grid dependence and the computational iime required for

the fluid flow development from a flat flow profile to the primary two—vortex

Table 2.1. Grid test for Re = 1723, A =1/ 30
Grid ul0x20fu nl10=20fu n15x24fu n20x28fu n25x32fu n30x40fu nd0=x48fu
fRe 38.30 37.42 35.82 36.38 36.10 36.24 36.19
cpu,s 3161.4 2954.9 6506.9 9646.8 19282.1 43150 123530+
‘Itlu'ce that the literature value found is fRe = 37.15 by Tarbell & Samuels 1972.

2000 axial steps are used for this case.
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Fig. 2.11 Mesh layout for nl16x14hn.

solution by a NeXT station for 1200 axial steps.

The grid notation used is given as aM=xNbe¢, where a=n stands for
non—uniform mesh in the radial directior, ae=u stands for uniform mesh in the
radial direction. M is the number of grid points in the radial direction. N is the
number of grid points in the peripheral direction, b=f stands for the full domain
formulation (no symmetry is assumed}, b=h stands for a half domain formulation
(the symmetry is imposed), c¢=n stands for the non—uniform mesh in the
peripheral direction and c¢=u stands for the uniform mesh in the peripheral
direction. A typical mesh nl6x14hn is shown in Figure 2.11. The non—uniform
mesh in the radial direction is accomplished by interpolating between the uniform
mesh in r and the uniform mesh in r2. The non—uniform mesh in the azimuthal
direction is made by choosing a fine uniform mesh in the outer wall region

(-Zl-wvr <8< »-13—-7r) with nearly half of the total mesh points. A coarse uniform mesh
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is used in the inner wall region ( — 7 < 6 < 0). The regions connecting the two
uniform mesh regions are uniform exponentially changing meshes to match the mesk
sizes at the ends. The change in mesh size is gradual to avoid extra error due to
mesh size change and is controlled by 0.5 < (Af); / (Af);, < 2.

In Figure 2.11, the mesh lines parallel to the peripheral direction are the
perpendicular mesh lines of the variable v and those lines parallel to the radial
direction are the perpendicular mesh lines of the variable w. The cells formed by
the mesh lines are the conservational domains for the variables of u and p. The
center of the pipe has no grid points. f#=—7/2 and 6= 7/2 lines are the
computational domain boundaries and not the perpendicular mesh lines for w.

To serve as a comparison, we choose A = 0.01 to generate some solutions to
compare with the literature where the loose coiling was used as that was done by
Nandakumar & Masliyah (1982).

Tzble 2.2 shows the grid dependence and the computational time required
for the flow developing from a geometrically disturbed straight pipe Poiseuille flow
to a secondary four—vortex solution with the axial steps of 1600. The literature data
for a loose coiling is also included in the Table 2.2.

From Table 2.1 and Table 2.2, one can observe that the proposed scheme

converges very well. The grid of n16x14hn is adequate for the four—vortex solution

Table 2.2. Grid test for Re = 1928.5, A = 0.01 i.e., Dn = 192.85
Grid nl0x12hu n10x12hn nl16x14hn n20x16hn n20x20hn n30x25hn n30x30hn
fRe  30.64 29.10 29.35 29.50 29.40 29.36 29.36
cpu,s 4563.7 6472.1 10936.3 17049.2 20946.8 49123.2 61480.0

Literature Grid fRe Da A
Dennis & Ng 1982 60x30 29.33 192.9 0.0
Yang & Keller 1986 60x20 29.34 192.8 0.0
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of Dn = 192.85, whereas in the literature, a very large number of grid points were
required despite their use of global interpolation (or collocation) in the numerical
discretization. Even the solution from the grid of n10x12hn is within the range of
1%. Owing to the location of the second vortex, the grid points concentrated in the
region of the second vortex have a better result than the uniform one for the case of
small number of grid points.

The solutions were found uct to be grid semsitive once the grid size is
sufficiently small as is shown in both Tables 2.1 and 2.2.

Figure 2.12 shows the secondary flow pattern of the four—vortex solution
used in Table 2.2. The numbers denote the 1 values of the secondary flow stream
function as defined by equation (2—25).

Figure 2.13 shows the axial velocity profile corresponding to the four—vortex

solution of Figure 2.12.
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Fig. 2.12. Four—vortex secondary flow pattern for Dn = 192.85 and
A = 0.01 for half of the flow domain.
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Fig. 2.13.

Axial velocity profile for the flow shown in Figure 2.12.
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2.9. NUMERICAL EXAMPLE 2

Square driven cavity flow

In the first example, we have shown the implementation of the proposed
method. To show more cleariy t% - convergence and the advantage of the 3—point
exponential scheme over 2—point a:iemes, we chose the problem of a square driven
cavity flow. The system setup and the boundary conditions are shown in Figure
2.14. The velocity components are normalized by the velocity of the moving plate
U, (located at the topmost), i.e., v = —%% and v = —[v]’% The gzonetrical variables
are normalized by the side length of the square, L, i.e., x = -—%— and y = —{—,

The governing equations are

ax ay
Re(2Ut g;’,“) . Z;‘% =- (2-35)
Re(fF + G- -fp=-8
Y
o1 u=1,v=0 1.1

0
0

> >
= | u <
1l
: :
X
(0,0) u=0,v=0 (1,0

Fig. 2.14. Square Driven Cavity.
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_ LU, __ Re
where Re——-—;— and P=%; .

Although a good approach to this problem would be to use a non—uniform
mesh, we choose to use uniform meshes for the sake of comparison. When a 2—point
interpolation function is used, the current method may be identical to a finite
volume method by a proper choice of the conservational domain for a uniform mesh.
The initial guess of zero is used for all variables in all cases.

Figure 2.15. shows the convergence rate of using different interpolation
functions. It can be seen that the 3—point interpolation schemes do not differ much
from the 2—point schemes in terms of convergence rate, except that the 2—point
exponential scheme showed difficulty at very low RSD.

Table 2.3 shows clearly the cpu time requirement of the various schemes by a
NeXT machine. The use of exponential functions does not increase the cpu time

dramatically. A small increase of less than 2% is observed for the case of 3—point

0
10 T ¥ 1 ¥ L
3-pointl exponential
10—1 3-point upwind
s 2—-point upwind
-2 2—-point exponentiial
107° | 3
= 3
-3 )
=10 ‘ | §
~4 » K I ]
10 SN
[ Re = 1000 iy
10~% | Grid 40x40 1

0 50 100 150 200 250 300

No. of Iterations

Fig. 2.15. Convergence rate of the proposed method.
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Table 2.3.

Re scheme

1000 2—p upwind
1000 2—p exponential
1000 3—p upwind
1000 3—p exponential
1000 3—p exponential
1000 3—p exponential

Mesh
40x40
40x40
40x40
40x40
20x20
80x80

ITER
278
300
266
284

69
765

RSD

1.0~10-5
4.4x10-5
9.1x10-6
9.6x10-6
9.7x10-6
7.9x10-8

ITER stands for the number of iterations performed.
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Cpu time requirement for various schemes and mesh.

cpu, s
5193.9
7238.7
6418.8
6528.8
550.6
111784.8

exponential over 3—point upwind which derived from equation (2—9) by specifying

Re - o.

Figure 2.16 shows the present solutions by utilizing uniform grids of 80x80

and 140x140 together with the 3—point exponential interpolation function. Results

from Schreiber & Keller (1983) are also included for comparison. From Figure 2.16,

we observe that the proposed method works fairly good.



80

1 M 1

current work, 80x80

[,
(o}

u(x,y) + 2x

current work, 140x140

Schreiber & Keller

0.0 |
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0.6 0.8

0.0 0.2
y

Fig. 2.16. Velocity profiles for u at Re = 1000 of current work with the

3—point exponential scheme and meshes of 80x80 and 140x140. The solution of
Schreiber & Keller (1983) with a grid of 141x141 and a stream function approach is

also included.



2.10. CONCLUSIONS

A first order non—conforming numerical method for fluid flow with a 3—point
exponential interpolation has been developed. It is achieved by decomposing a
multi—dimensional problem to multiple one—dimensional subproblems. The
multi—dimensional problem is first decoupled into multiple one—dimensional
subproblems upon discretizing. After assembling the multiple one dimensional
subproblems to form the algebraic equations, the resulting algebraic equations are
solved with a tri—diagonal solver iteratively. The velocity and pressure are
decoupled at each iteration using the pressure correction method of Patankar.

The accuracy of the traditional upwind / exponentially weighted schemes has
been investigated to compare with the proposed 3—point scheme for both
interpolation and consistency. It is found that the proposed 3—point exponential
interpolation scheme together with the multi—dimensional separating strategy
render a guaranteed first order comvergence. It is shown that the use of the
traditional exponential or upwind scheme renders a scheme less than first order
accurate due to the presence of numerical dispersion in the non—linear terms.

A two—dimensional direct solver has been developed with minimum storage
requirement (less than a band solver) and with a partial inversion strategy. It is
written for the best interest of the pressure perturbation equation.

The computational results for the laminar fluid flows in a torus and in a
square driven cavity show good agreement with the literature. The convergence rate
is similar to the traditional upwind schemes. The use of exponential functions do

not influence much the computational time.
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Supplement

Discretization of the separated r—directional r—momentum component can be

illustrated as follows:

(IE_rw)Evr =

U av U av
[thy(v Rev—30)] IE—[rhl(v Rev — E)]r=rw—vij (rghip Ve TwhiwVwIRe

U U
v (TeTo) + ovi(r —To)
where vE-:VUL__r — 141 EI I _ r:_] 1+1 "E and
TE 1+1 1
U U
v =w Tt 7 T

The subscript E and W are defined in the paper following equation (2—28).
The momentum fluxes at the conservational surface can further be written as

iollows:
U av
[Ihl(v Re v~ a—r)]rer = aEVi_lj -+ (rEhlEVERe —_ aE - ﬁE)vij + ﬂEViﬂj
u av
[th(v"'Re v — I?T)]r=rw = o Vi F (T VwRe — e By ) Vi + By Visy
Hence, the discretized one—dimensional module can be written as:

(rgTw)Evr = (Tghipop — Tygh g o ) Vi + (Fghypfy — Toghig B Vi —

[IEhlE(aE + ﬂE) - IWhIW(aW + ﬂw‘)]vij (2_81)

a and @s are obtained by using the interpolation equation (2—9). In this case,
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H=5n-1 ,H= 10 and Reu; = vliJjRe - Here the use of uppercase H is
to avoid any confusion with the metric coefficients. Owing to the numeric limitation
of the computers, we take Reu; = min{vli’j Re H,, 80.0} / H, To simplify the
notations, we use:

—I, =TI -—T

= ¢Y — _
a = v Re, b—Reui,H_rE . 1~ Tw

We apply the 3—point exponential interpolation equation (2—8) to obtain

H,(ePH —1)+H (¢ PH1y)

Hy(ePT2—1)+Hy(e PH1 )

av
[rhl(a.v —-é‘f)]r=rE = aEVij + aE(Vi§lj—'Vij) +

Hg(e—bH—l)——H (ebH 2 1)
Hl(ebH 2—1)+H2(e—bH1—1)

aE(Vi-lj"Vij -

bH1 ebH+ e_bH‘ -1
Hl(ebH"’—l)+H2(e_bm—l)

(viﬂj_vij) -

bH ¢ PH _ ePH2 +1 (Vi
H,(e®H2-1)4+H, (e PHig) " 7Y

“Vij)

Hence, we obtain

Hl(e 2—1) -+ Hz( e l-—].)
. (ag—b)Hy(ePH —1)-bH+ (agH-1) (e PHi) (2-520)

Hl(ebH"’—l) + Hg( e—bH‘—l)

Similarly,



-bH

3 o\ (bH,

o =(aw+b)Hz(eBH2 1)‘“’}5[1"(“wH__]tlﬂ)T 1(e D (2-52¢)
H (e’ 2-1) + Hy(e ~1)

ﬁw _ (a_w——b)Hl(ebH —1)—bH+ ( aWH—l ) (e—bH 1) (2—S24)

H(ePB2_1) 1+ H, (e 0Hug)

In the above expressions for a, §'s, we have taken care of the large Reynolds
number flow limit. When b -0, i.e.,, almost creeping flow, computationally
equation (2-52) is of ——8;- type. In order to avoid this numeric difficulty in the
computation, we take the limit of b~ 0 in equation (2—S2) to obtain the following

expressions for small Reynolds number flows:

(agH—1) (B—H;)-H

A = H,(H,+H:) (2-53a)
(a B—1) (H+H;)-H
(a.WH-‘."'l) ( H+H2)+H
Oy = H (A FH3) (2-53¢)

_ (ayBE+1)(B—H,)+R

w H(H,+Hy) (2-53d)

Equation (2—S3) can also be obtained by applying the quadratic
interpolation function, equation (2-10) instead of the exponential interpolation
function, equation (2—9). In practice, we can use equation (2-S3) when the cell
Peclei number bH;and bH, < 2.

One can discretize the other direction in the manner. The final discretized

r—-momentum is shown by equation (2—4), where the coefficients are defined as

follows:



85

VRH;; = Re (Arsing UZ + b W2) —
. U ;
Prging Uo — Ue 2 Wy = Ws (2 Acosf; W
b ; X3 0, - 9, VT ) cos
+1 J 113
1+2h113)‘r siné;
VL = TE = — VMJ; — VPJ;; — VIM;; — VIP;

113

r_h —r_h
VMJ; = -Z 1E%E whiw®w VPI.. —

rEhlEﬁE - rWhlwﬁw

— 3 i
Te = Tw §

l'E—-rw

U U
U ST + Uity uY uy(rri) + oug(rgT)
¢ Tive = Tin ’ c Tisg — T i
WN + WS wij+1(r1 Tie) + Wi zylh'nz rI)
w =3 W, =
c N Yisg = T4y

_wij(rl'“ri"l) + Wi-1j(1'i+2"r1)
S ri+2 —_ ri*l 3

and VIP;; and VIM;; are similar to VMJ;; and VPJ;;.
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Chapter 3.
Axdially-Invariant Laminar Flow in Helical Pipes
with a Finite Pitch

Part 1. Theory and Loosely Coiled Pipes
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3.0. SUMMARY

Axially—invariant incompressible flows of Newtonian fluids in helical pipes of
constant circular cross—section with a finite pitch and a radius of coil are formulated
and numerically studied by the Separation Method. The loose coiling analysis leads
to two dominant parameters, namely Dean number Dn = Re yA and Germano
number Gn = Re 7, where Re is the Reynolds number, A is the normalized
curvature ratio and 7 is the normalized torsion. When studying the importance of

the Germano number effects on the helical flow of large Dn, a third dimensionless
Gn

; — — 7 — 7
group is evolved, v = = .
Dn3/? v A Dn A3/4Ret
For Dmn < 20, the group 'y* = 'an =1 — becomes the
Dn vA Dn ARe

controlling parameter governing the flow transition between one— and two—vortex
flows.

Numerical simulations with the full Navier-—-Stokes equations confirmed the
theoretical findings. It is revealed that the torsion effect on the helical flow can be
neglected when < < 0.01. The critical value for which the secondary fiow pattern

changes from two vortices to one vortex is 'y* > 0.039 for Dn < 20.
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3.1. Introduction

Laminar flow in helical pipes of constant circular cross—section is of practical
importance in many branches of engineering in which pipe systems are used for
transport and treatment of gases and liquids. The problem of the flow in a toroidal
pipe, i.e., a helical pipe with a zero pitch, was dealt with extensively and drew great
interest after the initial work by Dean (1927 & 1928). Most of the studies dealing
with laminar flow in a torus concentrated on the limiting case of loose coiling where
a/Rc approaches zero. Rc is the radius of the coil and a is the radius of the pipe.

The mathematical limit of this case is of great interest as the flow is governed by a

single parameter, namely Dean number, D = g—ﬁ—%i(%%)l/ 2 with the axial pressure
gradient G, fluid density p and dynamic viscosity of the fluid u. Several different
versions of Dean number have been defined. Since D involves the pressure gradient
G, it is hardly a physical controlling parameter to be considered for a flow problem.
A more common version of Dean number is defined by Dn = Re ya/Rc, where Re is
the Reynolds number. For details, the reader is referred to the review articles
dealing with the flow in a torus by Nandakumar & Masliyah (1986) and more
recently, Berger (1991).

One of the interesting features of the flow through a toroidal pipe (torus) has
been that dual or more solutions appear if Dn exceeds a certain critical value. It has
been a challenge to compute the secondary solutions. The stationary four—vortex
solution with the symmetry prescribed was obtained accidentally by Dennis & Ng
(1982) and Yanase et al. (1989); through gradual geometrical change by
Nandakumar & Masliyah (1582) and Daskopoulos & Lenhoff (1989) and with the
method of continuation by Yang & Keller (1986). Nandakumar & Masliyah {(1982)
documented the flow properties with Dn and Rc. Doubts are shadowed on the work

of Daskopoulos & Lenhoff (1989) and Yanase et al. (1989), in which the spectral
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method was employed to solve the bi~harmonic type stream function equation. Not
only is it difficult to justify any conditious at the center of the pipe to be imposed
by a numerical scheme, but spuricus modes appear (Daskopoulos & Lenhoff 1989) as
well. Additional solutions ave also presented by Yang & Keller (1986) and
Daskopoulos & Lenhoff (1989) without the confirmation of each other. The
characteristics of the develcping flow is, however, still unknown.

Laminar flow in helical pipes of finite pitch was treated less extensively.
Starting with Truesdell & Adler (1970), suggestion was made that an appropriate
approximation might be obtained by replacing the curvature for a toroidal pipe by
the curvature for the helical pipe under consideration, at least for coils of small
pitch. This was continued by Manlapaz & Churchill (1980), who assumed the effects
of non—orthogonality to be negligible in the limit of small pitch. Non—orthogonal
helical systems were studied by Wang (1981) and Murata et al. (1981). Owing to
the non—orthogonality of the coordinates, one must be specially careful in
interpreting their results. To avoid the complexity associated with the
non—orthogonal helical coordinate system as that noted by Murata et al. (1981),
Germano (1982 & 1989) introduced a helical orthogonal coordinate system.

The complexity of the system drew many different explanations. Often
apparently opposing results were obtained, which were resolved by Tuttle (1990).
Wang (1981) found that for Re = O(1) the torsion effect on the secondary flow is of
O(n). However, Murata et al. (1981) and Tuttle (1990) found that the torsion effect
on the secondary flow is of O(A7). Germano (1982) stated that the torsion effect is
of second order. In a later study, Germano (1989) found that the pipe torsion
influences the secondary flow through the dimensionless group 7Re (denoted by T
in his paper) for a non—circular geometry. For a circular geometry, Germano stated
that no pure torsion effect of any order is to be expected. Kao (1987) found that

7)-(2)\)_§ is a controlling pararneter determining whether the torsion can exert a 1%
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order effect and that for A > 0.4 the nonlinear interactions become important.

For Re = O(1), Wang (1981) found that the two recirculating cells become
one when 7/ARe>1/24. The two recirculating cells (vortices) were in an
up—and—down position when the helix axis is vertical. Kao’s attempt to compute
four—vortex type solutions failed. The state of understanding of laminar flow in
helical pipes with finite pitch is relatively immature especially for large Reynolds
number flows, where little work has been done.

The representation of the secondary flow is controversial, although Tuttle
(1990) stated that the (pseudo—) secondary flow stream function is preferable.
Murata et al. (1981) and Kao (1987) stated that no stream function—like property
exists, which results in that the velocity vector plots must be introduced to
represent the secondary flow. Wang (1981) was able to define a (pseudo—) secondary
flow stream function using the physical covariant velocity components in the
non—orthogonal coordinate system. This pseudo—secondary flow stream function was
used by Germano (1982 & 1989) and by Tuttle (1990). However, Germano (1982 &
1989) preferred to present the secondary flow with the orthogonal velocity vectors.
Wang (1981) and Tuttle (1990) presented the secondary flow with the
pseudo—secondary flow stream function. Tuttle (1990) further qualified that ihe
pseudo—secondary flow stream function is indeed a stream function property. Hence,
as far as the secondary flow pattern is to be concerned, the pseudo—secondary flow
stream function is a better choice than the orthogonal velocity vector.

However, one strong argument against the use of the pseudo—secondary flow
stream function is that the value in the pseudo—secondary flow stream function can
not represent the secondary flow strength when the torsion of the helical pipe is
important. Germano (1989) noted that there is no pure torsion effect on the helical
flow. The flow in a twisted straight full circular pipe is of Poiseuille type. The

artificial torsion in the straight pipe results in an artificial swirling secondary flow.
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Although the pseudo—secondary flow stream function can present the rotation
imposed by the “wisted straight pipe” setup, the true secondary flow strength
should be zero. However, the orthogonal velocity vectors cannot represent this setup
as one is interested in.

In this study, the Separation Method (Chapter 2, or Liu & Masliyah 1992) is
used to solve the problem of laminar Newtonian fluid flows in helical pipes having a
non—zero pitch. The flow simulations are made with the Navier—Stokes equations
constructed from the orthogonal helical coordinates after Germano (1982). A scale
analysis is performed for the limiting case of loose coiling and the dominant
dimensionless groups are identified. The argument over the representation of the

secondary flow should be left for Chapter 4.
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3.2. Mathematical formulations

A coordinate setup of the helical system is shown in Figure 3.1.

X X{
TBC: i B
s
N=—5=0
% ............. A cee- O/ - ’R"F’ X/
......... A.... 2
X P
/ Xy

Fig. 3.1 The helical system set up.



A helical system can be established in reference to the master cartesian

coordinate system 32’ (x}, x3, x3) and the local vectors originated on the generic

curve of the helix as follows:

R = (Rc cosyp, Rc sing, B s) (3-1)

+  dR .
T=q = (— vsRc sing, ykRc cosyp, B) (3-2)
N = 1 dg% = (— cosp,— siny, 0) (3-3)
B=TxN= (B sing, — B cosy, VxRc) (34)
o = > (3-5)

\/Rc2 + (H/27r)2

Where B = (H/2r)//RcZ+ (H/27)% R is the global coordinate vector at the point

of consideration O on the generic curve; the generic curve is the track of a particle
moving along the center of the cross section of the helical pipe; T (shown as ¢ in
Figure 3.1); N and B are the tang -+ ., normal and binormal to the generic curve at
the point of consideration on the generic curve respectively; s is the curve length
along the generic curve; k and 7 are the curvature and torsion; Rc and H are the
radius of coil and the pitch of the helix respectively. The orthogonality of a helical
system can be achieved by rotating the basis formed by B and N around the s axis.

A given point in the pipe can be mapped to the master cartesian system as

follows:

%’ = R + rcosf’ N + rsinf’ B (3-6)
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The metrics for the transformation are given by

ox! ox/
k k
gij =" (3_7)
da; da,
where q, =5, q, =T, q = 0 and 8 = 0’ + 1(s). The basic equations of the curve
theory
N — 7B — wT (3-8)
and
dB — _ = (3-9)

can be applied to derive the metrics of the orthogonal helical system. Here the

curvature ratio is defined as

Re ( )
K= 3-10
RS + (H/27)?
and the torsion is given by
H/27
T=— 5 (3—11)
Re® + (H/27)
By forcing g;; = 0, for i#j,1,j=1, 2, 3, we obtain the metrics:
h, =g/2 =1 + srsiné
178 <
— o1/2 _
By =8y =1 )
_ 12 _ (3-12
hy=gg =T
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where 0= 0’ —7s, (s, r, 6’) and its corresponding rectangular coordinates (s, x
Yo) are orthogonal. For details, the reader should refer to Appendix A.

The governing equations are first derived in the orthogonal system (s, r, 0")
and transformed to the non—orthogonal system (s, r, ) leaving the velocity
components untouched. The transformation is necessary to eliminate the
s—dependent coefficients and variable ¢’ — s which always appears in place of 0.
This allows an axially—invariant solution to be realizable if it exists. The variables

are non—dimensionalized in the following manner:

Where a is the radius of the pipe, U is the average axial velocity, t is
time, v is kinematic viscosity, u is the axial velocity component (o:thogonal
s—directional component), v is the radial velocity component (r—direction), w is
the angular velocity component (orthogonal ¢‘—directional component), A is the
curvature, 7 is the torsion, Re is the Reynolds number, p is the pressure. The
primed variables are the dimensional quantities.

The final governing flow equations, after all the necessary substitution and

rearrangement, become:

The continuity,

}171{?92‘ T39) + 'h“ Al T Abw) — o (3-13)

where h, is the metric coefficient in the axial (s—) direction and it is given by
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h,=1+ Arsinf (3-14)
The general form of the momentum equations,
(M + dg)b = Sy (3—15a)

Mo=R+ i Lmen—nrho LB+ L2 ,.,r[rh (Re v —5D) +

o SfRe(hs w —nr w21 + % + 2978

(3—15b)
where ¢ stands for any velocity component, M denotes the momentum operator.
The individual momentum equations are obtained by a specification of the velocity
component ¢, extra diagonal term d¢ and the source term S¢.

s—momentum

¢=u (3-16a)

d¢ - vsiné -}+1- wcosf A Re + T/}% (3-16b)
oy

1 av ow ow
nﬁP) + 52{2) sing(%¥ 55— Tag) T 2Acosb(Zo — ngp) +

1
h \os
Anco 0 _ Ar+sing
h > Ihslm Arw] (3—16¢)

r-momentum

d=v (3—17a)
d¢ -1 -;—21211%1)\rs':'110 (3-17b)
S¢= QE+ Re(Asmﬂ 24 ) 2_/}%1%_1@_0(% au) +_ﬂ%§§—

%2 %Wbl - %Accsé)w (3—17c¢)
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f~momentum
dy=Rel+ 1%()\2 + 2l (3—18b)
__9 Accs8 ,  2Acosfou __duy _ Ar+sind
S ="%90 TR, W~ TRy (s a0 T 13 AT H
3h-1 av 1
I'-ZH%— FT + ;Hg/\COSOV (3—18(2)

The boundary is defined by the pipe wall. Although a numerical scheme with
a polar coordinate system would prefer to have a condition set at the center of the
pipe, there are no conditions that can fit such a need. We can only say that the
properties are continuous at the center. Hence, the center point of the pipe is simply

an interior point of the computational domain and is not treated differently. The

boundary and necessary conditions are:
u=v=w=0 atr = 1;

p = 0 at one reierence point inside the computatioral domain;

27 1
J dﬂj r u dr 1
0 0

= (from the nondimensionalization) (3-19)

m

When the flow reaches the fully—developed (i.e., axially—invariant) stage, the

transverse velocity field can be represented by a field scalar quantity, ¥, as follows:

thy = —2¥ (3-20a)

hw — 7ru = -g-"f (3—20b)
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To the same extent as ordinary two—dimensional flows, the field scalar quantity ¥
can be called the pseudo—secondary flow stream function. To compute the
pseudo—secondary flow stream function, we integrate equation (3—20b) after the
velocity field is obtained.

The contour presentation of the numerical simulations can be explained as
follows with the setup shown in Figure 3.2. The scales are shown on the rectangles.
The directions are indicated as x and y of the non—orthogonal ccordinate cystem.
However, the directions x and y and the other texts, such as inner wall, outer
wall, etc. and pipe origin are not shown on the actual contour plots. The same
directions are implied by the seiup. The pipe boundary is shown as a full circle. The
contour lines are equally spaced in the variable of interest (the axial velocity u, the
pressure p or the pseudo—secondary flow stream function ), unless otherwise

specified.

Upperjwall
23
E - 3
I ©0) 5
= 'S
Lowerjwall

Fig. 3.2. Orientation layout for contour plots.
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3.3. Loose coiling analysis

The formulation of the flow in a helical pipe indicates that there are three
dimensionless parameters involved, namely, the curvature ratio A, the torsion 7z
and the Reynolds number Re. To identify the dominant parameters, we consider

loosely coiled pipes under high Reynolds number, i.e.,
A-+0 and 7-0, while Re=+ 4o, A #0

The above loose coiling conditions can be obtained by having either a large
radius of coil Rec or a large pitch H. Under the above conditions, we can rearrange

the governing equations to obtain the dominant parameters. Let’s introduce the

following rescaled velocity field:
u,=u, u,=Rev, u;=Rew, P=Rep (3-21)

The above rescaling is necessary since for a smaller )\, the secondary flow
field is weaker for a given main flow, i.e. Re = fixed. For a fixed secondary flow and
A -0, Re - o, the above rescaling can make the new secondary flow field variables

to be comparable with the main flow field variables.

In this study, our focus is on the axially—invariant flows. Hence, we omit the

axial variation and introduce the following pressure gradient parameter:
G=-2 (3-22)

For A -+ 0, 7- 0 and Re - +o, we obtain:

The metrics of the axial axis: h; =14 Arsinf -1
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The continuity:

du; , 1 d(rup) , 1 duz _
~Rengg + =5 ti a0 (3-23)

Momentum eguation:

(M + d¢) ¢ = S¢ (3—15a)

& 10 & 10 18

M¢ = a + ;E[r(uz ¢ —E;)] + ;’6—0[(“3 —Renru)— ; 5—0]
(3—24)

s—momentum
¢=u, d¢ =0, S¢ =G (3—25)

r—momentum

¢ 4= S Xt RePsingu? us Amcost, — nr
= u,, = —, = ——+ sinf u] + — 4+ ReAncosbu, — —-—
2 ¢ 12 ¢ or o g2 ao
(26)
f—momentum
u, 1
¢ = U3 d¢ = —+ L (273)
r r
JP 2 0u,

S, = —— + Re®Acosf u> — Re(Ar+sind Amu, + — — 27b
4=  ~ ReQur+sinddm, + - — (27b)
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From equations (3-23) ~ (3-27), we can see that four groups emerge:
namely, Re 7, Re2)A, Ren A and Re A275. The latter two groups are of lower
magnitude for A-0, 7-0 and Re- +wo. The two groups that are of higher
magnitude are Re  and Re?)\. The first group can be identified as the contribution
of the ‘¢wisting” forces in a helical pipe and the second group can be related to the

centrifugal forces. We define the first group as Germano number, Gn, where

2(z7)
Gn = Re 7= Re (3—28)
RS + (55

Since the “twisting” forces that make a rotating fluid element twist are proportional
to an2 and the viscous forces are proportional to Ea—U— , it follows that the
Germano number Gn is a direct measure of the ratio of the “twisting” forces to the
viscous forces. In other words, Germano number is a measure of the torsion effect.
When Germano number Gn is small enough to be negligible, the helical system
reduces to the Dean problem.

We define a generalized Dean number as

Dn:Re,/X=Re[

a Rc 3
] (3-29)

Rc? + (;—7?)2

The parameter Dn is sometimes referred to as Helical number (He) or a
modified Dean number in the literature. For simplicity, we will refer to it as the
Dean number. In the limiting case of H =0 (7= 0), Dn becomes exactly the same
as the Dean number defined by early investigators. Since the inertia forces are
proportional to pU2, the centrifugal forces are proportional to pAU2 and the

viscous forces are proportional to &ag’ it follows that the square of the Dean
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number, as it appears in the equations, is a direct measure of the product of the

ratio of the centrifugal forces to the viscous forces and the ratio of the inertia forces

to the viscous forces. The centrifugal forces make the fluid element move toward the

outer wall. To bring the fluid element back toward inner wall, the viscous forces

take the effect at the inertial and the centrifugal forces regligible region (near the

wall). Hence, the flow Dean number is also measure of the secondary flow strength.

After introducing Germano number and the generalized Dean number and

making the loose coiling assumption, the reduced flow equations become:

The continuity,

1 4(ruy) +1 1 9(u;z — Gn r uQ
T or

Momentum operator,

& 190 o 10 15
Mp=—+ ——Jr(u,¢——)] + —-—[(u;—Gnru) ¢ ———
ot r or 2 or r 90 [ 3 ) T 60]
s—momentum
¢ up d¢ ) S¢
r—momentum
A 1 &P u? 2
= u,, d, = —, =———+Dnusm0+ + —--—
2 ¢ 2 ¢ ' r r2 a6
é—momentum
u, 1 op
¢ = u,, ¢—-——+r2 ¢=—5-5+Dnu1cos0+—2—

(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

104



105

Hence, from equations (3—30) — (3—34), we observe that only two newly
defined parameters Gn and Dn are present in the governing flow equations. It is
now obvious that, if Germano number is negligible, the loosely coiled helical

problem reduces to the original Dean problem.

It is of interest to note that Germano number always appears in the form of
(u; —Gnr u,) as seen from equations (3—30) ~ (3—34). Since the norm of u, and
u, are functions of Dn, it becomes necessary to relate the Germano number and the

Dean number in order to find out when the Germano number is important. To fulfill

this task, we let

£=u;—Gnru, (3-35)

where £ can be considered as a body-centered angular velocity component. As noted
by Tuttle (1990), ¢ is a transverse velocity component defined by the
pseudo—secondary flow stream function . Although £ is not an orthogonal velocity
component, it is nevertheless the momentum / energy advection velocity in the
azimuthal direction. Hence, the importance of the Germano number is to be
detected from the momentum equations. We apply the M operator as defined by

equation (3—31) on equation (3—35) and take the norm of both sides, we obtain
| IM&]| = || Muy — Gn Mru,|| (3—36)
From equation (3—34), we have
| IMuy|| = |1S,, || « Dn® (3-37)
From equation (3—32), we have
[ IMru, || = [frS, || « G (3—38a)

Since the normalized pressure gradient G « Dn? for large Dn and negligible



torsion effect, see Nandakumar & Masliyah (1986), equation (3—38a) becomes
||Mru,|| « Dn? (3—38b)

The absolute values of individual momentum norms are not of concern. However,
the relative order is important to elucidate the significance of Gn. Combining

equations (3—36) — (3—38b) yields
||M¢|| = A(Dn? — A, Gn Dn?) (3—39)
or

||M¢|]| = A, Dn%(1 — A, Gn Dn™%/2) (3—40)

Hence, the importance of Gn for a given Dn becomes obvious from equation
(3—40). In order for the Germano number to have a noticeable influence on the
helical flow field, Gn Dn~¥/? must be large, the magnitude of which is to be
determined by the flow field simulations. "o account for this relative importance,

we define a new helical flow group v

—_Gn _ n
¥= Y
Dn v X Dn

(3—41)

It is now obvious that the Dean problem becomes a special case of the loose
coiling approximation with 7 << 1. Note that the analysis is based on the premise
that the secondary flow is present, i.e., centrifugal forces cannot be neglected.
Hence, we would hope to qualitatively describe the helical flow field with the Dean
flow (toroidal flow) field in the limit of

A-0, Re>0(O %) and -0 (3—42)

where Re > O(/\—l/ 2, reads that Re is of order greater than A_%, which means

that the Dean number is large. v+ 0 means that the Germano number is very small

106



107

as compared with the Dean number. It is understood that the curvature ratio can be
small but not identically zero, at which the pipe is straight.

The expression for v at large Dn was determined using the fact that G is
proportional to the square root of Dn. The uniqueness of 4 to govern the torsion
effect on the helical flow is expected to fail when Dn is small. For very small Dn, the
axial pressure gradient is relatively constant with respect to Dn. Hence, the
equation (3—38a) must be reconsidered to reflect the variation of G with Dn at low
Dean number flows.

Using the fact that G is relatively constant for small Dn flows, equations

(3—36) ~ (3—38a) can be combined to yield
* * 2 * _2
| IM£]| = A, Dn“(1—A, Gn Dn™ ) (3—43)

where * denotes small Dn. Hence, for very small Dn the torsion effect is governed by

7 =S = 77Dz = T Re (3-44)
It is not surprising that for low Dn flows, the parameter 'y* turned out to be the flow
transition controlling group as was found by Wang (1981).

For large Dn flows, it is then expected that < would characterize the
transition from a torus—like flow to a swirl-like flow. For small 7, the flow is
torus—like and for large 7 the flow is swirl-like (or saddle flow, Germano 1989). For
a given helical pipe geometry, i.e., fixed # and A, equation (3—41) indicate that the
type of flow is then influenced by the flow Dean number. For large Dn, 7 becomes
small and hence the flow should be a torus—like type. On the other hand, when Dn
is small, 7 becomes large and the flow can be of a swirl-like (or saddle flow) type.
The torus—like flow can be identified as a two—vortex flow and the swirl-like is a
one—vortex flow. Such profiles may be found in Wang (1981) and Tuttle (1990) for

small Dn flows. Similar arguments can be stated for 'y*.



It can be drawn from the above derivation that < is proportional to
QED-I%—I}E. It follows that the flow pattern transition parameter 7 is a direct measure
of the product of the ratio of the twisting forces to the centrifugal forces and the
ratio of the viscous forces to the inertial forces and the ratio of the flow driving
forces to the inertial forces. This physical implication of v makes it clear that when
v is large, the centrifugal forces and the inertial forces become less important.

Hence, similarity of helical flow structure is expected to relate to < rather than 7 or

Gn when the torsion effect is of concern.

108



109

3.4. Numerical Results and Discussions

The numerical method used here is the Separation Method of Chapter 2 (or
Liu & Masliyah 1991). The advaantage of this technique is that a m—dimensional
problem is divided into m one—dimensional subproblems upon each treatment. The
spurious pressure modes are eliminated by a careful nodal and interpolate
arrangement. For details, the reader is to refer to Chapter 2 (or Liu & Masliyah
1992). The mesh size used in the computations is: n25x26fu for Dn < 20 and
Dn = 50, n25x32fu for 20 < Dn < 1000, n60x40fu for Dn = 2000 and n100x50fu for
Dn = 5000, unless otherwise mentioned specifically. See the appendix for the
nomenclature. It should be stressed that all the numerical results are based on the
governing equations with the full range of A and 7, i.e., no loose coiling is
introduced to the governing equations.

In this Chapter, we focus on small torsion and small curvature ratio

(including loose coiling) helical flows. The large torsion and curvature ratio effects

are treated in Chapter 4.

3.4.1 X and 7 effects on helical flows of Dn = 100, A < 0.01, < 0.01.

It has been shown analytically in the previous section for loose coiling
analysis that under the conditions of A -0, v+ 0 and Re > O(.X_l/ 2), the Dean
number (Dn = Rey/}) has the dominant effect on the axially—invariant flow
behavior. In this section, selected numerical simulations will be made to reveal the
significance of Dn.

The solution characteristics for small torsion and small curvature ratio

helical pipes for Dn = 100, A < 0.01 and < 0.01 are shown in Table 3.1. fRe is

defined as



fRe=——4%§=_:@E§RI_ (3—-45)
pU2ds’

where f{ is the Fanning friction factor. u,,, is the axial velocity at the center of the
pipe, Wy, Tmax and 0, are the maximum axial velocity and its location. p,,, and
Ppip 3r€ the maximum and the minimum (infimum) pressure differerce from the
pipe center across the pipe.

It is clear from Table 3.1 that the numerical results show good agreement

with the theoretical analysis. The axial pressure gradient fRe, u,,,, u

T and

max? "max

0.« are relatively constant at a given Dn value despite the changes in Re, A and 7.

Owing to scale difference in the pressure and the pseudo—secondary flow stream

Table 3.1. Helical flow properties for Dn == 100, 7 < 0.01, and A £ 0.01.

Rc H 7 100y fRe wu,, u )

max max max Pmax “Pmin

for A = 0.01, Re=1000
100 0 0 0 23.90 .6306 .8755 .6110 1.571 5.348 1.666
99.99 6.283 .0001 .01 23.90 .6305 .8756 .6110 1.570 5.348 1.666
99.01 62.21 .001 .1 23.90 .6305 .8756 .6111 1.567 5.344 1.665
96.15 120.8 .002 .2 23.91 .6305 .8756 .6110 1.562 5.349 1.665
80 80r .005 5 2391 .6304 .8755 .6110 1.549 5.352 1.664
50 1007 .01 1 23.92 .6301 .8750 .6111 1.527 5.363 1.660

for A = 0.0025, Re=2000
400 0 0 0 23.85 .6301 .8783 .6130 1.571 2.693 .8251
320 320r 0.5 .25 23.85 .6301 .8783 .6130 1.560 2.694 .8251

for A = 0.000625, Re==4000
1600 O 0 0 23.83 .6300 .8790 .6135 1.571 1.349 .4117
1280 12807 0.5A .125 23.83 .6300 .8790 .6135 1.565 1.349 .4117
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function, the values of p, ., and p,;, presented in Table 3.1 are different as X\
changes. Had we rescaled the secondary velocity and pressure fields by multiplying
them with A™*/2 or Re as that was indicated in the loose coiling analysis section,
all the quantities in Table 3.1 would look almost identical, irrespective of the
individual values of A and 7. This is obvious by comparing the product of the
pressure and Re for different values of Re.

Under the condition of loose coiling and small v, Figures 3.3 to 3.6 show the
contours of various flow characteristics of the flow in a helical pipe. The Dean
number is Dn = 100. The range of A, n and « is similar to that shown in Table 3.1.
In all the cases, the flow patterns are very similar indicating once again that as long
as the loose coiling approximation is met and 4 < 0.01, the flow corresponds to a
torus—like flow.

For example, if one is to compare Figures 3.3d—3.6d for a helical pipe having
a geometry of a torus with Rc=400 with the respective Figures 3.3e—3.6e for a
helical pipe having Rc = 320 and H = 3207, one would notice similar flow behavior

even though the second case has H/Rc = . In all cases, a = 1 is implied.

3.4.2 Dean number effect on helical flows of a fixed pipe geometry.

To proceed with the examination of the Dean number effect on the helical
flow, the solution properties for small torsion helical pipes with various Dean
numbers and helical geometries are shown in Table 3.2. Ap, .. is the maximum
pressure difference across the pipe. For a comparison, some friction factor values
from the literature are listed and denoted by fRe,prv.

In the limit of zero pitch, 7 = 0, i.e., for toroidal flow, one calculation is
made with the same conditions as that of Truesdell & Adler (1970) at Dn = 122.9,
A = 0.01, n = 0. The agreement between our result and that of Truesdell & Adler

(1970) is relatively good, with a deviation of about 2%. More comparisons are made



with the study of Austin & Seader (1973). It is found that at small Dn, the results
are in better agreement with those of Austin & Seader and Manlapaz & Churchill
(1980). However, the results of Austin & Seader are on the higher side and the
results of Manlapaz & Churchill are on the lower side. To compare with the more

accepted fRe values, we calculated the case of Dn = 371.4, A =0.01, =0 to

Table 3.2. Dean number effect under small torsion

Rc H Re A 7 100y Dn fRe uy,, Apy,, fReprv
16 4 .9588 .0624 .0025 4%*15 .2395 16.00 .9999 .0493
16 4 1.103 .0624 .0025 3*606 .2756 16.00 1.000 .0567

100 100 3.835 .0098 .0016 4*15 .3787 16.00 1.000 .0308
100 100 4.414 .0098 .0016 3*606 .4359 16.00 .9999 .0354
50 500 38.35 .0057 .0090 4*15 2.882 16.00 .9999 .1786
50 500 44.14 .0057 .009G 3*606 3.321 16.00 1.000 .2055
20 400 76.70 .0045 .0143 4*15 5.140 16.00 .9998 .2834
20 400 88.27 .0045 .0143 3*606 5.916 16.01 .9989 .3263

4 40 38.35 .0708 .1126 4*15 10.20 16.13 .9950 2.222
4 40 44.14 .0708 .1126 3*606 11.74 16.18 .9947 2.555
4 2 1.003 .2484 .0198 7*333 .5 15.98 1.002 .2111
4 2 1.918 .2484 .0198 4*15 .9557 15.98 1.002 .4035
4 2 2.006 .2484 .0198 3*966 1 15.98 1.002 .4221
4 2 2.207 .2484 .0198 3*606 1.1 15.98 1.002 .4642
4 2 2.408 .2484 .0198 3*305 1.2 15.98 1.001 .5064
4 2 4.013 .2484 .G198 1+*983 2 15.99 1.001 .8434
4 2 8.026 .2484 .0198 *9916 4 16.02 .9992 1.683
4 2 10.03 .2484 .0198 1.774 5 16.05 .9978 2.110
40.00 2 200 .025 .0002 .04 10 16.08 .9980 1.307
4 2 20.06 .2484 .0198 1.254 10 16.40 .9641 4.128
40.00 2 300 .025 .0002 .0327 15 16.29 .9957 1.954

20 20r 300 .025 .025 4.082 15 16.30 .9939 1.956
5 5 50.98 .1951 .031 1.479 22.52 17.54 .9475 7.883 17.541
4 2 50.16 .2484 .0198 .7931 25 18.03 .9288 9.749
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Table 3.2. Dean number effect under sma’! torsion, contd.

Rc

100
100
10
10

100
80
50
10

3.846
3.448

40

9.06
4

4
3.974
3.846
3.448
2
9.06
3.974
3.974
3.448

Note,

5. Austin & Seader (1973).

H Re A

2 100.3 .2484
2 200.6 .2484
0 1003 .01

0 122.9 .01

5 468.9 .0994
0 468 .1
2.5 543  .1987
2 501.6 .2484
0 3714 .01
80w 3714 .01
100r 3714 .01
10 12956 .0975
2 1003 .2484
4.833 1000 .25
8.666 1000 .25
47 1000 .25

0 3957 .025
5 1648 .1951
0 2500 .1104
2 2006 .2484
0 2000 .25

2 2000 .25
4.833 2000 .25
8.666 2000 .25
4 2000 .25

0 3034 .1104
2 4000 .25

2 10000 .25

8.666 10000 .25

n

.0198
.0198
0
0
.0079

.0158
.0198

005
.01

.0155
.0198
.05

.1

.25

0

.031

0

.0198
0

.02

.05

1

.25

0

.02

.02

1

100y

.5609
.3966
0

0

.2061
0

.2278
.2508
0

.2594
.5188
.2468
1774
4472
.8944
2.236
0

.2602
0

.1254
0

.1265
.3162
.6324
1.581
0

.0894
.0566
.2828

DDn

50
100
100.3
122.9
147.8
148.0
242.1
250
371.4
371.4
371.4
404.4
500
500
500
500
625.6
727.8
830.6
1000
1000
1000
1000
1000
1000
1008
2000
5000
5000

fRe

21.27
25.47
23.89
25.47
27.89
27.91
34.59
35.37
38.27
38.28
38.30
40.81
46.53
47.00
47.28
49.24
47.44
53.95
55.14
62.56
63.06
63.14
63.27
63.70
66.62
59.98
85.85
130.7
131.9

uma.x

.8458
.7995
.8753
.8745
.8422
.8420
.8011
.7874
.8592
.8590
.8586
8173
7579
.7606
7592
.7494
.8379
7744
.8015
.7519
.7555
.7561
.7552
7537
.7433
.8019
.7459
1377
.7354

the sources of fRe,prv are: 1. Manlapaz & Churchill (1980);
(1970); 3 Dennis & Ng (1982) for =0, 7=0; 4 Yang & Keller (1986) for =0, 5=0;

*
* denote both the decimal point and the number listed being 100+
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Apma.x fRe,prv

17.68
31.93
7.028
8.482
30.41
40.52
65.51
74.14
24.03
24.03
24 .08
75.87
140.9
141.8
142.4
146.4
61.67
182.8
162.0
274.1
274.1
2741
274.7
276.2
283.9
195.3
536.2
1260

1268

23.92 5
26.00 2
26.9 !
27.0 1
33.0!

38.033
38.134

390!

48.27°
51.8 1
56.69 °

62.58 °

2. Truesdell & Adler
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Flow transition from two—vortex to one—vortex for Dn < 20. (Rc, H,

Re) = a. (4, 40, 38.35); b. (4, 40, 44.14); c. (20, 400, 76.70); d. (20, 400, 88.27); e. (16,

4, 0.9588); f. (16,4, 1.103).
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simulate the loose coiling solution of Dennis & Ng (1982) and Yang & Keller (1986).
It is found that the fRe value is in very good agreement with the work of Dennis &
Ng (1982), with a deviation less than 0.7% and that of Yang & Keller (1986), with a
deviation of less than 0.4%.

Manlapaz & Churchill (1980) also studied flow in a helical pipe with small
pitch, H < Rc. Albeit, their solution used a non—orthogonal coordinate system. It
should be mentioned that the helical flow problems calculated by Manlapaz and
Churchill (1980) have a < of less than 0.015 for Dn > 20. The deviation for fRe
values is up to 5%. The higher deviation from Manlapaz & Churchill at higher Dn
could be due to their extrapolation which was based on the solutions of too coarse
grid size.

For very small Dean number flows, the current calculations in Table 3.2
show the same behavior as tkat of the toroidal flow findings in the literature (see
Marlapaz & Churchill 1980). When Dn < 20, the friction factor exhibits a very
small dependence on the Dn number. The friction factor can be smaller than its
counterpart of the straight pipe flow as Reynolds number is very small.

In the previous section, the relative torsion or Gn importance on the helical
pipe flow at very small Dean numbers was shown to be governed by —y* = Xﬂ?
Figure 3.7 shows the secondary flow patterns for a fixed helical pipe of Rc = 4 and
H = 2 with Dn < 5. As we expected, at very small Dn the flow is swirl-like, or
saddle flow as it is called by Germano (1989), which is a one—vortex flow. As Dn
increases, an additional vortex appears from the bottom of the pipe (the geometry is
shown in Figure 3.2). The threshold point for which the second vortex appears is
'y* = 0.039. The size and the strength of the second vortex increase as Dn increases.

Figure 3.8 shows the validity of 'y* as the flow tramsition parameter for
Dn < 20. As shown in Figure 3.8, changes in Dn and 7 or Re do not reflect the flow

pattern transition. However, the secondary flow pattern has two vortices at
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Fig. 3.11. Dean number effect on pressure contours for fixed helical pipe

geometry of Rc = 4, H = 2.
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'y‘ = 0.03606 and one vortex at 7* = 0.0415. The critical value is found to be
7‘ = 0.039. Notice that Wang (1981) also found the same group
(7/ARe = 1/24 = 0.0417) from his perturbation series. Our value of 7 differs
slightly (smaller) from Wang’s by about 7%.

Figures 3.9—3.13 show the effect of the Dean number on the helical flow
behavior for the same geometry as that of Figure 3.7, Rc = 4 and H = 2, but with
Dean numbers higher than 4. As an exiension of Figure 3.7, Figure 3.9 shows that
the lower vortex expands until it is equivalent to the upper vortex, at which the
flow becomes torus—like type with two vortices of equal size and strength but
opposite in rotating directions. The centers of the secondary flow vortices are
pushed closer to the upper and the lower walls as the Dean number increases. With
Dn increasing, the secondary flow streamlines (tubes) become denser near the wall
and sparser in the center region. The two vortices always appear to be
up—and—down. The maximum of the axial velocity shown in Figures 3.10 and 3.12
moves away from the center of the pipe toward the outer wall as the Dean number
increases. Furthermore, the center region is flat as shown in Figure 3.12. As Dn
increases, the flat area expands to form a larger “plateau”. The “plateau” is inclined
with the outer regicn having a higher value than the inner region. The edge of the
plateau becomes more stiff indicating that the axial velocity changes more sharply
near the wall as Dn increases. The value of the pressure away from the center, where
zero is set, increases as the Dean number becomes larger. The surface plot of the

pressure in Figure 3.13 shows that the pressure profile is relatively flat.
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3.4.3 Pitch effect on helical flows for a fixed Dn and Rc.

To investigate the Germano number effect on the flow in a helical pipe, we
computed the sclutions for a family of helical pipes with the same radius of coil
Rc = 9. Here, the coil is stretched by varying the pitch H. The pipe radius is taken
to be one umit, i.e., a = 1. Table 3.3 shows the results for Dean number of 200 and
Rc = 9. For given values of H, Rc and Dn, the values of A, 7 and 7 become fixed.
Table 3.3 indicates that as H increases, the values of fRe and u,,, becomes
invariant to H. Also Re Ap_,, (or )\_%Apmax), Re 9¥,, and Re ¥, (or A‘*;&mx
and )\_*wmin) becomes independent of H. The reason for such a behavior can be
explained as shown below.

The limit of large H corresponds to the range where Gn becomes constant.

When the pitch is large, the torsion and the curvature ratio satisfy the relationship

A = (Re/a) 7 (3—46)

Hence

li
)
(@)
=]

0 (347)

for large H and fixed Rc. Consequently,

Gn = ya/Rc Dn (3—48)

The above relationships indicate that in the limit of large H, A - 0 as 7 - 0 and Gn
becomes a constant for given a/Rc and Dn. As for loose coiling, the flow is
dependent only on Dn and Gn, one would then expect that the flow behavior be the
same as H - w. Indeed, the last four rows of Table 3.3 show that fRe and ug,,

become identical.

Figure 3.14 shows the o 7cld of Do = 200, Re = 9, H = 0 ~ 10°. It is seen
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Fig. 3.14. Secondary flow patterns for Dn=200, Rc=9. (), 5, Re) = a. (.1111, O,
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Table 3.3. Torsion effect on helical flows with Rc = 9, Dn = 200.

H 10Re A 7 v fRe Upax  APpax Ymax ~Vmin

0 .06 11111 0 0 31.24 8341 42.42 .02152 .02152
10 .06093 .10774 -01905 0041 31.21 .8351 41.87 .02135  .02092
20 .06364 .09876 .03493 .0079 31.14 .8380 40.30 .02062 01981

40 07349 .07406 05238 0136 30.93 .8452 35.48 .0182% 01689
18xr  .08485 .05556 -05556 .0167 30.76 .8508 31.12 .01605  .01454
80 -1039 .03702 .05237  .0192 30.57 .8564 25.75 .01330  .01180
100 .1219 .02692 04761 0205 30.46 .8595 22.13 .01143 .01004

200  .2205 .008225 .02909  .0227 30.25 .8654 12.41 .006403 .005521
900 .9568  4.369E4 6.954E-3 .0235 30.16 .8679 2.87% .001484 .001270
1E4 10.6104 3.553E-6 6.283E—4 .0236 30.15 .8680 .2597 1.34E—4 1.14E+4
1E5 106.104 3.553E—8 6.283E-5 .0236 30.15 .8680 .0259 1.34E-5 1.14E-5
1E6 1061.04 3.55E-10 6.283E-6 .0236 30.15 .8680 .0026 1.34E-6 1.14E-6

that the flow field is distorted torus—like type as H - w, even though 7 is extremely
small. On the other hand, the flow does not correspond to the swirl—like type, even
though the pitch is extremely large due to the strong and fixed secondary flow

specification of large Dn. It is clear that as H - o, the flow patterns become

independent of H.

3.4.4. Effect of Rc on helical flows at 2 fixed Dn and large H.

In the last subsection, we have examined the pitch effect and the loose
coiling limit by varying the pitch. In this subsection, we examine the locse coiling
limit by varying the radius of the coil. Once again, a =1 is assumed. As we
expected in the loose coiling analysis section, the flow behavior should become the
loose coiling of negligible effect of torsion (7 is very small), i.e., Dean flow, as the

radius of coil increases to be very large for a fixed H. Table 3.4 shows the results for
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Table 3.4. Torsion effect on helical flows for H = 106, Dn = 400.

Rc 10°Re A 10%, ~ fRe up,, OAPpax Ymax ~Ymin

1 6.366 3.95E-11 6.283 .05 41.44 4645 .0019 4.521E-7 2.871E-7
4.501 7.90E-11 6.283 .0354 40.50 .5122 .0025 5.209E—7 3.995E—7

5 2.847 1.97E-10 6.283 .0224 39.75 .5391 .0038 7.545E-T7 6.439E-7

10 2.013 3.95E-10 6.283 .0158 39.50 .5476 .0052 1.041E—6 9.266E—7
40 1.006 1.579E-9 6.283 .0079 39.30 .5537 .0103 2.037E—6 1.922E—6
100 .6366 3.948E-9 6.283 .005 3%.25 .5549 .0163 3.203E—6 3.084E—6
1E3 .2013 3.948E-8 6.283 .0016 39.23 .5556 .0515 1.006E—5 9.945E—6
1E4 .06379 3.932E-7 6.258 .0005 39.23 .5557 .1623 3.170E-5 3.159E-5
1E5 .02378 2.830E-6 4.505 .0001 39.23 .5557 .4355 8.501E-5 8.493E-5
1E6 .04050 9.753E~7 .1552 8E-6 39.23 .5557 .2557 4.989E-5 4.989E-5

this case. It can be seen that at small Rec, | ¥,..] and |4y;,| are very different. As
Kc increases, the difference between |¥p,.| and [9y;,| decreases. All the flow
characteristics tend to be invariant as Rc tends to be very large. Once again, the
scaling of 9% and Ap,,, has been taken into account to arrive at the above
conclusion.

Secondary flow patterns, iso—axial velocity and pressure contours are shown
in Figures 3.15 and 3.16 for Dn = 400, H = 10°. For the case of Dn = 400, it can be
seen that although the pitch of the helical coils is very large, H = 106, the flow
behavior is close to the loosely coiled helical flow of negligible torsion effect for
Rc > 40. Hence, it is not necessary to require a coil with its radius greater than the
pitch for the flow in the helical pipe to be torus—like.

No solutions other than the two—vortex solution were found in this study.
The attempt to obtain a four—vortex solution failed with the full domain
formulation, although it has been obtained in our earlier study with a half domain

formulation for the toroidal flow (see Chapter 2, or Liu & Masliyah 1992).
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3.5. Conclusions

Fully developed laminar Newtonian flows in helical pipes of a constant
circular cross—section with a pitch and finite radius of the coil are formulated and
numerically studied for the loosely coiled pipes by the Separation Method. The
governing equations are constructed from orthogonal helical coordinates and used to
obtain the loose coiling approximation with two dominant parameters, Dean
number, Dn = Re )\%, with Reynolds number Re and curvature ratio A, and
Germano number, Gn = Re n, with 7 being the torsion. The importance of the
Germano number is investigated and a new helical flow group is evolved
v= Gn-Dn—%/2 = n-(ADn)_%. For very small Dn flows, the counterpart of 7 is
defined by 'y* = Gn-Dn-2 = 7/(ARe). It is further shown theoretically that under
the loose coiling conditions and negligible Germano number: A -0, v-0, and
Re > 0(/\_%), the helical flow problem reduces to the Dean problem. These
qualitative theoretical results are further enhanced by numerical simulations.

It is found that the friction factor, the axial velocity profiles are almost
invariant with varying A and n when the conditions: Dn = constant, Re > 0()\_*),
4<0.01 and most importantly A - 0 are satisfied. As A changes with the above
conditions being held, the cross—plane pressure and the pseudo—secondary flow
stream function (as well as the secondary velocities) are proportional to 2% or Re?
with the contour shapes holding remarkably unchanged. When v > 0.01, the flow
preserves its pattern and becomes independent of A and 7 as long as A -+ 0 and - 0.
For a given helical pipe, i.e., Rc and H are fixed, the flow field consists of swirl—like
type for very small Dn as 7* > 0.039 and is torus—like for large Dn as 7 < 0.01.

The center region on the cross—plane of the pipe has a relatively flat axial

velocity profile for large Dn. The flat area become larger as Dn increases. The flow



field changes more sharply near the wall as Dn increases.

For a given Dn and Rc, the helical flow changes from a torus—like flow to a
distorted torus—like flow as we increase the pitch. As H - o, the flow patterns tend
to stay unchanged with respect to H. For a fixed large H and Dn, the helical flow is
more distorted at smaller Rc and changes to a torus—like type as Rc increases. For
helical flow to behave torus—like, it is not necessary to require Rc being greater than

H as long as 7 < 0.01 is met for a large Dn flow.
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Chapter 4.
Axdally-Invariant Laminar Flow in Helical Pipes
with a Finite Pitch

Part 2. Torsion and Curvature Effects
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4.0. SUMMARY

Axially—invariant laminar incompressible flows of Newtonian fluids in helical
pipes having a circular cross—section are numerically studied. The flow is governed
by the generalized Dean number Dn = Rey/A and Germano number Gn = Rey,
where Re is the Reynolds number, A = Rc a / [Rc2 + (H/27)?] is the curvature
ratio, 7 = (H/27) a / [Rc2 + (H/27)? is the torsion, Rc is the radius of coil and H is
the pitch. For large Dn flows, the transition of the flow pattern from two— to one—
vortex is characterized by = 7/ +/ADn = 0.2. The orthogonal secondary flow
strength of the one vortex flow tends to a fixed non—zero value for a given Dean
number as < increases. The secondary flow structure in the view point of the
orthogonal coordinate system tends to a two vortex structure with the
vortex—dividing line being vertical, i.e., x—axis, and a strong source in the bottom
wall region and a large sink in the upper wall region. For fixed high Dean number
and ) flows, increasing the torsion has the effect of changing the relative position of
the secondary flow vortices and the eventual formation of a flow having a Poiseuille
type axial velocity with a superimposed swirling flow.

The stability of the flow is investigated through the axially parabolized
equations. It is found that the four—vortex solution can be observed by a
perturbation of the flow ficld for ¥ < 0.01 and Dn > 130. However, the four—vortex
solution is not stable and it eventiually degeneraties to the stable two—vortex flow.

The flow friction factor is correlated to account for Dn, A and v effects for

Dn < 5000 and v < 0.1.
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4.1. Introduction

In Chapter 3 (see also Liu & Masliyah 1992b), loose coiling analysis is used
to single out the governing flow parameters for flow in a helical pipe with a finite
pitch. ‘I'he parameters are given by the generalized Dean number Dn = Re VA, the
Germano number Gn = Re 77 and a flow parameter 7 = 7//ADn for large Dn flows
or 7* = 7n/(ARe) for small Dn flows. A and 7 are the curvature ratio and the torsion,
respectively, of the pipe. Re is the Reynolds number of the helical flow. Dn is
related to the centrifugal forces and Gn is attributed to the twisting forces. vis a
relative measurement of the strength of the twisting forces versus the centrifugal
forces. It is expected that v or 'y* governs the flow pattern transition in a helical
pipe.

The flow parameter + or 'y* was arrived at from the body—centered azimuthal
velocity £ = w —Ili} 71 u coupled with the arguments that fRe « Dn? for large Dn
flows and fRe ~ constant for small Dn flows. u is the axial velocity. w is the
circuamferential velocity. h, is the metrics of the axial direction. f is the Fanning
friction factor. 7 is proportional to the ratio of the momentum norm of the second
term in ¢, i.e., 71 u, to the momentum norm of the first term, i.e., w. Owing to the
nature of the twisting forces, i.e., through the body-centered velocity &, the
secondary flow is expected to be unidirectional rotating flow when ~ or 'y* is large.

In the limit of small Dn, say Dn < 20, the flow parameter is '7*. It was
determined in Chapter 3 that the criterion for the flow to be one—vortex type is
'y* > 0.039. This is in agreement with Wang’s finding of a similar group

—JL; > 0.0417, where Re is the Reynolds number of the corresponding straight pipe
ARe

flow with the same pressure gradient as the helical flow and Re' is of order at most
1 (Wang 1982). Since for very small Dn flows, Re = Re, Wang’s group reduces to

*x
the same group as our 7 .



In Chapter 3, we applied the loose coiling approximation to arrive at the
conclusion of v for Dn > 20 and 'y‘ for Dn < 20 being the flow pattern transition
governing parameter. We found the transition criterion of ~ for small Dn flows to
be quite good for A < 0.25. However, a criterion is yet to be determined for Dn > 20.
If a similar transition criterion can be found for Dn > 20 with 7 instead of '7*, then
our earlier analysis is confirmed.

The numerical analysis for toroidal flows, i.e., flows in a helical pipe of zero
pitch, have been dealt with extensively in the past. A good review of the previous
works can be found in Nandakumar & Masliyah (1986) and Berger (1990). Since the
toroidal flow is an extreme case of helical flows, one would be willingly to accept the
approach of Truesdell & Adler (1970) that the flow in a helical pipe of at least small
pitch could be approximatud by the toroidal flow. Liu & Masliyah found that the
above ad hoc assumption is valid for 7 < 0.01.

For the case of flows in a circular toroidal pipe, Yang & Keller (1986}
speculated that there may be infinitely many solutions of the type 2n—vortex flows,
n=1,2 3, ---. Hence, the different formulations of the governing equations could
lead to different solutions and render a very complicated bifurcation map. However,
even the four—vortex solution was found to be unstable by Yanase et al. (1989). The
bifurcation of the toroidal flows were studied by a aumber of investigators.
Nandakumar & Masliyah (1982), Dennis & Ng (1982}, Yanase et al. (1988) studied
the dual (two--vortex and four—vortex) solutions with the symmetrical condition
prescribed. Yang & Keller and Daskopoulos & Lenhoff (1989) studied the
bifurcation map of possible solutiors with extended governing equations and the
symmetrical conditions prescribed. Even with the symmetrical conditiop imposed,
the Navier—Stokes equations offer only two— and four— vortex solutions. With
different extended governing equations and different mesh sizes, Yang & Keller and

Daskopoulos & Lenhoff found different bifurcation maps. Hence, it indicates that
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only two—vortex solution could be observed and all the other solutions may be
spurious.

The friciion factors for helical flows were tabulated for Dn < 5000 in Chapter
3 and found to be in agreement with Dennis & Ng and Yang & Keller in the limit of
loose coiling and zero pitch. Until now, all the rigorous theoretical analyses stand
firmly behind the relationship of fRe ~ Dn? with only minor details different. The
past experimei. d! results are also overwhelmingly in favor of the above relationship.
Ramshankar & Sreenivasan (1988), however, claimed that the above relationship
was improper and assumed the validity of Van Dyke’s extended Stokes series result
of fRe ~ Dn? (Van Dyke 1978) “based on” their experimental results. Although their
experimental results fell between the two relationships in a limited range of Dn, it
seerns to us that the functional tendency of their experimental data is still the
square root of Dn relation. This = as addressed by Jayanti & Hewitt (1991).

In this study, we direct our attention to large curvature and large torsion
helical flows. We shall establish that 4 governs the flow pattern transition from two
vortices to one vortex flow pattern. The representation of the secondary flow will be
discussed. The secondary flow structure change in the orthogonal coordinate system
will be presented as well to show the difference between different viewpoints when «
varies. Stability of the flow and the convergence of the numerical scheme will be
discussed. The friction factors are correlated in the range Dn < 5000 for possible

design use.



4.2. Governing Equations and Definitions

A coordinate setup of the helical system is shown in Figure 4.1.

¥ X{
Re! ! B
s
_____________ 1. O\ Rew _,
.......... . - 2
2] :

X{

X,”

Fig. 4.1 The helical system set up.
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;, N and B are the tangential, normal and binormal to the gencric curve at
the point of consideration on the generic curve respectively. s is the curve length
parameter along the generic curve. (r, 0, s) is the orthogonal coordinate system.
(r, 0, s) is the non—orthogonal coordinate system of use. Rc and H are the radius
of coil and the pitch for the helix, respectively. With the radius of the pipe denoted

by a, the curvature ratio A and the torsion 7 are defined as:

\ a Rc
"R + (H/2m)? =1)
a (H/27)
n= (4-2)

Re? + (H/27)?
The metric coefficient in the axial (s—) direction is
h =1+ Arsin (4-3)

The variables and parameters involved are non—dimensionalized in the

following manner:

and Re=23Y st_-_3 (4—4)

Where U is the average axial velocity, t istime, v is kinematic viscosity,
u is the axial velocity component (orthogonal s—directional component), v is the
radial velocity component (r—direction), w is the angular velocity component

(orthogonal #’—directional component), Re is the Reynolds number, p is the
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pressure. The primed variables are dimensional quantities.
The final flow governing equaticns after all the necessary substitution and

rearrangement are shown as follows:

The continuity,

—(——11‘” (4-5)

1 ,3u du grhlvg 1
{35~ 739) +T +1hy

The general form of the momentum equations,

(M + 4o =S, (4—6a)
M ¢ = %+ E & i(Reu—2 1t 500 — - 32 + -}l—-.a,;m,,(ae v - B+
T aO[Re(hlw——nru)cb -—(1 + BW)'@] h-? ot (4—6Db)

where ¢ stands for any velocity component, M denotes the moasentum
operator. The individual momentum equations are cbtained by a specification of the

velocity component ¢, extra diagonal term d¢ and the source term S¢.

s—momentum

¢ = u (4‘—73)

= vsinf ziwcos() A Re + 1/}; (4—7Db)
1 1 . ov av ow

S¢ = —h—l(%g—- 7}%) + Hz{[2Asm0(gs— — Tag) + 2Acosé(5¢ — 1)?-;—) +

Anﬁ(:sOv _ ,\r-:l-sine AWl

(=9

(4—T7¢)
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I—momentum

¢=v (4-8a)
d¢ _1 tj%l;lz\rsml) (4-8b)
¢ _ - ‘_?p. + Re(a.%l.n_g 2 4+ 2) _2’\Sing(%_ n_gu_o) + AZZCOSOu _
2 9w _2h 1715 cos bw
906 4
1236 rh? (4—8c)
f—momentum
b=w (4-92)
dy = ReY + 1137()‘2 + &1:1) (4—9b)
_ )\cosﬂ __2)Xcosé au Ar+siné
¢_ gE h? (as 30)__—H—Anu +
3h -1 av
T?h] 36 + ;H%Acosh (4—9c¢)

The boundary is defined by the pipe wall. Although a numerical scheme with
a polar coordinate system would prefer to have a condition set at the center of the
pipe, there are no conditions that can fit such a need. We can only say that the
properties are continuous at the center. Hence, the center point of the pipe is simply

an interior of the computational domain and should not be treated differently. The

boundary and necessary conditions are:

u=v=w=20 atr = 1;
P = 0 at one reference point inside the computational domain

and the total flow rateis given by
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27 1
J a6l ruar
0 0 = (from the nondimensionalization) (4-10)

T 2

When the flow reaches the fully—developed (i.e., axially—invariant) stage, the

transverse velocity field can be represented by a field scalar quantity, 1, as follows:

thy = — ¥ (4-11)
hw —7ru = -g% (4-12)

To the same extent as ordinary two—dimensional flows, the field scalar
quantity ¥ can be called the pseudo—secondary flow stream function.

To compute the pseudo—secondary flow stream function, we take equation
(4—12) after the velocity field is obtained. To approximate the secondary flow
pattern of the developing flow, we take equation (4—12) as well when 94 s small.

as
It is obvious that if u, v and w satisfy the following pseudo—continuity equaiion

1 (rhyv 1l 9
E‘E—I—Lafl—l'i‘ﬁzb—o(hlw—ﬂru) =0 (4-13)

which is the continuity equation (4—5) with —g% dropped, then the potential 9% can

be defined as it appears in equations (4—11) and (4—12) even if the secondary

velocities are not axially—invariant. Hence, it is justified ¢c use 1 when -g% 1s

small. However, this secondary flow pattern is not to be used when the error in the

pseudo—continuity equation (4—13), ESN, is greater than 5%. ESN is defined as the

conservational domain average measurement of the discrete %ué_ normalized by the

average of the discrete flow strength in and out across the cross—sectional plane.

Hence,

146



z |FRI; ;| + |FRO,.| + |FCI;| + |FCO,]|
ESN = L2 = i 2 4 (4—14)

) 1

i,]

where FRI.., FRO.

ij ijj FClyj, FCOy; are the fluid flow in and out at the radial

direction and flow in and out at the circumferential direction, respectively, for the
conservational domain of P;j, i-e., the pressure node ij. To calculate the flow in and
out a conservational domain, the body-centered velocity must be used. For
instance, w — nru / h, is the body—centered velocity of the azimuthal direction and
v is the body—centered velocity of the radial direction.

The Germano number Gn and the Dean number Dn are defined as

Gn =Re 7 lie 5 (4—15)

a Rc i
Dn = Re yX = Re [ 5 — (4—16)
Rc¢”™ + (ﬂ) -
v and 'y* are defined as
Gn 7 ,
¥ = = (4—17a)
Dnd/? v X Dn
* Gn

The dimensionless group < is the controlling paramecier to determine
whether the torsion exerts a significant effect on the helical flows. For very small Dn

helical flow, '7* is used in place of 4. However, v and 'y' are not equivalent in scale.
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For details, the reader is referred to Chapter 3 (or Liu & Masliyah 1992b).

The friction is evaluated in terms of Fanning friction factor f as defined by:
— _49p __ _aRe gp’
Re = —4 as pUig:g’ (4-18)

The secondary flow strength is defined as the norm of the orthogonal

secondary veloty, |[v]l,e-
1 27
Ivllee = fr dr [ (1 + X sind) (v2 + w2)! a9 (4—19)
0 0

The Separation Method (Chapter 2 or Liu & Masliyah 1992a) is used to solve
the flow problem. The advantage of this numerical method is that at each step, the
complicated problem is subdivided into multi—simple problems. The numerical
stability is achieved by the careful interpolation in discretization. The spurious
pressure modes are eliminated by the careful velocity—pressure nodal and
interpolate coupling. The stability ensured method renders a smooth solution that
has small round-off error remaining local. Details can be found in Chapters 2 and 3
(see also Liu & Masliyah 1992a and 1992b).

The grid used is n25x32fu, i.e., 25 grid points non—uniformly placed in r
direction and 32 grid points uniformly in # direction with full domain formulation.
At the center of the pipe, the node for v velocity component was arranged in the
fully staggered grid and removed when discretizing the governing equations. That
the center point is an interior point of the computational domain is achieved by
considering the diametrical line in place of the radial line when discretizing the
governing equations. Special care is then given to the variables: r, v and w. When 1,
v and w are referred from a node across the center to the other quadrant, they are
assigned their opposite signs. Since no node is present at the center of the pipe, the

singularity associated with the polar coordinates is eliminated.
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4._3. Torsion effect

In this section, we focus on the large Re flows. The results are discussed in
two subsections. The first section deals with fixed Dn and . It is aimed at
determining the flow pattern transition. The second section deals with fixed Re and

Rc. This is of the interest for viewing the flow characteristics change with the

variation of the pitch alone.

4.3.1 Torsion effect under fixed Dn and A

From the definition of v as given by equation (4—17), by keeping Dn and A
constant, -y can only change through the variation of the torsion 7. Here v and 75
become linearly related to each other. Hence one can refer to either 4 or 7
interchangeably. When Dn is fixed, the centrifugal forces are kept constant. As the
torsion increases, the ‘twisting” forces increase and result in an increase in the
secondary flow strength as well. Hence, although Dn and X are kept constant, the
secondary flow strength is still expected to rise as 7y (or ) increases. When 7 (or +)
is large, the body—centered circumferential velocity ¢=w-—nru/h, (see
Chapter 3) is dominated by the twisting component 7nru/h, Since the axial
velocity u is expected to be sign—conservative (irrespective to the change of 0), it
follows that the secondary flow is expected to be uni—directional, i.e., one—vortex or
swirl-like at large 7 values. Apart from the axial flow, the projection of such a flow
on the cross—section of the pipe is a one—vortex rotating flow.

Table 4.1 gives a summary of the numerical simulations for small to
moderate Dn flows for selected cases. In each case, Dn and X are fixed and only 7, or
7, varies.

Uo,00 Upaxs Prmax: Pmins Ymax 30d Y, are the axial velocity at the center of

the pipe, the maximum axial velocity, the maximum and the minimum pressure
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Table 4.1. Torsion effect on helical flows.

Rc H n 7 fRe Uy Umax Pmax ~Pmin Ymax ~Vin
Dn = 20, Re = 80, A = 0.0625

16 0 0 0 16.80 .9300 .9835 2.565 1.506 .0166 .0166

12.8 12.87 .03125 .0280 16.80 .9301 .9824 2.565 1.510 .02038 .01276

8 16  .0625 .0559 16.80 .9309 .9839 2.559 1.519 .02488 .009202

4.494 45.18 .1 .0894 16.80 .9321 .9850 2.546 1.537 .03026 .005519

3.2 12.87 .125 1118 16.79 .9334 .9853 2.525 1.554 .03421 .00342

2.659 3742 .14 1252 16.78 .9343 .9859 2.514 1.564 .03649 .002406

1.6 9.6 .1875 1677 16.76 .9382 .9879 2.460 1.607 .04462 .000315

1 24.33 .242061 .2164 16.72 .9443 .9916 2.366 1.666 .05488 0

.6154 19.33 .3125 2795 16.65 .9539 .9962 2.202 1.732 .06989 0

.3813 15.33 4 .3578 16.52 .9677 .9993 1.974 1.776 .09038 0

.2462 12.37 .5 4472 16.39 9804 1.002 1.745 1.746 .1163 0

.1584 9.954 .625 .5580 16.28 .9898 1.003 1.534 1.650 .1497 0

1265 8.905 .7 6261 16.23 .9930 1.003 1.432 1.574 .1694 0

.0812 7.144 .875 .7826 16.16 .9969 1.003 1.237 1.384 .2144 0

.0623 6.259 1 .8944 16.12 9985 1.002 1.117 1.248 .2460 0

Dn = 50, Re = 200, A = 0.0625
16 0 0 0 20.29 .7324 .9024 6.977 2.465 .02307  .02307
12.12 43.08 .035355 .02  20.31 .7322 .9021 6.959 2.457 .02476  .02133
5.333 47.39 .088388 .05 20.38 .7311 .9010 7.095 2.419 .02737  .01888
2.614 37.17 .14142 .08  20.49 .7294 .8997 7.318 2.343 .03035  .01686
2.139 34.21 .159099 .09  20.54 .7200 .8999 7.402 2.309 .03136  .01630
1.778 31.59 .176778 .1 20.59 .7287 .9003 7.485 2.271 .03254  .01571
1.498 29.29 .194454 .11  20.64 .7286 .8999 7.575 2.229 .03366  .01507
1.102 25.46 .22981 .13  20.72 .7300 .9024 7.718 2.143 .03598  .01380
9592 23.86 .24749 .14  20.74 .7317 .9066 7.754 2.100 .03715  .01302
8421 2245 .265165 .15 20.75 .7349 .9911 7.755 2.061 .03851  .01229
7449 21.18 .282843 .16  20.72 .7398 .9128 7.702 2.034 .04007  .01119
6633 20.04 .30052 .17  20.64 .7478 .9235 7.558 2.028 .04155  .00967
.5944 19.01 .318138 .18  20.46 .7599 .9337 7.283 2.060 .04332  .00751
4848 17.23 .35355 .2 19.75 .7995 .9601 6.266 2.344 .04978  .00193
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Table 4.1. Torsion etfect on helical flows, contd.

Re H Y 7 fRe Ug 0 Unax Pmax ~Pmin 1lz’max ~Ymin
3137 13.94 .44194 .25 17.96 .9206 1.001 4.103 3.283 .08332 0
2192 11.68 .53033 3 17.25 .9666 1.005 3.389 3.433 .1138 0
.1616 10.05 .61872 .35 16.90 .9832 1.003 3.025 3.310 .1417 0
.1240 8.817 .707107 4 16.68 .9904 1.003 2.767 3.109 .1669 0
.0982 7.850 .795495 .45 16.54 .9935 1.002 2.552 2.892 .1908 0
.0796 7.073 .88388 5 16.44 .9954 1.002 2.360 2.677 .2138 0
.0554 5.903 1.0607 .6 16.31 9971 1.001 2.017 2.281 .2590 0
.0407 5.065 1.2374 7 16.22 9981 1.001 1.723 1.931 .3036 0
0312 4.434 1.4142 8 16.17 9986 1.000 1.471 1.635 .3484 0

Dn = 100, Re = 2000, A = 0.0025
400 O 0 0 ~3.80 .6313 .8779 2.697 .821 .004133 .004133
23.53 591.4 .01 .02 23.82 .6296 .8736 2.729 .813 .004399 .003837
3.960 248.8 .025 .05 23.92 .6207 .8661 2.874 .769 .004893 .003492
2.030 173.6 .035 .07 23.99 .6116 .8556 3.024 .718 .005374 .003346
1.556 156.5 .04 .08 24.01 .6065 .8479 3.103 .686 .005588 .003285
1.231 139.2 .045 .09 24.02 .6018 .8404 3.184 .649 .005583 .003233
9975 125.4 .05 1 24.02 .5980 .8317 3.257 .608 .006179 .003176
.6932 104.5 .06 12 23.89 .5982 .8377 3.339 .520 .006959 .003112
4440 83.68 .075 15 23.07 .6675 .9029 3.049 .429 .008871 .002903
.3084 69.76 .09 .18 19.73 .8706 .9747 1.874 .759 .01289 .00011
.2065 57.09 .11 22 17.89 9499 9802 1.429 1.076 .02118 0
.1479 48.31 .13 .26 17.15 .9680 .9814 1.280 1.149 .02810 0
1111 41.88 .15 3 16.77 .9762 .9841 1.204 1.153 .03413 0
.0816 35.90 .175 .35 16.52 .9823 .3872 1.143 1.131 .04105 0
.0625 31.41 .2 4 16.37 .9861 .9892 1.099 1.100 .04764 0
.0400 25.13 .25 5 16.21 .8904 .9920 1.030 1.038 .06038 0
.0278 2094 .3 .6 16.15 .9922 .9931 .9746 .9781 .07280 0
.0204 17.95 .35 T 16.13 .9920 .9925 .9270 .9226 .08505 0
.0156 15.71 4 8 16.14 .9903 .9906 .8859 .8696 .09718 0
.0123 13.96 .45 .9 16.15 .9887 .9889 .84G67 .8215 .1094 0
.0100 12.57 .5 1 16.08 .9944 .9946 .7928 .78G9 .1224 0



Rc

20
5.882
1.538

.8197
.5882
.4425
.3448
.2913
.2494

2062
.1597
.1110
.0625
.0278
.0156
.0100

16
12.8

4.494
3.2
1.6

.6154
.4681
.3813
.3028
.2462
.1584

Table 4.1. Torsion effect on helical flows, contd.

H

407

147.8
77.33
62.52
56.65
48.05
41.70
36.83
33.86
31.34
28.50
25.09
20.92
15.70
10.47
7.853
6.283

12.87
167
45.18
12.871
9.6m
24.33
19.33
16.81
15.33
13.70
12.37
9.954

u

max pmax

.8733 5.406
.8684 5.571
.8447 6.132
.8289 6.414
.8272 6.564
.8558 6.586
9074 5.994
.9678 4.278
9796 3.476
9812 3.066
.9826 2.769
.9822 2.536
9847 2.311
9895 2.052
.9892 1.704
9838 1.417
9977 1.127

0.0625

.8571 12.67
8557 12.73
.8520 12.89
.8488 13.21
.8444 13.50
.8284 14.39
.8155 15.20
.8512 15.58
.9011 14.52
9760 11.24
.9968 8.077
.9985 6.654

7 4 fRe u;,
Dn = 100, Re = 1000, A = 0.01
.02 .02 23.94 .6288
.04 .04 24.00 .6238
.08 .08 24.13 .6072
.0994987 .0995 24.16 .5988
11 11 24.14 .5965
.13 13 23.94 .6062
.15 .15 23.28 .6682
A7 17 20.95 .8174
.185 .185 19.54 .8929
2 2 18.72 .9290
.22 .22 18.02 .9517
.25 .25 17.41 .9655
3 .3 16.87 .9765
4 4 16.44 .9860
.6 .6 16.23 .9882
.8 .8 16.13 .9834
1 1 16.07 .9975
Dn = 100, Re = 400, A =

0 0 24.26 .6343
.03125 .0125 24.29 .6338
.0625 025 24.34 .6320
.1 .04 24.45 .6283
125 .05 24.55 .6249
.1875 075 24.86 .6142
.242061 .0968 25.14 .6043
.3125 125 25.30 .6043
.36 144 2494 6337
4 .16 23.48 .7743
45 .18 20.98 .8937
.5 2 16.52 .9413
.625 .25 18.18 .9715

.9920 5.238

~Pmin

1.648
1.599
1.397
1.250
1.128
.934

0.819
1.199
1.653
1.925
2.155
2.244
2.247
2.090
1.728
1.405
1.154

4.40
4.38
4.33
4.21
4.10
3.70
3.18
2.35
1.84
2.54
3.812
4.675
5.036

Vmax

.008771
.009435
.01116
.01232
.01303
.01488
.01768
.02000
.02808
.03461
.04269
.05296
.06824
.09525
.1455
.1947
.2463

.02045
02117
.02191
.02300
.02379
.02635
.02910
.03437
.04053
.04902
.06109
.08823
1327

152

_¢min

.007658
.007183
.006572
.006417
.008331
.06299
.005867
.0007
.0002

o OO0 O 0 o o o

.02045
.01962
.01889
.01811
.01774
01716
.01683
.01681
.01644
.01051
.0005

0
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Table 4.1. Torsion effect on helical fiows, conid

Re H n Y fRe Q9  Upaxy Prax  “Pmin YPmux ~Yain
.1265 8.905 .7 .28 17.71 6773 .8913 4.750 4.915 .1566 0
.0971 7.806 3 .32 17.32 9813 .9906 4.241 4.657 .1868 0
.0768 6.948 9 .36 17.04 .9843 .9909 3.851 4.264 .2137 0
.0623 6.259 1 A4 16.86 .9855 .9903 3.525 3.845 .2383 0
Dn = 100, Re = 250, A = 0.16
625 0 i 0 24.95 .6374 .8260 18.40 7.88 .02210 .03210
5.694 11.18 .25 .0125 24.99 .6371 .8251 18.49 7.83 .03304 .03104
4494 17.65 .1 .025 25.10 .6360 .8224 18.74 7.73 .03396 .03018
3.125 6.257 .16 .04 25.33 .6336 .8168 19.22 T7.49 .03548 .02926
2.439 19.16 2 .05 25.54 .6317 .8125 19.67 7.25 .03640 .02899
1.816 17.83 .25 .0625 25.85 .6281 .8060 20.31 6.90 .03810 .02862
1.384¢ 16.21 .3 075 26.21 .6239 .7970 21.03 6.43 .04000 .02844
1.080 14.85 .35 .0875 26.59 .6194 .7977 21.76 5.85 .04197 .02840
.8621 13.54 4 1 26.99 .6151 .8071 22.42 5.13 .04468 02868
7014 12.49 .45 1125 27.31 6125 .8223 22.80 4.31 .04753 132309
5806 1140 5 125 27.51 .6160 .8554 22.66 3.37 .05208 A2EN8
.5405 11.04 .52 13 27.52 6209 .8786 22.38 2.91 .05413 .02923
.5044 10.70 .54 135 27.48 6301 .8897 21.82 2.62 .05682 .02905
4717 10.37 .56 .14 27.33 .6461 .9224 20.96 2.40 .06003 .02892
4149 9.777 6 15 26.49 .7181 .9784 17.78 2.88 .06957 .02475
3571 9.114 .65 1625 24.38 .8374 1.017 13.34 4.63 .08477 00722
.3103 8.530 .7 175 22.93 9045 1.029 10.90 5.88 .1%64 .00178
2721 8.013 .75 JA875 21.92 .9407 1.026 9.479 6.626 .1268 .00097
.2404 7.552 .8 2 21.13 .9589 1.022 8.441 7.016 .1470 .0001
1915 6.767 .9 225 19.99 9742 1.011 7.134 7.110 .1826 0
.1560 6.126 1 .25 19.20 .9792 1.002 6.262 6.835 .2164 0
1092 5.145 1.2 .3 18.22 .9818 .9954 5.026 5.995 .2784 0
Dn = 200, Re = 800, A = 0.0625

16 0 0 0 30.64 .5791 .8511 24.70 7.83 .01632 .01632
7.018 49.89 .07071 .02 30.80 .5744 .8459 25.34 7.63 .0i738 .01541
1.778 31.59 .1768 .05 31.53 .5487 .8213 28.19 6.669 .02031 .01496

.7449 21.18 .2828 .08 32.02 .5094 .7724 31.08 4.99 .02581 .01513



Table 4.1. Torsion effect on helical flows, contd
e H i 0% fRe Ug,y, U

max Pmax “Pnin ‘wmax —wm in
et 1723 .35355 1 31.01 .5448 .8769 29.00 5.17 .03433 .01553
2398 14.50 .4243 12 No solution found with the grid used.

Dn = 500, Re = 2000, A = 0.0625

16 0 0 ¢ 44.01 .5623 .8285 59.51 17.37 .01110 .01110
12.8 1287 .03125 .0056 44.08 .5612 .8276 59.86 17.27 .01113 .01081
3.2 12.87 .125 .0224 45.20 .5446 .8155 64.72 15.88 .01185 .01027
1.6 9.6 .1875 .0335 46.67 .5185 .8009 70.64 13.69 .01289 .01023
1 24.33 .242061 .0433 48.32 .4784 .7837 76.51 11.21 .014i6 .01044
6154 19.33 3125 .0559 49.90 4372 .7471 80.91 11.56 .01812 01145
.3813 15.33 4 .0716 No solution found with the grid used.

* 5

Note: the convergence is not very good, RSD = 3.863x 107 .

difference from that at the pipe center, and the maximum and the minimum values
of the pseudo—secondary flow stream function, respectively.

From Table 4.1, we observe that the pressure decreases as 7 increases. The
cross—plane pressure difference decrease suggests that the secondary flow strength
due to the centrifugal forces decreases and reduces to a certain constant limit of
negligible effect on the main flow as v increases. The constant limit (of non—zero) is
expected due to the fixed centrifugal forces, for the flow Dean number and curvature
raiio are fixed. It is then expucted that the center and the maximum axial velocities
ircrease and the main flow becomes close to a straight pipe Poiseuille-lik 2 flow as
t::: centrifugal force effects become insignificant. On the other hand, the secondary

flow strength in the non -orthogonal coordinate system, ¥

max — Ymin» Which includes

the ~ffect of the rotation of the pipe geometry increases proportionally with 1.

Hence, the overall non—orthogonal sccondary flow strength, o due to the

max ‘wmiu )

twisting forces increases more rapidly than its decrease due to the centrifugal forces.



When v > 0.2, the minimum pseudo—secondary flow stream function value
increases to zero. This marks the elimination of one vortex which is represented by
the negative value of the pseudo—secondary flow stream function. Although Dn and
A vary over a wide range as shown in Table 4.1, the transition point is given by
7~ 0.02. Hence, the transition from two-vortex flow to one—vortex flow for large
Dn systems is characterized by 7.

To show the flow transitions and other characteristics, some contour plots
are shown in Figures 4.3 — 4.9 for Dn = 100, A = 0.01 and 0.0625 and Dn = 20,
A = 0.0625.

Figure 4.2 shows that the secondary flow pattern varics from an almost
symmetric two—vortex pattern torus—like to a single vortex swirl-like patiern as v
is increased. By increasing v, the upper vortex increases both in strength and in size
while the lower vortex becomes weaker. The bending of the dividing line between
the two vortices can be seen as 7 increases and it is viewed as the distortion
generated by the torsion of the helical pipe. The distortion is more evident at larger
Dn. The picture becomes that of two vortices turning anti—clockwise ywer
vortex (unegatively y—valued vortex) louses both its sirengih and is s cver,
towards the disappearance of the negatively y¥—valued voriex, its size reduces rather
slowly while its strength reduces much faster. The scale of the contours for the outer
vortex in Figure 4.2¢ are one order of magnitude lower than the rest of the contours
in Figure 4.2. For large Dn flow, as shown in Figure 4.2, two vortices appear to be
left—and—right, or inner—and—outer. Fr small Dn, as shown in Figure 4.7, the two
vortices always stay up—and—down. The lower or left (outer) vortex eventually
disappears as v > 0.2.

The axial velocity isoplethes, as shown in Figure 4.3, rotate anti—clockwise
with the maximum axial velocity location moving slowly towards the center of the

pipe as the torsion increases. For clarity, surface plots of the axial velocity profiles
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are shown in Figure 4.5. At large <, the axial velocity profile reduces to the
neighborhood of the axi—symmetrical straight pipe Poiseuille~like profile. It can be
seen that the maximum axial velocity moves from the outer y axis at 5 = 0 toward
the center of the pipe spirally. The maps of the maximum axial velocity for Dn =
100, A = 0.01 and Dn = 20, A = 0.0625 are shown in Figures 4.9 and 4.10.

The vertical pressure isobar lines become distorted with a locally low
pressure zone (cone) forming in helical pipes of large torsion near the lower wall as
increases. To clearly show the low pressure cone, surface plots of the pressure are
presented in Figure 4.6. It can be seen clearly that at 4 = 0.15, a hole (minimum
pressure zone) is located near the lower wall. This pressure cone is again attributed
to the distortion effect of the torsion.

Figures 4.7 and 4.8 show the secondary flow pattern for A = 0.0625 with
Dn == 20 and 100, respectively. Comparison of Figure 4.8 with Figure 4.2 for
Dn = 100 and A = 0.01 indicates that the secondary flow pattern is governed by the
value of v alone. For example, compare Figure 4.2d (v = 0.15, n = 0.15) with Figure
4.8d (7= 0.144, n = 0.36). Figures 4.2, 4.7 and 4.8 indicate that the flow pattern
transition from a two— to one— vortex paiiern occurs at y =~ 0.2.

At large Dn and large v, > 0.2, the flow in a helical pipe can be
characterized by a Poiseuille-like main flow superimposed with a rotating secondary
flow. Both the axial and the secondary flows are unidirectional. The friction factor

is very close to that of the Poiseuille flow.
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4.3.2 Helical flows of varying H for fixed Re ard Rc.

Another configuration of interest is that the radius of coil remains constant
but its pitch increases. Under this configuration, n = O(/\*) -+ 0 as H -+ o. The radius
of the pipe is set to be unit, i.e., a = 1. Instead of having constant centrifugal forces,
l.e., constant Dean number, we keep Re and Rc constant. The computed flow
characteristics are shown in Table 4.2. The secondary flow patterns are shown in
Figure 4.11. It can be seen that the flow field changes from a torus—like flow at
H = 0 to 2 Pciseunille-like flow superimposed with very weak swirl-like secondary
flow at H - .

For very small Dn, Dn < 20, the counterpart of v is 'y* in controlling the flow
pattern transition. For 'y* > 0.039, the flow is swirl-like as is found in Chapter 3. In
Figure 4.11e, the flow is swirl-like although v = 0.1401 < 0.2. By calculating ’y., we
find that 4 = 0.05893 > 0.039 for this case. Since Dn = 5.654, which is very small,
the flow must be swirl-like as that established in Chapter 3 (see also Liu &
Masliyah 1992b).

Figure 4.12 shows the variation of fRe with H for R¢/a = 9 and Re = 1200.
fRe decreases monotonically as H increases. The decrease in fRe is not due to the
change from two to one vortex pattern. Rather, the decrease in fRe with H is due to
the decrease in the intensity of the secondary flow. For H < 10, the friction factor

remains relatively constant, and it decreases sharply as H > 20.
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Table 4.2. Torsion effect under Re = 1200 and Rc = 9

H

0

10
20
40
187
80
100
200
900
1000
2000
4000
8000
10000

A

11111
10774
.0987€
.07406
.05556
.03702
.02692
.008225
4.369E—4
3.542E4
8.876E~5
2.220E-5
5.551E-6
3.553E-6

i

0
.01905
.03493
.05238
.056556
05237
.04761
.02909
.006954
.006263
.003139
.001570

4

0
002924
005721
.01065
014016
0178 -
.0206&
03u7se
06672
0760
155036
.14013

7.854E—4 .19823
6.283E—4 .22161

Dn
400
393.9
377.1
326.6
782.8
3G9
.36.9
108.8
25.08
22.58
11.30
5.654
2.827
2.262

fRe

40.96
40.67
39.88
37.41
35.14
32.28
30.29
24.52
17.15
16.87
16.08
16.01
16.00
16.00

.5674
5670
.5858
6632
.5628
.5664
8726
.6180
.8820
.9042
9879
.9985
.9998
.9999

— T — —
5 a
| Rc/a = ;
| Re = 1200
M | PENNEE S B I S \f“‘:)
1 10 100 1000
H

max

.8153
.B168
.8210
.8338
.8439
.8547
.8596
.8684
9867
.9899
9988
.9996
.9999
.8999

Pmax

60.99
59.46
55.30
43.19
33.44
23.01
17.04
5.416
.3030
.2359
.0489
.0113
.0028
.0018

~Pnin
19.99
19.32
17.57
12.96
9.66

6.48

4.77

1.569
1315
1121
.0380
.0105
.0027
.0017

167



168

4. 4. Carvature ratio effect

The curvature ratic A effect on the helical flow has not been investigated in
great detail in the past. In this study, we separate the curvature ratio from all the
other parameters. Some results are listed in Table 4.3.

The contours showing the secondary flow pattern under various )\ for
Dn = 100 and Dn = 500 are presented in Figures 4.13 — 4.16. For the case of 7 = 0,
i.e., a torus, Figure 4.13 shows that for the smaller Dn of 100, the secondary flow
patterns look remarkably similar, even though A changes from 0.64 to an extremely
tight torus. For the larger Dn of 500, there is much distortion to the kidney shaped
vortices. For A approaching unity, the vortices are separated from each other near
the inner wall where the secondary flow near the inner wall is weaker than that at
the outer wall. Figures 4.15 and 4.16 show the secondary flow patterns at 7= 0.5\
for Dn = 100 and 500, respectively. The vortex dividing line becomes much
distorted when A is increased. This is very much evident especially for the case of
Dn = 500. Here, the effect of the terms A7n and A2z which appear in the governing
equations (4.5—4.9) becomes significant. It should be recalled that these terms are
dropped out for a loose coiling approximation.

The axial velocity isolines are shown in Figures 4.17 and 4.18 for a very wide
range of curvature ratio. A low value of A, i.e., when loose coiling approximation
holds, the axial velocity is characterized by a single maximum velocity value located
along the line of symmetry. Its location is close to the outer wall. However, as X is
increased beyond 0.5, a case not as yet reported in the literature, the maximum
velocity occurs at two locations in the upper and lower section of the torus. In fact,

their locations shift towards the inner wall as ) is increased.
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Table 4.3. Curvature ratio effect under smail torsion

Re H A n Gn 7 fRe o Unax Pmax “Poin
Dn = 20
10000 O 0001 O 0 0 16.61 .9291 .9953 .1091 .0564
100 0 .01 0 0 9 16.65 .9290 .9937 1.083 .568
16 0 0625 0 0 0 16.80 .9299 .9835 2.567 1.505
10 0 1 0 0 0 16.91 .9303 .9767 3.129 1.983
5 0 2 0 0 0 17.17 .9293 .9598 4.019 3.120
3.333 ¢ 3 0 0 0 17.42 .9252 9421 4.478 4.257
2.5 0 4 0 0 0 17.65 .9186 .9271 4.711 5.488
2 0 5 0 0 0 17.86 .9094 .9126 4.802 6.885
1.667 0 .6 0 0 0 18.06 .8975 .8975 4.793 8.537
1.429 0 N 0 0 0 18.26 .8829 .8832 4.713 8.537
125 O .8 0 0 0 18.45 .8657 .8691 4.581 13.30
1.111 O 9 0 0 0 18.72 .8466 .8342 4.419 17.33
Dn = 40
10000 O .0001 0 0 0 18.94 .7726 .9475 .2412 .0782
100 O 01 0 0 0 18.99 .7734 .9444 2.387 .7914
16 0 0625 0 0 0 19.25 .7760 .9274 5.645 2.116
10 0 1 0 G 0 19.44 .7774 9159 6.869 2.805
5 0 2 0 0 0 19.88 .7794 .8871 8.783 4.491
3.333 0 .3 0 0 0 20.28 7787 .8606 9.755 6.222
2.5 0 4 0 0 0 20.64 .7757 .8366 10.24 8.14
2 0 .2 0 0 0 20.95 .7701 .8140 10.41 10.36
1.667 O .6 0 0 0 21.23 .7623 .7967 10.37 13.02
1.429 0 N 0 0 0 21.48 .7522 .7831 10.19 16.38
125 O 8 0 0 0 21.70 .7400 .7711 9.89 20.93
1.111 0 9 0 0 0 21.93 .7262 .7646 9.53 27.90
1 0 1 0 0 0 22.25 .7145 .7586 9.21 41.10
Dn = 100
25 0 .04 0 0 0 24.12 .6321 .8649 10.35 3.45

20 20r .04 .02 10 .01 24.13 .6317 .8642 10.38 3.44



Table 4.3. Curvature ratio effect under small torsion, contd.

Rec
12.5
10

3.323
2.667
1.667
2.5

1.25

1.6

1.667
1.333
.8333
1.429
1.143
7143
1.25

1.111

10000
100
16

H
25T
0
8T
107

49
S7

3.27
47

8.376
10.47

27
2.57

1.67
2r

4.189
5.236

3.590
4.488

© o 5

A ] Gno
.04 .04 20
1 0 0
1 .05 15.81
.1 1 31.62
.2 0 0
2 1 22.36
.2 2 44.72
.25 0 0
.25 125 25
.25 .25 50
.3 0 0
3 .15 27.39
.3 3 54.77
4 0 0
4 2 31.62
4 4 63.25
.5 0 0
.5 .25 35.36
.5 .5 70.71
.6 0 0
.6 3 38.73
.6 .6 77.46
T 0 0
q .35 41.83
7 7 83.67
.8 0 0
.8 4 44.72
9 0 0
1 0 0

Dz = 150
.0001 0O 0
01 0 0
0625 0 0

fy
.02

0
0158
.0316

0224
.0447

025
.05

.0274
.0548

.0316
.0632

.0354
.0707

.0387
0775

.0418
.0837

.0447
0
0

fRe

24.14
24.56
24.60
24.70
25.21
25.36
25.78
25.55
2577
26.40
25.82
26.14
27.07
26.37
26.95
28.59
26.89
27.83
30.40
27.28
28.76
32.51
27.65
29.89
34.80
2791
31.27
28.24
28.67

27.08
27.18
27.68

Up
.6318

.6346
6338
6327
.6383
6374
-6349
.6380
6377
.6371
.6393
.6397
.6405
6387
.6425
6511
6363
.6464
.6680
.6339
.6537
.6914
.6302
.6646
7197
6258
.6808
6199
.6154

.5936
.5943
.5975

umax

.8608
.8450
.8435
.8383
.8144
.8120
.8045
.8006
7981
.7896
.7870
.7846
7780
.7620
.7655
.7674
.7484
.7611
.7692
.7432
.7623
.7859
7364
7722
.8012
.7358
7811
.7339
7325

.8767
.8730
.8538

pmax

10.49
15.40
15.51
15.86
19.81
20.11
20.94
21.08
21.50
22.72
2212
22.68
24.24
23.37
24.29
26.80
23.90
25.32
29.13
24.10
26.24
31.44
23.93
27.03
33.72
23.37
27.95
22.85
2213

.7968
7.885
18.67

“Puin
3.40

5.84

5.80

5.65

9.22

9.07

8.61

10.95
10.73
9.96

12.66
12.32
11.23
16.44
15.75
13.60
20.84
19.61
15.58
26.03
23.77
16.87
32.71
28.60
16.89
41.75
33.93
56.71
89.30

.2309
2.334
6.185
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Table 4.3. Curvature ratio effect under small torsion, rontd.

Rc
10

5
3.333
2.5

2
1.667
1.429
1.25
1.111

10000
100
16

10

3.333
2.5

1.667
1.429
1.25

1.111

10006
400
140
80
50
25
20

H

O O O O O O O O O o

Q0O 0O 0O 0 O O oo o0 o o o

Q

807
1007

207

A 7
d 0
2 0
3 0
4 0
.5 0
.6 0
7 0
8 0
.8 0

1 0

Dn = 250

.0001 O
.01 0
.0625 0
1 0
2 0
3 0
4 0
5 0
.6 0
7 0
.8 0
.9 0

1 0

Dn

0001 O
0025 0
.01 0
.01 .005
.01 .01
.04 0
.04 .02

Gn

O O 0O 0O O 0O O O o O

O O O O O O O OO O o o o o

(o] o O»
(=
(o]
o]

O CcC O 00000 QO .Y

OO0 0O OO0 0O o000 o0 o o

.0022
.0045

.0045

fRe

28.02
28.87
29.63
30.32
30.92
31.45
31.88
32.22
32.47
32.79

32.65
32.78
33.44
33.89
35.01
36.02
36.91
37.68
38.31
38.81
39.15
39.33
39.4%

42.90
42.94
43.08
43.08
43.11
43.61
43.66

Us
.5996

.6041
.6074
.6099
.6115
6125
.6127
.6116
.6084
.6024

.5650
.5660
.5705
.5736
.5812
.5879
.5938
.5987
.6023
.6038
.6024
.5970
.5975

.5553
.55585
.5564
.5562
.5556
.5598
.5591

uma.x

.8410
.8094
.7810
7548
.7303
7154
.7169
7178
.7237
.7182

.8725
.8684
.8477
.8337
7990
.7676
7390
7123
.6872
.6919
.6999
.6964
.7059

.8554
.8543
.85610
.8509
.8505
8377
.8371

Ppax

22.74
29.21
32.66
34.55
35.48
35.75
35.52
31.88
33.88
32.74

1.311
12.97
30.68
37.36
47.93
53.57
56.64
58.13
58.51
58.05
56.90
55.15
53.11

2.547
12.70
25.19
25.22
25.29
48.76
48.95

“Ppin
8.155
12.87
17.62
22.82
28.82
36.07
45.36
58.31
79.35
128.6

.354

3.578
9.469
12.47
19.65
26.89
34.84
44.05
55.25
69.65
89.84
123.0
205.9

.649
3.256
6.56
6.55
6.53
13.56
13.50
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Table 4.3. Curvature ratio effect under small torsion, contd.

Re
12.5
16
10

3.333
2.667
1.667
2.5

1.25

1.6

1.667
1.333
.8333
1.429
1.143
1.25
1.111
1

H
257
0

0
8w
107

47

5T

8.378

10.47

27
2.57

1.67
2

4.189
5.236

3.590

0

A n
04 .04
.0625 0
1 0
1 .05
1 1
.2 0
.2 1
2 2
25 0
.3 0
.3 15
3 .3
4 0
4 2
4 A4
5 0
5 .25
5 .5
.6 0
6 .3
6 .6
7 0
7 .35
.8 0
.9 0

1 0

Gn
100
0

0
79.06
158.1
111.8
111.8
223.6

136.9
273.9

158.1
316.2

176.8
353.6

193.7
387.3

209.%
0
0
0

IY
.0089

0
0
.0077
.0144

.01
.02

.0123
.0245

.0141
.0283

.0158
.0316

.0173
.0346

0187
0
0
0

fRe

43.78
44.01
44.64
44.78
45.20
46.20
46.60
47.80
46.92
47.58
48.39
50.79
48.79
50.19
54.34
49.82
52.07
58.65
50.65
54.20
63.87
51 78
56.76
51.67
51.75
51.77

Up 9
.5569

.5623
.5662
.5647
8603
.5756
.5739
5683
8797
.5833
.5828
5796
.5891
.5914
.5941
.5926
.5997
6111
.5936
.6077
6287
5917
6159
.5865
.5780
.5670

umax

.8355
.8284
.8138
.8124
.8082
7775
7748
7672
.7611
.7456
.7425
7333
.7165
.7143
.7072
.6800
.6907
.6909
.6652
6717
.6864
.6499
.7546
.6557
.6801
.6968

pmax

49.49
59.51
72.39
73.06
74.96
92.72
94.39
99.19
98.88
103.4
106.4
110.1
109.2
113.8
127.0
112.0
118.8
138.2
112.7
122.7
149.7
111.8
126 .4
109.6
106.2
102.3

“Puin
13.39
17.37
22.89
22.70
22.16
36.12
35.54
33.59
42.69
49.5
48.2
37.0
64.2
61.6
52.4
81.2
76.2
59.1
101.9
92.3
62.2
128.5
109.6
165.8
227.5
394.1

172



173

P
°
0
[

0.5

(RN RUV IS U U

SRESEVEEVY)

jo.0

-0.5

INENENEBRSNEN

2 WO = X T X RN (X3 1.0

a. A=0 04

-0.5

=
o

0.5

rdWIRTENEBURNNE L)

0.0

1 i E ARSI LA

~-B.5

1ok 1.0% d.0
g E 3
o £ 3
a5 f 05 F jo.5

a.0

0.0

AT TTYTTIIM Y TYYY

J'l’lll‘lll]l
SUTYETRE SR I,

=1.D0

...
o
°

Fig. 4.13. Secondary flow patterns for Dn = 100, 7 = 0.



0.5

TTTYTITTITYITIT ],

\MALAAARAARRRS TS

0.0

1-0.5

4421108280400
LAABRRAREBAR)

90 =68 0.0 05 1% ~1 e 8T 00 o5 T lo

WS RERRENY
TTITYTTTTITIN).

-0.5

ITTEERRUREPT
[RABERNRRRRE

9107 " 05 0.0 05 1910
c. A=0.4

1.0 _-05 00 05 19 o

[
(=]

TYTTTIITTTTY

TTIYTTITITY

Fig. 4.14. Secondary flow patterns for Dn = 500, n = 0.

1

-

i

4



1.0 =-05 00 05 _ 14Q .

iy
ol
-
o
1
o
L
1°
1o
o
o
(€3
o=
)

4

l"

0.5 0.5

TTTIYTTTTITT ).
(ISR STEEWR SN BY

[USYTETSEREATY

S 0.0 05 1.0

a. A=.04, n=.02, »=.01

§10 05,00 05 14,

Y TTTTYYT

=
]

0.5 8.5

TITTY YT T T
Tianagaagasasds

0.0

-0.5

YOI T I Py

.01.0 1.61'0 -0.5 100N 0.5 1.(“1'0

------------- YTV rrrTe s

R

0.5 0.5

ITRNENSAEBRN]
WMALLAAREARARI

0.0 0.0

TTTITITTYTITYY

ISRESENENES BN

....... " "

05 lo

10 —1.9 By 1.0

e. \=.7, 7=.35, y=.0418 f. A=.8, n=.4, y=.0447

¥ig. 4.15. Secondary flow patterns for Dn = 100, 7 = 0.5).

175



176

9.0

0.5

TTTITITIITITY).

0.0

0.0000 —»——30.0 jo.0

-0.5

TYYYTTIIVTTTY

EE S W S 05 1010 0y ; - ' 1.01-0

a. A=.04, n=.02, y=.0045

94 o

ip.s

aazasasannsh

«ITTSURNESEVE

0.0 ©.0 0.0

)WS
!
19
o
o

-0.5

AEARNRRERRERN)
Cetiaas0as02s
TTTYTTTITTITY

1.8, o5 b.0 T0.5 L0 Sl et s 0.0 05 1.01-0

c. A=.4, n=.2, vy=.0141 d. A=.5, n=.25, ¥»=.0158

-
(=4

1.0

-0.5 0.0 0.5 1.01.0 1 61.0 -0.5 0.0 0.5 l.q o

0.5

TTTITYTTITT T ).

0.5

o
o

USRS ETEREN L

a.o 0.0

-0.5 -0.5

TTTTVTTTrrrTY
TTITTTTTITTITY

L0

B Rt - S ¥ S 3 R R

e. A\=.6, n=.3, vy=.0173 f. x=.7, n=.35, »=.0187

0.¢

Fig. 4.16. Secondary flow patterns for Dn = 500, 7 = 0.5A.



177

WALAARRLARRRR]

Fig. 4.17. Iso—axial velocity contours for Dn = 100, 7 = 0.
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4.5. Stability of helical flows

If the time—dependent or the parabolized axial-depende:

retained, the momentum equations take the form:

b%=(M+d¢)¢-s¢

Where M is defined by equation (4-6b) with & and Z terms c
parameter, for (=t, b=-1, and for (=5, b=-~h{tReu+
Correspondingly, the discrete equations can be written as

X
5? = K(X, Re, A, 7))

If X0 denotes a steady—state axially—invariant solution and
small disturbance, equation (4—21) becomes, after quasi—linearizatic

the steady—state axially invariant solution,

ad _ X _ 6K
R— _B-Z__ ??X(XO, Re, A, ﬂ)'d

Owing to the non—linearity of the problem, it is natural in ou
procedure to use equation (4—-22) to arrive at a solution either in
unintentionally. If the solution X° is stable and d° = X(¢ = 0) - X
enough to cause X° 4 d° to be more close to another stable solution
will eventually degenerate to zero as ¢ + w. This physical explanation ¢
can be represented mathematically as all the real parts of the eige
Jacobian matrix ngt(XO, Re, A, 7) must be negative if X0 is a stable sc

also called the first Liapunov method for determining the stability «
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stress jump ( % has a finite jump at 6= —g—) between therw:. As long as the
asymmetrical appearance occurs, the two small vortices are encapzsizied by the two
main vortices. The two—vortex pattern stays. Hence, the four—voriex flows are not
stable. The forming of the four—vortex pattern lengthens the axial distance required
for the flow to reach fully—developed. To obtain the axially—invariant four—vortex
solution, one must force the discontinuity to be formed and ensure the symmetry
about the y—axis not to be disturbed.

When the grid is not fine enough for a large Dean number flow problem, a
four—vortex solution is seemingly stable as it appears not to degenerate to a
two—vortex solution as the flow develops down the pipe. Actually, an
axially—invariant four—vortex flow solution can be obtained for large Dean number
flow problems with a coarse mesh. One such example is shown in Figure 4.20. To be
complete, the flow evolvement after disturbance for the case of Dn=500, Rc=3.846,
H=4.833 is provided in Figure 4.21, where the grid of n25x32fu is used to show the
formation of the four—vortex type solutions.

Although the four—vortex solution is not stable as we find, experimental
observations of four—vortex solution have been made by Cheng & Mok (1986) and
Cheng & Yuen (1987). However, this is not surprising. Owing to the long length
required for the disappearing of the four vortices, s*~ 0.02 for Dn = 500 and
v = 0.0032, one has enough opportunity to observe the four vortices. In the
experimental studies of Cheng & Mok and Cheng & Yuen, a short pipe was used to

obtain the four—vortex flow patterns in a torus.



4_6. Some discussions on the representation of secondary flow

The flow structure is independent of reference frame. Using a different
reference frame, one may observe different patterns. Hence, there is o right or
wrong in presenting the flow in different reference frames.

The secondary flow is an important aspect of the helical flow behavior. It
determines the fluid movement and the momentum and energy / mass transport in
the cross plane normal to the axial direction. The rotating secondary flow can also
stabilize the helical flow up to a certain extent. Hence turbulence in the helical flow
is delayed compared to the Poiseuille flow where the secondary flow is absent. The
stabilizing effect was first observed by Taylor (1929).

As Tuttle (1990) noted that the stream tube is a correct observation in the
rotating Fremet frame where the axially—invariant (fully—developed) flow is
extracted. The advantage of the pseudo—secondary fiow stream :iu::ction approach is
that the psendo—secondary stream tubes (or secondary fiocw pattern) show a
complete picture of the fluid element movement across the pipe when the geometry
of the pipe is fixed. In the limit of small «, the strength of the true secondary flow
may be deduced from the pseudo—secondary flow stream function. Owing to the full
circular pipe geometry, no pure torsion effect can be observed (Germano 1989).
Hence, the secondary flow strength may not be deduced from the pseudo—secondary
flow stream function (Chapter 3) when < is large or Gn is dominant. Since the
secondary flow strength is important in the large Dn flows, it is necessary to
indicate the secondary flow strength for large Dn flows when Gn is increased.

Figure 4.22 shows the secondary flow strength ||v|| 4 variation with + for the
case of Dn = 100 and A = 0.01. From Figure 4.22, we observe that the secondary
flow strength increases with v when 7 < 0.15 and decreases rapidly with o when

0.15 < v< 6.4. When v > 0.4, the secondary flow strength is relatively invariant
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with varying <. Although all other properties teud to the limit of the Poiseuille flow,
the secondary flow strength tends to a fixed non-zero value due to the fixed Dn.
However, a swirling secondary flow does not change the transport property.

Combining with the secondary flow pattern and the secondary flow strength
[Iv}i;g, the full picture of the secondary flow may be drawn. The secondary flow
pattern shows a fluid element moving direction in the Frenet frame. It is also the
momentum and energy / mass transport direction. The secondary flow stremgth
[lvll;¢ is a measure of the magnitude of the secondary flow in the orthogonal
coordinate system (Germano’s observer).

To be complete, Figure 4.23 shows the secondary flow strength variation
with the curvature ratio A for the case of Dn = 100 and ¥ = 0. It can be seen that
Ivll;o/¥A decreases slightly with increasing A.

The introduction of ||v||;o resolved the argument in the controversy over the
use of pseudo—secondary flow stream function. However, the secondary flow
structure can be different with respect to different inertial frame. To present the
other side of the story, the orthogonal secondary velocity vector plots should be
introduced to complete the representation.

Figures 4.24a and 4.24b present the secondary flow in the same form as that
used by Murata et al. (1981), Kao (1987) and Germano (1989). The arrow plots in
Figure 4.24a and 4.24b are the orthogonal secondary velocity vectors on the
non—orthogonal r—@ plane. r—@ plane is used to avoid the complication due to the
(orthogonal s—) axally variant nature of the helical flow. When the torsion is
increased, the secondary flow structure presented in Figures 4.24a and 4.24b is more
complicated than that presented in Figure 4.2 for the same flow system.

Figure 4.24a shows that the secondary flow consists of two vortices for small
7. When 7 increases, the vortex appearance change in the orthogonal coordinate

system is the opposite of that in the non—orthogonal coordinate system. An increase
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in 7 for v < 0.1 results in the lower vortex gaining in both size and strength, while
Figure 4.2. shows the upper vortex gaining in size and strength. The change in the
vortex siructure is relatively abrupt when v > 0.04 as shown in Figure 4.24a.

Figure 4.24b is a continuation Figure 4.24a. The upper vortex becomes very
small in Figure 4.24b.b) where v = 0.18. For further increase in 1, the upper vortex
starts to gain back in size and in strength. The vortex dividing line rotates
anti—lockwise as < is increased. When 9 =1, the two vortices become
left—and—right. The two vortices are nearly of the same size and strength. The
orthogonal secondary flow is strong in the center region and is in the upward
direction. In the inner and outer wall region, the secondary flow is very weak and
downward. Hence, there is a strong source (coming from the axial flow) located near
the lower wall region. A large sink (to the axial flow) appears near the upper wall.

The orthogonal secondary velocity vector plots represent the time—
instantaneous secondary flow structure on the r—@ plane. They indicate the direction
of the flow and hence are directly measurable. The time—instantaneous direction
does not indicate the momentum / energy transport direction on the r—@ plane
owing to the geometrical change of the pipe. Hence, the orthogonal secondary flow
structure cannot be used to interpret the helical flow behavior such as the friction
factor variation without resorting to the secondary flow pattern (non—orthogonal
secondary flow structure).

The secondary flow patterns (pseudo—secondary flow stream function contour
plots) represent the s—axis—instantaneous secondary flow structure on the r—@ plane.
They are the overlapped exposures of secondary flow at various s—distance with the
outer wall fixed at the right. The secondary flow pattern indicates the momentum /
energy transport direction on the r—@ plane. Hence, the secondary flow pattern is
the property useful in characterizing the helical flow. The secondary flow pattern is

a preferred representation when transport phenomena are to be concerned.
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4.7. Correlation of fRe with respect to Dn, A and g

Numerous correlations of the friction factor for the toroidal flow and/or the
helical flow under small pitch limit can be fcund in the literature (see Nandakumar
& Masliyah 1986). However, none of them dealt with a reasonably large pitched
helical flow. Even the effect of curvature ratio has not been examined in a wide
range as it should be. To establish formally a suitable correlation, we need to
consider the effects of A and 7, separately to bring about a correlation equation for
the combined effect.

The curvature ratio effect on the friction factor is very complicated. Since
only the form of the correlation equation is needed for the separate effect of the
curvature ratio, we restrict to 7 = 0. Some results are shown in Figures 4.25 and
4.26. It is obvious that the linear relationship suggested in the literature is not
adequate. The regression equation fRe = A, + AZ,/\A3 is attempted. We found that
A;~1 for very small Dn flows and A, ~ 0.5 for large Dn flows. Hence, when Dn
number is large, the friction factor is proportional to the square root of curvature
ratio. When the Dn number is very small, the friction factor exhibits a linear
relationship with the curvature ratio.

The torsion effect on the friction factor is negligible for the commonly used
hehcally coiled systems, where the pitch is usually small as compared with the
radius of the coil. However, the potential of using large pitch coils can not be
discounted since it may actually improve heat/mass transfer characteristics. To
account for the torsion effect, we restrict the analysis to v < 0.1. Some results are
shown in Figures 4.27 and 4.28. Since physically, the flow behaves the same for a
positive torsion (right handed pipe) and negative torsion (left handed pipe), it is
intuitive to consider the relation of the friction factor with respect to the torsion to

be fRe~ A | + Azfy2 for small 7. This is also true from the perturbation series of
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Table 4.4. Friction factor correlations in the literature in the form of Dn}.

Equation Source
f
= 0.1064 Dn? Adler (1934)
£ = 0.509 + 0.0918 Dn? Barua (1963)
S
£ = 0.288 + 0.1015 Dn* Dennis (1980)
S
-3
£ 735" L7391
£ = 0.556 + 0.0969 Dn* Hasson (1955)
S
£ —0.1033 Dn?/ [1 _38.2 53] Mori & Nakayama (1965)
s v/Dn
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4.8. Conclusions

Fully developed laminar fiows of Newtonian fluids in helical pipes of constant
circular cross—section with a finite pitch and finite radius of the coil are numerically
studied. The curvature effect on the friction factor is of linear relation for smail Dn
flows and of fRe « A? for large Dn flows. For A > 0.2, the torsion effect on the
helical flow consists of more distortion with increasing A and/or Dn.

The friction factor increases with increasing torsion when 7 is small,
especially for large Dean number and large A systems. When 7 is large, the friction
factor decreases sharply towards the value of the straight pipe Poiseuille flow as vy
increases. The friction factor reaches maximum :: <~ 0.1 for moderate A and Dn
flows. But for small Dn and/or small A, the increase of the friction factor with 7 is
not apparent, where the distortion efiect of the torsion on the flow field is minimum.

The flow field rotates and distorts as < increases for large A and large Dn
flows due to the significance of the terms Az and A2y in the governing equations.
The maximum axial velocity increases as the torrion increases with its location
moving along a curve looking like a half heart starting from the outer—half y—axis
and a projected end at the center of the pipe. The helical flow changes from a
symmetrical two—vortex setting at Y= 0 to a one vortex setting at vy > 0.2, with
the lower vortex shrinking away from the original inner half y—axis and dragging
the upper vortex to expand as - increases. This is a combination of the rotation and
the distortion of the flow field. The size and the strength of the upper vortex
increases as the torsion increases. The lower vortex finally disappears at v~ 0.2 in
the case of large Dn flows.

The secondary flow strength behaves in a similar fashion as that of the
friction factor when 7 increases. In the large 7 limit, the secondary flow strength

tends to a fixed value for a given Dean number.
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The secondary flow structure undergoes a complicated change as viewed in
the orthogonal coordinate system when 7 is increased. The orthogonal secondary
flow is of two upper—and—lower vortices at small 7. Increase in < results in a
reduction of the upper vortex. It is of almost one vortex when <~ 0.18. Further
increase in 7 results a retract of lower vortex and rotation of the flow field. When v
is large, the orthogonal secondary flow tends to be of two left—and—right vortices.

For a given main flow strength, i.e., fixed Re, the helical flow changes from a
toroidal flow at zero pitch to a Poiseuille—like flow as H - .

The stability of the flow downstream in the pipe is studied with the
governing equations of the axially parabolized three—dimensional Navier—Stokes
equations written in the orthogonal helical coordinates. Four—vortex solutions have
been found from the numerical experimentation on the flow stability. When
v < 0.01 and Dn > 130, the four— vortex solution can be observed by disturbing the
flow field at the outer half y—axis. The four—vortex sclutions are not stable when a
fine enough mesh is used.

A new correlation for the friction factor is built up by a series of non—linear
regressions based on the numerical solutions of more than 250 cases. Accounted are
all the controlling parameters Dn, A and 7. The friction factors in the limit of
negligible torsion and curvature are in good agreement with previous experimental

and numerical observations of fRe ~ Dn*.
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Developing Laminar Flow and Heat Transfer in Helical Pipes
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5.0. SUMMARY

Simultaneous development of laminar flow and heat transfer of Newtonian
fluids in helical pipes of constant circular cross—section are numerically studied. The
governing equations were fully parabolized and were written in the orthogonal
helical cocrdinate system. The axial length scale and the parabolic behavior of the
developing flow and heat transfer were analyzed through the loose coiling
approximation.

The numerical similations were made without invoking the loose coiling
approximation. The results for shear rates, axial velocity and Nusselt number agree
well with published data for developing flow in a torus. The axial pressure gradient
and Nusselt number in the developing region are found to be oscillatory. The
hydrodynamic developing lengths were correlated with the flow Dean number. The
Nusselt number for fully—developed flows and the thermal entrance length were
correlated with the fluid Prandtl number and the flow Dean number.

When the torsion effect is dominant, the friction factor and the Nusselt
number for both thermally and hydrodynamically developed flows decrease with «.

y=—"_ jis the the flow pattern transition parameter for high Dean number flows.
n

When « is large, the asymptotic friction factor and Nusselt number tend to the

limits corresponding to a Poiseuille flow.
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5.1. Introduction

Fluid flow and heat transfer in helically coiled pipes of constant circular
cross—section are important in many industrial processes. In terms of the space
conservation, helically coiled pipes can offer an improved heat transfer efficiency
over straight pipes. The majority of studies in the literature deals with the fully
developed laminar flows and heat transfer in a torus, where the pitch of the helical
pipe is zero. These studies are summarized by Berger et al. (1983), Nandakumar &
Masliyah (1986), Ito (1987) and Berger (1990).

The developing flow in torcidal pipes has been numerically treated by,
among others, Patankar et al. (1974), Humphrey (1978), Soh & Berger (1984) and
Humphrey et al. (1985). Their velocity profiles agree with the experimental results
of Austin & Seader (1974) and Agrawal et al. (1978). These investigators used the
original three—dimensional Navier—Stokes equations except Patankar et al. (1974)
who employed parabolized three—dimensional governing equations. Although the full
Navier—Stokes equations are more accurate in predicting developing flows
(Humphrey 1978), they are rather difficult to handle when a long pipe is considered.
When a stationary axially—invariant solution does not exist, as it is the case for
some helical flows of large Dn, see Bara (1991) and Bara et al. (1992), the
computation with the full Navier—Stokes equations would be invalid since the flow
is “‘developing” forever without reaching anywhere near any axially stationary flow.
On the other hand, it has been shown that the parabolized equations fit the physical
problems quite well (Patankar et al. 1974, Sankar et al. 1988 and Bara 1991).
However, further studies are needed to remove the doubts concerning the accuracy
of the results obtained from parabolized equations.

The hydrodynamic developing length for a torus was correlated by Austin &

Seader (1974) for the case of a Poiseuille flow entry. This problem was studied
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analytically by Yao & Berger (1975 & 1988) with a boundary layer formulation for a
uniform axial velocity entry. They found that the developing length for a curved
channel is shorter than that of a straight pipe. Some boundary layer analysis gave a
vanishing axial wall shear at a certain location of the torus (Stewartson et al. 1980,
Yao & Berger 1988, etc.). However, the vanishing axial wall shear is not a result of
numerical studies using full or parabolized equations, nor is it an experimental fact.
The maximum axial wall shear rate was found to cross over from the inner bend to
the outer bend both analytically by Singh (1974) and experimentally by Choi et al.
(1979) and Kluwick & Wohlfahrt (1986). The flow evolvement into a four—vortex
flow in a torus having a square cross section was studied by Bara (1991) and Bara et
al. (1992). They found that the developing length decreases with increasing flow rate
for a four—vortex flow.

Simultaneous developing flow and heat transfer with a heat source in a torus
was treated by Patankar et al. (1974). The developing heat transfer from a
fully—developed flow in a torus was studied by Tarbell & Samuels (1973) for the
uniform wall temperature condition. Akiyama & Cheng (1974 a & b) studied
developing laminar forced convection for both boundary conditions. They confirmed,
in principle, the experimental findings of the non—monotonic variation in the
Nusselt number with the axial distance observed by Dravid et al. (1971), Balejova
et al. (1977) and Janssen & Hoogendoorn (1978). Janssen & Hoogendoorn (1978)
correlated the thermal entrance length and they found it to be, in general, shorter
than that of a siraight pipe.

The axially—invariant or fully developed flows in helical pipes of finite pitch
was studied in Chapters 3 and 4 (see also Liu & Masliyah 1992 b & c). By
employing a loose coiling analysis, there arrived at two controlling parameters,
namely, the Dean number Dn and the Germano number Gn. The Dean number is a

measure of the ratio of the square root of the product of inertial forces and
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centrifugal forces to viscous forces, that is, Dn = Re /A. Re is the flow Reynolds
number and } is the normalized curvature ratio: A = Rca / [Re? + (2—17%)2], where
Rc is the coil radius, a is the pipe radius and H is the pitch of the coil. The
Germano number Gn = Re 7 is 2 measure of the twisting forces over the viscous
forces, where 7 is the normalized torsion, 7 = (2%) a [/ [Re2 + (2%)2].

The Germano number Gn is always embedded in the body—centered
azimuthal velocity, £ = u, —%—]:rul, as long as A+ 0. u, and u, are the normalized
orthogonal axial velocity (u; = u’/2U) and peripheral velocity (u; = Re w’ /2U). U
is the average axial velocity. h, = 1 + X sinf is the axial coordinate metrics. By
taking momentum norm of £ and using the argument that at high Dn flows the axial
pressure gradient for a torus is proportional to the square root of Dn (see Chapter 3)
a new flow transition group v = Gn / Dn%/? = 7/vyADn was obtained, where
IME|| = ||Mu, — M(%El ru,)]l=ADn?2—A) Gn G = A, Dn2(1 — A, Gn Dn™/2),
Here M is the momentum operator, A’s are constants and G is the normalized axial
pressure gradient. When v > 0.2, the flow is one—vortex type (or swirl-like). When
7 < 0.2, the flow is two—vortex type. When 7 < 0.01, the helical flow problem may
be approximated by a toroidal low (Dean) problem, Liu & Masliyah (1992b).

Although the flow structure is independent of reference frame, the flow
pattern can be very different when viewing in different cocrdinate system as that
presented in Chapter 4 or by Liu & Masliyah (1992c). When viewing in the
orthogonal coordinate system, the secondary flow is of one vortex type at - ~ 0.18.
At small v, the orthogonal secondary flow is of two up—and—down vortices with
upper one smaller when v is not zero. At large <y limit, the secondary flow is of two
left—and-—right vortices.

In Chapter 4 (see also Liu & Masliyah 1992c), we showed that by making use
of a needle-like disturbance for 7 < 0.01 the flow develops into a four—vortex type

flow and back to the two—vortex flow. It was suggested that only two—vortex type
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solution for v < 0.2 is present for a circular cross section.

There are no literature data available on the developing flow and/or heat
transfer in helical pipes of a finite pitch. Even the simultaneous developing flow and
heat transfer with a uniform constant temperature was not numerically treated for
the case of a torus.

In this study, the Separation Method (Chapter 2, or Liu & Masliyah 1992a)
is used to solve the simultaneous developing laminar flow and forced convective heat
transfer problem in helical pipes of a finite pitch. The coordinate system used is of

that first introduced by Germano (1982).



5.2. Governing Equations

---------

The coordinate setup of the helical system is shown in Figure

Fig. 5.1 The helical system set up.



The metrics for the transformation are given by

s oxg

g.=—-— (5—7)
i %,

where q, =5,q, =1, Q3 = 9’ and 4’ = 8 + f(s). The basic equations of the curve

theory
dN _ 5 i 5-8
gs = BT (5-8)
and
%%=—T§ (5-9)

can be applied to derive the metrics of the orthogonal helical system. Where the

curvature ratio is defined by:

K= (5-10)

and the torsion is:

H/27 .
= 5-11
Rc? + (H/2r)? (5-11)

By forcing gi; = 0, for i4j, i,j=1, 2,3, with a suitable choice on the
function of f(s), the helical coordinate system (s, r, §’) is set to be orthogonal. The

metrics for the coordinate system can be obtained as:
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=8, =1+ Krsin{
— gl/2 _
hy =8y =1
_.1/2 (6—12)
By =833 =T

where 0 = 0+ 7s, (s, 1, 0’) and its corresponding rectangular coordinates (s, xq,
¥,) are orthogonal.

The governing equations are first derived in the orthogonal system (s, r, 0)
and transformed to the non—orthogonal system (s, r, §) leaving the velocity
components untouched. The transformation is necessary to eliminate the
s—dependent coefficients and variable (0 — 7s always appears in place of #). This
would allow an axially—invariant solution to be realizable if exists. It should be
noted that the above equations used dimensional quantities. To work with the

coordinate system, the variables are non—dimensionalized in the following manner:

s__s_ 1'—-£ t—Vt’ u—-u/ v—vl =W’ — ReP’
~a: — 3 "‘?372_‘: —5'0'7 —Q'Ua W_EZU’ p’_apUQ
T'--T/!

_ _ __2aU _ uCp _ w

and A—K,a., = 74, Re—’_y s PI—EF', T-—-T7i_—_1r3v-

Where a is the radius of the pipe, U is the average axial velocity, t is
time, v is the kinematic viscosity, u is the axial velocity component (orthogonal
s—directional component), v is the radial velocity component (r—direction), w is
the angular velocity component (orthogonal 0‘—directional component), A is the
curvature, 7 is the torsion, Re is the Reynolds number, Pr is the Prandtl
number, Cp is the heat capacity, k is the thermal conductivity, p is the pressure
and T is the temperature. The subscript w and i denote the pipe wall and the inlet

¢+ rage bulk, respectively. The primed variables are the dimensional quantities. For



simplicity, we will use the non—dimensional variables hereafter.
The final governing flow equations after all necessary substitution and

rearrangement are shown as follows:

The continuity,

1 ,6u du 1 d(rhyv) , 1 a(h,w) _
Elas "9 tihy ar  Tih, a8 O (5-13)

where h, is the metric coefficient in the axial direction (s—direction).
h, =1+ Arsind (5—14)
The momentum and energy equations are cast in the following form:
(M +dg)b =S, (5—15a)

where the momentum or energy operator M is defined by,

=ﬂ+%?£_;g+l i’—[(Reu—)\nIE?;s%gM h_g%
S{rhy(Re v ¢ — @)1

o
—11;; gz[Re(hl w—nru)p— —(1 QE?) (5—15b)

¢ stands for any velocity component or the temperature. When ¢ = T, the
Reynolds number Re in equation (5—15b) is replaced by Pr Re. The individual
momentym and energy equations are obtained by a specification of the velocity

component ¢, extra diagonal term d¢ and the source term S¢.
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s—momentum: ¢ =u

__ vsind +1wcoso) Re 4 A2 (5-16a)
1 1 . av ov ow aw
Ancosé Ar+sinf
- AW —1
—115-——1 v ~E, w) (5—16b)

r—-momentum: ¢ =v

d. = 1 + 2hyArsiné

= T 1%h] (5~17a)
Asiné 2 2 6;3u _ _du 1)
S¢=—g§+Re(—%‘l£—u2+-‘ir';) W—(S‘“ )+>‘ cosf _
%7 i‘g— - —T%-—ZI; 1715 cos bw (5~17b)

6~momentum: ¢ =w

dg = Re¥ + 111-?(,\2 + 2l (5-18a)
_ Acosf , 2Acosf,du du, Ar+sind
S¢—‘§%+Re“h-— 35~ Mge) ~ T By AT+
3h -1 ov
Wﬁ + EH%ACOS@V (5—18b)

With the assumption that the viscous dissipation is negligible and the fluid is

incompressible with constant physical properties, the energy equation can be written

as:

b=T, dp=0, S4=0 (5-19)

where Re is replaced by Pr Re in equation (5--15b)
The boundary is defined by the pipe wall. Although a numerical scheme with

a polar coordinate system would prefer to have a condition set at the center of the
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pipe, there are no conditions that can fit such a need. We can only say that the
properties are continuous at the center. Hence, the center point of the pipe is still in
the interior of the computational domain and should not be treated differently. The

boundary and necessary conditions are:
u=v=w=T=0 at r = 1 for all s and 6,

p = 0 at one reference point inside the computational domain and

27 1
J dg} r u dr
0 0

T 2

! (5—20)

(from the non—dimensionalization)

The inlet conditions will be given with the numerical results.
When the flow reaches the fully—developed (i-e., axially—invariant) stage, the

transverse velocity field can be represented by a field scalar quantity, %, as follows:

3
hy =—9 (5-21a)
a‘
how — 7ra = 3¢ (5—21b)

To the same extent as ordinary two—dimensional flows, the field scalar
quantity % can be called the pseudo—secondary flow stream function.

To compute the pseudo—secondary flow stream function, we take equation
(5—21b) after the velocity field is obtained. To approximate the secondary flow
pattern of the developing flow, we take equation (5—21b) as well when U 35 small.

as
It is obvious that if u, v and w satisfy the following pseudo—continuity equation

1 4(rh 1
EE—%]:—IV)--FIX—I%(hIW—nru):O (5—22)
which is the continuity equation (5—13) with —g—g- dropped, then the field scalar

quantity ¥ can be defined as it appears in equations (5—21a) and (5—21b) even if
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the secondary velocities are not axially—invariant. Hence, it is justified to use o
when -g% is small. However, this secondary flow pattern is not to be used when the

error in the pseudo—continuity equation (5—22) is greater than, say, 5%. An

4 |FRI;; + FCI; — FRO; ~ FCO, |

indicative error ESN is measured by the error in the pseudo—continuity equation.
|FRIij | + IFROijI + IFCIijI + IFCO‘ijl

ESN = 1:J (5-23)

) 1

i,3

where  FRI;, FROy, FCI; and FCOj; are the flow into and out of the
conservational domain of P;; in the radial direction, flow in and out of the
conservational domain in the 6 {non—orthogonal azimuthal) direction, respectively.
If ESN is small, the transverse velocity field can be approximated by the
field scalar quantity . If ESN islarge, ¢ should not be used.
Since the pseudo—secondary flow streaxan function can only be used to show
the secondary flow pattern, the true secondary flow strength may be defined by the

norm of the orthogonal secondary flow velocity as

1 27
Ivllo = f rdr S (() 1+ Arsinf) (v2 + w2)¥ dg (5-24)

The normalized axial length is used to present the flow development. The
normalized axial length s* is defined as follows:

S s’

§t = = (5—25)
2 Re 2 a Re

The heat transfer coefficient is estimated by the Nusselt number, Nu, and is

defined as follows:



2x . aT
(1 + Asiné) (35),—; 49 (5—26)

where b is the peripherally averaged heat transfer coefficient and Tav is the axial

flow average temperature across a given pipe section. Tav is defined as:

j(') dr j; Tu T df (5—27)

Tav =

300

To show the peripheral distribution of the heat transfer coefficient, a local

Nusselt number is defined as follows:

Nu(6) = 22— 23D _, (5-28)

where h is the local heat transfer coefficient. It is obvious that

Nu = = fo2™(1 + Xsin6) Nu(6)df
{ (5—29)

1 2 .
=5 o' (1+ Asin6)h df

By including the axial metric in the cross sectional averaging, the overall heat
transfer rate can be related to the average heat transfer coefficients.

For the convenience of reference, the temperature distribution across a given

pipe section is normalized by its average value Tav, i.e.

- T; (5—30)

Wher. no confusions arises, the superscript ¢ may be dropped hereafter.
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5.3. Loose Coiling and Parabolization i» Axial Direction

There are four dimensionless parameters involved in the helical flow and heat
transfer, namely, A, 7, Re and Pr. It is known that the flow problem can be
simplified by applying the loose coiling approximation. In this analysis, we do not
intend to make the loose coiling assumption, but we will use it to derive some

important properties concerning the computation. Loose coiling refers to the

following double limit:
A-0, while Re- +o and A #0

Since the helical pipe reduces to a straight pipe when X = 0, the above
conditions hold when A # 0. This can be maintained by having either a large but
finite radius of coil Rc or a large pitch H. Under this condition, it has been found
that only the Dean number Dn and the Germano number Gn or the 7 number are
important to the flow field since the terms involving A and # can be dropped (see
Chapter 3, or Liu & Masliyah 1992b). To show this property, let’s introduce the

following rescaled velocity field, pressure and axial distance:
u,=1u, u,= /\_%v, Uy = _%w, z= /\3/4Re%s, P = \ip (5—31)

The Dean number Dn is defined as

_ — a Rc 1/2
Dn_ReJX—Re[Rc2+ (Q—H—)z] (5-32)
ik

and the Germano number Gn is

a (35)
Gn = Re 7= Re 5 17; 5
Re™ + (-2—7?)

(5—33)

The flow transition parameter v is defined by



y=—" (5—34)

By introducing the new variables into the governing equations, we obtain:

The continuity equation,

n,du;

d(rthau 1 h;u
1_87 )+T_L__L_Zl+_h_1i__31__o (5_35)

The momentum/energy operator,

8
b+ ol + B G (00T w7 7 e — - B+

;ﬁ;-;,—[rhl(nn u, 6 — 2]+
fij 9 iDn(h; uy — WDT r u)p — 211 + L% (5-36)

s—momentum: ¢ = u,

u,sinfd + ujcosf

= A2
5, = —YPBIL _ ) + 37 yDa [2sin (222 — 4 282y 4
S = N9z H’{ az 756
208 T23 — 7 393) + (°°Sa )‘”Slmo )7 (5—-37b)

r—-momentum: ¢ = u,

1 + 2hArsiné
d¢ = T 211%1 =n (5—38a)

— ap ug
S¢=—A 1P . pn (51n0u%+ ) — 2)\\/D_sm0(b‘u1 7361)_*_

1\{5952\/55 u, — %2 %3 - %‘ﬁ—g——)\cos bu, (5—38b)
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f¢~momentum: ¢ = u,

u 1 2h,—1
d¢ = Dn2 + E,1,(/\2 + =) (5—39a)
Scl) = -2t g% + Dn—h——cosou§ — —gc”‘ n osé’(—?‘z—ll -7 %‘) —
1
T"”‘““ﬁwm u, + —m-fh 1o, FhyAcostu, (5—39b)

The energy equation is still in the form of equation (5-19), but u,, u, and
u3 in the energy/momentum operator M should be replaced by Pru,, Pr u, and
Pr uy, respectively.

Note that (5—38b) and (5—39b) are of the following form

o A& o) (5—40)

Hence, when A -0,

P="Pyz,m) + AP(1,0,z,7) + ... (541)

i.e., at least when ) is small, the major contribution to the axial pressure gradient
can be separated from the cross—sectional component. This ensures that such a
treatment may be used for the parabolization of the governing equations. The axial

pressure gradient is directly related to the flow friction factor as:

1 27
4 J rdr{ (— -gg) dé dp
_ 0 Jo _ 4 e _1p24P,
fRe = . =—4 —= 472 ge (5—42)

where { is the Fanning friction factor and pn is the average pressure across the pipe.
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The above equation is used to evaluate fRe at any given axial location. The axial
pressure gradient is taken as constant for a given axial location in the parabolized
equations.

From equation (5—36), we can see that when M is small, the axial diffusion
term can be dropped from the momentum equation. If the loose coiling
approximation is to be applied, the governing equations become parabolic in the
axial direction. In other words, the pa-2bolization approximation which neglects the
axial diffusion terms and separate the axial pressure gradient from the
cross—sectional components is good at least for the case of small curvature ratio A.

In the limits of A = 0 and - 0, equations (5—19) and (5—35) to (5—41) show
that the heat transfer and flow problem are governed by three parameters, Pr, Dn
and 7, only. Hence, we have retrieved the loose coiling approximation for the case
of the developing flow/heat transfer problem.

For the case of A -0 and 7 -0, the loose coiling conditions justify the
parabolization of the governing equations. Since a useful range of curvature ratio A
in many practical applications may be that of 0.01 < A < 0.2, it follows that the
parabolization of the governing equations can be deemed to be reliable. When
Reynolds number is large, the parabolic approximation becomes more suitable in
predicting the developing flow behavior (Patankar et al. 1974, Sankar et al. 1988,
Bara 1991 and Bara et al. 1992).

By noting the normalization in the above order of magnitude analysis,

equation (5—31), the axial length z can be related to s* in the following way:
z = A%/4Rel/%s = 2 D% %5+ (5—43)

Hence, s* defined by equation (5—24) is a good choice in representing the axial

length scale for the developing flow and heat transfer.
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5.4. Results and Discussions

Calculations were made for Dean numbers lying in the range of
21.86 < Dn < 5000 for the values of 0.1 < Pr < 500, 0.01 < A < 0.25 and < 0.25 for
the case of simultaneous developing flow and heat transfer with a constant wall
temperature. The grid used in most cases for Dn < 2000 is n40x50fu, i.e., 40

non—uniform mesh points in the radial direction and 50 uniform mesh points in the

e

full azimuthal direction. For Dn = 2000 and Dn = 5000, the corresponding meshes
are n60x50fu and n100x60fu. The inlet conditions applied to investigate the flow and

heat transfer behavior are:

Uniform axial velocity entry:

(5—44)
VIseo = Wlsmp =0 (F)lgmg = GP)s—o =0
and Parabolic axial velocity entry:
u[s=0 =1 - 12
{ (5—45)

VIgeo=Wlsmg =0 (Blgug =B =0

The uniform axial velocity entry defined by equation (5—44) is valid for a
flow entering a helical pipe from a large reservoir. The parabolic axial velocity entry
defined by equation (5—44) may correspond to a flow having past through a long
straight pipe prior to entering the helical pipe.

The inlet condition of the temperature is that of a uniform temperature field,
ie, T|,_g=1

Before we present the results of the simultaneous developing flow and heat
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transfer, it is necessary to introduce the characterization of the fully—developed
laminar helical flows. In Chapters 3 and 4 (see also Liu & Masliyah 1992 b & c), a
critical value of 7~ 0.2 was found, where the secondary flow patterns change from
two— to one— vortex. Figures 5.2a and 5.2b show that the flow pattern transition
occurs at 7~ 0.2 for 20 < Dn < 100 and 0.0025 < A < 0.16. We observe that the
secondary flows have a two—vortex pattern when v < 0.2 and a one vortex patiern
when 7 > 0.2. The two vortices are positioned left and right near the vortex
transition zone. The right (or near outer wall) vortex is small both in size and in
strength.

In this study, we shall discuss the developing flow and heat transfer

corresponding to both the ore— and two— vortex flows.

5.4.1. Secondary flow development

The seconaary flow strength developments for various Dn and < are shown in
Figures 5.3a and 5.3b. Figure 5.3a shows the secondary flow strength developments
for a typical two—vortex flow of Dn = 200, A = 0.01 and 7 = 0.01 with both uniform
and parabolic axial velocity entries. For a uniform axial velocity entry, the
secondary flow strength increases rapidly to a large value shortly after entering the
helical pipe and decreases non—monotonically with increasing the axial distance s*.
For a parabolic axial velocity entry, the secondary flow strength increases gradually
and reaches the fully—developed value in a non—monotonic fashion.

Figure 5.3b shows the secondary flow strength developments for a typical
one—vortex flow of Dn =200, A =0.01 and y= 0.25 with both uniform and
parabolic axial velocity entries. Similar behaviors to the two—vortex flows are
observed except that the oscillation in the case of uniform axial velocity entry is
much reduced.

It is traditional to present velocity vector plots for the secondary flow to
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simulate the same effects, we decided to use the field scalar quantity 1 defined by

equation (5—21) when ESN is less than 5%. This was also used in our earlier study

(Chapter 4) to show the formation and disappearance of the fou
also Liu & Masliyah (1992c).

r—vortex flows, see

Figures 5.4a and 5.4b show the secondary flow developments for typical two—
and one— vortex flows. To give a sense of the accuracy of such plots, the error in the
pseudo—continuity equation ESN is also shown with the axial distance s*. We
observe that the secondary flow develops very quickly near the wall region. The

secondary flow development is controlled by the central region where the centrifugal

force is more important than the viscous force.

In Chapter 4, we found that the secondary flow patterns are distinct in the

range of Dn > 100 and 0.1 <7< 0.2. The secondary flow conmsists of two skewed

vortices. Figure 5.5 shows the secondary flow pattern evolvement for Dn = 200,
v=0.12 from a Poisenille flow. It can be seen that for small s*, the secondary flow
pattern is given by a large vortex and a much smaller vortex. The small vortex

gains strength and size as the flow develops. We also observe that the secondary

vortex rotates slightly in the course of the flow development. We say that the flow

field such as that shown in Figure 5.5 consists of distortion since the iso—pseudo—

secondary flow stream lines are twisted as compared to those in Figure 5.4a.

To show the orthogonal secondary flow structure, the velocity vector plots
have to be introduced (see Chapter 4, or Murata et al. 1981, Kao 1987, Germano
1989 and Liu & Masliyah 1992c). Figures 5.6a and 5.6b show the orthogonal

secondary flow developments for the typical (non—orthogonal) two— and one—
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vortex flows. Figure 5.6a shows the orthogonal secondary flow structure
development for Dn = 200, A = 0.01 and 7= " 11 with a parabolic axial velocity
entry. We observe that the vortices develop very quickly after entry. Two
up—and—down vortices appeared at the early axial distance of s* = 4.1x10-%. The
strength (noting the scale of vectors at the bottom of each plots) grows and there is
no orientation change until s* < 0.00998. When s* = 0.00998, the strength of the
secondary flow is reduced and the lower vortex grows larger in size than the upper
vortex. When s+*> 0.00998, the secondary flow strength gains back. The flow
reaches fully—developed at s* = 0.04 and the two vortices are of non—equal size.
Figure 5.6b shows the orthogonal secondary flow development for Dn = 200,
A = 0.01 and 7= 0.25 with uniform axial velocity entry (the same as the flow in
Figure 5.4b). Near the entry, the flow is to get axial velocity distributed. The
secondary flow velocity vectors are pointing towards the center as shown clearly in
Figure 5.6b.a) where s* = 1.6x10-4. At s* = 4.1x10"4, vortices start to develop near
the inner upper wall and near the outer lower wall. The two vortices grow as the
axial distance increases. At s* = 2.03x10-3, the two inner up and outer down
vortices become distinct. When the flow becomes fully—developed, i.e., s* > 0.01,
the inner up vortex is reduced in size and strength. Sources and sinks still exist in
the velocity vector plots when the flow is fully—developed because the axial velocity
has a transverse component (a rotational component) embedded in it.

The vortices shown in Figure 5.6a.f) are not symmetrical suggesting that the
torsion has a noticeable effect. However, our early studies (Chapter 3 and 4) show
that the torsion is negligible when 7 £ 0.01. Hence, as Dn increases, we may expect
some more torsion effect.

The vortices in Figure 5.6b.f) agree with those found in Chapter 4. When
7> 0.18, the orthogonal secondary flow is of two left—and—right vortices with the

left one being smaller and upper.



5.4.2. Axial flow development

Figure 5.7 shows the axial velocity development across the pipe at x and y
axes. As a comparison, the laser doppler experimental data of Agrawal et al. (1978)
is also shown. Figure 5.7 shows a very good agreement between our predictions and
Agrawal et al.’s laser anemometer measurements for the case of A =,}= and the
relatively small Dn of 183. Such an agreemert gives support to the present
parabolization procedure.

Figures 5.8 and 5.9 show the center line and maximum axial velocity
development for both small and large 4 flows. It can be seen that the center line
axial velocity is oscillatory as the flow develops. The maximum axial velocity, on
the other hand, remains relatively smooth and monotonic. For very large Dn,
Dn = 2000 and Dn = 5000 as shown in Figure 5.10, the axial velocity developments
do not differ from the lower Dn flows. The developing flow is oscillatory. The
magnitude in oscillation remains relatively constant with changing Dn.

Figures 5.11 to 5.14 show the development of the axial velocity field for
various 7’s correspond to both two— and one— vortex flows. For two—vortex flows,
the maximum axial velocity first appears near the top wall and moves towards the
outer wall as the flow develops. For a uniform axial velocity entry, the center region
of the axial velocity remains flat in the early stage of flow development. The flow
distortion (or the twist of axial velocity isoplethes) is more evident in the early
stage of the flow development for large 7. The flow distortion is reduced as the flow
is fully developed. The flow distortion is present at the first few stations in Figure
5.11 (Dn = 200, A = 0.01 and 7 = 0.02). When the flow is fully—developed, Figure
5.11f shows negligible distortion. The distortion in the flow field is present in the
fully developed flow of Dn = 200 and v = 0.12, see Figure 5.14. The flow field
distortion in the fully—developed flow is consistent with our early studies detailed in

Chapter 3 & 4 (see also Liu & Masliyah 1992 b & c).
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5.4.3. Pressure and shear stress development

Figures 5.15 to 5.18 show the development (or evolvement) of the axial
pressure gradient or fRe. As the flow enters the helical pipe, fR¢ becomes very large
for the case of the flow with a uniform axial velocity entry (the pressure is set to be
uniform and tne secondary flows are set 10 be zero). fRe drops sharply as the axial
length increases. The decrease in fRe as the axial length increases is not necessarily
monotonic. For large Dn flows, fRe development is oscillatory (although not cyclic).
When Dn is relatively small, fRe varies with the axial length monotonically.

For the case having a parabolic axial velocity entry, i.e., the flow is a fully
developed Poiseuille flow at the entry of the helical pipe, the axial pressure gradient
increases non—monotonically until it finally settles down at the fully developed flow,
as shown in Figure 5.18.

Attempt was mad. o ~>mpare iRe or total wall shear stress evolvement as
the axial length increases with the published experimental data. Since the axial
pressure drop is proportional tn the jocal total wall shear stress, the “total shear
stress” of Choi et al. (1979) measured via an electrochemical method was used to
compare with our computed fRe development. As shown in Figure 5.17, the
computed fRe is very different from that deduced from the experimental data of
Choi et al. This disagreement is found to be due to the fact that the measured data
was not the total shear stress as was claimed by the authors. The electrochemical
method used by Choi et al. measures the concentration gradient at the wall. This
concentration gradient can only be related to the axial velocity gradient or the axial
wall shear component. Only in some special circumstances, such as a straight pipe,
i.e., Poiseuille flow, the concentration gradient may be related to the total shear
rate. With this fact in mind, we computed the development of the axial shear rate
for the case of a torus having Dn = 643, A = 1/7 and 7 = 0. The experimental data

of the above mentioned authors and that of Talbot & Wong (1982) for the same
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torus and flow conditions are shown in Figure 5.19. It can be seen that the

agreement is good. Owing to the large Schmidt number of the media, the

experimental data close to the entrance may not be a good representation of the

axial shear rate. To verify our findings, the numerical solution of Soh & Berger
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(1984) with a slightly higher Dn of 680.3 is also shown in Figure 5.19. Soh & Berger

(1984) did not invoke the parabolization and used a slightly different inlet

(free—vortex) condition of u|S=0 =1 }\Ein(? . It can be seen that our
computed results are consistent with those of Soh & Berger (1984).

As we note from Figure 5.19, the axial shear rate decreases sharply near the
entry. The shear rate at the outer wall is smaller than that at the inner wall. At
about Dn s* = 0.328 or s = 1.74, a crossover occurs. The shear rate at the outer wall
becomes larger than that at the inner wall. The shear rate becomes gradually
varying with the axial distance after the crossover. The crossover point is consistent
with the study of Singh (1974) for s = 1.9 and Smith (1976) for s = 1.51. However,
there is no sign of a vanishing shear rate. This is in contrast with the boundary
layer analysis which claims a vanishing axial shear rate, see Stewartson et al.
(1980). One should bear in mind that the boundary layer analysis attempts to
match the sharp decreasing part with the slowly varying part near the fully
developed region. In the intermediate region, the flow is more complicated than a
simple boundary layer theory can handle. This disagreement with the boundary
layer analysis was also reported by Soh & Berger (1984).

To support our findings that there is no vanishing shear rate, we present the
axial shear rate developments for very large Dn flows. Figures 5.20a and 5.20b show
that a minimum inner wall axial shear rate is present. However, the magnitude of
the minimum inner wall axial shear rate is no smaller than that of the fully
developed inner wall axial shear rate. Hence, we conclude that the axial wall shear
rate does not vanish. The crossover points move closer towards the inlet as the flow
Dean number is increased. We observe that the axial wall shear rate crossover
occurs at Dn s* = 0.305 or s =1.93 and Dns*=0.234 or s = 1.48 for Dn = 2000
and Dn = 5000, respectively, for a helical pipe of A = 0.1, 7 = 0.02. As in the case

of a torus, this is in agreement with Yao & Berger (1988) who found that the axial
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wall sh:.ear rate crossover point moves towards the inlet with increasing Dn and is
strongly dependent on the curvature ratio A.

In Chapter 4, we found a pressure cone (local minimum pressvre zone)
present for large Dn and 0.1 < 7 < 0.2 flows. To show the pressure cone formation,
Figure 5.21 shows the pressure profile development for Dn = 200, A = 0.1, v = 0.12

with a parabolic axial velocity entry.

5.4.4. Heat transfer Nusselt number development

Owing to the substantial magnitude of the secondary flow and to its
development, the temperature profile and the Nusselt number are expected to be
oscillatory (may not be cyclic) in the developing region. This oscillatory behavior
was also observed experimentally, see Janssen & Hoogendoorn (1978). However, for
a fully developed flow in a torus, periodic oscillation in the Nusselt number was
found in the analysis of the developing heat transfer by Tarbell & Samuels (1973).
In this study, we set forward to investigate the validity of the parabolization and
present some results on the heat transfer behavior in the simultaneous developing
region for helical pipes of a finite pitch. Comparison was made with the available
data for the case of flow in torus.

Figures 5.22 and 5.23 show the Nusselt number development for a torus
having A = i’f for various Prandtl numbers. The oscillation in Nusselt number is
evident even for the small Dean number, Dn = 21.86, and small Prandtl number,
Pr = 0.707, a case shown in Figure 5.22. For comparison purposes, the experimental
data by Janssen & Hoogendoorn (1978) for the same conditions as those used in
computations are also shown in the Figures 5.22 and 5.23. It can be seen that the
current predictions are in good agreement with the experimental results of Janssen
& Hoogendoorn (1978). It is of interest to note that the agreement is very good even

for the case of small Dn flows, as shown in Figure 5.22.
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differ qualitatively from those of smaller Dn flow conditions. When Dn is increased,
the minima (lowest points of the “valley”) move closer to the inlet. The same is true
when the fluid Prandtl aumber is increased.

Figure 5.27. shows the inner wall, the upper wall and the outer wall local
Nusselt number variations with axial length for Dn = 2000, A = 0.1, 7= 0.02 with
Pr = 0.707 and Pr = 500. For the case of a uniform axial velocity entry, we observe
that the maximum local Nusselt number crosses over from the inner wall to the
outer wall near the inlet. The crossover points ure Dn s* = 0.20 (or s = 0.63) for
Pr = 0.707, Dn s* = 0.19 (or s = 0.60) for Pr = 2 and Dn s* = 0.10 (or s = 0.32) for
Pr = 500. A minimum (valley) value and a maximum (peak) value of the local
Nusselt number occur after the crossover. The larger the Prandtl number is, the
larger difference in magnitude of the maximum and the minimum inner wall Nusselt
number.

Figures 5.25 to 5.27 clearly show that the local Nusselt number, Nu(6),
development is sensitive to # and to the value of the fluid Prandtl number.

In all cases, the larger the Prandt! number, the deeper the valley and the
higher the peak after the valley appear. ‘avior of the Nusselt number is very
much related to the secondary flow strc - As shown in Figure 5.32 and 5.3b,
“peaks” and “valleys” exist in the course of ||v||,; development. Strong secondary
flow is expected to increase the Nusselt number which can be magnified by an
increase in fluid Prandtl number. Owing to the similarity between the temperature
profile and the concentration profile, the wall concentration gradient with respect to
the Schmidi number is expected to behave very similar to the temperature gradient
(or Nusselt number) with respect to the Prandtl number. When Pr is very large, the
Nusselt number development is very different from the axial wall shear rate
development. Hence, by using a very large Schimidt number medium, the measured

concentration gradient may not be good in representing the axial wall shear rate in
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Fig. 5.28.  Fully—developed Nu(#) variation with & for a typical two—vortex
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Fig. 5.29. Fully—developed Nu(f) variation with @ for a typicai one—vortex
flow of Dn = 200, A = 0.01 and v = 0.25.
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the near inlet region.

Figures 5.28 and 5.29 show the asymptotic local Nusselt number distribution
with ¢ for both the two— and one— vortex flows. These two plots are in polar
coordinates where the angle 6 is defined the same as that on a helical pipe cross
section and Nu(#) is measured by the polar distance. x and y correspond to the x
and y axes of the non—orthogonal coordinate system. Figure 5.28 shows the local
Nusselt number variation with § for a typical two-vortex flow of Dn = 200,
A =0.01 and ¢ = 0.61 with fluid Prandtl numbers of Pr =1 and Pr = 500. We
observe that the Nusseit number reaches maximum at the outer wall (8§ = —;—) and
minimum at the inner wall (6 = — ——g—). The shape of the curve looks like a heart
symmetrical with the y—axis. Nu(#) increases with increasing Pr, but the qualitative
behavior of Nu(#) does not vary with Pr. Figure 5.29 shows the local Nusselt
number variation with # for a typical fully—developed one—vortex flow of Dn = 200,
A = 9.01 and 7y = 0.253 with the same fluid Prandtl numbers as the case presented in
Figure 5.28. We observe that Nu(6) is very different from that in Figure 5.28. Nu(6)
is higher in the inner upper wall region and lower in the lower outer wall region.
This behavior is comsistent with the secondary flow observed in Figure 5.4b.f),
where the secondary flow is stronger in the inner upper wall region and weaker in
the lower outer wall region. However, the orthogonal secondary flow structure as
shown in Figure 5.6b.f) should suggest a higher heat transfer rate in the outer upper
wall region. That the heat transfer rate does not follow the orthogonal secondary
flow pattern is because the orthogonal secondary velocity does not indicate the
momentum and / energy transport direct direction (see Chapter 4). For Nu(4) with
different Pr for the case of the two—vortex flow, a similar behavior is observed.
Comparing Figures 5.28 and 5.29, we observe that Nu(6) is more distributed with 4

for two—vortex flow and relatively invariant with § for one—vortex flow.
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5.4.5. Temperature field development

For the case of a torus, Figures 5.30 and 5.31 show the variation of the
averaged temperature Tav and the local normalized maximum temperature T,
with the dimensionless axial distance s*. T,y decreases monotonically and
exponentially snortly after the entry into the helical pipe with s*. The rate of
decrease with the distance is fairly large for low values of fluid Prandtl numbers.

Figure 5.32 shows the isothermal lines for a typical two—vortex flow. It can
be seen that the temperature profile for Pr ~ O(1) is very similar to that of the axial
velocity profille as shown in Figure 5.13. Figure 5.33 shows a typical temperature
profile of larger Pr for Pr = 100. The flow conditions are identical to the case of
those in Figure 5.32, where the two—vortex flow pattern is present. Near the
vortex—dividing line, the temperature is much lower as compared to the other
regions. At the early stage of development, the temperature profile for large Prandti
number still resembles that of the axial velocity development. Further downstream,
the temperature near the vortex dividing line away from the outer wall forms a
depression (local low temperature zone). The depression widens as the flow
develops. In contrast to the temperature field for the case where a two—vortex
pattern is present, Figure 5.« % shows the temperature distribution for the case of a
single vortex pattern. Here, the temperature distribution is similar to the
corresponding axial velocity, Figure 5.12.

The temperature distribution depends on both the flow Dean number and the
fluid Prandtl num!er. Figure 5.35 shows the temperature distribution for various
Dn and Pr flows. We observe that when the fluid Prandtl number is near unity and
the flow Dean number is large, the temperature profile looks very much the same as
the axial velocity profile. When the flow Dean number and the fluid Prandtl number
are small, the temperature profiles are similar to that under the one—vortex flows

conditions as shown in Figure 34. When the fluid Prandtl number or the flow Dean
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LNu = s* . 54
=S Nu — (Nugy] € 0.01 (Nu)g, (5—48)

The computed values of the fully—developed fRe and Nu and the developing
lengths are listed in Table 5.1 for the case of the heiical flow with a uniform axial
velocity entry. The fully—developed values are listed without the fd subscript. The
use in equations (5-46) to {5—48) of the subscript fd is only for the purpose of
avoiding confusion with the local values.

From Table 5.1, we can observe that the developing lengths vary slightly
with the curvature ratio. However, Lu does not comply with the findings of Yao &
Berger (1975) where a strong variation in Lu with A was presented for a torus. The
developing lengths vary with the torsion 7. When the torsion is small, n < A, the
developing lengths are relatively constant against a change in 7. When 7 increases,
the developing lengths increase. Owing to the lack of data on the variation of A and
7, we correlated our computed developing lengths by neglecting the effect of A and 7
for 7 < A pipes. From equations (5—35) to (5—39) and (5—43), we realize that the
hydrodynamic developing lengths are functions of Dn only when the effects of A and
n are neglected. This is in agreement with Yao & Berger (1975). The thermal
developing length is a function of both Dn and Pr. The results in Table 5.1 can be

best represented for 0.01 < A < 0.25, v< 0.1 and 22 < Dn < 5000, by

. 1/4
_0.056 + 0.0120 Dn
Lu = =095 Dn (5—49)

Lp = 0.06 (1 + 0.05 Dn) "% (5-50)

and for 0.1 < Pr < 500, 0.01 < X < 0.15, v< 0.1 and 22 < Dn < 5000

i
_ 0.155 4 0.00604 Dn?Ppy? _
LN = =51 pon—— Fr (5-51)




Table 5.1.

axial velocity entry.

Dn

21.86

91.47

100
100
160
100
182.9
2006
200
200

200

200
200
200
200
200
200

312.3

643

680.3

721.7

2000
2000

5000

A 7
0244 O
1429 ©

1 0

1 .05
1 .1
1 .15
1429 0
.01  .0141
.01  .0283
01  .2828
01  .3535
1 0

1 .05
1 1

1 15
1 2
1 3
.0244 ©
1429 ©
1429 ©
.0833 0
.25 .0200
1 .02
1 .02

fRe

16.92

24.17

24.53
24.60
24.73
24.83
30.47
30.12
30.20
17.66

16.90

31.12
31.20
31.41
31.76
32.22
33.36

35.92

49.96

51.33

51.42

85.85
81.45

124.4

Lp
.0388

.0200

.021

.0188
.0130
.0130
.0152
.0158
0172
.0550

.0620

.0138
0138
.0148
.0236
.0261
.0293

.0105

.0071

.0071

0063

.0052
.0044

.0021

Lu

.0659

.0416

.0391
0405
.0428
.0457
.0300
.0300
0303
.0468

0602

.0305
.0326
0326
.0349

0417
.0545

.0235

.0118

.0101

.0106

.0054
.0051

.0024

Pr(Nu, LNu)
(,707(4.012, .0803), 34(8.455,.776)
460(14.80,1.07)

{;1(4.590,.0275), 5(10.15..109)
80(15.52,.362)

1(8.694,.0522)
1(8.688,.0513)
1(8.675,.0470)
1(8.651,.0412)
11(5.186,.0224), 5(14.02,.0746)
.1(5.224,.0215), 5(14.35,.0691)
.1(5.260,.0235), 5(14.38,.0691)
.1(3.738,.0343), 5(4.569,.1088)

(.707(3.744,.0422), 2(3.923,.0868)
500(7.189,.391)

1(12.27,.0399), 100(25.50,.0905)
1(12.03,.0398), 100(27.80,.0950)
1(12.30,.0390), 100(28.04,.102)
1(12.29,.0380), 100(25.52,.105)
1(12.32,.0376)

1(12.30,.0398)

{;707(14.57, .0328), 34(22.33,.123)
460(30.25,.214)

£-1(6.910,.0154), 2(23.00,.034)

L 5(24.67,.0482

{;707(20.12, .0276), 4(25.15,.0342)
10(27.00, .0527)

{.707(21.87,.0269), 43(30.61,.0883)
500(50.18,.1294)

{;1(11.26,.0112)  1(37.74,.0186)
100(63.88, . 0485)

(:1(20.25,.0115), 2(62.85,.0137)
500(122.9,.0358)
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Developing lengths and fully developed flow {Re and Nu with uniform
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The thermal entrance length correlation, equation (5—51), is within the
bound of that of Janssen & Hoogendoorn (1978). Janssen & Hoogendoorn’s

correlation is shown as LNu’, where
’ 0.2
LNu’ <20 Pr“/Dn (5—52)

Equation (5—52) is not very accurate in estimating the thermal entrance
length. It is only a bound estimate.

To compare the developing lengths of the flow with a parabolic axial velocity
entry, we presented some of our results in Table 5.2. It can be seen that the
developing lengths are not very different from that of the uniform axial velocity
entry case. Comparing Table 5.2 with Table 5.1, we obsezve that Lu for the
parabolic axial velocity entry is slightly shorter than that of the uniform axial
velocity entry. Lp for the parabolic axial velocity entry is slightly longer than Lp
of the uniform axial velocity entry. LNu for small Pr is shorter, while for large Pr
is longer, than LNu of the uniform axial velocity entry.

From Tables 5.1 and 5.2, we observe that the entrance lengths increase with
increasing torsion 7. When the flow is a one—vortex flow type (7> 0.2), the

entrance lengths are similar to those of a straight pipe problem.

Table 5.2. Developing length and fully developed flow fRe and Nu with a
parabolic axial velocity entry.

Dn A ] fRe Lp La Pr(Nu, LNu)

200 .01 0141 30.12 .0177 .0253 .1(5.224,.0248), 5(14.35,.0747)
200 .01 -0283 30.20 .0173 .0293 .1(5.260,.0193), 5(14.38,.0741)
200 .01 .2828 17.66 .0483 .0420 .1(3.738,.0294), 5(4.569,.113)

200 .01 .3535 16.90 .0390 .0295 {5(1,(():(”%‘.5{25'92:1’3;"5(4'276>'161)



For the parabolic axial velocity entry, Austin & Seader (1974) correlated

their experimental developing length in a torus. Their correlation is given by

49 —2/3,-1/6
Lu =33—8an 13y (5-53)

Here, the present notations are used.

From the Lu values of Table 2 for small 7 cases, we find that our results
agree well with the experimental results of Austin & Seader (1974) within about 5%.
However, we should poiat out that equation (5—53) should be re—examined since
when A - 0, equation (53) does not reduce to Lu ~ f(Dn).

The fully—developed fRe correlation is consistent with our early stuZy given
in Chapter 4 (or Liu & Masliyah 1992c). For v< 0.1 or 7 < 0.1 /ADn, it can be
represented by

fRe = [1 + (0:0908-0.0233)* $)Dn*—0. 13223 40.37A+A2n2-0. 2,
- T+ 49/Dn

[16 + (0.378 Dn? A™% + 12.1 Do A ) 2] (5—54)

When the torsion is increased but 7 is small, fRe increases, as shown in
Tables 5.1 and 5.2. We also observe that when the torsion effect is significant, fRe
decreases with the torsion 7 and reduces to 16, i.e., a value corresponding to the
Poiseuille flow.

For small torsion, 7 < A, we find our predicted Nu is in agreement with the
correlation, Nu’, of Manlapaz & Churchill (1981) for 80 < Dn < 400 and large Pr
cases. The correlation due to Manlapaz & Churchill (1981) is given by:

1/3
Nu’ {1 168(pr gy /2 + [3 657+4.343(1 4 pyapis) ] } (5-55)

The Nu values obtained from this study are substantially lower than that

predicted from equation (5—55) for small Pr cases. For Dn = 200, Pr =0.1,
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equation (5-55) over—predicts by 50%. When Dn is small, the equation (5-55)
predicts very poorly as well. For example, at Dn = 21.86 and Pr = 460, equation
(5—55) under—predicts by 75%. However, our results are consistent with those of
Akiyama & Cheng (1972), Tarbell & Samuels (1973) and Kalb & Seader (1974). In
the range of 21.86 < Dn < 5000, 0.1 < Pr < 500 and 1< A < 0.15, our results can be

represented by the following equation.

Nu = 3.657 + (0.75 Dn* + 0.0028 Pr) Pr!/8
(1 + 0.00174 Pr-3)(1 + 70.6 Pr>%/pn)

(5-56)

When the torsion is increased but remains small, Tables 5.1 and 5.2 show
that the fuily developed (asymptotic) Nussclt number increases. When the torsion
effect is significant, i.e., v is large, the asymptotic Nusselt number Nu decreases
with increasing torsion. Nu values tend to a limit which corresponds to that of the

heat transfer under Poiseuille flow conditions.



5.5. Conclusions

Simultaneous developing laminar flow and forced convective heat transfer in
a helical pipe of a finite ritch was formulated. Through the loose coiling analysis, we
were able to establish some confidence for the parabolization approach. The
numerical simulations using the parabolized formulation show good agreement for
the axial shear rate, axial velocity and Nusselt number developments for the
limiting case of a torus. The developing lengths are correlated with Pr and Dn when
the effect of A and 7 can neglected. The fully—developed fRe and Nu are found to be
in good agreement with published data. A design equation for fully—developed
Nusselt number is presented.

When torsicn increas:s, the friction factor, asymptotic Nusselt number and
entrance lengths increase. When the torsion is dominant, all the flow and heat
transfer properties tend to the limits corresponding to a Poiseuille flow. That is, at
large 7, an increase in 7 leads to a decrease in the frictior factor and the asymptotic
Nusselt number and an increase in the entrance lengths. Howevei, the
hydrodynamic entrance lengths of parabolic axial velocity entry decrease with

Increasing torsion.
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6.1. Numerical Method

In Chapter 2, a robust first order non—conforming numerical method for fluid
flow with 3—point exponential interpolation was developed. The method employs
the separation of a multi—dimensional problem into multiple one—dimensional
subproblems that are assembled to form the solution. The resulting algebraic
equations are solved iteratively with a tri—diagonal solver. The velocity and
pressure are decoupled at each iteration through the pressure perturbation (or
pressure correction). The inf-sup condition is satisfied by mesh staggering and
velocity—pressure interpolation strategies.

The accuracy of the traditional upwind and exponentially weighted schemes
were analyzed and were compared with the proposed scheme for both interpolation
and consistency. It is found that the proposed three—point exponential interpolation
together with the multi—dimensional separation strategy render a guaranteed first
order convergence. The use of the traditional exponential or upwind schemes render
such schemes less than first order accurate. The three—point exponential
interpolation employs a physical velocity (length) scale to satisfy the
V,—coerciveness of the nonlinear terms.

A two—dimenpsional direct solver was developed with minimum storage
requirement (less than a band solver) and with a partial inversion strategy.

The computational results of the laminar fluid flow in a torus and a square
cavity show good agreement with the literature. The flexibility in the mesh
distribution makes the proposed scheme competitive. It is shown that the use of
exponential functions increases the overall computational time by about 2% for a
simple problem of the square driven cavity. The convergence rate of the proposed
3—point exponential scheme is very much the same as that of traditional 2—point

upwind or 2—point exponentially weighted scheme.
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Future work is needed to implement the exponential type interpolation
function in the finite element method. Investigations are needed to relate the

stability of a flow solution to the numerical convergence of certain discretization.



6.2. Fully Developed Flow in Helical Pipes of Finite Pitch

In Chapters 3 and 4, fully developed laminar Newtonian flows in helical pipes
of a constant circular cross—section with a finite pitch are formulated and
numerically studied by the Separation Method. The governing flow equations are
constructed from orthcgonal helical coordinates. They are used {o obiain a loose
coiling approximation with two dominant parameters, Dean number, Dn = Re )\%,
with Reynolds number Re and curvature ratio A, and Germano number, Gn = Re 7,
with 7 being the torsion. The importance of the Germano number is investigated.
For high Dean number flows, a new helical flow group evolves, namely,
v = Gan-Dn /% = n-(ADn)’_%. For very small Dn flows, the counterpart of « is
defined by 'y‘ = Gn-Dn-2 = f/(ARe). It is further shown that under the loose coiling
conditions and negligible Germano number: A -0, y-+ 0, and Re > O(,\—%), the
helical flow problem reduces to the Dean problem. These gualitative theoretical
results are further enhanced by numerical simulations.

It is found that the friction factor and the axial velocity profiles are almost
invariant with varying A and 7 when the conditions of Dn = constant,
Re > O(A_%), 7€ 0.01 and most importantly A - 0 are satisfied. A helical flow may
be simplified by a toroidal {low if ¥ < 0.01. As A changes with the above conditions
being held, the cross—plane pressure and the secondary flow stream function (so do
the secondary velocities) are proportional to A% or Re! with the contour shapes
holding remarkably unchanged. When 4 > 0.01, the flow preserves its pattern and
becomes independent of A and 7 as longas A -0 and - 0.

For a given helical pipe, i.e., Rc and H being fixed, the flow field consists of a
swirl-like pattern for very small Dn when 7* > 0.039 and is a torus—like secoundary
flow pattern for large Dn when v < 0.2.

The center region on the cross—plane of the pipe has a relatively flat axial

Lrd



velocity profile for large Dn. The flat area becomes broader as Dn increases. The
flow field changes more sharply near the wall as Dn increases.

For 2 given D2 and Rc, the helical fiow changes from a torus—like flow to a
distorted torus—like flow when the pitch is increased. As H - w, the flow patterns
tend to stay unchanged with respect to H. For a fixed large H and Dn, the helical
flow is more distorted at smaller Rc and changes to a torus—like flow patiern as Rc
increases. For helical flow 10 behave torus—like, it is not necessary to require Rc
being greater than H as long as v < 0.01 condition is met at large Dn flows.

The friction factor varies linearly with curvature for small Dn flows and
fRe « A? for large Dn flows. For XA > 0.2, the torsion effect or the helical flow
consists of more distorticn with increasing A and/or Dn.

The friction factor increases with increasing torsion when 7 is small,
especially for large Dean number and large A. When 7 is large, the friction factor
decreases sharply towards the value of a straight pipe Poiseuille flow as v increases.
The friction factor reaches a maximum at 4 ~ 0.1 for moderate A and Dn flows. But
for small Du and/or small ), the increase of the friction factor with 7 is not
apparent. Here, the distortion effect of the torsion on * ... “.w %2id is minimal.

For large X and large Dn flows, the flow field rot:i<s and distorts as 07
increases. This is due {c the significance of the terms A7 and A2y in the governing
equations. The maximum axial velocity increases as the torsion increases with its
locatioa moving along a curve looking like a half heart starting from the outer—half
of the y—axis and a projected end at the center of the pipe.

The secondary flow strength behaves somewhat similar to the iriction factor
when 7 is increased. However, in the limit of large v for a given Dean number, the
secondary flow strength does not reduce to zero (Poiseuille flow). Rather, the
secondary flow strength tends to a fixed non—zero value when 7 is increased.

When viewing in the orthogonal coordinate system, the secondary flow is
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generally of two—vortex pattern with sources apd sinks except at ¥ ~ 0.18, it is of
nearly one vortex pattern with a very small vostex at the inner upper wall area.
When 7 is small, the two vortices are ir a up—ypd—daown position. When 7 is large,
the two vortices are left—and-right. Strong sourceS ang Sinks exist in the secondary
flow. In the limit of large <, a clear source near the ipper botiom wall and a clear
sink near the outer upper wall can be observed.

For a given main flow strength, i.e., fixeq Re, the helical flow changes from a
toroidal flow at zero pitch to a Poiseuille—like flow as J ~ «.

The stability of the flow downstream ip the piPe js studied using axially
parabolized three—dimensional Navier—Stokes egfiations written jn the orthogonal
helical coordinates. Four—vortex solutions haye beey foypd from the numerical
experimentation. When 7 < 0.01 and Dn > 139, a foyr~ vortex solution can be
observed by disturbing the flow field at the outer half of the y—axis. The
four—vortex solutions disappeared when a fine enotgh mesh is used.

A correlation for the friction factor is dewloped based on the numerical
solutions of more than 250 cases. Accounted are 3}l the ¢ongrolling parameters Dn, )\
and 1. The friction factors in the limit of A - 0 agd 7~  are in good agreement with

. . . . i
previous experimental and numerical observatiops of fRe ~ Dn?z.



Future work on developed flows in helical pipes is needed both theoretically
and experimentally. Theoretically, closed form solutions for large Dn flows should
be attempted by including Dn, A and 7. Numerical analysis is welcome for stability
analysis and solutions for a wider range of combined effects of Dn, A and 7. The
characterization of the flow pattern needs to be made for a wider Dean number, A
and v range. More numerical analysis for the turbulent and transition flow is also
required to gain insight into helical flows. Experimental work is needed in all

aspects of flow in helical pipes of finite pitch and for the limiting case of a large

torsion to compare with numerical results.

[92)
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6.3. Developing Laminar Flow of Incompressible Newtonian Fluid in Helical Pipes

A more general version of loose coiling analysis is used in Chapter 5 to show
further the parabolization of the governing equations (momentum and energy). The
characteristic length in axial direction evolves from the loose coiling approximation.

The computed axial velocity and axial shear rates are found in good
agreement with the published data. The axial shear rate does show a sharp decrease
upon entry into a helical pipe from a large reservoir, but it does not vanish, nor does
it dip lower than that of its fully—developed value. The maximum axial wall shear
rates cross over from the inner wall to the outer wall when « is small.

The developing flow from a parabolic axial velocity entry is smooth as
compared with the uniform axial velocity entry. The developing lengths are,
however, very much the same as those corresponding to uniform axial velocity entry
flows.

The entrance length measured by the axial pressure gradient is shorter than
that measured by the center line axial velocity. Correlations are given for the
hydrodynamic developing lengths.

More investigation is needed, especially, for the solution of the full elliptic
Navier—Stokes equations to model the developing flows in large curvature pipes.
Closed form solutions for large Dn flows as an extension of the type given by Van
Dyke is surely a challenge. Experimental work is welcome for helical pipes of finite
pitch. More accurate measurements for the axial velocity and axial wall shear rate

will be useful to compare with the theoretical analysis.
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6.4. Developing Laminar Forced Convective Heat Transfer in Helical Pipes of Finite
Pitch

The developing laminar forced convective heat transfer of an incompressible
Newtonian fluid having a uniform constant wall temperature with a simultaneous
developing flow was studied in Chapter 5. The heat transfer Nussclt number is
found to be oscillatory. For a torus, the developing and fully—developed
(asymptotic) peripherally averaged Nusselt numbers are in good agreement with the
published experimental and numerical results.

For a uniform axial velocity entry, the local maximum Nusselt numbers also
cross over from the inner wall to the outer wall, but at a distance much shorter than
the crossover of the axial wall shear rates. The crossover occurs closer to the inlet
for higher Prandtl number fluid flows. The Nusselt numbers appear to have a deeper
“valley” prior to a higher “‘peak” for higher Prandtl number and higher Dean
number flows.

For a parabolic axial velocity entry, the development of the Nusselt number
becomes relatively smooth and the magnitude of the oscillation is much lower than
that for a uniform axial velocity entry.

For two—vortex (¥ < 0.2) high Dean number and high Prandt! number flows,
the local temperature profile has much lower values near the vortex dividing line.
However, the maximum Nusselt number (so does the temperature gradient) still
occurs at the outer wall and the vortex dividing line intersection. For a one—vortex
flow, the temperature distribution is convex (i.e. no local minimum). When the
torsion effect is dominant, the thermal developing length increases with the torsion
and the asymptotic Nusselt number tends towards the limit of a straight pipe.

The thermal entrance length and asymptotic Nusselt number are correlated

for 21.86 < Dn < 5000, < A <0.15 and 0.1 < Pr < 500.



Future numerical work should be conducted to investigate the influence of A
and 7 in large curvature pipes. Both developing and fully—developed heat transfer
studies would be welcome for flow in helical pipe of finite pitch. Close form solution
should also be attempted for large Dn flows.

Free convection and combined convection in helical pipes of finite pitch
received little attention. It would be interesting to study the combined convection in

helical pipe.
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Derivation of the Orthogonal Helical Coordinate System
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A.L. The Beference System

A helical system can be established in reference to the master cartesian

coordinate system 2’ (x4, x3, x3) and the local vectors originated on the generic

curve of the helix as follows:

R = (Rc cosp, Rc sing, B s)

T = %% = (— kRc sing, VkRc cosp, B)

s 1dT .
N=—qs5= (— cosp,— singy, 0)
B=TxN= (B sing, — B cosyp, YkRc)

. = Rc
Rec?2 + (H/27)?2

(H/27)
Re2 + (H/27)?

T =

B = JTHH?'rri
¢ = yk/RcC s

(A-1)

(A-2)

(A-3)

(A—4)

(A-5)

(A-6)

(A-T)

(A-8)

Where R is the global coordinate vector of the point O on the generic curve; the

generic curve is the track of a particle moving along the center of the cross section

of the helical pipe; T (or 8), N and B are the tangential, normal and binormal to the

generic curve at O respectively; s is the curve length parameter along the generic

curve; k and T are the curvature and torsion at O respectively; Rc and H are the

radius of coil and the pitch for the helix respectively. The orthogonality of a helical

system can be achieved by rotating the basis formed by B and N around the s axis.
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A schematic figure showing the coordinate system is presented in Figure A.1.
(%0, Yo, 5) Tepresents a set of orthogonal rectangular helical coordinates. (r, 6", 5) is
a set of orthogonal polar helical coordinates. (x,y,s) and (r, 8, s) are

non—orthogonal rectangular and polar coordinates, respectively.

X ”
A B
s
N=-—s{>o
O’| £ Re.

X

Figure A.1. The helical coordinate system.



A.Il. The Metrics for the Circular Helical System

In a circular system. any given point can be mapped to the master cartesian

system as follows:
%’ = R—r15inf N + rcosf B (A-9)

The transformation matrix can be represented in the tensor as follows:

Ox, %y
g =—-—t (A—-10)
7 5 o

Let q,=s, q,=1, q;= ¢’ and 6= 0’ + i(s), we can obtain the following

transformation matrix coefficients

&l 62’ -» -+ -+
— _(dR _ . AN e B_ .. 022
8= g—gs— = (H? rsm% rcosf%s—N + rcosﬂg—s- rsmﬂggB)
(A-11)
Apply the basic equations of the curve theory
d* _ - -
s = TB— KT (A-12)
and
%l—:- =— 7N (A-13)

‘The transformation matrix coefficients can be cast out and given by:
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o’ o’
g = e 0 ————
1 Os Os
_ - . fud - 0-0 - N 0» 2
= [ T — rsinf(7B—~«T) — rcos B%EN — 1cosfrN — rsmﬂg—gB]
= [ + K.rsinﬂ)'i‘ —rsinf(r + gg)ﬁ —rcos(T + %g)ﬁ]z
= (1 + srsinf)? + (7 + %g)z (A-14)
& e’
Bip ="
12 55 or
= —[(1 + Azsind)T — rsinf(1 + g—g)ﬁ —rcosf(T + g—g)ﬁ]-(sinO N — cosd ﬁ)
= — rsinfcos (T + g—g) + rsinfcos (T + %g)
=0 (A-15)
o’ o’
g — —
B a5 o0
=—[1+ n:rsiné')’i‘ - 4+ %g)ﬁ —rcosf(t + gg)ﬁ]-(rsin() B + rcosd Itl)
= ri(r + §9) (A-16)
o o’
g T r——— 0 m———
2 5 or

= (cosf N + siné B)2

=1 (A—-l?)
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ot ot
8237 5 a0

= (sinf N — cos# B)-(rcosd N + rsinf ﬁ)
=0 (A—18)

o’ o’
g T e 0 ———————
33 504 00

= (rcosf N + rsinf B)2

= r2 (A-19)
By setting
0=g,,=2r+ 39 (A—20)
one obtains
§=0 —71s+ 0, (A—21)

The transformation of the helical coordinate system defined by (s, r, /) is
orthogonal, i.e., g;; = 0 for i # j. The metrics of the coordinates (s, 1, §'), h; = vg;;,
(where ii does not imply summation), can be obtained from the transformation

matrix as given by equations (A—14) to (A—19) as follows:

=1+ krsin(8’ — 7s + 6,)

1 (A—22)
I

b,
b,
by
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For

00 =0 (A—23)
The metrics becomes

h, =1 + «rsin(§’ — 73)

h, = 1 (A—24)

T

=
]

In terms of the non—orthogonal coordinate system (r, 6, s) but with other dependent

and independent variables expressed in the orthogonal coordinate system (r, 0, s),

we can write:

h, =1 + krsind

h, =1 (A—25)
h, =1
% =R —rsinf N + rcosd B (A—26)

x={cosp(Rc+r1sinf)+rBsinypcosf, sinp(Rc+r1sinf) — rBecosypsind, g—g + rykRc cos 8}
(A—27)

For the limiting cases, we obtain:
Horizontally oriented straight pipe: x«Rc=1,9=0,k=0,7=0, H = 0;
Vertically oriented straight pipe: B=1¢=0,~x=0,7=0, Rc =0;
Toroidal pipe: T=0,B=0

This system of coordinates can recover the helical, straight and toroidal pipes.
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A.IIl. The metrics for the rectangular helical system

To establish the rectangular helical coordinates, we choose, again, to rotate

the system formed by N and ﬁ, that is
%, = cosa N + sina B (A—28)
$, = —sina N + cosa B (A—29)

Then, a point of interest can be mapped between the master cartesian coordinate

and the helical coordinates by

%/ = R + (xcosa — ysina) N + (xsina + ycosa) B (A-30)

The matrix of transformation can be represented in the following temsor

form:

ox! Ix!
g; = kX (A—31)
Ga; 9q;

Let q; =8, Gy = Xp; 43 = ¥ and a = a&fs), we obtain the following coefficients

Oxi Oxy
g = e— v ———
5 s
= {g% + {x,cosa — yosina)gg — (xysina + yecosa)g—g—lﬁ +
: dB . dazy2
(x¢sina + yocosa)ge + (xgc0s0 — ya:ma)a-?B] (A-32)

Apply the basic equations of the curve theory
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Yo
2]

%Isi = 7B — KT (A-33)
and
d.’ _ -
a_s. = — TN (A-—-34)

We can obtain

Oxi Ixj
Eu=—_— "7
Os O0Os
= {[1 — s{x,cosa — yosina)]'} + (x,cosa — y sina)(7 + g%)ﬁ ~
(x,sine + y(,cosa)(%—‘sZ + r)ﬁ}2
= [1 — K(xqcosa — yosina)]® + (xz +y)(r + g%)z (A-35)
Oxi Oxy
Byo =T T
12 55 ax,
= {[1 — K(x,co8 — y,sina)]T + (x,co80 — yesina)(r + g%)fs -
(xosina + yocosa)(gi:- + T)§}~ (cosa N — sina fa)
_ da
=(T+ ag)}'o (A-36)
x| Bxi
B3 =0 T

={[1 — K(x,co8 — y,sina)]T + (xqcosa — yysina)(r + g—g)fs —

. do - . - -
(xpsina + yocosa)(a-g— + 7)N}-(sina N + cosa B)

= (%% + )X, (A-37)



Oxi Oxg
g e —
22 Bx, %,
= (cosa N —sina ﬁ)2
=1 (A—38)
Oxi 0xj
g = _;——-o———-—
= (cosa N —sina fs)-(sina N + cosa B)
=0 (A—39)

Oxi Oxj

g
37 5y oy,

= (sina N + cosa §)2

Setting
0= da
=(7 + 33) (A—41)
we obtain
a=a,—Ts (A—42)

The transformation of the rectangular helical coordinate system defined by
(s, Xq, ¥,) is rendered to be orthogonal by the above choice of rotation along the axis

of the tube or generic curve.
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The coordinate meirics are

h, = 1 — sxcos(7s~a,) + xysin(7s—q,)
h,=1 (A—43)
h3 =1
Following the tradition, we take, with a tilted angle of 3
@, =5—F (A—44)
0 2
Denoting
a= [+ 13 (A—45)
the metrics become,
h, =1 — sxsina + xy,cosa
hy=1 (A—46)
h3 =1

At the limiting cases, we obtain:

Horizontally oriented straight pipe: &«Rc=1, = 0, ~=0,B=0;
Vertically oriented straight pipe: B=1,k=0,7=0,Rc=0;
Toroidal pipe: 7T=0,B=0

Hence, this system can recover the helical, straight and toroidal pipes. In case of the

toroidal pipe, # = 0 renders the traditional rotating coordinates.
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A_.IV. Fluid Flow Equations in a General Orthogonal Coordinate System
Mass balance yields the continuity equation:
=g§+ V-pi =0 (A7)
The momentum balance yields the Navier—Stokes Equation:

2L — g —Up + V(A1) + V- (2pe) (A—48)

The energy equation is given by
pevpe = —pV-1 + A(V-%)2 + 2pece + V- (KVT) + Q (A—49)

where 2e = Vi + (V)" A = —2u.

dh
ii H—t ﬁ_‘h_k 0k (A--50)

and

oy~ B + Bt - o

i

Note that the summation over the repeated indices is not applicable here.

The indexes ¢, j and k are cyclic in i=1,2,3.

Making use of the metrics, the governing equations can be re—formulated as

given by the following:



The continuity equation,

7}
-a-§+‘7-pii= 0

The momentum equations,

Ug U uj dhi uy éh
A5t + E 1 En{oga * B; 9 ~ B} 53} ~ 4
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—_1 g { ( bx (dhju;  dhju; _90 ¢ hj dhju;
an‘l aq;j thy H 3q i 9q; )] aClk"Eiﬁk 9qx

av-i

+ i aQI

€imdu y _2V-U g
+2 z1( aa7) ~ T3E; o

The energy equation,

3 3
aT Uy T 2u(V-8
peuigt + nZy (G2 500 + pY-0 — 2 o Hp2yha + Q

1 rd fh2h3!,3T 7] /h3h1 h hz T
= hhoh;laq\ h, 3Q1) 9q2\ h3 a(h) + aQ:*.[ h3 ;97!—;)]

where

V.3 = 1 ,a(h 2h3a1) a(hshla.z) alh ;h23.3)]
hhohsl T aq, 84, 9q3

and e is the same as that defined previously.

)}

(A-53)

(A—54)

(A—55)



A.V. Governing Flow Equations in the Rectangular Helical System

for a Constant—Property Fluid
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The velocity field is denoted by (u, v, w) for the coordinate system of

(s, Xq, ¥o)- The governing flow equations are given by

The continuity:

1 gg 1 ah1v+1 ohw _ -0
Eas k, 8x, ' h; ay,

The s momentum:

u du . u & u éh
+ﬁ—l-—s—'rv( 1 1)

au au h ou
a3t =, T K ax,) T "oy, T h oy

_ 1 18 1ﬂ_ah1u [ ahlu
= pﬁfl%g V{Tax_[h_;(as ax0 ayOH_( S)]}

Ju , u du gu du KU
_8T+EIFS—+V‘6_X—+W£§5’; Il—l—( vsina — WCOSQ)

1 1 4,1 19 nouy,14
= phy 0 M 3, 390 B a i) TR vl

0

v __ dwy _ _(Kyot+cCOSa _ KXg—sSina
H(sma cosa 7o) — K7( BT Y kY

The x, momentum:

p V8 [ W 6h1u
X, ﬁ‘l{ayolh‘(axo as[E‘(as ax

du K2
5y5) "B}

w)

(A—56)

(A-57)

(A—58)

(A—59)



Equation (A—59) can be reduced to

gv , u ov ov av KSing
§+h———a—s+v +Way + h u?
1 0
—~_1p a K?%in2q
=T, T g a_s(Eas)+h‘"‘(h‘ax)+ﬁ‘ayo(h‘ay)“' K7 v+
2fcs1nagg ﬁ—;(nyo+cosa)u+'€smacosa ] (A—60)
The y, momentum
ow , u,ow oh, aow aw
a—t-+ﬁ-;(ﬁ—um)+v—ax +Way0
—_19p _vyo,l dhju_dwy 3 ;oW _av
p 3y, B\ ay, ~ a5 ) a5y a1 (A-61)
Equation (A—61) can be reduced to
ow , u aw aw W KCOsa,
at Th, 35 * Vox, T Yoy, T B, W
=_15p 1 91 1 8, 9w\ _ K2oS2a_
= F; ayo + U[H;?-(EI )+H——(hlax )+E—layojh;axo) Tl% W
ZECOSQ%_E_R 0—5ina)u+“51nacosav] (A—62)
b3 1 h}

The governing flow and convective heat transfer equations can be

summarized in the conservational form as follows:

The continuity,

1 au 1 3h1V i 3h1W
h_;?‘i_g k, axo+h_ 9y , =0 (A—63)
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The s momentum,

,gu 9 — o
3t qu 13. H as) + B_ h,(vu — Z'axo) + hlay0}11(wu l/ayo) +

EA{p> — vsina + wcosa)

1 av
~ o5 %g_ h—%-[2smcz —2cosa 2% 75 + E—(Kyo+cos a)v — h—-(;oco—sma)w]

(A—64)
The x, momentum,
-g—: + Eg—s-( -5 as) + h———h (vv— V—}%\ + E—g—),—ohl(wv - L’go) + fs?slilx%?a,
% gg_ T w2 + £(2sing & =5 + ﬂ-"tﬁ(—:ﬂm + ksinacosa w)
(A—65)

The y, momentum:

3 vV aw A d aw K2cos2a,
51 T h—-(las uw — El-é—-) + E———hl(vw axo) + hlé‘yoh’(ww - Layo) + B7 vw

1l1dp , Keosa KV du | kxo—sina .
= —= + uz — 2cosa — + TUu — XS1naCosq v
P 9, by 9 1 )

(A—66)

As we can see from the above momentum equations, the coefficients are
functions of the axial curve length. This makes it difficult to realize any fully
developed flows. We make use of the following variable changes, with the axial

(s—directional) velocity u, retained to be that of the orthogonal component.
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(s, x, 5) &= (s, x4, ¥,)
§=s5
X = X,COSTS + y,SinTs
Yy = — X8in7s 4 y,cos7s
u,=u
u, = VCOS7S + WSinT7s

Uz = — vsin7s + wcos7s
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By such a choice, we are able to retain the orthogonality of the axial velocity

component u,, while u, and uy now correspond to the x and y directions.

h, =1 — sx sinf + &y cosf

(Sa xO: YO) = (57 X, Y)

a 9 D
%, = COSTS —sinTs
3 . 9
S—— = S1N7Sm— + COSTSo—
50 7% 5y
a _ o P 9
&zt Tax ™ o

V = U,COS87S — U4SinTs

W = U,SIN7S + 14C087S

(A—67)

The field scalar quantity 1 (or the pseudo—secondary flow stream function)

can be defined as:

(')

ay=h1u2+'ry u,

and

—i:f)%:-hlu,,-i-'rxu1

(A—68a)

(A—68b)



The continuity:

a a 1 5h Ly 1 ahﬂla

Qaln:

s +
1
The momentum and energy equations can be generalized as:

[M() + dylé = S, (A~70)
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where d¢ and S¢ are given by the individual velocity component or temperature ¢.

M is defined by the following equation:

M<v>¢=%%+n¢zs<u¢—a%%>+ﬁ—£x—om<v¢—vzto>mzyohm-%»

B+ 5 G+ v - b - G + i - o +

Ilﬁ(cos ngi - sinv-s%y—)h Jve - V(COSng—x- - sinrs;%—)d)] +

1,. d a . a [
h—l(sm'r's.‘t,,)—x + cosv—sﬁ)hl[wcb - u(smvs-a—x- + cosmﬁ)¢]

=%

]

+

11;'%5[(“1 _ xcosﬁi-%rsinﬁnry)¢ _ EQQ] +

1 108

19 1—rkxsi 2y 2
g, + yu, + __'%%Eéfzxy)(p —u(h, + ZEIL)%] +

1

o

2
Ilf'lgy_[(hlui* -1 u, + _H_-_f%l%lgﬁ r2yv)p — v(h, + 72X )_@] +

r2xyv 8% _ ,72yv 8% T2xv 9%
2 ax 8y 25% asax+2H§ ds ady

2%’{9(}11 ~ R2xysin2f) (A-T1

)

When the energy equation is to be referred, the kinematic viscosity v in M(v)

should be replaced by the thermal diffusivity k/pCp.
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s—momentum M(v)¢ =S &
¢ =u, (A—T72a)
d¢ = E;(g%— u,sinf + u,cos3) (A—T2b)
_E_( + Tyax - m_‘?P_) ﬁ.’%[z(—_ + yd = rx—)(u2smﬂ — uycosff) —

Tu,(2cosf — '—‘rﬁ'_—f?—s-g — Tuy(2sing + __E_‘SI_I}@)] (A—T72¢)
1

x—momentum M(v)¢ =S 'y

¢=mu, (A—73a)

d¢ = IZiEEEMV (A—73b)

¢ = _.._QE + T hl:3 “lnﬂa% + H%[2nsinﬁ(g—:—‘+ w%— 'rx%;——’-) + ﬂwﬂmi —

1

2’r(as3 + 'ryax3 - Txg;,la) + (gsin2ﬂ - &B*Et&nﬂﬂ)’ma] (A—73c)

y—momentum M(v) ¢ = S¢:

¢ =1, (A—T74a)
dg = ing;@_zéy (A—T74b)
¢——122 E%g-}- ncosl u%-§[2m08ﬁ(%+ W%—l—mgyul) + 'Cx;‘jinﬂnrul——
27(Ge2 + Ty P2 — 2 — (Bsinzp + W——'ﬁtlﬁuﬂri’)md (A—74c)

The energy equation with negligible viscous dissipation:

M(C%) T=0 (A-75)



A.VI. Governing Flow Equations in the Circular Helical System
with Constant Properties

The circular coordinate system of choice is (s, r, §’). With the velocity field
denoted by (u, v, w), we can obtain the governing equations for this orthogonal
coordinate system as

The continuity equation:

1 a(h 1h3V) a hgth
+ i et B Ahgw) — o (A~76)

it

1
B

The s momentum balance equation:

du , u éu, v, ,8u, u h w ,du , u 6h

s thos R TR +5—3(:9‘é+ﬁ;—e’)

_ 1 _ Vv 8¢ h3 av shiu

- Fh'lgg Ezﬁs[ﬁr{ﬁlﬁz(hza ’o{EE( 1 365)]}

__ 1 v 6h33V_§_h28W hy dhu ha &hu

=~ o 28 B R 5~ TR 59 e 2o + Sl )
(A—~T77)

Manipulating the cross—related term with the aid of equation (A—76), we get

oh {hav _ h3. 3h1. V) ggl (%g ah‘;l;zw }ﬁ_% 31;11 W)

2 éh,d 1h3V+__(h3 3h1 )+ (hz ah1 )+ 2 3111 3h1h2W

~hjor ar°\h? 35 87 \h? 35 kI 36"
1 9 ah,hgv oh 1h2W
BaC ar T a8 )
_hsh; 3211 2113 3h1 iV_ 2hg3 3h1 ah1 2h, 6h, ow _HE

= v 4 2oy ow  2h, Ohy ohy o
h7 &2 H% ar os + hiér 3s h% 367 as hy 967 3s

hohjs 6h; du 1 ah, 1 ahl

5 o~ bbavglay gs ) — hibawpr i 529
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_ hsh 2h; dhy v , 2h, 6h
23—(h_ﬁ)+ 30 'E-*_ 2 dh ow

B3 ar "R} 50" 35
hy, 9%h; _ dhy dhyy  ha,  82h;  h, oh,
i iGrgs ~ o 50V 23 P1g575s ~ 357 a5V

Substituting the above expression back into the momentum balance equation

(A—T77), we obtain

u v (8u , u éh, u dh;
3t T hyos T hor B o) T E (50 b 9o

1 1 9,1 6u 1 hihy, du
= m%‘*”ﬁ;ﬁﬁ;ﬁ”mz}r—( 1h3dr)+11_‘ﬁ;ﬁ‘_7( 3e7) +
h1—1 iyl 8h, 1 6h, 1 dh3\6h, hl 92h, 2 oh, av

{(5,56" ~ k30 ~ hy50 V50" + B} 90" + K7E 37 9§

2 oh 4 gw 1 3%h; odh, ah1 a%h, éh, ah1
BIE; 067 35 ~ hih,\’15r5s ~ ot 75 ) H{I (hizs307 — 507 35)%}

(A—78)

Hence, the s—momentum equation in the conservational form can be written

as:

1 a au hi~1 w oh
;e bW — p5e7) + R RV R 557

h%h,'r?h, 2067 39" /36” T B} 2072
_ 1 @ v 2_ah1_av 2 ah1 3W__1 a2h1 1 h h1 .
=~k o5 T Bfh;ar a5 t hya0 g5~ blaras b ar g8V

1,8%h; 1 ¢h 3h1)w] (A-79)
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r—momentum balance equation:

A A Lk 3
= Rt R T -11—1{1—3%(5% o ~EE zo'\h—ﬁ‘ ) +
R A ) (A—80)

Manipulating the cross—related term with the aid of equation (A—76) leads to

_( 3 ahﬂl) 1 é h1 ah3W)
HH ds*h h, or 1111369\11113 34

1 s6h 1

J {hlaW Wh1
~EE 56 ) ~ EiE; 575 o+ e
- 1 a ,0u ahlhgw 1 ahz ahlw 1 7 wh
= ~ 5k 57(38) ~ EhgE; o b ) + Khgh; 367 o (TE,

~E,h, ao7\rh)+

H%Fs g?ﬁ% Sy~ hllh —(hr—l )
Righ; orhohegs + BT + - Sh
= g o) + g T ) e e e
= g Shihad)) + rerige- gx(hubav) — —mg—zh‘ T s R
= Iﬂi’gﬁ; Fr(hhsgy) - 2%%‘;_1‘ (3 + 8121111313‘27) - 2hr§;1211%1111—43—1v TR }112113 A
WhJh; 507 3e -~ B 977D + B o7 o) ~ o )

2h1—2h,+1 h;-1 &u 1 o6h,; ow
‘h_HgE‘_(h‘h’E) “TRIh7 ¥ ~ %rh7h; 75 T KJE; 967 ot
2 aw 2h,-1 6h,

w + u ah1
thhi; 367  thihh, 967" ' Thik, 35



Hence the reduced r momentum equation can be obtained by substituting the

cross—related terms as given above into the momentur: balance equatior (A—80) as
follows:

QD
=2

>

9

°’l

u,év_u dh, v v, W 0V v ho w
5t Thas B;ar) * hyar T hyse” *K; 957 ¥k, ar
1

__ 1 ap 1 9,1 av v, v

= —zh; 7 + Y5 & ) + mhge abiagy) + iR J7 ok ) -

[zh%—zhl-i-l_ o%hy 1 ohy ohy 1 4hp 8h, 1 ghg ahg)] _
t7hZh} 36’2 " k|96’ 36’ " h, a0’ 56’ h, a6 ga NV

h—l 6u+ u ah)+1 ah')aW 2 3W_2h19111}
E%Ez ds © ruih, ds k3h; 96" ar ~ th,h, 36~ th7hh, 367

(A—81)

Then the r1-momentum equation can be cast into the mommentum

conservational form as,

v , 1 4 v 3v v av
5+ EHEW 53 + i ghba(vy - Ea0) *
1 v av 2h1-2h1+1
Bk, e 2wy — g ) + (g
1 32h2+ l'ah, 3}12_1 éh» ahg_l.ah:; ahz)] + w .ahz}v
E383(3072 * Bja0” a9 " h,50 a6 ~ K500 507} T K, 5,567

3U7



The ¢ momentum balance leads to the following:

gw , u,éw __u dh, v 2w , w_v dhy w_ 0w

at T0ias ;307 tRler t T n; 307 T X, 567
_ 1 v dr hy ,6h,u 3}13W 3h3W dhov
~ "~ ph, 36 H;E'z'{ﬁ[}i E( 967 " Tas —{H oh 5 (G ——3sM}
1 1 8,1 aw h, 3h3W _
=~ 557 +V[B_IE(E;E)+ITF& Jb; ot )

1 4,1 dhu 1 4, h;y 6haov

b (5,8, 867) ", ok, h; 06" (A—83)

Manipulating the cross—related term with the aid of equation (A—76) leads to

14,1 ahju 1_dhyv
"B“,ﬁ(h_“ﬁ" 36") "R h _(h ae’)
_ d,8u ., u dh, hyav _ h,v ohy
=55 #5656 ~ EE A g5+ b, 36"
1 7] (_él_l.)_ 1 i) { 1 3h1h3V \ ahlha)_

= T h,h, 367\5s Jh; 86 \Bh, 8t R h; or
1 7 a! ahx _ 1 a hl\a‘V hlV ahz
F,5; %05, 969 ~ 55 550 — By b 089
—_ 1 ad ?2 1 oh 1h3V 1 7} ( V ah1h3
=K, \as T Bk, ar )T EE, 00 kK at )t

1 h oh ¢ +h 3h3\an1h3v 1 o6ho 8h1h3v 1 ah1 Ju
BIE t39’)or  ~ Khghj 66’ ot Ik, 367 35

1 oh
E—T—m—-z?» B, 75 ‘“"—<m3‘:?>

d { 1 ah1h2w
‘rr‘ﬁ‘ae (E,F; —a6” )+

1 h; sw w  6hhy
E—H'W'(h_ 367 t E,&; @07 ) T -
h[hzaw 1 ah2_1 ahlhz\aw W i) f 1 ahlhg
ﬁhzha :( b, 967) " 36° ~h, 80" Jae” T Bk, 507 \B,k; 67 ) t -

1 dh 6hh dhh, 2 92h,h
367) t By 567 960 ~ RgEg(ger)) ~hihaTggiad -

_ 1 3 1h2 ow éhh 92h ;h
—h1h2h3—7<ao R, 367 ~ BRI aer) — b -
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1 oh 4 Ju 3h1h3V d , v dhh,
h7h,h3 767 (Rzhagg + )+ B B, ar )t

hao2t ahg +h 3h3)ah h3V 1 6h2 ahlhav 1 ahl du
E;mr;( T ~ Eh3h} 96 ~ BIE; 307 7s

1 ah1 h3V ah2
EE; &, 969 ~ BF, o0 )55~ B g 5ed)
1 h;h, aW ah1h2 3211 1h dh Jgu
= EE; 570k, e 25677 ~ B35 99 oo —
d2h 4 ahl 6hq _ ahz aha av h1+2h1h2—h2 av
E{h_(h‘asaef 38" 35 ) h‘g‘h‘;(h ~hogg)or thih, 967 T

2 oho 2h;-1 3h; 2h,-1 6h, ah1
rﬁzﬁa[h“ go’ T h'( h; 20’ ~h, G0’ T h—)W]

Hence, after eliminating the cross—related terms, we can reduce the

6§’ — momentum equation to:

2

ow  u,3w_u oh,. v ow , w_ v ¢hy w
3t T Bas "h;39) t hlar t T T h; 597 * b 56

_ 1 1l 6,1 1 d ‘hihy ow
= — o o+ v S T + i 2 ar) +
P 1 1 oot} 2

1 3 (hihy 0w dhh 3%h {h
S ) — (BB p o 2hhs

1
hhh; 36 h, 867/  hIhZh3\ 36’
hhi 2 oh, au hy _p,hov 3%h
] - 57K; 507 38~ im(hogs? — haggd) gt — B3k, (P1gsas7 —
éh, 3h|) + h+2hho-hs gv o+ [2 3112 2h -1 6h3
367 3s rhth, 3¢ 52535_3“0"” E‘( E a6”
2h -1 oh, dh 4
~h; 35 h—)agz] v} (A—84)

The §’—momentum equation can be cast into the momentum conservational

form as
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aw

aw v 1 a v ow
= uW—H;-a-?) + m-&hlha(vw-mt—a—r—) +

1
ot T H]

iy

1 i) v ow \4 v dhiho\2
Bhh, s 2"V — g 57)  {ew, + eyl

2
d2hh h:h

hihor gtz + S }w

_ 1 _a_E v?2 ahz u? ahl_ {2 ah1ﬂ+
ph 36 HE'ae’ bih; 667 h?%h, 987 s

1 dh o 5113 92h; 8h; dh, _h1+2h1h2—h2 av
HZ‘Eg(ha'a"a’ 236705t + H}E (hizs567 — 287 35 ) th?h, 687

2 ohy . 2h,-1 ghy 2h;-19hy  1,6hy
erlfa[F 30 h, a6’ h; se’ T 5767V} (A—85)

The governing flow equations have been obtained for constant density and

viscosity and can be summarized in the circular helical coordinate system as follows:

The continuity equation

1 du 1 _3@1113\71 1 _8(h how)
b ot iy T+ gy e = 0 (A-86)

The s—momentum equation

o 1 4 v du 1 au
7t t R~ Rgs) T oEEE at sVl TR )

1 8 _v. du h—1 w éh; v he1
EhgE; e bWt —p-557) + (iR R,V + K k30" ~ BjR,irlh, T
hy1shy 10h; 1 ohs\éh;  h, a%hy

h,36" ~ k30" " h,67)36” T hj g6 2"

__ 1 p vph=l1av _20h; 6w 1 5h
=k, 3 t B2 1h, 3 * K557 95 " Th,E; 35 '
1, d2h 1 éh, 6h
b{3673s ~ B 507 35 %) (A-87)
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The r—momentum equation

ov

gv , 1 8 v 1 d v v
——+Hzgs'(uv—ﬁzb—s—)+m-§i_hlh3(vv—Fﬁ)+

a

o+

19, 2h}- 2h,+1 o%hy 1 oh, oh
i, oo (7Y — 2 55) + (P — (5ot + i 5 5o -

1 6hy 6h, 1 5hj 6h, dh o
b, 307 36"~k 550 567} * 5,5 567"

w2 1 QE__V(2h1-1 du u 6h, 1 ahgaw

th?h, o5 T Thik, 3 hjh, 96  ar *

Th,h; 967 ¥ th?h,h, 307 ¥ (A-88)

The §’—momentum equation

aw , 1 @ Vaw
7t t E &Y T E 35) +n;r hihg(vw — £ 2) +

5:3—211—5 Sgriuba(ww — F -—-r) + {T + W[h%(%% + hi(m‘r

hib, 2202 b hy(1-h,) + 1113]}

_ 1 v2 gho u? ahl_ ahlall ahz
= T%T*’Fﬁ—aaﬂ“h B 567 ”{ng 90 as‘*Hgﬂg(hW“

ah3)ar + (h d h1 ah1 6h1) _ 1+2h1h2—h2 av

195867 367 3s rhih,” 367
2 ¢h, 2h -1 ahs 2h ;-1 ahz dh ¢
:cﬁzlialﬁ'2 aa"*‘K‘( “h; @6’ h, 36~ H')aa’] v} (A-89)

To simplify the numerical implementation, we must extract the coordinate
change along the generic curve. To achieve this, we choose to rotate the coordinate
back to the corresponding non—orthogonal coordinate system while leaving the
velocities intact. By denoting the velocity field to be (u’,v’,w’) for the
non—orthogonal coordinate system (s, 1, §), we have the following mapping

equations:
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(s, 1, 8) =(s,r1, 0")

0= 0" — 75, w' =w
S = 8§, u’ =u, P'=p
I=r, vi=v

] F ] 8
% o5 a6
3 _9
ar _ or
a9 __ 9
39" — 86

The advection—diffusion of any property in the s—direction is given by

1 4 v 1 8 , Tv éh v
H;jag(u‘i"‘h—l%) = 5 zl(¢ -H{ﬁl)‘b—ﬁ_l%] -
T a3 , TV TV a@

From the non-rotating basis of the space variables, all the coefficients of the
governing equations are now without any influence of the axial length down the
pipe. Hence, we are able to find a solution which is independent of the axial curve
length, i.e., the fully developed solution. However, with the orthogonal helical
coordinates, the solution will be always axial curve length dependent as long as the
peripheral change exists.

The following scales are used to render the governing equations

dimensionless.
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_ 2aU Cpv
and A=ra, 7=ra, Re=5=, Pr==RF

Where a is the radius of the pipe, U is the average axial velocity and the primed

variables denote the corresponding dimensional quantities.

The final governing flow equations are given by

The continuity:

1 ,6u du 1 o(rh,v 1 ahlw _
B{zs ~ "o0) +T"L‘_1+T =0 (A-91)

The scalar quantity or the pseudo—secondary flow stream function, 1, can be
defined as:

ay

= w—7ru (A—92a)
and

a

39=—Thv (A—92b)

Momentum /Energy equation:
[M(Re) + d¢] ¢ = Scb (A—93)

M(Re)p = 2 4 111—1 {(Reu— E,g;ﬁn . 2+ + i rhi(Re v ¢ - %] +

Fé—l-z—o{Re(h,w nru)p —Y1 + EE—?)M] E‘?

(A—94)



s—momentum M(Re) ¢ = S¢

b = (A—95a)
d vsm0 -1!1- wcost, po + I,"\I’;’ (A-95b)
1
1,3 1 : av av ow ow
Sp=— r,(rag —n2B) + mz2Xsind(5g ~ 75g) + 2xcosd(Fy — n59) +
)\Jﬁc:s 9, _ )\r-lil-slinﬂA o (A—95¢)
r—momentum M(Re) ¢ = S¢
¢ = v (A—96a)
d¢ _1 -:-71211%11/\rsin0 (A—96b)
_ j Asiné w2, 2)Asind au cos
Sp = — % + Re(*R w2 + 1) —ng5) + g
13-2 g‘_wb; - @ﬁ?—l cos fw (A—96¢)
f—momentum M(Re) ¢ = S¢
dy = Re¥ + Ly(x2 4 2]
o= Rep + H?( + 21 (A—97b)
S¢ - _ AcosO _2Acosé %_ au) _ Ar+sm0Anu +
'3—1215%1 % + —H%;ACOSW (A—97C)

The energy equation with negligible viscous dissipation

M(Pr Re) T =0

(A—98)

314



