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Abstract

Comparing groups or sets is the main focal issue in
statistics, and data mining research has also focused on au-
tomatically identifying values and instances that differ sig-
nificantly across groups, known as contrast sets. Whether
traditional statistics or the work on contrast sets, the com-
parison is made on nominal data. There is very little work
on contrasting sets of event sequences. In this paper we in-
troduce the notion of emerging sequences; sequences that
when taken from a set of sequences A and put in a set of
sequences B would be considered an abnormal outcast in B
and thus distinguishes the set A from the set B. We present
approaches for finding such emerging sequences efficiently
and introduce an algorithm for discovering the top most
emerging sequences.

1. Introduction

In many applications comparing groups is paramount
and the fundamental goal of data analysis is to understand
the differences and what makes these differences between
contrasting groups. Applications such as comparing prof-
itable and unprofitable transactions in business, compar-
ing good customers from churning ones for customer rela-
tionship management, comparing populations where some
drugs are effective or ineffective in medicine, comparing
river floods in weather forecast, or comparing crop har-
vest from year to year, are typical examples where under-
standing differences is crucial and has certainly been stud-
ied for many years. While there has been significant work
from statistics as well as data mining to study what con-
trasts groups, the comparison between groups is typically
based on discrete or numerical attributes. Contrast Sets [3]

(also called Emerging Patterns [6, 26]), for instance, are
conjunctions of attribute-value pairs that are significantly
more frequent in one group than another. In other words,
the discovered contrast between groups is based on these
attribute-value pairs. When instances in groups are not de-
scribed by numerical or discrete attributes but rather by se-
quences of events, there are no known systematic ways to
better help understand differences between these sequence-
based groups. Examples of groups of sequences are abun-
dant: contrasting the sequences of clicks performed by e-
commerce site’s visitors who purchase products against the
sequences of clicks of visitors who leave the site abandon-
ing their cart before checking out could give insight to mar-
keting people and web designers to better entice buyers.
Distinguishing the sequences of events performed by on-
line students who succeed in their learning activities vis-
à-vis the sequences of events performed by the less suc-
cessful learners could provide insight to educators in order
to improve or follow the learning activities as well as pro-
vide discriminating patterns for automatic recommendation
systems. Comparing sequences of amino-acids in proteins
of different classes could provide the sequences with the
strongest discriminative power to determine protein loca-
tion in cells or protein functions. The same can be said
about the gene G-T-C-A sequences in bioinformatics as well
as any application with sequence data. Our work for dis-
covering emerging sequences has potential relevance in de-
tecting differences in groups of event sequences in several
application domains.

Understanding the contrast between groups can provide
essential patterns which, when incorporated in a classifier,
lead to high accuracy and predictive power. This has been
demonstrated for the traditional contrast sets and emerging
patterns [13, 14] and we believe there is the same potential
for emerging sequences.



This paper presents two major contributions:

1. We introduce the notion of emerging sequences: A se-
quence from a group A of sequences that, whether ex-
isting or not in a group B, if added in the group B
would be considered an outlier sequence and thus dis-
tinguishes A from B, is an emerging sequence.

2. We introduce two effective and efficient algorithms to
find the most emerging sequence when contrasting one
group with another based on a measure of distance.
The algorithms are extended to find the top n emerging
sequences.

The remainder of the paper is organized as follows: we
present in the next section a brief survey of related work
concerning contrasting groups. Section 3 introduces con-
trast sequences and a naı̈ve approach to find them using a
brute-force nested loop. Section 4 describes two algorithms
that use simple but clever heuristics to prune the search
space and significantly speedup the emerging sequence dis-
covery process. The algorithm for finding the top n emerg-
ing sequences is also introduced in Section 4. Some ex-
perimental results are presented in Section 5 illustrating the
order of magnitude speedup over the naı̈ve approach and the
scalability of our approaches. We suggest future work and
present our conclusion in Section 6.

2. Related Work on Contrasting Groups

In statistics, myriad tests, such as the t-test and the chi-
square test, have been developed to examine whether two
different samples are dissimilar enough in some character-
istics and whether the difference is statistically significant.
Many elaborate methods were also contributed by the statis-
tics community. For instance, the method of kernel discrim-
inant analysis estimates the class conditional distributions
using kernel density estimation to learn a discriminant func-
tion for each class [9] and hence emphasizes differences
between groups. Comparing groups is the art of statistics
and surveying the different methods is out of the scope of
this paper. It suffices to mention that statistical methods are
based on sampling, they assume some hypothesis and are
solely considering nominal data (i.e. numerical and mini-
mally categorical).

There are also many works in data mining that are re-
lated to the study of differences. Discriminant rules [8] are
based on Attribute-Oriented Induction [5] and provide pat-
terns representing characteristics from two classes with high
support differences. The attribute-oriented induction allows
the counting of attribute-value pairs’ occurrences at differ-
ent levels of a given concept hierarchy.

The idea of contrast sets [3] was introduced at the same
time and venue as emerging patterns [6]. They are essen-

tially the same concept. Contrast sets or emerging pat-
terns find rules that differentiate contrasting groups. The
process consist of discovering attribute-value pairs or con-
junctions of attribute-value pairs whose support (i.e. fre-
quency) differs meaningfully across groups. A significant
contrast set cs is one such ∃ i, j such that supportGi(cs) 6=
supportGj

(cs) and a large contrast set cs is one such
maxij | supportGi(cs) − supportGj (cs) |≥ δ, while
a jumping contrast set cs is one such ∃ i, j such that
supportGi

(cs) = 0 ∧ supportGj
(cs) 6= 0. Based on

the above, it is clear that contrast sets (and emerging pat-
terns) are tightly linked to association rules and the dis-
covery of frequent itemsets. The most referenced work for
discovering such patterns is STUCCO [3] which is based
on and uses the same search strategy as Max-Miner [4]
for finding maximal frequent patterns. The main differ-
ence between contrast sets and emerging patterns is that
[6] introduces a growthRate to prune the patterns where
GrowthRate = supportGi

(cs)

supportGj
(cs) (0 if supportGi

(cs) = 0

and ∞ ifsupportGj (cs) = 0) while STUCCO uses the
Chi-square test to check the significance of the support dif-
ferences [3]. Other variations of contrast sets with regard to
statistical tests to prune the search space were also recently
presented [10]. However, fundamentally they are simply
frequent itemsets comprised of conjunctions of attribute-
value pairs which are at least frequent in one group and the
difference in their frequencies across groups is meaningful.
While it is argued that contrast set mining is a new special
purpose data mining task, it is demonstrated in [23] that
in reality they are a special case of a general rule genera-
tion task and that they can straightforwardly be generated
by mining for frequent itemsets in separate datasets (i.e.
groups). The issue, however, remains the setting of a low
support threshold to find those meaningful differences for
rarely occurring contrast sets.

While [23] refers to applications of contrast sets in re-
tail data, very few real world applications have been men-
tioned in the literature. One such example is presented in
[15] where contrast sets are used to describe interesting
characteristics of different segments of students on a web-
based educational system. Their algorithm MCR identifies
attributes characterizing patterns of performance disparity
between various groups of students even with very low sup-
port. Despite the numerous works, it remains that contrast
sets (and emerging patterns) are conjunctive rules charac-
terizing only nominal attributes. Groups described by more
complex data such as sequences, graphs, etc. cannot easily
be contrasted using the above methods.

Recently, the focus has been the speedup of the emerging
pattern discovery process [2] but also the extension to more
complex data such as subgraphs [21] and sequences [11].
However, the work on sequences aiming at discovering dis-
tinguishing subsequences is mainly based on frequencies as
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contrast sets for nominal data [11], which is conceptually
different from the notion of emerging sequence we intro-
duce herein. To discover distinguishing subsequences, the
algorithm presented in [11] assumes the subsequence ex-
ists in both groups and uses constraints to prune the search
space while counting frequencies of occurrences in groups.
Our approach to contrast groups of sequences does not
count frequencies and does not assume co-existence of a
sequence in both groups.

Another related work worth mentioning is the use of
Hidden Markov Models (HMM) to represent sequences of
events. For example, in [19] event sequences, in a collab-
orative online learning situation, are modeled using HMMs
to assess how new concepts introduced in a group are assim-
ilated. HMMs were used to classify instances of effective
and ineffective knowledge sharing interaction. However,
HMMs have not been used to contrast sets of sequences.

3. Emerging Sequences

To introduce the concept of emerging sequences that
contrast a sequence group from another we will first start
with illustrative examples.
Example 1: In an e-commerce web site selling products,
the aim is to entice new buyers, keep buyers from churn-
ing and encourage more purchases. It is thus important to
understand what makes buyers buy and non-buyers leave
empty-handed. The click-stream visitation produces trans-
actions of events chronologically ordered representing the
clicks and the actions made by web visitors. Separating
the buyers from the non-buyers is trivial and leads to two
groups of event sequences. There is a plethora of work and
solutions in web mining [16] studying web navigational be-
haviour to produce recommender systems, personalize web
sites, generate analysis, etc. However, comparing groups
at the sequence of event level has not been done. A rele-
vant question could be “what is the sequence of events that
may more likely lead to a purchase?” or “what is the se-
quence of events that may more likely delay or hinder a
purchase?” Notice that these two questions are symmetric:
one pertains to the purchasing group and the other to the
non-purchasing group. The sequence that emerges from a
group A to contrast the group from another group B is not
necessarily the same sequence that may emerge from B to
contrast it from A. Answering such questions and finding
the sequence or sequences germane to the purchasing group
or non-purchasing group is a valuable insight.
Example 2: In a controlled trial of a new drug after its ini-
tial production it is common to notice that there are signifi-
cant side-effects for some individuals while others respond
positively to the new drug. Are there genetic predisposi-
tions? Contrasting the genetic makeup of the two popula-
tions can allow the discovery of genetic signatures for pre-

disposition or reaction to the drug.

Notice that in Example 1 the input consists of two groups
materialized into transactions of chronologically ordered
events. Each group is a set of transactions of ordered events
(i.e. sequences) similar to the transactions for sequence
analysis in [20] for market basket analysis. The sequences
can be kept in their existing condition or, due to their exces-
sive length, processed to extract frequent subsequences us-
ing existing algorithms such as GSP [20], Spade [25], Pre-
fixSpan [17], or SPAM [1]. The result would still be two
sets of sequences, all be it larger sets of short and long se-
quences.

In Example 2 the input is consisting of two very long
sequences or two sets of very long sequences. This is com-
mon for proteins, genes or even natural language text. These
long sequences need to be broken down into frequent sub-
sequences. A frequent subsequence is a subsequence made
up of consecutive elements that occurs in more than a cer-
tain fraction of the sequences in a group. There are effi-
cient algorithms in bioinformatics to process such long se-
quences for frequent subsequences [7]. One such algorithm
uses generalized suffix trees (GST) [22]. A GST is a trie-
like structure designed for compactly representing a set of
strings. Each suffix of the string is represented by a leaf in
the GST. There are algorithms to build a GST in linear time
[7]. Frequent subsequences are extracted by simple traver-
sal of the GST. The end result would be, like in Example 1,
two groups of sequences ready to be contrasted.

The application that motivated this work is related to e-
learning and the understanding of collaborative team work
[12]. In an educational project conducted in the context of a
semester long software development course in which teams
of students collaborated and interacted on-line to create sub-
stantial software artifacts, we collected data about their ac-
tivities. We wanted to understand the sequences of events
(i.e. collaborative behaviour) that lead a team to success and
the sequences of events that prevented another team from
succeeding. In other words our questions where: “what are
the sequences of events that may more likely lead to success
in student software creation?” and “what are the sequences
of events that may more likely avert successful ending in
collaborative software creation?” This is similar to Exam-
ple 1, except that events expressed in terms of activities such
as creating a task, modifying code, sending a message, dis-
tributing responsibilities, leading, etc., are articulated in a
complex vocabulary taking into account repetitive activities
and authors of the events in a team, resulting in a convoluted
distance measure to evaluate similarity between sequences.
This is out of the scope of this paper. However, distance
measures are central to our approach for discovering emerg-
ing sequences.
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3.1. The Notion of Emerging Sequence

Given two groups of sequences A and B, an emerging
sequence contrasting A from B, EmergeSequence(A,B),
is a subsequence from A that, regardless of its frequency
in A or B, is the furthest away from its closest match
in B from any subsequence in A. In other words if
EmergeSequence(A, B) = x, x ∈ A and has the
largest distance to its closest match in B. More explic-
itly, if x is added to B, x would be the most outlier in
B based on distance. If x already existed in B, it is by
definition different and distant from the other sequences
in B. The problem thus consists of finding the closest
neighbour in B for each subsequence in A and select the
one with the largest distance to its closest match. Notice
that the problem is not symmetric, that is we likely have
EmergeSequence(A, B) 6= EmergeSequence(B,A).
This is because EmergeSequence(A,B) may not initially
exist in B, and even if it does it is not necessarily the most
outlier within A.

Definition 1 (Most Emerging Sequence) Given
two distinct groups of sequences A and B,
EmergeSequence(A, B), the most emerging sequence
contrasting A from B, is the sequence in A that has the
largest distance to its nearest neighbour in B.

The definition assumes the existence of a similarity or
distance measure between sequences. There are many dis-
tance measures or metrics used in the literature: Euclidian,
Manhattan, Mahalanobis distance, Cosine measure, Jaccard
coefficient, etc. In this paper a given distance function
d(x, y) is assumed which can either be a standard metric
or an application domain specific function defined to re-
turn the distance between two sequences. The distance of
a sequence in a group from its nearest neighbour in another
group provides the possibility of ranking and thus extracting
a top list of most emerging sequences.

Definition 2 (Top n Emerging Sequence) Given two dis-
tinct groups of sequences A and B, and a number n, the
top n emerging sequences contrasting A from B are the n
most emerging sequences from A. The ranking is based on
the largest distance to their respective nearest neighbour in
B.

Since an emerging sequence is not symmetric, to contrast
two groups of sequences one needs to apply the discovery
of emerging sequences symmetrically. In other words find
the emerging sequence contrasting A from B then find the
emerging sequence contrasting B from A.

Definition 3 (Contrasting Emerging Sequences)
Given two distinct groups of sequences A and

B, the contrasting emerging sequences is a pair
(EmergeSequence(A,B), EmergeSequence(B, A)) of
the most emerging sequence contrasting A from B and the
most emerging sequence contrasting B from A.

Given the duality, we will only concentrate on one di-
rection: finding the most emerging sequence contrasting A
from B (EmergeSequence(A,B)). The other direction is
simply the reverse. Notice however that one may be more
interested in one direction than the other. For example in
the motivating scenario understanding success in online stu-
dent collaboration, if we want to find success predictors we
would contrast the successful group from the non success-
ful. However, if we are more interested in makers for fail-
ure, we may wish to explore emerging sequences in that
direction (i.e. contrasting the failed group from the other).

3.2. An Approach to Discover Emerging Sequences

We describe here the simple and naı̈ve brute-force al-
gorithm for finding an emerging sequence that contrasts a
group of sequences from another.

The intuition behind the algorithm is that the emerging
sequence from a group A vis-à-vis a group B would be an
outlier sequence in B: an outlier. We need to do a pairwise
comparison between all sequences in A and B to compute
their distances. For each sequence in A we need to compute
its distance to all sequences in B and keep the shortest one:
its nearest neighbour. The one that has the furthest near-
est neighbour is the outlier sequence and declared the most
emerging sequence contrasting A from B. This is a nested
loop as illustrated in Algorithm 1 in which for every x ∈ A
and every y ∈ B the distance d(x, y) is computed.

The algorithms looks for the sequence in A (initialized
to NIL in line 2) that has the largest distance to its nearest
neighbour in B. The outer loop scans A (line 3) and for
each sequence looks for its nearest neighbour (line 7 to 9)
in the inner loop scanning B (line 6). In lines 10 to 13, the
neighbour with the largest distance is stored ES.neighbour
while the emerging sequence is stored in ES.sequence.
The complexity of this simple naı̈ve nested loop, Algorithm
1, is | A | ∗ | B | or N2 assuming both groups have the
same size N . Obviously, this is the worst case scenario and
more efficient algorithms are possible.

4. Finding Emerging Sequences Efficiently

Computing the pairwise distance for all sequences in
both groups is not necessary. Indeed, what we are look-
ing for is the sequence in A that has the largest distance to
its nearest match. Since LargestDistance in line 11 of Al-
gorithm 1 stores the largest distance to a sequence’s nearest
match so far found, as soon as we find a sequence t ∈ B that
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Algorithm NNL
INPUT: Group of Sequences A and B
OUTPUT: Sequence contrasting A with B - i.e.
sequence in A with largest distance to its nearest
neighbour in B
LargestDistance ← 0;1

ES ← NIL;2

for each s ∈ A do3

Nearest ←∞ ;4

Neighbour=NIL;5

for each t ∈ B do6

if d(s, t) < Nearest then7

Nearest ← d(s, t);8

Neighbour ← t;9

endif
endfor
if Nearest > LargestDistance then10

LargestDistance ← Nearest;11

ES.sequence ← s;12

ES.nearestNeighbour ← Neighbour;13

endif
endfor
Return (ES);14

Algorithm 1: Naı̈ve Nested Loop Algorithm to find an
Emerging Sequence

has a shorter distance to the current sequence s ∈ A than the
current LargestDistance, there is no need to pursue with
s and any other sequence in B after t. This is because if the
distance d(s, t) < LargestDistance then even if t ends
up being the nearest match to s it does not have a distance
larger than the larger distance found so far and thus there
is no need to further investigate which one in B is the real
nearest match to the actual s. Based on this observation it
suffices to add a test in the inner loop to test whether the
distance between the current sequence in A, s, and the cur-
rent sequence in B, t, is smaller or equal than the largest
distance to a neighbour found so far (LargestDistance).
This test is what is added in Algorithm 2 lines 7 and 8. The
“break” stops the inner loop as there is not need to continue
scanning B for the current sequence s in the outer loop,
hence the name Skip Nested Loop.

In the worst case scenario the break in line 8 will never be
executed and the distance of all pairs (x, y), such that x ∈ A
and y ∈ B, would be computed resulting in a complexity
of O(N2) assuming the same size N for A and B (Figure
1.left). However, if we are lucky enough, after the first se-
quence in A is compared against all sequences in B, the
real largest distance to a nearest neighbour is found (i.e. the
maximum LargestDistance is found). In that case there
is no need to compare the remaining sequences in A with
all the remaining sequences in B if B is sorted in such a

Algorithm SNL
INPUT: Group of Sequences A and B
OUTPUT: Sequence contrasting A with B - i.e.
sequence in A with largest distance to its nearest
neighbour in B
LargestDistance ← 0;1

ES ← NIL;2

for each s ∈ A do3

Nearest ←∞ ;4

Neighbour ← NIL;5

for each t ∈ B do6

if d(s, t) < LargestDistance then7

Break;8

endif
if d(s, t) < Nearest then9

Nearest ← d(s, t);10

Neighbour ← t;11

endif
endfor
if Nearest > LargestDistance then12

LargestDistance ← Nearest;13

ES.sequence ← s;14

ES.nearestNeighboutr ← Neighbour;15

endif
endfor
Return (ES);16

Algorithm 2: Skip Nested Loop Algorithm to find an
Emerging Sequence

way that the nearest neighbour is always the first in B. Line
7 would always be true. This scenario is illustrated in the
right of Figure 1. In that case B is scanned once for the first
sequence in A but then the inner loop is always broken at
the first opportunity for each sequence in A giving a linear
complexity of O(2N) ≈ O(N).

Group A Group BGroup A Group B

Best case scenario: O(|A|+|B|)Worst case scenario: O(|A|*|B|)

100

120

195

170
30

25

55

Figure 1. Worst and best case scenarios for
Skip Nested Loop algorithm.

An idealistic token example is illustrated on the right of
Figure 1. The first sequence in A is compared to all se-
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quences in B and its nearest neighbour is found to be the
last sequence in B with a distance of 100. When entering
the second iteration of the outer loop, LargestDistance is
100 and the second sequence in A, s2, is compared with
the first sequence in B, t1, and their distance is found to
be d(s2, t1) = 55. 55 is smaller than LargestDistance
so whether t1 is the nearest neighbour of s2 or not, s2

will never get a nearest neighbour that is more distant than
LargestDistance. Thus, it is useless to look for the ac-
tual nearest neighbour of s2 and check later if it is the
largest. The same applies for the third iteration with s3

since d(s3, t1) = 25 < 100 and in the fourth iteration since
d(s4, t1) = 30 < 100.

To end up in this very idealistic scenario is very unlikely
however. The order in which the sequences in A are con-
sidered is important. We want the first sequence to find
a nearest neighbour that ends up the furthest away. Also
the order in which sequences in B are considered is impor-
tant. The earlier we examine a sequence t in B that has a
smaller distance d(s, t) than the current LargestDistance
the earlier we can stop looking for a suitable nearest neigh-
bour for the current sequence s in A. Both groups A and
B need to be sorted relative to the distance measure used
and the nearest neighbours. However, sorting would assume
knowing the nearest neighbours which defeats the purpose
of looking for nearest neighbours in the first place. Nev-
ertheless, some simple heuristics could be used for sorting
the sequences. For instance, if the length of sequences is
used in the distance function, simple sorting based on se-
quence length could improve performance. In addition to
being more efficient than Algorithm 1 (NNL), Algorithm 2
(SNL) provides the opportunity to inject domain knowledge
to further improve efficiency if application domain heuris-
tics exist to sort either or both of the sequence groups.

In the case of random ordering of the sequences a bet-
ter strategy to improve the nested loop is to not only skip
sequences in B but also in A whenever possible and count
on randomness. The idea is to read blocks of sequences at
a time from A then find the nearest neighbour from B of
each sequence in the block and select the largest one. Once
LargestDistance of previous blocks is known, when con-
sidering a new block from A, one does not need to compute
the distance d(s, t) for all sequences s in the block and se-
quences t in B. Indeed, as soon as we find a distance d(s, t)
smaller than LargestDistance, s has no chance to get its
nearest neighbour larger than LargestDistance since it al-
ready has a sequence in B that is closer (i.e. t). Thus, we
can safely omit checking distances between s and the re-
maining sequences in B. We simply drop s from the block
and the block shrinks. The Block Nested Loop approach
is depicted in Algorithm 3. As in previous algorithms, ini-
tially LargestDistance is unknown and is set to 0 (line 1).
Also, the most emerging sequence is unknown and is initial-

ized with NIL (line 2). The outer loop reads sequences from
A one block at a time (line 3). In each iteration the nearest
neighbours for all sequences in the block are searched be-
fore moving on the the next block. Once a block is in main
memory, the first inner loop scans all sequences in B and
computes the distances between the sequences in the block
and the sequences in B and stores the nearest neighbour for
each (lines 13-14). However, if the distance is shorter than
the largest distance to a nearest neighbour found in previous
blocks (i.e. LargestDistance), the sequence is removed
from the block as we can abandon the search for a nearest
neighbour to that sequence (lines 10-11). In lines 15 to 19
is another loop to compare the nearest neighbours found for
the sequences in the current block searching for the maxi-
mum distance.

Algorithm BNL
INPUT: Group of Sequences A and B
OUTPUT: Sequence contrasting A with B - i.e.
sequence in A with largest distance to its nearest
neighbour in B
LargestDistance ← 0;1

ES ← NIL;2

while blockA ← getNextBlock(A) do3

for all s ∈ blockA do4

s.Nearest ← {};5

s.DistanceToN ← 0;6

endfor
for each t ∈ B do7

for each s ∈ blockA do8

Distance ← d(s, t);9

if Distance ≤ LargestDistance then10

Remove s from blockA;11

endif
if s.Nearest ← {} or12

Distance < s.DistanceToN then
s.Nearest ← t;13

s.DistanceToN ← Distance;14

endif
endfor

endfor
for each s ∈ blockA do15

if s.DistanceToN > LargestDistance then16

LargestDistance ← s.DistanceToN;17

ES.sequence ← s;18

ES.nearestNeighbour ← s.Nearest;19

endif
endfor

endw
Return (ES);20

Algorithm 3: Block Nested Loop Algorithm to find an
Emerging Sequence
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In the worst case scenario no sequence is ever removed
from the block in line 11. This means that all pairs (x, y),
such that x ∈ A and y ∈ B, would be computed resulting in
a complexity of O(N2) assuming the same size N for A and
B (Figure 2.left). So the worst case scenario is the same as
the worse case scenario for the Skip Nested Loop, which is
the complexity of the brute-force Naı̈ve Nested Loop. How-
ever, in a randomized set it is very likely that distances be-
tween some sequences in a block and some sequences in
B are shorter than the previously found largest distance in
other blocks. In those cases, sequences are removed from
some blocks reducing the overall number of pairwise com-
parisons. In the best case scenario (illustrated in the right of
Figure 2), the sequences from A in the first read block are
all compared for distance computation with all sequences
in B. Once the furthest nearest neighbour is found for the
first block, it turns out to be larger than any first compari-
son in all subsequent blocks. Thus, the complexity for the
best case is O(b|B| + |A|) where b is the size of a block.
Since b is relatively small, the linear complexity of the best
case is O(2bN) ≈ O(N). This is the case when the furthest
nearest neighbour is found in the first block of A.

30

55

Group A Group BGroup A Group B

Best case scenario: O(|A|+b|B|)Worst case scenario: O(|A|*|B|)

100

120

195

170
25

200

78

110

Figure 2. Worst and best case scenarios for
Block Nested Loop algorithm.

An idealistic token example for the best case of Algo-
rithm 3 is illustrated on the right of Figure 2. Given a block
size of 2, the distances for the two sequences in the first
block are computed with all sequences in B. The distance
to the nearest neighbour of the first sequence in the block
is min(195, 120, 170, 100) = 100 and the distance to the
nearest neighbour of the second sequence in the block is
min(55, 200, 78, 110) = 55. Thus, the largest distance
is LargestDistance = max(100, 55) = 100. When
the second block is read, as soon as we compute the dis-
tance between the first sequence t1 of B and the first se-
quence s1 of the block and obtain 25 we de facto know
that we can abandon s1 from the block. This is because
since 25 is smaller than the current LargestDistance 100
and the nearest neighbour to s1 is at least 25, the nearest
neighbour of s1 (whether t1 or other) will never be larger
than LargestDistance (i.e. the furthest nearest neigh-

bour found so far in previous blocks). This saves compu-
tation with the remaining sequences in B. The same ap-
plies to the second sequence in the block since the distance
d(s2, t1) = 30 (that is < 100).

Algorithm TopES
INPUT: Group of Sequences A and B; n, the number
of top contrasting sequences to return
OUTPUT: Top n most contrasting sequences from A
w.r.t. B - i.e. sequences in A with largest distance to
their nearest neighbour in B
Let minDist(T) return the minimum distance between
elements in T and their respective nearest neighbours
T[1..n] ← NIL;1

while blockA ← getNextBlock(A) do2

for all s ∈ blockA do3

s.Nearest ← {};4

s.DistanceToN ← 0;5

endfor
for each t ∈ B do6

for each s ∈ blockA do7

Distance ← d(s, t);8

if Distance ≤ minDist(T) then9

Remove s from blockA;10

endif
if s.Nearest={} or11

Distance < s.DistanceToN then
s.Nearest ← t;12

s.DistanceToN ← Distance;13

endif
endfor

endfor
for each s ∈ blockA do14

if s.DistanceToN > minDist(T) then15

Seq.sequence ← s;16

Seq.Nearest ← s.Nearest;17

Seq.distance ← s.DistanceToN;18

T ← Top(T ∪ Seq, n);19

//keep only the top n sequences based on
distance

endif
endfor

endw
Return (T);20

Algorithm 4: Top-n Algorithm to find Top-n Emerging
Sequences

4.1. Finding Top n Emerging Sequences

The previous algorithms contrast a group of sequences
A from a group of sequences B. To contrast B from A, the
groups need to be reversed and the same algorithms can be

7



applied again. To highlight differences between two groups,
both directions need investigation, hence the pair in Defini-
tion 3.

The most emerging sequence is one sequence from a
group A that contrasts A from a group B. It is probably
not the only sequence that highlights difference, but it has
the furthest distance to its nearest neighbour in B. It would
be the most outlying sequence if it was inside B. This
presumes an ordering in the emerging sequences. The sec-
ond most emerging sequence is the one that has the second
furthest distance to its nearest neighbour in B and can be
found after removing the most emerging sequence from A
and applying the algorithm again. However, the previous
algorithms can easily be modified to find a list of ordered
emerging sequences. Algorithm 4 extends Algorithm 3 to
find the top n most emerging sequences contrasting A from
B.

An array stores the top most emerging sequences found
and is initialized to NIL in line 1. Instead of the variable
LargestDistance to keep track of the furthest distance to
a nearest neighbour, the function minDist() returns the
smallest distance among the distances of the emerging se-
quences so far collected in the array. The strategy reading
blocks from A remains the same as in Algorithm 3. The
last loop in line 14 checks the nearest neighbours of the
sequences of the block. If anyone is larger than those al-
ready collected in the array, the new emerging sequence is
inserted in the array and the one with the shortest distance
to its neighbour is eliminated (line 19). The complexity of
this algorithm remains the same as Algorithm 3.

Theoretically, both algorithms SNL and BNL have a
complexity between O(N2) and O(N). However, we
would expect their performance is near linear and by far
they outperform NNL.

5. Experimental Evaluation

To show the efficiency of our algorithms we compared
NNL, SNL and BNL on a collection of datasets. Evalua-
tion on real datasets is not reported as the interpretation of
the results by the domain experts is still underway. How-
ever, the efficiency and scalability results are similar to the
results obtained from synthetic data. We generated sets of
sequences of the same size in the number of sequences and
compared the execution time of the three algorithms as well
as the number of pairwise distance computations processed
by the three contenders on each dataset. The distances be-
tween sequences were randomly generated so that the dis-
tance function had simply to consult a matrix for distance
calculation. The distance matrix was loaded in main mem-
ory. In addition, we evaluated the effect of the size of the
block in BNL.

Experiments were executed on a Pentium IV 3.00 GHz

machine with 1 GB memory running Windows XP Profes-
sional and the algorithms were implemented in C.

In all experiments both sets of sequences had the same
size in number of sequences. Sequences are not of the same
length so files are not of the same size in bytes. Figure 3
illustrates the scalability of our algorithms.
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Figure 3. Scalability Comparison between al-
gorithms.

When both groups are of a small size all three algorithms
perform similarly. However, as the sizes increase, both SNL
and BNL clearly outperform NNL. With 20,000 sequences
in each group, NNL needs three times more time to find
the emerging sequence than SNL or BNL. BNL performs
slightly better than SNL and its efficiency is even more
pronounced as the size of the groups increases. Further
randomization of the sets can improve BNL’s performance
even more. On the plant protein dataset the difference be-
tween SNL and BNL was more pronounced.

The times reported in Figure 3 do not include the run
time for computing distances between sequences as in our
experiments the distance function simply accessed a pre-
computed distance matrix. Some distance functions can be
expensive and thus reducing the number of calls to such a
function is critical. In Figure 4 we report the number of pair-
wise distance computations, which the heuristics in SNL
and BNL attempt to reduce. We use a logarithmic scale
as the differences are noteworthy. Clearly, NNL computes
N2 distance computations, N being the size of each of the
two groups. SNL needs significantly less distance com-
putations and BNL even less. With an expensive distance
function, this difference in the number of pairwise compu-
tations would translate into major time savings with BNL
when mining large sets.

BNL reads blocks of sequences at a time from the first
group of sequences A. All sequences of the first block are
compared with all sequences in the second group B. This
means that in the extreme case when the block size is equiv-
alent to the whole group A we would have as many distance
computations as with NNL (i.e. N2). Having a very small
block size, for instance 1, is also not advantageous since
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Figure 4. Number of Pair-wise sequence com-
parison for each algorithm.

it would assume that the emerging sequence is early in the
group A and it would not take advantage of the randomness
of the data. A relatively small block size, however, is still
beneficial and certainly more valuable than a large one due
to the complete crossover with the first block and the sec-
ond group of sequences. We performed tests by varying the
block size from 0.2% to 6% of the size of the group and
did not notice significant difference. As the size increase
beyond 10 and 15% the performance drops.
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Figure 5. Effect of block size in BNL on pair-
wise comparisons

Figure 5 depicts the number of distance computations for
two sequence sets of size 5,000 and varying the block size
from 10 to 300 sequences. The performance is relatively
stable as the fluctuation of ± 17,000 out of a potential of 25
million pairwise distance computations is negligible. We
advocate a block size of maximum 10% of the size of the
first groups of sequences and preferably 5%.

Testing on real datasets is very important for validation
of effectiveness. Initial tests on plant protein data used to
identify extracellular and intracellular proteins [24] show
promising results but remain to be confirmed by biologists.
Significance of the discovered emerging sequences can only

be assessed by domain experts. Another validation we are
experimenting is the inclusion of the discovered emerging
sequences in a classification model. If the accuracy of the
classifier is improved using the emerging sequences then
these discovered emerging sequences have a critical dis-
criminant power and are hence relevant discoveries.

As for the motivating e-learning project mentioned pre-
viously in which we intend to compare successful and less
successful teams in a collaborative software development
undertaking, the hindering issue is the validation of a good
distance function between event sequences. Indeed the vo-
cabulary describing these sequences is very rich, not just in
terms of different possible events but also in terms of suc-
cessive repetitions of events and event authors, creating a
complex semantics [12]. Since the distance function is cen-
tral in our algorithms, it is critical to initially confirm a se-
mantically correct and effective distance function in our ap-
plication before contemplating the interpretation of emerg-
ing sequences discovered. Nevertheless, preliminary results
are very promising in terms of effectiveness. We will use
domain theories to help inform design of the distance func-
tion, for example theories of group operation [18].

6. Conclusion

We introduced the problem of finding emerging se-
quences when contrasting groups of sequences. An emerg-
ing sequence captures what makes a group of sequences dif-
ferent from another. In essence, given two sequence sets A
and B, an emerging sequence contrasting A from B is a se-
quence from A that is the most different from all sequences
in B and would be considered an outlier if in B.

We presented and studied two efficient algorithms to dis-
cover emerging sequences. SNL uses a simple trick to filter
out doomed candidates and provide the possibility to exploit
domain specific heuristics to sort the sequence groups for
better performance. BNL reads blocks of sequences from
the outer loop group and prunes on both sequence groups
to reduce pairwise distance computation. We showed the
efficiency of our algorithms in finding emerging sequences.

BNL performs best when the groups of sequences are
randomized. It is worthwhile investigating the possibility to
add a pre-processing phase in which the sequence groups
are randomized to better take advantage of BNL’s pruning.

Another valuable study is to compare the top n emerging
sequences discovered with our methods with the support-
based distinguishing subsequences. Distinguishing subse-
quences appear more frequently in one group than another.
Our emerging sequences do not depend on frequencies.
However, an interesting question is to investigate the rela-
tionship between the two patterns.

As mentioned above, emerging sequences could have
good discriminating power between groups. When discov-
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ered between classes in a learning phase of a classification
problem for sequence data, a more accurate classifier could
be modeled. Further research in this direction could be con-
structive.
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