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Abstract

Pointer analysis is a program analysis that determines the memory locations pointed to

by individual pointers. Imprecise pointer information is a major impediment to data-flow

analyses and back-end optimizations that depend on pointer information.

Most pointer analyses are based on a points-to abstraction, which is an abstraction of

memory that partitions the conceptually infinite number of memory locations into a finite

number of abstract objects. In a flow-sensitive pointer-analysis, a points-to relationship

between abstract objects is computed at each program point.

Our pointer analysis is based on another abstraction called the Expression Data Flow

graph, which expresses the memory dependencies between expressions that appear in a

program. This abstraction represents pointer information in a more compact and more

precise way than a points-to abstraction.

We present a flow-sensitive and field-sensitive algorithm that computes a precise Ex-

pression Data Flow graph of a program in a negligible amount of time.
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Chapter 1

Introduction

Accurate pointer information is a prerequisite to most back-end compiler optimizations and

static program analyses. Without pointer information, the effects of indirect memory opera-

tions are unknown. Overly conservative assumptions of their effects reduce the effectiveness

of later analyses and code optimizations. Pointer analysis is a static program analysis that

computes pointer information.

Various types of pointer analyses have been studied for decades, but only simple pointer

analyses are incorporated in today’s production compilers. The reason for the sluggish up-

take of advanced pointer analyses by production compilers may be unreasonable restric-

tions and assumptions imposed on input code by the proposed analyses. Thus, practicality

in production compilers is an important design goal for new pointer analyses.

1.1 Background

Pointer analysis has been studied exhaustively, and many papers and theses have been writ-

ten on this topic [12].

1.1.1 Dimensions of Pointer Analysis

Pointer analyses are categorized based on their cost/precision trade-offs. These trade-offs in

pointer analyses are known as dimensions of precision. Flow-sensitivity and field-sensitivity

are two major dimensions.

A flow-insensitive analysis computes one set of information that applies to all parts

of a program, while a flow-sensitive analysis computes individual information for every
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point in a program. A dense flow-sensitive algorithm computes a complete set of pointer

information before and after every statement. A sparse algorithm reduces redundant data by

storing only the pointer information that has changed and only storing it at points where it

has changed. An advantage of flow-sensitivity is the ability to perform strong updates: if the

analysis can conclude that a memory location is definitely updated by an assignment, then

previous values of the location can be discarded in an abstraction of pointer information.

An aggregate type in C may have multiple pointer-typed fields that may point to dif-

ferent objects, and pointers themselves may point to individual field members. A field-

sensitive analysis differentiates both information stored in different fields and pointers point-

ing to different fields. In contrast, a field-insensitive analysis merges all field-specific infor-

mation and maintains only whole-object information.

Most pointer analyses rely on type information provided by a compiler front-end to

enable field-sensitivity. Although this reliance is reasonable for strongly-typed languages,

programmers easily and commonly elude C’s weak type system in real-world programs.

1.1.2 Demand-driven Analyses

Aside from the precision/performance trade-offs listed above, there are different approaches

to computing pointer information. The most common approach is the exhaustive approach,

which constructs complete points-to sets, either sparsely or densely. A demand-driven al-

gorithm does not attempt this; instead, it analyzes only a portion of a program that is needed

to answer a specific query.

Our approach to pointer analysis can be contrasted to previous approaches by compar-

ing their preprocessing cost and query costs. An exhaustive analysis processes the entire

program and constructs complete points-to sets. This process consumes a relatively large

amount of time and memory, but all pointer information is present in the result and queries

can be answered quickly. A pure demand-driven analysis performs a more rapid pass over

the program and constructs a data-structure that requires significant additional computation

to extract pointer and alias information.

Our approach takes the middle road between these two approaches: a program is prepro-

cessed and some computation is performed to obtain a data-dependency graph. Recovering
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pointer and alias information requires some computation, but the algorithm to do so is rel-

atively simple and fast. Furthermore, the memory footprint during the analysis and the size

of the output is trivially small.

1.1.3 Unanalyzable Statements and Expressions

Most pointer analyses enforce assumptions on input programs that may hurt their applica-

bility to real-world programs. For example, type-casts to and from pointer types may be

disallowed, or analyses may require access to the source code of the whole program. If an

algorithm aims to be practical in production compilers, these assumptions are fundamental

flaws of the algorithm if there are no reasonable methods to eliminate them.

A major impasse is the occurrence of unanalyzable statements and expressions in a pro-

gram. Examples of unanalyzable expressions include atypical pointer operations or state-

ments that write and read back memory addresses from a file. An example of an unanalyz-

able statement is a procedure call to a procedure whose source code is not available to the

analysis.

To conservatively handle an unanalyzable statement, an analysis must pessimistically

reason that the statement may modify any address-taken variable, any variable with external

linkage, or any object on the heap. For flow-insensitive algorithms, a single occurrence of

an unanalyzable statement renders the pointer information of affected memory locations

useless.

If the value assigned to a pointer cannot be determined, then the pointer can point to any

memory location. The scalability of flow-sensitive algorithms, especially sparse algorithms,

is sensitive to the size of individual points-to sets: if a pointer has numerous targets, han-

dling dereferences of the pointer quickly becomes inefficient. Thus, handling dereferences

of pointers that may point to any memory location requires special consideration.

Handling unanalyzable statements and expressions efficiently is not the only require-

ment: the result of the analysis in the presence of unanalyzable constructs is not useful if it

is too conservative. After an unanalyzable statement, most memory locations are assumed

to contain any value. In order to extract useful pointer information in such an environment,

the analysis must be able to recover from this state through strong updates on memory lo-
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1 a = &x;

2 p = &a;

3 *p = &y;

(a)

1 int g;

2
3 int main()

4 {

5 int x;

6 h(&x);

7 void* p = malloc();

8 }

9
10 void h(int* y)

11 {

12 int z;

13 if(...) h(&z);

14 }

(b)

Figure 1.1: Example of a C program

cations. In most flow-sensitive pointer analyses, strong updates on dynamic objects are

not performed. This restriction has the unfortunate effect that pointers inside heap objects

are considered to contain any value for all points in a program that follow an unanalyzable

statement.

1.1.4 Points-to-set-based Pointer Analysis

The common approach to pointer analysis is based on Emami, Ghiya, and Hendren’s points-

to set abstraction, which is an abstraction of memory that maps the conceptually infinite

number of memory locations to a finite number of abstract objects [8]. This section will

provide the definitions of common program analysis terminologies and will present a brief

formulation of a points-to-set-based pointer analysis. The formulation presented in this

section is not a complete description of an analysis, but it is sufficient to exhibit the short-

comings of the points-to set abstraction.

C Programs

C statements are straddled by program points. We use the notation N and N to refer to

program points immediately above and below a C statement on line N, respectively.

A control flow graph (CFG) is a graph representation of the control flow of a program.

A node in a CFG represents a basic block. A basic block is a straight-line piece of code
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a

b

c

d

(a)

a

b

c d

(b)

Figure 1.2: Example of a control flow graph and its dominator tree

that begins with a jump target and ends with a jump, and has no jumps or jump targets in

the middle of the block. A directed edge between two basic blocks represents control flow

from a jump to a jump target. An elementary block is a basic block that contains only one

statement. An entry block is a block where an execution of a program begins.

A block b dominates b′ if all control flow paths from the entry block of a program to b′

passes through b. The dominator relation is similarly defined between program points, and

between blocks and points. An immediate dominator of a block b is a block b′ such that

b′ dominates b, and there does not exist a block b′′ , b′ such that b′ dominates b′′ and b′′

dominates b. All blocks except for the entry block have a unique immediate dominator. A

dominator tree is a data structure where a node represents a block and an edge represents

the immediate dominator relation. The root of a dominator tree is the entry block.

Figure 1.2(a) is an example control flow graph, and its dominator tree is in Figure 1.2(b).

Let the block labelled “a” be the entry block. “a” is the immediate dominator of “b”, and

the immediate dominator of “c” and “d” is “b”.

Objects are regions of memory storage. Static objects are allocated once at the begin-

ning of an execution of a program. For example, in Figure 1.1(b) the object associated with

the global variable g is a static object. An automatic object is associated with a local vari-

able inside the scope of a procedure, and it is allocated when a procedure is entered, and

5



deallocated when the procedure is exited. x, p, y, and z are associated with automatic ob-

jects. When the function h is recursively invoked, a new object is allocated and associated

with y and z. When h is exited, y and z’s old associations are restored. Every time malloc

is executed, it returns a newly allocated dynamic object.

Points-to Set Abstraction

In a points-to set abstraction, objects are mapped to abstract objects. Every variable is

associated with an abstract object, and (concrete) objects associated with a variable are

mapped to the abstract object associated with the variable. In Emami et al.’s paper [8], all

dynamic objects are mapped to a single abstract object, but a common alternative scheme

is to associate abstract objects with allocation sites, and map dynamic objects to abstract

objects according to their allocation sites.

A singular abstract object is an abstract object that is always associated with a single

concrete object at run-time. For example, abstract objects that represent global variables

and local variables inside non-recursive procedures are singular abstract objects. Abstract

objects that represent local variables inside recursive procedures are not singular because

there may be multiple concrete objects in inactive call frames associated with a local vari-

able in a recursive procedure.

Each program point is associated with a points-to set, which is a set of pairs of abstract

objects. An element (p, q) in a points-to set indicates that p may point to q: an object

associated with p may contain the address of an object associated with q.

A transfer function maps a sound abstraction of program states before a statement to

a sound abstraction of program states after the statement. In a data-flow analysis, transfer

functions are commonly defined through generate and kill sets: a transfer function T for a

statement S on an abstraction A is defined as TS (A) = GenS (A) ∪ (A \ KillS (A)).

Let AObj be the set of abstract objects. Given a points-to abstraction A and an abstract

object p, let Pts(A, p) = {y ∈ AObj : (p, y) ∈ A}. Specifically, Pts(A, p) is the set of points-

to targets of p. Figure 1.3 lists the generate and kill sets for four types of normalized C

assignment statements.

The transfer functions for statements of the form “p = &q;”, “p = q;”, and “p =
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S = [p = &q;] GenS (A) = (p, q)

KillS (A) = {(p, y) : y ∈ AObj, p is singular}
S = [p = q;] GenS (A) = {(p, y) : y ∈ Pts(A, q)}

KillS (A) = {(p, y) : y ∈ AObj, p is singular}
S = [p = *q;] GenS (A) = {(p, y′) : y′ ∈ AObj,

∃y ∈ AObj[y ∈ Pts(A, q) ∧ y′ ∈ Pts(A, y)]}
KillS (A) = {(p, y) : y ∈ AObj, p is singular}

S = [*p = q;] GenS (A) = {(x, y) : x ∈ Pts(A, p), y ∈ Pts(A, q)}
KillS (A) = {(x, y) : x, y ∈ AObj,Pts(A, p) = {x} ∧ x is singular }

∪
A if |Pts(A, p)| = 0
∅ otherwise

Figure 1.3: Generate and kill sets

*q;” can kill the points-to targets of the abstract object associated with the left-hand side

variable. In recursive procedures, local variables are non-singular. It may seem odd that

a statement of the form “p = q;” does not strongly update p if p is a local variable in a

recursive procedure because the statement is definitely storing to a single concrete object.

However, p may represent possibly multiple concrete objects if a procedure is recursively

invoked. Killing the points-to targets of p is not sound since the statement does not store to

all concrete objects represented by p.

Statements of the form “*p = q;” are indirect stores. If p points to a single singular

abstract object, then its points-to targets can be killed in an indirect strong update. As a

data-flow analysis, the transfer function must be monotonic. In a points-to set analysis, the

points-to set at a point must not decrease in size during the analysis. If a pointer does not

point to any target, it may point to a single singular abstract object at a later time in the

analysis, and the transfer function may kill the existing points-to relations of that target.

Thus, to preserve monotonicity of the transfer function, if p does not point to any target,

then the entire points-to set is killed because the transfer function may kill the points-to

relations of any object at a later time in the analysis.

In Figure 1.1(a), the points-to set abstraction at 1 is {}; at 1 = 2, it is {(a, x)}; at 2 = 3, it

is {(a, x), (p, a)}; and at 3, it is {(a, y), (p, a)}.
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1 if(...) {

2 p = &a;

3 } else {

4 p = &b;

5 }

6
7 *p = &x;

8 if(...) {

9 *p = &y;

10 }

11 else {

12 *p = &z;

13 }

14
15 c = *p;

(a)

1 if(...) {

2 p = &a;

3 } else {

4 p = &b;

5 }

6
7 tmp = &x;

8 if(...) {

9 tmp = &y;

10 }

11 else {

12 tmp = &z;

13 }

14
15 c = tmp;

16 *p = tmp;

(b)

1 while(...) {

2 if(p) {

3 *p = &v;

4 }

5
6 if(...) {

7 p = &a;

8 } else {

9 p = &b;

10 }

11
12 *p = &x;

13 if(...) {

14 *p = &y;

15 }

16 else {

17 *p = &z;

18 d = b;

19 }

20
21 c = *p;

22 }

(c)

Figure 1.4: Example of limitations of pointer analysis

Limitations

The code listing in Figure 1.4(a) is used to illustrate imprecision in a points-to-set-based

analysis. If we perform a manual analysis of the code, we can conclude that the variable c

may point to either y or z. In a points-to-set-based analysis, none of the stores through *p

are strong updates because p may point to two targets. Thus, a points-to-set-based analysis

concludes that c may point to x, y, or z.

Figure 1.4(b) is a code listing where a simple variable substitution is applied to Fig-

ure 1.4(a). The occurrences of *p are substituted with a temporary variable. In this case,

the transformation is sound, and a points-to-set-based analysis is precise on the transformed

code. Figure 1.4(c) is a modification of Figure 1.4(a) that complicates performing the same

variable substitution on the code:

• A segment of the code is inside a loop, and the pointer variable p is redefined in every

iteration.
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• Inside the loop, the value of p that was defined in a previous iteration is used in an

indirect store (in line 3), and the value of p in the previous iteration may be different

from the value of p in the current iteration.

• There is a use of the variable b (in line 18), and stores to *p may affect the val-

ues stored in b. Variable substitutions must account for this behaviour. Aliasing

between expressions cannot be determined without performing pointer analysis, and

thus, pointer analysis must preclude the variable substitution transformation.

Through a manual analysis of Figure 1.4(c), the points-to targets of c is still y and z. If an

analysis, aiming to improve its precision, performs variable substitution only when com-

plications, such as the ones listed above, do not appear, then the resulting analysis will be

brittle, meaning that small modifications to the code result in large changes to the precision

of the output. One of our goals is to design a flexible analysis that is more precise than a

points-to-set-based pointer analysis.

1.2 Contributions

Previous sections have described open problems in existing pointer analyses. This thesis

addresses these problems with the following contributions:

• We present an efficient representation of pointer information. The representation

avoids decomposing indirect memory operations into their effects on variables, and

thus the size of the representation is closer to the size of the input.

• The representation is designed to efficiently handle unanalyzable constructs, and our

algorithm avoids using type information. The avoidance of type information allows

our analysis to soundly handle non-portable C constructs that appear in real-world

programs. In effect, our analysis requires only a low-level, assembly-like representa-

tion of code.

• We present an algorithm that computes the proposed representation using a negligible

amount of time and space. The precision of pointer information in the output exceeds

that of traditional flow-sensitive pointer analyses.
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1.3 Mathematical Notation

The power-set of a set S is written P(S ). Given a set S , the application of the Kleene

operator on S is written S ∗.

The set-builder notation appears in this document in two forms: {x ∈ S : P(x)} or

{F(x1, x2, . . .) : x1 ∈ S 1, x2 ∈ S 2, . . . , P(x1, x2, . . .)}, where F is a function and P is a

propositional formula.

Sequences are enclosed in square brackets. Concatenation of sequences is denoted by

juxtaposition: [1, 1, 1] · [2, 2] ≡ [1, 1, 1, 2, 2].

Given µ : X → Y, x ∈ X, and y ∈ Y, µ[x 7→ y] is a transformation of a mapping µ

where µ[x 7→ y](x) = y and ∀z , x, µ[x 7→ y](z) = µ(z). µ[{x1, x2, . . .} 7→ y] is equivalent to

µ[x1 7→ y, x2 7→ y, . . .].

Given µ : X → P(Y), x ∈ X, and Y ∈ P(Y), µ[x 7→+ Y] is a transformation of a

mapping µ where µ[x 7→+ Y] = µ[x 7→ µ(x) ∪ Y]. µ[{x1, x2, . . .} 7→+ Y] is equivalent to

µ[x1 7→+ Y, x2 7→+ Y, . . .].

1.4 Document Organization

Chapter 2 describes the representation of a program that our pointer analysis expects as in-

put. Chapter 3 describes the output representation and the flow-sensitive and field-sensitive

pointer analysis algorithm. Before the flow- and field-sensitive algorithm is described, a

flow-insensitive algorithm is presented to familiarize readers with our unusual abstraction

of a program. Chapter 4 contains the experimental evaluations. Chapter 5 examines related

works. Chapter 6 is the conclusion of this thesis.

Terms that have a specific meaning attached to it and constants, variables, and functions

that are referenced in multiple sections, are defined in a labelled definition.
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Chapter 2

Concrete Semantics

An Expression Data Flow (EDF) graph is an abstraction of a program that represents data

dependencies between expressions. Most data-flow graphs are variable-centric in that they

represent indirect memory operations by their effects on variables: the left- and right-hand

side expressions of an assignment statement are decomposed into sets of variables modi-

fied by the assignment (variables aliased with the left-hand side expression) and the set of

variables loaded by the assignment (variables aliased with the right-hand side expression).

In contrast, the EDF graph expresses data dependencies directly between expressions that

appear in a program, which results in a smaller and more precise representation.

When a statement “*p = *q;” is executed, a typical list of low-level operations per-

formed in the execution is listed below:

1. Load from the memory location addressed by &q (a constant) into register r1.

2. Load from the memory location addressed by r1 into register r2.

3. Load from the memory location addressed by &p into register r3.

4. Store the value of r2 to the memory location addressed by r3.

There are three loads performed in the above assignment statement. Whenever a value is

loaded from a memory location, the EDF graph relates the load to the store operation that

was last to store to that memory location.

This chapter presents a concrete semantics for a representative instruction set. A con-

crete semantics precisely and intuitively models all possible runtime states of a program. It
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cannot be computed in finite time and space for all programs, but it provides an understand-

ing of the behaviour of an abstract machine that operates on our representative instruction

set.

2.1 Concrete Semantics

Most formulations of the semantics of a programming language are divided into the se-

mantics of an evaluation of an expression, which produces a value, and an execution of a

statement, which modifies a program state. The construction of an EDF graph is performed

in increments that correspond to each step of an evaluation of an expression in addition

to an execution of a statement. We describe an intermediate language whereby every in-

dividual memory access involved in evaluating a complex expression is represented as a

distinct step of computation, which matches the nature of our abstraction more closely than

a statement-based programming language.

The concrete semantics models an abstract machine with an infinite memory space.

The memory space is partitioned into objects. A memory location is an unit of memory

where a single value can be stored and from where that value can be retrieved at a later

time in an execution of a program. A value is either the address of a memory location or

a symbol representing an uninitialized value. For the purpose of the concrete semantics,

non-address-typed values stored in memory locations are not of interest. Memory locations

are addressed by an integer offset within a particular object. All non-negative integers are

valid offsets and thus each object contains an infinite number of memory locations.

In the concrete semantics, the memory spaces of objects are disjoint. In real-world

machines, objects are allocated in a flat memory space and memory locations inside one

object can be accessed through pointer arithmetic on an address of a different object. Our

concrete semantics does not model programs containing such operations because the C

standard does not define a behaviour for them.

Let Obj be a set of objects. Let MLoc = Obj × Z be a set of memory locations, where

(o, f ) ∈ MLoc is interpreted as an offset f inside an object o. An element x ∈ MLoc can

be interpreted as a memory location x or, if it is used as a value, it can be interpreted as

the address of a memory location x. Let Val = MLoc ∪ {ϵ} be a set of values that may

12



Instr = JInstrTypeKILabel

InstrType = “LOADA” R Var

| “LOADM” R

| “LOAD” R Z

| “STORE” Z Z

| “SKIP”

Figure 2.1: Instruction set grammar

be stored in a memory location, where a member that is a memory location is interpreted

as the address of the memory location, and ϵ denotes an uninitialized value. Addition and

subtraction between an element of MLoc and an integer is carried out on the offset of the

memory location: (o, f ) + m ≡ (o, f + m).

Every variable in a program is associated with a unique object. Objects can also be

allocated by a dynamic allocation function. Allocating an object means that each execution

of an allocation function returns an object unique to that execution.

Definition 2.1. Figure 2.1 is a grammar of our representative instruction set. Let ILabel and

Var be sets of terminals. Each instruction in a program is uniquely labelled by a label from

the set ILabel. The label of an instruction is used to refer to the instruction itself. Var is a set

of identifiers of local variables. Let R = {rL, rR} be a set of terminals used to select the two

registers of the abstract machine that operates on the instruction set: rL and rR. The registers

rL and rR are used to hold intermediate values of executions of instructions that represent

the left-hand side and the right-hand side of an assignment statement, respectively.

Let r ∈ R, v ∈ Var, and f ,m ∈ Z. “LOADA r v” writes the address associated with v to

register r. “LOADM r” allocates an object and writes its address to register r. “LOAD r f ”

reads a value x from register r, loads a value y from the memory location addressed by x+ f ,

then writes y to r. f is called the instruction’s dereference offset, or d-offset. “STORE f m”

reads a value x from register rL, reads a value y from register rR, and then stores the value

y + m into the memory location addressed by x + f . f is the instruction’s d-offset, and m

is called the instruction’s modifier. SKIP instructions do not modify the program state and

they are used as placeholders.
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When referring to a LOADA, LOADM, or LOAD instruction, the term LOAD(AM) is

used. LOADA and LOADM instructions are root instructions because they generate a value

without loading from memory. A def-instruction is an instruction that stores to a memory

location, and a use-instruction is either a root instruction or an instruction that loads from a

memory location. STORE instructions are def-instructions, while LOAD(AM) instructions

are use-instructions.

Definition 2.2. A LOAD(AM) instruction is said to produce the value that it writes to a

register when executed. A STORE instruction produces the value it stores to memory when

executed.

Utility functions that return local information about an instruction are defined below.

Definition 2.3. A LOAD or STORE instruction dereferences an address written to a reg-

ister by a preceding instruction. Let l be a LOAD or STORE instruction and let ls be the

LOAD(AM) instruction that produces the value that is dereferenced by l. ls is called the

dereference source (d-source) of l. Let DSrc : ILabel → ILabel map a LOAD or STORE

instruction to its d-source instruction.

For example, if there is a control flow edge from “JLOAD rR 0Kl1” to “JLOAD rR 0Kl2”

then l1 is the dereference source of l2; if there is a control flow edge from JLOAD rL 0Kl3 to

JSTORE 0 0Kl4 then l3 is the dereference source of l4.

Definition 2.4. A STORE instruction stores a value, written to the register rR by a pre-

ceding instruction, to a memory location. Let l be a STORE instruction and let lv be the

LOAD(AM) instruction that wrote the value that is stored by l, to the register rR. lv is called

the store-value instruction of l. Let StVal : ILabel → ILabel map a STORE instruction to

its store-value instruction.

For example, if there is a control flow edge from “JLOAD rR 0Kl1” to “JSTORE 0 0Kl2”

then l1 is the store-value instruction of l2.

Definition 2.5. A LOAD or STORE instruction adds an offset (possibly zero) to the address

produced by its d-source instruction to generate a different address. This offset is called
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1 p = &a;

2 *(p + 1) = &x + 2;

3 b = *(p + 1) + 3;

(a) Code

1 SKIP

2 LOADA rR a

3 LOADA rL p

4 STORE 0 0

5 LOADA rR x

6 LOADA rL p

7 LOAD rL 0

8 STORE 1 2

9 LOADA rR p

10 LOAD rR 0

11 LOAD rR 1

12 LOADA rL b

13 STORE 0 3

(b) Listing

Figure 2.2: Example of concrete semantics

the dereference offset (d-offset) of l. Let DOff : ILabel → Z map LOAD and STORE

instructions to their d-offsets.

Definition 2.6. Let Modf : ILabel→ Z map STORE instructions to their modifiers.

For simplicity, we assume that d-offsets and modifiers are constant integers in this chap-

ter. Real-world programs may perform pointer addition and subtraction with non-constants.

Section 3.8 on field-sensitivity introduces abstractions that can represent non-constant d-

offsets and modifiers.

Figure 2.2(a) is an example C program, and Figure 2.2(b) is a transformation of the C

program into our representative instruction set.

2.2 C Programs

Assignment statements are the only type of C statements that change the representation of a

program state. The C expressions that we model can be parsed as a series of sub-expressions

nested by the dereference operator. For example, *(p + 1) has three sub-expressions: &p,

*(&p), and *(*(&p)+1). Each sub-expression corresponds to an instruction. The base

sub-expression is the address-of expression. If every line has no more than one assignment

statement, then sub-expressions, and thus instructions, can be referenced unambiguously

using pairs of line numbers and sub-expressions. Let k:L(e) refer to a sub-expression e
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in the left-hand side expression of a statement on line k of a C program. Similarly, let

k:R(e) refer to a sub-expression e in the right-hand side expression of a statement on line

k. This notation is used for labels of instructions. Line numbers of C program listings

serve as statement labels. For example, the instruction “STORE 0 0” on line 4 in Fig-

ure 2.2(b) corresponds to 1:L(p) in Figure 2.2(a). Thus, the labelled instruction is written

JSTORE 0 0K1:L(p). Likewise, “LOAD rR 1” on line 11 corresponds to 3:R(∗(p + 1)) and

the labelled instruction is JLOAD rR 1K3:R(∗(p + 1)).

A LOADM instruction is labelled &k, where k is the statement label of the statement

containing the LOADM instruction. For example, if there is a C statement “p = malloc();”

on line 3 of a program, then the labelled instruction representing the right-hand-side expres-

sion is JLOADM rRK&3.
A complete programming language requires conditional branch instructions, where the

next instruction to execute is determined by the program state at the point of the branch

instruction. A flow-sensitive program analysis that uses its abstraction of the program state

to determine which branch target may or may not be taken is called a path-sensitive analysis.

Our analysis is path-insensitive. Thus, the control flow of programs can be abstracted as a

mapping from one instruction to a set of possible succeeding instructions, where jumping

to any one of the succeeding instructions is considered to be a valid sequence of execution.

To simplify the presentation of our analysis, we use the following assumptions:

• The blocks of the control flow graph are elementary blocks, which are blocks that

contain exactly one instruction. There is a program point above and below every

instruction.

• The entry block is isolated, meaning there are no control flow edges that target the

entry block.

• The entry block is a SKIP instruction.

• If a block has multiple blocks that immediately precede it, then the block is a SKIP

instruction.

Definition 2.7. Let CFlow : ILabel × ILabel. Given instructions l and l′, let (l, l′) ∈ CFlow
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if there is a control flow edge from l to l′.

Definition 2.8. Let lentry ∈ ILabel be the entry block of a program. All program points in a

program are dominated by lentry. We assume that lentry labels a SKIP statement.

Definition 2.9. Let ProgPt be the set of program points. There is a program point above

and below every instruction. Given an instruction l, let PtAbove(l) be the point above l, and

let PtBelow(l) be the point below l.

Definition 2.10. An execution trace is a sequence of instructions that represent a possible

execution of a program. Traces are elements of ILabel∗. The value produced by an exe-

cution trace is the value produced by the execution of the trace’s last instruction when the

trace is executed. An execution trace ends at a point t if t is below the last instruction in the

trace.

The following definitions are utility functions that operate on traces.

Definition 2.11. Given a trace tr, let Last(tr) be the last instruction in tr.

Definition 2.12. Given a trace tr and an instruction l, let LPrefix(tr, l) be the longest prefix

of tr that ends with l.

2.3 Program State

Recording the values stored in memory locations is sufficient to describe an abstraction

based on points-to sets. The EDF graph abstraction requires higher-level information about

a program: in addition to recording values stored in memory locations, the concrete seman-

tics records the last instruction that stored to each memory location.

Definition 2.13. Let VState be the set of program states:

VState = (MLoc→ Val)

× (MLoc→ (ILabel∗ ∪ {ϵ}))

× (R→ Val)

× ILabel∗
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Given a program state (σ, µ, ρ, tr) ∈ VState, the components of the state are described

below:

• σ is a mapping from memory locations to values stored in them. If a memory location

x is uninitialized, then σ(x) = ϵ.

• µ is a mapping from a memory location to the execution trace up to the execution of

an instruction that last stored to the memory location. Given a memory location x, the

instruction Last(µ(x)) is the Most Recent Update (MRU) of x. If a memory location

x is uninitialized, then µ(x) = ϵ.

• ρ is a mapping from registers to values stored in them.

• tr is an execution trace which begins with the first instruction of a program and which

was executed and resulted in the state (σ, µ, ρ, tr).

The set of objects Obj is defined as Obj = Var ∪ ILabel∗: an object is either uniquely

associated with a variable or it is uniquely associated with an execution trace. Static and

automatic objects are associated with variables. A dynamic object is associated with the ex-

ecution trace up to the execution of a LOADM instruction that allocated the object. Within

an execution trace, each invocation of a dynamic allocation function returns a unique object.

Definition 2.14. The initial state V0 at the entry point of a program is defined as VState0 =

(λx.ϵ, λx.[], λr.ϵ, []).

Definition 2.15. Figure 2.3 lists the semantics of instructions. A state transition is denoted

I ⊢ V { V ′, where I is a labelled instruction and V ′ is the resulting state after executing

I on the state V . Alternatively, the transition may also be written l ⊢ V { V ′ where l is

the label of an instruction.

When a “LOADA r v” instruction is executed, the address of the memory location (v, 0)

is written to register r. When a “LOADM r” instruction is executed, the address within an

object that is unique to that execution trace is written to register r. When a “LOAD r f ”

instruction is executed, the value stored in the memory location ρ(r)+ f is written to register

r. When a “STORE f m” instruction is executed, the value stored in the memory location
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JLOADA r vKl ⊢ (σ, µ, ρ, tr) { (σ, µ, ρ[r 7→ (v, 0)], tr · [l])JLOADM rKl ⊢ (σ, µ, ρ, tr) { (σ, µ, ρ[r 7→ (tr, 0)], tr · [l])JLOAD r f Kl ⊢ (σ, µ, ρ, tr) { (σ, µ, ρ[r 7→ σ(ρ(r) + f )], tr · [l]) if ρ(rR) , ϵJSTORE f mKl ⊢ (σ, µ, ρ, tr) { (σ[(ρ(rL) + f ) 7→ (ρ(rR) + m)],

µ[(ρ(rL) + f ) 7→ tr · [l]], λr.ϵ, tr · [l]) if ρ(rL) , ϵJSKIPKl ⊢ (σ, µ, ρ, tr) { (σ, µ, ρ, tr · [l])

Figure 2.3: Instruction semantics

ρ(rR)+m is stored to the memory location ρ(rL)+ f , and the MRU of ρ(rL)+ f is set to the

STORE instruction.

Definition 2.16. Let tr ⊢ V if V is the resulting state after executing the trace tr beginning

with the initial state V0. We say that V is the state reached by tr, or tr leads to the state V .

Not all traces lead to a state: when an uninitialized value is dereferenced in a trace, then

the trace does not lead to a program state. A static analysis computes properties of program

states reached by execution traces. Thus, an analysis does not have to consider execution

traces that dereference an uninitialized value.

For this example, line numbers in Figure 2.2(b) serve as instruction labels. Let (σ, µ, ρ, tr)

be the state reached by the trace tr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The values of the

components are listed below:

σ = {((a, 1), (x, 2)), ((p, 0), (a, 0))}

µ = {((a, 1), [1, 2, 3, 4, 5, 6, 7, 8]), ((p, 0), [1, 2, 3, 4])}

ρ = {(rL, (b, 0)), (rR, (x, 2))}

tr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

The tuple ((a, 1), (x, 2)) in σ represents a mapping from the memory location (a, 1) to the

value (x, 2). The MRU of (a, 1) is 8, and the MRU of (p, 0) is 4.

The next chapter describes a representation of a program as an EDF graph and presents

algorithms to compute the EDF graph. The graph represents instructions as nodes. Instead

of recording MRUs of individual memory locations, an EDF graph relates an instruction
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that loads a memory location to the MRU of the memory location with an edge between the

two nodes representing the two instructions. This relation is called a reaching definition.

For example, in Figure 2.2(b), a node that represents the instruction labelled 11 loads from

the memory location (a, 1). The MRU of (a, 1) at the point of the load is the instruction

labelled 8. Thus, the node that represents the instruction 8 is a reaching definition to the

node that represents the instruction 11.
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Chapter 3

Abstraction

The EDF graph is a sparse and approximate abstraction of the concrete semantics. A high-

level description is one such that a node of an EDF graph represents an instruction, and

edges relate load instructions to store instructions such that if, in some execution, a load

instruction l loads from a memory location x, then an edge is present between the node that

represents x’s MRU and the node that represents l. Points-to sets can be derived from the

graph through graph reachability queries.

The EDF graph is introduced through two abstraction domains. The first abstraction

domain introduces a simplified EDF graph. A flow-insensitive algorithm that computes an

abstraction in the first abstraction domain is presented.

Computing a precise abstraction in the first abstraction domain is difficult. The second

abstraction domain is the “proper” EDF graph and an algorithm that computes a precise

abstraction is defined in the second abstraction domain.

3.1 Abstraction Domain Graph

Definition 3.1. The abstraction domain Graph is defined below.

Graph = P(Node) × P(Edge)

Node = ILabel ∪ Var

Edge = Node × Node

Let Graph be partially ordered by ⊑:

(GN ,GE) ⊑ (G′N ,G
′
E) ≡ GN ⊆ G′N ∧GE ⊆ G′E
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An element of Graph is an abstraction. Given G = (GN ,GE) ∈ Graph, GN is a set of

nodes. A node corresponds to an instruction. Except for LOADA instructions, instructions

map one-to-one to nodes. GE is a set of edges. An edge from a node n′ to n indicates that n′

is a possible reaching definition of n: in some execution of a program, the instruction repre-

sented by n may load a memory location whose MRU is the STORE instruction represented

by n′.

LOADA and LOADM instructions are root instructions because they are the source of

addresses for chains of memory dependencies. Root instructions are represented by root

nodes such that the set of root nodes represents a partition of the memory space. Specif-

ically, if executions of two root instructions may produce the same value, then they are

mapped to the same root node. LOADM instructions produce a unique value in every ex-

ecution; thus each LOADM instruction is represented by a unique node. LOADA instruc-

tions of the form “LOADA r v” produce a constant value that is unique to the variable v;

thus all instances of a “LOADA r v” instruction for a particular variable v, are represented

by a unique root node associated with the variable v.

Nodes that represent LOADA instructions are address nodes. Nodes that represent

LOADM instructions are malloc nodes. Store nodes abstract STORE instructions, and load

nodes abstract LOAD(AM) instructions.

Definition 3.2. The dereference source of a node n or d-source of n, is the node that repre-

sents the d-source of the instruction represented by n. Root nodes are the only nodes that

do not have a d-source. The dereference offset of a node n or d-offset of n, is the d-offset of

the instruction represented by n. If the d-source of n is ns and the d-offset of n is f , then we

may use the phrase, “the node n that is d-sourced from ns with d-offset f ,” to refer to n.

Definition 3.3. The mapping between instructions and their representative nodes, ItoN, is

defined below:

ItoN : ILabel→ Node

ItoN(l) =

v if l labels LOADA v where v ∈ Var
l otherwise

In Figure 2.2(b), labels 2 and 3 label LOADA instructions and the label 4 labels a

STORE instruction. Therefore, ItoN(2) = a, ItoN(3) = p, and ItoN(4) = 4.
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Definition 3.4. With the exception of address nodes, the position of a node in the context

of a program’s control flow graph is the instruction represented by the node. The position

of an address node is the entry instruction.

When discussing graph properties, there may be confusion between the control flow

graph of a program and the abstraction graph. The unqualified term “nodes” is reserved

for nodes of an abstraction. We assume that the control flow graph of an input program

consist of elementary blocks; thus the nodes of a control flow graph are instruction. To

avoid ambiguities between abstraction graphs and control flow graphs, we explicitly qualify

graph terms such as “edges” and “paths” as data flow edges (df-edges) and data flow paths

(df-paths) when they refer to the abstraction, and control flow edges (cf-edges) and control

flow paths (cf-paths) when they refer to the control flow graph. A node n is df-reachable

from a node n′ if there exists a df-path from n to n′. A node n is cf-reachable from a node

n′ if there exists a cf-path from n’s position to n′’s position. A node n dominates a node n′

if n’s position dominates n′’s position. A node dominates a point if the position of the node

dominates the point, and like-wise for points dominating nodes.

3.2 Slices

An abstraction abstracts a set of execution traces. Informally, a property derived from a

trace is realized as properties in the abstract domain. In our abstraction, the property of

interest that is derived from a trace is a concept of a chain of memory dependencies, called

a slice [26]. The slice of a trace is the history of loads and stores of the value produced by

the trace.

Definition 3.5. A trace is associated with a slice. The function Slice defined in Figure 3.1

constructs a slice from a trace.

Given a trace, the trace’s slice is constructed from the end of the trace to the beginning of

the trace. The first case in the piecewise definition handles the case when the trace does not

lead to a program state: this occurs when an uninitialized value is dereferenced somewhere

in the trace. The second case states that the slice of an execution of a root instruction is just

the root instruction: there is no memory dependence to any other part of a program for the
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Let tr, tr′ ∈ ILabel∗, l ∈ ILabel, (σ, µ, ρ, tr) ∈ VState, r, f ∈ Z.

Slice : ILabel∗ → ILabel∗

Slice(tr · [l]) =



[] if @V ∈ VState
| tr ⊢ V

[l] if l labels a root instruction
Slice(tr′) · [l] if l labels LOAD r f

where tr ⊢ (σ, µ, ρ, tr)
and tr′ = µ(ρ(r) + f )

Slice(LPrefix(tr, StVal(l))) · [l] if l labels a STORE instruction

Figure 3.1: Slice function

instruction to produce a value. The third case uses the µ mapping to determine the MRU of

the loaded memory location ρ(r) + f . The fourth case ties a store instruction l that stores a

value to the load instruction StVal(l) that loaded the value.

An abstraction abstracts a trace if the trace’s slice is represented in the graph. Traces and

slices are sequences of instructions, and they can be mapped to df-paths in the abstraction

through ItoN.

Definition 3.6. Given a sequence of instructions S , let NodeSeq(S ) be the element-wise

map of S by ItoN. Given a trace tr, we refer to NodeSeq(tr) as the trace path of tr, and

NodeSeq(Slice(tr)) as the slice path of tr1.

NodeSeq : ILabel∗ → Node∗

NodeSeq(tr) = [ItoN(l1), . . . , ItoN(li)] where [l1, . . . , li] = Slice(tr)

With the exception of slices that consist of a single root instruction, slices correspond

one-to-one to slice paths. If a slice path is represented in an abstraction, then every adjacent

pair of nodes in a slice path must be an edge in the graph. Thus, we arrive at an abstraction

function that maps a set of traces to the most precise abstraction in Graph that abstracts the

set.

1If we follow the guidelines for avoiding control-flow/data-flow ambiguities stated in the previous section,
then the two terms should be trace df-path and slice df-path, but we disregard the guidelines for these two terms
for brevity.
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Definition 3.7. The abstraction function for Graph, α, is defined below. α is defined

component-wise.

α : P(ILabel∗)→ Graph

α(H) = (αN(H), αE(H))

αN(H) = {n ∈ Node : (∃tr ∈ H | l appears in NodeSeq(tr))}

αE(H) = {(n, n′) : n, n′ ∈ Node,

(∃tr ∈ H | n is immediately followed by n′ in NodeSeq(Slice(tr)))}

Given a set of traces H ∈ P(ILabel∗) and an abstraction G ∈ Graph, if α(H) ⊑ G, then

G abstracts H. The goal of the analysis is to compute an abstraction that abstracts all traces

of a program.

Definition 3.8. Let CS ⊆ ILabel∗ be the collecting semantics. The collecting semantics

records all possible traces of a program. CS is defined below:

f (H) = {[lentry]} ∪ {tr · [l] : tr ∈ H, (Last(tr), l) ∈ CFlow}

CS =
∩
{ f (H) = H}

Given a set of traces H, f (H) is a set that contains the trace that consists of the first

instruction of a program and traces in H extended by succeeding instructions in the control

flow graph. CS is the least fixed point of f , and it is the smallest set that contains all

execution traces of a program.

Definition 3.9. An abstraction G ∈ Graph abstracts a program if it abstracts all traces of a

program: α(CS ) ⊑ G.

Figure 3.2(b) is an abstraction of the code in Figure 3.2(a). A node is labelled with the

label of its associated instruction. Square nodes are load nodes and circle nodes are store

nodes. Thin solid edges are use edges (an edge from a store node to a load node) and bold

solid edges are assignment edges (an edge from a load node to a store node). Dotted edges

are dereference edges; a dereference edge indicates that the source of the edge is the d-

source node of the destination node. A number alongside a dereference edge is the d-offset
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1 a = &x;

2 p = &a;

3
4 *p = &y;

5 b = a;

(a) Code

&x

1:a

0

&a

0

2:p

0

5:a

0

&p

0

4:p

0

&y

4:*p

0

&b

5:b

0

0

0

Dereference offset

Dereference edge

Root node (address node)

Load node

Store node

Assignment edge

Modifier

Use edge

(b) Graph

Figure 3.2: Example of an abstraction
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of the edge’s destination node. A number alongside an assignment edge is the modifier of

the edge’s destination node.

3.3 Flow-insensitive and Field-insensitive Algorithm

This section presents a trivial algorithm that computes an imprecise abstraction of a pro-

gram. The precision of the analysis is similar to the precision of a flow-insensitive and

field-insensitive pointer analysis.

The input to the algorithm is a collection of various sets and mappings that describe

a program2. They were introduced in the previous chapter, but they are listed here for

reference:

• ILabel is the set of labels of instructions.

• Instr is the set of labelled instructions.

• CFlow ∈ P(ILabel × ILabel) is the set of control flow edges between instructions.

• Var is the set of variables.

• StVal : ILabel → ILabel is the mapping from a STORE instruction to its store-value

instruction.

• DSrc : ILabel → ILabel is the mapping from a STORE or LOAD instruction to its

d-source instruction.

• DOff : ILabel→ Z is a mapping from a STORE or LOAD instruction to its d-offset.

• Modf : ILabel→ Z is a mapping from a STORE instruction to its modifier.

• lentry is the first instruction of the program.

The output of the algorithm is an abstraction of the program.

2StVal and DSrc can be derived from ILabel and CFlow by performing a single pass over a program’s control
flow graph
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3.3.1 Transfer Functions

Given a labelled instruction JiKl, if G ∈ Graph abstracts a set of traces H, let the transfer

function TsfrInstr : Graph× Instr → Graph be defined such that TsfrInstr(G, JiKl) abstracts

H ∪ {tr · [l] : tr ∈ H, (Last(tr), l) ∈ CFlow}. The transfer function is defined component-

wise by sets of nodes and edges, and piece-wise by instruction type: TsfrInstr(G, I) =

(TsfrInstrN(G, I),TsfrInstrE(G, I)).

The definition of the transfer function for a SKIP instruction is TsfrInstr(G, JSKIPKl) =

G.

The transfer function for a LOADA or LOADM instruction is trivial: a slice of a trace

ending with a root instruction is a list consisting of just the root instruction. The only

changes required to an abstraction is the addition of a node that represents the root instruc-

tion.

Let l ∈ ILabel, r ∈ R, v ∈ Var,G ∈ Graph.

TsfrInstrN(G, JLOADA r vKl) = GN ∪ {ItoN(l)}

TsfrInstrE(G, JLOADA r vKl) = GE

TsfrInstrN(G, JLOADM rKl) = GN ∪ {ItoN(l)}

TsfrInstrE(G, JLOADM rKl) = GE

where G = (GN ,GE)

The transfer function for a STORE instruction is also trivial: from the definition of

Slice, we can observe that, in a slice, the instruction that comes before a STORE instruction

l is always StVal(l).

TsfrInstrN(G, JS TORE f mKl) = GN ∪ {ItoN(l)}

TsfrInstrE(G, JS TORE f mKl) = GE ∪ {(ItoN(StVal(l)), ItoN(l))}

where G = (GN ,GE)

The transfer function for a LOAD instruction is more complicated. Given a trace that
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ends with a LOAD instruction l, if the LOAD instruction loads from a memory location

x, then the instruction prior to the LOAD instruction in the trace’s slice is the STORE

instruction that last stored to x. Thus, an edge is required from the store node representing

x’s MRU at the program point above l, to the load node representing l.

Before defining the transfer function for LOAD instructions, we will introduce a few

concepts related to pointer analysis. May and must pointer information are important con-

cepts in pointer analysis. In an analysis based on points-to sets, a pointer may point to a

memory location if the address of the memory location is a possible value of the pointer.

A pointer must point to a memory location if the address of the memory location is the

only value of the pointer in all executions. In our analysis, we use a similar relation for

may information: two nodes value-alias in an abstraction if the nodes may produce an ad-

dress within a common object in some trace abstracted by the abstraction. This definition

is field-insensitive.

Root nodes partition the memory space, meaning that there is a unique root node that

represents all root instructions that may produce a particular address. If an execution trace

ending with an instruction l produces an address with an object, then the slice of the trace is

a sequence from the root instruction that produced the address, to l. Slices are represented

as df-paths in a graph; thus, if two nodes are value-aliased, then there must be df-paths from

a common root node to each of the two nodes.

Definition 3.10. Given an abstraction G = (GN ,GE) ∈ Graph, the following notation is

used to express direct and transitive df-paths between nodes:

n→G n′ ≡ (n, n′) ∈ GE

n→+G n′ ≡ (∃{n1, . . . , ni} ∈ P(GN) | n→G n1 ∧ . . . ∧ ni →G n′)

n →G n′ means that there is a edge between n and n′. n →+G n′ means that there is a

df-path (possibly zero-length) from n to n′.

Suppose that a trace tr ends with a LOAD instruction represented by n and the execution

of n at the end of the trace loads from a memory location within an object o. Then, n’s d-

source node must have produced an address within o. If there is a prefix tr′ of tr that

ends with a STORE instruction represented by n′, and the execution of n′ at the end of tr′
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ValAlias,DSrcd,FIReachDef : Graph × Node→ P(Node)

ValAlias(G, n) = {n′ ∈ GN : (∃nr ∈ GN | nr is a root node ∧ (nr →+G n) ∧ (nr →+G n′))}

DSrcd(G, n) = {n′ ∈ GN : ∃l, l′ ∈ ILabel

| n′ is a store node

∧ n = ItoN(l) ∧ n′ = ItoN(l′) ∧ l = DSrc(l′)}
where G = (GN ,GE).

FIReachDef (G, n) =
∪
{DSrcd(n′) : n′ ∈ ValAlias(G, n))}

Figure 3.3: Utility functions

stores to o, then the d-source node of n′ must have evaluated to an address within o as well.

Thus, if a store node n′ is a possible reaching definition to n, then the d-source of n and the

d-source of n′ must be value-aliased.

Definition 3.11. Several utility functions are defined in Figure 3.3:

• ValAlias : Graph × Node → P(Node) is a function that maps an abstraction and a

node n to all nodes that are value-aliased with n.

• DSrcd : Graph × Node→ P(Node) is a function that maps an abstraction and a node

n to store nodes that are d-sourced from n.

• FIReachDef : Graph × Node → P(Node) is a function that maps an abstraction and

a node n to all store nodes that are d-sourced from a node that is value-aliased with n.

The flow-insensitive transfer function for LOAD instructions adds edges between a load

node and all store nodes that may have stored to the object loaded by the load node:

TsfrInstrN(G, JLOAD r f Kl) = GN ∪ {ItoN(l)}

TsfrInstrE(G, JLOAD r f Kl) = GE ∪ {(n′, ItoN(l)) : n′ ∈ FIReachDef (G,DSrc(l))}

where G = (GN ,GE)
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3.3.2 Algorithm

A transfer function for an instruction l must only be applied to an abstraction G if G abstracts

a trace that ends with an instruction immediately preceding l in the control flow graph. To

ensure this, a set of instructions reached by an execution trace is recorded alongside the

abstraction.

Definition 3.12. Given a set of instructions R ∈ P(ILabel), let Next(R) be a set of instruc-

tions formed by instructions l such that there is a control flow edge from an instruction in R

to l:

Next(R) =
∪
{l ∈ ILabel : (∃l′ ∈ R | (l′, l) ∈ CFlow)}

Given an abstraction G that abstracts a set of execution traces H, and a set of instructions

R such that ∀l ∈ R(∃tr ∈ H | Last(tr) = l), let Tsfr be a function such that Tsfr(G,R) =

(G′,R∪Next(R)), where G′ is an abstraction that abstracts all execution traces in H extended

by a single instruction:

Tsfr(G,R) =
(⊔
{TsfrInstr(G, l) : l ∈ Next(R)},R ∪ Next(R)

)
Then the abstraction that abstracts all execution traces can be computed by starting with

the initial element (⊥, {lentry}) and by iteratively applying Tsfr until a fixed point is reached.

3.4 Overview of the Flow- and Field-sensitive Algorithm

The precision of an abstraction computed by the algorithm described in the previous section

is less than desirable because the result is flow-insensitive and field-insensitive: it does not

differentiate between different memory locations within an object, and it does not analyze

whether a store overwrites other stores by being last to store to a memory location loaded

by a LOAD instruction in all control flow paths to the LOAD instruction.

This section gives an overview of our flow-sensitive and field-sensitive algorithm. The

algorithm computes an abstraction in a new abstraction domain that has nodes that do not

represent instructions in a program.

D-offsets and modifiers are treated as integers up to the section on field-sensitivity.
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The purpose or significance of concepts introduced in the first few subsections of this

section may not be immediately apparent. A high-level overview of the subsections is given

below:

• Consider the following segment of code:

1 ...

2 *p = ...;

3 ...

4 *p = ...;

5 ...

Suppose that the flow-insensitive algorithm determined 2:L(*p) and 4:L(*p) to be

possible reaching definitions of a load node. By manual analysis, we can conclude

that 2:L(*p) is not a reaching definition to the load node because 4:L(*p) over-

writes the value stored by 2:L(*p) in all executions of this segment of code. We say

that 4:L(*p) excludes 2:L(*p) from being a possible reaching definition of a load

node. Reasoning whether one store overwrites another is simple with straight-line

code, but becomes difficult with non-trivial control flow. Subsection 3.6.1 introduces

a concept of inserting instructions into a trace that do not alter the state reached by

executing the trace, but simplifies reasoning about complicated control flow.

• In the previous example, we assumed a priori that the two stores write to the same

memory location. However, a statement on line 3 may have modified the variable

p. Pointer information is required to safely assume that p is unmodified, because p

may be modified by an indirect memory operation. Subsection 3.6.2 introduces a

sub-analysis that determines whether there is a relation between values produced by

executions of instructions.

• Consider the following segment of code:

1 ...

2 *p = ...;

3 ... = *p;

Disregarding a degenerate case where p points to itself, we can conclude that 2:L(*p)

is last to store to the memory location loaded by 3:R(*p), and thus 2:L(*p) is the
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only reaching definition of 3:R(*p). Subsection 3.6.3 combines concepts introduced

in previous subsections to reason about possible reaching definitions of a specific load

node.

3.4.1 High-level Algorithm

The full description of our flow-sensitive and field-sensitive algorithm is in Section 3.9. A

high-level overview of the algorithm is given below:

1. Compute supporting data structures of the control flow graph.

2. While the abstraction has not reached a fixed point. . .

(a) For each instruction l in a program, process l. . .

i. Remove all nodes from the abstraction that are associated with l: due to

loops in the control flow graph, an instruction may be processed more than

once. When an instruction is reprocessed, the changes made to the abstrac-

tion when the instruction was previously processed are reverted.

ii. Add nodes to the abstraction that are associated with l

iii. For all nodes associated with l, compute their incoming edges (possible

reaching definitions).

Determining the nodes added to an abstraction when a particular instruction is processed

is not computationally intensive:

Given an instruction l. . .

1. If l is a LOAD(AM) instruction, then there is a unique load node associated with l

that is added to the abstraction when l is processed.

2. If l is a STORE instruction, then l may be associated with different store nodes during

the analysis, but l is never associated with more than one store node at a time.

3. If l is a SKIP instruction, then multiple nodes of a new type of node called ϕ nodes

may be associated with l at the same time.
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Computing the incoming edges of a node is where the most computation is performed

in the algorithm. An overview of the steps involved is provided below:

Given a node n. . .

1. If n is a root node, do nothing.

2. If n is a store node, add an edge from the node representing the store-value instruction

of the STORE instruction represented by n, to n.

3. If n is a node that loads from memory (load nodes and ϕ nodes). . .

(a) Find all nodes value-aliased with n’s d-source node.

(b) Determine the offsets within objects loaded by n (Section 3.8).

(c) Determine the possible reaching definitions of n (Section 3.6).

(d) Determine if unanalyzable constructs preclude the computation of a precise set

of possible reaching definitions (Section 3.7).

3.5 Abstraction Domain Graphϕ

This section introduces a new abstraction domain that incorporate a new type of node called

ϕ nodes, which are nodes that simplify the computation of a set of possible reaching defini-

tions.

3.5.1 Definitions

Definition 3.13. The abstraction domain Graphϕ is defined below.

Graphϕ = P(Nodeϕ) × P(Edgeϕ)

Nodeϕ = NodeϕD ∪ NodeϕA ∪ NodeϕM

NodeϕD = ILabel × Nodeϕ × Z

NodeϕA = Var

NodeϕM = ILabel

Edgeϕ = Nodeϕ × Nodeϕ
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Many terms related to Graph have similar meanings in Graphϕ. An abstraction in

Graphϕ is a directed graph with nodes Nodeϕ and edges Edgeϕ. There are three categories

of nodes. NodeϕD is a set of dereference nodes. A dereference node n is referenced as a

triplet (l, ns, f ) ∈ NodeϕD, where l is its position (defined below), ns is its d-source node,

and f is its d-offset. NodeϕA is a set of address nodes, which are nodes that represent

LOADA instructions. NodeϕM is a set of malloc nodes, which are nodes that represent

LOADM instructions. Store nodes are nodes that represent a STORE instruction. Load

nodes are nodes that represent a LOAD instruction. Store and load nodes are dereference

nodes. Address nodes and malloc nodes are root nodes.

Definition 3.14. Given a node n ∈ Nodeϕ, let its position in the control flow graph of a

program be the instruction Posϕ(n), where Posϕ is defined as follows:

Let l, ∈ ILabel, ns ∈ Nodeϕ, f ∈ Z.

Posϕ : Nodeϕ → ILabel

Posϕ(n) =


l if n = (l, ls, f ) ∈ NodeϕD

l if n = l ∈ NodeϕM

lentry if n ∈ NodeϕA

There is at most one store node positioned at a STORE instruction, and at most one load

node positioned at a LOAD instruction.

The position of a node is relevant in a concept of a ϕ-annotated execution environment,

which is a hypothetical execution of an execution trace with inserted instructions that do

not change the values stored in memory locations, but may affect the MRUs of memory

locations.

Definition 3.15. Given an abstraction G ∈ Graph and an execution trace tr abstracted by

G, a node-trace, or n-trace, of tr is a sequence of nodes, constructed by inspecting the

instructions in tr. For each instruction l in tr, the node positioned at l is added to the n-

trace. If multiple nodes are positioned at l, then the nodes are sequenced in an arbitrary

order3. An n-trace abstracted by G is an n-trace constructed from an execution trace that is

abstracted by G.

3The order is irrelevant because the algorithm that computes an abstraction does not assume that multiple
nodes that share a position are sequenced in a particular order
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Nodes

Root nodesDereference nodes

Figure 3.4: Node hierarchy

We give a semantic meaning to an execution of a node, which may store to a memory

location, and reason about a program state reached by executing an n-trace. Nodes operate

on a representation of a program state that, in addition to recording values stored in memory

locations, it records the last node that stored to each memory location. The node that last

stored to a memory location is called the node-MRU, or nMRU, of the memory location.

Definition 3.16. When executed, a def-node produces the value that it stores to memory,

and a use-node produces the value that it loads from memory.

A ϕ node is a node that does not represent an instruction in a program. When a ϕ node

is executed, it defines a memory location and changes its nMRU, but it does not change the

value stored in the memory location. A ϕ node is a dereference node and has a d-source

and a d-offset and its position is always a SKIP instruction. Unlike store and load nodes,

multiple ϕ nodes may share the same position.

Store nodes are classified as a def-node. Load nodes are classified as a use-node. ϕ

nodes are classified as both a def-node and a use-node. Def-nodes are further classified as

either a strong def-node or a weak def-node: a strong def-node is dominated by its d-source

node; a def-node is weak otherwise. A store node is always a strong def-node, and the

semantics of a strong def-node is consistent with the semantics of a STORE instruction.

Strong and weak def-nodes have different execution semantics. Figure 3.4 is a diagram of

the hierarchy of nodes.

In the ϕ-annotated execution environment, we are only interested in changes to the

nMRUs of memory locations. Thus, we specify that an execution of a def-node defines a
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memory location instead of specifying that it stores a value to a memory location.

Definition 3.17. The execution of a strong def-node n = (l, ns, f ) ∈ NodeϕD at the end of

an n-trace tr defines the memory location whose address is x + f where x is equal to the

value produced by the last execution of ns in tr.

The d-source node of a strong def-node n dominates n; therefore the d-source node must

have executed in an n-trace that reaches n.

Definition 3.18. The execution of a weak def-node n = (l, ns, f ) ∈ NodeϕD at the end of

an n-trace tr defines the memory locations whose address is x + f if all of the following

conditions are satisfied:

• ns is executed in tr.

• The last execution of ns in tr produces a value x.

• The d-source node of x + f ’s nMRU is ns.

3.5.2 ϕ Nodes

ϕ nodes are inserted below join-points, which are program points above instructions that

have multiple predecessors in the control flow graph. The precise requirements that deter-

mine the placement of ϕ nodes and their reaching definitions are described in this subsec-

tion.

Definition 3.19. Given an instruction l, let Df (l) be the dominance frontier of l, which is

a set formed by all instructions l′ such that l dominates one of l′’s immediate predecessors

in the control flow graph, but l does not strictly dominate l′ [5]. Given an instruction l, let

Df C(l) be l’s dominance frontier closure, which is the closure of the dominance frontier set

with itself: Df C(l) =
∩{S ∈ P(ILabel) : S = Df (S ) ∧ l ∈ S }.

In Chapter 2, we assumed that the input program has a SKIP instruction below every

join-point. Thus, all instructions in a dominance frontier set are SKIP instructions. ϕ nodes

are positioned at SKIP instructions below join-points.

An abstraction must satisfy the following property:

37



1 while(...)

2 skip; /* 2:P(a), 2:P(p), 2:P(*p) */

3 a = &x;

4 if(...) {

5 p = &a;

6 if(...) {

7 *p = &y;

8 }

9 skip; /* 9 : P(*p) */

10 }

11 skip; /* 11 : P(p), P(*p) */

12 }

Figure 3.5: Example of def-node semantics and ϕ node placement

Definition 3.20. The dominating def-node property is as follows: given an abstraction G ∈

Graphϕ, and a trace tr (not an n-trace) abstracted by G that executes a STORE instruction

l represented by a store node n = (l, ns, f ), for all instructions l′ in the dominance frontier

closure of l such that l′ appears after l in tr, there is a ϕ node (l′, ns, f ) in G. We say that n

induces ϕ nodes at instructions in its dominance frontier closure.

ϕ nodes must preserve slice paths: if an abstraction G ∈ Graph abstracts a set of execu-

tion traces and G has a flow edge from a store node n to a load node n′, then an abstraction

G′ ∈ Graphϕ that abstracts the same set of execution traces must have a path from n to

n′ passing only through ϕ nodes. ϕ nodes are classified as both def-nodes and use-nodes

because, conceptually, a ϕ nodes loads a value from a memory location and stores the value

back to the same memory location. To preserve slice paths, a ϕ node’s set of possible reach-

ing definitions must include the nMRUs of memory locations defined by the ϕ node in every

n-trace abstracted by G.

3.5.3 Example

A ϕ node is associated with a virtual expression: given a ϕ node n = (l, ns, f ), n’s virtual

expression is *(e+ f), where e is the expression associated with ns. In examples, a ϕ node

(l, ns, f ), with a virtual expression e, is labelled k:P(e), where k is the statement label of

the C statement that immediately follows l in the control flow graph.

Figure 3.5 is a listing of an example C program. In this example only, “skip statements”
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are present to emphasize join-points.

Six ϕ nodes are necessary to satisfy Definition 3.20:

• 3:L(a) induces 2:P(a);

• 5:L(p) induces 2:P(p) and 11:P(p);

• 7:L(*p) induces 2:P(*p), 9:P(*p), and 11:P(*p).

9:P(*p) is a strong def-node because it is dominated by its d-source node, 5:L(p).

11:P(*p) is not dominated by its d-source node, 5:L(p), and thus it is a weak def-node.

Consider the following n-trace:

tr = [2:P(a), 2:P(p), 2:P(*p), 3:L(a), 5:L(p), 7:L(p), 7:L(*p), 9:P(*p)]

The last execution of 5:L(p) before the trace reached 9:P(*p) produced the value (a, 0),

which is the address of the memory location at offset 0 in the object associated with a. Thus,

9:P(*p) defines (a, 0) without changing its value, and the nMRU of (a, 0) at the end of tr

is 9:P(*p).

Consider an extended trace:

tr′ = tr · [11:P(p), 11:P(*p)]

The execution of 11:P(*p) at the end of tr′ defines (a, 0), because the last execution of its

d-source node 5:L(p) produced (a, 0) and the nMRU of (a, 0) is 9:L(*p), which has the

same d-source as 11:P(*p).

Consider an extended trace:

tr′′ = tr′ · [2:P(a), 2:P(p), 2:P(*p), 3:L(a), 11:P(p), 11:P(*p)]

The execution of 11:P(*p) at the end of tr′′ does not define any memory location because

it is a weak def-node. Although the last execution (in the previous loop iteration) of its

d-source node produced (a, 0), the nMRU of (a, 0) before executing 11:P(*p) is 3:L(a).

The d-source of 3:L(a) is &a and the d-source of 11:P(*p) is 5:L(p). Thus, 11:P(*p)

does not define (a, 0) because the d-sources do not match, and the nMRU of (a, 0) after the

execution of tr′′ is 3:L(a).
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3.6 Flow-sensitivity

This section uses properties of abstractions in the abstraction domain Graphϕ to determine

whether a def-node is a possible reaching definition of a use-node. The first three subsec-

tions define precise properties of the abstraction. These precise properties are statically

uncomputable. The last subsection defines approximations to the precise properties that are

used by our algorithm.

3.6.1 Def-groups

Def-groups are sets of def-nodes and have properties that simplify the computation of pos-

sible reaching definitions.

Definition 3.21. The set of def-groups of an abstraction is a partition of def-nodes such that

def-nodes with the same d-source and d-offset are in the same def-group. The d-source and

d-offset of a def-group are the d-source and d-offset that is common to all def-nodes in the

def-group. Given an abstraction G ∈ Graphϕ, the notation Dg(G, n, f ) is used to refer to a

def-group with a d-source of n and a d-offset of f .

To enable the computation of a set of possible reaching definitions of ϕ nodes, we

provide an algorithm that answers a slightly more general query than what is necessary to

compute a set of possible reaching definitions of a load node.

Definition 3.22. Given an abstraction G ∈ Graphϕ, a point t, a node n, and an offset f ,

let ReachDef (G, t, n, f ) be the set of nMRUs of memory locations whose address is x + f ,

where x is a value produced by the last execution of n before reaching t, in some program

state reached by an n-trace that ends at t and is abstracted by G. Determining a superset of

ReachDef (G, t, n, f ) is called a reaching definition query.

ReachDef is a precise set of possible reaching definitions. However, ReachDef is un-

computable because computing it requires enumerating all execution traces abstracted by

an abstraction. Given G, t, n, and f as defined above, our algorithm computes a superset

of ReachDef (G, t, n, f ). Our objective is to be as precise as possible, which means that

we want our approximation to be as close to ReachDef (G, t, n, f ) as possible. A node is

definitely not a reaching definition if it can be shown not to be in the precise set.
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Given a load node n = (l, ns, f ) and an abstraction G ∈ Graphϕ, a superset of

ReachDef (G,PtAbove(l), ns, f ) is the most precise set of possible reaching definitions of n.

We want to compute an approximation of ReachDef at non-join-points, because the domi-

nating def-node property (Definition 3.20) can be used to determine that certain nodes are

definitely not reaching definitions. The points immediately prior to join-points in a control

flow graph are not join-points (non-join-points) because we assume that the control flow

graph consists of elementary blocks; thus a conservative set of possible reaching definitions

of a ϕ node n = (l, ns, f ) can be computed by computing sets of possible reaching defini-

tions at each of the immediate predecessors of PtAbove(l), and then taking the union of the

sets.

Given an abstraction G ∈ Graphϕ, suppose that the algorithm is processing a LOAD

instruction and that it needs to compute a conservative set of possible reaching definitions

for the load node n = (l, ns, f ) that represents the instruction. First, ValAlias(G, ns) is

computed, which is the set of nodes value-aliased with n’s d-source node ns. Only def-

nodes that are d-sourced from a node in ValAlias(G, ns) may store to the same object loaded

by n. If the set of def-nodes that are d-sourced from a node in ValAlias(G, ns) is partitioned

by common d-source and d-offset into def-groups, the following proposition can be used to

show that, under certain conditions, only one def-node in each def-group can be a reaching

definition to the load node.

Definition 3.23. Given a set of nodes N and a point t, if there exists a node n in N such that,

(i) n dominates t, and (ii) no node in N dominates t and is strictly dominated by n, then n is

called the immediate node of N at t.

Proposition 3.24. Given an abstraction G ∈ Graph, a non-join-point t, a def-group N =

Dg(G, n, f ), and an n-trace tr that is abstracted by G and ends at t, if the last execution of

n in tr produced a value x, then the nMRU of x + f at the end of the trace either is the

immediate node of N at t, or is not a node in N.

Proof. First, a trivial case is handled: if tr did not execute a def-node in N, then the nMRU

of x + f is not a node in N.

Let tr execute a def-node in N. By the dominating def-node property, N has an imme-
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diate node at t. Let ni be N’s immediate node at t. Let the last execution of n in tr produce

an arbitrary value x. Let n̂, n̂ , ni, be a def-node in N. We will show that, in tr, if n̂ defines

x + f , then ni defines x + f after n̂ defines x + f ; therefore, n̂ is not the nMRU of x + f at t.

Let an execution of n̂ in tr define x + f . The following property of immediate nodes is

useful in proving that n̂ is not the nMRU of x + f . All cf-paths from n̂ to t must contain ni:

• If n̂ dominates t, then n̂ must strictly dominate ni because ni is the immediate node of

the def-group.

• If n̂ does not dominate t, then by the dominating def-node property, tr must execute a

ϕ node n′ in N such that n′ dominates t. Then, either n′ = ni or n′ strictly dominates

ni because ni is the immediate node of N.

There are two cases to consider, depending on whether n executes again after n̂ defines

x + f :

• Suppose that n is not executed again after n̂ defines x+ f . If the nMRU of x+ f when

the n-trace reaches ni is n̂, then ni defines x+ f after n̂ defines x+ f because all paths

from n̂ to t must contain ni
4.

• Suppose that n is executed again after n̂ defines x + f . Then, there exists a cf-path

from n̂ to n. All cf-paths from n̂ to t must contain ni. There are two cases to consider:

either all cf-paths from n̂ to n contain ni or all cf-paths from n to t contain ni.

– Suppose that all cf-paths from n̂ to n contain ni. Then ni defines x + f after n̂

defines x + f because n produced the value x + f for n̂ to have defined x + f ,

and ni is executed before n can produce a different value.

– Suppose that all cf-paths from n to t contain ni. Then ni defines x + f after n̂

defines x + f because n produces the value x + f in its last execution before

reaching t, and there are no cf-paths from ni to t that contain n̂ but not ni.

�
4The nMRU is relevant because ni may be a weak def-node. Weak def-nodes may or may not define a

memory location depending on the nMRU of the memory location.
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Definition 3.25. The residual def-node of a def-group N is the immediate node of N at the

point above the position of the d-source node of N, if such an immediate node exists.

The next proposition is an important result in this thesis. The proposition states that, in

a reaching definition query, all but two def-nodes in a def-group are definitely not reaching

definitions.

Proposition 3.26. Given an abstraction G ∈ Graphϕ, a non-join-point t, a node n, an offset

f , and a def-group N = Dg(G, n′, f ′), the immediate node of N at t and the residual def-node

of N are the only nodes that may be in both N and ReachDef (G, t, n, f ).

Proof. Trivial cases are handled first:

• If n is not executed in tr, then ReachDef (G, t, n, f ) = ∅.

• If G does not abstract an n-trace that executes a def-node in N and ends at t, then

N ∩ ReachDef (G, t, n, f ) = ∅.

• If G does not abstract an n-trace where an execution of n produces an arbitrary address

x and an execution of n′ produces x + f − f ′, then no def-node in N defines x + f ,

and thus N ∩ ReachDef (G, t, n, f ) = ∅.

Let G abstract an n-trace tr that executes a def-node in N and ends at t. Let ni be N’s

immediate node at t (which must exist if a def-node in N is executed in tr). Let the last

execution of n in tr produce an arbitrary address x. Let n′ produce x + f − f ′ in some

execution in tr. We will show that the nMRU of x+ f either is ni, is the residual node of N,

or is not a def-node in N.

There are two cases to consider, depending on whether the last execution of n′ in tr

produces x + f − f ′:

• Suppose the last execution of n′ in tr produced x + f − f ′. Then by Proposition 3.24,

the nMRU of x + f either is ni or is not a def-node in N.

• Suppose the last execution of n′ in tr did not produce x + f − f ′. Let t′ be the point

above the position of n′, and let tr′ be the longest prefix of tr such that it ends at t′

and the last execution of n′ in tr′ produces x + f − f ′. By Proposition 3.24, in the
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program state reached by tr′, the nMRU of x + f either is the immediate node of N

at t′ i.e. the residual def-node of N, or is not a def-node in N. Between the end of tr′

and tr, n′ does not produce x + f − f ′. Therefore, an execution of a def-node in N

does not define x + f between the end of tr′ and tr.

Therefore, the immediate node of N at t and the residual def-node of N are the only

nodes that may be in both N and ReachDef (G, t, n, f ).

�

An important performance consideration is how the immediate def-node of a def-group

at a point can be determined. Chase et al.’s paper describes a data structure called a skeleton

tree: a skeleton tree is a subgraph of a dominator tree, induced by a subset of the nodes that

contain a definition to a particular variable [2]. Finding the reaching definition of a variable

at a point can be performed in O(log(n)) time, where n is the number of nodes in the skeleton

tree associated with the variable [7]. Performance-wise, a simpler data structure may be

adequate: an assignment list is a list of definitions to a particular variable, and the list is

ordered such that no definition is preceded by a definition that dominates it [29]. Finding a

reaching definition of a variable at a point is performed by finding the first definition in the

list that dominates the point. We use an assignment list to index def-nodes in a def-group.

3.6.2 Store Node Promotion

In the previous section, we have showed that the number of def-nodes in a particular def-

group that is also in a ReachDef set is at most two. However, each store instruction has a

unique d-source instruction, and each instruction except for LOADA instructions is repre-

sented by a unique node. Therefore, a node is a d-source of more than one store node only

if it is an address node. There is no precision benefit to forming def-groups that contain

only one store node.

A concept that reduces the number of non-empty def-groups is that we may replace a

store node with a promoted store node that has a different d-source and d-offset if the pro-

moted store node has exactly the same execution behaviour as the original store node in all

n-traces abstracted by an abstraction. The semantics of a def-node allows this transforma-
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tion. Consider a store node n = (l, ns, f ). The d-source of a store node always dominates the

store node, which is a property that will be preserved. Given an abstraction G ∈ Graphϕ,

suppose that there exists a constant integer f̄ and a node n′s that dominates ns such that in

all n-traces that are abstracted by G, if ns produces a value x in some execution, then n′s pro-

duces a value x − f̄ in its last execution before the execution of ns. Then a promoted store

node (l, n′s, f̄ + f ) has the same execution behaviour as n in all n-traces that are abstracted

by G.

Definition 3.27. Given an abstraction G ∈ Graphϕ and a node n, the equal set of n, denoted

EqualSet(G, n), is formed by the nodes n′ such that n′ dominates n, and there exists a

constant f̄ such that in all n-traces that are abstracted by G, if n produces a value x in some

execution, then n′ produces a value x − f̄ in its last execution before the execution of n. f̄

is called the constant relative offset of n′ relative to n.

It is obvious that if n′ is in the equal set of n and n′′ is in the equal set of n′, then n′′ is

in the equal set of n. Thus, to replace store nodes with promoted store nodes that minimize

the number of non-empty def-groups, a store node (l, ns, f ) is replaced by a promoted store

node (l, n′s, f ) where n′s is the node in EqualSet(G, ns) that dominates all other nodes in

EqualSet(G, ns).

The graph in Figure 3.6(c) is an abstraction of Figure 3.6(a). The notation &3 in Fig-

ure 3.6(c) corresponds to a malloc node that represents the dynamic allocation function

in line 3 of Figure 3.6(a). 7:L(*p) and 9:L(*p) are promoted store nodes. The d-

source of the store nodes that were replaced by 7:L(*p) and 9:L(*p) is 7:L(p) and

9:L(p), respectively. The equal set of 7:L(p) and 9:L(p) is EqualSet(G, 7:L(p)) =

{7:L(p), 3:L(p), &3} and EqualSet(G, 9:L(p)) = {9:L(p), 3:L(p), &3}, respectively. &3

is closer to the root of the program’s dominator tree than 7:L(p) and 9:L(p). Therefore,

the promoted store nodes have a d-source of &3.

3.6.3 Must Definitions

Immediate and residual def-nodes of a def-group exclude other def-nodes in the def-group

from being in a ReachDef set. In this section, we describe how a def-node in one def-group

can exclude def-nodes in another def-group.
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1 while(...) {

2 while(...) {

3 p = malloc();

4 if(...) {

5 q = p;

6 }

7 *p = &w;

8 }

9 *p = &x;

10 }

11 c = *q;

12 d = *p;

(a) Code

1: skip;

3: p=malloc();

7: *p=&w;

5: q=p;

9: *p=&x;

11: c=*q;

12: d=*p;

(b) Control flow
graph
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0
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05:L(q)

0

11:R(q)

0
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7:L(*p)

0

&x

9:L(*p)

0

&c

11:L(c)

0

&d

12:L(d)

0

3:3

11:R(*q)

&3

0

0 00

0

12:R(*p)

0

0

0

0

(c) Graph

Figure 3.6: Example of store node promotion
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Definition 3.28. Given an abstraction G ∈ Graph, a non-join-point t, a node n and an offset

f , a def-node n′ = (l′, n′s, f ′) ∈ NodeϕD is a must definition at t if the following conditions

are all true:

• n′ dominates t.

• n′s dominates n′ (n′ is a strong def-node).

• n′s is in the equal set of n.

• The constant relative offset of n′s relative to n is equal to f ′ − f .

Proposition 3.29. Given an abstraction G, a non-join-point t, a node n, and an offset f , if

a def-node n′ is a must definition at t, then a def-node n̂ that strictly dominates n′ is not in

ReachDef (G, t, n, f ).

Proof. Let n′ = (l′, n′s, f ′) be a must definition at t. Suppose that a def-node n̂ strictly

dominates n′. All cf-paths from n̂ to t must pass through n′ because n′ dominates t. Let tr

be an arbitrary n-trace that is abstracted by G and ends at t. tr does not execute n′s after the

last execution of n′ in tr, because n′s dominates n′ and n′ dominates t. If the last execution

of n in tr produces an arbitrary address x, then the last execution of n′s produces x − f ′ + f ,

because n′s is in the equal set of n and the constant relative offset of n′s relative to n is f ′ − f .

Therefore, n′ must define x + f after n̂. �

The graph in Figure 3.7(c) is an abstraction of Figure 3.7(a). Strong ϕ nodes are

hexagons in the figure and they are 7:P(p), 12:P(b), 12:P(*p), 14:P(b), and 14:P(p).

12:P(*p) has possible reaching definitions from three def-groups; the def-groups have a

d-source node of 7:P(p), &a, and &b. 14:P(*p) is a weak ϕ node because it’s d-source

node, 7:P(p), does not dominate it. It’s reaching definition comes only from the def-group

with a d-source of 7:P(p). Although 7:P(p) is in the equal set of 14:R(p), 14:P(*p)

does not meet the requirements of a must definition because it is a weak def-node, and thus,

1:L(a) is a possible reaching definition to 14:R(*p).
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1 a = &x;

2 if(...) {

3 if(...) {

4 p = &a;

5 } else {

6 p = &b;

7 }

8 if(...) {

9 *p = &y;

10 } else {

11 b = &z;

12 }

13 }

14 c = *p;

(a) Code

1: a=&x;

14: c=*p;

2: skip;

6: p=&b; 4: p=&a;

7: skip;

11: b=&z; 9: *p=&y;

12: skip;

(b) Control flow graph
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(c) Graph

Figure 3.7: Example of strong and weak ϕ nodes
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3.6.4 Approximations

The previous sections listed precise definitions for the set of ϕ nodes required to satisfy

the dominating def-node property, the equal set, and the possible reaching definition set.

The precise definitions require enumerating all traces abstracted by an abstraction; thus the

precise sets are uncomputable in a static analysis. This subsection describes the approx-

imations computed by our algorithm. All modifiers of store nodes are assumed to be 0.

The changes required to handle non-zero modifiers are described in the section on field-

sensitivity (Section 3.8).

Nodes

The definition of an equal set in Definition 3.27 expresses a precise set. A simple algorithm

finds a conservative approximation of an equal set: to compute the equal set of n, trace the

longest backward path starting from n; in a backward trace, if there is an edge (i, j) ∈ GE ,

node j is visited before node i. Node i is part of the longest path if i dominates j and j

has only one incoming df-edge (from i). Weak def-nodes are not placed in the conservative

approximation of an equal set, because such nodes are not guaranteed to produce a value in

every execution.

The algorithm uses the following reasoning: By definition, we know that a node n is in

the equal set of itself. Given an abstraction G and a node n, suppose that there exist nodes

n′ and n′′ such that n′′ dominates n′, n′ dominates n, n′ is in the equal set of n, and n′ has a

single incoming edge from n′′. For all execution traces tr that are abstracted by G and end

with n, consider the last execution of n′ in tr. n′ is in the equal set of n, thus the execution

of n′ produces a value that differs by a constant offset from the value produced by n at the

end of tr. The sole edge from n′′ to n′ indicates that n′ produces a value that differs by a

constant offset from the value produced by the last execution of n′′ in tr. All control flow

paths from n′′ to n passes through n′. Thus n′′ is in the equal set of n.

Given an abstraction G ∈ Graphϕ, let the approximate equal set for a node n, computed

using the algorithm above, be denoted AEqualSet(G, n). Given a set of nodes S that is totally

ordered by the dominator relation, let MaxDom(S ) be the node that dominates all nodes in

S . EqualSet(G, n) and AEqualSet(G, n) are totally ordered by the dominator relation. Let
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Promote(G, n) = MaxDom(AEqualSet(G, n))). Promote(G, n) determines the d-source of a

promoted store node.

The function that determines the nodes added to an abstraction when an instruction is

processed can now be defined.

Definition 3.30. Given an abstraction G ∈ Graphϕ and a LOAD(AM) or STORE instruction

l, let ItoN(G, l) be l’s representative node:

ItoN : Graphϕ × ILabel→ Nodeϕ

ItoN(G, l) =



v if l labels a “LOADA r v” instruction,
where r ∈ R, v ∈ Var

l if l labels a LOADM instruction
(l, ItoN(DSrc(l)),DOff (l)) if l labels a LOAD instruction
(l,Promote(G, ItoN(DSrc(l))),

DOff (l)) if l labels a STORE instruction

Given an instruction l, ItoN maps l to a node that represents l. LOAD, LOADM, and

STORE instructions are each represented by an unique node. LOADA instructions for a

particular variable are mapped to a node unique to that variable.

Definition 3.20 dictates the placement of ϕ nodes in an abstraction. When an instruction

l is processed, if l is in the dominance frontier closure of a STORE instruction represented

by a store node (l′, n′s, f ′), then a ϕ node (l, n′s, f ′) is created to satisfy the dominating def-

node property.

Definition 3.31. Given an abstraction G ∈ Graphϕ and a SKIP instruction l, let ItoNϕ(G, l)
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be the set of ϕ nodes required at l to satisfy the dominating def-node property:

ItoNϕ : Graphϕ × ILabel→ P(Nodeϕ)

ItoNϕ(G, l) = {(l, ns, f ) : ns ∈ GN , f ∈ Z,

(∃l′ ∈ ILabel

| l ∈ Df C(l′)

∧ l′ labels a STORE instruction

∧ ItoN(G, l′) = (l′, ns, f ))}

Df-edges

Let AReachDef be an approximation of ReachDef that is computed by our algorithm. If

n = (l, ns, f ) ∈ NodeϕD is a load node, then its set of possible reaching definitions is

AReachDef (G,PtAbove(l), ns, f ). If n is a ϕ node, then its set of possible reaching defini-

tions is the union of the sets AReachDef (G, t′, ns, f ), where t′ is a predecessor of PtAbove(l)

in the control flow graph.

Given an abstraction G ∈ Graphϕ, a point t, a node ns, and an offset f , the first step

to computing AReachDef (G, t, ns, f ) is to compute ValAlias(G, ns), which is the set of all

nodes that are value-aliased with ns. ValAlias(G, ns) is computed by traversing df-edges

in the backward direction starting from ns, until all root nodes that are value-aliased with

ns are found. Then df-edges are traversed in the forward direction starting from all value-

aliased root nodes, until all nodes that are value-aliased with ns are found. The running time

of this step is worst-case linear in the number of edges between value-aliased nodes of ns.

The set of def-nodes that are d-sourced from a node in ValAlias(G, ns) is a superset

of ReachDef (G, t, ns, f ). Proposition 3.24 states that only the immediate and residual def-

nodes of def-groups are in ReachDef (G, t, ns, f ). Thus, for each node n′s ∈ ValAlias(G, ns),

if Dg(G, n′s, f ) has an immediate or residual def-node at t, then they are added to an in-

termediate set S of possible reaching definitions. S is a superset of ReachDef (G, t, ns, f ),

but its size can be further reduced by using must definitions. The running time to find the

immediate node of a def-group is worst-case linear in the number of nodes in the def-group.
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1 p = malloc();

2 *p = ...;

3 *p = ...;

4 ... = *p;

(a) Straight-line code

1 p = malloc();

2 *p = ...;

3 if(...) *p = ...;

4 else *p = ...;

5 skip;

6 ... = *p;

(b) Branching code

Figure 3.8: Simple example of flow-sensitivity

To find must definitions, the set AEqualSet(G, ns) is computed. The running time of the

computation of AEqualSet(G, ns) is linear in the size of AEqualSet(G, ns). For each node

n′s ∈ AEqualSet(G, ns), if Dg(G, n′s, f ) has an immediate node at t, then the immediate node

of Dg(G, n′s, f ) is added to a set M of must definitions. Let the immediate node of M be the

immediate must definition; a def-node that strictly dominates an immediate must definition

is definitely not a reaching definition. The def-nodes in S that do not strictly dominate the

immediate node of M form the set AReachDef (G, t, ns, f ).

3.6.5 Precision

The improvement in precision over the flow-insensitive algorithm, and also over points-to-

set-based algorithms, is a consequence of the interaction between the dominating def-node

property, def-group formation, store node promotion, and must definitions. To summarize

how all the ideas come together to form a precise pointer analysis, code listings that are

similar to the ones in the flow-sensitivity overview section (Section 3.4), are analyzed.

Consider the code listing in Figure 3.8(a). Given an abstraction G (computed by the

flow-sensitive algorithm) that abstracts all traces that end at or before program point 4,

suppose that the flow-sensitive algorithm is computing the possible reaching definitions of

4:R(*p). The nodes that are value-aliased with 4:R(p) are &1 (the node that represents

the LOADM instruction), 1:L(p), 2:L(p), 3:L(p), and 4:R(p). The load nodes 2:L(p)

and 3:L(p) have &1 in their approximate equal sets. Thus, the d-source of 2:L(*p) and

3:L(*p) is &1, and 2:L(*p) and 3:L(*p) are in the same def-group, Dg(&1, 0). The

immediate node of the def-group at 4 is 3:L(*p). Thus, the algorithm determines that

3:L(*p) is the only reaching definition of 4:R(*p).

In the above example, the determination of the precise set of possible reaching defini-
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tions for 4:R(*p) (precise meaning the algorithm computes the same set as ReachDef ) is

trivial. If the code has control flow branches, the precise set of possible reaching definitions

for a load node is not so apparent.

Consider the code listing in Figure 3.8(b). Suppose that the flow-sensitive algorithm

is computing the possible reaching definitions of 6:R(*p). 2:L(*p) definitely stores to

the memory location that is loaded by 6:R(*p). 3:L(*p) and 4:L(*p) may store to the

memory location that is loaded by 6:R(*p). Given the information above, it may seem

inevitable that an algorithm must determine that all three stores to *p are possible reaching

definitions of 6:R(*p).

However, the dominating def-node property states that there must be a ϕ node 5:P(*p)

in the abstraction. Due to store node promotion, the d-source node of 2:L(*p), 3:L(*p),

4:L(*p), and 5:P(*p) is &1. The immediate node of Dg(&1, 0) is 5:P(*p), and 5:P(*p)

is the only reaching definition of 6:R(*p).

The mechanism of how the placement of ϕ nodes improves the precision of the com-

puted approximation may not be obvious because ϕ nodes do not represent actual store in-

structions, and thus they preserve slice paths between actual stores and loads. The precision

improvement is realized by how the algorithm computes the possible reaching definitions

of 5:P(*p): the algorithm takes the union of the sets of possible reaching definitions com-

puted at 3 and 4. 3:L(*p) is the immediate node of Dg(&1, 0) at 3, and thus 3:L(*p) is the

only reaching definition of AReachDef (G, 3,&1, 0). Similarly, 4:L(*p) is the only reach-

ing definition of AReachDef (G, 4,&1, 0). Thus, the algorithm determines that the possible

reaching definitions of 5:P(*p) are 3:L(*p) and 4:L(*p). The presence of ϕ nodes en-

ables the flow-sensitive algorithm to obtain precise results by utilizing “straight-line-code

reasoning” in a structured way inside complex control flow graphs.

In a points-to-set-based analysis, an indirect strong update cannot be performed through

the pointer “p” because “p” points to a non-singular abstract object: if the code listings are

embedded in a loop, the abstract object pointed-to by “p” is responsible for abstracting the

values of all dynamic objects allocated by calls to the dynamic allocation function. Thus the

stores to “*p” are all weak updates: the resulting precision is equivalent to an EDF graph

where all stores to *p are reaching definitions to the load of “*p”.
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1 while(...) {

2 if(...) {

3 p = &a;

4 } else {

5 p = &b;

6 }

7 *p = &w;

8 if(...) {

9 *p = &x;

10 } else {

11 *p = &y;

12 }

13 if(...) {

14 q = p;

15 }

16 }

17 *p = &z;

18 r = *p;

19 s = *q;

(a) Code

main()

1: skip;

2: skip;

5: p=&b; 3: p=&a;

7: *p=&w;

11: *p=&y; 9: *p=&x;

12: skip;

15: skip;

14: q=p;

17: *p=&z;

18: r=*p;

19: s=*q;

(b) Control flow graph

Figure 3.9: Example of flow-sensitivity
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Figure 3.9 is another example that demonstrates the precision of the flow-sensitive

algorithm in the presence of loops. Consider the load nodes 18:R(*p) and 19:R(*q).

Their d-source nodes are 18:R(p) and 19:R(q), respectively. The def-nodes that are

d-sourced from a node that is value-aliased with 18:R(p) or 19:R(q), which are the

def-nodes that may potentially store to a memory location loaded by the load nodes, are

7:L(*p), 9:L(*p), 11:L(*p), and 17:L(*p). The four def-nodes are in the same def-

group, Dg(7:P(p), 0). The immediate node of Dg(7:P(p), 0) at 18 and 19 is 17:L(*p).

The residual of the def-group is 2:P(*p). The immediate node and the residual node are

the possible reaching definitions of 19:R(*q). For 18:R(*p), 17:L(*p) is a must defini-

tion; 2:P(*p) strictly dominates 17:L(*p) and thus, the algorithm excludes the residual of

the def-group, 2:P(*p), from being a possible reaching definition. Therefore, 17:L(*p)

is the only reaching definition of 18:R(*p).

In a points-to-set-based analysis, all stores to “*p” are weak updates because the pointer

“p” has two possible targets, “a” and “b”, and strongly updating the abstract objects of

either “a” or “b” is unsound. To determine the possible values of “*p” and “*q” on lines

18 and 19, a points-to-set-based analysis takes the union of the sets of possible points-to

targets of “a” and “b”. Thus a points-to-set-based analysis determines that “r” and “s” may

point to “w”, “x”, “y”, or “z”. Our algorithm determines that “r” must point to “z” (&z is

the only root node that is value-aliased with 18:L(r)), and that “s” may point to “x”, “y”,

or “z”.
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3.7 Unanalyzable Expressions and Statements

This section covers the representation and manipulation of pointers that the analysis treats

as possibly pointing to nearly all memory locations. There are many situations where such

pointers may arise: for example, the right-hand side of an assignment may be an unanalyz-

able expression, or there may be call to a procedure that the analysis cannot analyze.

3.7.1 Topped Pointers

In an abstract interpretation of a program, the top, or ⊤, lattice element is an abstraction that

describes any program behaviour. It is the most conservative interpretation of the program

that is always sound. In a points-to abstraction, this is an abstraction that assumes that

all memory locations contain any possible value. When an analysis determines that an

individual pointer may have any value, we refer to the pointer as having topped. In our

abstraction, the analogue to topped pointers are topped nodes.

The set of possible values of topped pointers can be refined. A well used concept

in compiler optimizations is the static separation of address-taken and non-address-taken

memory locations. The distinction is made at the object level: if any memory location

inside an object has its address taken with an address-of operator, then all memory locations

within the object is address-taken. All heap objects and all objects with external linkage are

address-taken. An important feature of this classification is that non-address-taken objects

can only be directly referenced through a variable.

A store-all is a store that may potentially store to any address-taken memory location.

An indirect store through a topped pointer or an unanalyzable statement is a store-all. A

simple method of handling store-alls in our abstraction would be to create a special “top”

node and add a df-edge from all root nodes representing address-taken objects to the top

node. A store-all can be represented as a store node that is d-sourced from the top node,

which would make the store node a possible reaching definition to any load node that may

potentially load from an address-taken memory location.

A load-all is a load that may potentially load from any address-taken memory location.

An indirect load through a topped pointer is a load-all. Handling a load-all with a load

node d-sourced from the “top” node is a poor design because a large portion of the entire
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graph is value-aliased with the top node, and all value-aliased nodes must be traversed when

computing the possible reaching definitions of the load node. A more efficient method of

representation is possible by over-approximating the effects of store-alls and load-alls.

3.7.2 Manipulations of Topped Pointers

Definition 3.32. A topped root node is a root node that may produce any value. A node n

is topped if there exists a df-path from a topped root node to n.

Topped root nodes break the property that the sets of addresses produced by each root

node partition the memory space. Thus, the algorithm that computes a set of possible

reaching definitions must specially handle nodes that are df-reachable from a topped root

node.

Definition 3.33. An address-taken root node is a root node that may produce the address of

an address-taken memory location. A node n is address-taken if there exists a df-path from

an address-taken root node to n.

If an address node has an outgoing df-edge, it is address-taken. Root nodes that repre-

sent LOADM instructions are address-taken. Thus the only nodes that are not address-taken

are address nodes of non-address-taken variables (they do not have outgoing df-edges), and

degenerate nodes that produce no values (they are not df-reachable from any root node).

A def-node is a store-all if it’s d-source node is topped. A def-node is a store-to-

address-taken if it’s d-source node is address-taken or topped.

A store-all node is potentially a possible reaching definition to a large number of use-

nodes. A load-all node potentially has a large number of possible reaching definitions. If a

program has many store-all and load-all nodes, the graph can become quite dense.

A use-node is use-topped if our algorithm does not attempt to compute its set of possible

reaching definitions, and instead marks it as a topped root node. By marking a use-node as

use-topped if a store-all is a possible reaching definition, we avoid having nodes with high

incoming and outgoing degrees. If information regarding the memory dependencies of

store-all and load-all nodes is desired, then the information can be recovered post-analysis.
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During the analysis, by over-approximating store-alls and load-alls, specific memory depen-

dencies of store-all and load-all nodes are not required to perform a conservative analysis.

There are two cases where a use node is use-topped. These two cases are not mutually

exclusive.

• If a use-node’s d-source node is address-taken, then the use node is use-topped if

a store-all node is a possible reaching definition to the use node. Store-all nodes

are possible reaching definitions to all use nodes that are dereferenced from address-

taken nodes; thus, unless the effects of a store-all have been overwritten by a must

definition, the store-all is considered a possible reaching definition and the use node

is use-topped as an over-approximation.

• If a use node’s d-source node is topped, then the use node is use-topped if a store-to-

address-taken node is a possible reaching definition to the use node. Store-to-address-

taken nodes are possible reaching definitions to all load-all nodes; thus, unless the

effects of a store-to-address-taken have been overwritten by a must definition, the

store-to-address-taken node is considered a possible reaching definition and the use

node is use-topped as an over-approximation.

To support unanalyzable constructs, the representative instruction set is extended with

two new instruction types:

• Let “LOADT r” be an instruction that writes some indeterminable address of an

address-taken memory location to the register r. LOADT is a root instruction.

• Let “STORET” be an instruction that modifies an indeterminable address-taken mem-

ory location.

The abstraction domain Graphϕ is extended to support the two new instruction types.

Let NodeϕT = ILabel ∪ {⊤} be a set of topped root nodes. If l is a LOADT instruction,

then l is represented with the node l ∈ NodeϕT , and let Posϕ(l) = l and ItoN(l) = l. The

notation &k is used to refer to a LOADT instruction l, where k is the statement label that

contains l.
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1 p = unknown;

2 q = &a;

3 *q = &x;

4 *p = &y;

5 b = a;

6 c = *p;

7 a = &z;

8 d = *p;

(d) Code

&1

1:L(p)

0

4:L(*p)

0

&p

0

4:L(p)

0

6:R(p)

0

8:R(p)

0

&a

2:L(q)

0

3:L(*q)

0

5:R(a)

0

7:L(a)

0

&q

0

3:L(q)

0

&x

0

&y

0

&b

5:L(b)

0

&c

6:L(c)

0

&z

0

&d

8:L(d)

0

4:L(*p)

0

6:R(*p)

0

0

0

8:R(*p)

0

0

(e) Graph

Figure 3.9: Example of store-all nodes
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Let “⊤” be a special topped root node in NodeϕT . If l is a STORET instruction, then l

is represented with a dereference node (l,⊤, 0) ∈ NodeϕD. Given n = (l,⊤, 0) ∈ NodeϕD,

let Posϕ(n) = l and ItoN(l) = n. Let Posϕ(⊤) = lentry. The notation &k is used to refer to a

STORET instruction l, where k is the statement label that contains l.

The pseudo-code in Section 3.9 has more details on handling LOADT and STORET

instructions.

The graph in Figure 3.9(e) is an abstraction of Figure 3.9(d). Chorded nodes are topped

nodes. 4:L(*p) is a store-all node because &1 is topped5. Since &a is address-taken, the

store-all node 4:L(*p) is a possible reaching definition to 5:R(a), and thus 5:R(a) is

use-topped and becomes a topped root node. A topped pointer is dereferenced by 6:R(*p),

but it has a reaching must definition 4:L(*p) and there are no store-to-address-taken nodes

between the must definition and the load, and thus 6:R(*p) is not use-topped. The store-

to-address-taken node 7:L(a) causes the load node 8:R(*p) to become use-topped.

3.8 Field-sensitivity

This section introduces field-sensitivity. A flow-sensitive analysis must have some form of

field-sensitivity: if the analysis does not differentiate between stores to different offsets in

an object, it cannot determine if a value stored in a memory location is overwritten. This

section describes field-sensitivity in the abstraction domain Graph because field-sensitivity

involves reasoning about the values produced by executions, not nMRUs of memory loca-

tions. ϕ-nodes have no effect on values.

3.8.1 Relative Offset

We have used slice paths to determine if two nodes may produce an address within the same

object. Slice paths can also determine the offset within an object. A STORE instruction l

applies its modifier to a value produced by StVal(l) and stores the modified value to memory.

Applying a modifier to a value changes the offset within an object that is addressed by the

value.

Definition 3.34. Suppose an execution trace tr produces a value (o, f ), where o is an object

5The promoted store node (4:L(*p), &1, 0) replaced the store node (4:L(*p), 4:L(p), 0).
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SliceModf : ILabel∗ → Z

SliceModf (tr · [l]) =



0 if l labels a root instruction
SliceModf (LPrefix(tr, x)) if l labels LOAD r f

where tr ⊢ (µ, σ, ρ, tr)
and x = Last(µ(ρ(r) + f ))

SliceModf (LPrefix(tr, StVal(l)))
+Modf (l) if l labels a STORE instruction

Figure 3.10: Slice modifier function

and f is an offset. The first instruction in the trace’s slice Slice(tr) is the root instruction that

produced (o, 0). (Root instructions always produce an address of a memory location with an

offset of zero.) The slice modifier of tr is the offset f . f can be determined from the slice.

Given a trace tr let SliceModf (tr) be tr’s slice modifier. Figure 3.10 defines SliceModf (tr).

A set of possible offsets within objects produced by an instruction can be determined in

the abstract domain because slices of execution traces abstracted by a graph are represented

as paths in the graph. Using this information, nMRUs of different memory locations within

an object can be differentiated.

Definition 3.35. Given nodes n and n′, the relative offset set of a value-aliased node n′

relative to n is formed by all integers m such that if n produces an address (o, f ) in one

execution trace, and n′ produces an address (o, f ′) in another execution trace, then f − f ′ =

m.

A function that computes relative offset sets is defined in Figure 3.11. NModf maps a

node to its modifier. Only store nodes have a non-zero modifier; load nodes and ϕ nodes do

not modify values. Given a slice path P, PathModf (P) is its path modifier. Given nodes n

and n′, RelOffs(G, n, n′) is n′’s relative offset set relative to n.

Given two value-aliased nodes ns and n′s, if a use-node n is d-sourced from ns with a

d-offset f , and a def-node n′ is d-sourced from n′s with a d-offset f ′, then n′ is a possible

reaching definition to n only if f ′ − f is in the relative offset set of n′s relative to ns.

The graph in Figure 3.12(b) is an abstraction of Figure 3.12(a). The path modifier of

[&a, 1:L(p), 2:R(p), 2:L(q), 6:R(q)], is 1. The path modifier of [&a] is 0. The relative
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Paths : Graph × Node→ Node∗

NModf : Graph × Node→ Z
PathModf : Graph × Node∗ → Z

RelOffs : Graph × Node→ P(Z)

Paths(G, n, n′) = {[n, . . . , n′] : [n, . . . , n′] is a path in G}

NModf (n) =

Modf (l) if n represents a STORE node l
0 otherwise

PathModf ([n]) = 0

PathModf (P · [n]) = PathModf (G, P · [n′]) + NModf (n)

RelOffs(G, n, n′) = {m : (∃a root node nr ∈ GN ,

P ∈ Paths(G, nr, n), P′ ∈ Paths(G, nr, n′)

| m = PathModf (P) − PathModf (P′))

Figure 3.11: Relative offset set

offset set of &a relative to 6:R(q) is {−1}.

Suppose a hypothetical def-node n has a d-source &a and d-offset f ′. Let f be the d-

offset of 6:R(*(q-1)). If n is a possible reaching definition of 6:R(*(q-1)), then f ′ must

satisfy f ′ − f ∈ RelOffs(G, 6:R(q), &a) = {−1}.

3.8.2 Location Sets

If an input program has loops, then there may be an infinite number of slices and the size of

a relative offset set may be infinite. Location sets are finite abstractions of a set of integers

that can represent relative offset sets. The design of location sets is derived from a paper by

Wilson et al. [28].

Definition 3.36. A location set consists of a pair of an integer offset, and a non-negative

integer stride. Given an offset f and a stride s, the pair is written f ± s. The location set

f ± s represents the set of integers { f + sx : x ∈ Z}. The sets {( f + sx) ± s : x ∈ Z} form an

equivalence class of location sets, and the canonical form of a location set is ( f (mod s))±s.

A singular location set is one that represents a single offset within an object: its stride is
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1 p = &a;

2 q = p + 1;

3
4 a = &x;

5 *p = &y;

6 b = *(q-1);

(a) Code

&a

1:L(p)

0

4:L(a)

0

5:L(*p)

0

&p

0

2:R(p)

0

5:L(p)

0

&q

2:L(q)

0

6:R(q)

0

&x

0

&y

0

&b

6:L(b)

0

1

6:R(*(q-1))

-1

0

(b) Graph

Figure 3.12: Example of slice modifiers and relative offsets
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( f1 ± s1) + ( f2 ± s2) ≡ (( f1 + f2) ± gcd(s1, s2))

( f1 ± s1) − ( f2 ± s2) ≡ (( f1 − f2) ± gcd(s1, s2))

( f1 ± s1) ⊔ ( f2 ± s2) ≡ ( f1 ± gcd(gcd(s1, s2), | f1 − f2|))
( f ± s) + ⊥ ≡ ⊥ + ( f ± s) ≡ ( f ± s)

( f ± s) − ⊥ ≡ ( f ± s)

⊥ − ( f ± s) ≡ (− f ± s)

( f ± s) ⊔ ⊥ ≡ ⊥ ⊔ ( f ± s) ≡ ( f ± s)

Figure 3.13: Operations on location sets

zero.

The rationale for the design of location sets is to differentiate different fields of aggre-

gates inside an array. Consider the following code snippet:

struct {

void* p;

void* q;

} A[10];

If the size of pointers is one byte, the memory location referenced by expressions A[i].p

and A[i].q, where i is a variable, can be represented by offsets 0 ± 2 and 1 ± 2 within the

object A, respectively.

To support pointer arithmetic involving non-constants, we redefine the d-offset and

modifier of instructions to be location sets. For example, for a C statement “*(&a+1+i*2)

= &b+3+j*4”, where i and j are variables and all types have a size of one byte, the d-offset

of the store node associated with the statement is 1± 2 and the modifier of the store node is

3 ± 4.

Definition 3.37. Let LSet = (Z × Z) ∪ {⊥} be the set of location sets. Location sets are

ordered by the subset relation on their representative sets of integers and form a lattice.

⊥ represents the empty set and the top element of the lattice, ⊤, is the location set 0 ± 1.

Addition, subtraction, and join operations on location sets are defined in Figure 3.13. A

location set overlaps another location set if they represent sets of integers that overlap.
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3.8.3 Implementation Details

Suppose that, given an abstraction G, a non-join-point t, a node n and a location set f , we

are computing an approximation of ReachDef (G, t, n, f ).

A relative location set abstracts a relative offset set if the offset set is a subset of the set

of integers represented by the location set. The relative location set relative to n of all nodes

value-aliased to n is computed. Computing relative location sets is a simple data-flow prob-

lem. Given a node n′, let F(n′) be the meet-over-all-paths solution of path modifiers from

root nodes value-aliased with n, to n′. F(n′) can be computed with an iterative algorithm.

Then, given a node n′, F(n) − F(n′) is the relative location set of n′ relative to n.

The assignment list for a def group with a d-source of n′ and a d-offset of f ′ is stored in

a list of assignment lists associated with n′. Let E be the relative location set of n′ relative

to n. If n′ is value-aliased with n, a linear scan of its list of assignment lists is performed to

determine the def-groups that have a d-offset that overlaps E. If the d-offset of a def-group

N does not overlap E, then no def-node in N is in ReachDef (G, t, n, f ).

Small changes are required to handle non-singular d-offsets and modifiers:

• The properties of immediate and residual def-nodes of a def-group hold only if the d-

offset of the def-group is singular. If the d-offset of a def-group N is non-singular then

all def-nodes that dominates t in N are possible reaching definitions: the immediate

node of N is not guaranteed to overwrite other definitions because the def-nodes in N

may be storing to different offsets within an object.

• When computing an approximate equal set of a node n, the path modifier from an

element of the set to n must be singular. For example, consider the following code

segment:

1 p = q + i;

2 ... = p;

1:L(p) is in the equal set of 2:R(p), but 1:R(q) is not in the equal set of 2:R(p)

because the modifier of 1:R(q) is non-constant

The graph in Figure 3.14(b) is an abstraction of Figure 3.14(a). The example assumes

that the size of all types is one byte. (The C statement r = r + 1 increments r by the
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1 struct

2 {

3 int* p;

4 int* q;

5 } a[5], *r;

6
7 r = a;

8
9 do {

10 r->p = &x;

11 r->q = &y;

12 r = r + 1;

13 } while( ... );

14 s = a[0].p;

15 t = a[1].q;

(a) Code

&a

7:L(r)

0

14:R(a)

0

15:R(*(&a+3))

3

&r

0

10:P(r)

0

10:L(r)

0

11:L(r)

0

12:R(r)

0

12:L(r)

0&x

10:L(*r)

0

&y

11:L(*(r+1))

0

&s

14:L(s)

0

&t

15:L(t)

0

10:P(*(r+1))

1

10:P(*r)

0

01

2

00

(b) Graph

Figure 3.14: Example of non-singular location sets
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size of the type pointed-to by r, which is two bytes.) The set of slice modifiers from &a

to 10:P(r) is infinite in size: {0, 2, 4, . . .}. The location set 0 ± 2 abstracts this set. The

analysis is able to determine that the store nodes 10:L(*r) and 11:L(*(r+1)), d-sourced

from 10:P(r) with d-offsets 0 and 1 respectively, do not store to overlapping regions in an

object.

3.9 Flow-sensitive and Field-sensitive Algorithm

This section presents the pseudo-code to our flow-sensitive and field-sensitive algorithm.

The input to the algorithm is a collection of sets and mappings that describe a program:

• ILabel is the set of labels of instructions.

• Instr is the set of labelled instructions.

• CFlow ∈ P(ILabel × ILabel) is the set of control flow edges between instructions.

• Var is the set of variables.

• StVal : ILabel → ILabel is the mapping from a STORE instruction to its store-value

instruction.

• DSrc : ILabel → ILabel is the mapping from a STORE or LOAD instruction to its

d-source instruction.

• DOff : ILabel → LSet is a mapping from a STORE or LOAD instruction to its

d-offset.

• Modf : ILabel→ LSet is a mapping from a STORE instruction to its modifier.

• lentry is the first instruction of the program.

The output of the algorithm is an abstraction of the program in Graphϕ.

To differentiate between elements of sets of nodes that are structurally equivalent, when

a node is expressed as a tuple, the notation (v)A, (l, ns, f )D, (l)M , and (l)T is used to denote

an address node, a dereference node, a malloc node, and a topped root node, respectively.
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Expressions of the form µ[x 7→ y] are transformations of mappings between sets and

the notation is described in Section 1.3.

Let G ∈ Graphϕ, n ∈ Nodeϕ, f ∈ LSet, l ∈ ILabel, and t ∈ ProgPt. The algorithm uses

the following utility functions.

• CfPriorPt(t) is the set of points immediately prior to t in the control flow graph.

• DfPred(G, n) is the set of nodes that immediately precedes n in the (data-flow) ab-

straction graph G.

• DfSucc(G, n) is the set of nodes that immediately succeeds n in the abstraction graph

G.

• DSrcd(G, n, f ) is the set of def-nodes that have d-source n and d-offset f .

• DSrcdF(G, n) is the set of d-offsets of def-nodes that are d-sourced from n.

• NodesAt(G, l) is the set of nodes positioned at l.

• PtAbove(l) is the point above l.

• PtBelow(l) is the point below l.

• InstrAbove(t) is the instruction above t, defined if t is a point below an instruction.

• InstrBelow(t) is the instruction below t, defined if t is a point above an instruction.

The main loop of the analysis is in Figure 3.15. The global variable G = (GN ,GE) ∈

Graphϕ is the abstraction graph that is constructed. The variables maxversion ∈ Z and

version : ILabel → Z ensure that if there is a change in G after processing an instruction l,

then all instructions cf-reachable from l is reprocessed.

Procedures in Figures 3.17, 3.18, 3.19, 3.20, 3.22, and 3.23 are procedures that process

an instruction. Given an instruction l, if G abstracts a trace tr such that (Last(tr), l) ∈ CFlow,

then G also abstracts tr ·[l] after processing l. Each procedure returns true if G changed after

processing an instruction. ProcessSTORE and ProcessLOAD also return a second boolean

value that specifies if an uninitialized value is being dereferenced in all traces abstracted

by G. According to the concrete semantics, a trace that dereferences an uninitialized value
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Algorithm 3.9.1: Main()

global G = (GN ,GE) ∈ Graphϕ
global CfReached ∈ P(ILabel)
local l, l′ ∈ ILabel
local v ∈ Var
local version : ILabel→ Z
local maxversion ∈ Z
local worklist ∈ P(ILabel)
local changed, nostate : Boolean

Compute dominator tree
Compute dominance frontier closures
version← λ x . 0
maxversion← 1
version← version[lentry 7→ maxversion]
worklist ← {lentry}
for each v ∈ Var

do
{
nodes← nodes ∪ {(v)A}

while worklist is not empty

do



Pop l from worklist
changed ← f alse
if l labels a LOADM instruction

then changed ← ProcessLOADM(l)
else if l labels a LOAD instruction
then (changed, nostate)← ProcessLOAD(l)
else if l labels a STORE instruction
then (changed, nostate)← ProcessSTORE(l)
else if l labels a STORET instruction
then changed ← ProcessSTORET(l)
else if l labels a LOADT instruction
then changed ← ProcessLOADT(l)
else if l labels a SKIP instruction
then changed ← ProcessSKIP(l)

if changed

then
{

maxversion← maxversion + 1
version← version[l 7→ maxversion]

if ¬nostate

then



CfReached ← CfReached ∪ {l}
for each {l′ : (l, l′) ∈ CFlow}

do


if version(l′) < version(l)

then
{

version← version[l′ 7→ version(l)]
worklist = worklist ∪ {l′}

Figure 3.15: Main loop
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Algorithm 3.9.2: CleanAndAdd(l ∈ ILabel,
newNodes ∈ P(Nodeϕ), newEdges ∈ P(Edgeϕ))

global G = (GN ,GE) ∈ Graphϕ
local oldNodes ∈ P(Nodeϕ)
local oldEdges ∈ P(Edgeϕ)

oldNodes← NodesAt(G, l)
oldEdges← {(n, n′) ∈ GE , n ∈ NodesAt(G, l) ∨ n′ ∈ NodesAt(G, l)}
GN ← (GN \ oldNodes) ∪ newNodes
GE ← (GE \ oldEdges) ∪ newEdges
return (oldNodes , newNodes ∨ oldEdges , newEdges)

Figure 3.16: Committing changes to an abstraction

does not reach a program state. Thus, the analysis does not process instructions that are

dominated by an instruction that dereferences an uninitialized value.

CfReached records whether G abstracts a trace that reaches a particular instruction. If

l ∈ CfReached, then G abstracts a trace that reaches PtBelow(l). This information is used

by ProcessSKIP to determine the points at which the set of possible reaching definitions of

a ϕ node should be computed.

When an instruction is processed, nodes that must be created at the position of the

instruction and incoming edges of the created nodes are added to the abstraction. The pro-

cedure in Figure 3.16 applies changes to the abstraction. If the instruction is being repro-

cessed, then nodes and edges added to the abstraction when the instruction was previously

processed is removed from the abstraction. If the set of nodes and edges that are added to

the abstraction is equal to the set of nodes and edges that are removed, then no change has

been made to G.

The procedure in Figure 3.17 processes a LOAD instruction. If l labels a LOAD in-

struction, then there is only one node at l during the entire analysis. CleanAndAdd is used

for convenience.

To compute the set of possible reaching definitions of the load node, the procedure

ComputeReachDef is invoked, which is listed in Figure 3.25. ComputeReachDef returns a

pair: a conservative set of possible reaching definitions and a boolean specifying whether

the load node has use-topped.
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Algorithm 3.9.3: ProcessLOAD(l ∈ ILabel)

global G = (GN ,GE) ∈ Graphϕ
local n, ns ∈ Nodeϕ
local newEdges ∈ P(Edgeϕ)
local reachDefs ∈ P(Nodeϕ)
local isUseTopped : Boolean

ns ← ItoN(G,DSrc(l))
n← (l, ns,DOff (l))D

if ns is not df-reachable from a root node
then return ( f alse, true)

(reachDefs, isUseTopped)
← ComputeReachDef(PtAbove(l), ns,DOff (l))

if isUseTopped
then n← (l)T

newEdges← {(n′, n) : n′ ∈ reachDefs}
return (CleanAndAdd(l, {n}, newEdges), f alse)

Figure 3.17: Processing a LOAD instruction

Algorithm 3.9.4: ProcessLOADM(l ∈ ILabel)

global G = (GN ,GE) ∈ Graphϕ
local n ∈ Nodeϕ

n← (l)M

if n < GN

then
{

GN ← GN ∪ {n}
return (true)

else return ( f alse)

Figure 3.18: Processing a LOADM instruction
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Algorithm 3.9.5: ProcessLOADT(l ∈ ILabel)

global G = (GN ,GE) ∈ Graphϕ
local n ∈ Nodeϕ

n← (l)T

if n < GN

then
{

GN ← GN ∪ {n}
return (true)

else return ( f alse)

Figure 3.19: Processing a LOADT instruction

Algorithm 3.9.6: ProcessSTORET(l ∈ ILabel)

global G = (GN ,GE) ∈ Graphϕ
local n ∈ Nodeϕ

n← (l,⊤, 0)D

if n < GN

then
{

GN ← GN ∪ {n}
return (true)

else return ( f alse)

Figure 3.20: Processing a STORET instruction
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Algorithm 3.9.7: ComputeEqualSet(n ∈ Nodeϕ)

global G = (GN ,GE) ∈ Graphϕ
global oldEqSets : Nodeϕ → P(Nodeϕ)
local n′, n′′ ∈ Nodeϕ
local eqSet ∈ P(GN)

n′ ← n
eqSet ← {n}
while n′ has a single df-predecessor n′′ in G such that

n′′ dominates n′,
n′′’s d-source node dominates n′′,
and NModf (n′′) is singular

do
{

n′ ← n′′

eqSet ← eqSet ∪ {n′′}

if oldEqSets(n) , ∅
then eqSet ← eqSet ∩ oldEqSets(n)

oldEqSets← oldEqSets[n 7→ eqSet]
return (n′)

Figure 3.21: Computing a conservative equal set

The procedure in Figures 3.18, 3.19, and 3.20 processes a LOADM instruction, a

LOADT instruction, and a STORET instruction, respectively.

An approximation of an equal set is computed by the procedure in Figure 3.21. Given a

node n, a conservative equal set is a subset of EqualSet(G, n). To ensure that the algorithm

terminates, the equal set approximation is forced to monotonically shrink in size. For all

nodes n, n is always in the approximate equal set of n. Therefore, the empty set is used as

an uninitialized value for oldEqSets.

The procedure in Figure 3.22 processes a STORE instruction. If l labels a STORE

instruction, then there is only one node at l during the entire analysis. However, the d-

source of a store node positioned at l may change during the analysis, due to changes to the

equal set approximation of the node that represents DSrc(l).

The procedure in Figure 3.23 processes a SKIP instruction. Given an instruction l, the

procedure iterates through all def-nodes n that may induce a ϕ node at l. Computing the

set of possible reaching definitions of a ϕ node is a process that is similar to processing a

LOAD node, except that sets of possible reaching definitions are computed at points that
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Algorithm 3.9.8: ProcessSTORE(l ∈ ILabel)

global G = (GN ,GE) ∈ Graphϕ
local n, n′, ns ∈ Nodeϕ
local (l′, n′s, f ′)D ∈ NodeϕD
local f ∈ LSet
local eqSet ∈ P(Nodeϕ)
local newEdges ∈ P(Edgeϕ)

if ItoN(G,DSrc(l)) is not df-reachable from a root node
then return ( f alse, true)

eqSet ← ComputeEqualSet(ItoN(G,DSrc(l)))

ns ← the node that dominates all other nodes in eqSet
f ← PathModf (df-path from ItoN(G,DSrc(l)) to ns)
n← (l, ns,DOff (l) + f )D

newEdges = {(ItoN(G, StVal(l)), n)}

return (CleanAndAdd(l, {n}, newEdges), f alse)

Figure 3.22: Processing a STORE instruction

are immediately prior to the join-point above l in the control flow graph.

If l is a SKIP instruction, then there may be multiple immediate predecessors of l in

the control flow graph. When l is processed, the abstraction is not guaranteed to abstract

a trace that ends at each of the instructions that are immediately prior to l. If t′ is a point

immediately prior to the join-point above l, then a set of possible reaching definitions is

computed at t′ only if the abstraction abstracts a trace that ends at the instruction above t′.

Given a node n, the procedure in Figure 3.24 computes an approximation of the relative

location sets of each node that is value-aliased with n, relative to n. The computation is

performed in two steps: first, the backward phase computes the relative location sets of

each root node that is value-aliased with n; then, the forward phase computes the relative

location sets of all value-aliased nodes. During each phase, the set of integers represented

by the approximate relative location set of a node monotonically increases (⊥ represents the

empty set). Thus, if the stride of an approximate relative location set is non-zero, the stride

monotonically decreases. Therefore, each phase terminates for all inputs because the stride
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Algorithm 3.9.9: ProcessSKIP(l ∈ ILabel)

global G = (GN ,GE) ∈ Graphϕ
global CfReached ∈ P(ILabel)
local n ∈ Nodeϕ
local (l′, n′s, f ′)D ∈ NodeϕD
local (l′′, n′′s , f ′′)D ∈ NodeϕD
local newNodes ∈ P(Nodeϕ)
local newEdges ∈ P(Edgeϕ)
local reachDefs, reachDefsTmp ∈ P(Nodeϕ)
local isUseTopped, isUseToppedTmp : Boolean

for each (l′, n′s, f ′)D ∈ ItoNϕ(G, l)

do



n← (l, n′s, f ′)D

for each t′ ∈ CfPriorPt(PtAbove(l))
: InstrAbove(t′) ∈ CfReached

do



(reachDefsTmp, isUseToppedTmp)
← ComputeReachDef(t′, n′s, f ′)

// If (l, n′s, f ′)D is a weak ϕ node,
// remove def-nodes that are not in the same
// def-group as (l, n′s, f ′)D

if n′s does not dominate l
then reachDefsTmp←

{(l′′, n′′s , f ′′)D ∈ reachDefsTmp : n′′s = n′s}

reachDefs← reachDefs
∪reachDefsTmp

isUseTopped ← isUseTopped
∨isUseToppedTmp

if isUseTopped
then n← (l)T

newNodes← newNodes ∪ {n}
newEdges← newEdges ∪ {(n′, n) : n′ ∈ reachDefs}

return (CleanAndAdd(l, newNodes, newEdges))

Figure 3.23: Processing a SKIP instruction
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Algorithm 3.9.10: ComputeRelativeLSet(t ∈ ProgPt, n ∈ Nodeϕ)

global G = (GN ,GE) ∈ Graphϕ
local rootRelLSet : Nodeϕ → LSet
local relLSet : Nodeϕ → LSet
local lset ∈ LSet
local worklist ∈ P(Nodeϕ)

rootRelLSet ← λ x . ⊥
rootRelLSet ← rootRelLSet[n 7→ 0 ± 0]
worklist ← DfPred(n)
while worklist is not empty

do



Pop n′ from worklist
lset ← ⊔{rootRelLSet(n′′) + NModf (n′) : n′′ ∈ DfSucc(n′′)}
if lset , rootRelLSet(n′)

then
{

rootRelLSet ← rootRelLSet[n′ 7→ lset]
worklist ← worklist ∪ DfPred(n′)

relLSet ← λ x . ⊥
for each root node n′ in ValAlias(G, n)

do
{

relLSet ← relLSet[n′ 7→ rootRelLSet(n′)]
worklist ← worklist ∪ DfSucc(n′)

while worklist is not empty

do



Pop n′ from worklist
lset ← ⊔{relLSet(n′′) − NModf (n′′) : n′′ ∈ DfPred(n′′)}
if lset , relLSet(n′)

then
{

relLSet ← relLSet[n′ 7→ lset]
worklist ← worklist ∪ DfSucc(n′)

return (relLSet)

Figure 3.24: Computing a conservative relative location set mapping
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is finite.

Given a non-join point t, a node n, and an offset f , the procedure in Figure 3.24 com-

putes a superset of ReachDef (G, t, n, f ), which is a conservative set of possible reaching

definitions for memory locations specified by n and f (the loaded memory locations).

The procedure obtains the relative location sets of all value-aliased nodes. Then, for

each node n′ that is value-aliased with n, def-nodes that are d-sourced from n′ are grouped

by their d-offsets to form a def-group N. In the actual implementation, def-groups are

maintained in assignment lists [29], and the list is updated whenever a def-node is added

or removed from G. Then, the immediate node of a def-group at a point can be queried

efficiently.

The immediate and residual def-nodes of N are considered to be possible reaching def-

initions if N’s d-offset overlaps the relative location set of N’s d-source node.

An approximation of the equal set of n is obtained and each def-node in the set of

possible reaching definitions is checked if it meets the criteria of a must definition.

After must definitions are determined, IsLoadTopped is called to determine whether

obtaining precise pointer information is not possible due to the effects of unanalyzable

constructs. If unanalyzable constructs have no effect on the reaching definition calculation,

then the set of possible reaching definitions are pruned to remove def-nodes that strictly

dominate a must definition. The resulting set of possible reaching definitions is returned by

the procedure.

The procedure in Figure 3.26 determines if a must definition occludes the effect of

unanalyzable constructs. The sets of def-nodes N⊤ and Nad are not def-groups because they

are not sets of def-nodes with common d-sources and d-offsets. However, they are an union

of def-groups, and due to the dominating def-node property, if there is an n-trace from a

def-node n′ in one of N⊤ or Nad, and ni is the immediate def-node of the set of def-groups

at t, then the n-trace must pass through ni or n′ is equal to ni. The specific memory location

defined by n′ or ni do not matter: what matters is whether ni is a store-to-address-taken

node (ni’s d-source is address-taken) or ni is a store-all node (ni’s d-source is topped).
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Algorithm 3.9.11: ComputeReachDef(t ∈ ProgPt, n ∈ Nodeϕ, f ∈ LSet)

global G = (GN ,GE) ∈ Graphϕ
local N, reachDefs, eqSet,mustDefs ∈ P(Nodeϕ)
local relLSet : Nodeϕ → LSet
local n′, n′′, ni ∈ Nodeϕ
local immMustDef ∈ (Nodeϕ ∪ {null})

relLSet ← ComputeRelativeLSet(n)

for each n′ ∈ ValAlias(G, n)

do



for each f ′ ∈ { f ′ ∈ DSrcdF(G, n′)
: ( f ′ − f ) overlaps relLSet(n′) }

do



N ← DSrcd(G, n′, f ′)
if f ′ is singular

then


if N has an immediate node ni at t

then reachDefs← reachDefs ∪ {ni}
if N has an immediate node ni at PtAbove(n′)

then reachDefs← reachDefs ∪ {ni}

else
{

reachDefs← reachDefs ∪ {n′′ ∈ N
: n′′ dominates t}

eqSet ← ComputeEqualSet(n)

immMustDef ← null
mustDefs← ∅
if f is singular

then


for each n′ ∈ eqSet

do


N ← DSrcd(G, n′, f )
if N has an immediate node ni at t

then mustDefs← mustDefs ∪ {ni}
if mustDefs , ∅

then


immMustDef ← the immediate node of mustDefs
reachDefs← {n′ ∈ reachDefs :

n′ does not strictly dominate immMustDef }
if IsLoadTopped(t, immMustDef )

then return ({}, true)
else return (reachDefs, f alse)

Figure 3.25: Computing a conservative set of possible reaching definitions
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Algorithm 3.9.12: IsLoadTopped(t ∈ ProgPt,
immMustDef ∈ (Nodeϕ ∪ {null}))

if n is address-taken

then



N⊤ ←
∪{DSrcdF(G, n′) : n′ is topped}

if N⊤ has an immediate node ni at t

then


if immMustDef = null ∨ ni does not

strictly dominate immMustDef
then return (true)

if n is topped

then



Nad ←
∪{DSrcdF(G, n′) : n′ is address-taken}

if Nad has an immediate node ni at t

then


if immMustDef = null ∨ ni does not

strictly dominate immMustDef
then return (true)

return ( f alse)

Figure 3.26: Determining whether a use-node is use-topped

3.10 Termination

Proving that the algorithm terminates for all inputs is complicated by the fact that reprocess-

ing an instruction may change existing store and ϕ nodes in an abstraction. In particular,

the d-source node of a store node may change during the analysis. If we can prove that the

set of store nodes reaches a fixed point, then the set of ϕ nodes will also reach a fixed point

because they are induced by store nodes. After the set of nodes reaches a fixed point, we

prove that the number of edges in an abstraction does not decrease when an instruction is

reprocessed. That proves that the algorithm terminates for all inputs, because the number

of possible edges is finite.

Whenever a STORE instruction is reprocessed, the equal set approximation of the node

associated with the d-source of the STORE instruction is a subset of the equal set approx-

imation that was computed when the STORE instruction was previously processed (Fig-

ure 3.21). Thus, there is a finite number of times that a store node for a given STORE

instruction is replaced with a store node with a different d-source node. Thus, the set of

store nodes of an abstraction reaches a fixed point after processing a finite number of in-

structions.
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The set of ϕ nodes is dependent only on the set of store nodes. Thus, once all SKIP

instructions have been reprocessed after the set of store nodes has reached a fixed point,

the set of ϕ nodes has reached a fixed point. The set of load nodes do not change after all

reachable LOAD instructions have been processed. Thus, the set of nodes reaches a fixed

point after processing a finite number of instructions.

Suppose that the algorithm is computing an abstraction of a program, and the set of

nodes has reached a fixed point. Furthermore, suppose that each instruction has been re-

processed at least once more after the set of nodes has reached a fixed point. Then, for any

point t, node n, and offset f , the size of the set returned by ComputeReachDef(t, n, f ) does

not decrease after reprocessing an instruction:

• The compositions of def-groups do not change; thus the immediate node at t and the

residual node of a def-group do not change.

• The approximate equal set of n computed for the purpose of finding must definitions

must be a subset of the previous computation of the approximate equal set; thus def-

nodes that were not excluded by a must definition when the instruction was previously

processed, are not excluded when the instruction is reprocessed either.

Thus, the size of the set returned by ComputeReachDef(t, n, f ), and thus the number of

edges of an abstraction, does not decrease after reprocessing an instruction. Therefore, the

abstraction reaches a fixed point after processing a finite number of instructions.

This chapter described our flow- and field-sensitive algorithm. In the next chapter, the

output of our algorithm is evaluated against slightly modified versions of our algorithm that

simulate the precision of a points-to-set-based analysis.
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Chapter 4

Experimental Evaluation

This chapter explores the performance and precision characteristics of our flow-sensitive

and field-sensitive algorithm.

4.1 Methodology

The current analysis is strictly intraprocedural: it is unable to pass pointer information be-

tween procedure boundaries. To conservatively analyze all programs, the most pessimistic

assumptions must be made:

• Procedure-call statements are treated as unknown statements (store-alls).

• At the entry point of a procedure, all address-taken memory locations and formal pa-

rameters are assumed to potentially contain the address of any address-taken memory

location (topped).

If the analysis is performed with the above assumptions, then nearly all nodes are

topped. Our algorithm is hypothetically more precise than a points-to-set-based analy-

sis, because the algorithm may perform what amounts to a strong update of a non-singular

abstract object. If nearly all nodes are topped, the difference in precision between configu-

rations is difficult to measure. To obtain a rough measure of the potential precision benefits

between our algorithm and a points-to-set-based analysis, we also ran our algorithm with

several optimistic and unsound assumptions:

• Procedure-calls do not alter any memory location.

• Each formal parameters points to a unique object, unaliased with any other object.
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• Global variables are uninitialized at the entry point of a procedure.

To simulate the precision of a points-to-set-based analysis, we ran our algorithm in three

configurations:

• Full - The algorithm as described by this thesis with full flow-sensitivity.

• No-must-defs (NMD) - The algorithm does not use must definitions to exclude possi-

ble reaching definitions.

• No-elevate (NEL) - In addition to NMD, the algorithm does not replace store nodes

with promoted store nodes.

Under the NEL configuration, the only def-groups that contain more than one store

node are d-sourced from address nodes. The NEL configuration simulates the precision

of a points-to-set-based analysis that does not perform indirect strong updates. Points-to-

set-based analyses may perform an indirect strong update through a pointer that points to

exactly one singular abstract object, and thus the precision of NEL is slightly worse than

that of a points-to-set-based analysis.

An artificial metric measures precision. Indirection removal is a common optimization

that uses pointer information: if a dereference expression is aliased with a single local

variable, then the expression can be replaced with the variable: for example, if “p” must

point to “a” when evaluated at an expression “*p” in a program, then “*p” can be replaced

with “a”.

We propose a slightly more general optimization: a load node is said to be replaceable if

it has a single reaching definition. The idea is that if a load node represents a sub-expression

e and has a single reaching definition n, then a store to a temporary scalar variable can be

inserted below n’s position, and e can be replaced by a direct reference to the scalar variable.

For example, consider the listing below:

1 p = ... ? &a : &b;

2 *p = x;

3
4 ...

5 ... = *p;
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If 2:L(*p) is the only reaching definition of 5:R(*p), then the code can be transformed

into the following:

1 p = ... ? &a : &b;

2 *p = x;

3 tmp = x;

4 ...

5 ... = tmp;

Thus, if a load node is replaceable, then the back-end has the option to remove an access

to memory. The transformation may be detrimental to performance because it increases

registry pressure, but having the option to perform the transformation is never detrimental.

ϕ nodes affect whether a load node is replaceable. A ϕ node is replaceable if each

point immediately prior to the join-point above the position of the ϕ node has at most one

reaching definition that dominates the point. For example, consider the listing below:

1 if(...) {

2 *p = x;

3
4 }

5 else {

6 *p = y;

7
8 }

9 ... = *p;

The reaching definition of the load node 9:R(*p) is a ϕ node. The ϕ node has two possible

reaching definitions: a reaching definition each from the two incoming control flow paths.

Thus, the ϕ node is replaceable: if all its possible reaching definitions store to the same tem-

porary variable, the temporary variable has the same value as the memory location stored

to by the possible reaching definitions:

1 if(...) {

2 *p = x;

3 tmp = x;

4 }

5 else {

6 *p = y;

7 tmp = y;

8 }

9 ... = tmp;

The full requirements for a load node to be replaceable is listed below:
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Name SLOC Stores Loads Prelim Memory
povray 78705 50839 60650 0.58s 14MB

perlbench 126245 33029 41835 0.43s 12MB
gobmk 157654 38994 44016 0.87s 13MB

xalancbmk 269176 270382 336706 6.26s 110MB
gcc 382843 152441 163638 2.47s 67MB

Table 4.1: Benchmark metrics

• The load node has a single reaching definition.

• For all df-paths that passes only through ϕ nodes from a store node to the load node,

all ϕ nodes within the df-paths must be replaceable.

Our implementation was compiled using GCC 4.5 with the -O3 optimization flag. The

front-end of the analysis is an IBM XL compiler, which converts C code to a proprietary

intermediate representation. Our analysis parses the intermediate representation into its

own representation in memory. We ran the analysis on a machine with an Intel Core 2 Duo

E6300 processor with 2GB of RAM running 32-bit Ubuntu 11.04. The running times are

an average of three runs.

4.2 Results

The analysis was performed on the five largest CPU2006 C/C++ benchmarks. The bench-

marks are described in Table 4.1. SLOC is the number of source lines of C code1. Stores

is the number of store nodes, which corresponds to the number of assignment expressions.

In C, a single statement may contain multiple assignment expressions by chaining, e.g. “p

= q = r;”, or by sequencing, e.g. “(q = r), (p = q);”. Loads is the number of load

nodes. Only expressions that appear in the right-hand side of an assignment expression is

represented by a load node; other use expressions have no effect on a program state. Pre-

lim is the time in seconds taken by the analysis to read the source files and to compute the

dominator tree and dominance frontier sets of every procedure. Memory is the amount of

RAM in MB used by the analysis program to hold the input representation.

Table 4.2 lists precision metrics for the Full, NMD, and NEL configurations under pes-

simistic assumptions. Ld is the number of non-root and non-topped load nodes. Rp is the
1The number of source lines of C code is measured by David Wheeler’s SLOCCount program version 2.26.
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Ld Rp NdLd NdRp Time Memory
povray (Full) 5093 3994 45 44 0.34s 56MB

povray (NMD) 5048 3950 0 0 0.34s 56MB
povray (NEL) 5048 3950 0 0 0.32s 56MB

perlbench (Full) 697 344 7 7 0.35s 48MB
perlbench (NMD) 690 337 0 0 0.34s 48MB
perlbench (NEL) 690 337 0 0 0.33s 48MB

gobmk (Full) 1798 322 3 2 4.71s 49MB
gobmk (NMD) 1795 320 0 0 4.18s 49MB
gobmk (NEL) 1795 320 0 0 2.28s 50MB

xalancbmk (Full) 7202 4715 91 91 0.76s 322MB
xalancbmk (NMD) 7135 4650 38 38 0.59s 322MB
xalancbmk (NEL) 7097 4612 0 0 0.57s 322MB

gcc (Full) 7157 4649 29 29 1.24s 224MB
gcc (NMD) 7127 4620 0 0 1.19s 224MB
gcc (NEL) 7127 4620 0 0 1.14s 224MB

Table 4.2: Pessimistic assumptions

number of replaceable non-root and non-topped load nodes. Let direct nodes be nodes that

are d-sourced from address nodes i.e. the nodes represent expressions that are direct refer-

ences to variables. NdLd is the number of non-direct, non-root, and non-topped load nodes.

NdRp is the number of replaceable non-direct, non-root, and non-topped load nodes.

Due to the frequent occurrence of store-alls, there are almost no non-direct load nodes

that are not topped. A few non-direct and non-topped load nodes exist in the Full configu-

ration. Since only a must definition can occlude the effects of a store-all, the few non-direct

and non-topped load nodes nearly disappear in the NMD and NEL configurations.

Table 4.3 lists precision metrics for the Full, NMD, and NEL configurations under op-

timistic assumptions. The difference in the number of replaceable non-direct load nodes

(column NdRp) between the Full configuration and the NEL configuration is the best

indicator of the precision difference of our algorithm and a points-to-set-based analysis.

The number of replaceable non-direct load nodes decreases by 45%, 58%, 55%, 46%, and

26% between the Full configuration and NEL configuration for the “povray”, “perlbench”,

“gobmk”, “xalancbmk”, and “gcc” benchmarks, respectively.

The numbers of replaceable non-direct nodes of the Full and NMD configurations are

nearly the same. This may indicate that there are infrequent occurrences of code segments

that have interleaved indirect stores to a common memory location through potentially dif-
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Ld Rp NdLd NdRp Time Memory
povray (Full) 29094 20046 6121 1144 0.33s 51MB

povray (NMD) 29094 20023 6121 1121 0.33s 51MB
povray (NEL) 29094 19460 6121 624 0.40s 51MB

perlbench (Full) 22972 11378 7190 547 0.42s 47MB
perlbench (NMD) 22972 11378 7190 547 0.40s 47MB
perlbench (NEL) 22972 11061 7190 230 0.41s 47MB

gobmk (Full) 12335 4154 829 55 3.45s 48MB
gobmk (NMD) 12335 4153 829 54 3.92s 48MB
gobmk (NEL) 12335 4124 829 25 10.94s 53MB

xalancbmk (Full) 145195 109120 29937 4461 0.59s 266MB
xalancbmk (NMD) 145195 109106 29937 4447 0.58s 266MB
xalancbmk (NEL) 145195 107049 29937 2417 0.58s 266MB

gcc (Full) 92928 42992 32693 1367 3.14s 217MB
gcc (NMD) 92928 42880 32693 1255 3.14s 217MB
gcc (NEL) 92928 42637 32693 1012 3.07s 217MB

Table 4.3: Optimistic assumptions

ferent pointers. As an example, consider the following listing:

1 p = ... ? &a : &b;

2 q = ... ? &a : &b;

3 *p = ...;

4 *q = ...;

5 ... = *q;

The store node 4:L(*q) is a must definition to the load node 5:R(*q), and excludes the

store node 3:L(*p). In the NMD and NEL configurations, 5:R(*q) have two possible

reaching definitions and is irreplaceable.

In Table 4.3, the running time of the analysis for the benchmark “gobmk” shows a large

increase over other configurations that is unalike other benchmarks. The analysis spends

the most time analyzing a particular procedure that makes heavy use of a C macro that

expands into a deeply nested block of code that has several dozen indirect loads and stores.

This results in the procedure having 5257 ϕ nodes induced by 795 store nodes, for a total of

6426 use-nodes. In the Full configuration, each use-node has an average of about 2 possible

reaching definitions. In the NEL configuration, each use-node has an average of about 17

possible reaching definition, which is likely the cause of the slowdown.

The next chapter explores related works. One paper in particular attempts to improve

the precision of pointer information by identifying expressions that evaluate to the same
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value, which is related to how our analysis expresses data dependencies directly between

expressions [4]. This paper is compared to our approach in detail.
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Chapter 5

Related Work

Pointer analyses can be differentiated into three categories. A points-to analysis partitions

the infinite number of run-time locations into a finite number of abstract objects, and com-

putes points-to relations between abstract objects. An alias analysis computes alias rela-

tions between pairs of program expressions [6, 8]. A shape analysis attempts to discover

properties of dynamically allocated data structures, such as whether a linked list is acyclic

or whether nodes of two linked lists are aliased pairwise [20].

Most recent papers on pointer analysis have used the points-to abstraction since it is a

compact representation of alias relations. For example, the points-to relation (p, a), repre-

sents an unbounded number of alias relations (p, *a), (*p, **a), etc.

Shape analysis has not been found to scale to medium sized programs [13].

This chapter will explore how pointer information is represented and used by compil-

ers, recent research on scaling flow-sensitive algorithms, different approaches to handling

field-sensitivity, demand-driven versus exhaustive algorithms, and how dynamic objects are

represented in a points-to-set-based pointer analysis.

5.1 Representation

In our abstraction, data dependencies are expressed between expressions that appear in a

program. A different approach to representing data dependencies in the presence of indi-

rect memory operations, is to decompose indirect memory operations into their effects on

individual variables. A Static single assignment (SSA) form is a code representation where

each variable is only defined once [5]. Variables are versioned such that a redefinition of
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1 x = &s;

2 y = &s;

3 a = &y;

4 b = &y;

5 p = ...

6 ? &a

7 : &b;

8
9 *p = &x;

10
11
12
13 c = *p;

14
15
16
17 *c = &t;

18
19
20
21 z = y;

(a) Original
code

1 x0 = &s;

2 y0 = &s;

3 a0 = &y;

4 b0 = &y;

5 p0 = ...

6 ? &a

7 : &b;

8
9 *p0 = &x;

10 a1 = χ(a0);
11 b1 = χ(b0);
12
13 c0 = *p0;

14 µ(a1);
15 µ(b1);
16
17 *c0 = &t;

18 x1 = χ(x0);
19 y1 = χ(y0)
20
21 z0 = y1;

(b) Factored
SSA form

1 x0 = &s;

2 y0 = &s;

3 a0 = &y;

4 b0 = &y;

5 p0 = ...

6 ? &a

7 : &b;

8
9 (*p0)0 = &x;

10 a1 = χ(a0);
11 b1 = χ(b0);
12
13 c0 = (*p0)0;

14 µ(a1);
15 µ(b1);
16
17 (*c0)0 = &t;

18 x1 = χ(x0);
19 y1 = χ(y0)
20
21 z0 = y1;

(c) Ver-
sioned
expressions

Figure 5.1: Example of SSA form with indirect memory operations

a variable defines a new version of the variable. To model indirect memory operations

that may define a variable, a factored SSA form chains possible definitions of variables

together [3, 23].

A pointer analysis has to be performed before a program is transformed into factored

SSA form, because the occurrences of potential definitions of variables must be known to

perform the transformation.

Listing 5.1(b) is a transformation of the code in Listing 5.1(a) into factored SSA form.

Versions of variables are expressed as numbers in subscripts. We assume that an ordinary

points-to-set-based pointer analysis [8] was performed before generating Listing 5.1(b).

Statements involving indirect memory operations are annotated with χ and µ functions that

express possible definitions and uses of variables [4]. A χ function indicates a possible

definition of a variable: the function takes a version of a variable as an argument and returns

a new version of the variable after the potential definition. A µ function indicates a possible
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use of a version of a variable.

Value numbering is a method used to detect expressions that evaluate to the same

value [19]. Chow et al. describe a method of performing value numbering of expressions

after a program is transformed into factored SSA form [4]. In Chow et al.’s Hashed SSA

algorithm, dereference expressions are also versioned: Listing 5.1(c) is a transformation of

Listing 5.1(b) with versioned dereference expressions. The two occurrences of the expres-

sion “*p” is determined to be the same version, and the analysis is able to deduce that c0

must have the value “&x” after the assignment. Although the analysis was able to obtain

a precise value for c0, imprecision arises from the fact that the points-to-set-based pointer

analysis did not have the information deduced above when the pointer analysis was per-

formed.

When a points-to-set-based pointer analysis is performed on Listing 5.1(a), the follow-

ing occurs: On line 9, “p” points to two locations, “a” and “b”, and the two variables are

weakly updated to point to “x” and “y”. On line 13, “a” and “b” are loaded and “c” points

to “x” and “y” after the assignment. On line 17, the store to “*c” weakly updates “x” and

“y”. Thus, in Listing 5.1(c), the code is annotated with a spurious possible definition of “y”

on line 19, and “z0” is deemed to have a value of “&s” or “&t”.

A possible way to reduce the loss of precision of using imprecise pointer information

for SSA construction is to iterate pointer analysis, SSA transformation, then variable substi-

tution multiple times. The precision of a points-to-set-based pointer analysis may improve

after variable substitution, and the resulting SSA form may be more precise than the pre-

vious iteration. However, iterating these three steps would be inefficient. In contrast, our

algorithm obtains a precise result without preprocessing the input. Figure 5.2 is the EDF

graph of Listing 5.1(a). The precise value of “z” is determined by the algorithm.

5.2 Flow-sensitivity

A sparse data-flow analysis attempts to propagate data-flow information only to points that

use the information. In contrast, a dense algorithm propagates all data-flow information to

all points of the program. A recent paper has scaled a sparse flow-sensitive algorithm to

over a million lines of code [10].

91



&s

1:L(x)

0

2:L(y)

0

&x

0

9:L(*p)

0

17:L(*c)

0

&y

0

3:L(a)

0

4:L(b)

0

21:R(y)

0

&a

0

5:L(p)

0

&b

0

7:L(p)

0

&p

00

9:P(p)

0

9:L(p)

0

13:R(p)

0

&c

13:L(c)

0

17:L(c)

0

&t

0

&z

21:L(z)

00

13:R(*p)

0

0

0

Figure 5.2: Graph of Listing 5.1(a)
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SSA form is widely used to implement sparse algorithms for data-flow analyses, such

as constant propagation [25]. Hardekopf and Lin used an SSA representation for non-

address-taken variables but used a dense algorithm for all address-taken variables [9, 10].

Since non-address-taken variables cannot be indirectly referenced by pointers, definitions

and uses of the variables are readily apparent.

Yu et al. assigns points-to levels to each variable such that a variable that may point to

another variable is at a higher or equal level than the pointed-to variable, and the algorithm

analyzes variables in decreasing order of their level [30]. In this way, SSA form can be used

for variables in higher levels because they cannot be indirectly referenced by variables in

lower levels. Staiger-Stöhr presented a method to incrementally build the SSA form of a

program without analyzing pointers level-by-level [22].

Although sparse techniques may potentially yield a scalable pointer analysis, there are

some problems with its practicality on real-world programs: an unanalyzable statement

may potentially modify all address-taken memory locations. This conflicts with sparse

techniques that rely on the assumption that each statement uses and modifies a small amount

of pointer information. If statements modify a large amount of pointer information, then

the performance benefits of a sparse algorithm over a dense one is reduced. If an algorithm

is to be practical for production compilers, this issue needs to be resolved.

5.3 Field-sensitivity

One important consideration when designing a static analysis for C is its weak-typing.

Aside from the problem of type casts to pointer types, handling fields is another prob-

lem. Pearce et al. present an algorithm that is field-sensitive [17]. Their goal is to model

portable C programs only, which places restrictions on the use of casts and pointer arith-

metic. Papers, including a Ph.D. thesis, have been devoted to designing a pointer analysis

that is sound for programs that use unsafe or non-portable language features of C [16, 24].

Wilson and Lam’s analysis forgoes utilization of unreliable type information and rep-

resents memory locations using location sets [29]. Such an abstraction can soundly handle

arbitrary pointer arithmetic. Their analysis relies on the ability to differentiate between

array accesses and field accesses [28]. This ability is important because pointer arithmetic
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inside a loop may generate an unbounded number of offsets within an object. Our algorithm

does not require this ability.

5.4 Demand-driven Analysis

Few papers have described a demand-driven pointer analysis. Hientze and Tardieu present

deduction rules for computing only a subset of points-to pairs that are relevant to answering

a particular points-to query [11]. The algorithm is flow-insensitive and context-insensitive.

Thomas Reps presents how a number of program analysis can be formulated as a

context-free language reachability problem, which is an extension of the graph reacha-

bility problem where paths are restricted by a context-free language [18]. For example, in a

context-sensitive data-flow problem, data-flow facts that enter a procedure from a particular

call-site should only leave the procedure through the same call-site. If we view the trace of

call-site entries and exits of a data-flow fact as a string, then the context-sensitivity require-

ment can be formulated as a context-free language that requires that the entries and exits be

balanced. Sridharan et al. apply this technique to create a demand-driven pointer analysis

algorithm for Java [21]. Zheng and Rugina use a similar technique for a flow-insensitive

analysis for C [31].

5.5 Dynamic Object Representation

A points-to analysis abstracts dynamic objects by categorizing them in some way. The most

imprecise method is to use a single abstract object to represent all dynamic objects [8]. A

common alternative is to categorize dynamic objects by their allocation sites.

Dynamic objects can be distinguished by varying levels of context-sensitivity. A call-

string approach to context-sensitivity is to use the chain of call sites on the call stack to

differentiate calls to a single procedure. Then, dynamic objects allocated at the same site

are differentiated by call-strings [14].

A problem with differentiating dynamic objects by call-strings is that the number of call-

strings is exponential with respect to the depth of a call-graph. The number of call-strings

can be limited by limiting the length of call-strings to a fixed number. Even if call-strings
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are limited to a length of two, the average number of contexts for each procedure may be in

the hundreds [15].

A Binary Decision Diagram (BDD) is a data structure that can compactly represent a

large set. BDDs have been used to represent points-to sets [1], and can also be extended

to compactly represent context-sensitive pointer information [34, 33, 15, 27]. Most BDD-

based analyses are flow-insensitive, but they obtain some of the benefits of flow-sensitivity

by transforming input programs into SSA form. Zhu presents a flow- and context- sensitive

pointer analysis using BDDs, but due to limitations on the operations that can be performed

on BDDs, the analysis is unable to perform indirect strong updates [32].

This concludes the related work chapter. The final chapter is the conclusion of this

thesis.
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Chapter 6

Conclusion

Pointer analysis is a prerequisite to many static analyses and compiler optimizations. As the

sophistication of compiler optimizations increases, accurate pointer information becomes

increasingly important.

The major advantage of performing a flow-sensitive pointer analysis is the ability to

perform strong updates. Most points-to-set-based analyses perform strong updates on a

limited subset of memory locations: memory locations associated with local variables in a

non-recursive procedure. Strong updates are not performed on memory locations outside

of this subset. The lack of strong updates on non-singular objects has the effect that, as

the analysis of a program progresses, non-singular objects “accumulate” possible values,

because old values are never removed. The occurrence of redefinitions of memory loca-

tions may not be frequent. However, the lack of strong updates on non-singular objects is

troublesome if an unanalyzable construct appears in a program: once a non-singular object

is assumed to have any value at some point in a program, it will stay in that state for the rest

of the program.

In this thesis, we presented a flow-sensitive algorithm that treats all memory locations

equally with respect to strong updates: if the point in a program that stored last to a memory

location can be determined, stores to the memory location that happened earlier are not

reaching definitions to loads of the memory location. Unanalyzable constructs are handled

such that if obtaining precise pointer information is not possible, the algorithm performs an

over-approximation so that the analysis may complete quickly. Field-sensitivity is enabled

without relying on type information, which enables sound analysis of unportable or unsafe
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C constructs. The representation computed by the algorithm consumes little memory, and

preliminary evaluations indicate that the analysis can be performed swiftly.

6.1 Future Work

A logical continuation of our research is to transform our analysis into an interprocedural

analysis. A possible approach is the super-graph approach to interprocedural analysis that

treats procedural calls and returns as ordinary intraprocedural jumps. The result is a single

massive control flow graph of the entire program.

A super-graph approach loses precision due to impossible paths. An informal descrip-

tion of impossible paths is that pointer information that enters a procedure is propagated to

all return-sites of the procedure, not just the return-site of the caller of the procedure.

If a program uses function pointers, then the full call-graph of the program is unknown

until pointer analysis is performed. Many pointer analyses encounter this obstacle, and a

common solution is to incrementally build the call-graph during pointer analysis.

One complication of incrementally constructing a super-graph is the maintenance of

various control flow graph related data structures. Our algorithm uses a dominator tree to

answer dominance queries and a dominance frontier mapping to place ϕ nodes. Both data

structures have to be updated when a super-graph grows.

The size of the dominance frontier mapping has empirically been shown to vary linearly

with program sizes [5]. However, the size characteristic of the dominance frontier mapping

for super-graphs is unknown.
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