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ABSTRACT

An empirical scheme for predicting the meteorological conditions that lead to summer forest fire severity

for Canada using the multivariate singular value decomposition (SVD) has been developed for the 1953–2007

period. The levels and sources of predictive skill have been estimated using a cross-validation design. The

predictor fields are global sea surface temperatures (SST) and Palmer drought severity index. Two consec-

utive 3-month predictor periods are used to detect evolving conditions in the predictor fields. Correlation,

mean absolute error, and percent correct verification statistics are used to assess forecast model performance.

Nationally averaged skills are shown to be statistically significant, which suggests that they are suitable for

application to forest fire prediction and for management purposes. These forecasts average a 0.33 correlation

skill across Canada and greater than 0.6 in the forested regions from the Yukon, through northern Prairie

Provinces, northern Ontario, and central Quebec into Newfoundland. SVD forecasts generally outperform

persistence forecasts. The importance of the leading two SVD modes to Canadian summer forest fire severity,

accounting for approximately 95% of the squared covariance, is emphasized. The first mode relates strongly

to interdecadal trend in global SST. Between 1953 and 2007 the western tropical Pacific, the Indian, and the

North Atlantic Oceans have tended to warm while the northeastern Pacific and the extreme Southern

Hemisphere oceans have shown a cooling trend. During the same period, summer forest fire exhibited in-

creased severity across the large boreal forest region of Canada. The SVD diagnostics also indicate that the

El Niño–Southern Oscillation and the Pacific decadal oscillation play a significant role in Canadian fire se-

verity. Warm episodes (El Niño) tend to be associated with severe fire conditions over the Yukon, parts of the

northern Prairie Provinces, and central Quebec. The linearity of the SVD manifests opposite response during

the cold (La Niña) events.

1. Introduction

Wildland fire is a dominant disturbance regime in

Canadian forests, particularly in the boreal forest region

where fire is a process critical to the very existence of

primary boreal species such as pine, spruce, and aspen

and is responsible for shaping landscape diversity and

influencing energy flows and biogeochemical cycling

(Stocks et al. 2002). Stocks et al. (1996) examined the

spatial distribution of large fires in Canada during the

1980s when an average of almost 10 000 fires burned

over 2.8 million ha annually. They found that by far the

greatest area burned occurred in the boreal region of

west-central Canada. This was attributed to a combina-

tion of factors including fire-prone ecosystems, extreme

fire weather, lightning activity, and varying levels of

protection in this region. The number of wildland fires, as

well as the total area burned (TAB) by wildland fire in

Canada, has steadily increased since 1960, with the re-

ported area burned in some regions of the country tri-

pling from 1980 to the present (Stocks et al. 2002). In

Canada the majority of the fire activity occurs from late

April through August in the south and from June to Au-

gust in the north, with most of the area burned occurring

from June to August during which time higher tempera-

tures and thunderstorms with lightning strikes occur most
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frequently. Nearly 50% of the area burned in Canada is the

result of fires that are not acted on because of their remote

location, low values at risk, and efforts to accommodate

the natural role of fire in these ecosystems.

The release of carbon dioxide and other greenhouse

gases from biomass burning contributes to global warming

(Stocks et al. 2002; Amiro et al. 2009). It is therefore im-

portant to identify climatic factors, such as slow-varying

boundary conditions, that may contribute to an extended

forest fire season in Canada. Gillett et al. (2004) demon-

strated that human-induced climatic change has signifi-

cantly affected the TAB by forest fires in Canada by first

using output from a coupled climate model to show that

greenhouse gas and sulfate aerosol emissions have made

a detectable contribution to summer-season warming in

regions of Canada where the area burned by forest fires

has increased and then applying a statistical model to

simulate temperature changes.

The daily severity rating (DSR) index is part of the

Canadian forest fire weather index (FWI) system (van

Wagner 1987) and is a numerical rating that reflects the

amount of effort required to suppress a fire. The DSR is

derived from daily measurements of precipitation, air

temperature, humidity, and wind. The DSR, when aver-

aged over a season, is termed the seasonal severity rating

(SSR) index. The SSR can be used as an objective mea-

sure of the fire weather/climate from season to season and

from region to region. On a routine basis, Natural Re-

sources Canada (2009) uses SSR as a management tool for

historical analysis as well as for operational long-range

forecasts (see online at http://cwfis.cfs.nrcan.gc.ca/en_CA/

background/summary/). Balshi et al. (2008) recently em-

ployed the monthly severity rating (MSR), or the monthly

component of the SSR, as input when modeling future fire

in the North American boreal forest. Skinner et al. (2006)

examined coupled modes of variability between the SSR

index and the previous winter global sea surface temper-

atures (SSTs) using singular value decomposition (SVD)

analysis. They found the leading three SVD modes ac-

counted for approximately 90% of the squared covariance

of Canadian summer forest fire severity. The first mode

is related to the global long-term trend and shows sig-

nificant positive correlation in the forested regions of

northwestern, western, and central Canada. The second

mode is related to the multidecadal variation of Atlantic

Ocean SST, identified as Atlantic multidecadal oscillation

(AMO; Enfield et al. 2001), and shows statistically sig-

nificant negative correlation extending from the western

Northwest Territories and the Canadian Prairie Provinces

across northern Ontario and Quebec. The third mode is

related to Pacific Ocean processes and the interrelation-

ship between El Niño–Southern Oscillation (ENSO) and

the Pacific decadal oscillation (PDO; Mantua et al. 1997)

and shows statistically significant positive correlation in

western Canada and negative correlation in the lower

Great Lakes region of southern Ontario and southern

Quebec.

In Canada, the physical and economic impacts of ex-

tended dry conditions are most evident during the warm

season. A statistically robust relationship between sea-

sonal Canadian temperature and precipitation, key factors

in the formation of conditions leading to fire severity, and

the ENSO cycle has already been established (Shabbar

and Khandekar 1996; Shabbar et al. 1997). Bonsal and

Lawford (1999) have related variations in tropical Pacific

SSTs to regional Canadian prairie dry spells. The estab-

lishment and persistence of extended dry spells most

likely favor forest conflagration elsewhere in Canada.

Skinner et al. (2002) have shown the close geographical

association across Canada between anomalous ridging

in the midtroposphere at 500-hPa geopotential heights

and TAB by wildland fire in the summer season.

This is the first study that has focused on summer-season

forest fire severity in the context of moisture conditions

in Canada and ocean–atmosphere forcing mechanisms

during several preceding seasons. Westerling et al. (2002)

employed a statistical forecast method to predict area

burned in western U.S. wildfires a season in advance from

the Palmer drought severity index (PDSI). In the Cana-

dian context, Meyn et al. (2010) report a strong associa-

tion between anomalous drought conditions as inferred

from PDSI immediately prior to the fire season and area

burned at most of the higher-elevation sites in British

Columbia and the Yukon.

Evidence for the lagged relationship between sum-

mer climate variability in Canada and preceding winter

tropical SSTs exists in observational data. For example,

Shabbar and Barnston (1996) identified the ENSO cycle,

which achieves its highest magnitude during the boreal

winter, as the main source of variability in producing skill-

ful forecasts of Canadian temperatures and precipitation

from winter into early summer. As well, Rajagopalan et al.

(2000) found a coupled pattern between summer drought

over the continental United States and winter SST vari-

ability during the twentieth century. The influences of large-

scale global ocean teleconnection patterns in determining

summer extreme moisture conditions over Canada have

also been documented by Shabbar and Skinner (2004). It

was found that dry conditions in Canada coincide with

warmer-than-normal SSTs in the equatorial eastern Pacific,

along the North American west coast, and in the North

Atlantic. Conversely, wet summer conditions in Canada

coincide with colder-than-normal SSTs in the previous

winter, in the central equatorial Pacific, and along the

North American west coast, indicative of the cold phase of

ENSO. It is important to understand better the variability
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of biomass burning with respect to evolving climatic con-

ditions on global, hemispheric, and continental scales.

For these reasons, summer-season forest fire data are

analyzed by the multivariate spatial technique of SVD

to assess the utility of antecedent winter and spring global

SST anomalies and Canadian drought index for the pur-

pose of seasonal fire-severity prediction. Winter climate

conditions can directly affect soil and forest fuel mois-

ture capacity in the ensuing months. The purpose of this

study is twofold. First, the strength and nature of the

lagged relationship between global SST and the PDSI

(predictors) and the SSR (predictand) fields are assessed.

The diagnostics that accompany SVD provide some in-

sight into the physical processes of the teleconnections.

Second, an algorithm for the skillful guidance for seasonal

forecasting of SSR for Canada is devised. The remainder

of the paper is organized as follows: the datasets are de-

scribed in section 2, the SVD diagnostic and prediction

methods are described in section 3, and the diagnostic and

prediction results are outlined in section 4. The paper

closes with a summary and discussion in section 5.

2. Data

a. Canadian forest fire SSR

One measure of forest fire severity is TAB by wildland

fire. The data distribution is poor, with a low number of

points and irregular spatial distribution. The TAB is

a function of many factors (some not related to weather)

whereas the SSR is a function solely of weather variables.

Therefore, a closer relationship between climate (SST

and PDSI) patterns and SSR can be expected. As a result,

a second measure of forest fire severity was employed, the

DSR index. In Canada, the DSR is an extension of the

FWI system. See the appendix for a more detailed de-

scription of the Canadian FWI system.

The severity of a fire season is a function of a number

of factors: fuel, including the weather (temperature, pre-

cipitation, humidity, wind, synoptic patterns, and others);

ignition agents (human and lightning); fuel characteristics

(fuel type, structure, and moisture of fine surface fuels and

deeper organic fuels); and human activities (land use and

management). However, the weather is the key factor in

determining the severity of the fire season (Flannigan and

Wotton 2001). The SSR is the DSR averaged monthly and/

or seasonally. These two measures of forest fire severity

are fully described and compared in Skinner et al. (2006).

DSR has been calculated from Environment Canada

synoptic weather data from 1953 to 2007 and interpolated

to a grid using a thin-plate cubic-spline method (Flannigan

and Wotton 1989). This method was found to be the best-

suited interpolation technique applied to a multivariate

index of this type. A minimum of 12 weather stations were

used for each gridpoint interpolation, though more were

used if available. The weather stations closest to the grid

point were chosen first using an expanding search radius

until at least 12 active stations were found. The inter-

polated data were then averaged monthly and seasonally.

Figure 1 shows the data grid across Canada on an ap-

proximate 200-km spacing used in this study. The 169 grid

points designated with large dots were used in this study.

The SSR has a much larger number of points and a more

comprehensive gridded spatial distribution than does the

TAB statistic. Regions in Fig. 1 covered by the small dots

were not used because the percent annual area burned is

less than 1.0% of the national total (Stocks et al. 2002).

Both Canada and the United States have developed this

and other forest fire weather indices to monitor conditions

for fire potential across the forested regions of North

America using both manned and remote networks. The

SSR can also be useful for historical analysis and in long-

range forecasts for use as a management tool. The time

series of summer (June–August) SSR from 1953 to 2007

(55 years) is shown in Fig. 2 for Canada. For comparison

purposes, the TAB time series for the 1959–99 period is

also shown in Fig. 2. The correlation between TAB and

SSR is 0.42 for the 41 overlapping years (significant at

99%). High SSR (TAB) values indicate greater fire se-

verity and vice versa. In general, SSR in western Canada

had a few high years in the late 1950s and early 1960s

(1955, 1958, and 1961), it was low through the 1970s and

into the 1980s, and it has shown a considerable increase

over the past two decades.

FIG. 1. SSR grid at approximately 200-km spacing. Grid points

used in this analysis (larger dots with circles) are based on percent

total annual area burned being greater than 1% of the national

total. Regions covered by the small dots were not analyzed because

they cover areas of less than 1% of the national total.
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b. Climatic data

Global SST on a 28 latitude–longitude grid for the

1953–2007 period came from the Extended Reconstruc-

tion Sea Surface Temperatures, version 3, (ERSSTv3)

dataset (Smith et al. 2008). They calculated the anom-

alies relative to the 1960–90 base period over 10 988

latitude–longitude locations. The reconstruction of the data

involves a rigorous quality-control procedure and a statis-

tical analysis methodology that is an improvement over

their previous version ERSSTv2 (Smith and Reynolds

2005). Bias-adjusted satellite SSTs are added to ERSSTv2,

thus providing a better resolution as well as resolving more

variance in the southern oceans. The satellite-based ice

analyses are bias adjusted to improve the high-latitude SST

analysis. The anomaly reconstruction is performed sepa-

rately for the low- and high-frequency components, and

the sum of these components constitutes the total SST

anomaly. To extract dominant modes of SST variability,

empirical orthogonal function (EOF) analysis of the cross-

covariance matrix is carried out on the winter averages.

Large forest fires in Canada are related to variations

in global SST. A number of numerical modeling studies

have established linkages between secular warming trend

in SSTs and anomalous midlatitude atmospheric ridging

(Hoerling and Kumar 2003). By subscribing warmer-than-

normal SSTs in the western Pacific and Indian Oceans

in the Geophysical Fluid Dynamic Laboratory climate

model, Lau et al. (2006) produced anomalous ridging in

the midlatitudes, leading to warmer and drier conditions in

the Pacific–North American sector that are conducive to

large forest fires in Canada.

The PDSI has been a commonly used drought index in

North America and was developed to measure intensity,

duration, and spatial extent of drought. The computa-

tional procedure is described by Palmer (1965) and Alley

(1984). The PDSI has become the primary tool for de-

scribing and monitoring prevailing drought. The PDSI

model allows measurement of prolonged abnormal dry-

ness or wetness across a region and can be related directly

to past weather conditions. Monthly or seasonal PDSI

values reflect moisture inputs and balances not only during

the current season but also over the previous several

months, including winter snowfall and storage. It is thus

absolutely necessary to have accurate winter precipitation

(mainly snowfall) measurements for the soil moisture ac-

count. Winter PDSI reflects previous summer and autumn

moisture conditions, and spring PDSI reflects both spring

conditions and previous summer and autumn moisture

conditions as well as overwinter storage.

A number of studies have related occurrences of forest

fires to ongoing drought conditions in North America. In

Canada, Meyn et al. (2010) used a drought index (PDSI)

to examine trend variations in forest fire in British Co-

lumbia. A large percentage of the Canadian boreal forest

is peatlands/wetlands for which a longer-term drought is

required for fire to occur (Turetsky et al. 2004). Girardin

and Wotton (2009) examined summer moisture, in the

form of the monthly drought code (part of the FWI sys-

tem) across Canada for the 1901–2002 period. Xiao and

Zhuang (2007) found a strong relationship between mois-

ture conditions (PDSI) and forest fire activity in Canada

and Alaska during 1959–99, and several studies have ex-

amined drought-induced fire occurrences in the western

United States (e.g., Collins et al. 2006; Keeton et al. 2007;

Littell et al. 2009; Kitzberger et al. 2007), as well as in the

eastern United States (Mitchener and Parker 2005).

The PDSI has been computed for approximately

100 Canadian stations from the homogenized Canadian

historical air temperature and precipitation database of

climatic stations, having collocated monthly mean air

temperature (Vincent and Gullett 1999) and monthly

total precipitation (Mekis and Hogg 1999) records ex-

tending from 1953 or earlier and updated to the end of

2007. Monthly PDSI values for 344 contiguous U.S. cli-

mate divisions obtained from the National Climatic

Data Center were added to the Canadian data to pro-

vide more complete spatial coverage for analysis at the

international border. All North American data were

objectively interpolated at approximately 250 km2, and

data representing grid squares north of 408N were fur-

ther analyzed. Averages were calculated for the winter

and spring seasons over 271 grid locations.

3. Analysis

a. Choice of predictors

Based on previous experimentation in Canada (Shabbar

and Skinner 2004) and the findings of other studies,

winter-season interannual-to-decadal-time-scale global

FIG. 2. Summer (June–August) SSR from 1953 to 2007 and TAB

from 1959 to 1999 for Canada. The correlation between TAB and

SSR is r 5 0.42 for 1959–99.
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SST anomaly patterns have accounted for the following

summer predictability in moisture conditions in Can-

ada. Thus, the built-in memory of moisture in the PDSI

from the previous two seasons can be a useful indicator

of summer SSR. Given the gridding of predictor fields

and their usage over two consecutive prior seasons,

there is a total of 22 518 [2(10 988 1 271)] predictor

elements for SSR prediction over 169 grid locations.

b. SVD

The SVD method relates two fields by decomposing

their covariance matrix into singular values and two sets of

paired orthogonal vectors, one for each field (Bretherton

et al. 1992). The covariance between the expansion co-

efficients of the leading pattern in each field is maximized.

The singular values give the magnitude of the squared

covariance fraction (SCF) as accounted for by the various

singular values (Wallace et al. 1992). The square of any

singular value between two fields for a given mode is in-

dicative of the fraction of the total squared covariance

accounted for by that mode. The teleconnections between

the two fields are discerned by the spatial patterns of the

heterogeneous correlation, which is defined here as the

serial correlation between the expansion coefficients of

predictor time series and gridpoint anomaly values of the

predictand field.

An SVD predictor loading pattern for a given mode

consists of a set of two (previous winter and spring)

temporally staggered spatial patterns that are related to

the mode’s predictand loading pattern. This sequence of

predictor patterns expresses the evolving nature of

ENSO as well as the drought conditions as accounted by

the PDSI. This scenario subsequently relates to the pre-

dictand pattern. In this study, the large-scale relationships

between winter (December–February) and spring (March–

May) patterns of global SSTs and Canadian PDSI are used

to predict patterns of following-summer (June–August) fire

severity in Canada. It is found that SVD accounts for trends

and emphasizes ENSO and low-frequency modes such as

the Pacific decadal oscillation. This technique has been used

by Shabbar and Skinner (2004) and Skinner et al. (2006) to

identify relationships between SST patterns and summer

drought and summer forest fire severity, respectively.

c. Data preprocessing and preorthogonalization

Prior to the SVD analysis, the predictor and predictand

are standardized, field weighted, and then separately

preorthogonalized using standard EOF analysis. The

correlation-based EOF analyses reduce the large number

of original dimensions to many fewer dimensions cap-

turing low-frequency, and presumably predictable, com-

ponents. Interfield weighting is performed in the manner

that prescribed relative weight of different predictors.

Fields of greater importance—for example, global SST—

are usually given higher weights than other predictors.

Because of the slow-varying and sustained boundary

forcing of global SST, comparatively higher weights are

assigned to global SST than to other predictors in statistical

prediction schemes (e.g., Barnston 1994). Based on a series

of forecast-skill sensitivity experiments, the SST elements

are given double the weight of the PDSI elements in the

study presented here. Shabbar and Barnston (1996) also

showed that the dominant source of skill in the prediction

of Canadian climate originates from global SST. Interfield

weighting also equalizes the relative dominance of two

fields when one contains fewer elements than the other.

In this study, the interdecadal trend in the global oceans is

shown to have a definite predictive relationship with the

seasonal severity rating index in Canada. In addition, the

time–space behavior of the SST field related to ENSO

influences the forest fire climate in Canada (Skinner et al.

2006). The SVD diagnostics provide some insight into

the statistical relationship between the predictor and

predictand fields.

For the preorthogonalization of the predictors, data

from the past two nonoverlapping seasons (forming a

temporal sequence) enter the process together, producing

an extended EOF analysis. On the basis of signal-to-noise

considerations, EOF mode is truncated at five for the pre-

dictor series and six for the predictand series. The trunca-

tion preserves about 55% of the original predictor variance

and about 70% of the original predictand variance.

Following the above procedure, the input cross-dataset

covariance matrix for the SVD is constructed. An SVD

truncation of five modes is used, allowing for full utili-

zation of the input EOF time series. The SVD predictor

loading pattern for a given mode consists of a set of two

temporally staggered spatial patterns that are preferred

with respect to the mode’s predictand loading pattern.

The sequence of predictor loading patterns (SVP) ex-

presses a physically meaningful temporal evolution re-

lating to the principal predictand map. The two respective

associated time series (SVT), with one value per year,

show the temporal behavior of SVP.

d. Verification

To avoid artificial skill in statistical forecasting models,

which may stem from overfitting of random variability

in a relatively short (55 years) period, a cross-validation

framework (Michaelsen 1987) is adopted. In this scheme,

prediction models are developed over the length of the

time series with one year held in abeyance. The forecast is

then verified on the withheld year. In reality, omission of

a single observation in the cross-validation procedure

may still introduce bias into the estimation of forecast

skill. In the presence of serial correlation in climate noise,
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the removal of a single observation may be replaced by

the removal of blocks of observations (Shabbar and

Kharin 2007). In this study, forecast skill is evaluated for

both 1-year-out and 3-years-out cross-validation frame-

works. In the 3-years-out scheme, forecast is verified on

the middle year. The forecast target data are avoided in

the development of the prediction algorithm at all stages.

This includes pre-EOF steps as well as the SVD model.

When performing EOF and SVD for each cross-validated

model, it is possible that the SVD patterns may change

as different years are left out. Another caveat is that the

order of SVD modes may also change. However, since

the first five modes account for most of the covariance

fraction, these considerations will not significantly alter

the verification statistics, as reported in section 4b. The

predictor data for the withheld year are then projected

onto the predictor SVP loading patterns, and predictand

values are generated and verified against observed data

for the withheld year. Here it is assumed that the SVD

patterns are orthonormal. The climatology is redefined

each time a new year (or a block of years) is held out as the

forecast target. Persistence of the predictand is computed

and used as a standard against which the SVD forecast

is compared. To verify a persistence forecast in a cross-

validation framework, the persistence forecast is formed

using a different coefficient as a function of the target

year, based on the autocorrelation computed from the

nontarget years. Skill scores evaluated in a non-cross-

validated framework were only slightly better than those

calculated in the cross-validation framework.

e. Skill score

A number of skill scores are used to measure forecast

model performance. A temporal correlation (CORR)

between the forecasts and the observations is used as a

verification measure. Although correlation is a good mea-

surement of linear association between the forecasts and

observations, it does not take forecast bias into account

and is sensitive to outliers. The mean absolute error

(MAE) measures the average magnitude of the forecast

errors. MAE is an unambiguous measure of the average

error (Willmott and Matsuura 2005). Skill score is also

calculated for categorical forecasts as percent correct

(PERCOR). Assuming a Gaussian distribution for SSR,

the forecasts are categorized into three equiprobable clas-

ses of below normal, near normal, and above normal based

on a 3 3 3 contingency table.

4. Results

Predictive skill results for the SSR field at the 169 grid

locations are evaluated by examining average skill across

Canada as well as the geographical distribution of the

seasonal skill. In addition, insight into the oceanic and

surface moisture spatial patterns leading to the skillful

SSR forecasts is investigated by examining the leading

modes of the SVD loading patterns of the predictors and

predictands.

a. Source of SSR predictability

The contribution of the predictors to the skill of the

forecasts is assessed by examining the SVD loading

patterns in time. The source of the skill resides in those

areas of the loading patterns exhibiting high magnitude.

Figure 3a shows the first SVD pattern S1(SSR) and

standardized amplitude based on data for 55 summer

(June–August) seasons. It is by far the most dominant

mode and explains 75.8% of the total variance of Ca-

nadian SSR, and it has positive loadings over much of

the forested region of Canada and opposite negative

loadings only in a small area of southern British Co-

lumbia. The time series for S1(SSR) shows evidence of

positive trend, particularly since the mid-1970s. It will be

shown that this mode of the SSR has its origin mainly in

the global-scale long-term SST trend.

Figure 3b shows the spatial pattern associated with

S2(SSR). It is a secondary, but important, mode and

explains 18.8% of the total variance. It identifies mainly

negative loadings across Canada, with stronger negative

loadings in northwestern Canada (Yukon), across the cen-

tral Prairie Provinces (Alberta–Saskatchewan–Manitoba),

and eastern Labrador and Newfoundland. Strong positive

loadings are evident in the Mackenzie River basin and the

St. Lawrence lowlands. The time series for S2(SSR) shows

little evidence of long-term variability and has extreme

conditions early in the record (1953 and 1955). It will be

shown that this mode of the SSR has its origin mainly in

Pacific Ocean processes—namely, the ENSO and PDO

phenomena.

The spatial patterns, or trend at every grid point, as-

sociated with S1(SST, PDSI) are shown in Fig. 4a for

winter and Fig. 4b for spring. Lower PDSI values denote

drier conditions. Figure 4c shows the standardized am-

plitude for the predictor S1 mode. This mode identifies

distinct trends in the SSTs, with strong positive loadings

in the Indian Ocean and western Pacific as well as the

entire North Atlantic Ocean. Negative loadings are ev-

ident in the extreme southern oceans and the north-

central Pacific Ocean. A similar SST loading pattern

has been reported by Smith and Reynolds (2003), who

identified a trend mode in their second rotated EOF

of the global SSTs, and by Skinner et al. (2006), who

identified this SST pattern in their first SVD mode when

examining the relationship between winter SSTs and

summer forest fire severity in Canada. This mode also

identifies the AMO signal, with positive loadings in the
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entire North Atlantic Ocean. Variability of the Atlantic

processes at varying time scales was previously identi-

fied by Shabbar and Skinner (2004). The winter and

spring PDSI patterns show negative loadings (dry con-

ditions) across most of the country with the exception of

the Mackenzie River basin region of the Northwest

Territories. The time series (Fig. 4c) for S1(SST, PDSI)

exhibits strong positive trend since 1965.

The second SVD patterns associated with S2(SST,

PDSI) are shown in Fig. 5a for winter and Fig. 5b for

spring. Figure 5c shows the standardized amplitude for

the S2 mode. The Fig. 5c time series also identifies ex-

tremes in ENSO years delineated by positive (El Niño)

and negative (La Niña) values. The dominant SST fea-

tures in this mode appear to be mixed between the

tropical Pacific Ocean (ENSO) and the North Pacific

Ocean (PDO). The S2 SST patterns identify strong

positive loadings in the tropical and subtropical Pacific

Ocean from 1808 to the coast of South America (warm

ENSO) and along the North American west coast, with

another opposing negative center in the North Pacific

(positive PDO). Previous studies have identified the

coexistence of these two sources of variability. Zhang

et al. (1997) found a similar mode while examining

wintertime variability in their high-pass (interannual)

filtered SSTs. Pacific SST variations are evident in this

mode, including the effects of ENSO in the eastern

equatorial Pacific and the extratropical SST fluctuations

in the central North Pacific, resembling the coupled

ocean–atmosphere PDO mode. The winter and spring

PDSI patterns are mixed but in general show negative

loadings (dry conditions) across southwestern and cen-

tral Canada and the Mackenzie River basin region of the

Northwest Territories and positive loadings (wetter

conditions) in the Yukon and eastern Canada. Figure 5c

also shows evidence of multidecadal variability with

what appears to be an increasing trend over the period of

record, with a distinct positive change in the mid-1970s.

Table 1 shows the three main summary statistics of the

SVD analysis for Canadian summer SSR data, pre-

ceding winter and spring global SST anomaly data, and

Canadian PDSI data. These statistics provide a measure

of the strength of the relationship between the two

fields. The first statistic, the SCF, provides the percent-

age of the total squared covariance between the two

fields explained by the SVD mode and is proportional to

the square of its singular value. This is a measure of the

relative importance of the SVD mode in the relationship

FIG. 3. (a) First SVD pattern (S1) of SSR and standardized amplitude based on data for 55 summer (June–August)

seasons 1953–2007; (b) as in (a) but for the second SVD pattern (S2) of SSR and standardized amplitude.
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between the two fields. It is clear from Table 1 that the

squared covariance is concentrated in the first two

modes (close to 95%), with the first mode being domi-

nant (close to 76%). Thereafter, the squared covariance

statistic drops off sharply, thus signifying the importance

of the first two modes in determining SSR variability.

The second statistic is the correlation coefficient r be-

tween the two time series that represent the temporal

variations of the mode in the two fields. It is a measure of

the similarity between the time variations of the patterns

of the two fields, or how closely the two fields are related

to each other. The relationship is strong for the first

mode (r 5 0.78), as well as the second mode (r 5 0.56),

both significant at the 5% level. The significance test was

adjusted for the autocorrelation, taking effective de-

grees of freedom into consideration. The third statistic,

the normalized root-mean-square covariance fraction

(NCF), is the ratio of the squared singular value of the

mode to the greatest possible total squared covariance.

It is a measure of the absolute importance of the SVD

mode in the relationship between the two fields and is

the most revealing statistic in the analysis. Approxi-

mately 21% of NCF is concentrated in the first two

modes of the SVD expansion. The values are about

equally distributed and drop off in higher modes, again

emphasizing the importance of these modes in relation to

higher modes. In summary, the first two modes explain

a large portion of variance in individual fields, the

FIG. 4. First SVD patterns (S1) of SST and

PDSI for (a) winter (December–February)

and (b) spring (March–May), and (c) stan-

dardized amplitude based on data for 55 sea-

sons 1953–2007.
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correlation between predictor and predictand time se-

ries is high, and the squared covariance fractions are

large. These statistics indicate that these modes likely

have some physical meaning and are not purely a sta-

tistical artifact.

Figure 6a shows the heterogeneous correlation pat-

tern of SSR for the first mode in the direct SVD ex-

pansion using global SSTs and Canadian PDSI and Fig.

6b shows the same for the second heterogeneous cor-

relation pattern of SSR. The heterogeneous correlation

patterns show how the two fields are related to one an-

other and how much of the amplitude of the variations is

explained by the SVD mode. The heterogeneous pattern

for the first SVD mode (Fig. 6a) has two prominent

features: the warming of the global oceans, as indicated

by the positive loadings in the Indian Ocean and western

Pacific as well as the entire North Atlantic Ocean, and

the negative loadings in the north-central Pacific and

low PDSI values across most of Canada (Fig. 4) are as-

sociated with high SSR across much of the forested re-

gion of Canada. Previous studies (Shabbar and Skinner

2004; Skinner et al. 2006) have also identified this link

between global ocean positive anomalies and dry con-

ditions over Canada (Fig. 3a). Positive SSR correlation

(high fire severity corresponding to a warming trend in

global SST, and vice versa) is identified throughout the

forested regions of northwestern, western, central, and

eastern Canada, with strongly correlated core regions

in the Yukon and a boreal forest region extending from

northern Alberta to Newfoundland. Areas possessing

statistical significance at the 5% level are delineated by

a dashed line. Southern Yukon and British Columbia

FIG. 5. As in Fig. 4, but showing the second

SVD patterns (S2). The time series identifies ex-

tremes in ENSO years.
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show weak positive or negative SSR correlation (low

fire severity corresponding to strong warming trend in

global SST, and vice versa); these values are not signif-

icant at the 5% level, however.

The heterogeneous correlation pattern for the second

SVD mode (Fig. 6b) has significant negative correlations

(high fire severity corresponding to strong cooling trend,

and vice versa) in northern British Columbia, southern

Yukon, and the Great Lakes–St. Lawrence lowlands and

has positive correlations in central Yukon. This mode is

weaker than the first mode. It is related to Pacific Ocean

influences and identifies ENSO variability in the tropical

Pacific and interdecadal variability in the central North

Pacific. This mode shows that the positive phase of the

PDO, along with the warm phase of ENSO (Figs. 5a,b),

as identified by Zhang et al. (1997) and Deser and

Blackmon (1995), leads to a high SSR over central Yukon

and lower SSR over northern British Columbia, south-

ern Yukon, and the Great Lakes–St. Lawrence lowlands.

Skinner et al. (2006) found their third SST/SSR mode

related to Pacific Ocean processes and showed strong

positive correlation in western Canada and negative

correlation in the lower Great Lakes region, with a pattern

very similar to that of Fig. 6b.

b. Prediction skill

Figure 7 shows correlation, mean absolute error, and

percent correct skill scores for the 1-year-out cross-

validation forecast model. The geographical distribution

of the correlation skill, averaged over 55 prediction

models, is presented in Fig. 7a. A correlation skill of

0.30 or higher is locally statistically significant at the 5%

level. Greater than 0.30 correlation skill is locally found

over the Yukon and in an area extending from the

northeastern Prairie Provinces through northern On-

tario and central Quebec into Labrador and New-

foundland (with 5% significance level outlined with

a thick dotted line). Correlation skill exceeds 0.6 over

northern Saskatchewan and Manitoba, northern On-

tario, and central Quebec. The statistical significance of

spatially distributed data may be influenced by the num-

ber and interdependence of the data. Field significance

(Livezey and Chen 1983), which represents the degree

of statistical reliability, provides a measure of these ef-

fects. This statistic was evaluated by Monte Carlo simu-

lation by randomly shuffling the forecast-to-observation

year correspondence 1000 times and counting the num-

ber of times the mean of the actual explained variance

statistics was exceeded by that of the random simulations.

The values of 0.05 or less are considered significant. The

results showed that the SSR forecast during the summer

meets the field significance criteria at the 5% level. Figure

7b shows forecast error. The magnitude of the forecast

error is given by the MAE. Areas of Canada exhibiting

the highest correlation also correspond to the areas

TABLE 1. Summary statistics of SVD analysis for Canadian

summer (June–August) SSR data and preceding winter (December–

February) and spring (March–May) global SST anomaly data and

Canadian PDSI data, 1953–2007.

Mode SCF (%) r NCF (%)

1 75.76 0.78 11.70

2 18.68 0.56 8.67

3 3.49 0.47 3.15

FIG. 6. (a) Heterogeneous correlation pattern of SSR for the first

mode in the direct SVD expansion using global SSTs and Canadian

PDSI. The temporal correlation coefficient between the corre-

sponding expansion coefficients r and the SCF (%) is shown. (b) As

in (a) but for the second heterogeneous correlation pattern of SSR.

The contour interval is r 5 0.1, and the 5% significance level is

marked with a thick dotted line.
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possessing the smallest MAE. The northeastern Prairie

Provinces, northern Ontario, and central Quebec have

MAE values of about 0.6. Categorical forecast verifica-

tion (see section 3e) based on three equiprobable classes

is shown in Fig. 7c. The forecast shows the highest skill,

over 55% correct, in the Yukon and in an area stretching

from the northeastern Prairie Provinces, northern On-

tario, and central Quebec into Newfoundland. Forecast

skill is the lowest in northern British Columbia. All three

verification statistics reinforce each other and show skill

in the same forested areas of Canada. Table 2 shows the

contingency table for the 3-category forecast for the

1-year-out forecast model. The entries are number of

occurrences in a given category expressed as percent of

all occurrences, averaged over the SSR grid locations.

Average number of hits is high when both forecast and

observed are above normal (16.1%) or below normal

(13.7%).

SSR forecasts were also verified on a 3-years-out

cross-validation framework model. Average skills over

the SSR grid points for the three verification statistics

along with persistence skill are shown in Table 3. Cor-

relation skills for the two cross-validation models are

very similar to each other at approximately 0.33. While

examining winter temperature forecast skill for Canada

from the previous four seasons’ global SST and North-

ern Hemisphere atmospheric circulation, Shabbar and

Barnston (1996) found a similar national average cor-

relation skill of about 0.36. Persistence forecast based on

cross-validation framework yields an average correla-

tion skill of 0.25. The overall percent correct skill is 42.2

for the 1-year-out model and 40.4 for the 3-years-out

model, and the forecast based on persistence shows

a lower skill of 39.1. The mean absolute error skill scores

are very similar for the two cross-validation models at

0.95. The MAE based on persistence forecast is some-

what less skillful with a score of 1.5. These verification

results show that there is little difference in the two

cross-validation models, and that the persistence fore-

cast is somewhat less skillful in all cases.

FIG. 7. (a) Prediction correlations (5% significance level is

marked with a thick dotted line), (b) MAE, and (c) categorical

forecast verification based on three equiprobable classes of sum-

mer SSR as predicted from winter and spring SST and PDSI.

TABLE 2. Number of occurrences within a given category ex-

pressed as percent and averaged over SSR grid locations for the

3-category 1-year-out forecast model. Most numbers of hits occur

when both forecast and observed category are above normal or

below normal.

Forecast

Category Above Normal Below

Obs Above 16.1% 7.7% 10.0%

Normal 11.5% 12.4% 11.9%

Below 6.9% 9.6% 13.7%
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5. Summary and discussion

The multivariate statistical technique of SVD is em-

ployed to explore prediction skill for summer forest fire

severity in Canada. Results show reliable skill at a lead

time of 3 months. Large-scale global oceanic processes

and the PDSI moisture index over Canada have been

identified as contributing factors to the skills. The spatial

patterns of summer forest fire severity in Canada as

represented by the SSR have been determined. The SSR

is essentially a multivariate meteorological index com-

bining the elements of air temperature, humidity, rainfall,

and wind speed [over both short (hourly/daily) and long

(weekly/monthly/seasonal) time scales] that influence the

moisture content of forest fuels that determine whether

a forest fire will start or spread. This SSR appears to

possess potential predictability on a seasonal scale. The

SVD linear prediction scheme forecasts patterns of the

SSR. In addition, it generates diagnostics of the pre-

dictor patterns that lead to predictive skill and that may

be used to explain statistical connections relating pre-

dictors and predictand. Nonlinear relationships be-

tween the predictors and predictand are not captured

by the SVD technique.

In this study, a 3-month averaging period is used for

the SSR. The evolving patterns of two consecutive

3-month periods lead to resulting patterns of the SSR.

Although the overall correlation skill is around 0.33,

regionally the skill can be much higher. For example, the

SVD model explains 40%–50% of summer SSR vari-

ance over the northeastern Prairie Provinces. To a large

extent, the global-climate trend in the SSTs and fluctu-

ations associated with the ENSO phenomenon provide

opportunities for prediction of summer forest fire se-

verity in Canada. It is found that the lower boundary

conditions represented by the global SST provide an

important source of predictive skill. Experimentation

shows that the leading mode of the SVD captures the

long-term warming trend in the SST over the western

Pacific and the Indian Ocean and also the influences of

the multidecadal fluctuations related to the AMO in the

North Atlantic. This, in combination with moisture

conditions over Canada, affects summer fire severity.

The second mode is related to Pacific Ocean processes

and the interrelationship between ENSO and the PDO

and explains approximately 18% of the squared co-

variance. The lagged relationship between winter ENSO/

PDO and the SSR is at least partially supported by the

connection between the tropics and the North Pacific

through the atmospheric bridge concept of Lau and

Nath (1994) and by the Pacific–North American tele-

connection pattern documented by Horel and Wallace

(1981). Thus the warm phase of ENSO and positive phase

of PDO, along with the moisture conditions (Figs.

5a,b)—most notably in the Mackenzie River basin (Fig.

3b)—are related to high SSR values. Assigning higher

weights to the SST field increases cross-validation skill

and emphasizes the effects of slow-varying boundary

conditions. In addition, the relationship between the SST

pattern and the SSR is more assured and the overfitting to

accidental relationships in the short period of record is

minimized.

These two leading coupled SVD modes of Canadian

summer forest fire severity and global SST and Cana-

dian drought index explain 95% of the squared co-

variance between the fields. Over the last four decades

the western tropical SST of the Pacific and Indian Ocean

has tended to warm while the high-latitude SST of the

Pacific has tended to cool (Levitus et al. 2000). The trend

mode coincides with drier conditions over much of Can-

ada. Previous studies (Skinner et al. 1999, 2002; Podur et al.

2002; Stocks et al. 2002) have demonstrated the upward

trend in TAB by wildland fires in Canada over the past

three decades. Gillett et al. (2004) demonstrated that

human-induced climatic change has significantly affected

the area burned by forest fires in Canada. They showed

this by first using output from a coupled climate model to

show that greenhouse gas and sulfate aerosol emissions

have made a detectable contribution to summer-season

warming in regions of Canada where the area burned by

forest fires has increased and then applying a statistical

model to simulate temperature changes. Our results em-

phasize the importance of a warming trend in global SST in

the determination of forest fires in Canada. This warming

trend suggests that we may expect an increase in wide-

spread fires in the boreal forests of Canada in coming

decades.

One of the aims of this study was to develop a long-

range fire-severity prediction scheme for Canada. The

linear SVD technique provides a statistical method for

this purpose. By projecting observed SSTs and drought

fields onto the predictand SVD modes, it can be easily

incorporated into an operational prediction scheme.

Insofar as the global SSTs can be forecast with some

accuracy, application of the statistical technique out-

lined in this paper can extend the lead time for SSR

TABLE 3. Average correlation, percent correct, and mean ab-

solute error skill scores over the SSR grid points for 1-year-out and

3-years-out cross-validation forecast models along with persistence

forecast skill.

Score

1-yr-out cross

validation

3-yr-out cross

validation Persistence

Correlation 0.33 0.31 0.25

Percent correct 42.2 40.4 39.1

MAE 0.94 0.96 1.5
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forecasts, which may provide added guidance to forest-

management officials.

In summary, SVD can skillfully predict summer forest

fire severity with statistically significant skill at a lead of

3 months in Canada. The interdecadal trend, along with

the interannual ENSO and interdecadal PDO fluctua-

tions as well as the inclusion of winter and spring soil

moisture estimates (including overwinter snowfall), iden-

tifies sources of statistical predictability for fire severity

in Canada. In future, the availability of surface moisture

analysis from the Land Data Assimilation System (LDAS;

Rodell et al. 2004), which is based on more-sophisticated

land surface models than those being used in the PDSI

calculations, may improve the verification results reported

here. At present, moisture estimates from these systems

do not have the long record required for development of

empirical prediction models.

Acknowledgments. The SSR index was computed

from Meteorological Service of Canada hourly and daily

weather data by Alan Cantin at the Canadian Forest

Service Great Lakes Forestry Centre. Constructive and

insightful comments from Kit Szeto, Hai Lin, and three

anonymous reviewers are greatly appreciated.

APPENDIX

The Canadian Forest Fire Weather Index System

The Canadian forest fire danger rating system (CFFDRS)

is a national system for rating the risk of forest fires in

Canada and is fully described online (http://cwfis.cfs.

nrcan.gc.ca/en_CA/background/summary/fdr). Forest fire

danger rating systems produce qualitative and/or numeric

indices of fire potential, which are used as guidelines

in a wide variety of fire management activities. There

are currently two subsystems being used extensively in

Canada and internationally: the Canadian forest fire

behavior prediction (FBP) system and the Canadian

forest fire weather index system.

Calculation of the components of the FWI system is

based on consecutive daily observations of temperature,

relative humidity, wind speed, and 24-h rainfall. The

FWI system is composed of six components that account

for the effects of fuel moisture and wind on fire behavior

(van Wagner 1987). The first three components are the

fuel moisture codes: the fine fuel moisture code (FFMC),

the Duff moisture code (DMC), and the drought code

(DC). High values indicate dry fuels. The remaining three

components are fire behavior indices. The FWI is a nu-

meric rating of fire intensity. It represents the combination

of the initial spread index (ISI) and the buildup index

(BUI). The FWI is suitable as a general index of fire

danger throughout the forested areas of Canada. Equa-

tions for the computation of the five components are found

in van Wagner and Pickett (1985).

The daily severity rating and its time-averaged value,

the seasonal severity rating, are extensions of the FWI

system. The DSR is a transformation of the daily FWI

value, calculated as follows:

DSR 5 0.0272(FWI)1.77.

Higher FWI values are emphasized through the power

relation. The DSR can be accumulated over time as the

cumulative DSR, or it may be averaged over time as the

SSR:

SSR 5 �
n

i51

DSR
i

n
,

where DSRi is the DSR value for day i and n is the total

number of days.
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