
An Improved Approximation Algorithm for the Capacitated

Multicast Tree Routing Problem

Zhipeng Cai ∗ Zhi-Zhong Chen † Guohui Lin ∗ ‡ Lusheng Wang §

March 15, 2008

Abstract

The Capacitated Multicast Tree Routing Problem is considered, in which only a limited
number of destination nodes are allowed to receive data in one routing tree and multiple routing
trees are needed to send data from the source node to all destination nodes. The goal is to min-
imize the total cost of these routing trees. An improved approximation algorithm is presented,
which has a worst case performance ratio of 8

5 + 5
4ρ. Here ρ denotes the best approximation

ratio for the Steiner Minimum Tree problem, and it is about 1.55 at the writing of the paper.
This improves upon the previous best having a performance ratio of 2 + ρ.

1 Introduction

Multicast consists of concurrently sending the same data from a single source node to multiple
destination nodes. Such a service plays an important role in computer and communication net-
works supporting multimedia applications [7, 9, 13]. It is well known that multicast can be easily
implemented on local area networks (LANs) since nodes connected to a LAN usually communicate
over a broadcast network, yet quite challenging to implement in wide area networks (WANs) as
nodes connected to a WAN communicate via a switched/routed network [4, 14].

In order to perform multicast communication in WANs, the source node and all the destination
nodes must be interconnected. The problem of multicast routing in WANs is thus equivalent to
finding a multicast tree in a network that spans the source and all the destination nodes, with its
goal to minimize the cost of the multicast tree which is the total weight of edges in the tree.

In this paper, the Capacitated Multicast Routing Problem is studied in which only a limited
number of destination nodes can be assigned to receive the packets sent from the source node
during each transmission. The switches or routers in the underlying network are assumed to have
the broadcasting ability. For simplicity, such a routing model is called the multi-tree model [6, 5].
Multi-tree model has its origin in WDM optical networks with limited light-splitting capabilities.
Under this model, we are interested in finding a set of trees such that each tree spans the source node
and a limited number of destination nodes that are assigned to receive data and every destination
node must be designated to receive data in one of the trees. Compared with the traditional multicast
routing model without the capacity constraint (called the Steiner Minimum Tree problem which

∗Computing Science, University of Alberta. Edmonton, Alberta T6G 2E8, Canada. zhipeng@cs.ualberta.ca.
†Mathematical Sciences, Tokyo Denki University. Hatoyama, Saitama 350-0394, Japan. chen@r.dendai.ac.jp.
‡To whom correspondence should be addressed. ghlin@cs.ualberta.ca. Fax: (780) 492 1071.
§Computer Science, City University of Hong Kong. Tat Chee Avenue, Kowloon, Hong Kong. cswangl@cityu.edu.hk.

1

2 Z. Cai et al.

allows any number of receivers in the routing tree), this simpler model makes multicast easier
and more efficient to be implemented, at the expense of increasing the cost of the routing tree.
Specifically, when the number of destination nodes in a tree is limited to at most k, we call it the
Multicast k-Tree Routing (kMTR) problem, which is formally defined in the following.

For a graph G, we denote its node set by V (G). We model the underlying communication
network as a triple (G, s, D), where G is a simple, undirected, and edge-weighted complete graph,
s ∈ V (G) is the source node, and D ⊆ V (G) − {s} is the set of destination nodes. The weight
of each edge e in G, denoted by w(e), is nonnegative and represents the routing cost of e. The
additive edge weight function w(·) generalizes to subgraphs of G in a natural way. That is, if T

is a subgraph of G, then the weight (or cost) of T , denoted by w(T), is the total weight of edges
in T . A subgraph T of G is said to be a D-marked Steiner tree if T is a tree, at least one node
in T is marked, and each marked node in T is contained in D. For each D-marked Steiner tree
T , we use D ∩ T to denote the set of marked nodes in T . Note that some nodes in both D and
T may not be marked. The size of T is the number of marked nodes in T . A set T of D-marked
Steiner trees are disjointly-D-marked if (D ∩ T1) ∩ (D ∩ T2) = ∅ for every two trees T1 and T2 in
T . Let k be a given positive integer. A k-tree routing in network (G, s, D) is a set {T1, . . . , T`} of
disjointly-D-marked Steiner trees such that each Ti (1 ≤ i ≤ `) contains s and is of size at most k

and D =
⋃`

i=1(D ∩ Ti). The weight (or cost) of a k-tree routing is the total weight of trees in the
routing. Given a network (G, s, D), the multicast k-tree routing (kMTR) problem asks for a k-tree
routing in (G, s, D) whose weight is minimized over all k-tree routings in (G, s, D).

For the kMTR problem, the cases where k = 1, 2 can be solved efficiently [5]. The general case
of kMTR, where k is not fixed, is NP-hard [4]. In [1, 10], kMTR is proven to be NP-hard when
k is a fixed integer greater than 2. The best known approximation algorithm for kMTR (k ≥ 3)
has a worst case performance ratio of (2 + ρ) [1, 2, 8], where ρ is the approximation ratio for the
Steiner Minimum Tree problem, and it is about 1.55 [3, 12] at the writing of this paper. Recently,
Morsy and Nagamochi presented an approximation algorithm for kMTR (k ≥ 3) having a worst
case performance ratio of (3

2 + 4
3ρ) [11], which constitutes an improvement only when ρ < 1.5.

In this paper, we take advantage of the weight averaging technique introduced in [1, 2] to
facilitate the design and analysis of a better approximation algorithm for kMTR. We extend another
technique for partitioning routing trees in [1, 2] to guarantee better quality subtrees. Combining
them, we achieve an (8

5 + 5
4ρ)-approximation algorithm. This improves upon the previous best

approximation ratio of (2 + ρ) [1, 2, 8]. It is also an improvement over (3
2 + 4

3ρ) [11] as long as
ρ ≥ 1.2. In the next section, we present the tree partitioning process in details, the complete
algorithm, and its performance analysis.

2 An (8
5 + 5

4ρ)-Approximation Algorithm for kMTR

Throughout this section, fix a positive integer k and an instance (G, s, D) of the kMTR problem.
For ease of explanation, we assume that k is a multiple of 12. Recall that G is a simple, undirected,
and edge-weighted complete graph, s ∈ V (G) is the source node, and D ⊆ V (G)−{s} is the set of
destination nodes. The nodes in V (G)− (D ∪ {s}) can be used as intermediate nodes in a routing
to save the routing cost.

For each pair (u, v) of nodes in G, we use w(u, v) to denote the weight of the edge between u and
v. If {u, v} is an edge in G such that w(u, v) is larger than the weight of the shortest path between
u and v in G, then {u, v} is useless in any routing and hence can be ignored. So, we can assume

Capacitated Multicast Routing Problem 3

that for each pair (u, v) of nodes in G, w(u, v) equals the weight of the shortest path between u to
v in G. Then, the edge weight function of G satisfies the triangle inequality.

Let T ∗ be an optimal k-tree routing in network (G, s, D). Let R∗ =
∑

T∈T ∗ w(T). Note that
R∗ is the weight of the k-tree routing T ∗. Moreover, if d is a marked node in a tree T ∈ T ∗, then
clearly w(s, d) ≤ w(T). Thus, we have∑

d∈D

w(s, d) ≤
∑

T∈T ∗

∑
d∈D∩T

w(s, d) ≤ k ×
∑

T∈T ∗
w(T) ≤ k ×R∗. (2.1)

In the following (8
5 + 5

4ρ)-approximation algorithm, we first apply the currently best approxima-
tion algorithm for the Steiner Minimum Tree problem (which has a worst-case performance ratio
of ρ) to obtain a Steiner tree T 0 on {s} ∪ D in network (G, s, D). Recall that T 0 is a subgraph of
G that is D-marked Steiner tree with D ∩ T 0 = D. Since the weight of an optimal Steiner tree is a
lower bound on R∗, the weight of tree T 0 is upper bounded by ρR∗, that is, w(T 0) ≤ ρR∗. We now
root tree T 0 at source s. Note that tree T 0 does not necessarily correspond to a k-tree routing,
because the subtree rooted at some child of s in T 0 may contain more than k marked nodes.

In the following, for a D-marked Steiner tree T in G and a node v in T , we use Tv to denote
the subtree of T rooted at v. For a child u of an internal node v in T , the subtree Tu together
with edge (v, u) is called the branch rooted at v and containing u. Recall that D ∩ T denotes the
set of marked nodes in T and the size of T is |D ∩ T |. If |D ∩ T | ≤ k, then T can be used in a
k-tree routing to route those nodes in D ∩ T . If source s is not in T , then we can add s and the
edge {s, u} to T , where u is a node in T such that w(s, u) = minv∈V (T) w(s, v). Let c(T) denote
minv∈V (T) w(s, v). Note that c(T) = 0 if s ∈ V (T). We call c(T) the connection cost of T and
define the routing cost of T to be w(T) + c(T). Moreover, since c(T) ≤ mind∈D∩T w(s, d), we have

c(T) ≤ 1
|D ∩ T |

∑
d∈D∩T

w(s, d). (2.2)

Although tree T 0 does not necessarily correspond to a k-tree routing, it serves as a good starting
point because w(T 0) ≤ ρR∗. Our idea is to transform T 0 into a k-tree routing without increasing its
weight significantly. Basically, the transformation is done by case analysis. Each case corresponds to
a lemma in Section 2.1. With these lemmas, we will define several types of operations in Section 2.2
that can be applied to T 0 (to turn it into a k-tree routing). An outline of the whole algorithm is
given in Section 2.3.

2.1 Several Lemmas

This section proves several lemmas that will help us transform T 0 into a k-tree routing. Due to
the space constraint, proofs of Lemmas 2.5 and 2.6 are moved to the Appendix.

Lemma 2.1 [1, 2] Given a D-marked Steiner tree T such that

• k < |D ∩ T | ≤ 3
2k,

we can compute two disjointly-D-marked Steiner trees X1 and X2 from T in polynomial time such
that both X1 and X2 are of size at most k, D∩T = (D∩X1)∪ (D∩X2), and the total routing cost
of X1 and X2 is at most w(T) + 2× 1

k

∑
d∈D∩T w(s, d).

Lemma 2.2 If T is a D-marked Steiner tree such that

4 Z. Cai et al.

• 2
3k ≤ |D ∩ T | ≤ k,

then the routing cost of T is at most w(T) + 3
2 ×

1
k

∑
d∈D∩T w(s, d).

Proof. This is trivial since the size of T is at least 2
3k, following Equation 2.2. 2

Lemma 2.3 Suppose that T is a D-marked Steiner tree satisfying the following conditions:

• 3
2k ≤ |D ∩ T | ≤ 2k.

• The root r of T has exactly three children v1, v2, and v3.

• |D ∩ Tv1 | < 2
3k, |D ∩ Tv2 | < 2

3k, and |D ∩ Tv1 |+ |D ∩ Tv2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1, . . . , Xp with 2 ≤ p ≤ 3 in polyno-
mial time such that each Xi (1 ≤ i ≤ p) is of size at most k, D ∩ T =

⋃p
i=1(D ∩Xi), and the total

routing cost of X1 through Xp is at most 5
4w(T) + 3

2 ×
1
k

∑
d∈D∩T w(s, d).

Proof. For each i ∈ {1, 2, 3}, let Bi be the branch rooted at r and containing vi. We give two
options to route all the destination nodes in D ∩ T . To describe the first option, we assume that
|D∩Tv1 | ≥ |D∩Tv2 | without loss of generality. We also unmark r in both B2 and B3 if it is marked
in T . Then, |D ∩ Tv1 | ≥ 1

2k and |D ∩ Tv2 | + |D ∩ Tv3 | ≤ 3
2k. Now, if |D ∩ Tv2 | + |D ∩ Tv3 | ≤ k,

then as the first option, we set X1 = Bv1 and set X2 to be the union of B2 and B3. Otherwise, as
the first option, we set X1 = Bv1 and obtain X2 and X3 by applying Lemma 2.1 to the union of
B2 and B3. In both cases, the total routing cost is clearly w1 ≤ w(T) + 2 × 1

k

∑
d∈D∩T w(s, d) by

Lemma 2.1 and Equation 2.2.
We next describe the second option of routing. Let Bi be the least weight branch among B1,

B2, B3. Without loss of generality, we may assume that i 6= 1. Let j be the integer in {2, 3} − {i}.
We first construct two separate D-marked Steiner trees Y1 and Y2, where Y1 is the union of Bi

and B1 and Y2 is the union of Bi and Bj . Note that w(Y1) + w(Y2) = w(T) + w(Bi) ≤ 4
3w(T)

because w(Bi) ≤ min{w(B1), w(Bj)}. Let α = |D ∩ T |. Since 3
2k ≤ α ≤ 2k and k is a multiple

of 12, 3
4k ≤ bα

2 c ≤ k and 3
4k ≤ dα

2 e ≤ k. We can partition D ∩ Bi into two disjoint sets Q1

and Q2 such that bα
2 c ≤ |D ∩ Tv1 | + |Q1| ≤ dα

2 e and bα
2 c ≤ |D ∩ Tvj | + |Q2| ≤ dα

2 e. If i = 2,
then clearly Q1 exists because |D ∩ Tv1 | + |D ∩ Tv2 | > k ≥ dα

2 e and |D ∩ Tv1 | ≤ 2
3k − 1 ≤ bα

2 c;
consequently Q2 also exists because Q1 exists and |D∩Tv1 |+ |D∩Tv3 |+ |D∩B2| = α. If i = 3 and
|D∩Tv1 | ≥ |D∩Tv2 |, then Q1 exists because |D∩Tv1 |+|D∩B3| ≥ dα

2 e and |D∩Tv1 | ≤ 2
3k−1 ≤ bα

2 c;
consequently Q2 also exists. Similarly, if i = 3 and |D ∩ Tv1 | < |D ∩ Tv2 |, then Q2 exists because
|D ∩ Tv2 | + |D ∩ B3| ≥ dα

2 e and |D ∩ Tv2 | ≤ 2
3k − 1 ≤ bα

2 c; consequently Q1 also exists. Now, we
obtain X1 from Y1 by unmarking all the nodes of Q2 and obtain X2 from Y2 by unmarking all the
nodes of Q1. Since |D ∩ X1| ≥ bα

2 c ≥
3
4k and |D ∩ X2| ≥ bα

2 c ≥
3
4k, the total routing cost of X1

and X2 is w2 ≤ 4
3w(T) + 4

3 ×
1
k

∑
d∈D∩T w(s, d) by Equation 2.2.

Now, min{w1, w2} ≤ 1
4w1 + 3

4w2 ≤ 5
4w(T) + 3

2 × 1
k

∑
d∈D∩T w(s, d). So, choosing the better

option between the two proves the lemma. 2

Lemma 2.4 Suppose that T is a D-marked Steiner tree satisfying the following conditions:

• 5
2k ≤ |D ∩ T | ≤ 3k.

Capacitated Multicast Routing Problem 5

• The root r of T has exactly two children v1 and v2.

• k < |D ∩ Tv1 | ≤ 3
2k and k < |D ∩ Tv2 | ≤ 3

2k.

• For i ∈ {1, 2}, there is a node ui in Tvi (possibly ui = vi) such that ui has exactly two children
xi,1 and xi,2 in Tvi, |D ∩ Txi,1 | < 2

3k, |D ∩ Txi,2 | < 2
3k, and |D ∩ Txi,1 |+ |D ∩ Txi,2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1, . . . , Xp with 3 ≤ p ≤ 4 in polyno-
mial time such that each Xi (1 ≤ i ≤ p) is of size at most k, D ∩ T =

⋃p
i=1(D ∩Xi), and the total

routing cost of X1 through Xp is at most 5
4w(T) + 8

5 ×
1
k

∑
d∈D∩T w(s, d).

Proof. We give two options to route all the destination nodes in D ∩ T . In the first option, we
apply Lemma 2.1 to Tv1 and Tv2 separately to obtain four disjointly-D-marked Steiner trees of size
at most k. The total routing cost of these trees is w1 ≤ w(T) + 2× 1

k

∑
d∈D∩T w(s, d).

We next describe the second option of routing. For each i ∈ {1, 2} and each j ∈ {1, 2}, let
Bi,j be the branch rooted at ui and containing xi,j . Without loss of generality, we assume that
w(B1,1) + w(B2,1) ≤ w(B1,2) + w(B2,2). We first construct three separate D-marked Steiner trees
Y1, Y2, and Y3 as follows. Y1 is the union of B1,1 and B1,2, Y2 is the union of B2,1 and B2,2, and Y3

is obtained from T by deleting x1,2, x2,2, and their descendants. Note that w(Y1)+w(Y2)+w(Y3) =
w(T) + w(B1,1) + w(B2,1) ≤ 3

2w(T). Let α = |D ∩T |. Since 5
2k ≤ α ≤ 3k and k is a multiple of 12,

5
6k ≤ bα

3 c ≤ k and 5
6k ≤ dα

3 e ≤ k. Since |D∩Tx1,2 | < 2
3k ≤ bα

3 c and |D∩Tx1,1 |+|D∩Tx1,2 | > k ≥ dα
3 e,

we can compute a subset Q1 of D∩B1,1 such that |D∩Tx1,2 |+ |Q1| = dα
3 e. For a similar reason, we

can compute a subset Q2 of D ∩B2,1 such that |D ∩Tx2,2 |+ |Q2| = bα
3 c. No matter what the value

of α is, we always have that bα
3 c ≤ |D ∩ T | − |D ∩ Tx1,2 | − |Q1| − |D ∩ Tx2,2 | − |Q2| ≤ dα

3 e. Now, we
obtain X1 from Y1 by unmarking the nodes of (D ∩ B1,1) − Q1, obtain X2 from Y2 by unmarking
the nodes of (D ∩ B2,1) − Q2, and obtain X3 from Y3 by unmarking the nodes of Q1 ∪ Q2. Since
|D∩Xi| ≥ bα

3 c ≥
5
6k, the total routing cost of X1 through X3 is w2 ≤ 3

2w(T)+ 6
5×

1
k

∑
d∈D∩T w(s, d).

Now, min{w1, w2} ≤ 1
2(w1 + w2) ≤ 5

4w(T) + 8
5 ×

1
k

∑
d∈D∩T w(s, d). Choosing the better option

between the two proves the lemma. 2

Lemma 2.5 Suppose that T is a D-marked Steiner tree satisfying the following conditions:

• 2k < |D ∩ T | ≤ 5
2k.

• The root r of T has exactly two children v1 and v2.

• k < |D ∩ Tv1 | < 4
3k and k < |D ∩ Tv2 | < 4

3k.

• For each i ∈ {1, 2}, there is a node ui in Tvi (possibly ui = vi) such that ui has exactly two
children xi,1 and xi,2, |D ∩ Txi,1 | < 2

3k, |D ∩ Txi,2 | < 2
3k, and |D ∩ Txi,1 |+ |D ∩ Txi,2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1, X2, and X3 in polynomial time
such that each Xi (1 ≤ i ≤ 3) is of size at most k, D ∩ T =

⋃3
i=1(D ∩ Xi), and the total routing

cost of X1, X2, and X3 is at most 5
4w(T) + 3

2 ×
1
k

∑
d∈D∩T w(s, d).

Proof. See Appendix. 2

Lemma 2.6 Suppose that T is a D-marked Steiner tree satisfying the following conditions:

6 Z. Cai et al.

• 4
3k ≤ |D ∩ T | ≤ 3

2k.

• The root r of T has exactly three child nodes v1, v2, and v3.

• |D ∩ Tv1 | < 2
3k, |D ∩ Tv2 | < 2

3k, and |D ∩ Tv1 |+ |D ∩ Tv2 | > k.

Given T , we can compute disjointly-D-marked Steiner trees X1 and X2 in polynomial time such
that both X1 and X2 are of size at most k, D∩T = (D∩X1)∪ (D∩X2), and the total routing cost
of X1 and X2 is at most 5

4w(T) + 8
5 ×

1
k

∑
d∈D∩T w(s, d).

Proof. See Appendix. 2

2.2 Operations to Be Applied to T 0

We are now ready to describe how to transform the initial Steiner tree T 0 (rooted at the source node
s) into a k-tree routing. The transformation will be done by performing eight types of operations
(namely, type-i operations with i ∈ {0, . . . , 7}) on T 0 until T 0 becomes empty. When performing
theses operations on T 0, we will maintain the following invariants:

(I1) A type-i operation is applied to T 0 only when no type-j operations with j < i can be applied.

(I2) The source node s always remains in T 0.

We define a big node in T 0 to be an internal node v in T 0 with |D ∩ T 0
v | > k, and define a huge

node in T 0 to be an internal node v in T 0 with |D ∩ T 0
v | > 2k. Note that a big node in T 0 may be

a huge node or not. A big node in T 0 is extreme if all its children in T 0 are not big. Similarly, a
huge node in T 0 is extreme if all its children in T 0 are not huge.

We next proceed to the definition of the operations on T 0. A type-0 operation can be applied
on T 0 if |D∩T 0| ≤ k or every branch rooted at s and containing a child of s is of size at most k. In
the former case, a type-0 operation on T 0 includes T 0 in the output k-tree routing and then deletes
the whole tree. In the latter case, a type-0 operation on T 0 includes each branch rooted at the root
of T 0 (and containing a child of the root) in the output k-tree routing and then deletes the whole
tree. In either case, the total routing cost equals w(T 0) (i.e., no connection cost is needed when a
type-0 operation is applied) because s ∈ V (T 0) by Invariant (I2). Note that if no type-0 operations
can be applied to T 0, then s is a big node in T 0 but is not an extreme big node in T 0 for s 6∈ D,
implying that extreme big nodes always exist in T 0 and they are different from s.

If T 0 has an internal node v that has at least three children and has two children x1 and x2

with |D ∩ T 0
x1
|+ |D ∩ T 0

x2
| ≤ k, then a type-1 operation modifies T 0 as follows:

1. Make a copy vc of v (without marking vc even if v is marked in T 0).

2. Delete the edges (v, x1) and (v, x2).

3. Add three edges (v, vc), (vc, x1), and (vc, x2) so that vc becomes a new child of v while x1 and
x2 become the children of vc. (Comment: (v, vc) is a dummy edge of weight 0.)

If T 0 has an internal node v with 2
3k ≤ |D ∩ T 0

v | ≤ k, then a type-2 operation modifies T 0 as
follows:

1. Include T 0
v in the output k-tree routing (cf. Lemma 2.2).

Capacitated Multicast Routing Problem 7

2. Remove v and all its descendants from T 0.

Note that if no type-2 operations can be applied to T 0, then every extreme big node in T 0 has at
least two children because k > k − 1 ≥ 2

3k.
If T 0 has an extreme big node u with at least three children, then a type-3 operation modifies

T 0 as follows:

1. Pick three arbitrary children v1, v2, and v3 of u in T 0. (Comment: Since u is an extreme big
node in T 0 and no type-2 operations can be applied to T 0, |D∩T 0

vj
| < 2

3k for each j ∈ {1, 2, 3}.
Moreover, since no type-1 operations can be applied to T 0, |D∩T 0

vi
|+ |D∩T 0

vj
| > k for every

pair (i, j) with 1 ≤ i < j ≤ 3.)

2. Let T be the union of the three branches rooted at u and containing v1, v2, or v3.

3. Use T to obtain a set of D-marked Steiner trees as described in Lemma 2.3, and include them
in the output k-tree routing.

4. Remove v1, v2, v3, and their descendants from T 0.

5. If u is marked in T 0, then unmark it in T 0.

Note that if neither type-2 nor type-3 operations can be applied to T 0, then every extreme big
node v in T 0 has exactly two children and hence satisfies that k < |D ∩ T 0

v | < 4
3k. Moreover, we

can claim that every huge node in T 0 has a descendant that is a big but not huge node, if neither
type-2 nor type-3 operations can be applied to T 0. For a contradiction, assume that the claim does
not hold. Then, there is an extreme huge node v in T 0 whose children are not big nodes. So, v is
an extreme big node in T 0. Thus, k < |D ∩ T 0

v | < 4
3k, contradicting the assumption that v is huge.

If T 0 has an extreme big vertex v such that the path from s to v contains a node u with
4
3k ≤ |D ∩ T 0

u | ≤ 3
2k, then a type-4 operation modifies T 0 as follows:

1. Construct a D-marked Steiner tree T by initializing it as T 0
u and re-rooting it at v.

2. Use T to obtain two D-marked Steiner trees as described in Lemma 2.6, and include them in
the output k-tree routing.

3. Remove u and its descendants from T 0.

If T 0 has an extreme big node v such that the path from s to v contains a node u with
3
2k ≤ |D ∩ T 0

u | ≤ 2k, then a type-5 operation modifies T 0 in the same way as a type-4 operation
does except that Lemma 2.3 is used instead of Lemma 2.6.

If T 0 has a huge node, then a type-6 operation modifies T 0 as follows:

1. Select an (arbitrary) extreme huge node u in T 0.

2. Find an extreme big node v1 that is a descendant of u in T 0 (Comment: As claimed before,
v1 is big but not huge, implying that v1 6= u.)

3. Let u1 be the child of u in T 0 that is v1 itself or an ancestor of v1 in T 0. (Comment:
|D ∩ T 0

u1
| < 4

3k because u1 is not huge and neither type-4 nor type-5 operations can be
applied to T 0. Consequently, u has at least two children in T 0.)

8 Z. Cai et al.

4. If every child u2 of u in T 0 with u2 6= u1 satisfies that |D ∩ T 0
u2
| ≤ 2

3k, then modify T 0 as
follows:

(a) Construct a D-marked Steiner tree T by initializing it as T 0
u and then repeatedly deleting

a child u2 6= u1 and the descendants of u2 until |D ∩ T | ≤ 2k. (Comment: |D ∩ T | ≥ 4
3k

because |D ∩ T 0
u2
| < 2

3k for each child u2 of u in T 0 with u2 6= u1.)

(b) Re-root T at v1.

(c) If |D ∩ T | > 3
2k, then use T to obtain two or three D-marked Steiner trees as described

in Lemma 2.3 and include them in the output k-tree routing. Otherwise, use T to obtain
two D-marked Steiner trees as described in Lemma 2.6 and include them in the output
k-tree routing.

(d) Remove the nodes in V (T)− {u} from T 0.

(e) If u is marked in T 0, then unmark it in T 0.

5. If some child u2 of u in T 0 with u2 6= u1 satisfies that |D ∩ T 0
u2
| > 2

3k, then modify T 0 as
follows:

(a) Find an extreme big node v2 in T 0
u2

. (Comment: Since u is an extreme huge node in
T 0, |D ∩ T 0

u2
| ≤ 2k. Consequently, u2 must be a big node in T 0 because |D ∩ T 0

u2
| > 2

3k

no type-2 operations can be applied to T 0. Moreover, |D ∩ T 0
u2
| < 4

3k because neither
type-4 nor type-5 operations can be applied to T 0. Possibly, v2 = u2.)

(b) Construct a D-marked Steiner tree T by setting it to be the union of the two branches
rooted at u and containing u1 or u2. (Comment: Clearly, 2k < |D ∩ T | < 8

3k.)

(c) If |D ∩ T | ≤ 5
2k, then use T to obtain three D-marked Steiner trees as described in

Lemma 2.5 and include them in the output k-tree routing. Otherwise, use T to obtain
three or four D-marked Steiner trees as described in Lemma 2.4 and include them in the
output k-tree routing.

(d) Remove the nodes in V (T)− {u} from T 0.

(e) If u is marked in T 0, then unmark it in T 0.

Suppose that no type-i operations with 0 ≤ i ≤ 6 can be applied to T 0. Then, k < |D∩T 0| < 4
3k.

Consequently, there is only one extreme big node u in T 0. As mentioned before, s is a big but not
extreme big node in T 0. So, u 6= s. Let v1 and v2 be the children of u in T 0, and let v3 be the
parent of u in T 0 (possibly, v3 = s). Now, a type-7 operation modifies T 0 as follows:

1. Re-root T 0 at u (so that v3 becomes a child of u, too). (Comment: |D ∩ T 0
v3
| < 1

3k because
k < |D ∩ T 0| < 4

3k and |D ∩ T 0
v1
|+ |D ∩ T 0

v1
| > k.)

2. Among the nodes in (D∩T 0
v1

)∪ (D∩T 0
v2

), find the closest node d′ to s. (Comment: w(s, d′) <
1
k

∑
d∈(D∩T 0

v1
)∪(D∩T 0

v2
) w(s, d).)

3. Let i ∈ {1, 2} be the integer with d′ ∈ T 0
vi

.

4. Include T 0
vi

as a D-marked Steiner tree in the output k-tree routing. (Comment: c(T 0
vi

) ≤
w(s, d′) < 1

k

∑
d∈D∩T w(s, d).)

Capacitated Multicast Routing Problem 9

5. Obtain a tree T by deleting vi and its descendants from T 0. (Comment: |D∩T | < k because
|D ∩ T 0

v3
| < 1

3k and |D ∩ T 0
vj
| < 2

3k, where j is the integer in {1, 2} − {i}.)

6. Include T as a D-marked Steiner tree in the output k-tree routing. (Comment: Since s

remains in T 0 after Step 5, the connection cost of T 0 is 0. Thus, the total routing cost of T 0
vi

and T is at most w(T 0) + 1
k

∑
d∈D∩T w(s, d).)

7. Remove the whole tree T 0.

2.3 Summary of the Algorithm

A high-level description of the complete algorithm is depicted in Figure 1.

Input: A network (G, s, D).
Output: a k-tree routing in (G, s, D).

1. Compute a Steiner tree T 0 on {s} ∪D, using the currently best approximation algorithm;
2. Root T 0 at s;
3. While (T 0 is not empty) do:
3.1. Let i be the smallest j such that a type-j operation, 0 ≤ j ≤ 7, can be applied to T 0;
3.2. Perform a type-i operation on T 0;
4. Output the k-tree routing.

Figure 1: A high-level description of the (8
5 + 5

4ρ)-approximation algorithm for kMTR.

Theorem 2.7 kMTR (k ≥ 3) admits an (8
5+ 5

4ρ)-approximation algorithm, where ρ is the currently
best performance ratio for approximating the Steiner Minimum Tree problem.

Proof. Notice that whenever we cut a subtree T out of the base Steiner tree T 0 by performing
a type-i operation with i ∈ {0, . . . , 7}, we maintain the following invariants:

• We construct a set T of disjointly-D-marked Steiner trees from T and include them in the
output k-tree routing, where the total routing cost of the trees in T is at most 5

4w(T) + 8
5 ×

1
k

∑
d∈D∩T w(s, d).

• After cutting T out of T 0, T 0 may share a node with T but does not share an edge with T ,
and no node of D ∩ T is marked in T 0.

By the above invariants, the total routing cost of the trees in the output k-tree routing is R ≤
5
4w(T 0) + 8

5 × 1
k

∑
d∈D w(s, d) ≤ 5

4w(T 0) + 8
5R∗, where T 0 is the initial Steiner tree obtained in

Step 1 of the algorithm and the last inequality follows from Equation 2.1. Since w(T 0) ≤ ρR∗, we
have R ≤ (5

4ρ + 8
5)R∗. 2

10 Z. Cai et al.

References

[1] Z. Cai. Improved algorithms for multicast routing and binary fingerprint vector clustering.
Master’s thesis, Department of Computing Science, University of Alberta, June 16, 2004.

[2] Z. Cai, G.-H. Lin, and G. L. Xue. Improved approximation algorithms for the capacitated
multicast routing problem. In Proceedings of the Eleventh International Computing and Com-
binatorics Conference (COCOON 2005), LNCS 3593, pages 136–145. Springer, 2005.

[3] C. Gröpl, S. Hougardy, T. Nierhoff, and H. J. Prömel. Approximation algorithms for the Steiner
tree problem in graphs. In D.-Z. Du and X. Cheng, editors, Steiner Trees in Industries, pages
235–279. Kluwer Academic Publishers, 2001.

[4] J. Gu, X. D. Hu, X. Jia, and M.-H. Zhang. Routing algorithm for multicast under multi-tree
model in optical networks. Theoretical Computer Science, 314:293–301, 2004.

[5] J. Gu, X. D. Hu, and M.-H. Zhang. Algorithms for multicast connection under multi-path
routing model. Information Processing Letters, 84:31–39, 2002.

[6] R. L. Hadas. Efficient collective communication in WDM networks. In Proceedings of IEEE
ICCCN 2000, pages 612–616, 2000.

[7] C. Huitema. Routing in the Internet. Prentice Hall PTR, 2000.

[8] R. Jothi and B. Raghavachari. Approximation algorithms for the capacitated minimum span-
ning tree problem and its variants in network design. ACM Transactions on Algorithms,
1:265–282, 2005.

[9] F. Kuo, W. Effelsberg, and J. J. Garcia-Luna-Aceves. Multimedia Communications: Protocols
and Applications. Prentice Hall, Inc., 1998.

[10] G.-H. Lin. An improved approximation algorithm for multicast k-tree routing. Journal of
Combinatorial Optimization, 9:349–356, 2005.

[11] E. Morsy and H. Nagamochi. An improved approximation algorithm for capacitated multicast
routings in networks. Theoretical Computer Science, 390:81–91, 2008.

[12] G. Robins and A. Z. Zelikovsky. Improved Steiner tree approximation in graphs. In Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pages 770–
779, 2000.

[13] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia applications.
IEEE Journal on Selected Areas in Communications, 14:1228–1234, 1996.

[14] X. Zhang, J. Wei, and C. Qiao. Constrained multicast routing in WDM networks with sparse
light splitting. In Proceedings of IEEE INFOCOM 2000, pages 1781–1790, March 26–30, 2000.

Capacitated Multicast Routing Problem 11

A Proof of Lemma 2.5

Proof. For each i ∈ {1, 2} and each j ∈ {1, 2}, let Bi,j be the branch rooted at ui and containing
xi,j . Without loss of generality, we assume that w(B1,1) ≤ min{w(B1,2), w(B2,1), w(B2,2)} and
|D∩Tx2,1 | ≤ |D∩Tx2,2 |. Then, |D∩Tx2,2 | > 1

2k. For each i ∈ {1, 2}, let Bi be the branch rooted at
r and containing vi. Let T3 be the D-marked Steiner tree obtained from B1 by deleting x1,1, x1,2, and
their descendants. Similarly, let T4 be the D-marked Steiner tree obtained from B2 by deleting x2,1,
x2,2, and their descendants. Clearly, D∩T = (D∩Tx1,1)∪(D∩Tx1,2)∪(D∩T3)∪(D∩T4)∪(D∩Tx2,1)∪
(D∩Tx2,2). Moreover, |D∩T3| ≤ |D∩Tv1 |−|D∩Tx1,1 |−|D∩Tx1,2 |+1 ≤ (4

3k−1)−(k+1)+1 < 1
3k.

Similarly, |D ∩ T4| < 1
3k.

We partition D∩Tx1,1 into two disjoint sets Q1 and Q2 such that 2
3k ≤ |Q1|+ |D∩Tx1,2 | ≤ k and

4
3k ≤ |D∩T |−|Q1|−|D∩Tx1,2 | ≤ 3

2k. Since |D∩Tx2,2 | > 1
2k, we have |Q2|+|(D∩T3)∪(D∩T4)|+|D∩

Tx2,1 | = |D∩T |−|Q1|−|D∩Tx1,2 |−|D∩Tx2,2 | < k. Among the nodes in (D∩T)−Q1−(D∩Tx1,2),
we find the 2

3k farthest nodes from s; let F be the set of them. Depending on whether D ∩ Tx2,2 is
a subset of F or not, there are two possible cases to consider:

Case 1: D∩Tx2,2 is not a subset of F . In this case, we construct X1 by initializing it as Tu1 , then
unmarking the nodes of Q2, and further unmarking u1 if it is marked. We simply let X2 = Tx2,2 .
To obtain X3, we first obtain a D-marked Steiner tree Y3 from T by deleting x1,2, x2,2, and their
descendants, and then unmarking the nodes of Q1. Note that w(X1) + w(X2) + w(X3) = w(T) +
w(B1,1) ≤ 5

4w(T). Obviously, c(X1) ≤ 3
2 ×

1
k

∑
d∈Q1∪(D∩Tx1,2) w(s, d) by Equation 2.2. Since both

X2 and X3 contain some nodes in (D∩T)−F , c(X2) ≤ mind∈F w(s, d) and c(X3) ≤ mind∈F w(s, d).
So, one of X2 and X3 has a connection cost of w(s, d′) and the other has a connection cost of at
most w(s, d′′), where d′ is the closest node to s among the nodes in (D∩T)−Q1− (D∩Tx1,2) while
d′′ is the closest node to s among the nodes in F . Clearly, w(s, d′′) ≤ 3

2 ×
1
k

∑
d∈F w(s, d). Moreover,

w(s, d′) ≤ 3
2 ×

1
k

∑
d∈(D∩T)−Q1−(D∩Tx1,2)−F w(s, d) because |D ∩ T | − |Q1| − |D ∩ Tx1,2 | − |F | ≥ 2

3k.

So, c(X2) + c(X3) ≤ 3
2 ×

1
k

∑
d∈(D∩T)−Q1−(D∩Tx1,2) w(s, d). Thus, the total routing cost of X1, X2,

and X3 is at most 5
4w(T) + 3

2 ×
1
k

∑
d∈D∩T w(s, d), and we are done.

Case 2: D ∩ Tx2,2 is a subset of F . In this case, we distinguish three subcases as follows.
Subcase 2.1: w(B2,1) ≤ w(B2,2) + w(T3) + w(T4). In this subcase, we give two options to

route the nodes in D ∩ T . In the first option, we first partition D ∩ Tx1,1 into two disjoint sets
P1 and P2 such that |P1| + |D ∩ Tx1,2 | = k and Q1 ⊆ P1. Note that P2 ⊆ Q2. We partition
D ∩ Tx2,1 into two disjoint sets C1 and C2 such that C1 consists of the k − |D ∩ Tx2,2 | closest
nodes to s. We are now ready to construct X1, X2, and X3 as follows. We construct X1 by
initializing it as Tu1 , then unmarking the nodes of P2, and further unmarking u1 if it is marked.
We simply let X2 = Tx2,2 . To obtain X3, we first obtain a D-marked Steiner tree Y3 from T

by deleting x1,2, x2,2, and their descendants, and then unmarking the nodes of P1. Note that
w(X1) + w(X2) + w(X3) = w(T) + w(B1,1). Obviously, c(X1) ≤ 1

k

∑
d∈P1∪(D∩Tx1,2) w(s, d) by

Equation 2.2. Recall that |D ∩ Tx2,2 | > 1
2k. Among the nodes in D ∩ Tx2,2 , we find the 1

2k

farthest nodes from s; let F ′ be the set of them. Among the nodes in F ′, the closest one d′ to
s satisfies that w(s, d′) ≤ 2 × 1

k

∑
d∈F ′ w(s, d). Thus, c(X2) ≤ w(s, d′) ≤ 2 × 1

k

∑
d∈F ′ w(s, d).

Among the nodes in (D ∩ Tx2,1) ∪ (D ∩ Tx2,2), the closest one d′′ to s does not belong to D ∩ Tx2,2

because D ∩ Tx2,2 ⊆ F and |D ∩ Tx2,1 | + |D ∩ Tx2,2 | > k > |F |. Thus, d′′ ∈ C1. Consequently,
c(X3) ≤ w(s, d′′) ≤ 2× 1

k

∑
d∈(C1∪(D∩Tx2,2))−F ′ w(s, d) because |C1 ∪ (D∩Tx2,2)| = k and |F ′| = 1

2k.

So, c(X2)+ c(X3) ≤ 2× 1
k

∑
d∈C1∪(D∩Tx2,2) w(s, d). Hence, the total routing cost of X1, X2, and X3

12 Z. Cai et al.

is w1 ≤ w(T) + w(B1,1) + 1
k

∑
d∈P1∪(D∩Tx1,2) w(s, d) + 2× 1

k

∑
d∈C1∪(D∩Tx2,2) w(s, d).

In the second option of routing, we construct X1, X2, and X3 as follows. We construct X1 by
initializing it as the union of B2,1 and B2,2, then unmarking the nodes of C2, and further unmarking
u2 if it is marked. Note that |D ∩ X1| = k. To obtain X2 and X3, we first construct a D-marked
Steiner tree Y as follows. Initially, Y is the D-marked Steiner tree obtained from T by deleting x2,2

and its descendants. The nodes of C1 are then unmarked in Y . This completes the construction of
Y . Note that |X1| + |Y | = w(T) + w(B2,1). Moreover, k < |D ∩ Y | = |D ∩ T | − k ≤ 3

2k. So, we
obtain X2 and X3 by applying Lemma 2.1 to Y . Then, the total routing cost of X2 and X3 is at
most w(Y) + 2× 1

k

∑
d∈(D∩T)−C1−(D∩Tx2,2) w(s, d). Therefore, the total routing cost of X1, X2, and

X3 is w2 ≤ w(T) + w(B2,1) + 1
k

∑
d∈C1∪(D∩Tx2,2) w(s, d) + 2× 1

k

∑
d∈(D∩T)−(C1∪(D∩Tx2,2)) w(s, d).

Because w(B1,1) ≤ w(B1,2), w(B2,1) ≤ w(B2,2) + w(T3) + w(T4), and w(T) = w(B1,1) +
w(B1,2) + w(B2,1) + w(B2,2) + w(T3) + w(T4), we have min{w1, w2} ≤ 1

2(w1 + w2) ≤ w(T) +
1
2(w(B1,1) + w(B2,1)) + 1

2 ×
1
k

∑
d∈P1∪(D∩Tx1,2)∪C1∪(D∩Tx2,2) w(s, d) + 1

k

∑
d∈D∩T w(s, d) ≤ 5

4w(T) +
3
2 ×

1
k

∑
d∈D∩T w(s, d). So, choosing the better option between the two proves the lemma in this

subcase.
Subcase 2.2: w(B2,1) > w(B2,2) + w(T3) + w(T4) and w(B1,1) + w(T4) ≤ w(B2,2) + w(T3).

Since w(B1,1) ≤ w(B1,2), w(B1,1) + w(B2,2) + w(T3) + w(T4) < w(B1,2) + w(B2,1). Therefore,
w(B1,1) + w(B2,2) + w(T3) + w(T4) < 1

2w(T). Consequently, w(B1,1) + w(T4) < 1
4w(T). We

partition D ∩ Tx1,1 into two disjoint sets P1 and P2 such that |P1| = |D ∩ Tx1,1 | + |D ∩ T3| − 1
3k.

Clearly, |P2| + |D ∩ T3| = 1
3k. Moreover, |P1| ≥ 2 because |P1| ≥ |D ∩ Tv1 | − |D ∩ Tx1,2 | − 1

3k,
|D ∩ Tv1 | ≥ k + 1, and |D ∩ Tx1,2 | ≤ 2

3k − 1. Furthermore, 2
3k < |P1| + |D ∩ Tx1,2 | ≤ k because

|D ∩ Tv1 | ≤ |D ∩ Tx1,1 | + |D ∩ Tx1,2 | + |D ∩ T3| ≤ |D ∩ Tv1 | + 1 and k + 1 ≤ |D ∩ Tv1 | ≤ 4
3k − 1.

We construct X1 by initializing it as the union of B1,1 and B1,2, then unmarking the nodes of P2,
and further unmarking u1 if it is marked. Clearly, 2

3k < D ∩X1 = P1 ∪ (D ∩ Tx1,2) ≤ k and hence
c(X1) ≤ 3

2 ×
1
k

∑
d∈D∩X1

w(s, d).
To construct X2 and X3, consider the D-marked Steiner tree Y obtained from T by deleting

x1,2, x2,1, x2,2, and their descendants and further unmarking the nodes of P1 ∪ (D ∩ T4). Note
that D ∩ Y ⊆ P2 ∪ (D ∩ T3) and hence |D ∩ Y | ≤ 1

3k. Also recall that 2
3k < D ∩ X1 ≤ k. So,

(D ∩ T) − (D ∩ X1) ≥ k. Among the nodes in (D ∩ T) − (D ∩ X1), we find the 2
3k closest nodes

to s; let C be the set of them. Similarly, among the nodes in (D ∩ T) − (D ∩ X1), we find the 2
3k

farthest nodes from s; let F be the set of them. A crucial point is that C ∩ F = ∅. This holds
because |(D∩T)− (D∩X1)| = (|P2|+ |D∩T3|)+ |D∩Tv2 | > 1

3k + k = 4
3k. Now, consider the four

sets: D ∩ Tx2,1 , D ∩ Tx2,2 , D ∩ T4, and D ∩ Y . Each of the first two sets is of size at most 2
3k − 1

while each of the last two sets is of size at most 1
3k. Thus, at least two of the four sets contain at

least one node of C. Consequently, we can always divide the four sets into two groups G1 and G2

that satisfy the following two conditions:

1. G1 contains D∩Tx2,1 and one of D∩T4 and D∩Y , while G2 contains D∩Tx2,2 and the other
of D ∩ T4 and D ∩ Y . (Comment: The total size of sets in G1 is at most k and the total size
of sets in G2 is at most k.)

2. At least one set in G1 contains a node of C and at least one set in G2 contains a node of C.

If G1 contains D ∩ T4, then we let X2 be the union of B2,1 and T4 and let X3 be the union of B2,2

and Y ; otherwise, we let X2 be the union of B2,1 and Y and let X3 be the union of B2,2 and T4. By
Condition 1, |D∩X2| ≤ k and |D∩X3| ≤ k. By Condition 2, (D∩X2)∩C 6= ∅ and (D∩X3)∩C 6= ∅.

Capacitated Multicast Routing Problem 13

Obviously, one of D ∩ X2 and D ∩ X3 contains d′ which is the closest node to s among the nodes
in (D ∩ X2) ∪ (D ∩ X3). We assume that D ∩ X2 contains d′; the other case is similar. Then,
c(X2) ≤ w(s, d′) ≤ 3

2 ×
1
k

∑
d∈C w(s, d) because C ⊆ (D ∩ T) − (D ∩ X1) = (D ∩ X2) ∪ (D ∩ X3).

Moreover, since (D∩X3)∩C 6= ∅, c(X3) ≤ w(s, d′′) where d′′ is the farthest node from s among the
nodes in C. Furthermore, since C ∩ F = ∅, w(s, d′′) ≤ w(s, d′′′) where d′′′ is the closest node to s

among the nodes in F . Thus, c(X3) ≤ w(s, d′′′) ≤ 3
2 ×

1
k

∑
d∈F w(s, d). Therefore, c(X2) + c(X3) ≤

3
2 ×

1
k

∑
d∈(D∩T)−(D∩X1) w(s, d). Consequently, the total routing cost of X1, X2, and X3 is at most

5
4w(T)+ 3

2×
1
k

∑
d∈D∩T w(s, d), because w(X1)+w(X2)+w(X3) = w(T)+w(B1,1)+w(T4) ≤ 5

4w(T).
This establishes the lemma in this subcase.

Subcase 2.3: w(B2,1) > w(B2,2) + w(T3) + w(T4) and w(B1,1) + w(T4) > w(B2,2) + w(T3). In
this subcase, the proof proceeds as in Subcase 2.2 except that we exchange the roles of B1,1 and
B2,2, exchange the roles of B1,2 and B2,1, exchange the roles of x1,1 and x2,2, exchange the roles of
x1,2 and x2,1, exchange the roles of u1 and u2, exchange the roles of v1 and v2, and exchange the
roles of T3 and T4. This completes the proof of the lemma. 2

B Proof of Lemma 2.6

Proof. By the conditions in the lemma, |D ∩ Tv3 | < 1
2k. Without loss of generality, we assume

that |D∩Tv1 | ≤ |D∩Tv2 |. Then, |D∩Tv2 | > 1
2k. For each i ∈ {1, 2, 3}, let Bi be the branch rooted

at r and containing vi. We distinguish two cases as follows.
Case 1: |D ∩ Tv3 |+ |D ∩ Tv2 | ≤ k. Then, |D ∩ Tv3 |+ |D ∩ Tv1 | ≤ k. Among the nodes in D ∩ T ,

we find the 2
3k closest nodes to s; let C be the set of them. Similarly, among the nodes in D ∩ T ,

we find the 2
3k farthest nodes from s; let F be the set of them. Since |D ∩ T | ≥ 4

3k, F ∩ C = ∅.
Moreover, since |D ∩ Tvi | < 2

3k for each i ∈ {1, 2, 3}, there are at least two integers i ∈ {1, 2, 3}
such that (D ∩ Tvi) ∩ C 6= ∅. If (D ∩ Tv3) ∩ C = ∅, then we set X1 = B1 and construct X2 by
initializing it as the union of B2 and B3 and further unmark r if it is marked. Otherwise, we find
an integer i ∈ {1, 2} with (D ∩ Tvi)∩C 6= ∅, set X1 = Bi and construct X2 by initializing it as the
union of Bj and B3 and further unmark r if it is marked, where j is the integer in {1, 2} − {i}. In
any case, |D ∩X1| ≤ k, |D ∩X2| ≤ k, (D ∩X1) ∩C 6= ∅, and (D ∩X2) ∩C 6= ∅. Obviously, one of
D∩X1 and D∩X2 contains d′ which is the closest node to s among the nodes in D∩T . We assume
that D ∩ X1 contains d′; the other case is similar. Then, c(X1) ≤ w(s, d′) ≤ 3

2 ×
1
k

∑
d∈C w(s, d).

Moreover, since (D ∩ X2) ∩ C 6= ∅, c(X2) ≤ w(s, d′′) where d′′ is the farthest node from s among
the nodes in C. Furthermore, since C ∩ F = ∅, w(s, d′′) ≤ w(s, d′′′) where d′′′ is the closest
node to s among the nodes in F . Thus, c(X2) ≤ w(s, d′′′) ≤ 3

2 × 1
k

∑
d∈F w(s, d). Therefore,

c(X1) + c(X2) ≤ 3
2 ×

1
k

∑
d∈D∩T w(s, d). Consequently, the total routing cost of X1 and X2 is at

most w(T) + 3
2 ×

1
k

∑
d∈D∩T w(s, d), and the lemma is proved.

Case 2: |D∩Tv3 |+|D∩Tv2 | > k. Then, |D∩Tv1 |+|D∩Tv2 | > k. We assume that w(B1) ≤ w(B3);
this does not lose generality because our argument will not take advantage of the difference between
the two conditions that |D ∩ Tv1 | < 2

3k and |D ∩ Tv3 | < 1
2k. Among the nodes in D ∩ Tv1 , we find

the k − |D ∩ Tv2 | farthest nodes from s; let F be the set of them. Moreover, among the nodes in
(D ∩ T) − F − (D ∩ Tv2), we find the 1

3k closest nodes to s; let C be the set of them. Note that
C exists because |D ∩ T | ≥ 4

3k and |F | + |D ∩ Tv2 | = k. We give two options of constructing X1

and X2. In the first option, we set X1 = Tv2 and set X2 to be the union of B1 and B3. Obviously,
|D ∩X1| ≤ k. We also have |D ∩X2| ≤ k because |D ∩Tv2 | > 1

2k and D ∩T ≤ 3
2k. Moreover, since

14 Z. Cai et al.

C ∪ F ⊆ (D ∩ T)− (D ∩ Tv2) and |C|+ |F |+ |D ∩ Tv2 | = 4
3k, the total routing cost of X1 and X2

is w1 ≤ w(T) + 1
4k/3−|D∩Tv2 |

∑
d∈C∪F w(s, d) + 1

|D∩Tv2 |
∑

d∈D∩Tv2
w(s, d).

In the second option, we first partition set F into two disjoint sets F1 and F2 such that |F2| +
|D ∩ Tv2 | = 4

3k − |D ∩ Tv2 |. This can be done because 1
2k < |D ∩ Tv2 | < 2

3k. We construct X1

by initializing it as the union of B1 and B2, unmarking the nodes in (D ∩ Tv1) − F2, and further
unmarking r if it is marked. We construct X2 by initializing it as the union of B1 and B3 and
further unmarking the nodes in (D ∩ Tv2) ∪ F2. Clearly, |D ∩ X1| ≤ 5

6k and |D ∩ X2| ≤ 5
6k.

Moreover, since |F1| + |C| = |D ∩ Tv2 | and F1 ∪ C ⊆ D ∩ X2, the total routing cost of X1 and X2

is w2 ≤ 3
2w(T) + 1

4k/3−|D∩Tv2 |
∑

d∈(D∩Tv2)∪F2
w(s, d) + 1

|D∩Tv2 |
∑

d∈F1∪C w(s, d).

Now, min{w1, w2} ≤ 1
2(w1+w2) ≤ 5

4w(T)+ 1
2×(1

4k/3−|D∩Tv2 |
+ 1

|D∩Tv2 |
)(

∑
d∈F∪(D∩Tv2)∪C w(s, d)

because 4
3k−|D∩Tv2 | ≥ |D∩Tv2 |. Since 1

2k < |D∩Tv2 | < 2
3k, 1

4k/3−|D∩Tv2 |
+ 1

|D∩Tv2 |
≤ 16

5 k. Thus,

min{w1, w2} ≤ 5
4w(T) + 8

5 ×
1
k

∑
d∈D∩T w(s, d). Therefore, choosing the better option between the

two proves the lemma. 2

	Introduction
	An (85 + 54)-Approximation Algorithm for kMTR
	Several Lemmas
	Operations to Be Applied to T0
	Summary of the Algorithm

	Proof of Lemma 2.5
	Proof of Lemma 2.6

