Identification of bioactive peptides from camel milk whey protein with potential health benefits through control of oxidative stress, glucose release after starch digestion, and pathogen adhesion

by

Rami Althnaibat

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Food Science and Technology

Department of Agricultural, Food and Nutritional Science

University of Alberta

© Rami Althnaibat, 2022

Abstract

Camel milk cheese is popular in many countries and the production of camel milk cheese has increased, as has its by-product whey. The prevalence of non-communicable diseases, mainly dietrelated chronic diseases like diabetes mellitus (DM), has increased worldwide. On other hand, the enterotoxigenic Escherichia coli (ETEC) is a major cause of childhood diarrhea and diarrhea in piglets and calves. This research aimed to investigate the potential antioxidant activities, starch digestion inhibitory activities, and antiadhesive activity against ETEC of bioactive peptides from camel milk whey protein (CMWP). CMWP was hydrolyzed by flavourzyme, neutrase, alcalase, or a mixture of neutrase and flavourzyme. The antioxidant activities of the hydrolysates were determined using 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, ferrous ion (Fe^{2+}) chelating activity, superoxide (O²⁻) free radical scavenging, and measurement of reducing power. The antioxidant activity of flavourzyme hydrolysates (FH) at 1.5 h hydrolysis was highest and pepsin digested FH effectively to obtain peptides with high antioxidant activity, whereas trypsin digestion negatively affected antioxidant activities. The peptic hydrolysates were characterized by one sharp main peak of molecular weight (MW (6.83KDa)); however, further hydrolysis by trypsin led to hydrolysis of the peptides to amino acids and very short peptides. The low-medium (2KDa < size < 10KDa) sized peptides exhibited the highest antioxidant activities. Starch digestion inhibitory activity of bioactive peptides derived from CMWP was investigated using a digestibility assay that included addition of pepsin, pancreatic enzymes, and brush border enzymes. The hydrolysates from the flavourzyme hydrolysis were fractionated either by hydrophobic interaction chromatography (HIC), or by cation exchange chromatography (CEX) followed by HIC. The successive chromatographic separation aiming to produce positively charged peptide with hydrophobic amino acids improved the starch digestion inhibition. Fractions

that inhibited starch digestion the most were selected for peptide sequencing by LC-MS/MS. Among the sequenced peptides, six short peptides were chosen for peptide synthesis. The original unfractionated hydrolyzed whey showed about 16.5% inhibition of starch digestion. However, the fractionation on HIC column alone or on CEX and HIC boosted the inhibitory activity by about 63% and 116%, respectively. LALDIEIATYR and VLDELTLAR had the same activities as the entire fraction. Sweet whey from camel milk contains caseinomacropeptide (CMP) and glycomacropeptide (GMP). The GMP from camel milk was purified by ion exchange chromatography and ultra-filtration, and the purity of camel GMP determined by SDS-PAGE and mass spectrometry. The anti-adhesion activity of camel GMP against ETEC was determined using an hemagglutination assay and by enzyme-linked immunosorbent assay (ELISA). The monosaccharide content of GMP from Bactrian camels and dromedaries was about twice as high when compared to bovine GMP. Glycans from camels included fucose and N-acetylglucosamine, which were absent in bovine GMP. GMP from both camel's species prevented ETEC adhesion to porcine blood cells at a concentration of 0.24 g/L and 0.28 g/L respectively, a concentration that is about 20-fold lower when compared to bovine. This increased activity likely relates to the increased glycosylation and the density of glycan spacing, and / or to differences in the glycan composition. In conclusion, bioactive peptides derived from CMWP have potential inhibitory effect on oxidative stress, starch digestion, and pathogenic bacteria adhesion. .

Preface

This thesis is the original work by Rami Althnaibat.

Chapter 2 is a literature review being prepared as a manuscript for publication as Rami Althnaibat, Heather Bruce, Jianping Wu, and Michael Gänzle "Potential applications of bovine and camel milk proteins hydrolysates for controlling hyperglycemia, blood hypertension, and pathogen adhesion: A review of randomized clinical studies", Dr. Gänzle was the corresponding author contributed to manuscript composition, editing, and revision. Dr. Wu contributed to revision.

Chapter 3 is in preparation for publication as "Antioxidant properties of *in vitro* digests of flavourzyme-treated camel milk whey protein hydrolysate". I was responsible for undertaking the experiments and writing the manuscript. Dr Lingyun Chen, Dr. Ewelina Eckert, and Dr. Chunmei Ni contributed to experimental design. Dr. Bruce and Dr. Gänzle contributed to editing and revision.

Chapter 4 is in preparation for publication as Rami Althnaibat, Heather Bruce, and Michael Gänzle "Identification of starch digestion inhibitory peptides from camel milk whey protein. Dr. Gänzle was the corresponding author and contributed to manuscript composition, editing, and revision.

Chapter 5 has been published as Rami M. Althnaibat, Mandy Koch, Heather L. Bruce, Daniel Wefers, and Michael G. Gänzle1 "Glycomacropeptide from camel milk cheese whey inhibits the adhesion of enterotoxigenic *Escherichia coli* K88". Dr. Koch and Dr. Wefers were contributed to determine the glycan structure and content, Dr. Bruce was contributed to revision, Dr. Gänzle was the corresponding author and contributed to manuscript composition, editing, and revision.

Dedication

To my parents

To Dr. Heather Bruce and Dr. Michael Gänzle

To my wife and my daughters

Acknowledgements

I would like to express my sincere thankfulness to my supervisors, Dr. Michael Gänzle and Dr. Heather Bruce for accepting me as a Ph.D. Student. The day you accepted me as a Ph.D. student was the best day of my life. Words can not express how thankful I am for this opportunity. I want to pass my honest gratitude to Dr. Gänzle and Dr. Bruce for supporting me in every step of this research, for their supervision with helpful suggestions and eminent guidance. I want to thank them for their encouragement, invaluable advice, and patience in guiding me to the right research directions.

I would also like to thank my supervisory committee member Dr. Jianping Wu for the valuable feedback and suggestions during committee meetings. I would like to express my deepest appreciation to Dr. Lynn McMullen and Dr. Wendy Wismer for their helpful advices. I would like to express thanks to Heather Vandertol-Vanier and Holly Horvath for their help. I would like to express special thanks to Dr. Daniel Wefers and Dr. Mandy Koch from Martin Luther University Halle-Wittenberg for the help in camel milk glycan structure determination.

I would like to express my sincere gratitude to the late Dr. Lech Ozimek for his support in the beginning of my research. Thanks to the past member of my doctoral committee Dr. Lingyun Chen as I did part of my thesis in her lab. I would like to express thanks to all food microbiology lab members for their help. Especially Dr. David Simpson, Tongbo Xu, and Dr. Gautam Gaur.

I would like to express my appreciation to the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs (CRC), and Mutah University in Jordan for the financial support. My sincerest acknowledgment goes to my friends; Dr. Mohammad Aluddat and Dr. Nakano Takuo for their support and encouragement throughout my program. Finally, I would like to express my gratitude to my family: my mother (Khawla Althnaibat); my father (Mohammad Althnaibat); my siblings; and my beloved wife (Diana Alhaddad) and my daughters, for their prayers, unyielding support, patience, and love.

Table of Content

Chapter 1. Introduction
1.1. Camel overview1
1.2. Camel milk
1.2.1. к-Casein
1.2.2. Whey protein
1.2.3. Amino acid composition7
1.3. Camel milk cheese
1.4. Hypotheses
1.5. Objectives
Chapter 2. Potential applications of bovine and camel milk proteins hydrolysates for controlling
oxidative stress, hyperglycemia, blood hypertension, and pathogen adhesion: A review of
randomized clinical studies
2.1. Introduction
2.2. Antioxidant bioactive peptides15
2.3. Antihypertensive peptides
2.4. Peptides that inhibit starch digestion or improve glucose homeostasis
2.5. Antiadhesion activity of glycomacropeptide (GMP)
2.6. Conclusions

Chapter 3. Antioxidant properties of <i>in vitro</i> digests of flavourzyme-treated camel milk whey
protein hydrolysate
3.1. Introduction
3.2. Materials and methods
3.2.1. Materials
3.2.2. Camel milk whey protein isolation
3.2.3. Camel milk whey protein enzymatic hydrolysis
3.2.4. Degree of hydrolysis (DH)40
3.2.5. Antioxidant properties
3.2.6. <i>In vitro</i> gastric and small intestine digestions
3.2.7. Digesta antioxidant capacity
3.2.8. Digesta molecular weight
3.2.9. Statistical Analysis
3.3. Results
3.3.1. Degree of hydrolysis (DH%):
3.3.2. Impact of enzymatic hydrolysis on antioxidant properties of camel milk whey protein
3.3.3. <i>In vitro</i> gastric and small intestine digestions
3.3.4. Digesta molecular weight (Mw)50
3.4. Discussion

3.5. Conclusion
Chapter 4. Identification of peptides from camel milk that inhibit starch digestion
4.1. Introduction
4.2. Materials and methods62
4.2.1. Isolation of cheese whey
4.2.2. Hydrolysis of whey protein
4.2.3. <i>In vitro</i> digestibility of starch and starch-peptide mixture
4.2.4. Hydrophobic interaction chromatography (HIC)63
4.2.5. Cation exchange chromatography (CEX)63
4.2.6. Size exclusion chromatography (SEC)65
4.2.7. Peptide sequencing65
4.2.8. Peptide synthesis
4.2.9. Statistical Analysis67
4.3. Results
4.3.1. Starch digestibility inhibition of camel whey and whey hydrolysates67
4.3.2. Purification of Bactrian camel whey hydrolysate
4.3.3. Determination of peptides size by size exclusion chromatography70
4.3.4. Peptide sequences in fractions inhibiting starch digestion75
4.3.5. Inhibition of starch digestion by synthesized peptides76
4.4. Discussion

Chapter 5. Glycomacropeptide from camel milk inhibits the adhesion of enterotoxigenic
Escherichia coli K88 to porcine cells
5.1. Introduction
5.2. Materials and methods
5.2.1. Purification of CMP
5.2.2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
5.2.3. Reverse phase high performance liquid chromatography coupled to mass
spectrometry (LC-MS)
5.2.4. Determination of glycan composition
5.2.5. Bacterial strains and growth conditions
5.2.6. Hemagglutination assay to detect the impact of GMP on ETEC K88 adhesion to
piglet erythrocytes
5.2.7. Enzyme-Linked Immunosorbent Assay (ELISA) to test the ability of GMP to prevent
ETEC K88 adhesion to porcine erythrocytes
5.2.8. Deglycosylation of GMP89
5.2.9. Statistical Analysis
5.3. Results
5.3.1. CMP Purification90
5.3.2. Composition of the glycans in GMP from cattle, Bactrian camels, and dromedaries.92
5.3.3. Impact of GMP on ETEC K88 adhesion to porcine erythrocytes
5.3.4. Deglycosylation of GMP96

5.4. Discussion	
5.5. Conclusion	
Chapter 6. General Discussion and Conclusion	
References	106
Appendices	

List of Tables

Table 1.1: chemical and molecular composition of camel, cow, goat, and sheep milk
Table 1.2: κ -casein residue sequences for (camel, cow, goat, and sheep), and their chymosin's
cleavage site
Table 2.1:Antihypertensive activity of milk-derived bioactive peptides in randomized clinical
trials
Table 2.2: Antihyperglycemic activity of bioactive peptides in randomized clinical trials
Table 3.1: The optimum conditions for enzyme used in whey protein hydrolysis
Table 4.1: Peptide recovery after chromatography on SP- Sepharose fast flow column (cation
exchange chromatogram; CEX) and on Octyl Sepharose CL-4B column (hydrophobic interaction
chromatogram; HIC), and starch digestibility inhibition of collected fractions (peptides) at the ratio
1:3 (peptide: starch) respectively
Table 4.2: Sequences of peptides resulted from camel whey protein hydrolysates after separation
on an octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC)74
Table 4.3: Sequences of peptides identified in camel whey protein hydrolysates after separation
on SP- Sepharose fast flow column (cation exchange chromatogram; CEX) and on Octyl
Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC). Peptides were
sequenced by LC-MS/MS after trypsin hydrolysis of the fractions unless indicated75
Table 4.4: Starch digestibility inhibition (%) of synthesized peptides identified in camel whey
protein hydrolysates after separation on SP- Sepharose fast flow column (cation exchange
chromatogram; CEX) and on Octyl Sepharose CL-4B column (hydrophobic interaction
chromatogram; HIC), or just on Octyl Sepharose CL-4B column (HIC). The peptides synthesized
by Canada Peptide company, Pointe-Claire, Quebec, Canada76

Table 5.1: Composition of monosaccharides after hydrolysis of bovine, Bactrian camel, or
dromedary GMP with 2 M TFA94
Table 5.2: Inhibition of erythrocyte agglutination by ETEC K88 strain with Bactrian camel GMP,
dromedary camel GMP, bovine GMP, oligosaccharides from camel acidic whey, bovine serum
albumin (BSA), and lactose
Table 5.3: Inhibition of erythrocyte agglutination by ETEC K88 strain with Bactrian camel GMP,
dromedary camel GMP, and bovine GMP before and after enzymatic deglycosylation97

List of Figures

Figure 1.1: Camel family classification
Figure 2.1: In vitro, in vivo, and randomized controlled trails confirmed studies for bioactive
peptides13
Figure 2.2:Starch digestion in gastrointestinal tract and potential mechanism of milk derived
bioactive peptides for starch digestion delaying
Figure 2.3: Amino acid sequence with glycan structure of glycomacropeptide (GMP) derived from
bovine milk (variant A and B)
Figure 2.4: Adhesion of bacteria to the epithelial cells and antiadhesion activity for glycopeptides.
Figure 3.1. Degree of hydrolysis determined using TCA acid (20%): whey proteins hydrolysis by
different proteases at 30, 60, 90, 120, 180, and 240 min
Figure 3.2 A) DPPH radical scavenging activity (% scavenging at 1.0 mg/mL); B) superoxide
radical scavenging activity (% scavenging at 0.5 mg/mL); C) ferrous ion chelating activity at 1
mg/mL concentration; and D) reducing power (absorbance at 1 mg/mL) of the camel milk whey
protein hydrolyzed by four different proteases for different hydrolysis times (0.5-4h)
Figure 3.3:A) DPPH free radical scavenging activity (% scavenging at 1.0 mg/mL), B) superoxide
radical scavenging activity (% scavenging at 0.5 mg/mL), C) Ferrous ion chelating activity (% at
1.0 mg/mL), D) Reducing power (absorbance at 1.0 mg/mL) of flavourzyme hydrolysate at 1.5 h
(FH) during pepsin and trypsin digestion
Figure 3.4: Molecular weights of the flavourzyme hydrolysate (FH) before and after digestion with
flow rate was 0.1 ml/min
Figure 4.1:Flow diagram for the isolation of bioactive peptide from camel milk whey protein64

Figure 4.2: Fractionation of flavourzyme hydrolyzed camel whey sample on Octyl Sepharose CL-
4B column (hydrophobic interaction chromatogram; HIC)69
Figure 4.3: Starch digestibility inhibition % of flavourzyme hydrolyzed camel whey fractions
resulted after applying on an Octyl Sepharose CL-4B column (hydrophobic interaction
chromatogram; HIC)70
Figure 4.4: Panel A: Fractionation of flavourzyme hydrolyzed camel whey sample, on SP-
Sepharose fast flow (cation exchange chromatogram; CEX). Panel B: Fractionation of F1 eluting
from CEX on a Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC).
Figure 4.5: Starch digestibility inhibition % of flavourzyme hydrolyzed camel whey. Panel A.
Fractions after separation on SP- Sepharose fast flow (cation exchange chromatogram; CEX).
Panel B. Fractions after separation on CEX and subsequent separation of fraction F1 on an Octyl
Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC)
Figure 4.6: Size determination of camel whey, camel whey hydrolysate, selected fraction 1 from
hydrophobic interaction chromatogram (HIC (F1)), and selected subfractions from cation
exchange chromatogram (CEX) and hydrophobic interaction chromatogram (HIC); (CEX & HIC
F2*) and (CEX & HIC F1*), through size exclusion chromatography at 220 nm
Figure 5.1: Flow diagram for the purification of the glycomacropeptide (GMP) from camel milk
Figure 5.2: Separation of the GMP from milk of Bactrian camels (Panel A) and dromedaries
(Panel B) on a diethylaminoethyl (DEAE)- Sephadex A-25 column
Figure 5.3: Amino acid sequence of the glycomacropeptide (C-terminus of κ -casein) from Bactrian
camel (L0P304), dromedary (P79139), and cows (P02668)

igure 5.4: Separation of purified GMP from Bactrian camel and dromedary, and of commercial
ovine GMP by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)93
Figure 5.5: Quantification of E. coli K88 ECL13795 binding to porcine erythrocytes with ELISA
argeting K88 antibodies

List of Abbreviation

ACE	Angiotensin converting enzyme
AH	Alcalase hydrolysates
Ala (A)	Alanine
ANS	8-anilino-1 naphthalene sulfonic acid
Arg (R)	Arginine
Asn (N)	Asparagine
Asp (D)	Aspartic acid
BPs	Bioactive peptides
BSA	Bovine serum albumin
CEX	Cation exchange chromatography
СНО	Carbohydrate
СМ	Camel milk
C _{max}	Maximum concentrations
CMWP	Camel milk whey proteins
Cys (C)	Cysteine
DBP	Diastolic blood pressure
DH	Degree of hydrolysis
DM	Diabetes mellitus
DP	Degree of polymerization
DPP4	Dipeptidyl peptidase-4
DPPH	1,1- diphenyl-2-picrylhydrazyl
EHEC	enterohemorrhagic E. coli

ELISA	Enzyme linked immunosorbent assay
ETEC	Enterotoxigenic Escherichia coli
F	Fraction
FAO	Food and Agriculture Organization of the United Nations
FH	Flavourzyme hydrolysates
Gal	Galactose
GI tract	Gastrointestinal tract
GIP	Glucose-dependent insulinotropic polypeptide
Glc	Glucose
GlcN	N-glucosamine
GlcNAc	N-acetyl glucosamine
Gln (Q)	Glutamine
GLP	Glucagon like-peptide-1
Glu (E)	Glutamic acid
Gly (G)	Glycine
GMP	Glycomacropeptide
GOS	Galacto oligosaccharides
HCL	Hydrogen chloride
HIC	Hydrophobic interaction chromatography
His (H)	Histidine
HLT	Heat labile enterotoxin
HMOs	Human milk oligosaccharides
HPLC	High-performance liquid chromatography

Ig	Immunoglobulin
Ile (I)	Isoleucine
LC-MS/MS	Liquid chromatography-mass spectrometry
Leu (L)	Leucine
LF	Lactoferrin
Lys (K)	Lysine
MAC	Minimum anti-adhesive concentration
Met (M)	Methionine
MIC	Minimum inhibitory concentration
Mw	Molecular weight
NeuNAc	N-acetylneuraminic acid
O ²⁻	Superoxide radical
OD	Optical density
PBS	Phosphate buffer solution
Phe (F)	Phenylalanine
pI	Isoelectric point
Pro (O)	proline
РҮҮ	Peptide tyrosine-tyrosine
RCT	Randomized clinical trials
RDS	Rapidly digestible starch
ROS	Reactive oxygen species
RS	Resistant starch
SBP	Systolic blood pressure

SDS	Slowly digestible starch
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEC	Size exclusion chromatography
SE-HPLC	Size exclusion-high performance liquid chromatography
Ser (S)	Serine
ST	Heat stable enterotoxin
STEC	Shiga toxin-producing E. coli
t _{1/2}	The elimination half-lives
T2D	Type2- diabetes
TCA	Trichloroacetic acid
Thr (T)	Threonine
TNBS	Trinitro benzene sulfonic acid
Trp (W)	Tryptophan
Tyr (Y)	Tyrosine
Val (V)	Valine
α-LA	α-lactalbumin
β-lg	β-lactoglobulin

Chapter 1. Introduction

1.1. Camel overview

Camel (*Camelus*) is the sixth domesticated animals on earth and the fifth major dairy animal after cow, sheep, goat, and buffalo by population ¹. The camel is related to the family Camelidae, and can be divided into three genera; *Camelus, Lama*, and *Vicugna* (Figure 1.1) ¹. Camels from the genus Camelus can be further classified into two main species based on the number of humps. The one-humped camels (*Camelus dromedaries*), also known as Arabian camel or dromedary, are usually found in hot regions, such as Africa and the Middle East. The two-humped (*Camelus bactrianus*) camels, known as Bactrian camels, live in cold areas like southern Russia and central China ². In addition to that there are four other types of small camelids, Llama, Alpaca, Guanaco, and Vicuna, which are found in the Andin Mountain region of the South America. These camels are called the "South American Camelidae" and the first two types of them belong to tame camelids and are called the "New World camels", whereas the other two types are untamed camelids and are called the "South American camels", here the two types are untamed

The exact number of camel populations in the world is unknown because camels are mainly used by nomadic and pastoralist areas people ⁴⁺⁵. However, the Food and Agriculture Organization of the United Nations (FAO) has reported in 2022 an estimation of about 39 million camels (*Camelus*) in the world ⁶.

1.2. Camel milk

Milk is one of the main foods that contain a great number of essential and bioactive molecules like lipids, vitamins, minerals, and proteins with diverse therapeutic activities ⁷. Milk is commercially

produced from many dairy animals such as cows, goats, sheep, and camels. Camels are a good source of meat and milk.

Figure 1.1: Camel family classification ¹.

The climate of the camel's habitat ⁸, seasonal variations ⁵, and the breed ⁷, have a direct impact on the solids content of the camel milk (Table 1.1). Camel milk has a distinctive sweet flavour and is slightly salty in taste ⁹. The color of camel milk is bleary white which is due to the presence of a trace amount of vitamin A (carotene) ¹⁰. Camel milk contains high concentrations of water-soluble vitamins, mainly vitamin C and some vitamin B-complex. It has been reported that camel milk has about 34.16 mg/L of vitamin C, which is three times more than that in cow milk ⁹.

	Average content%				Number of Amino Acids					
	Dromedary	Bactrian	Cow	Goat	Sheep	Dromedary	Bactrian	Cow	Goat	Sheep
Water%	88	86	87	88	81					
Total solid%	12	14	13	12	19					
Fat%	3.6	5.3	3.6	3.8	6.9					
Fat globule size (µm)	3.0	3.0	4.3	3.2	3.6					
Lactose%	4.6	4.5	4.9	4.1	4.8					
Ash%	0.8	0.8	0.7	0.8	1.0					
Protein%	3.3	3.9	3.3	3.5	5.0					
Casein %	2.5	2.9	2.5	2.3	4.1					
Casein micelle size(µm)	0.4	0.4	0.2	0.3	0.2					
α -casein% ^a	32	32	48	25	30					
α s1 -casein% ^a	22	22	38	5.6	6.7	207	207	199	199	199
α s2-casein% ^a	9.5	9.5	10	19	23	178	178	207	208	208
β -casein $\%^a$	65	65	39	55	62	217	217	209	207	207
<u><i>к</i>-casein</u> % ^a	3.5	3.5	13	20	8.9	162	162	169	171	171
Whey proteins%	0.8	1.0	0.8	1	0.9					
<u>α-lactalbumin (α-LA) %</u> ^b	47	47	20	27	15	123	123	123	123	123
Immunoglobulin (Ig)% ^b	7.8	7.8	13	9.7	7.3					
<u>β-lactoglobulin (β-LG) %^b</u>			59	59	73			162	162	162
Lactoferrin (LF)% ^b	5.4	5.4	1.8	0.1	0.1	689	689	689	689	689
<u>Serum albumin </u> % ^b	9.43	9.43	6.2	4.0	4.1	588	588	583	583	583
Lysozyme mg/L ^b	38	38	18	trace	trace					

Table 1.1: Chemical and molecular composition of camel, cow, goat, and sheep milk

^a; % from total casein content, ^b; % from total whey protein content. The data in the table obtained from 10, 11, 3, 12, 5, 13, 14, 15, 16, 17, 18, 19

Total milk production varies from 320 to 3800 liters per year based on the age of the camels from 8-18 months. Moreover, the milk production per animal varies by the camel breed; for example, a dromedary camel produces 6-7 L of milk per day, whereas a Bactrian camel produces 0.5-1 L/day ²⁰. The properties of camel milk are also determined by the age of the animal, their living conditions (climate) and geographical locations, type of fodder, frequency of pregnancy, and the

manner and time of lactation ⁷. The protein content in camel milk is high and is the third major constituent of the milk and comprises an average of 3.3% and 3.9% of camel milk solids from Dromedary and Bactrian types, respectively ¹⁰. Camel milk protein contains a high proportion of essential amino acids. Camel milk has many other special properties like the presence of α -lactalbumin protein, the absence of β -lactoglobulin protein, and a different ratio between casein and whey protein compared to cow, sheep, and goat milk ²¹.

Like other milk, camel milk has casein as the most dominant protein. Casein can be divided into three fractions: β -casein, κ -casein, and α -casein with proportions of 65%, 3.5%, and 31.5%, respectively. The α -casein can be further divided into two types, α s1-casein, and α s2-casein, with proportions of 22% and 9.5% of the total casein, respectively ²². The size of the casein micelle in camel milk is larger than the casein micelle of other species. The diameter of casein micelle is about 380 nm in camel milk, and 150, 260, and 180 nm, for cow, goat, and sheep milk, respectively ¹⁶ (Table 1.1). The casein protein of camel milk is susceptible to pH (the isoelectric point, pI of camel milk at pH 4.3) ²³. The amino acid compositions of casein from cow milk and camel milk are very similar except casein from camel milk has low concentrations of glycine and cysteine ¹⁹.

к-Casein

 κ -Casein is the smallest fraction of the camel milk casein and constitutes about 3.5% of the total casein protein. On the other hand, the κ -casein in cow milk represents 13% of the total casein and contains higher concentrations of essential amino acids except for lysine compared to camel milk κ -casein ^{24,25}. Moreover, the camel milk κ -casein amino acid sequence has an additional proline residue (pro95) that contributes to camel milk's better heat stability than the cow, goat, and sheep milk ¹⁹.

The κ -casein from camel milk has a molecular weight of 22.29- 22.99 kDa. The κ -casein of cow, goat and sheep milk can be hydrolyzed by chymosin (Rennet) at Phe105-Met106 during cheese processing, whereas the camel milk κ -casein is hydrolyzed by rennet Phe97-Ile98 ^{19,26} (Table 1.2). The caseinomacropeptide (CMP; not glycosylated) and glycomacropeptide (GMP; glycosylated) representing the C-terminal of κ -casein of camel milk can be obtained by rennet hydrolysis of the milk protein. This hydrolysis causes the separation of casein from whey protein during the making the cheese. CMP is the third most abundant bioactive compound in cheese whey protein, constituting about 15-20% of the total whey proteins. Hydrolysis of cow milk κ -casein at Phe105-Met106 linkage releases a polar and non-polar polypeptide. The non-polar peptide is known as para κ -casein, consists of 105 amino acids, and remains in the curd ^{27,25}. The highly polar peptide consists of 64 amino acids (Met-106 - Val-169 residue) and remains in the whey protein (liquid phase) ^{27,28}.

Table 1.2: κ -Casein residue sequences for (camel, cow, goat, and sheep), and their chymosin's cleavage site. Green-colored boxes indicate the cleavage site of rennet ^{19,29,30,31}.

Animal	κ -casein residue sequence								
Camel	EVQNQEQPTC	FEKVERLLNE	KTVKYFPIQF	VQSRYPSYGI	NYYQHRLAVP	50			
	INNQFIPYPN	YAKPVAIRLH	AQIPQCQALP	NIDPPTVERR	PRPRP\$FIAI	100			
	PPKKTQDKTV	NPAINTVATV	EPPVIPTAEP	AVNTVVIAEA	SSEFITTSTP	150			
	ETTTVQITST	EI 162							
Cow	QEQNQEQPIR	CEKDERFFSD	KIAKYIPIQY	VLSRYPSYGI	NYYQQKPVAL	50			
	INNQFLPYPY	YAKPAAVRSP	AQILQWQVLS	NTVPAKSCQA	QPTTMARHPH	100			
	PHLSFMAIPP	KKNQDKTEIP	TINTIASGEP	TSTPTTEAVE	STVATLEDSP	150			
	EVIESPPEIN	TVQVTSTAV	169						

Goat	QEQNQEQPIC INNQFLPYPY PHLSFMAIPP	CEKDERFFDD YAKPVAVRSP KKDQDKTEVP	KIAKYIPIQY AQTLQWQVLP AINTIASAEP	VLSRYPSYGL NTVPAKSCQD TVHSTPTTEA	NYYQQRPVAL QPTTLARHPH IVNTVDNPEA	50 100 150
	SSESTASASE	TNTAQVTSTE	V 171			
Sheep	QEQNQEQRIC INNOFLPYPY PHLSFMAIPP SSESIASAPE	CEKDERFFDD YAKPVAVRSP KKDQDKTEIP TNTAQVTSTE	KIAKYIPIQY AQTLQWQVLP AINTIASAEP V 171	VLSRYPSYGL NAVPAKSCQD TVHSTPTTEA	NYYQQRPVAL QPTAMARHPH VVNAVDNPEA	50 100 150

Whey protein

Whey protein is the second main protein in camel milk and constitutes about 20-30% of total camel milk proteins ³². When separated from camel milk, the whey protein is white which is due to the light reflection from the small fat droplets and κ -casein particles. On the other hand, the whey proteins extracted from cow, goat, and sheep milk exhibit a greenish shade³³. There are many differences between the whey protein of camel milk and cow milk with respect to the thermal stability and acidity. The whey protein from camel milk is stable and less susceptible to heat than cow milk whey protein. This higher thermal stability could be due to the absence of β -lactoglobulin and the low concentration of κ -casein in camel milk³⁴. The major characteristics of whey proteins from camel milk are highlighted in Table 1.1.

Whey protein from camel milk contains high amounts of α -lactalbumin, lactoferrin, antibodies and immunologically active ingredients like serum albumin, peptidoglycan, lysozyme, immunoglobulin, and lactoperoxidase. Camel milk whey proteins have a suitable balance between essential and non-essential amino acids ³⁵. The α -lactalbumin (α -LA) is the major component of whey protein in camel milk and comprises about 47.41 % of the total whey proteins in camel milk, whereas, in cow, goat, and sheep milk α -LA contents are about 20.1, 27, and 14.8% of total whey

proteins (Table 1.1). The high concentration of α -LA in camel milk whey protein affects the solubility of protein and makes the whey protein more susceptible to the pH ³⁴.

The β -lactoglobulin (β -LG) is the major whey protein in cow milk and constitutes about 58% of total cow whey proteins, whereas this protein is absent in camel milk whey protein³⁶. The content of lactoferrin, immunoglobulins, and serum albumin in camel milk is around 5.4%, 7-8%, and 9.4 of the total whey protein, respectively ³⁷. The lysozyme concentrations in camel milk are about 228-500 µg/100 mL, and are highest in colostrum ³⁸. The lysozyme concentration in camel milk is about 11, 8, and 10 times higher than that in cow, goat, and sheep milk, respectively ³⁹.

Amino acid composition

In general, whey and casein proteins have an equilibrium of essential and non-essential amino acids, but the concentration varies by type of the milk ⁴⁰. A study by Rafiq and others (2016) of the amino acid compositions for camel, cow, goat, sheep, and buffalo milk reported that leucine and valine are present in the highest concentrations in cow milk followed by camel milk⁴¹. Camel milk whey proteins contain most of the essential amino acids (i.e., Phe, Val, Thr, Try, Met, Leu, Ile, Lys, and His) with high concentrations of Phe, Val, Leu, and Lys. On the other hand, the non-essential amino acids of camel milk whey protein are present in low quantities except Glu and Pro. These characteristics support the hypothesis that camel milk whey protein is a promising candidate to produce bioactive peptides with health benefits which can be a major part of functional foods ²¹.

1.3. Camel milk cheese

Cheese processing is usually restricted to goat, cow, and sheep milk. Camel milk is widely consumed in North Africa and in the Middle East ⁴² and most camel milk is consumed as raw milk

without any processing. Recently, camel milk has attracted attention due to its unique biological and therapeutic properties ⁴³, and many processed products such as cheese, chocolate, butter, ice cream, yogurt, and fermented milk made from camel milk have been developed and are available in the market ^{44,45}. The production of many different types of camel cheese such as fresh, soft, and semi-hard has increased and thus increased the amount of whey as a by-product ^{42,46}. The proportion of casein and whey proteins in camel milk is different than that in milk from other species. The ratio of casein and whey proteins in bovine, ovine, and caprine milk is (~80:20) of the total milk protein, whereas, this ratio in camel milk is about 75:25 ²¹. Until now in developing countries, whey has been considered a waste product that requires expensive treatment before discharging into the environment. In some cases, whey is processed into relatively low-value commodities such as whey powder or whey protein concentrates for use as a food ingredient. Therefore, the full potential of whey has not yet been explored ⁴⁷.

Whey contains a rich mixture of soluble proteins with different chemical, physical and functional properties. Whey proteins from cow milk or their derivatives have potential health benefits ⁴⁸. Specific use of these proteins in biologically functional foods, nutraceuticals, pharma-foods, or designer foods could then potentially improve human and animal health ⁴⁸. Most of the research on whey protein is focused on that sourced from bovine milk, while a few studies have focused on that derived from camel milk.

1.4. Hypotheses

The hypotheses examined in this thesis, therefore, are:

- *In vitro* enzymatic hydrolysis of whey proteins from camel milk in a controlled manner produce beneficial bioactive peptides with antioxidant activity.

- Hydrolysis of whey proteins from camel milk using fungal and intestinal enzymes releases peptides that inhibit starch digestion.

- Chymosin hydrolysis, ultrafiltration, and ion exchange chromatography produces pure glycomacropeptide from camel milk.

- GMP derived from camel milk has anti-adhesive effects against Enterotoxigenic *Escherichia coli* K88.

1.5. Objectives

The overall objective of this thesis is to investigate the effects of enzymatic hydrolysis and successive chromatographic fractionation on camel milk whey protein to produce bioactive peptides and glycopeptides, and to determine antioxidant, starch digestion inhibition, and anti-adhesion activities for produced peptides. The overall objective can be divided into four specific objectives:

Objective 1: to characterize the *in vitro* antioxidant activities of the bioactive peptides derived from camel milk whey protein produced using enzymatic hydrolysis.

Objective 2: to determine the effect of peptides from camel milk whey protein on the inhibition of the starch digestion and the effect of positively charged hydrophobic amino acids content on starch digestion inhibitory activity.

Objective 3: to optimize the isolation and purification process of GMP from camel milk whey protein and evaluate its chemical composition.

Objective 4: to investigate the effect of GMP on adhesion of enterotoxigenic *Escherichia coli* K88 to porcine blood cells.

9

Chapter 2. Potential applications of bovine and camel milk proteins hydrolysates for controlling oxidative stress, hyperglycemia, blood hypertension, and pathogen adhesion: A review of randomized clinical studies

-Advanced revision of this chapter has been prepared as a literature review manuscript for publication.

2.1. Introduction

Dietary protein and derived bioactive peptides (BPs) have health-beneficial properties⁴⁹. Bioactive peptides can be derived from dietary proteins by chemical or enzymatic hydrolysis through protein hydrolysis during food processing or food fermentation, and / or during intestinal transit ³. The health promoting properties of bioactive peptides depend on the molecular weight and the peptide sequence, which determines charge and hydrophobicity ³. Pepsin hydrolysis in the stomach is the first step of food protein digestion; proteins are then further hydrolyzed by the pancreatic proteases trypsin and chymotrypsin, and by brush border peptides derived from milk are generated by hydrolysis of proteins *in vivo* and/or *ex vivo* through digestive enzymes, microbial enzymes, and microbial fermentation ³; for example, the casein-derived bioactive peptides VPP and IPP have been detected in the blood stream after consumption of yogurt ⁵¹.

Some bioactive peptides act locally in the GIT, examples particularly include peptides that inhibit starch digestion; however, most bioactive peptides including antihypertensive peptides are active after transfer to the blood stream ⁵¹. The bioavailability of peptides is affected by digestive enzymes in the gastrointestinal tract, metabolism, absorption, and distribution or degradation in the blood stream. The bioavailability of ingested bioactive peptides depends on the composition,

number, and sequences of amino acids ^{51,52,53}. These characteristics of peptides determine the pathway that may be used to cross the intestinal epithelial cell ⁵¹.

The bioavailability of bioactive peptides and their transfer to the bloodstream is a major hurdle to health beneficial effects in humans and animals ⁵⁴. Hydrolysis of peptides occurs during digestion but also after being transported into the epithelial cells and in the bloodstream ⁵⁴. Proteins with high content of proline are resistant to gastric and pancreatic peptidases, and proline-rich peptides are thus most likely to escape the digestion and to reach the intestinal membrane in relatively intact sequence and face the brush border enzyme ^{53,55}. The milk-derived bioactive peptides IPP ⁵⁶, VPP ⁵⁷, PG ⁵⁸, IP ⁵⁹, HLPLP ⁶⁰ have been detected in the plasma of human and animals. However, the peptide concentrations in the blood serum are typically substantially lower than the concentrations that are required for *in vitro* activity ⁶¹. For example, ACE inhibitory activity of the tripeptide IPP is observed at 10 μ mol/L ^{62,63} while the concentration in blood was reported to be 10,000 times lower, 0.90 ± 0.16 nmol / L ⁵⁹.

Many studies document a significant and favorable effect of some bioactive peptides in human and animal after oral administration. Even for peptides that were shown to be effective in animal models including pigs and rats and in randomized clinical trials (RCT) in humans, the role of bioavailability, effects, pharmacokinetics, and plasma concentrations of bioactive peptides are still not fully understood ^{51,61}. The maximum concentrations (C_{max}) and the elimination half-lives ($t_{1/2}$) of absorbed bioactive peptides in the blood plasma reflect their bioavailability, and then the possibility of activity ^{64,65}. Most of the bioactive peptides have achieved their C_{max} in the micromolar range (μ M), and $t_{1/2}$ ranged between a few minutes to a few hours. The variation in C_{max} and $t_{1/2}$ of the bioactive peptides in the human plasma could be determined by sex, age, diseases, interaction with food matrix, in addition to the factors mentioned above that affect their bioavailability ^{66,67}.

Peptide hydrolysis in the small intestinal membrane is mediated by several brush border peptidases. Specifically, brush border enzymes that contribute to peptide hydrolysis include the aminopeptidase N, dipeptidyl aminopeptidase IV, aminopeptidase A, peptidyl dipeptidase, γ -glutamyltranspeptidase, and carboxypeptidase. Of these peptidases, the γ -glutamyltranspeptidase is specifically active on γ -glutamylpeptides of plant or microbial origin. The only enzymes with activity on peptide bonds adjacent to proline are aminopeptidase and carboxypeptidase $^{50+53+55}$.

In the last decades, the prevalence of food-related chronic diseases including cardiovascular disease, alcoholic fatty liver disease, diabetes mellitus, and hypertension has increased worldwide ⁵²⁺⁶⁸. Hundreds of *in vitro* studies have suggested that bioactive peptides have a favorable effect on the functions of various organs and that they offer multiple biological and physiological benefits with a wide range of biological activities (Figure 2.1) ⁶⁹. Some but not all of these promising *in vitro* data were confirmed *in vivo* with animal models, however, and the susceptibility of orally ingested peptides to GIT and brush border peptidases is a relevant issue to diminish the *in vitro* list of bioactivities for the peptides (Figure 2.1) ⁷⁰.

Despite promising favorable effects being demonstrated from *in vivo* studies using rodent models, only a limited number of clinical outcomes in humans have been reported. There are many factors that limit randomized clinical trials (RCT) such as insufficient understanding of bioactive peptide's mechanisms of action, inconsistent results, not enough convincing evidence, unclear pharmacokinetics, and methodology limitations ⁷¹. To date, RCT that show a health beneficial effect of dietary bioactive peptides are limited to antihypertensive activity and the

antihyperglycemic effects of peptides that inhibit starch digestion ^{71,72}. However, antioxidant activities have been demonstrated in *in vitro* studies, while a few *in vivo* studies have demonstrated anti-aging and anti-inflammatory effects related to antioxidant activities for studied peptides ⁷³.

Figure 2.1: In vitro, in vivo, and randomized controlled trails confirmed studies for bioactive peptides

For some peptides, however, animals are not relevant models for human health related issues but are suitable to demonstrate the metabolic relevance of bioactive peptides. This specifically pertains to glycopeptides that aim to prevent adhesion of enterotoxigenic *E. coli* (ETEC) to the intestinal mucosa of swine and calves ⁷⁴. These peptides were shown to reduce the cell numbers of ETEC in post-weaning piglets ^{74,75}. However, the strains of ETEC that cause diarrheal disease in humans differ in the glycan specificity, and successful interventions in swine does not necessarily translate to potential applications in humans ^{75,76}.

Milk is recognized as one of the main dietary sources for health beneficial bioactive compounds. Recently, the research about meat replacement with non-meat protein sources has been increased to reduce overconsumption of meat and facilitate the transition to a sustainable and healthier diet ⁷⁷. Milk products like dairy and cheese represents one of the main non-meat protein foods worldwide. Many of the dairy products are fermented and thus include the fermentation process that releases bioactive peptides by proteolysis. Generally, the fermentation process transforms the lactose to lactic acid, introduce beneficial bacterial microbiota to human gut and thus diminish the lactose intolerance of individuals ⁷⁸.

Milk-whey is a by-product of the cheese and casein production process, and its volume is on the increase worldwide. Bovine whey contains the whole water of milk with approximately 20% of the original milk protein and therefore represents a significant protein source. As a result, whey is an inexpensive source of high-nutritional quality protein and bioactive peptides for the food and health industries⁷⁹. Sweet whey contains about 5% caseinomacropeptide (CMP), which is an important bioactive peptide with antiadhesion activity against ETEC and many health benefits ^{74,75}. Until now, whey has been considered a waste product that requires expensive treatment before discharging into the environment in developing countries. In some cases, whey is processed into relatively low-value commodities such as whey protein concentrates to use as food additives to increase the value of whey after remove water and decrease the size of whey. Therefore, the full potential of this resource has not yet been fully explored ⁴⁷.

Despite the large number of studies on milk-derived bioactive peptides that have been reviewed by many others including Park et al. ³, Nongonierma et al. ⁵⁶, Horner et al. ⁶⁵, Cicero et al. ⁶⁶, Chakrabarti et al. ⁶⁹, Daroit et al. ⁷⁰, Duffuler et al. ⁷¹, García-Burgos et al. ⁷⁸, and Luhovyy et al. ⁷⁹, most of these studies focus on bovine milk ²¹. Only a handful of studies have investigated the bioactive peptides from sheep, goats, horse, or camel milk²¹, reflecting that milk from these animals makes only relatively small contribution to the overall liquid milk or fermented dairy product market ⁸⁰. Camel milk is widely consumed in many countries of the Middle East and in North Africa ⁴². Recently, camel milk attracted attention due to its biological and therapeutic properties ⁴⁴. Most of the research on camel milk has focused only on raw milk, casein, and fat. Just a few studies focus on camel milk whey protein ^{21,44}. In many countries, the production of camel milk cheese has increased; however, this increase in camel milk cheese production also increased the amount of whey as a by-product ^{42,46}. The proportion of casein and whey proteins in camel milk is different than that in bovine milk. The ratio of casein and whey proteins in bovine milk is about 80%:20% of the total milk protein, meanwhile, this ratio in camel milk is 75%:25% ²¹.

Therefore, this review aims to summarize the possible bioactivities like antioxidant activities, antihypertension activities, antihyperglycemic activities, and antiadhesion activities against bacteria of peptides derived from bovine and camel milk, with a focus on RCT confirmed studies. Structure-function relationships of antioxidant bioactive peptides will be discussed additionally. Potential health benefits of antioxidant bioactive peptides are documented in multiple in vitro studies meanwhile very limited animal models have documented antioxidant activities that are not confirmed by RCT.

2.2. Antioxidant bioactive peptides

The oxidation reaction is a natural metabolic process in living organisms, but uncontrolled oxidation (imbalance between oxidation and reduction) often produces free radicals or reactive oxygen species (ROS)⁸¹. The high presence of ROS or free radicals in the body leads to oxidative stress ⁸². These highly reactive free radicals steal the donor atom's electrons from the surrounding environment, thereby the donor atoms turn into free radicals and start a chain reaction of oxidative damage ⁸³. The free radicals or ROS do not have specific receptors; therefore, they have a high capacity to damage living cells ⁸¹. Also, they can modify the cell gene expression that could lead
to an increased production of free radicals and ROS⁸⁴. Moreover, these free radicals significantly impact the characteristics of the processed food, such as unfavorable color and flavours⁸⁴.

Natural antioxidant peptides can prevent the harmful effects of free radicals and ROS⁸¹. Natural antioxidants may play role in: 1) scavenging free radicals thus preventing hydrogen atom (H⁺) transmission and electron migration, and 2) metal ion chelation (Fe^{2+}/Cu^{2+}), which is responsible for inhibiting hydroxyl radical chain reactions⁸³. However, metal ion chelation may work as antinutritive agent via binding some important metals that the human body needs such as, zinc and calcium leading to a deficiency in these micro-nutrients⁸⁵. Several chemical structures of the bioactive peptides contribute to their antioxidant's activities, such as their amino acids composition, sequences, molecular weights, charges, and hydrophobicities ⁸⁶. The potential antioxidant peptides, that can be derived from caseins and whey proteins of cow, camel, goat, and sheep milk shown in (Table S1; Appendices). The table shows some characteristics of peptides that affect antioxidant activity. Amino acids with ring-structures (i.e. imidazole, indole, pyrrolidine, benzene, and phenol rings such as histidine, proline, tryptophan, phenylalanine, and tyrosine, respectively) of the bioactive peptides provide the best antioxidant activities, because these rings act as significant proton and hydrogen donors ⁸⁶. Besides, the hydrophobicity of the amino acids enhances the antioxidant capacity by allowing the antioxidant peptides to enter the target organs through hydrophobic interactions with lipid bilayers of the organ's membrane. At the same time, the peptide's amphiphilic nature supports the radical-scavenging activity by enhancing the solubility of peptides that improve the proton exchange with free radicals ⁸⁶.

Moreover, the amino acid's charge plays an important role in determining the biopeptide's antioxidant activity. Acidic amino acids with a negative charge (e.g., Glutamic acid and Aspartic acid) have surplus electrons that play roles in stopping oxidative stress ⁸⁷. However, the sequences

and steric structures of the amino acid affect the antioxidant capacity of the peptides ⁸⁷. The sequences of hydrophilic, hydrophobic, and aromatic amino acids in the peptides determine the overall antioxidant capacity of the peptides ⁸⁸. Moreover, the amino acids at the N-terminal of the peptide have been found to be less important than those at the C-terminal ⁸⁸. For example, when the histidine is present at the C-terminal, it forms the coordination bond to chelate Fe²⁺ by the imino group of the Histidine' imidazole ring ⁸⁸. The amino acid sequences also affect the antioxidant's capacity; such as, when Glu and Tyr are adjacent to each other in the same peptide, the carboxyl group of Glutamic acid encourages the release of the H⁺ of the phenolic hydroxyl group of tyrosine ⁸⁷. Nevertheless, the low molecular weight may have a significant effect on the antioxidant activities of biopeptides by having more antioxidant peptide's per unit reaction area ⁸⁹.

Antioxidant bioactive peptides obtained from camel milk and other species milk (i.e., cow, goat, and sheep milk) have been reported in literatures. Most of the identified antioxidant peptides from camel milk are rich in charged amino acids (like glutamic acid, aspartic acid, arginine, and lysine), polar amino acids (mainly, glutamine and asparagine), hydrophobic amino acids (glycine, proline, valine, alanine, leucine, methionine, and isoleucine), and aromatic amino acids (mainly, phenylalanine and tyrosine). When the antioxidant peptides of camel milk are compared with the peptides of other milk with similar functions, similarity in amino acid compositions are observed.

The antioxidant peptides from camel milk whey proteins are more potent than the antioxidant peptides from camel milk casein ⁹⁰. This could be due to the distributions of hydrophilic amino acids such as lysine, aspartic acid, glutamic acid, and serine with hydrophobic amino acids in camel milk whey protein's peptides⁹⁰. The residues like GY, GW, and DP are abundant in camel milk whey protein's peptides. These amino acids sequences contribute to the peptide's antioxidant properties by having the extra electrons present in the carboxyl group of the acidic amino acids

like aspartic acid and glutamic acid and by freeing hydrogen atoms from the phenolic hydroxyl group of tyrosine and thus increase the reducing power⁹¹. Leucine or phenylalanine found at the C-terminal of whey protein's peptides also contribute to the antioxidant activity ⁹¹.

2.3. Antihypertensive peptides

In 2019, about 23% of Canadian adults (20 - 79 years old) were diagnosed with hypertension ⁹². The blood pressure in the body is mainly regulated by the renin angiotensin aldosterone system. Angiotensin I-converting enzyme (ACE) plays a key role in blood pressure regulation as well as water and electrolytes balance. ACE increases blood pressure by conversion of angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) to angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) by hydrolyzing the peptide bond between Phe and His ⁹³. Angiotensin II receptor blockers and angiotensin converting enzyme (ACE) inhibitors are the main types of antihypertensive drugs⁹⁴. The mechanism for most of the antihypertensive bioactive peptides derived from milk are based on the inhibition of ACE ^{95'96'97'98'99'100'101'102'103'104'105'106'107'108}. A few studies proposed other mechanisms for antihypertensive action such as decreasing aldosterone ¹⁰⁹, increasing endothelial vascular function ¹¹⁰, diminishing arterial stiffness ¹¹¹, and increasing endothelial dilation ¹¹².

Milk derived peptides exhibit antihypertensive property through reducing blood pressure. Several *in vitro* and *in vivo* studies demonstrated that the milk products hydrolysates are a good sources of ACE inhibitory peptides or vasodilators ^{63,113}. ACE inhibitor peptides that are shown to be effective *in vivo* usually have a short sequence (2-12 amino acids) ^{104,102,100}. Clinical randomized, single and/or double-blind, placebo-controlled human trials that documented the effect of milk-derived dietary peptides on the blood pressure are summarized in Table 1. These studies used fermented dairy products with a known concentration of VPP and IPP ^{104,100,107}, fermented dairy products supplemented with VPP and IPP ^{102,106,96}, or pure VPP and IPP ^{95'97}. Studies that

employed fermented milk products used yoghurt-type products fermented with *L. helveticus*¹¹⁴, a dairy starter culture with a well-characterized proteolytic system. The dose of VPP and IPP ranged from 1.5 and 1.1 mg / person per day to 30 and 23.2 mg/ person per day, respectively (Table 2.1). The selection of study participants included normotensive, moderately hypertensive, and hypertensive subjects and the treatment time ranged from single dose to 24 weeks (Table 2.1).

For example, consuming fermented milk products (Calpis) supplemented with 1.5 mg and 1.1 mg VPP and IPP per day, respectively, showed a reduction in the systolic and diastolic blood pressure by 14.1 \pm 3.1 mmHg and 6.6 \pm 2.5 mmHg after 8 weeks of treatments with medication in hypertensive subjects, respectively¹⁰⁴. The blood pressure lowering effect of *Lactobacillus helveticus* LBK-16H fermented milk fortified with 30 mg VPP and 22.5 mg IPP was determined through a randomized, double blinded placebo-controlled study on 94 mildly hypertensive patients for 10 weeks. The systolic blood pressure dropped from 148.4 \pm 8.1 mmHg to 132.6 \pm 9.9 mmHg, whereas diastolic blood pressure dropped from 93.5 \pm 6.2 to 83 \pm 8.0 mmHg for the *L. helveticus* fermented cow milk group ¹⁰².

Another clinical, randomized, single-blind, placebo-controlled trial was carried out to evaluate the dose-dependent antihypertensive effect of casein hydrolysate tablets supplemented with VPP and IPP on 131 high-normal blood pressure and mild hypertension participants for 6 weeks. Four doses, 0, 1.8, 2.5, and 3.6 mg of VPP and IPP mixture were supplemented through tablets. After 6 weeks of treatment, a dose-dependent decrease in the systolic blood pressure for the active group receiving 1.8, 2.5, and 3.6 mg compared to the baseline and placebo group was observed¹⁰⁰. Another study to determine the role of diet type (low salt diet) on supporting the VPP and IPP effect, the 24-h ambulatory blood pressure measurements were measured after giving each participant 5.32 mg VPP and 2.76 mg IPP for 8 weeks. This study demonstrated that the systolic

blood pressure was affected by tripeptides and decreased during nighttime sleep after 4 and 8 weeks. Therefore, the low intake of salt could support the antihypertensive activity of VPP and IPP ¹⁰⁶.

As shown in Table 2.1, most of the studies were performed to evaluate the antihypertensive effect of casein and whey hydrolysate supplemented with VPP and IPP as beverages or tablets. The impact of dietary intervention with VPP and IPP on the systolic blood pressure differs in magnitude but is largely consistent across the different studies. In contrast, an inconsistent effect on the diastolic blood pressure is observed (Table 2.1). Only a few studies reported outcomes that are related to blood pressure such as endothelial vascular function or arterial stiffness (Table 2.1).

The modest dose-dependent effects were also observed for the systolic blood pressure. The magnitude of the decrease in systolic blood pressure was -14.1 ± 3.1 mg Hg. Most of the studies showed that the antihypertensive effects were greater in normotensive and mildly hypertensive subjects in compared to more severely hypertensive patients. The duration of the dietary intervention does not seem to impact the outcomes related to blood pressure.

None of the studies summarized in Table 2.1 reported any adverse effects of consuming milk hydrolysates and / or purified peptides on human health. This is an optimistic point for using milk bioactive peptides in human studies because safety of nutraceuticals is a necessary feature for regulatory acceptance and successful commercialization. Protein hydrolysates that are obtained by food grade enzymes are generally considered as safe; however, it was indicated that purified peptide fractions or purified peptides may require a safety assessment for approval as novel food ⁷¹.

Regarding the antihypertensive activity of bioactive peptides derived from camel milk, camel caseins have similar IPP frequency as bovine caseins but not for VPP (Table 2.1). Camel casein have more proline than bovine milk proteins. Since an N-terminal proline is a key structural determinant of ACE-inhibitory peptides ¹¹⁵ and amide bonds adjacent to prolines are more resistant to proteolysis ¹¹⁶, camel milk may include ACE inhibitory peptides that are not present in bovine milk. ACE inhibitory data for camel milk derived peptides are mostly from *in vitro* studies ⁴⁴ since the *in vivo* studies are very limited ¹¹⁷. A RCT study showed no significant differences between fermented camel milk and diluted yogurt from bovine milk on blood pressure and obesity measures on 24 healthy adolescents with mild metabolic syndrome (13.77 \pm 1.87 years old) ¹¹⁸.

Protein/ Peptide (Source)	# In bovine protein	# In camel protein	Treatment period [week] (dose [mg/day])	Effects on blood pressure (▼in SBP/DBP compared to placebo) ^{ref}
FFVAPFPEVFGK	l(asl casein)	0	Single dose (200 mg & 3.51 g alginic acid)	$\mathbf{V}(-9.2 \pm 3.2/-6.0 \pm 2.0)^{99}$
(Bovine)		0	4 (3.8 g)	▼(-10.7 ± 1.6 /-6.9 ± 1.2 mm Hg), ▼plasma angiotensin II and aldosterone ¹⁰⁹
			6 (0, 1.8, 2.5, & 3.6 mg VPP+IPP)	▼ $(0, -5.8/0, -6.2/0, \& -9.3/0 \text{ mmHg})^{100}$
			8 (2.3, 4.6, & 9 mg VPP+IPP)	$\mathbf{V}(+0.1/-1.3, -1.5/-1.4, \& -2.5/-1.9 \text{ mmHg})^{101}$
			10 (30 mg VPP & 22.5 mg IPP)	$\mathbf{\blacktriangledown} \ (-4. \ 1 \pm 0.9 / \ -1.8 \pm 0.7)^{102}$
			4 (18.7 mg VPP & 15.9 mg IPP)	▼ (~-5.0/0) ¹⁰³
	VPP	VPP	8 (1.5 mg VPP & 1.1 mg IPP)	\blacktriangleright (-14.1 ± 3.1/-6.6 ± 2.5 mm Hg) ¹⁰⁴
Bovine casein hydrolysate with	1(β-casein) IPP	0 IPP	4 (4.1 mg VPP & 6 mg IPP)	$\mathbf{V} (-3.4 \pm 4.4/-3.1 \pm 3.2 \text{ mmHg})^{105}$
(VPP + IPP)	1(β-casein) 1(κ-casein)	$1(\beta$ -casein) $1(\kappa$ -casein)	8 (5.32 mg VPP & 2.76 mg IPP)	\mathbf{V} (~ -5.0/-2.0 night sleeping) ¹⁰⁶
			12 (2.26 mg VPP & 1.48 mg IPP)	$\mathbf{V}(-6.1 \pm 5.7/-3.8 \pm 6.3 \text{ mmHg})^{107}$
			8 (3.4 mg VPP+IPP)	$\mathbf{V}(-11.0 \pm 11.0/0)^{108}$
			1 (3.42 mg VPP & 3.87 mg IPP)	▲ endothelial vascular function, ($\nabla 0/0$) ¹¹⁰
			24; 12 (2.6 mg VPP & 2.4 mg IPP) +12 (26.4 mg VPP & 23.2 mg IPP)	▼ arterial stiffness, especially in metabolic syndrome patients, ▼ $(-4.6/-2.7 \text{ mmHg})^{111}$

	Table 2.1:Antihypertensive	activity of	milk-derived	bioactive pe	ptides in	randomized	clinical trials
--	----------------------------	-------------	--------------	--------------	-----------	------------	-----------------

Protein/ Peptide (Source)	# In bovine protein	# In camel protein	Treatment period [week] (dose [mg/day])	Effects on blood pressure (♥ in SBP/DBP compared to placebo) ^{ref}
VPP + IPP (+ plant sterol			10 (4.2 mg VPP+IPP & 2 g plant sterols)	▼ (- 4.1/0 mmHg), ▼ total and LDL cholesterol ⁹⁵
esters)			Single dose (25 mg VPP+IPP & 2 g plant sterols)	▼ (-2.1/-1.6 mm Hg) ⁹⁶
IPP (Bovine)			4 (15 mg IPP)	▼ (-3.8/-2.3 mm Hg) ⁹⁷
Whey hydrolysate			Single dose (20 g Whey hydrolysate)	▲ endothelial dilation ¹¹²
Whey hydrolysate	IW	IW	Single dose (250.5 mg IW &	▼ plasma ACE activity (0/0) ⁹⁸
(IW+WL)	$1(\alpha-LA)$	1(α-LA)	47.5 mg LW)	
(Bovine)	1(LF)	1(LF)		
	WL	WL		
	$2(\alpha-LA)$	1 (Ig)		
		1(α-LA)		

2.4. Peptides that inhibit starch digestion or improve glucose homeostasis.

Diabetes mellitus (DM), a dominant chronic disease in developed countries, is characterized by an innate insulin secretion deficiency in type 1- diabetes or a defect in the insulin action in type 2diabetes (T2D). T2D affects ~90% of the diabetes cases, which cause an insufficiency in conveying glucose from the bloodstream into cells, thus increase the glucose level in blood ¹¹⁹. Persistent hyperglycemia can lead to the development of insulin resistance, and then diabetes mellitus ¹²⁰. Delaying carbohydrate digestion is indispensable for the most beneficial treatment of type 2- diabetes. Peptides can delay starch digestion by inhibiting the starch digesting enzymes such as α -amylase and α -glucosidase. Thus, the potential starch digestion inhibitors should have the capacity to bind to the target enzyme's active sites (catalytic sites) via hydrophobic interactions to impede the enzymes arrival to substrates (Figure 2.2) ^{119,120,68}.

The milk derived bioactive peptides exhibit an antihyperglycemic property that diminishes the glucose level in the blood. Numerous *in silico* (Table S2; Appendices), *in vitro*, and *in vivo* studies demonstrated that the peptides from milk product hydrolysates are a good source of antihyperglycemic agents. Clinical randomized, single and/or double-blind, partial and/or complete cross-over, placebo-controlled human trials that documented the effect of milk-derived dietary peptides on the hyperglycemia are summarized in Table 2.2. These studies used milk protein hydrolysates ¹²¹, casein hydrolysates ¹²², whey protein hydrolysates with a known concentration of milk minerals ¹²³, or casein hydrolysates supplemented with leucine^{124,122}. The doses of milk protein hydrolysates, whey protein hydrolysates, and casein hydrolysates were 1.4 and 2.8 g ¹²¹, 50 g ¹²³, and 0.3 g / kg body weight ¹²⁴ and 17.6 g ¹²² / person per day, respectively

(Table 2.2). The study participants included were normal healthy, prediabetic, and type 2- diabetes subjects and the treatment time ranged from single dose to 6 weeks (Table 2.2).

Co-ingestion of casein hydrolysate beverage (0.3g / 4 mL water/kg body weight) enriched with leucine (L) (0.1g / 4 mL water/ kg body weight) after each main standardized meal reduced the prevalence of hyperglycemia significantly with a substantial reduction in the average of 24-h blood glucose concentrations in the T2D patients compared to placebo group. The 24-h blood glucose concentrations of the test group and placebo group were 9.6 ± 0.6 and 10.8 ± 0.5 mmol/l, respectively (P < 0.05) ¹²⁴.

Another study assessed the impact of casein hydrolysates as a single meal replacement on postprandial glucose concentration, serum glucagon, and insulin for T2D patients. Each patient received four types of treatment, specifically, placebo (control), casein hydrolysates (17.61 g), casein hydrolysates plus leucine (17.61 g and 5 g respectively), and unhydrolyzed casein (15 g). The results showed that both casein hydrolysates and casein hydrolysates with leucine supplementation had a similar postprandial glucose concentration reduction of 4.7% compared to 1.7% and 1.6% for unhydrolyzed casein and placebo, respectively. Glucagon concentrations increased by 14% for all treatments compared to the placebo. The casein hydrolysates plus leucine treatment achieved the highest increase in insulin ¹²².

A monocentric, three-way-cross-over, randomized, placebo-controlled, and double-blind study was performed on prediabetic subjects to determine the α -glucosidase inhibitory activity of whey protein hydrolysates rich in arginine -proline (AP) dipeptide. The tested products were provided in capsules, and each capsule had 350 mg whey protein hydrolysate (include ~ 0.96 mg of AP dipeptide)¹²¹. In a single dose experiment, after 10 h overnight fasting, participants received a single dose of placebo, a low dose of whey protein hydrolysate peptides (1400 mg), or a high dose

of whey protein hydrolysate peptides (2800 mg) 15 minutes before having a challenge meal rich in carbohydrates (standardized to 75 g of CHO). After a one-week washout period, an open-label single arm design was applied in the experiment of 6 week, and participants received a low dose of whey protein hydrolysate peptides (1400 mg) daily 15 minutes before having a challenge meal rich in carbohydrates. The incremental areas under the concentration–time curves of glucose were significantly reduced by the low dose of whey protein hydrolysate peptides (1400 mg) compared to placebo. However, the longer period of treatment did not have any additional postprandial glycemic effect ¹²¹.

Another branched study showed that whey protein hydrolysates plus milk minerals beverage elevated GLP approximately ninefold compared to other beverages. Whey protein hydrolysates plus milk minerals beverage produced $\sim 25\%$ of GLP more than whey protein hydrolysates beverage. No significant differences between milk minerals beverage compared to the placebo was observed ¹²³.

Table 2.2 shows the studies that were carried out to evaluate the beneficial antihyperglycemic effect of casein hydrolysates supplemented with leucine ^{122,124}, whey protein hydrolysates with a known concentration of AP ¹²¹, and calcium-enriched milk minerals supplemented with whey protein hydrolysates as beverages or tablets ¹²³. Only one study assessed the effect of casein hydrolysates compared to intact casein protein and placebo ¹²². These studies determined the antihyperglycemic effect based on different parameters like, postprandial glucose concentration, serum insulin, GLP, GIP, and PYY. The degree of effects of casein and whey protein hydrolysates on the postprandial hyperglycemia differs but is largely consistent across the different studies. However, the effect of whey protein hydrolysates is much higher than the effect of casein protein hydrolysates and is due to the high content of leucine and proline amino acids in whey protein hydrolysates.

Table 2.2 demonstrates that co-ingestion of whey protein hydrolysates clearly stimulates plasma GLP, increases the insulin concentration, and decreases the blood glucose concentration. Addition of calcium-enriched milk to whey protein hydrolysates remarkably support high plasma GLP concentrations. Enriched casein protein hydrolysates with leucine increase plasma insulin level. None of the studies that are summarized in Table 2.2 reported any significant adverse effects of milk protein hydrolysates consumption on human health, except only a few subjects claimed gastrointestinal-related abdominal cramps with or without diarrhea. There was no linear dose-response relationship and there were no minimum effective doses of the hydrolysates. However, there was a clear impact of hydrophobic amino acids leucine and proline availability on antihyperglycemic activity of hydrolysates observed in this study.

The inhibitory effect on the activity mainly comes from the amino acid compositions (hydrophobic content) of the peptides itself. However, the inhibitory effects of dipeptidyl peptidase-4 (DPP4), α -amylase, and α -glucosidase enzymes depend on competitive direct interaction to the active binding sites of hydrophobic enzymes and catalytic triad against the substrate (Figure 2.2) ^{68,120}. Clinical studies listed in table 2.2 emphasized that the proposed mechanisms for antihyperglycemic activity are reduced starch digestion through anti- α -glucosidase activity by milk protein hydrolysates rich in leucine, and/or amino acid-induced gut hormones secretion like increased insulin due to the insulinotropic effect of the peptides and stimulation of the plasma GLP because of peptides composition and calcium enrichment.

Because the sequence information of the peptides with antihyperglycemic activity in bovine milk is limited, it is very difficult to predict which peptides in camel milk protein hydrolysates are responsible for inhibiting the digestion of starch. However, camel milk proteins have more hydrophobic amino acids such as leucine and proline in their sequence compared to bovine milk proteins. Several peptides obtained by hydrolysis of camel milk proteins were shown to inhibit amylase and glucosyl hydrolases *in vitro*, however, *in vivo* studies with rodent models for diabetes used milk proteins rather than protein hydrolysates or defined peptides (for review, see previously published reviews ^{125,126}). Likewise, the RCTs that investigated camel milk efficacy in diabetic patients used an experimental design that does not allow conclusions as to whether the observed effects are attributable to bioactive peptides that are released during digestion or not. Moreover, no active peptides were determined and all the clinical studies that claimed the antihyperglycemic activity of camel milk used different volumes of whole camel milk with various treatment times as doses ^{125,126}.

Figure 2.2:Starch digestion in gastrointestinal tract and potential mechanism of milk derived bioactive peptides for starch digestion delaying.

Protein/ Peptide (Source)	# In bovine protein	# In camel protein	Treatment period (dose)	Effects ^{ref}
Casein hydrolysate (Bovine)	_	_	Single dose (17.61 g ca. hy.)	\checkmark postprandial glucose values and \blacktriangle postprandial insulin response ¹²²
Casein hydrolysate			3 doses/ day ((0.3 g ca. hy. & 0.1 g L)/ kg body weight)	▼ hyperglycemia in T2D patients over 24 h ¹²⁴
+ Leucine (Bovine)			Single dose (17.61 g ca. hy. & 5 g L)	\checkmark postprandial glucose values and \blacktriangle postprandial insulin response ¹²²
Milk hydrolysate	_	_	6 weeks (1.4 wp. hy.)	▼ plasma glucose after high carbohydrate meal and HbA1c ¹²¹
			Single dose (1.4 & 2.8 g wp. hy.)	$\mathbf{\nabla}$ plasma glucose after high carbohydrate meal ¹²¹
Whey hydrolysate +milk minerals			Single dose (50 g wp. hy. & 1000mg Ca.)	▲ plasma GLP ¹²³

Table 2.2: Antihyperglycemic activity of bioactive peptides in randomized clinical trials

2.5. Antiadhesion activity of glycomacropeptide (GMP).

Caseinomacropeptide (CMP) is the third most abundant protein in cheese whey, constituting about 15-20% of the total whey proteins. CMP represents the C-terminal of κ -casein obtained by the hydrolysis of milk protein by rennet ¹²⁷. Hydrolysis of the bovine milk κ -casein at Phe¹⁰⁵-Met¹⁰⁶ linkage releases a polar polypeptide and a non-polar polypeptide. The former is the para- κ -casein, which consists of 105 amino acids and stays in the cheese curd. The latter is the caseinomacropeptide, which consists of 64 amino acids (Met¹⁰⁶ - Val¹⁶⁹ residue) and remains in the whey¹²⁸. GMP is produced commercially from bovine whey ^{129,130}. It was reported that sialic acid linked to κ -casein of bovine milk supported growth of *Bifidobacterium* bacteria ^{131,132}. GMP is a very good source of sialic acid which constitutes 7% - 9% of the total GMP ¹³³.

CMP has a unique chemical structure and functional properties. CMP is rich in amino acids such as proline, serine, glutamine, and threonine. However, CMP does not have any aromatic amino acids (tyrosine, phenylalanine, and tryptophan) or cysteine 129,134 . CMP is also rich in branchedchain amino acids (leucine, isoleucine, valine) (Figure 2.3). The presence of two aspartic acid and 7-8 glutamic acids makes glycomacropeptide an acidic peptide 134,130 . The bovine milk nonglycosylated CMP have two main variants of κ -casein, A and B with molecular weights 6.75 kDa and 6.78 kDa, respectively (Figure 2.3). The average molecular weight of glycosylated CMP is 7.500 kDa 129 . CMP characteristics are affected by glycosylation and phosphorylation modifications. It has been reported that the glycosylation and phosphorylation of GMP occurs at serine and/or threonine residues at multiple positions (Figure 2.3) 134,135,136 .

GMP has multiple biological functions that are conferred by the oligosaccharide's chains attached to each of the GMP portions. In addition to the composition of the oligosaccharides, frequency and spacing of glycan on the peptide backbone (i.e., increase glycosylation sites) were also shown to affect the biological activity ^{133,137,138,139}.

Figure 2.3:Amino acid sequence with glycan structure of glycomacropeptide (GMP) derived from bovine milk (variant A and B). The differences between variant A and B are two amino acid residues at 136 and 148 (variant B shown between brackets). The bold amino acid abbreviations (letters) indicate potential glycosylation sites. Bold, blue-colored letters correspond to reported glycosylation sites, while red-colored letters correspond to reported phosphorylation sites. The red arrow and underline indicate the chymosin's cleave sites between P¹⁰⁵-M¹⁰⁶. Orange squares, N-acetylgalactosamine; orange diamonds, galactose; green circle, N-acetylneuraminic acid (sialic acid); black dotted lines, β -(1 \rightarrow 3) glycosidic linkage; black solid lines; α -(2 \rightarrow 3) or α -(2 \rightarrow 6) glycosidic linkages; blue lines, link to threonine or serine residues on the peptide backbone. The peptide sequence of the GMP is from UniProt (https://www.uniprot.org/uniprot/) accession numbers P02668, while the numbering of residues is based on the sequence of the κ -casein without precursor ^{140;141;142;136}.

GMP-derived from bovine milk contains galactose (Gal), N-acetylgalactosamine (GalNAc), and N-acetylneuraminic acid (NeuNAc). These constituent monosaccharides give rise to the oligosaccharide structures that are linked by *O*-glycosylation to the peptide backbone: monosaccharide: (GalNAc), disaccharide: Gal- β -(1 \rightarrow 3)-GalNAc), trisaccharides: NeuAc α 2 –

3Gal β 1 – 3 GalNAc) and (Gal β 1 – 3 (NeuAc α 2 – 6 GalNAc), and tetrasaccharide: (NeuAc α 2-3 Gal β 1 - 3 (NeuAc α 2 – 6 GalNAc) (Figure 3)^{133,143,144}. Glycosylation with oligosaccharides that additionally include fucose and N-acetylglucosamine (GlcNAc) were also reported in GMP from bovine colostrum ¹³³.

In addition to providing a dietary source of sialic acid, biological activities of GMP include substrate for intestinal bacteria including bifidobacteria and the inhibition of pathogen adhesion ¹⁴⁵.

The inhibition of pathogen adhesion is well supported by *in vitro* and *in vivo* studies (Figure 2.4). Most of enteric pathogens including Salmonella, enterotoxigenic Escherichia coli (ETEC), Shiga toxin-producing E. coli (STEC), Shigella flexneri, Helicobacter pylori, enterotoxins LT-I and LT-II derived from E. coli., and cholera toxin adhere by glycan recognition to infect or invade the host cells ^{146,147,74,148,149}. For instance, ETEC are a major cause of childhood diarrhea in developing countries and cause traveler's diarrhea. ETEC K88 cause watery diarrhea in newborn and postweaning piglets and calves ^{150,151,152}. ETEC adhere to the small intestinal epithelial cells and to the mucosal tissue through glycoprotein receptors of the host cells using specific fimbriae and colonizes in the microvilli that lead to electrolytes imbalance and water loss (Figure 2.4)^{153,154}. Glycan receptors are glycolipids or glycoproteins on the surface of the host tissues that mediate adhesion of pathogens and toxins including the adherence of ETEC fimbriae to the epithelial cells. Glycan receptor analogues bind to bacterial lectins and thus inhibit the initial stages of infection and bacterial colonization (Figure 2.4) ^{155,156}. For example, K88 fimbriae mediate the binding of E. coli ECL13795 to glycan receptors ¹⁵². Porcine aminopeptidase N is a receptor for K88 fimbriae; in addition, surface glycan oligosaccharides composed of GalNAc, GlcNAc, galactosamine, and N-acetylmannosamine were proposed as receptors for ETEC K88 adhesion ^{152,157}.

Figure 2.4: Adhesion of bacteria to the epithelial cells and antiadhesion activity for glycopeptides.

Anti-adhesion biomolecules that act as glycan receptor analogues could be a promising alternative to antibiotics. Anti-adhesion agents are not antibacterial agents and thus do not lead to the development of antimicrobial resistance ¹⁵⁸. One of the main biological properties of GMP is anti-adhesion activity against enteric pathogens. *In vitro* studies demonstrated the potential anti-adhesion activity of GMP against enteric pathogens to the intestinal mucosa including enterohemorrhagic *E. coli* (EHEC) O157, ETEC K88, *Salmonella enteritidis, Salmonella typhimurium, Helicobacter pylori*, and *Shigella flexneri* ^{146,147,74,148,149}. On other hand, several *in vivo* studies confirmed the anti-adhesion activity of GMP against enteric pathogens in farm animals ^{75,76,159,148}.

For example, the anti-adhesion activity of glycoprotein glycans against the ETEC K99 in the calf was confirmed *in vivo*. Directly after birth, colostrum was administered to calves, at age of 2-8 hours, and then 10⁷-10¹⁰ CFU of ETEC K99 was administered orally to the calves. When the first sign of diarrhea appeared, 250 mg of oligosaccharides was ingested orally every day for three days.

The adhesion of ETEC K99 to the small intestine was significantly reduced in the calves treated with oligosaccharides compared to control ⁷⁶. Moreover, the anti-adhesion activity of GMP against the ETEC K88 was confirmed by inclusion of GMP in the diet of weaning piglets challenged with ETEC K88 (1 and/or 2%; 10 ¹⁵⁹ and/or 20 ⁷⁵ g/ Kg dry matter of diet). A significant reduction in ETEC adhesion to the intestine epithelial cells and reduced overgrowth of ETEC in digestive tract was observed in the challenged treated group ^{159,75}. A dose-dependent protective effect of GMP to neutralize the toxicity of *Cholera* toxin and enterotoxins LT-I and LT-II derived from *E. coli* was also confirmed in mice. Oral administration of 0.2, 0.5, and 1.0 mg/day/mouse for 7 days before challenge of mice with toxins led to a significantly decreased rate of induced diarrhea¹⁴⁸. The differences in the topological spacing of glycopeptides ^{133,137,138,139}. Camel milk is not as studied as bovine milk and the chemical compositions and the biological activities of camel CMP and GMP are not reported. To our best knowledge, there is no information about anti-adhesion activity of CMP and GMP from camel milk available until now.

2.6. Conclusions.

In summary, numerous *in vitro* and *in vivo* studies confirmed the efficacy of bovine milk-derived bioactive peptides against blood hypertension, postprandial hyperglycemia, and anti-adhesion activity against enteric pathogens. However, the clinical data on these activities of milk peptides are very limited. Moreover, the research on camel milk is also very limited in compared to that involving bovine milk. Most of the research has focused on raw milk only and whey protein from camel milk has been overlooked. There are no active structures of peptide, and only a few clinical studies have addressed the antihyperglycemic activity of camel milk. Whey is a by-product of

dairy industry and has been considered as an inexpensive source of high-nutritional quality protein and bioactive peptides for the food and health industries. Therefore, to explore the potential bioactive peptides from camel milk designed *in vivo* studies on camel milk-derived protein hydrolysates are required. Further, additional RCT trials are required to evaluate the full potentials of bioactive peptides derived from milk, and to determine the bioavailability of ingested bioactive peptides.

Chapter 3. Antioxidant properties of *in vitro* digests of flavourzyme-treated camel milk whey protein hydrolysate

-A draft of this chapter is in preparation as a manuscript for publication.

3.1. Introduction

Milk whey is a by-product of the cheese production process and is considered waste in developing countries. Due to the consumption of cheese products increasing worldwide, the cheese manufacturers are having difficulties accommodating the high volume of whey ^{79,160}. Whey contains approximately 20% of the original milk protein and represents a significant source of protein. Therefore, whey could be an inexpensive source of high-nutritional quality protein for the food and health industries ^{79,48}.

Whey contains a rich mixture of soluble proteins with diverse physical, chemical, and functional properties. Preliminary investigation of many whey proteins revealed potential health benefits¹⁶¹.Thus, more scientific research and evaluation on whey proteins is necessary to understand how best to use it as a dietary supplement or food additive ⁴⁸.

Camel milk is broadly consumed in the Asia and Africa countries. Many processed milk products such as cheese, butter, chocolate, yogurt, ice cream, and fermented milk from camel are available in the marketplace ¹⁶². Thus, a substantial amount of whey is available from camel milk production ⁴⁵. Camel milk contains about 25% of whey protein and α -lactalbumin is the main constituent of whey protein; notably, is the absence of β -lactoglobulin. Whey also contains lysozyme, lactoferrin, serum albumin, lactoperoxidase, peptidoglycan recognition proteins, and immunoglobulins ¹⁶². Camel milk whey proteins contain most of the essential amino acids (i.e., Phe, Val, Thr, Try, Met, Leu, Ile, Lys, and His), many of which are in a high concentration of (Phe, Val, Leu, and Lys). On the other hand, the non-essential amino acids of camel milk whey protein are present in low

concentrations except Glu and Pro. These inherent characteristics of camel milk whey protein make it a promising candidate for the production of bioactive peptides that can be a major part of functional food ¹⁶³.

The proportion of casein and whey proteins in camel milk is different than that in milk from other species ¹⁶³. While the ratio of casein and whey proteins in bovine, ovine, and caprine milk is \sim 80%:20%, this ratio in camel milk is \sim 75%:25% ^{164,165}. In the last century, camel milk attracted attention due to the biological and therapeutic properties of camel milk components ⁴³. Camel milk contains many compounds with antioxidant, antihypertensive, and antihyperglycemic properties which may be able to improve and promote human health when included in a balanced diet ¹⁶⁶. Most of the antioxidant peptides from milk studied are limited to cow milk ⁴⁴. Only a handful of studies have investigated the antioxidant peptides from the milk of other mammals like sheep, goats, horses, and donkeys. Very rare research on camel milk studied the antioxidant activities, and most has focused only on raw milk, casein, and fat⁴⁴. Only recently whey protein from camel milk has attracted attention and studies on it have been initiated ⁴².

The oxidation reaction is a natural metabolic process in living organisms, but uncontrolled oxidation as indicated by an imbalance between oxidation and reduction often produces free radicals or reactive oxygen species (ROS) ¹⁶⁷. Natural antioxidant peptides can prevent the harmful effect of free radicals and ROS through scavenging the free radical or metal ion chelation ¹⁶⁷. Bioactive peptides derived from natural sources through enzymatic hydrolysis and fermentation can be used to prevent uncontrolled oxidation ³.

Due to the lack of information on the antioxidant properties and processing procedures of the camel milk whey proteins (CMWP), studies are needed to investigate gastrointestinal enzymatic digestion and to develop hydrolysis techniques that produce bioactive peptides from whey protein with known antioxidant activity. The aim of this study, therefore, was to assess the properties of

the peptides derived from hydrolysis of camel milk whey protein with different enzymes and a mixture of enzymes (Neutrase, Flavourzyme, Alcalase, and the mixture of Neutrase and flavourzyme) and the digestive enzymes (pepsin and trypsin) and to assess the effect of this hydrolysis process on the antioxidant activities of the produced peptides.

3.2. Materials and methods

Materials

Powdered camel milk (Chinese Bactrian camel) was provided freeze dried by the Food Science Department at the Inner Mongolia University, Hohhot, China. Hexane (EC:203-777-6), neutrase (≥ 0.8 U/g; EC: 232-752-2), alcalase (EC: 3.4.21.62), pepsin (800-2500 U/mg protein; EC: 3.4.23.1), trypsin (EC: ≥ 250 U/mg; 3.4.21.4), flavourzyme (500 U/g; EC: 232-752-2),1,1diphenyl-2-picrylhydrazyl (DPPH), ascorbic acid, the fluorescent dye 8-anilino-1 naphthalene sulfonic acid (ANS), Trinitrobrnzenesulfonic acid (TNBS), 3-)2-pyridyl)-5,6 bis(4-phenylsulphonic acid)-1,2,4- triazine (Ferrozine) were acquired from Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada) All reagents used were reagent grade.

Camel milk whey protein isolation

About 500g of camel milk powder were defatted by dispersing powder into hexane at a powder to hexane proportion of 1:10 (w/v) and stirring vigorously (1000 rpm, 23°C) in a fume hood for 24 h. The suspension was then centrifuged at 7,500g for 30 min at 4°C (Beckman Coulter Avanti J-E Centrifuge System, CA, USA). The supernatant was stirred vigorously (1000 rpm, 23°C) in a fume hood for a further 2 h and then centrifuged again under the same conditions. The supernatant realized after the second centrifugation was stirred and centrifuged using the same conditions to completely extract fat and some other compounds from the camel milk. The precipitate was collected, spread into a dish, and placed in a fume hood to allow the hexane to evaporate at ambient temperature (23°C) for 24 h. A dry powder resulted, and the obtained defatted camel milk powder was lyophilized (E-9320, LABCONCO) for 4-5 days. After lyophilization, the defatted dry powders were stored in plastic bottles at -21°C until the separation process.

Depending on protein contents as determined using a nitrogen analyzer (FP-428, LECO Corporation, St, Joseph, MI, USA), skim camel milk solution was reconstituted by dissolving defatted camel milk powder into water at a powder to water ratio of 1:11 (w/v) with vigorous stirring (1000 rpm, 23°C) for 2h. The milk solution was then heated to 37°C and the pH value was adjusted to 4.6 using 6 M HCL. The solution was kept at 37°C for 30 min, and the caseins were precipitated and then isolated from the transparent supernatant containing whey protein by centrifugation at 10,000g for 60 min at 4°C (Beckman Coulter Avanti J-E Centrifuge System, CA, USA). The latter step was repeated 3 times. Once the whey protein was collected, it was then dialyzed in distilled water using a membrane with a molecular weight cut off 3.5-5 kDa with stirring (125 rpm, 4°C) for 7 days to increase the protein content, with distilled water changed every 4 h. Whey protein was purified using an ultrafiltration unit (Centromere PE, Pall Life Sciences, Mississauga, ON, Canada), with a membrane molecular weight cut off 10 kDa.

Nitrogen content of the concentrated whey protein was determined using a nitrogen analyzer (FP-428, LECO Corporation, St, Joseph, MI, USA). Then, the whey protein concentrate was lyophilized and stored at -20°C until further analysis.

Camel milk whey protein enzymatic hydrolysis

A 1% whey protein in 0.02 M phosphate buffer solution (PBS) was prepared by solubilizing the lyophilized whey protein at 23°C for 0.5 h with stirring, with the pH of each solution suitable for the enzyme used (Table 3.1). Each whey protein solution was allowed to equilibrate at the hydrolysis temperature appropriate for the enzyme to be used (Table 3.1) for 30 min. Neutrase,

flavourzyme, alcalase, and a neutrase (0.5%)- flavourzyme (0.5%) mixture were then incorporated into the 1% whey protein solution at 1% (w/w) and allowed to hydrolyze the whey protein under reaction environments that were ideal for each enzyme (Table 3.1). Hydrolysis was performed for 30, 60, 90, 120, 180, and 240 min with vigorously stirring. The temperature and pH of each hydrolysis mixture was monitored and optimized every 20 min during hydrolysis (Table 3.1).

Optimum Temperature	Optimum pH
50 °C	7
50 °C	6.6
55 °C	8
50 °C	7
	Optimum Temperature 50 °C 50 °C 55 °C 50 °C

Table 3.1: The optimum conditions for enzyme used in whey protein hydrolysis

The hydrolysis reaction was stopped by holding each whey protein solution at 95 °C for 12 min and then each hydrolysate was centrifuged at (5000 ×g 10 min at 23 °C) (Beckman Coulter Avanti J-E Centrifuge System, CA, USA) to collect the supernatant. The supernatants were lyophilized and stored in a plastic bottle at -20 °C for further analysis.

Degree of hydrolysis (DH)

The degree of hydrolysis was determined using the methods of Silvestre 1997. Hydrolysate was incubated with 20% trichloroacetic acid (TCA) at a ratio of 1:1 for 1 hour at 4°C, and then centrifuged (2000 x g, 10 minutes, 4°C). The supernatant absorbance was then read spectrophotometrically (model V-530, Jasco, CA, USA) at 280 nm to determine the degree of

hydrolysis through the detection of soluble free amino acids and small peptides concentration in solution¹⁶⁸. The degree of hydrolysis (DH%) was calculated as:

DH%= {(mg soluble protein after hydrolysis/mL – mg soluble protein before hydrolysis/mL)/mg of soluble protein in starting solution} x 100%; with DH% and expressed as percent.

Antioxidant properties

DPPH scavenging activity

The procedure of Tang et al. 2009 was used to determine the DPPH scavenging activity. Briefly, aliquots of hydrolysates with protein concentration (1g/L) were mixed with 0.1 mM DPPH at a ratio 1:1 (v/v), the combinations were agitated for 30 min at ambient conditions and the mixtures were kept in darkness to limit photo-oxidation. Synthetic antioxidant and natural (ascorbic acid) were used as controls. DPPH scavenging activity was detected via scaling the absorbance at 517 nm (UV-visible spectrophotometer, model V-530, Jasco, CA, USA). DPPH free radical scavenging activity was calculated using the equation:

%DPPH free radical scavenging activity = $1 - (As/Ac) \times 100$ Where, As and Ac represent the absorbances of the sample and the control (deionized water instead of hydrolysates), respectively.

Superoxide radical (O²⁻) scavenging activity

The method of Tang and other¹⁶⁹ was used to determine the superoxide radical scavenging ability by estimating the suppression of pyrogallol autoxidation. This method considers the reduction ability of experimental substances dependent on O^{2-} reaction resulting in the production of chromophoric substances. Eighty (80) µL of hydrolysate at 0.5 mg/ml protein concentration were mixed with 80 µL of 0.5 M Tris-HCL buffer (pH 8.3) in a 96-well micro plate and 40 µL of 1.5 mM pyrogallol in 10 mM HCL were added with mixing. The polymerization of pyrogallol stimulated by O^{2-} (Δ As/min) was determined according to the elevation in absorbance at 320 nm at 23 °C for 5 min against a control of 0.01 and 0.1 g/L BHT and a blank of 50 mM Tris-HCL buffer. The O^{2-} scavenging activity was calculated using the following equation:

 O^{2-} Scavenging activity = [$\Delta A_c/min$) -($\Delta A_s/min$)] / ($\Delta A_c/min$) × 100

Where, As and Ac represent the absorbances of the sample and the control, respectively

Reducing power

The reducing power was determined according to Oyaizu ¹⁷⁰ method. One (1) mL of hydrolysate with protein concentration (1 g/L) was added to 2.5 mL of 0.2 M phosphate buffer (pH 6.6) and 2.5 mL of 1% reducing power of the hydrolysate's potassium ferricyanide. The mixture was incubated at 50 °C for 20 min, and then 2.5mL of 10% TCA were added to stop the reaction. After centrifugation at 5000g, at 23 °C for 10 min, the supernatant was retained, and 2.5 mL of the supernatant was diluted with 2.5 mL deionized water and 0.5 mL of 1 g/L FeCl₃ in a test tube. After 10 min, the absorbance of the resulting solution was measured at 700 nm. Samples were measured against a blank where distilled water was substituted for sample. The increment in absorbance of reaction mixture indicated the increment of hydrolysates' reducing power activity.

The ferrous (Fe²⁺) Chelating activity

The ferrous (Fe²⁺) chelating activity of hydrolysates was determined as described by Kong and Xiong¹⁷¹. Briefly, 0.5 ml hydrolysate with protein concentration (1g/L) was mixed with 1.0 ml of FeCl₂ (0.2×10^{4} -M, 20µM) and 1 ml of ferrozine (0.5×10^{3} -M, 0.5 mM), agitated and then stored at ambient conditions for 15 min. The absorbance was then measured at 562 nm (A_s). EDTA (0.1 mg/mL), a strong metal chelator, was used as a positive control. The chelating ability of the hydrolysates was calculated according to the following equation:

Chelating ability (%) = $(A_c - A_s)/A_c \times 100\%$

Where A_c and A_s represent the absorbance of the sample and the control (deionized water instead of hydrolysate), respectively.

In vitro gastric and small intestine digestions

The digestion process was modelled as described by Minekus et al. (2014)¹⁷². Briefly, the solution of the hydrolysate was achieved the highest antioxidant activity (flavourzyme at 1.5 h) with 1% protein concentration was prepared. Gastric *in vitro* digestion process was carried out with stirring (375 rpm) in 250 mL Schott bottles immerged in a jacketed beaker filled with water heated to 37 °C. The simulated digesta was adjusted to pH 2 using 1M HCL and pepsin was then added at 2000 U/ml of the final digestion mixture. Hydrolysis was performed for 0.5, 1 and 2 h, and then the digesta pH was adjusted to 8 using 1M NaOH and trypsin was added at 100U/ml of the final digestion mixture. Hydrolysis continued for 3, 4 and 6h with vigorous stirring. Hydrolysis was stopped by heating the digesta at 95°C for 12 min. The hydrolysates were lyophilized and kept in a plastic bottle at -20°C for further analysis.

Digesta antioxidant capacity

The antioxidant capacities of the digesta were tested as described in Section (3.2.5). The digest with the highest antioxidant activities were lyophilized and kept at -20°C for further analysis.

Digesta molecular weight

The average molecular weight (Mw) of FH during digestion was determined by size-exclusion high-performance liquid chromatography (SE-HPLC, Agilent series 1100, Palo Alto, Ca, USA) equipped with a TSK G3000 SW column (5 μ m, 7.8 mm ID ×30 cm; Tosoh Bioscience, LLC, Japan) at 22°C. The mobile phase was 0.1 ml/min. Absorbance signal was detected by UV detector at 280 nm. The protein percentage was 1 mg/ml and the samples were filtered using a 0.22 μ m filter before injection into the column ¹⁷³.

Statistical Analysis

The antioxidant activity and structural characterization for all hydrolysates were performed in triplicate biological repeats with three technical repeats, and the mean of three replicates \pm standard deviation (SD) was presented in tables and figures. Statistical significance of the differences was estimated by LSD: least significant difference (p < 0.05).

3.3. Results

Degree of hydrolysis (DH%):

The degree of hydrolysis is expressed as a percentage (DH%) of the produced hydrolysates with the linear hydrolysis progressed rate in the first 0.5h of hydrolysis for all enzymes and the overall hydrolysis rate is shown in Figure 3.1. Flavourzyme hydrolysates achieved the highest degree of hydrolysis among all enzymatic hydrolysates after 1h of hydrolysis time, and the highest value was 7.6% at 4h.

Impact of enzymatic hydrolysis on antioxidant properties of camel milk whey protein

The antioxidant activities of the camel milk whey protein (CMWP) hydrolysates were determined by four independent tests: 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, superoxide (O^{-2-}) free radical scavenging, ferrous ion (Fe²⁺) chelating activity, and reducing power activity (Figure 3.2). The lowest effective concentrations of bioactive peptides were selected to use in each test. Figure 3.2A shows the free radicals scavenging activity of DPPH.

Figure 3.1. Degree of hydrolysis determined using TCA acid (20%): whey proteins hydrolysis by different proteases at 30, 60, 90, 120, 180, and 240 min.

Figure 3.2A shows that DPPH free radical scavenging activity for all CMWP proteases hydrolysates were differentially affected by hydrolysis times. Flavourzyme hydrolysates (FH) displayed a sharp increase in scavenging capacity at 1.5h of hydrolysis time and had the best DPPH free radical scavenging activity (71.47%) compared to other hydrolysates at different incubation times.

The superoxide free radical scavenging activity of CMWP hydrolysates at different hydrolysis times is presented in Figure 3.2B. It shows that there was no clear relationship between hydrolysis time and superoxide radical activity for all hydrolysates regardless of the proteases used. However, FH exhibited the maximum superoxide scavenging activity at 1.5 h, with a gradual decrease in

superoxide scavenging activity after that. Alcalase hydrolysates (AH) exhibited the maximum level of superoxide scavenging activity at 1 h, While Neutrase hydrolysate (NH) and Neutrase-Flavourzyme hydrolysate (N+FH) hydrolysates exhibited the maximum scavenging activity at 3 h. Overall, FH showed the maximum superoxide scavenging activity at 1.5 h (45%) compared to the other enzymes.

The pattern of ferrous ion (Fe²⁺) chelating activity for CMWP hydrolysates is illustrated in Figure 3.2C. The figure shows that all hydrolysates possessed high Fe²⁺ chelating capacities, ranging from 65.61% to 71.94%. At the beginning of hydrolysis, there were slight increases in the Fe²⁺ chelating activity of the AH and FH hydrolysates, with AH achieving the maximum value at 1 h (71.94%), whereas FH reached its top value at 1.5h (71.54%). The other proteases hydrolysates NH and N+FH exhibited their maximum Fe²⁺ chelating activity at 3 h of hydrolysis. Figure 3.2D illustrates the reducing power of CMWP hydrolysates as measured by the redox-linked colorimetric reaction¹⁷³. It can be seen from the figure that the reducing power increased in the first 1.5 h for the FH protease hydrolysate, and then decreased sharply. NH and AH reached their top reducing power at 3h, and the (N+FH) achieved the highest reducing power at 0.5 h. The FH hydrolysates at 1.5 h achieved the maximum reducing power among all enzymatic hydrolysates (0.045).

Considering the previous results for all antioxidant activity assays, it has been noticed that the type of enzymes is the main determinant in defining the antioxidant capacities of camel milk whey protein hydrolysates. Since the antioxidant activity of FH at 1.5 h hydrolysis is maximum in most of the tests, FH hydrolysates were chosen for further analysis to observe the effects of digestive enzymes (pepsin and trypsin) on the antioxidant activities of these bioactive peptides.

In vitro gastric and small intestine digestions

The DPPH radical scavenging activities for hydrolysates produced after digestion with pepsin are presented in Figure 3.3A and indicated that the DPPH radical scavenging activity increased after the initiation of pepsin hydrolysis and exhibited the maximum DPPH radical scavenging activity (93.53%) after 60 min of pepsin digestion. The DPPH radical scavenging activity decreased after adding trypsin to the reactions (after 120 min of hydrolysis).

The superoxide radical scavenging activity of digested hydrolysates increased sharply in the first 30 min of incubation and then remained almost constant till 120 min. After adding trypsin to the reactions, the superoxide radical scavenging activity decreased gradually (Figure 3.3B). For Fe²⁺ chelating activity of the digested peptides (Figure 3.3C), the effect of pepsin digestion appeared clearly at the beginning of digestion where the Fe²⁺chelating activity was maximum after 1h and then decreased gradually. However, the reducing power of hydrolysates digested by pepsin and trypsin enzymes was very similar (Figure 3.3D). long digestion time did not decrease the reducing activity but rather increased gradually over time, with the reducing activity maximum at 6 h. In general, the antioxidant assay results presented in Figure 3.3 showed that the best antioxidant activity was observed during pepsin digestion at 30, 60, and 120 min, whereas the antioxidant activities were negatively affected by trypsin digestion.

Figure 3.2 A) DPPH radical scavenging activity (% scavenging at 1.0 mg/mL); B) superoxide radical scavenging activity (% scavenging at 0.5 mg/mL); C) ferrous ion chelating activity at 1 mg/mL concentration; and D) reducing power (absorbance at 1 mg/mL) of the camel milk whey protein hydrolyzed by four different proteases for different hydrolysis times (0.5-4h).

Digesta molecular weight (Mw)

The molecular weight (Mw) of FH hydrolysate before, during and after digestion by pepsin and trypsin is shown in (Figure 3.4). Size exclusion-high performance liquid chromatography (SE-HPLC) was used to determine the Mw of the FH digesta. A steady reduction in the size of the produced peptides during digestion was observed (Figure 3.4).

Figure 3.3:A) DPPH free radical scavenging activity (% scavenging at 1.0 mg/mL), B) superoxide radical scavenging activity (% scavenging at 0.5 mg/mL), C) Ferrous ion chelating activity (% at 1.0 mg/mL), D) Reducing power (absorbance at 1.0 mg/mL) of flavourzyme hydrolysate at 1.5 h (FH) during pepsin and trypsin digestion.

The size exclusion chromatograms of undigested and digested samples were divided into 4 groups according to their MW. Group I represent the peptides with very large size (Mw> 50 KDa), group II represents peptides with large size (10KDa<Mw<50KDa), group III represents peptides with medium size (2KDa<Mw<10KDa), and group IV represents peptides with small size (Mw<2KDa).

The size exclusion chromatogram of undigested FH hydrolysates was characterized by one major peak corresponding to the Mw of 16.80KDa, three small broad peaks of Mw 710.80, 77.66, and 62.53 KDa, and some very small peaks of Mw between 9.11 to 1.14 KDa. During the pepsin digestion (i.e., after 30, 60, and 120 min of digestion time), the peaks for the very large size peptides (Mw> 50 KDa) as well as the peptides with Mw 1.14 KDa completely disappeared. The

peptic hydrolysates were characterized by one sharp main peak of Mw (6.83KDa) and numerous peaks and shoulder peaks ranging from 12.88 to 2.18 KDa. Moreover, the pepsin hydrolysis caused an increase in medium-sized peptides with Mw between 2 and 10 KDa. Although the trypsin digestion (i.e., after 180, 240, and 360 min of digestion time) caused the elimination of the peaks for MW higher than 10 KDa (Mw >10KDa), it reduced but did not eliminate the peaks of medium size peptides. Moreover, the trypsin hydrolysis led to the formation of small peptides (Mw<2KDa) and shifted the main peak to smaller Mw peptides. The tryptic hydrolysates were characterized by one sharp main peak for Mw (1.16 KDa) and the other three peaks for approximately 8.37, 4.28, and 0.66 KDa peptides (Figure 3.4).

Figure 3.4:Molecular weights of the flavourzyme hydrolysate (FH) before and after digestion with flow rate at 0.1 ml/min.

3.4. Discussion

Several methods are available to estimate the degree of hydrolysis and different approaches are required to determine the DH% of different products. In this study, we used a method that keeps the small Mw peptides (digested peptide products) soluble and causes the large peptides (undigested) to precipitate in the presence of the precipitating agent trichloroacetic acid (TCA). Addition of TCA causes partial or total precipitation of non-hydrolyzed proteins and high molecular-mass peptides ¹⁶⁸. As both an exo- and endopeptidase, flavourzyme achieved the highest degree of hydrolysis. Therefore, flavourzyme has been commercially used for food protein hydrolysates reported earlier ¹⁷³. Similar findings have been reported by Xia and other (2012) ¹⁷⁵ for glutelin hydrolysates and stated that the flavourzyme hydrolysates had the highest degree of hydrolysis among all other hydrolysates studied. In the TCA method, free amino acids and small peptides remain soluble and stay in the supernatant. However, large peptides will be insoluble after the addition of TCA, and this most likely contributed to the lower degree of hydrolysis ¹⁶⁸.

The DPPH free radical scavenging has commonly been utilized as a standard detection method for antioxidant activity. DPPH has a strong scavenging power which entails transferring the hydrogen atom to the free radical to stop the oxidation of the cells and tissues in the body ¹⁷⁶. The ferric reducing antioxidant test was used to determine the reducing power of CMWP hydrolysates by exploiting the capacity of antioxidant substances to reduce Fe³⁺ to Fe²⁺ in a redox-linked colorimetric reaction ¹⁷³. Flavourzyme hydrolysate (FH) at 90 min of hydrolysis achieved the maximum DPPH free radical scavenging activity and this may be due to its high content of hydrophobic amino acids which would lead to an increased in surface hydrophobicity (Figure S1;

Appendices). This result is comparable with that of a whey protein hydrolysate ¹⁶¹. The superoxide radical scavenging activity results have been found to be comparable to camel and bovine whey protein hydrolysates ¹⁷⁷, and the results agree with camel milk casein hydrolysate and whey protein hydrolysate ¹⁷⁸. Amino acid compositions in the bioactive peptides determine the antioxidant activities of peptides with amino acids with ring structures (i.e., imidazole, indole, benzene, and phenol rings such as found in His, Pro, Phe, and Tyr, respectively) providing the best antioxidant activities because the rings act as significant proton and hydrogen donors to free radicals⁸⁶. Cys and Met have strong antioxidant activity because of their ability to extract H+ from S-H groups¹⁷⁷. The above-mentioned amino acids (i.e., His, Pro, Phe, Tyr, Cys, and Met) comprise about 20% of the total amino acids in FH (the sample before pepsin digestion (FH 0h)). Flavourzyme may work on certain peptides bonds and lead to the release of specific sequences of peptides with superoxide and DPPH scavenging activities ¹⁷³.

The ferrous chelating activity of bio-peptides is exhibited by two main mechanisms: 1) structurally, entrapping of Fe^{2+} via a specific structure like a "cage structure" and 2) electrostatically binding of Fe^{2+} through charged amino acids. Limited enzymatic hydrolysis of WPCM may transform the structure of hydrolysates (cage structure) to a more adaptable and more amphoteric structure, leading to increase potentials for Fe^{2+} entrapping¹⁷⁹. Moreover, the enzymatic hydrolysis could expose the charged amino acids (i.e., amino acids having the capacity to binding metal) ¹⁷³, whereas, extensive hydrolysis can promote loss of the "cage structure" leading to decreased Fe^{2+} chelating activity ¹⁷⁹. These results support the hypothesis that decreases or increase in reducing activities of different hydrolysates may be associated with the changes in amino acid composition. Thus, the exposed high polar or charged amino acids (i.e., "electron-dense amino acids" for example, Glu, Asp, Met, Cys, His, Lys, and Tyr) during the first 90 min of FH hydrolysates could be the reason for the increased reducing power ¹⁸⁰.

The results of pepsin and trypsin digestion suggested that specific peptide lengths correlate with antioxidant activity. Pepsin is a non-specific endopeptidase, whereas trypsin is a very specific endopeptidase that cleaves the peptide bond between Arg and Lys¹⁸¹. The molecular weight of digesta showed that the peptic hydrolysis produced medium sized peptides that have the highest antioxidant activities. These results supported the theory that there is a relationship between peptide size and antioxidant activity. The pepsin digestion of the sample, which was already hydrolyzed by flavourzyme for 90 min, may help in achieving the optimum peptide size with the highest antioxidant activity. However, further hydrolysis with trypsin and increasing incubation time convert the medium-sized peptides to short peptides and decreased the antioxidant activities. Similar findings have been reported by Peng and other (2009)¹⁶¹ for whey protein hydrolysates where the authors stated that the medium-sized peptides had the best antioxidant activities. Moreover, a number of studies investigated the antioxidant activities of casein, whey protein, mackerel fish, barley, and egg yolk proteins and confirmed that the medium- and low-medium peptide sizes were the peptide with the highest antioxidant activities.

The mild denaturation or "molten globule state" in the early stages of enzymatic hydrolysis for native whey protein (mainly α -lactalbumin as a globular protein) increases surface hydrophobicity by exposing the hidden hydrophobic amino acids ¹⁸⁴. These conformational changes and rearrangement of three-dimensional structures after a brief flavourzyme hydrolysis may encapsulate the hydrophilic amino acids inside as a core with the hydrophobic amino acids acting as a cover (i.e., the hydrophobic surface covered the hydrophilic core) ¹⁸⁵ (Figure S1 and Figure S2; Appendices). Even though the aromatic amino acids (Phe and Tyr) are strongly hydrophobic, some of them stay at the surface of protein because of their bulky structure ^{186,187}. These aromatic amino acids could also participate in the surface hydrophobicity of a molecule ^{185,173}. Pepsin may be a

non-specific endopeptidase, but it effectively splits hydrophobic peptide bonds preferably at aromatic amino acid sites ¹⁸¹.

The pepsin and trypsin digestion of FH hydrolysates cleaved the peptide bonds and changed the conformational structures and appeared to reveal and unfold the buried hydrophilic side chains. Similarly, Bamdad and others (2011) ¹⁷³ reported the effects of pepsin, flavourzyme, and alcalase hydrolysis on barley protein by decreasing their surface hydrophobicity. The enzymatic hydrolysis causes the production of charged amino acids and short peptides, thus increase hydrophilicity and decrease surface hydrophobicity ^{173,188}.

The pH of the tested samples was maintained at pH 7 to keep them at states higher than the isoelectric point (pI) of most of the proteins, peptides, and amino acids. There is a strong co-relationship between the degree of hydrolysis by enzymatic digestion and the surface charge. Most of the polar amino acids are charged amino acids like Glu, Asp, Arg, and Lys (strong hydrophilic amino acids) and are usually present on the protein surface ¹⁸⁹. The increase of exposed charged amino acids and poly peptides due to digestion could be responsible for the increased negative charge of the digesta¹⁸⁸ as cleavage of peptide bonds frees amino and carboxylic groups. The carboxylate ions (COO-) will then be separated from carboxylic groups (COOH) to cause the surface charge to become negative ¹⁹⁰. There is also a clear inverse relationship between hydrophobicity and electronegativity of the surface. The charged short-peptides and free amino acids were released and exposed by extensive enzymatic digestion which decrease the hydrophobicity and increase the electronegativity of the whey protein hydrolysate's surface. A similar inverse relationship was also observed between hydrophobicity and electronegativity of the surface hydrophobicity and electronegativity of the surface hydrophobicity and electronegativity of the whey protein hydrolysate's surface.

Li-Jun and others (2008) ¹⁶⁹ reported that the enzymatic hydrolysis of whey protein reduced the size of the peptides. There is a positive co-relationship between digestion progressions of casein and production of smaller size peptides ¹⁸⁸. The antioxidant activities of peptides are also affected by their molecular weight, an important physical property ⁸⁶. The size exclusion chromatogram digesta results confirmed the relationship between size and antioxidant properties of peptides. Several studies have demonstrated the relationship between peptide's size and antioxidant properties. The medium and low-medium size bio-peptides usually exhibited the highest antioxidant activities ¹⁶¹. A more useful measurement would have been to isolate individual peptides, assess each for its antioxidant properties and determine its individual amino acid composition, but this was not done. The results obtained however suggest that peptide molecular weight is most likely a determining factor for antioxidant activities of peptides after pepsin and trypsin digestion.

3.5. Conclusion

A preliminary assessment of the antioxidant properties of camel milk whey protein hydrolysates indicates that they are not fundamentally different from those derived from bovine milk. Among the studied proteases, pepsin can digest FH hydrolysates effectively to get peptides with suitably high antioxidant activity, whereas antioxidant activities of peptides were negatively affected by trypsin digestion. This result suggested that the molecular weight (MW) is most likely the determining factor for the antioxidant activities of peptides. These results support the hypothesis that hydrolysates of camel milk whey protein have a high potential to be used as a natural, safe, and efficient antioxidant agent for pharmaceutical implementation or food additives.

Chapter 4. Identification of peptides from camel milk that inhibit starch digestion

- Advanced revision of this chapter has been prepared as a manuscript for publication.

4.1. Introduction

Starch is the storage polysaccharide in seeds of many plant crops including legumes and cereals, and it is the main constituent of many food products consumed widely in the world ¹⁹². Starch is the only plant polysaccharides that is hydrolyzed by human intestinal enzymes and provides 45-65% of the daily dietary energy for most of the people worldwide ¹⁹³. Starch consists of 74%-82% amylopectin and 18%-26% amylose depending on the variety of the source plants ^{194,68}. Based on its digestibility, starch has been classified as nonglycemic and glycemic starch ^{193,195}. Glycemic starch includes rapidly digestible starch (RDS) and slowly digestible starch (SDS); non-glycemic starch or resistant starch (RS) is not digested in the small intestine but fermented in the large intestine ¹⁹⁴.

In the gastrointestinal tract, there are three stages of starch digestion and utilization: the intraluminal stage which involve digestion by salivary and pancreatic α -amylases, the brush border stage which involve maltase/glucoamylase (MGAM, EC 3.2.1.20/3.2.1.3) and sucrase/isomaltase (SIM, EC 3.2.1.48/3.2.1.10) as the main brush border enzymes, and finally the glucose absorption ⁷². Digestion of consumed glycemic starch especially the RDS leads to fast rise of blood glucose levels (hyperglycemia). There is a clear relationship between postprandial hyperglycemia and diet-related health problems like diabetes and obesity ¹⁹⁶. Recently, consumers and researchers are looking negatively upon RDS due to immediate and rapid glucose liberation. On the other hand, slowly digestible starch (SDS) liberate glucose slowly and is desired and recognized healthier than

the RDS ¹⁹⁶. The most useful therapy for diet-related health problems is to reach the optimal level of postprandial blood glucose ¹⁹⁷.

The ratio of amylopectin to amylose, crystallinity, porosity, surface area, integrity degree, and food matrix interaction with starch directly affect starch digestibility⁶⁸. The incorporation of other food matrices with starch leads to notable changes in the chemical, physical, and nutritional characteristics of starch that influence the digestibility through inactivating the targeted responsible digestive enzyme ¹⁹⁸. Novel helical complexes like V-type crystalline will be produced when free fatty acids or/and monoglycerides interact with amylose, resulting in the crystalline amylose becoming more resistant to digestion ¹⁹⁹. Interactions between starch and phenolic compounds also decrease starch digestibility by several mechanisms including inhibition of pancreatic α -amylase and brush border enzyme, and enhancing amylose crystallinity ^{200,201}. Delaying carbohydrate digestion is indispensable for the most beneficial treatment of type2-diabetes ²⁰².

In nature, the proteins in wheat and other grains physically surround the granules of starch, which prevents digestive enzyme access ²⁰³. Many studies have demonstrated that protein surrounding the starch strongly alter the digestion process of starch ²⁰⁴. However, some protein and bioactive peptides derived from protein are also inhibitors of starch digestion^{49,193}. The main potential approach for these peptides is inhibition of the enzymes responsible for starch digestion, such as α -amylase, α -glucosidase, and maltase/glucoamylase ¹⁹⁷, through binding to the target enzyme's active sites (catalytic sites or/and substrate binding sites) via hydrophobic interactions ^{197'202}.

Milk is recognized as one of the main natural sources of beneficial bioactive composites. Bioactive peptides derived from milk are generated by hydrolysis of proteins *in vivo* and/or *ex vivo*, through digestive enzymes, microbial enzymes, and microbial fermentation ³. Milk derived bioactive

peptides exhibit antihyperglycemic property that reduce the glucose level in the blood. Most of the studies with milk are limited to the study of bovine milk, and only a handful of studies have investigated the bioactive peptides from camel milk. Most of the research on camel milk has focused only on raw milk, casein, and fat. Camel milk whey protein has been always overlooked ²¹.

Numerous *in silico*, *in vitro*, *in vivo*, and clinical studies have demonstrated that peptides from milk product hydrolysates are a good source of antihyperglycemic agents and bioactive peptides with starch digestion inhibitory activity like α -amylase inhibitors ^{3,205}. These studies used milk protein hydrolysates ¹²¹, casein hydrolysates ¹²², and whey protein hydrolysates ¹²³.

Despite the ability of antihyperglycemic activity of whey protein and whey protein hydrolysates, most of studies used the whey protein and its hydrolysates as is without determining the responsible peptides. Most of the studies that illustrated the starch digestion inhibitory activity of synthetic peptides depended on an *in-silico* analysis and showed the potential active fragments from whey protein and other dietary protein ²⁰⁶⁺²⁰⁷. Camel milk whey proteins consist of a high amount of hydrophobic amino acids and contain most of the essential and non-essential amino acids with high concentration of F, V, L, K, E, and P ⁴⁶⁺²¹. These intrinsic characteristics of camel milk whey protein make it a promising candidate to produce bioactive peptides with starch digestion inhibitory activity.

The aims of this study therefore were: 1) to assess the effect of enzymatic hydrolysis (flavourzyme) on the starch digestion inhibition activities of camel milk whey protein, 2) to determine the effect of amino acid charge and/or hydrophobicity on the starch digestion inhibition activities through purification of the peptides by cation exchange chromatography (CEX) and hydrophobic interaction chromatography (HIC), and 3) to identify the sequences for the most active peptides.

4.2. Materials and methods

Isolation of cheese whey.

Cheese whey was separated by treatment of reconstituted lyophilized milk from Bactrian camels (BC) (Inner Mongolia Agricultural University, China) or bovine milk with camel chymosin (Chr. Hansen, Bayswater, Australia) or bovine chymosin (rennet), respectively. Briefly, skim camel milk solution was reconstituted by dissolving defatted camel milk powder into water at a powder to water ratio of 1:10 (w/v) with vigorous stirring (1000 rpm, 23°C) for 2h. The reconstituted milk was then heated to 37°C and 1mL camel chymosin was added to 1L milk, followed by incubation at 37°C for 60min. Precipitated proteins were removed from the supernatant containing whey protein by centrifugation at 5,000 ×g for 60min at 4°C. The latter step was repeated 3 times, and the supernatant was lyophilized and stored at -20°C until further analysis.

Hydrolysis of whey protein.

Whey proteins were hydrolyzed by protease from *Aspergillus oryzae* (Flavourzyme) (Sigma, Canada) (500U/g; EC: 232-752-2). A 10% (w/v) whey solution was prepared, and the pH value for solution was adjusted to 6.0 using 0.1M HCL. Flavourzyme was added at 0.05% (v/v) and the mixture was agitated with glass beads at 50°C for 24h to hydrolyze whey proteins. The hydrolysis reaction was stopped by heating to 95°C for 5min, then the hydrolysates were lyophilized and stored at -20°C for further analysis. The hydrolysis was conducted in triplicate.

In vitro digestibility of starch and starch-peptide mixture

Starch (7.5mg; potato starch, Sigma, Canada) or peptide-starch mixture (2.5mg peptide: 7.5mg starch) were suspended in 1mL of water, heated for 10min at 85°C to gelatinize the starch, and incubated at 37°C for 16h. Digestion was carried out by adding 0.5mg of pepsin (250U/mg, Sigma,

Canada) and incubation at pH 2.0 and 37°C with agitation at 200rpm for 30min. The pH of the digesta was adjusted to pH 6.0 with 2M NaOH prior to addition of brush border enzymes from the rat intestinal mucosa, and porcine pancreatic enzymes. In brief, 1ml of 50mM sodium maleate buffer pH 6.0 containing 0.07g pancreatin from porcine pancreas enzymes (Sigma, USA; 45U/mg lipase, 42U/mg amylase, and 3.0U/mg protease) and 10g/L rat small intestinal enzyme (Sigma, USA) was added to 1ml of resulting digesta solution. After adding ~ 5 glass beads (5mm diameter), the reaction mixture was incubated at 37°C and pH 6 for 4h with agitation at 200rpm. The digestion process was stopped by heating to 95°C for 4min. The samples were cooled on ice and centrifuged at 5, 000 ×g for 5min at 4°C. The glucose concentration for samples and controls was measured with the D-glucose (GOPOD-format) kit (Megazyme, Bary, Ireland) (Figure 4.1).

Hydrophobic interaction chromatography (HIC)

Camel milk whey hydrolysates were fractionated by hydrophobic interaction chromatography (HIC) on an Octyl Sepharose CL-4B column (1.5cm × 15cm, Octyl Sepharose CL-4B, GE Healthcare, Chicago, IL) that was linked to a UV detector (220nm). Freeze-dried camel milk whey hydrolysates were dissolved in distilled water to a concentration of 1g/L and the pH was adjusted to 6.0. Of this solution, 250mL were loaded on the column. The column was washed with 250mL distilled water (pH 6) and eluted with 250mL 5% isopropanol in water. The fractions were pooled based on the 220 and 280 nm absorbance, freeze-dried, and analyzed by starch digestibility assay as described above (Figure 4.1).

Cation exchange Chromatography (CEX)

Camel milk whey hydrolysates were fractionated by cation exchange chromatography (CEX) on a 1.5cm \times 15cm, SP- Sepharose fast flow column (GE Healthcare, Chicago, IL). Freeze-dried

camel milk whey hydrolysates were dissolved in distilled water to a concentration of 1g/L and the pH was adjusted to 7.0. Of this solution, 250mL were loaded on the column and the column was washed with distilled water (pH 7). The column was eluted with a linear gradient of 0 to 2M NaCl in water and the fractionation was monitored by measuring the absorption at 220nm. The fractions were pooled based on peaks, then part of each pooled fraction was freeze-dried, and analyzed for the starch digestibility assay as described above.

Figure 4.1:Flow diagram for the isolation of bioactive peptide from camel milk whey protein.

Fraction (F1) from the cation exchange column (Figure 4.4) was further purified and subfractionated by hydrophobic interaction chromatography (HIC) as described above. The column was washed with 0.1% trifluoroacetic acid (TFA) and eluted with 5% isopropanol in 0.1% TFA. The fractions were pooled based on peaks, freeze-dried, and analyzed for the starch digestibility assay as described above (Figure 4.1).

Size exclusion chromatography (SEC)

The size of protein or peptides resulted from camel whey, camel whey hydrolysate, selected fraction 1 from hydrophobic interaction chromatogram, and selected subfractions from cation exchange chromatogram and hydrophobic interaction chromatogram were determined by size exclusion chromatography on a Superdex peptide 10/300 GL column (30cm × 10mm, 8.6µm, GE Healthcare Bio-Sciences, Uppsala, Sweden) and ZORBAX PSM 60 HPLC column (6.2 x 250mm, 5µm, Agilent Zorbax, Santa Clara, California, United States) respectively, as a back to back system. Size determinations were carried out on an Agilent 1200 HPLC system coupled to multiple wavelength (220 and 280 nm) and refractive index detector, at 10 ul injection volume, flow rate 0.2ml/min, and isocratic elution with water as mobile phase for 240 min.

Peptide sequencing

The fractions with the best starch digestion inhibition activity were selected for peptide sequencing. Peptide sequencing by LC-MS/MS was carried out by Alberta Proteomics and Mass Spectrometry Facility in the Department of Biochemistry, Faculty of Medicine & Dentistry, at University of Alberta. Samples were digested with trypsin prior to analysis. Briefly, 50µg of sample was dissolved in 100mM ammonium bicarbonate to a concentration of 1.0g/L, reduced with dithiothreitol and alkylated with iodoacetamide. Samples were then digested overnight with trypsin (2µg, Promega sequencing grade) at 37°C. After digestion, the pH of the samples was

adjusted to 3-4 with formic acid, dried, dissolved in water + 0.2% formic acid, and desalted (Pierce C18 tips).

The tryptic peptides were resolved and ionized by using nano flow HPLC (Easy-nLC 1000, Thermo Scientific) coupled to a Q Exactive Orbitrap mass spectrometer (Thermo Scientific) with an EASY-Spray capillary HPLC column (ES800A, Thermo Scientific). The mass spectrometer was operated in data-dependent acquisition mode, recording high-accuracy and high-resolution survey orbitrap spectra using external mass calibration, with a resolution of 35,000 and m/z range of 300–1700. The twelve most intense multiply charged ions were sequentially fragmented by using HCD dissociation and spectra of their fragments were recorded in the orbitrap at a resolution of 17,500. Data was processed using Proteome Discoverer 1.4 (Thermo Scientific) and the database was searched using SEQUEST (Thermo Scientific). Search parameters included a strict false discovery rate (FDR) of 0.01, a relaxed FDR of 0.05, a precursor mass tolerance of 10ppm and a fragment mass tolerance of 0.01Da. Peptides were searched with carbamidomethyl cysteine as a static modification and oxidized methionine and deamidated glutamine and asparagine as dynamic modifications.

Peptide synthesis

Thirty-seven (37) peptide sequences were identified within the most potent HIC fractions and SEC+HIC subfractions by using LC/MS/MS, six short peptides were chosen for peptide synthesis. The selected peptide sequences were synthesized by Canada peptide (Pointe-Claire, Quebec, Canada) with 92.5 - 97.9 % purity. Then, the starch digestibility assay was applied as described above.

Statistical Analysis.

Starch digestibility assay was performed in triplicate biological repeats with three technical repeats, and the results are presented as means \pm standard error. To determine the statistical differences between the samples, p-values were calculated using Tukey Pairwise Comparisons at 95% Confidence in Minitab 19 (The differences between the conditions are considered significant if p-value < 0.05).

4.3. Results

Starch digestibility inhibition of camel whey and whey hydrolysates.

The starch digestibility assay was applied for starch alone or mixtures of peptides / proteins and starch in a ratio of 1:3 (peptide: starch). The digestibility assay included addition of pepsin, pancreatic enzymes, and brush border enzymes to mimic the enzymes involved in starch and protein digestion in the digestive tract. The activity of brush border glycosyl hydrolases from rat intestinal mucosa corresponds the activity of human brush border enzymes²⁰⁸.

Whey and casein inhibited starch digestion by about 10 and 7%, respectively (Table 4.1). Enzymatic hydrolysis of whey and casein with flavourzyme increased the inhibition of starch digestion by whey and casein hydrolysates to about 17 and 11%, respectively (Table 4.1). Hydrolyzed whey consists of 13.6% proteins or peptides while the protein or peptide content in the casein hydrolysate is more than 85%, therefore, any peptides in the whey fraction presumably are more active and subsequent analyses focused on whey hydrolysates.

Purification of Bactrian camel whey hydrolysate.

Peptides were fractionated either by hydrophobic interaction chromatography (HIC), or by cation exchange chromatography (CEX), followed by HIC separation of the most active fractions

Table 4.1 Peptide recovery after chromatography on SP- Sepharose fast flow column (cation exchange chromatogram; CEX) and on Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC), and starch digestibility inhibition of collected fractions (peptides) at the ratio 1:3 (peptide: starch) respectively. The intact and hydrolyzed casein and whey proteins samples were performed in triplicates and fractions were collected in duplicate.

Sample	Amount of protein or % of protein recovered after chromatography	Inhibition of starch digestion
Camel milk		not determined
Casein		7.6% ±1.1
Whey		$10.1\% \pm 0.9$
Hydrolyzed casein		11.3% ±0.9
Hydrolyzed whey	250mg, corresponding to 34mg whey protein	16.5% ±0.2
Fraction 1 after HIC	32%	$26.9\% \pm 0.1$
Fraction 1 after CEX	86%	24.1% ±0.1
Fraction 1 after CEX and HIC	45%	$32.8\% \pm 0.4$
Fraction 2 after CEX and HIC	09%	35.7% ±0.3

(CEX+HIC). Fractions were characterized with respect to the inhibition of starch digestion. Fractionation of whey hydrolysate by HIC resulted in five fractions (Figure 4.2). Among these fractions, fraction 1 (F1) was most inhibitory to starch digestion (Figure 4.3).

Figure 4.2: Fractionation of flavourzyme hydrolyzed camel whey on Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC). Hydrophobic peptides were eluted with 5% isopropanol. However, the volume of every fraction tube is 5mL.

Whey hydrolysate purified by CEX was collected in four fractions (Figure 4.4A). The chromatogram and the inhibition of starch digestion by the fractions are shown in Figure 4.4B and 4.5B, respectively. Peptides eluting in fraction 1 (<u>F1</u>) were further fractionated on a HIC column. Of the fractions eluting from the HIC column, fractions 1 and 2 were most inhibitory to starch digestion and were chosen for peptide sequencing by LC-MS/MS. Fraction 1 eluting from HIC was also sequenced for comparison.

Figure 4.3: Starch digestibility inhibition % of flavourzyme hydrolyzed camel whey fractions resulted after applying on an Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC).

Determination of peptides size by size exclusion chromatography

The active peptides and fractions were analyzed by SEC to determine the effect of flavourzyme hydrolysis and (HIC) or (CEX and HIC) fractionation on the size and molecular weight of whey protein and whey protein hydrolysates particles to confirm the relationship between molecular weight of the resulted peptides and their starch digestion inhibition activity. Figure 4.6 showed that the flavourzyme hydrolysis of camel whey protein and the fractionation of camel milk protein hydrolysates led to a decrease in the molecular weights of the original protein and protein hydrolysate, respectively. The starch digestion inhibition activity increased with decreasing the molecular weights of the resulting peptides (Figure 4.6).

Figure 4.4: **Panel A:** Fractionation of flavourzyme hydrolyzed camel whey sample on SP- Sepharose fast flow (cation exchange chromatogram; CEX). **Panel B:** Fractionation of F1 eluting from CEX on an Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC). However, the volume of every fraction tube is 5mL.

Figure 4.5: Starch digestibility inhibition % of flavourzyme hydrolyzed camel whey. **Panel A.** Fractions after separation on SP- Sepharose fast flow (cation exchange chromatogram; CEX). **Panel B.** Fractions after separation on CEX and subsequent separation of fraction F1 on an Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC).

Figure 4.6: Size determination of camel whey, camel whey hydrolysate, selected fraction 1 from hydrophobic interaction chromatogram (HIC (F1)), and selected subfractions from cation exchange chromatogram (CEX) and hydrophobic interaction chromatogram (HIC); (CEX & HIC $\underline{F2}^*$) and (CEX & HIC $\underline{F1}^*$), through size exclusion chromatography at 220 nm. The lower and upper exclusion limit is 90000 and 509565, respectively.

No.	Sequence	RT (min)	Charge	MW (Da)
1	VTMQNLNDR	13.30	2	1090.53
2	IRDWYQR ^{a)}	13.35	3	1036.53
3	LVPVICHR	13.47	3	993.57
4	GFSSGSAVVSGGSR	13.54	2	1254.61
5	LASYLDKVR	14.64	3	1064.61
6	YFCDNQETISSK	14.65	2	1491.64
7	ALEEANADLEVK	16.31	2	1301.66
8	IRLENEIQTYR	16.60	3	1434.77
9	<u>FLEQQNQVLQTK</u>	16.82	2	1475.79
10	FASFIDKVR	17.27	3	1082.60
11	RHPEYAVSLLLR	18.90	3	1453.83
12	DAEAWFNEK	19.64	2	1109.49
13	VLDELTLAR	19.79	2	1029.59
14	EYGLFQINNK	20.68	2	1225.62
15	WELLQQVNTSTR	22.06	3	1475.75
16	VVSVLTIQHQDWLTGK	22.25	3	1824.01
17	NMFETPFLAR	23.81	2	1225.60
18	LALDIEIATYR	24.15	2	1277.71
19	FLEQQNQVLQTKWELLQQVNTSTR	24.72	4	2932.52
20	SLDLDSIIAEVK	27.38	3	1302.72
21	<u>VNLFDIPLEVQYVR</u>	29.23	3	1704.94
22	LALDVEIATYR	57.04	2	1263.70

Table 4.2. Sequences of peptides resulted from camel whey protein hydrolysates after separation on an octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC).

^{a)}Sequences that were not identified after fractionation on a cation exchange column are printed in bold and underlined.

Table 4.3Sequences of peptides identified in camel whey protein hydrolysates after separation on SP- Sepharose fast flow column (cation exchange chromatogram; CEX) and on Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC). Peptides were sequenced by LC-MS/MS after trypsin hydrolysis of the fractions unless indicated.

No.	Sequence	RT (min)	Charge	MW (Da)
1	NKYEDEINKR	10.72	3	1308.66
2	VTMQNLNDR	13.25	2	1090.54
3	GFSSGSAVVSGGSR	13.43	2	1254.61
4	YEELQVTAGR	15.32	2	1165.59
5	ALEEANADLEVK	16.20	2	1301.67
6	YEELQITAGR	16.79	2	1179.61
7	WTLLQEQGTK	18.67	2	1203.64
8	DAEAWFNEK	19.41	2	1109.49
9	VLDELTLAR	19.59	2	1029.59
10	GSLGGGFSSGGFSGGSFSR	20.23	2	1707.77
11	WELLQQVNTSTR	21.84	3	1475.75
12	LALDIEIATYR	24.00	2	1277.71
13	SLDLDSIIAEVK	27.17	2	1302.72
14	KKAGVLDYETFTK*	6.35	3	1499.81
15	KHSTKGLGK*	14.76	2	955.57

(*) peptides that were identified in samples in Fraction 2 that were not hydrolyzed with trypsin prior to LC-MS/MS analysis.

Peptide sequences in fractions inhibiting starch digestion.

The derived peptides were sequenced by LC/MS/MS after trypsin digestion. A total of 22 peptides were identified in fraction 1 after hydrophobic column (HIC) separation. Peptide sequences consisted of 7-24 amino acids with molecular weights (Mw) ranging from 994 to 2933Da (Table

4.2). In fractions obtained after fractionation on (CEX and HIC), 13 peptides were identified after trypsin digestion. In addition, 2 peptides were identified in a sample that was analyzed without a trypsin digestion step. The molecular weights of the peptide sequences ranged from 956 to 1708Da, and the peptides contained 8-19 amino acids (Table 4.3).

Inhibition of starch digestion by synthesized peptides

The starch digestibility assay as described above was applied for the selected synthesized peptides sequences to determine their starch digestion inhibition activities. Table 4 illustrated that two sequences that were identified after fractionation on (HIC) and (CEX and HIC); LALDIEIATYR (LR11) and VLDELTLAR (VR9) are as active as the entire fraction. LR11 and VR9 inhibited starch digestion by about 37 and 33%, respectively. However, the remaining peptides are inactive or much less active (Table 4.4).

Table 4.4 Starch digestibility inhibition (%) of synthesized peptides identified in camel whey protein hydrolysates after separation on SP- Sepharose fast flow column (cation exchange chromatogram; CEX) and on Octyl Sepharose CL-4B column (hydrophobic interaction chromatogram; HIC), or just on Octyl Sepharose CL-4B column (HIC) at the ratio 1:3 (peptide: starch) respectively. The peptides synthesized by Canada Peptide company, Pointe-Claire, Quebec, Canada.

Camel Peptide sequences	Protein Access.	Camel Protein	Peptide source (column)	Starch digestibility inhibition%
LALDIEIATYR	S9WX05	Uncharacterized	HIC and CEX+HIC	$37.4\pm1.4^{\rm a}$
VLDELTLAR	S9XAP9	Intermediate filament	HIC and CEX+HIC	$33.6\pm2.4^{\rm a}$
DAEAWFNEK	S9WUY9	Intermediate filament	HIC and CEX+HIC	$5.5\pm2.1^{\text{b}}$
WTLLQEQGTK	S9Y6J1	Intermediate filament	CEX+HIC	$9.5\pm1.3^{\rm b}$
YEELQVTAGR	S9W9S8	Intermediate filament	CEX+HIC	$4.6\pm1.5^{\rm b}$
KHSTKGLGK	S9XLY6	Poly [ADP-ribose] polymerase	CEX+HIC	$6.7\pm1.2^{\text{b}}$

4.4. Discussion

Protein and peptides can delay starch digestion by inhibition of the enzymes responsible for starch digestion, such as α -amylase, α -glucosidase^{120,119,193,49}. This study demonstrates that peptides derived from camel milk whey protein have a starch digestion inhibitory activity. The activity was confirmed by the starch digestibility assay. Purification and fractionation of camel milk whey protein peptides depending on the content of hydrophobic and positively charged amino acids strongly increased the inhibition of starch digestion. For two of the peptides, inhibition of starch digestion was confirmed by assays with pure, chemically synthesized peptides.

Camel milk whey protein is not as well studied as bovine milk whey protein and the biological activities of bioactive peptides derived from camel milk whey protein are not fully explored¹⁶². In this study the combination of enzymatic hydrolysis, ion exchange chromatography, and/or hydrophobic interaction chromatography allowed fractionation and purification of bioactive peptides with starch digestion inhibitory activity from the Bactrian camel milk whey protein. The combination of several techniques allowed purification of antihyperglycemic peptides from bovine milk whey protein ²⁰⁵.

The *in vitro* and *in vivo* studies reported that the antihyperglycemic activity of whey protein hydrolysates are higher than that of the casein hydrolysates 3,121 . This completely agreed with our results and whey protein was found more effective than casein. However, pepsin-treated bovine α -lactalbumin exhibited the highest antihyperglycemic activity compared to other pepsin-treated whey proteins including bovine serum albumin, β -lactoglobulin, lactoferrin, and whey protein isolate, whereas the β -lactoglobulin showed the lowest antihyperglycemic activity 209 . The α -lactalbumin is the major component of camel milk whey protein constituting about 47.41 %, with no presence of the β -lactoglobulin 34 . Bactrian camel milk whey hydrolysates with 13.6% protein

content showed potential starch digestion inhibition activity higher than casein hydrolysate. The fractionation of the camel milk whey protein hydrolysate on HIC column alone produced a peptide fraction that exhibited about 63% higher starch digestion inhibitory activity than the starting hydrolysate. On the other hand, the peptide fractions obtained from the successive chromatographic separations of the same sample by CEX and HIC increased the starch digestion inhibition activity about 116% more than the original hydrolysate (Table 4.1). The positively charged hydrophobic amino acids could help to improve the dietary intervention for delayed starch digestion.

Among the synthesized peptides, LALDIEIATYR and VLDELTLAR showed the highest starch digestion inhibitory activity, whereas the remaining synthesized peptides had only limited starch digestion inhibitory activity. The most potent peptides, LALDIEIATYR and VLDELTLAR were identified in HIC and CEX and HIC fractions. These two peptides were more effective at starch digestion inhibition than the fractionated camel milk whey protein hydrolysate (Table 4.1 and 4.2). In a previous study, the fractionation of the bovine whey protein isolate and α -lactalbumin hydrolysate through successive chromatographic separation generated peptides with more robust starch digestion inhibitory activity than the original starting hydrolysate ²⁰⁵.

Bioactive peptides that inhibit starch digestion act locally in the gastrointestinal tract ⁵¹, and the bioavailability of these peptides is affected by digestive enzymes in the gastrointestinal tract, metabolism, and absorption. Pepsin hydrolysis in the stomach is the first step in food protein digestion and the proteins are then further hydrolysed by the pancreatic proteases trypsin and chymotrypsin, and by brush border peptidases that are expressed after the peptides are transport into the epithelial cells of the small intestine ⁵⁰. Brush border enzymes that contribute to peptide hydrolysis include the peptidyl dipeptidase, aminopeptidase N, dipeptidyl aminopeptidase IV,

 γ -glutamyltranspeptidase, aminopeptidase A, and carboxypeptidase^{50,53,55}. The bioavailability of ingested bioactive peptides depends on their composition and the degree of hydrolysis by the digestive enzymes ^{51,52,53}. Proteins with high content of proline are resistant to gastric and pancreatic peptidases, and proline-rich peptides are thus most likely to escape the digestion and to reach the intestinal membrane in relatively intact sequence to face the brush border enzymes ^{53,55}. Some milk-derived bioactive peptides like, IPP ⁵⁶, VPP ⁵⁷, and HLPLP ⁶⁰ have been detected in the plasma of human and animals.

There are numerous studies that confirmed starch digestion inhibition activity for protein, protein hydrolysates and peptides derived from foods like albumin ¹¹⁹, legumes ²¹⁰, cumin ²¹¹, and milk ^{207,209,212}. Different proteins and their derived peptides differ in their bioactive effect. For example, one of the cumin seed derived peptides "FFRSKLLSDGAAAAKGALLPQYW" showed potent α -amylase inhibition activity around 24.5% ²¹¹, whereas KLPGF derived from albumin showed good α -amylase and α -glucosidase inhibition with an IC50 values about 120 and 59 μ M ¹¹⁹. Despite the milk proteins and their hydrolysates showing antihyperglycemic activity, no studies have identified the peptides responsible for this activity ^{206,207}.

The antihyperglycemic activity of whey protein hydrolysates derived from using digestive enzymes like pepsin and trypsin have been confirmed *in vitro* ^{207,209}. The hexapeptide VAGTWY resulted from trypsin-treated whey protein hydrolysate showed significant decrease in postprandial glucose level in mice with an IC₅₀ value about 174 μM ²¹². Whey protein hydrolysates prepared by tryptic treatment also produced some antihyperglycemic peptides like VLVLDTDYK, TPEVDDEALEK, IPAVFK, and IPAVF with 424.4, 319.5, 143.0, and 44.7 μM as IC₅₀ values ²¹³. Similarly, Lacroix and Li-Chan ²⁰⁵ fractionated and identified several antihyperglycemic peptides from pepsin-treated α-lactalbumin and whey protein isolate through continuous chromatographic

steps, and the strongest peptides were found to be LKPTPEGDL and LKPTPEGDLEIL with IC50 values 45 and 57 μ M, respectively.

Pancreatic amylase, maltase and isomaltase are responsible for hydrolyses of 1,4 and 1,6 glucosidic bond of starch polymers, respectively, and the inhibition of these enzymes will lead to delay starch digestion ⁷². The starch digestion inhibitory effect of protein hydrolysates is mainly affected by the amino acid compositions of the resulted peptides. However, the starch digestion inhibitory effects of α -lactalbumin hydrolysates has been reported higher than the hydrolysates of whey protein isolate, bovine serum albumin, β -lactoglobulin, and lactoferrin resulted after pepsin treatment ²⁰⁹.

Conclusion

The prevalence of food-related chronic diseases including diabetes mellitus has increased worldwide. Digestion of consumed glycemic starch especially RDS leads to hyperglycemia. Hyperglycemia for a long-time lead to the development of insulin resistance, and then diabetes mellitus. Delaying carbohydrate digestion is the most acceptable approach as a treatment of type2-diabetes. Camel milk whey protein hydrolysates have a potential inhibitory effect on starch digestion. The successive chromatographic separation aiming to produce positively charged peptides with hydrophobic amino acids was shown to increase the starch digestion inhibitory activity relative to the original starting hydrolysate.

Chapter 5. Glycomacropeptide from camel milk inhibits the adhesion of enterotoxigenic *Escherichia coli* K88 to porcine cells.

-A revision of this chapter has been published as; Rami M. Althnaibat, Mandy Koch, Heather L. Bruce, Daniel Wefers, Michael G. Gänzle, Glycomacropeptide from camel milk inhibits the adhesion of enterotoxigenic Escherichia coli K88 to porcine cells, International Dairy Journal, Volume 134, 2022, 105448, ISSN 0958-6946, https://doi.org/10.1016/j.idairyj.2022.105448.

5.1. Introduction

Enterotoxigenic *Escherichia coli* (ETEC) are a major cause of childhood diarrhea in developing countries and cause traveler's diarrhea. ETEC also cause watery diarrhea in newborn and post-weaning piglets and calves of cows and camels ^{150,151}. ETEC produce two enterotoxins: heat stable enterotoxin (ST) and heat labile enterotoxin (LT). ETEC adhere to the small intestinal epithelial cells and to the mucosal tissue through glycoprotein receptors of the host cells using specific fimbriae. Colonization of the microvilli and the production of enterotoxins lead to electrolytes imbalance and water loss ^{153,154}. *E. coli* expressing K88 fimbriae are among the most prevalent strains of ETEC that cause diarrhea in swine ^{214,153}.

The mortality rate in farm animals due to bacterial infections is increasing especially at the weaning stage^{215,216}. The use of antibiotics to control ETEC in pig production increases costs, supports the emergence of antibiotic resistant pathogens in animals as well as the transmission of antibiotic resistance to human pathogens ²¹⁷. These problems led to the search for alternative approaches to control ETEC ²¹⁷. Anti-adhesive biomolecules that act as glycan receptor analogues are a promising alternative to antibiotics. Glycan receptors bind to glycolipids or glycoproteins on

the surface of host tissues and thus mediate adhesion of pathogens and toxins including the adherence of ETEC fimbriae to the epithelial cells ^{155,156}. Glycan receptor analogues bind to these glycan receptors and thus inhibit the initial stages of infection and bacterial colonization ^{155,156}. Anti-adhesive agents do not have bactericidal or bacteriostatic activity and therefore do not result in development of antimicrobial resistance ^{156,158}.

Anti-adhesive agents that inhibit the adhesion of ETEC include human milk oligosaccharides (HMOs) as well as oligosaccharides in bovine colostrum which prevent ETEC adhesion in calves ²¹⁸. Major HMOs are composed of fucose, galactose, glucose, N-acetyl-glucosamine, and N-acetyl-neuraminic acid or sialic acid ²¹⁹. However, human milk is not commercially available and HMO analogs that are purified from bovine colostrum or produced with microbial cell factories are relatively expensive ^{219,220}. Alternative oligosaccharides or glycopeptides known to inhibit ETEC adhesion include glycans formed by *Limosilactobacillus reuteri*, glycopeptides obtained from ovomucin hydrolysis, and galactosylated chitosan oligosaccharides ^{216,146,74}. Ovomucinderived glycopeptides prevent adhesion of porcine ETEC K88 fimbriae at minimum inhibitory concentration (MIC) of 2.5 g L⁻¹ while β-galactosylated chitosan-oligosaccharides inhibit ETEC K88 adhesion at MIC of 0.22 g L⁻¹ ^{74,216}.

Bovine caseinomacropeptide (CMP) constitutes about 15-20 % of the total whey protein and represents the C-terminus of κ -casein obtained by specific hydrolysis of κ -casein with rennet. Glycosylated CMP (GMP) contains a high portion of sialic acid, which constitutes 7-9 % of its the total weight ^{221,127}. Bovine GMP also blocks the adhesion of diverse enteric pathogens to the intestinal mucosa including enterohemorrhagic *E. coli* (EHEC) O157 ¹⁴⁷ and ETEC K88 adhesion in swine ⁷⁵. Bovine GMP prevents adhesion of porcine ETEC K88 fimbriae at MIC of 2.5 g L^{-1 75}.

In North Africa and in the Middle East, the production of camel milk cheese has increased; this increase in camel milk cheese production has also increased the amount of whey available as a by-product²¹. Comparable to other domestic animals, ETEC causes diarrhea in camel calves ²²². Camel milk is not as well studied as bovine milk and the chemical composition, and the biological activities of camel CMP are not described. Therefore, this study aimed to purify CMP from camel milk, to characterize its glycan composition, and to assess its activity in preventing adhesion of ETEC K88 adhesion to porcine erythrocytes.

5.2. Materials and methods

Purification of CMP

Bovine GMP was purchased from Davisco Foods International (Eden Prairie, MN, USA). CMP from Bactrian camels or dromedaries was purified from cheese whey that was prepared by treatment of reconstituted lyophilized milk from Bactrian camels (Inner Mongolia Agricultural University, China) or of reconstituted spray dried milk from dromedary camels (Al Ain Farms, Al Ain, UAE) with camel chymosin (Chr. Hansen, Bayswater, Australia), followed by separation of the whey using centrifugation (Figure 1). CMP was purified as previously described with some modifications ¹²⁷, as illustrated in Figure 1. Briefly, about 25 mL whey with a pH of 6.2 was ultra-filtrated, dialyzed with 5 kDa membranes and then incubated in boiling water for 10-12 min to denature whey proteins. After cooling at room temperature (22 °C), precipitated protein was removed by centrifugation at 5,000 ×g for 40 min at 20 °C. The pH of the supernatant was adjusted with 2M HCl to 4.3, the pI of camel milk casein, and precipitates were removed by centrifugation. The pH of the supernatant was adjusted to pH 3.0 with 2 M HCl and the solution was loaded on a 1.5 cm × 20 cm column of diethylaminoethyl (DEAE)-Sephadex A-25 (GE Healthcare, Chicago, IL). CMP was eluted using a linear gradient from 0 to 1 M NaCl. CMP eluting from the column

was detected by measuring the absorbance at 549 nm after derivatization with thiobarbituric acid ²²³. Camel milk oligosaccharides were prepared with the same protocol from acidic whey that was not treated with chymosin.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

SDS-PAGE was carried out using 4-20 % gradient acrylamide ready to use gels (Mini-PROTEAN TGX Precast Protein Gels, Bio-Rad Laboratories, Hercules, CA, USA). CMP was dissolved in distilled water containing 2.5 % (v/v) mercaptoethanol to a concentration of 5 g L⁻¹, diluted 1: 4 (v/v) with SDS loading buffer, heated at 90°C for 5 min, and loaded on the gel. Proteins were separated for 50 min at 150 V and protein bands were stained with Coomassie Blue. Thermo Scientific PageRulerTM Prestained Protein Ladder (10-250 kDa), and SpectraTM Multicolor Low Range Protein Ladder (1.7- 40kDa) (Fisher Scientific) were used as molecular markers.

Reverse phase high performance liquid chromatography coupled to mass spectrometry (LC-MS).

LC-MS analyses of GMP were conducted by the Mass Spectrometry Laboratory of the Department of Chemistry at the University of Alberta. LC-MS was performed with an Agilent 1200 SL HPLC System and a Phenomenex Aeris 3.6 µm, WIDEPORE XB-C8, 200 Å, 2.1 x 50 mm guard column. The column was eluted at 0.5 ml min⁻¹ and 40 °C with 0.1% (v/v) formic acid in water (A) and 0.1% formic acid in acetonitrile (B) with the following linear gradient: 0 min, 5 % B; 0.5 min, 5% B; 5.5 min, 60 % B; 7 min, 98 % B, followed by washing for 2.8 min and re-equilibration. Mass spectra were acquired in positive mode of ionization using an Agilent 6220 Accurate-Mass TOF LC/MS system (Santa Clara, CA, USA) equipped with a dual sprayer electrospray ionization source. Mass correction was performed for every individual spectrum using peaks at m/z 121.0509 and 922.0098 from the reference solution. Mass spectrometric conditions were drying gas 10 L min-1 at 325 °C, nebulizer 20 psi, mass range 100-3000 Da, acquisition rate of ~1.03 spectra/sec, fragmentor 225 V, skimmer 65 V, capillary 4000 V, instrument state 4 GHz High Resolution. Data analysis was performed using the Agilent Mass Hunter Qualitative Analysis software package version B.03.01 SP3.

Figure 5.1: Flow diagram for the purification of the caseinomacropeptide (CMP) from camel milk

Determination of glycan composition.

To analyze monosaccharide content and distribution of GMPs from cows, Bactrian camels, and dromedaries, 20 µL of a 5 g/L solution were hydrolyzed by using 2 M trifluoroacetic acid (TFA). Briefly, samples were first dried with an evaporator (Eppendorf Concentrator, Hamburg, Germany) at 45 °C, followed by addition of 1 mL of 2 M TFA. and incubation 1 h at 121 °C. For the determination of N-acetylneuraminic acid, a reaction temperature of 70 °C was used for hydrolysis with 2 M TFA. After incubation, samples were evaporated and subsequently washed twice with 200 μ L ethanol. The dried hydrolysates were finally dissolved in 200 μ L of ultrapure water and analyzed by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) on an ICS6000 system (Thermo Fisher Scientific, Waltham, MA.) equipped with a Dionex[™] CarboPac[™] PA20 column (150 mm x 3 mm i.d., 6.5 µm particle size, Thermo Fisher Scientific, Waltham, MA.). The eluents used for the gradient were A) ultrapure water, B) 10 mM sodium hydroxide, C) 200 mM sodium hydroxide and D) 200 mM sodium hydroxide with 200 mM sodium acetate. The flow rate was of 0.4 mL/min at 30 °C. Before every run, the column was rinsed with 100 % B for 10 min and then conditioned with 30 % A, and 70 % B for additional 10 min. After injection, samples were eluted with the following gradient: 0 - 27.5 min isocratic with 30 % A and 70 % B; 27.5-35 min linear to 100 % C; 35 - 45 min linear to 100 % D, 45 - 50 min isocratic 100 % D, 50 - 60 min isocratic with 100% C to remove the acetate from the column.

Bacterial strains and growth conditions.

A porcine ETEC expressing K88 fimbriae, *E. coli* ECL 13795, was used to determine the antiadhesion activity. ETEC K88 was cultivated on Minca agar aerobically at 37 °C for 6 - 8 h. Cells were washed from the plates with 3 mL of phosphate buffered saline (PBS, 137 mM NaCl; 2.7
mM KCl; 10 mM Na2HPO4; 145 1.8 mM KH2PO4, pH 7.2). The cell density of the suspension was determined by measuring the optical density (OD) at 600 nm and adjusted to approximately 10^9 CFU mL⁻¹ as described ⁷⁴.

Hemagglutination assay to detect the impact of GMP on ETEC K88 adhesion to piglet erythrocytes.

Hemagglutination was performed in V-bottom 96-well polystyrene microtiter plates (Corning) as previously described ⁷⁴. Briefly, porcine whole blood cells (Innovative Research Inc., USA) were washed three times in PBS and erythrocytes were resuspended in PBS to a final density 5 % (v/v). ETEC K88 suspension (25 µL with about 109 CFU mL⁻¹) was added to the first column of the microtitre plates and diluted horizontally in ten two-fold serial dilutions. Samples or controls were dissolved at 10 g L⁻¹ and diluted in 8 serial twofold dilutions in PBS. Different concentrations of the same sample or control (25 μ L each) were added to the same column of the microtitre plate. The plates were incubated at room temperature (23 °C) for 5 min prior to addition of 25 µL of erythrocyte suspension. Plates were incubated overnight (16 h) at 4 °C before visual scoring of agglutination of erythrocytes as described ²²⁴. Anti-adhesive activity was recorded if the sample or control solution increased the number of ETEC K88 cells that agglutinate erythrocytes at least four-fold. The lowest concentration of GMP with anti-adhesive activity was recorded as the minimum anti-adhesive concentration (MAC). Addition of PBS, bovine serum albumin (BSA), lactose, and oligosaccharides from acidic whey served as negative controls. Bovine GMP was used as a positive control.

Enzyme-Linked Immunosorbent Assay (ELISA) to test the ability of GMP to prevent ETEC K88 adhesion to porcine erythrocytes.

The ELISA assay was conducted in 96-well high binding microtiter plates (Corning) as previously described ⁷⁴ with minor modifications to confirm the impact of GMP on ETEC K88 adhesion to piglet erythrocytes. Briefly, 100 µL of 5 % porcine erythrocytes were added to coat the high binding 96-well plate for 16 h, and plates were then blocked by addition of 200 μ L of 3 % BSA, followed by incubation for 60 min at 4 °C. GMP and controls were dissolved in PBS to 10 g L⁻¹ and diluted in PBS in 8 serial twofold dilutions. ETEC suspensions were mixed with GMP or control solutions 1:1 (v/v) before 100 μ L of the mixtures were added to the plate and incubated for 60 min at 4 °C. Then 100 µL of 1:2000 diluted mouse anti E. coli K88A antibody (Bio-Rad Laboratories, Hercules, CA, USA) was added and incubated at 4 °C for 60 min. Then 100 µL of 1:1000 diluted goat antimouse IgG (H+L) secondary antibody (Invitrogen, Fisher Scientific, CA, USA) was added, followed by incubation for 60 min at 4 °C. TMB substrate (50 µL) was then added to each well. The reaction was stopped after 30 min by adding 50 μ L of 2M sulfuric acid, and the absorbance at 450 nm was determined with a Varioscan Flash Microplate reader (Thermo Scientific, CA, USA). Between each step of the above protocol, three washing steps with 200 µL of PBS were performed. Erythrocytes without ETEC suspension, erythrocytes with ETEC suspension but without samples, and ETEC suspension without erythrocytes were used as controls in addition to the same negative and positive controls that were also used in the hemagglutination assay.

Deglycosylation of GMP.

To remove the glycans (free oligosaccharides) from GMP, the O-glycosidase kit (P0733S, 40,000,000-units/mL, New England BioLabs, ON, Canada) was used with and without

neuraminidase (Sialidase) (11585886001, 5 U, Sigma, Mannheim, Germany). Briefly, 20 µg of GMP was mixed with 1 µL of 10X glycoprotein denaturing buffer in 10 µL H₂O. After denaturation of GMP denaturation at 100 °C for 10 min, 2 µL of 10X GlycoBuffer (2), 2 µL of 10 % NP40, 2 µL of Sialidase, and 3 µL of *O*-Glycosidase were added. The mixture was incubated for 3 hours at 37 °C. The enzyme kit that was used for protein deglycosylation hydrolyses O-glycosidic bonds of the disaccharide Gal-β-1-3GalNAc as well as larger oligosaccharides 225 .

Statistical Analysis.

Bioassays were performed in triplicate biological repeats with three technical repeats, and the results are presented as means \pm standard error. To determine the statistical differences between the samples and concentrations, p-values were calculated using Tukey Pairwise Comparisons at 95% Confidence in Minitab 19 (The differences between the conditions are considered significant if p-value < 0.05).

5.3. Results

CMP Purification.

CMP from Bactrian camels and dromedaries were purified with a protocol that was developed for bovine GMP and employs rennet- and heat-induced precipitation of casein and whey proteins, respectively, and ultra-filtration. Negatively charged CMP was then separated on an anion exchange column (Figure 5.2 A, B). CMP is glycosylated and phosphorylated (Figure 5.3). The predicted molecular weights (Mw) (https://peptidenexus.com/peptide) of non-glycosylated CMPs from Bactrian camel and cows were 6.774 kDa and 6.707 kDa, respectively. The mass spectra obtained by ESI-LC-MS included the predicted ion species of non-glycosylated CMP for Bactrian camels and cows at 6.777 kDa and 6.787 kDa respectively; additional peaks were observed that likely represent the peptides with different levels of glycosylation and phosphorylation (Figure S1; Appendices). The purity of purified Bactrian camel GMP, dromedary GMP, and bovine GMP were assessed by SDS-PAGE (Figure 5.4).

Figure 5.2: Separation of the GMP from milk of Bactrian camels (**Panel A**) and dromedaries (**Panel B**) on a diethylaminoethyl (DEAE)- Sephadex A-25 column. Sialylated oligosaccharides were eluted with 0.5 M NaCl and detected at 549 nm after derivatization. Camel milk oligosaccharides were prepared as negative control from milk that was not treated with rennet.

The pattern of all GMPs samples presented visible regular thin band located at about ~14 kDa, corresponding to the dimeric GMP form composed of 2 GMP monomers. The separation of bovine GMP and GMP from dromedary milk produced additional bands with an apparent Mw of 14 - 30 kDa.

 Bactrian:
 SFIAI¹⁰⁰
 PPKKTQDKTV NPAINTVATV EPPVIPTAEP AVNTVVIAEA SSEFITTSTP¹⁵⁰

 Dromedary:
 SFIAI¹⁰⁰
 PPKKTQDKTV NPAINTVATV EPPVIPTAEP AVNTVVIAEA SSEFITTSTP¹⁵⁰

 Bovine:
 SFMAI¹⁰⁸
 PPKKNQDKTE IPTINTIASG EPTSTPTTEA VESTVATLED SPEVIESPPE¹⁵⁸

 Bactrian:
 ETTTVQITST EI¹⁶²

 Dromedary:
 ETTTVQITST EI¹⁶²

 Bovine:
 EVIESPPEIN TVQVTSTAV¹⁶⁹

Figure 5.3: Amino acid sequence of the caseinomacropeptide (C-terminus of κ -casein) from Bactrian camel (L0P304), dromedary (P79139), and cows (P02668). Green colored amino acids indicate the caseinomacropeptide (CMP); bold residues indicate potential sites for glycosylation or phosphorylation. Bold blue-colored letters correspond to amino acids that were shown to be glycosylated in variant A of bovine GMP; red-colored letters correspond to amino acids that were shown to be phosphorylated in variant A of bovine GMP; red-colored letters correspond to amino acids that were shown to be phosphorylated in variant A of bovine GMP.¹³⁶ The red arrow indicates the cleave sites of chymosin.

Composition of the glycans in GMP from cattle, Bactrian camels, and dromedaries.

To determine the glycan composition of the GMPs, glycans were hydrolyzed with 2 M TFA, and the concentration of resulted monosaccharides was determined (Table 5.1). Hydrolysis of glycans with 2 M TFA not only hydrolyses the glycosidic bonds but also partially or completely deacetylates N-acetylglucosamine and N-acetylgalactosamine; these are therefore detected as the corresponding amino sugars. The amount of total monosaccharides from bovine GMP was less

than 50 % of the amount of monosaccharides from Bactrian camel and dromedary GMPs. Fucose and glucosamine were detected in GMP from Bactrian camels and dromedaries but absent (fucose) or only present in a low concentration (glucosamine) in bovine GMP. Galacturonic acid and glucuronic acid were detected in GMP from Bactrian camels only (Table 5.1).

Figure 5.4 Separation of purified GMP from Bactrian camel and dromedary, and of commercial bovine GMP by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE); red arrows indicate the pure GMP.

The monosaccharide composition after hydrolysis of GMP from Bactrian camels and dromedaries also differed qualitatively and quantitatively, e.g., GMP from dromedaries contained more glucose than GMP from Bactrian camels.

Table 5.1 Composition of monosaccharides after hydrolysis of bovine, Bactrian camel, or dromedary GMP with 2 M TFA. The error was calculated from the Residual Standard Error of the linear or linear quadratic regression of the standard curves.

amount (mg sugar / g GMP)	Bovine	Bactrian camel	Dromedary
Gal	22.13 ± 0.35	58.63 ± 0.76	53.15 ± 0.23
GalN	20.54 ± 0.18	38.53 ± 0.17	33.23 ± 0.23
NeuNAc ^{a)}	39.06 ± 0.27	52.98 ± 0.25	64.68 ± 0.28
GlcN	1.24 ± 0.16	19.75 ± 0.22	15.10 ± 0.05
Glc	1.48 ± 0.35	6.81 ± 0.31	12.03 ± 0.37
GalA	n.d ^{b)}	0.73 ± 0.16	n.d.
Fuc	n.d.	0.43 ± 0.10	0.60 ± 0.05
GlcA	n.d.	traces ^{c)}	n.d.
GlcNAc, GalNAc and Neu5GC	n.d.	n.d.	n.d.
Sum of all sugars	84.4	178.0	178.2

 $^{a)}$ The NeuNAc concentration was determined after hydrolysis at 70 $^{\circ}\mathrm{C}$

^{b)}n.d., not detected

^{c)} Concentration between limit of detection and limit of quantitation.

Impact of GMP on ETEC K88 adhesion to porcine erythrocytes.

The hemagglutination assay was performed for GMP from Bactrian camel and dromedary milk, using bovine GMP, oligosaccharides from camel acidic whey, bovine serum albumin (BSA) and lactose served as controls. The strongest anti-adhesive activities against ETEC K88 were observed for Bactrian camel GMP (Table 5.2). BSA and lactose had no anti-adhesive activities against ETEC K88. However, oligosaccharides from Bactrian camel acidic whey that was prepared without chymosin treatment had a lower minimum anti-adhesive concentration than the positive control (Table 5.2).

Table 5.2 Inhibition of erythrocyte agglutination by ETEC K88 strain with Bactrian camel GMP, dromedary camel GMP, bovine GMP, oligosaccharides from camel acidic whey, bovine serum albumin (BSA), and lactose. Data for bovine and camel GMPs and acidic oligosaccharides are shown as means \pm standard deviation of three independent preparations from dry milk. Values obtained with different compounds or preparations at the same concentration differ significantly (P<0.05) if they do not share common letter

sample	minimum concentration for erythrocyte agglutination with ETEC (g/L)	
Bactrian camel GMP ^A	$0.24^{b}\pm0.02$	
Dromedary camel GMP	$0.28^{\rm b}\pm0.03$	
Bovine GMP	$5.52^{a} \pm 1.06$	
Oligosaccharides from milk of Bactrian camel	$0.87^{b}\pm0.15$	
Lactose	>10	
BSA	> 10	

^A The preparations of camel GMP included about 10 % acidic oligosaccharides

An ELISA was used to confirm the activity of GMP from milk of Bactrian camels and controls in preventing ETEC K88 adhesion to porcine erythrocytes. Comparable to the hemagglutination assay, the highest anti-adhesive activity was observed for Bactrian GMP, followed by oligosaccharides from Bactrian camel acidic whey, bovine GMP, lactose, and BSA respectively (Figure 5.5). At a concentration of 10 g L⁻¹, Bactrian camel GMP reduced ETEC adhesion by about 75 %: at 0.125 g L⁻¹, Bactrian camel GMP still significantly reduced ETEC adhesion (Figure 5.5). The results from both the hemagglutination and ELISA assays demonstrated that GMP from Bactrian camels and dromedaries as well as oligosaccharides from Bactrian camel acidic whey had higher anti-adhesive activities when compared to bovine GMP.

Figure 5.5: Quantification of E. coli K88 ECL13795 binding to porcine erythrocytes with ELISA targeting K88 antibodies. ETEC were incubated with erythrocytes without addition of GMP (no GMP control) or with addition of different concentrations of GMPs. Lactose, bovine serum albumin, and acidic oligosaccharides from milk from Bactrian camels served as controls. Based on the yield of GMP and acidic oligosaccharides from the milk of Bactrian camels, 50 and 5 mg / L, respectively, the GMP preparation from Bactrian camels included about 10% of acidic oligosaccharides in addition to the GMP. Values obtained with different compounds or preparations at the same concentration differ significantly (P<0.05) if they do not share a common letter. Results are reported as means \pm standard deviation of three independent assays.

Deglycosylation of GMP.

To determine whether the effect on ETEC adhesion requires that oligosaccharides are bound to the caseinomacropeptide (peptide backbone), the activity of GMPs was compared to the activity remaining after enzymatic deglycosylation with sialidase and O-glycosidase. The resulting free

sugars and deglycosylated GMPs (caseinomacropeptide) were redissolved in PBS at 10 g L^{-1} and diluted to determine their biological activities (Table 5.3). The activity of the glycosylated GMPs was consistent with results shown in Table 5.2; glycan hydrolysis with sialidase and O-glycosidase (Table 5.3) or with O-glycosidase only (data not shown) eliminated anti-adhesive activity.

Table 5.3 Inhibition of erythrocyte agglutination by ETEC K88 strain with Bactrian camel GMP, dromedary camel GMP, and bovine GMP before and after enzymatic deglycosylation. Data for camel GMPs and bovine GMP are shown as means \pm standard deviation of three independent assays for the same preparations. Values obtained with different compounds or preparations differ significantly (P<0.05) if they do not share a common superscript.

sample	minimum concentration for erythrocyte agglutination with ETEC (g/L)		
	Before deglycosylation	After deglycosylation	
Bactrian camel GMP	$0.25^{b} \pm 0.00$	> 10	
Dromedary camel GMP	$0.25^{b} \pm 0.00$	> 10	
Bovine GMP	$5.00^{\mathrm{a}}\pm0.00$	> 10	
Control (just enzyme/ no GMP)	> 10	> 10	

5.4. Discussion

Camel is an important source of milk in many countries including some of the developing countries where childhood diarrhea caused by ETEC is very common ^{42,226}. Whey is a byproduct of camel milk cheese production ⁴² and is thus an inexpensive source of bioactive compounds including GMP. In the present study, purification of camel and dromedary GMP was achieved with a protocol that was developed for purification of bovine GMP ¹²⁷. The experimental Mw of non-glycosylated bovine CMP that was observed by LC-MS/MS, 6.787 kDa, matches prior observations ^{227,228}, LC-MS data for the GMP from Bactrian camels is not available.

The average molecular weight (Mw) of glycosylated bovine GMP is 7.5 kDa ²²⁹. The SDS-PAGE analysis indicates that the CMP from Bactrian camels and dromedaries form dimers as was previously shown for bovine and goat CMP as a result of self-assembly ^{230,135,128}. The additional bands present in dromedary CMP and bovine CMP correspond to trimeric and tetrameric CMP. The observation of multimeric aggregated CMP was reported previously after separation of bovine CMP, which migrates on SDS-PAGE as a mixture of polymers ^{230,231,232}. It was suggested that hydrophobic interactions stabilize the CMP dimers while electrostatic bonds additionally stabilize the multimeric aggregates of CMP ^{230,231,232}.

The multimeric aggregates of CMP were least abundant in the sample prepared from milk of Bactrian camels; this was also the only sample that was not pasteurized prior to preparation of the CMP, indicating that pasteurization contributes to the aggregation of bovine and camel CMP. The monosaccharide composition of bovine GMP matches prior reports on its glycan composition ^{142,141}. Bovine GMP is glycosylated with a disaccharide composed of galactose and N-acetylgalactosamine (GalNAc), which is decorated with one or two N-acetylneuraminic acid (NeuNAc) moieties. Glycosylation with oligosaccharides that additionally include fucose and N-acetylglucosamine (GlcNAc) was reported in GMP from bovine colostrum¹³³. GalNAc and GlcNAc were detected as the deacetylated amino sugars galactosamine (GalN) and glucosamine (GlcN). This is the result of extensive deacetylation during TFA hydrolysis ^{233,234,235}. The confounding in the results by naturally occurring GalN and GlcN is unlikely because they are highly reactive in the Maillard reaction ²³⁶ and were not identified in glycoproteins in milk ¹³³. NeuNAc is also degraded when high temperatures are applied during acid treatment ²³⁷.

Therefore, the reaction temperature during TFA hydrolysis was reduced to 70 °C which allowed the quantification of NeuNAc in the different GMPs. The monosaccharide content of GMPs from

Bactrian camels and dromedaries was about twice as high as bovine GMP, corresponding to the higher number of potential glycosylation sites in these two species (Fig. 5.3). The difference is more significant for galactose, GalNAc, NeuNAc and GlcNAc. For instance, the content of GlcN in Bactrian camel and dromedary is 6 - 8 fold higher than in bovine GMP (Table 5.1). Many of the biological activities of GMP are mediated by the glycan structure ¹³³, therefore, the increased glycan content of GMP from *Camelus* species may also impact their biological activity.

ETEC K88 infect young piglets and calves ¹⁵⁷, and K88 fimbriae mediate the binding of *E. coli* ECL13795 to glycan receptors ¹⁵². Porcine aminopeptidase N is a receptor for F4 (K88) fimbriae; in addition, surface glycan oligosaccharides composed of GalNAc, GlcNAc, GalN, and N-acetylmannosamine were proposed as receptors for ETEC K88 adhesion ^{152,157}. GMP from both Bactrian camels and dromedaries showed potent anti-adhesive activity at concentrations of about 0.25 g L⁻¹, which is about 20-fold lower than the effective concentration of bovine GMP ^{75,215}. This increased activity *in vitro* likely relates to the increased glycosylation and / or differences in the glycan composition and may also translate to an increased activity *in vivo*. Bovine GMP also reduced the attachment of ETEC K88 *in vivo* ^{75,238} and improved growth performance of *E. coli* K88-challenged piglets ^{75,238}.

This relationship of glycan structure to biological activity was confirmed by comparison of the activity of glycosylated GMPs to the activity of free oligosaccharides and GMPs after enzymatic deglycosylation (caseinomacropeptide) (Table 5.3). Free oligosaccharides from camel milk were less active than GMP and deglycosylation of GMP strongly reduced the prevention of ETEC adhesion. The higher activity of the more densely glycosylated camel GMP, and the strong decrease of activity after deglycosylation suggests that not only the structure but also the density spacing of glycans on the peptide backbone are important for anti-adhesive activity. The

topological spacing of glycans is recognized as an important factor affecting the anti-adhesive activity of glycopeptides ^{138,147,137,139}.

5.5. Conclusion

Hemagglutination and ELISA assays indicated that the anti-adhesive activity of GMP from Bactrian camels and dromedaries was substantially higher than the activity of bovine GMP. Free oligosaccharides from camel milk that were prepared as a control were also active but at a higher concentration when compared to GMP. Deglycosylation of GMP suggested that the spatial arrangement of glycans on the peptide backbone contributes to anti-adhesive activity. The *in vitro* anti-adhesive activity of bovine GMP was confirmed to also reduce ETC K88 adhesion *in vivo*⁷⁵. Therefore, it is likely that the *in vitro* activity of GMP from *Camelus* species (this study) also translates to *in vivo* activity in swine. ETEC that infect humans, however, use different fimbriae with different binding specificity when compared to porcine ETEC ¹⁵⁴⁺¹³⁶, therefore, the use of CMP and GMP from camels and dromedaries remains subject to future investigations.

Chapter 6. General Discussion and Conclusion

Milk-whey is an abundant by-product of the cheese and casein production process. Cheese making is found in ancient Greek mythology and evidence of cheese making was also found in other ancient works dating back more than 7,000 years ²³⁹. Whey represents around 85–90% of milk volume because the primary content of whey is water, and hundreds of millions of tons of whey accumulate as a major by-product of the casein and cheese industries²⁴⁰. Volumes of milk-whey are growing (>2% per year) at around the same rate as volumes of milk worldwide²⁴⁰. Whey has been considered a waste product in developing countries and requires expensive treatment before its disposal into the environment. In some cases, milk-whey is sprayed onto fields, discharged into the ocean, sea, or rivers, discharged into sewage systems, and processed into relatively low-value commodities such as whey powder or whey protein concentrates for use as a food ingredient in animal feed. Dairy industries, therefore, are looking for an economical management approach to find an alternative use of this resource.

The environmental regulations in western countries and some developing countries prohibited disposal of untreated milk-whey. These regulations forced the dairy companies to think of how they can make better use of this enormous volume of whey. During the last 60 years, research has focused on the whey proteins and the conversion of lactose. In parallel, there are many factors helping to increase the value of milk-whey and transformation of milk-whey from a nuisance into valuable bio-functional products. Science knowledge, sophistication, technology advances, higher consumer demands, revolution in functional foods, and food marketplace expansion have created opportunities for whey. This transformation of milk-whey from nuisance into a valuable bio-functional source was done in two stages with the first approach to use the whey and the second then to explore the beneficial function of incorporating it into value added products.

In the last decades, the prevalence of food-related chronic diseases including cardiovascular disease, alcoholic fatty liver disease, cancer, obesity, diabetes mellitus, and hypertension has increased worldwide ⁵²⁺⁶⁸. Thus, the global market size and consumer demands for functional food has increased dramatically. In this growing marketplace, the food companies are demanding economical, novel, high-quality, and scientifically substantiated ingredients. Studies have suggested that bioactive peptides have a favorable effect on the functions of various organs and offers multiple biological and physiological benefits with a wide range of biological activities⁶⁹. Bovine whey holds approximately 55% of the nutrients of milk and contains approximately 100% of lactose and 20% of the original milk protein and therefore represents a significant lactose and protein source²⁴⁰. As a result, whey is an inexpensive source of high-nutritional quality protein and bioactive peptides for the food and health industries ⁷⁹. Sweet whey contains ~5% caseinomacropeptide (CMP), which is the important bioactive peptide with many health benefits like anti-adhesion activity against ETEC⁷⁴⁺⁷⁵. GMP is used as source of sialic acid, however, as sialic acid constitutes 7% - 9% of the total GMP ¹³³.

Milk-whey is recognized as a dietary source for health beneficial bioactive compounds. Whey contains a rich mixture of soluble proteins with many chemical, physical and functional properties. Whey proteins has a special biological value because of high content of essential amino acids, amino acids containing sulphur, and hydrophobic amino acids. Numerous investigation of many whey proteins and their derived peptides revealed potential health benefits ¹⁶¹. Despite the large number of studies on milk-derived bioactive peptides, most of these studies focus on bovine milk only²¹. A handful of studies have investigated the bioactive peptides from sheep, goats, horse, or camel milk ²¹, reflecting that milk from these animals make only relatively small contribution to the overall production of liquid milk or fermented dairy products ⁸⁰.

Camel milk attracted more consideration due to its therapeutic properties ^{42,44}. Most of the research on camel milk has focused only on casein and raw milk, however, only few studies focus on whey proteins from camel milk ^{21,4}. The production of camel milk fermented products and cheese has dramatically increased in, Asia, Africa, and middle east countries in addition to Turkish and Australia ^{42,46}. However, the full potential of the whey protein resulted from camel milk cheese has not yet been explored ⁴⁷, and only a little credit will be given to the whey protein when used as animal feed ²⁴¹.

In addition to Bactrian camel and dromedary there are two other tame types of small camelids from Camelidae family, Llama and Alpaca. These camels are called the "South American Camelidae" or "New World camels" ^{1,3}.

This thesis investigated the enzymatic hydrolysis and successive chromatographic fractionation of camel milk whey protein to produce bioactive peptides and glycopeptides and determined the biological activities of these produced peptides. The antioxidant activity, antihyperglycemic activity, and anti-adhesion activity against bacteria of these peptides from the camel milk hydrolysates were evaluated. A literature review was performed and documented that the camel milk whey proteins have a high content of hydrophobic amino acids and have a balance between essential and non-essential amino acids and contain most of the essential amino acids (i.e., Phe, Val, Thr, Try, Met, leu, Ile, Lys, and His) with high concentration of Phe, Val, Leu, and Lys. On the other hand, camel milk whey proteins are rich in Glu and Pro as a non-essential amino acid. These given characteristics and facts supported the identified activities and led us to conclude that the camel milk whey protein is a promising candidate to produce favourable bioactive peptides and that it can become a major part of a functional food as an antioxidant agent, starch digestion inhibitor, and anti-adhesion agent ³⁻²⁴².

In conclusion, although camel milk whey protein is a by-product of dairy industry, it could be an inexpensive source of high-nutritional quality protein and bioactive peptides for the food and health industries. Preliminary assessment of the antioxidant properties of camel milk whey protein hydrolysates indicates that they are not fundamentally different from those derived from bovine milk. Flavourzyme hydrolysates can be digested effectively by pepsin to get peptides with high antioxidant activity. The antioxidant activities of peptides were negatively affected by trypsin digestion. This study also revealed that the molecular weight is the most likely determining factor for antioxidant activities of peptides. Camel milk whey protein hydrolysates have a potent inhibitory effect on starch digestion. Separation of the positively charged peptide with hydrophobic amino acids identified two peptides, LALDIEIATYR and VLDELTLAR, that inhibited starch digestion more strongly than the unfractionated whey protein hydrolysate.

The monosaccharide content of glycomacropeptides (GMP) from Bactrian camels and dromedaries was about twice as high as that of bovine GMP. Glycans from camels like fucose and N-acetylglucosamine were absent in bovine GMP. GMP from both camel species prevented the childhood and piglets' diarrhoea (Enterotoxigenic *Escherichia coli*) through anti-adhesion. Camel milk GMP inhibited the adhesion of ETEC to porcine blood cells at a concentration that is about 20-fold lower than that of bovine GMP. This increased activity likely relates to the increased glycosylation and the glycan spacing, and/or to differences in the glycan compositions.

All together, this research proved the hypothesis, and confirmed *in vitro* the efficacy of camel milk whey protein-derived bioactive peptides against oxidative stress as an antioxidant agent, starch digestion as a starch digestion inhibitor, and adhesion activity against enteric pathogens as an antiadhesive agent. This research improves the understanding, how glycomacropeptide prevents the adhesion of pathogenic bacteria. This research improved the knowledge about the mechanism of starch digestion inhibition and determined the responsible amino acid sequences. To the best of our knowledge, there are no peptides sequences determined in clinical studies confirming the potential health properties of camel milk.

There are many limitations of this research. The main chapters of this research were done during Covid-19 closure time led to limit this research on *in vitro* tests. Not availability of fresh camel milk in north America and the camel milk samples used in this research were freeze and spray dried, and the Llama and Alpaca milk are not available in commercially and several unsuccessful attempts to get milk samples from Llama and Alpaca farms were done. In literature, the experimental designs that used in the researches on camel milk do not allow conclusions as to whether the observed effects are attributable to protein and bioactive peptides or not, and that made the comparison and references are likely limited on bovine milk.

Therefore, to explore the potential bioactive peptides from camel milk designed *in vivo* studies on camel milk-derived protein hydrolysates are required. Further, more randomized clinical trials are required to realize the full potential activity of bioactive peptides derived from milk, and to determine the bioavailability of ingested bioactive peptides.

References:

- Faraz, A.; Waheed, A.; Mirza, R.; Ishaq, H. The Camel a Short Communication on Classification and Attributes. J. Fish. Livest. Prod. 2019, 7 (1), 10–12. https://doi.org/10.4172/2332-2608.1000289.
- Dorman, A. E. (1984). 2. A. of the husbandry and management of the genus C. B. V. J. Camel in Health and Disease. 2. Aspects of the Husbandry and Management of the Genus Camelus. *Br. Vet. J.* 1984, *140* (6), 616–633.
- (3) Park, Y. W. Bioactive Components in Milk and Dairy Products; Wiley-Blackwell, 2009.
- Yagil, R.; Etzion, Z. Effect of Drought Condition on the Quality of Camel Milk. J. Dairy Res. 1980, 47 (2), 159–166. https://doi.org/10.1017/S0022029900021026.
- (5) Haddadin, M. S. Y.; Gammoh, S. I.; Robinson, R. K. Seasonal Variations in the Chemical Composition of Camel Milk in Jordan. J. Dairy Res. 2008, 75 (1), 8–12. https://doi.org/10.1017/S0022029907002750.
- (6) Food and Agriculture Organization of the United Nations. *FAOSTAT*; Rome, Italy, 2022. https://doi.org/fao. org/faostat/en/# data.
- (7) Farah, Z.; Mollet, M.; Younan, M.; Dahir, R. Camel Dairy in Somalia: Limiting Factors and Development Potential. *Livest. Sci.* 2007, *110* (1–2), 187–191. https://doi.org/10.1016/J.LIVSCI.2006.12.010.
- (8) Ramet JP. The Technology of Making Cheese from Camel Milk (Camelus Dromedarius), Animal Production and Health, No. 113. Food and Agriculture Organization of the United Nation, Rome; FAO, 2001.
- (9) Al-Juboori, A. T.; Mohammed, M.; Rashid, J.; Kurian, J.; El Refaey, S. Nutritional and Medicinal Value of Camel (Camelus Dromedarius) Milk. *WIT Trans. Ecol. Environ.* 2013, 170, 221–232. https://doi.org/10.2495/FENV130201.
- (10) Park, Y. W.; Haenlein, G. F. W.; Wendorff, W. L. Handbook of Milk of Non-Bovine

Mammals; 2017.

- (11)Mitchell, A. L.; Attwood, T. K.; Babbitt, P. C.; Blum, M.; Bork, P.; Bridge, A.; Brown, S. D.; Chang, H.-Y. Y.; El-Gebali, S.; Fraser, M. I.; Gough, J.; Haft, D. R.; Huang, H.; Letunic, I.; Lopez, R.; Luciani, A.; Madeira, F.; Marchler-Bauer, A.; Mi, H.; Natale, D. A.; Necci, M.; Nuka, G.; Orengo, C.; Pandurangan, A. P.; Paysan-Lafosse, T.; Pesseat, S.; Potter, S. C.; Oureshi, M. A.; Rawlings, N. D.; Redaschi, N.; Richardson, L. J.; Rivoire, C.; Salazar, G. A.; Sangrador-Vegas, A.; Sigrist, C. J. A. A.; Sillitoe, I.; Sutton, G. G.; Thanki, N.; Thomas, P. D.; Tosatto, S. C. E. E.; Yong, S.-Y. Y.; Finn, R. D.; Luciani, A.; Madeira, F.; Nuka, G.; Salazar, G. A.; Chang, H.-Y. Y.; Richardson, L. J.; Qureshi, M. A.; Fraser, M. I.; Blum, M.; Rawlings, N. D.; Lopez, R.; El-Gebali, S.; Pesseat, S.; Yong, S.-Y. Y.; Potter, S. C.; Paysan-Lafosse, T.; Finn, R. D.; Marchler-Bauer, A.; Thanki, N.; Mi, H.; Thomas, P. D.; Natale, D. A.; Tosatto, S. C. E. E.; Necci, M.; Orengo, C.; Sillitoe, I.; Attwood, T. K.; Babbitt, P. C.; Brown, S. D.; Bork, P.; Bridge, A.; Rivoire, C.; Sigrist, C. J. A. A.; Redaschi, N.; Pandurangan, A. P.; Gough, J.; Haft, D. R.; Sutton, G. G.; Huang, H.; Letunic, I. InterPro in 2019: Improving Coverage, Classification and Access to Protein Sequence Annotations. Nucleic Acids Res. 2019, 47 (D1), D351–D360. https://doi.org/10.1093/nar/gky1100.
- (12) El-Hatmi, H.; Girardet, J. M.; Gaillard, J. L.; Yahyaoui, M. H.; Attia, H. Characterisation of Whey Proteins of Camel (Camelus Dromedarius) Milk and Colostrum. *Small Rumin*. *Res.* 2007, *70* (2–3), 267–271. https://doi.org/10.1016/J.SMALLRUMRES.2006.04.001.
- (13) Faye, B.; Konuspayeva, G.; Messad, S.; Loiseau, G.; Farabi, A.; Al-Farabi, A.; Kazakhstan,
 A. Discriminant Milk Components of Bactrian Camel (Camelus Bactrianus), Dromedary (Camelus Dromedarius) and Hybrids. *Dairy Sci. Technol.* 2008, *88* (6), 607–617. https://doi.org/10.1051/DST:2008008.
- Meena, S.; Rajput, Y. S.; Sharma, R. Comparative Fat Digestibility of Goat, Camel, Cow and Buffalo Milk. *Int. Dairy J.* 2014, 35 (2), 153–156. https://doi.org/10.1016/J.IDAIRYJ.2013.11.009.
- (15) Park, Y. W.; Juárez, M.; Ramos, M.; Haenlein, G. F. W. Physico-Chemical Characteristics of Goat and Sheep Milk. *Small Rumin. Res.* 2007, 68 (1–2), 88–113. https://doi.org/10.1016/J.SMALLRUMRES.2006.09.013.

- Bornaz, S.; Sahli, A.; Attalah, A.; Attia, H. Physicochemical Characteristics and Renneting Properties of Camels' Milk: A Comparison with Goats', Ewes' and Cows' Milks. *Int. J. Dairy Technol.* 2009, 62 (4), 505–513. https://doi.org/10.1111/J.1471-0307.2009.00535.X.
- (17) Omar, A.; Harbourne, N.; Oruna-Concha, M. J. Quantification of Major Camel Milk Proteins by Capillary Electrophoresis. *Int. Dairy J.* 2016, 58, 31–35. https://doi.org/10.1016/J.IDAIRYJ.2016.01.015.
- (18) Chatterton, D. E. W.; Smithers, G.; Roupas, P.; Brodkorb, A. Bioactivity of β-Lactoglobulin and α-Lactalbumin-Technological Implications for Processing. *Int. Dairy J.* 2006, *16* (11), 1229–1240. https://doi.org/10.1016/J.IDAIRYJ.2006.06.001.
- (19) Kappeler, S.; Farah, Z.; Puhan, Z. Sequence Analysis of Camelus Dromedarius Milk Caseins. J. Dairy Res. 1998, 65 (2), 209–222. https://doi.org/10.1017/S0022029997002847.
- (20) Mehta, S.; Bissa, U. K.; Patil, U. V; Pathhak, M. L. Importance of Camel Milk and Production Potential of Dromedary Breeds. *Indian J. Anim. Sci.* **2011**, *81* (11), 1173–1177.
- (21) El-Agamy, E. I. Bioactive Components in Camel Milk. Bioactive Components in Milk and Dairy Products .; Wiley-Blackwell, 2009; pp 159–192.
- (22) Wang, S.; Liang, J.; Shao, W. Mineral, Vitamin and Fatty Acid Contents in the Camel Milk of Dromedaries in the Anxi Gansu China. *J. Camel Pract. Res.* **2011**, *18* (2), 273–276.
- (23) Wangoh, J.; Farah, Z.; Puhan, Z. Iso-Electric Focusing of Camel Milk Proteins. *Int. Dairy* .*Journal* **1998**, *8*, 617–621.
- (24) Kappeler, S. R.; Farah, Z.; Puhan, Z. 5'-Flanking Regions of Camel Milk Genes Are Highly Similar to Homologue Regions of Other Species and Can Be Divided into Two Distinct Groups. J. Dairy Sci. 2003, 86 (2), 498–508. https://doi.org/10.3168/JDS.S0022-0302(03)73628-5.
- (25) Salmen, S. H.; Abu-Tarboush, H. M.; Al-Saleh, A. A.; Metwalli, A. A. Amino Acids Content and Electrophoretic Profile of Camel Milk Casein from Different Camel Breeds in Saudi Arabia. *Saudi J. Biol. Sci.* 2012, 19 (2), 177–183. https://doi.org/10.1016/J.SJBS.2011.12.002.

- (26) Lomholt, S. B.; Qvist, K. B. Relationship between Rheological Properties and Degree of κ-Casein Proteolysis during Renneting of Milk. J. Dairy Res. 1997, 64 (4), 541–549. https://doi.org/10.1017/S002202999700246X.
- (27) Nishanthi, M.; Chandrapala, J.; Vasiljevic, T. Compositional and Structural Properties of Whey Proteins of Sweet, Acid and Salty Whey Concentrates and Their Respective Spray Dried Powders. *Int. Dairy J.* 2017, 74, 49–56. https://doi.org/10.1016/J.IDAIRYJ.2017.01.002.
- (28) Nakano, T.; Ozimek, L.; Betti, M. Separation of Bovine κ-Casein Glycomacropeptide from Sweet Whey Protein Products with Undetectable Level of Phenylalanine by Protein Precipitation Followed by Anion Exchange Chromatography. J. Dairy Res. 2018, 85 (1), 110–113. https://doi.org/10.1017/S0022029917000838.
- (29) ALEXANDER, L. J.; STEWART, A. F.; MACKINLAY, A. G.; KAPELINSKAYA, T. V.; TKACH, T. M.; GORODETSKY, S. I. Isolation and Characterization of the Bovine Kcasein Gene. *Eur. J. Biochem.* **1988**, *178* (2), 395–401. https://doi.org/10.1111/j.1432-1033.1988.tb14463.x.
- Mercier, J. C.; Addeo, F.; Pélissier, J. P. [Primary Structure of the Casein Macropeptide of Caprine Kappa Casein]. *Biochimie* 1976, 58 (11–12), 1303–1310. https://doi.org/10.1016/S0300-9084(77)80013-8.
- (31) JOLLÈS, J.; SCHOENTGEN, F.; HERMANN, J.; JOLLÈS, P.; ALAIS, C. The Sequence of Sheep Kappa-Casein: Primary Structure of Para-Kappa A-Casein. *Eur. J. Biochem.* 1974, 46 (1), 127–132. https://doi.org/10.1111/J.1432-1033.1974.TB03604.X.
- (32) Jilo, K.; Tegegne, D. Chemical Composition and Medicinal Values of Camel Milk. Int. J. Res. Stud. Biosci. 2016, 4 (4), 13–25. https://doi.org/10.20431/2349-0365.0404002.
- (33) El Zubeir, I. E. M.; Jabreel, S. O. Fresh Cheese from Camel Milk Coagulated with Camifloc. *Int. J. Dairy Technol.* 2008, 61 (1), 90–95. https://doi.org/10.1111/J.1471-0307.2008.00360.X.
- (34) Laleye, L. C.; Jobe, B.; Wasesa, A. A. H. Comparative Study on Heat Stability and

Functionality of Camel and Bovine Milk Whey Proteins. *J. Dairy Sci.* **2008**, *91* (12), 4527–4534. https://doi.org/10.3168/JDS.2008-1446.

- (35) Kappeler, S. R.; Heuberger, C.; Farah, Z.; Puhan, Z. Expression of the Peptidoglycan Recognition Protein, PGRP, in the Lactating Mammary Gland. *J. Dairy Sci.* 2004, 87 (8), 2660–2668. https://doi.org/10.3168/JDS.S0022-0302(04)73392-5.
- (36) Azwai, S. M.; Carter, S. D.; Woldehiwet, Z. Immunoglobulins of Camel (Camelus Dromedarius) Colostrum. J. Comp. Pathol. 1996, 114 (3), 273–282. https://doi.org/10.1016/S0021-9975(96)80049-1.
- (37) Al-Majali, A. M.; Ismail, Z. B.; Acvp, D.; Al-Hami, Y.; Nour, A. Y. Lactoferrin Concentration in Milk From Camels (Camelus Dromedarius) With and Without Subclinical Mastitis. *Intern J Appl Res Vet Med* • 2007, 5 (3), 120–124.
- (38) Duhaiman, A. S. Purification of Camel Milk Lysozyme and Its Lytic Effect on Escherichia Coli and Micrococcus Lysodeikticus. *Comp. Biochem. Physiol. -- Part B Biochem.* 1988, 91 (4), 793–796. https://doi.org/10.1016/0305-0491(88)90210-6.
- (39) El-Agamy, E.; Nawar, M. Nutritive and Immunological Values of Camel Milk: A Comparative Study with Milk of Other Species. 2nd Int. Camelid Conf. Agroecon. Camelid Farming, Almaty, Kazakhstan 2000, 2, 8–12.
- (40) Sabahelkheir, M.; Fat, M.; Hassan, A. Amino Acid Composition of Human and Animal's Milk... Google Scholar. *ARPN J Sci Technol* 2012, *2*, 32–34.
- (41) Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M. I. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. *Asian-Australasian J. Anim. Sci.* 2016, 29 (7), 1022–1028. https://doi.org/10.5713/AJAS.15.0452.
- (42) Jafar, S.; Kamal, H.; Mudgil, P.; Hassan, H. M.; Maqsood, S. Camel Whey Protein Hydrolysates Displayed Enhanced Cholesteryl Esterase and Lipase Inhibitory, Anti-Hypertensive and Anti-Haemolytic Properties. *LWT* 2018, 98, 212–218. https://doi.org/10.1016/J.LWT.2018.08.024.

- (43) Konuspayeva, G.; Faye, B.; Loiseau, G.; Levieux, D. Lactoferrin and Immunoglobulin Contents in Camel's Milk (Camelus Bactrianus, Campus Dromedarius, and Hybrids) from Kazakhstan. J. Dairy Sci. 2007, 90 (1), 38–46. https://doi.org/10.3168/JDS.S0022-0302(07)72606-1.
- (44) Ayyash, M.; Al-Nuaimi, A.; Al-Mahadin, S.; Liu, S. In Vitro Investigation of Anticancer and ACE-Inhibiting Activity, α-Amylase and α-Glucosidase Inhibition, and Antioxidant Activity of Camel Milk Fermented with Camel Milk Probiotic: A Comparative Study with Fermented Bovine Milk. *Food Chem.* 2018, 239, 588–597. https://doi.org/10.1016/J.FOODCHEM.2017.06.149.
- (45) Elayan, A. A.; Sulieman, A. M. E.; Saleh, F. A. The Hypocholesterolemic Effect of Gariss and Gariss Containing Bifidobacteria in Rats Fed on a Cholesterol-Enriched Diet. *Asian J. Biochem.* 2008, *3* (1), 43–47. https://doi.org/10.3923/AJB.2008.43.47.
- (46) Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M. I. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. *Asian-Australasian J. Anim. Sci.* 2015, 29 (7), 1022–1028. https://doi.org/10.5713/AJAS.15.0452.
- (47) Onwulata, C.; Huth, P. (Peter J. . Whey Processing, Functionality and Health Benefits; Onwulata, C., Huth, P. (Peter J. ., Eds.; Wiley-Blackwell, 2008.
- McIntosh, G. H.; Royle, P. J.; Le Leu, R. K.; Regester, G. O.; Johnson, M. A.; Grinsted, R. L.; Kenward, R. S.; Smithers, G. W. Whey Proteins as Functional Food Ingredients? *Int. Dairy J.* 1998, 8 (5–6), 425–434. https://doi.org/10.1016/S0958-6946(98)00065-X.
- (49) Layman, D. K.; Shiue, H.; Sather, C.; Erickson, D. J.; Baum, J. Increased Dietary Protein Modifies Glucose and Insulin Homeostasis in Adult Women during Weight Loss. *J. Nutr.* 2003, 133 (2), 405–410. https://doi.org/10.1093/JN/133.2.405.
- (50) Hooton, D.; Lentle, R.; Monro, J.; Wickham, M.; Simpson, R. The Secretion and Action of Brush Border Enzymes in the Mammalian Small Intestine. *Rev. Physiol. Biochem. Pharmacol.* 2015, *168*, 59–118. https://doi.org/10.1007/112_2015_24.

- (51) Xu, Q.; Hong, H.; Wu, J.; Yan, X. Bioavailability of Bioactive Peptides Derived from Food Proteins across the Intestinal Epithelial Membrane: A Review. *Trends Food Sci. Technol.* 2019, *86*, 399–411. https://doi.org/10.1016/J.TIFS.2019.02.050.
- (52) Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Babij, K.; Szewczuk, Z.; Trziszka, T.; Lubec, G.; Chrzanowska, J. Multifunctional Peptides Derived from an Egg Yolk Protein Hydrolysate: Isolation and Characterization. *Amino Acids* 2015, 47 (2), 369. https://doi.org/10.1007/S00726-014-1869-X.
- (53) Yoshioka, M.; Erickson, R. H.; Kim, Y. S. Digestion and Assimilation of Proline-Containing Peptides by Rat Intestinal Brush Border Membrane Carboxypeptidases. Role of the Combined Action of Angiotensin-Converting Enzyme and Carboxypeptidase P. J. Clin. Invest. 1988, 81 (4), 1090–1095. https://doi.org/10.1172/JCI113421.
- (54) Xu, Q.; Fan, H.; Yu, W.; Hong, H.; Wu, J. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers. *J. Agric. Food Chem.* 2017, 65 (34), 7406–7414. https://doi.org/10.1021/ACS.JAFC.7B02176.
- (55) Mentlein, R. Cell-Surface Peptidases. Int. Rev. Cytol. 2004, 235, 165–213. https://doi.org/10.1016/S0074-7696(04)35004-7.
- (56) Nongonierma, A. B.; FitzGerald, R. J. Strategies for the Discovery, Identification and Validation of Milk Protein-Derived Bioactive Peptides. *Trends Food Sci. Technol.* 2016, 50, 26–43. https://doi.org/10.1016/J.TIFS.2016.01.022.
- (57) Ten Have, G. A. M.; Van Der Pijl, P. C.; Kies, A. K.; Deutz, N. E. P. Enhanced Lacto-Tri-Peptide Bio-Availability by Co-Ingestion of Macronutrients. *PLoS One* 2015, *10* (6), e0130638. https://doi.org/10.1371/JOURNAL.PONE.0130638.
- (58) Shigemura, Y.; Nakaba, M.; Shiratsuchi, E.; Suyama, M.; Yamada, M.; Kiyono, T.; Fukamizu, K.; Park, E. Y.; Nakamura, Y.; Sato, K. Identification of Food-Derived Elastin Peptide, Prolyl-Glycine (pro-Gly), in Human Blood after Ingestion of Elastin Hydrolysate. *J. Agric. Food Chem.* 2012, 60 (20), 5128–5133. https://doi.org/10.1021/JF300497P/ASSET/IMAGES/MEDIUM/JF-2012-

00497P 0006.GIF.

- (59) Foltz, M.; Meynen, E. E.; Bianco, V.; Van Platerink, C.; Koning, T. M. M. G.; Kloek, J. Angiotensin Converting Enzyme Inhibitory Peptides from a Lactotripeptide-Enriched Milk Beverage Are Absorbed Intact into the Circulation. J. Nutr. 2007, 137 (4), 953–958. https://doi.org/10.1093/JN/137.4.953.
- (60) Sánchez-Rivera, L.; Ares, I.; Miralles, B.; Gómez-Ruiz, J. Á.; Recio, I.; Martínez-Larrañaga, M. R.; Anadón, A.; Martínez, M. A. Bioavailability and Kinetics of the Antihypertensive Casein-Derived Peptide HLPLP in Rats. J. Agric. Food Chem. 2014, 62 (49), 11869–11875. https://doi.org/10.1021/JF5035256/ASSET/IMAGES/MEDIUM/JF-2014-035256_0004.GIF.
- (61) Bouglé, D.; Bouhallab, S. Dietary Bioactive Peptides: Human Studies. 2016. 57 http://dx.doi.org/10.1080/10408398.2013.873766 (2),335-343. https://doi.org/10.1080/10408398.2013.873766.
- (62) Ohsawa, K.; Satsu, H.; Ohki, K.; Enjoh, M.; Takano, T.; Shimizu, M. Producibility and Digestibility of Antihypertensive Beta-Casein Tripeptides, Val-Pro-Pro and Ile-Pro-Pro, in the Gastrointestinal Tract: Analyses Using an in Vitro Model of Mammalian Gastrointestinal Digestion. J. Agric. Food Chem. 2008, 56 (3), 854–858. https://doi.org/10.1021/JF072671N.
- (63) Nakamura, Y.; Yamamoto, N.; Sakai, K.; Okubo, A.; Yamazaki, S.; Takano, T. Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitors from Sour Milk. J. Dairy Sci. 1995, 78 (4), 777–783. https://doi.org/10.3168/JDS.S0022-0302(95)76689-9.
- (64) Chabance, B.; Marteau, P.; Rambaud, J. C.; Migliore-Samour, D.; Boynard, M.; Perrotin, P.; Guillet, R.; Jollès, P.; Fiat, A. M. Casein Peptide Release and Passage to the Blood in Humans during Digestion of Milk or Yogurt. *Biochimie* 1998, *80* (2), 155–165. https://doi.org/10.1016/S0300-9084(98)80022-9.
- (65) Horner, K.; Drummond, E.; Brennan, L. Bioavailability of Milk Protein-Derived Bioactive Peptides: A Glycaemic Management Perspective. *Nutr. Res. Rev.* 2016, 29 (1), 91–101. https://doi.org/10.1017/S0954422416000032.

- (66) Cicero, A. F. G.; Fogacci, F.; Colletti, A. Potential Role of Bioactive Peptides in Prevention and Treatment of Chronic Diseases: A Narrative Review. *Br. J. Pharmacol.* 2017, *174* (11), 1378–1394. https://doi.org/10.1111/BPH.13608.
- (67) Cicero, A. F. G.; Gerocarni, B.; Laghi, L.; Borghi, C. Blood Pressure Lowering Effect of Lactotripeptides Assumed as Functional Foods: A Meta-Analysis of Current Available Clinical Trials. J. Hum. Hypertens. 2011 257 2010, 25 (7), 425–436. https://doi.org/10.1038/jhh.2010.85.
- (68) Miao, M.; Hamaker, B. R. Food Matrix Effects for Modulating Starch Bioavailability. Annu. Rev. Food Sci. Technol. 2021, 12 (1). https://doi.org/10.1146/annurev-food-070620-013937.
- (69) Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. *Nutrients* 2018, 10 (11), 1738–1755. https://doi.org/10.3390/NU10111738.
- (70) Daroit, D. J.; Brandelli, A. In Vivo Bioactivities of Food Protein-Derived Peptides a Current Review. *Curr. Opin. Food Sci.* 2021, 39, 120–129. https://doi.org/10.1016/J.COFS.2021.01.002.
- (71) Duffuler, P.; Bhullar, K. S.; de Campos Zani, S. C.; Wu, J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. *J. Agric. Food Chem.* 2022, 70 (12), 3585–3595. https://doi.org/10.1021/ACS.JAFC.1C06289.
- (72) Zhang, G.; Hasek, L. Y.; Lee, B. H.; Hamaker, B. R. Gut Feedback Mechanisms and Food Intake: A Physiological Approach to Slow Carbohydrate Bioavailability. *Food Funct.* 2015, 6 (4), 1072–1089. https://doi.org/10.1039/C4FO00803K.
- (73) Tadesse, S. A.; Emire, S. A. Production and Processing of Antioxidant Bioactive Peptides:
 A Driving Force for the Functional Food Market. *Heliyon* 2020, 6 (8). https://doi.org/10.1016/J.HELIYON.2020.E04765.
- (74) Yan, Y. L.; Hu, Y.; Simpson, D. J.; Gänzle, M. G. Enzymatic Synthesis and Purification of Galactosylated Chitosan Oligosaccharides Reducing Adhesion of Enterotoxigenic

Escherichia Coli K88. *J. Agric. Food Chem.* **2017**, *65* (25), 5142–5150. https://doi.org/10.1021/acs.jafc.7b01741.

- (75) Hermes, R. G.; Molist, F.; Francisco Pérez, J.; De Segura, A. G.; Ywazaki, M.; Davin, R.; Nofrarías, M.; Korhonen, T. K.; Virkola, R.; Martín-Orúe, S. M. Casein Glycomacropeptide in the Diet May Reduce *Escherichia Coli* Attachment to the Intestinal Mucosa and Increase the Intestinal *Lactobacilli* of Early Weaned Piglets after an Enterotoxigenic *E. Coli* K88 Challenge. *Br. J. Nutr.* 2013, *109* (6), 1001–1012. https://doi.org/10.1017/S0007114512002978.
- (76) Mouricout, M.; Michel Petit, J.; Robert Carias, J.; JULIEN Genius, R. Glycoprotein Glycans That Inhibit Adhesion of Escherichia Coli Mediated by K99 Fimbriae: Treatment of Experimental Colibacillosis. *Infect. Immun.* **1990**, *58* (1), 98–106.
- (77) Eckl, M. R.; Biesbroek, S.; Van'T Veer, P.; Geleijnse, J. M. Replacement of Meat with Non-Meat Protein Sources: A Review of the Drivers and Inhibitors in Developed Countries. *Nutrients* 2021, *13* (3602). https://doi.org/10.3390/NU13103602.
- (78) García-Burgos, M.; Moreno-Fernández, J.; Alférez, M. J. M.; Díaz-Castro, J.; López-Aliaga, I. New Perspectives in Fermented Dairy Products and Their Health Relevance. J. Funct. Foods 2020, 72 (104059). https://doi.org/10.1016/J.JFF.2020.104059.
- (79) Luhovyy, B. L.; Akhavan, T.; Anderson, G. H. Whey Proteins in the Regulation of Food Intake and Satiety. J. Am. Coll. Nutr. 2007, 26 (6), 704S-712S. https://doi.org/10.1080/07315724.2007.10719651.
- (80) Shahbandeh, M. Cattle/Cow Population Worldwide 2012-2022 | Statista; 2022.
- (81) Ahmed, A. S.; El-Bassiony, T.; Elmalt, L. M.; Ibrahim, H. R. Identification of Potent Antioxidant Bioactive Peptides from Goat Milk Proteins. *Food Res. Int.* 2015, 74, 80–88. https://doi.org/10.1016/J.FOODRES.2015.04.032.
- (82) Agyei, D.; Ongkudon, C. M.; Wei, C. Y.; Chan, A. S.; Danquah, M. K. Bioprocess Challenges to the Isolation and Purification of Bioactive Peptides. *Food Bioprod. Process.* 2016, 98, 244–256. https://doi.org/10.1016/J.FBP.2016.02.003.

- (83) Elfahri, K. R.; Vasiljevic, T.; Yeager, T.; Donkor, O. N. Anti-Colon Cancer and Antioxidant Activities of Bovine Skim Milk Fermented by Selected Lactobacillus Helveticus Strains. J. Dairy Sci. 2016, 99 (1), 31–40. https://doi.org/10.3168/JDS.2015-10160.
- (84) Shi, Y.; Kovacs-Nolan, J.; Jiang, B.; Tsao, R.; Mine, Y. Peptides Derived from Eggshell Membrane Improve Antioxidant Enzyme Activity and Glutathione Synthesis against Oxidative Damage in Caco-2 Cells. J. Funct. Foods 2014, 11 (C), 571–580. https://doi.org/10.1016/J.JFF.2014.08.017.
- (85) Flora, S. J. S.; Pachauri, V. Chelation in Metal Intoxication. Int. J. Environ. Res. Public Health 2010, 7 (7), 2788. https://doi.org/10.3390/IJERPH7072745.
- (86) Chi, C. F.; Hu, F. Y.; Wang, B.; Li, T.; Ding, G. F. Antioxidant and Anticancer Peptides from the Protein Hydrolysate of Blood Clam (Tegillarca Granosa) Muscle. *J. Funct. Foods* 2015, *15*, 301–313. https://doi.org/10.1016/J.JFF.2015.03.045.
- (87) He, R.; Ju, X.; Yuan, J.; Wang, L.; Girgih, A. T.; Aluko, R. E. Antioxidant Activities of Rapeseed Peptides Produced by Solid State Fermentation. *Food Res. Int.* 2012, 49 (1), 432–438. https://doi.org/10.1016/J.FOODRES.2012.08.023.
- (88) Najafian, L.; Babji, A. S. Isolation, Purification and Identification of Three Novel Antioxidative Peptides from Patin (Pangasius Sutchi) Myofibrillar Protein Hydrolysates. *LWT - Food Sci. Technol.* 2015, 60 (1), 452–461. https://doi.org/10.1016/J.LWT.2014.07.046.
- (89) Esteve, C.; Marina, M. L.; García, M. C. Novel Strategy for the Revalorization of Olive (Olea Europaea) Residues Based on the Extraction of Bioactive Peptides. *Food Chem.* 2015, 167, 272–280. https://doi.org/10.1016/J.FOODCHEM.2014.06.090.
- (90) Ibrahim, H. R.; Isono, H.; Miyata, T. Potential Antioxidant Bioactive Peptides from Camel Milk Proteins. Anim. Nutr. (Zhongguo xu mu shou yi xue hui) 2018, 4 (3), 273–280. https://doi.org/10.1016/J.ANINU.2018.05.004.
- (91) Zou, T. Bin; He, T. P.; Li, H. Bin; Tang, H. W.; Xia, E. Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. *Molecules* **2016**, *21* (1), 72.

https://doi.org/10.3390/MOLECULES21010072.

- (92) DeGuire, J., Clarke, J., Rouleau, K., Roy, J., & Bushnik, T. *Blood Pressure and Hypertension*; 2019. https://doi.org/82-003-X.
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, (93) M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R. E.; Acton, S. A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin Ι to Angiotensin 1-9. 2000. 87 (5). Circ. Res. 1-9.https://doi.org/10.1161/01.RES.87.5.E1.
- (94) Whelton, P. K.; Carey, R. M.; Aronow, W. S.; Casey, D. E.; Collins, K. J.; Himmelfarb, C. D.; DePalma, S. M.; Gidding, S.; Jamerson, K. A.; Jones, D. W.; MacLaughlin, E. J.; Muntner, P.; Ovbiagele, B.; Smith, S. C.; Spencer, C. C.; Stafford, R. S.; Taler, S. J.; Thomas, R. J.; Williams, K. A.; Williamson, J. D.; Wright, J. T.; Levine, G. N.; O'Gara, P. T.; Halperin, J. L.; Past, I.; Al, S. M.; Beckman, J. A.; Birtcher, K. K.; Bozkurt, B.; Brindis, R. G.; Cigarroa, J. E.; Curtis, L. H.; Deswal, A.; Fleisher, L. A.; Gentile, F.; Goldberger, Z. D.; Hlatky, M. A.; Ikonomidis, J.; Joglar, J. A.; Mauri, L.; Pressler, S. J.; Riegel, B.; Wijeysundera, D. N.; Walsh, M. N.; Jacobovitz, S.; Oetgen, W. J.; Elma, M. A.; Scholtz, A.; Sheehan, K. A.; Abdullah, A. R.; Tahir, N.; Warner, J. J.; Brown, N.; Robertson, R. M.; Whitman, G. R.; Hundley, J. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71 (6), E13–E115. https://doi.org/10.1161/HYP.00000000000065/-/DC2.
- (95) Turpeinen, A. M.; Ikonen, M.; Kivim€, A. S.; Kautiainen, H.; Vapaatalo, H.; Korpela, R. A Spread Containing Bioactive Milk Peptides Ile-Pro-Pro and Val-Pro-Pro, and Plant Sterols Has Antihypertensive and Cholesterol-Lowering Effects. *Food Funct.* 2012, *3*, 621–627. https://doi.org/10.1039/c2fo10286b.
- (96) Turpeinen, A. M.; Ehlers, P. I.; Kivimäki, A. S.; Järvenpää, S.; Filler, I.; Wiegert, E.; Jähnchen, E.; Vapaatalo, H.; Korpela, R.; Wagner, F. Ile-Pro-Pro and Val-Pro-Pro

Tripeptide-Containing Milk Product Has Acute Blood Pressure Lowering Effects in MildlyHypertensiveSubjects.TaylorFr.2011,33(6),388–396.https://doi.org/10.3109/10641963.2010.549267.

- (97) Boelsma, E.; Kloek, J. IPP-Rich Milk Protein Hydrolysate Lowers Blood Pressure in Subjects with Stage 1 Hypertension, a Randomized Controlled Trial. *Nutr. J.* 2010, 9 (1), 1–7. https://doi.org/10.1186/1475-2891-9-52/FIGURES/2.
- (98) Martin, M.; Hagemann, D.; Nguyen, T. T.; Schwarz, L.; Khedr, S.; Moskopp, M. L.; Henle, T.; Deussen, A. Plasma Concentrations and ACE-Inhibitory Effects of Tryptophan-Containing Peptides from Whey Protein Hydrolysate in Healthy Volunteers. *Eur. J. Nutr.* 2020, *59* (3), 1135–1147. https://doi.org/10.1007/S00394-019-01974-X.
- (99) Townsend, R. R.; Mcfadden, C. B.; Ford, V.; Cadé, J. A. A Randomized, Double-Blind, Placebo-Controlled Trial of Casein Protein Hydrolysate (C12 Peptide) in Human Essential Hypertension. *AJH* 2004, *17* (11), 1056–1058. https://doi.org/10.1016/j.amjhyper.2004.06.018.
- (100) Mizuno, S.; Matsuura, K.; Gotou, T.; Nishimura, S.; Kajimoto, O.; Yabune, M.; Kajimoto, Y.; Yamamoto, N. Antihypertensive Effect of Casein Hydrolysate in a Placebo-Controlled Study in Subjects with High-Normal Blood Pressure and Mild Hypertension. *Br. J. Nutr.* 2005, *94*, 84–91. https://doi.org/10.1079/BJN20051422.
- (101) de Leeuw, P. W.; van der Zander, K.; Kroon, A. A.; Rennenberg, R. M. W.; Koning, M. M. G. Dose-dependent Lowering of Blood Pressure by Dairy Peptides in Mildly Hypertensive Subjects. *http://dx.doi.org/10.1080/08037050902761209* 2009, *18* (1–2), 44–50. https://doi.org/10.1080/08037050902761209.
- (102) Jauhiainen, T.; Vapaatalo, H.; Poussa, T.; Kyrönpalo, S.; Rasmussen, M.; Korpela, R. Lactobacillus Helveticus Fermented Milk Lowers Blood Pressure in Hypertensive Subjects in 24-h Ambulatory Blood Pressure Measurement. *Am. J. Hypertens.* 2005, *18* (12), 1600– 1605. https://doi.org/10.1016/J.AMJHYPER.2005.06.006/2/AJH.1600.F1.JPEG.
- (103) van der Zander, K.; Jäkel, M.; Bianco, V.; Koning, M. M. G. Fermented Lactotripeptides-Containing Milk Lowers Daytime Blood Pressure in High Normal-to-Mild Hypertensive

Subjects. J. Hum. Hypertens. 2008, 22 (11), 804-806. https://doi.org/10.1038/jhh.2008.59.

- (104) Hata, Y.; Yamamoto, M.; Ohni, M.; Nakajima, K.; Nakamura, Y.; Takano, T. A Placebo-Controlled Study of the Effect of Sour Milk on Blood Pressure in Hypertensive Subjects. *Am. J. Clin. Nutr.* **1996**, *64* (5), 767–771. https://doi.org/10.1093/AJCN/64.5.767.
- (105) Cicero, A. F. G.; Colletti, A.; Rosticci, M.; Cagnati, M.; Urso, R.; Giovannini, M.; Borghi, C.; D'addato, S. Effect of Lactotripeptides (Isoleucine-Proline-Proline-Proline-Proline) on Blood Pressure and Arterial Stiffness Changes in Subjects with Suboptimal Blood Pressure Control and Metabolic Syndrome: A Double-Blind, Randomized, Crossover Clinical Trial. *Metab. Syndr. Relat. Disord.* 2016, *14* (3), 161–166. https://doi.org/10.1089/met.2015.0093.
- (106) Yamasue, K.; Morikawa, N.; Mizushima, S.; Tochikubo, O. The Blood Pressure Lowering Effect of Lactotoripeptides and Salt Intake in 24-H Ambulatory Blood Pressure Measurements The Blood Pressure Lowering Effect of Lactotoripeptides and Salt Intake in 24-H Ambulatory Blood Pressure Measurements BP Lowering Effec. *Clin. Exp. Hypertens.* 2010, *32*, 214–220. https://doi.org/10.3109/10641963.2010.491885.
- (107) Aihara, K.; Nakamura, Y.; Kajimoto, O.; Kaneko, K.; Mizutani, J.; Ikeda, N.; Nishimura, A.; Kajimoto, Y. Effects of the Liquid Yogurts Containing "Lactotripeptide (VPP, IPP)" on High-Normal Blood Pressure. J. Nutr. Food 2004, 7 (1), 123–137.
- (108) Nakamura, T.; Mizutani, J.; Ohki, K.; Yamada, K.; Yamamoto, N.; Takeshi, M.; Takazawa, K. Casein Hydrolysate Containing Val-Pro-Pro and Ile-Pro-Pro Improves Central Blood Pressure and Arterial Stiffness in Hypertensive Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. *Atherosclerosis* 2011, 219, 298–303. https://doi.org/10.1016/j.atherosclerosis.2011.06.007.
- (109) Cadée, J. A.; Chang, C.-Y.; Chen, C.-W.; Huang, C.-N.; Chen, S.-L.; Wang, C.-K. Casein Hydrolysate (C12 Peptide) Reduces Blood Pressure in Prehypertensive Subjects. *AJH* 2007, 20 (1), 1–5. https://doi.org/10.1016/j.amjhyper.2006.06.005.
- (110) Hirota, T.; Ohki, K.; Kawagishi, R.; Kajimoto, Y.; Mizuno, S.; Nakamura, Y.; Kitakaze, M. Casein Hydrolysate Containing the Antihypertensive Tripeptides Val-Pro-Pro and Ile-Pro-

Pro Improves Vascular Endothelial Function Independent of Blood Pressure–Lowering Effects: Contribution of the Inhibitory Action of Angiotensin-Converting Enzyme. *Hypertens. Res. 2007 306* **2007**, *30* (6), 489–496. https://doi.org/10.1291/hypres.30.489.

- (111) Jauhiainen, T.; Rönnback, M.; Vapaatalo, H.; Wuolle, K.; Kautiainen, H.; Groop, P.-H.; Korpela, R. Long-Term Intervention with Lactobacillus Helveticus Fermented Milk Reduces Augmentation Index in Hypertensive Subjects. *Eur. J. Clin. Nutr.* 2010, *64*, 424– 431. https://doi.org/10.1038/ejcn.2010.3.
- (112) Vieira de Oliveira, G.; Volino-Souza, M.; Mendes Cordeiro, E.; Adam Conte-Junior, C.; Silveira Alvares, T.; Volino-Souza, onica. Effects of Fish Protein Hydrolysate Ingestion on Endothelial Function Compared to Whey Protein Hydrolysate in Humans. *Taylor Fr.* 2020, *71* (2), 242–248. https://doi.org/10.1080/09637486.2019.1635090.
- (113) Nakamura, T.; Hirota, T.; Mizushima, K.; Ohki, K.; Naito, Y.; Yamamoto, N.; Yoshikawa, T. Milk-Derived Peptides, Val-Pro-Pro and Ile-Pro-Pro, Attenuate Atherosclerosis **E**–Deficient Mice: Development in Apolipoprotein А Preliminary Study. https://home.liebertpub.com/jmf 16 2013. (5), 396-403. https://doi.org/10.1089/JMF.2012.2541.
- (114) Romero, D. A.; Magill, D.; Millen, A.; Horvath, P.; Fremaux, C. Dairy Lactococcal and Streptococcal Phage–Host Interactions: An Industrial Perspective in an Evolving Phage Landscape. *FEMS Microbiol. Rev.* 2020, 44 (6), 909–932. https://doi.org/10.1093/femsre/fuaa048.
- (115) Wu, J.; Aluko, R. E.; Nakai, S. Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure–Activity Relationship Study of Di- and Tripeptides. J. Agric. Food Chem. 2006, 54 (3), 732–738. https://doi.org/10.1021/JF051263L.
- (116) Hu, Y.; Stromeck, A.; Loponen, J.; Lopes-Lutz, D.; Schieber, A.; Gänzle, M. G. LC-MS/MS Quantification of Bioactive Angiotensin I-Converting Enzyme Inhibitory Peptides in Rye Malt Sourdoughs. J. Agric. Food Chem. 2011, 59 (22), 11983–11989. https://doi.org/10.1021/jf2033329.

- (117) Yahya, M. A.; Alhaj, O. A.; Al-Khalifah, A. S. Efecto Antihipertensivo de La Leche de Camello Fermentada (Camelus Dromedarius) En Ratas Hipertensas. *Nutr. Hosp.* 2017, *34* (2), 416–421. https://doi.org/10.20960/NH.1163.
- (118) Fallah, Z.; Feizi, A.; Hashemipour, M.; Namazi, N.; Azarbayejani, L.; Kelishadi, R. Effect of Fermented Camel Milk on Obesity Measures and Blood Pressure of Adolescents With Metabolic Syndrome. *J. Pediatr. Rev.* 2019, 7 (3), 181–189. https://doi.org/10.32598/JPR.7.3.181.
- (119) Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-Diabetic Activity Peptides from Albumin against α-Glucosidase and α-Amylase. *Food Chem.* **2012**, *135* (3), 2078–2085. https://doi.org/10.1016/J.FOODCHEM.2012.06.088.
- (120) Gangoiti, J.; Corwin, S. F.; Lamothe, L. M.; Vafiadi, C.; Hamaker, B. R.; Dijkhuizen, L. Synthesis of Novel α-Glucans with Potential Health Benefits through Controlled Glucose Release in the Human Gastrointestinal Tract. *Crit. Rev. Food Sci. Nutr.* 2018, *in press.* https://doi.org/10.1080/10408398.2018.1516621.
- (121) Sartorius, T.; Weidner, A.; Dharsono, T.; Wilhelm, M.; Boulier, A.; Brown, C. S. Postprandial Effects of a Proprietary Milk Protein Hydrolysate Containing Bioactive Peptides in Prediabetic Subjects. *Nutrients* 2019, *11* (7), 1700–1717. https://doi.org/10.3390/NU11071700.
- (122) Geerts, B. F.; Van Dongen, M. G. J.; Flameling, B.; Moerland, M. M.; De Kam, M. L.; Cohen, A. F.; Romijn, J. A.; Gerhardt, C. C.; Kloek, J.; Burggraaf, J. Hydrolyzed Casein Decreases Postprandial Glucose Concentrations in T2DM Patients Irrespective of Leucine Content. *Taylor Fr.* **2011**, *8* (3), 280–292. https://doi.org/10.3109/19390211.2011.593617.
- (123) Chen, Y. C.; Smith, H. A.; Hengist, A.; Chrzanowski-Smith, O. J.; Mikkelsen, U. R.; Carroll, H. A.; Betts, J. A.; Thompson, D.; Saunders, J.; Gonzalez, J. T. Co-Ingestion of Whey Protein Hydrolysate with Milk Minerals Rich in Calcium Potently Stimulates Glucagon-like Peptide-1 Secretion: An RCT in Healthy Adults. *Eur. J. Nutr.* 2020, *59* (6), 2449–2462. https://doi.org/10.1007/S00394-019-02092-4.
- (124) Manders, R. J. F.; Praet, S. F. E.; Meex, R. C. R.; Koopman, R.; De Roos, A. L.;

Wagenmakers, A. J. M.; Saris, W. H. M.; Van Loon, L. J. C. Protein Hydrolysate/Leucine Co-Ingestion Reduces the Prevalence of Hyperglycemia in Type 2 Diabetic Patients. **2006**. https://doi.org/10.2337/dc06-1424.

- (125) Muthukumaran, M. S.; Mudgil, P.; Baba, W. N.; Ayoub, M. A.; Maqsood, S. A Comprehensive Review on Health Benefits, Nutritional Composition and Processed Products of Camel Milk. *Food Rev. Int.* 2022. https://doi.org/10.1080/87559129.2021.2008953.
- (126) Shori, A. B. Camel Milk as a Potential Therapy for Controlling Diabetes and Its Complications: A Review of in Vivo Studies. J. Food Drug Anal. 2015, 23 (4), 609–618. https://doi.org/10.1016/J.JFDA.2015.02.007.
- (127) Nakano, T.; Ozimek, L.; Betti, M. Separation of Bovine κ-Casein Glycomacropeptide from Sweet Whey Protein Products with Undetectable Level of Phenylalanine by Protein Precipitation Followed by Anion Exchange Chromatography. J. Dairy Res. 2018, 85 (1), 110–113. https://doi.org/10.1017/S0022029917000838.
- (128) Silva-Hernandez, E.; Nakano, T.; Ozimek, L. Isolation and Analysis of Kappa-Casein Glycomacropeptide from Goat Sweet Whey. J. Agric. Food Chem. 2002, 50 (7), 2034–2038.
- (129) Córdova-Dávalos, L. E.; Jiménez, M.; Salinas, E. Glycomacropeptide Bioactivity and Health: A Review Highlighting Action Mechanisms and Signaling Pathways. *Nutrients* 2019, 11 (3), 598–620. https://doi.org/10.3390/NU11030598.
- (130) Neelima; Sharma, R.; Rajput, Y. S.; Mann, B. Chemical and Functional Properties of Glycomacropeptide (GMP) and Its Role in the Detection of Cheese Whey Adulteration in Milk. *Dairy Sci. Technol.* 2013, 93 (1), 21–43. https://doi.org/10.1007/S13594-012-0095-0.
- (131) György, P.; Norris, R. F.; Rose, C. S. Bifidus Factor. I. A Variant of Lactobacillus Bifidus Requiring a Special Growth Factor. *Arch. Biochem. Biophys.* 1954, 48 (1), 193–201. https://doi.org/10.1016/0003-9861(54)90323-9.

- (132) Delfour, A.; Jolles, J.; Alais, C. Caseino-Glycopeptides: Characterization of a Methionine Residue and of the N-Terminal Sequence. *Elsevier* **1965**, *19* (4), 452–455.
- (133) O'Riordan, N.; Kane, M.; Joshi, L.; Hickey, R. M. Structural and Functional Characteristics of Bovine Milk Protein Glycosylation. *Glycobiology* 2014, 24 (3), 220–236. https://doi.org/10.1093/GLYCOB/CWT162.
- (134) Brody, E. P. Biological Activities of Bovine Glycomacropeptide. Br. J. Nutr. 2000, 84
 (SUPPL. 1). https://doi.org/10.1017/s0007114500002233.
- (135) Nakano, T.; Ozimek, L. Purification of Glycomacropeptide from Caseinate Hydrolysate by Gel Chromatography and Treatment with Acidic Solution. J. Food Sci. 2000, 65 (4), 588– 590.
- (136) Eigel, W. N.; Butler, J. E.; Ernstrom, C. A.; Farrell, H. M.; Harwalkar, V. R.; Jenness, R.; Whitney, R. M. L. Nomenclature of Proteins of Cow's Milk: Fifth Revision. *J. Dairy Sci.* 1984, 67 (8), 1599–1631. https://doi.org/10.3168/JDS.S0022-0302(84)81485-X.
- (137) Oyelaran, O.; Gildersleeve, J. C. Glycan Arrays: Recent Advances and Future Challenges.
 Curr. Opin. Chem. Biol. 2009, 13 (4), 406–413. https://doi.org/10.1016/J.CBPA.2009.06.021.
- (138) Lewallen, D.; Siler, D.; Iyer, S. Factors Affecting Protein-Glycan Specificity: Effect of Spacers and Incubation Time. *Chembiochem* 2009, 10 (9), 1486–1489. https://doi.org/10.1002/CBIC.200900211.
- (139) Oyelaran, O.; Li, Q.; Farnsworth, D.; Gildersleeve, J. C. Microarrays with Varying Carbohydrate Density Reveal Distinct Subpopulations of Serum Antibodies. *J. Proteome Res.* 2009, 8 (7), 3529–3538. https://doi.org/10.1021/PR9002245.
- (140) Dalgleish, D.; Corredig, M. The Structure of the Casein Micelle of Milk and Its Changes during Processing. Annu. Rev. Food Sci. Technol. 2012, 3 (1), 449–467. https://doi.org/10.1146/ANNUREV-FOOD-022811-101214.
- (141) Hua, S.; Nwosu, C. C.; Strum, J. S.; Seipert, R. R.; An, H. J.; Zivkovic, A. M.; German, J. B.; Lebrilla, C. B. Site-Specific Protein Glycosylation Analysis with Glycan Isomer
Differentiation. *Anal. Bioanal. Chem. 2011* 4035 **2011**, 403 (5), 1291–1302. https://doi.org/10.1007/S00216-011-5109-X.

- (142) Holland, J. W.; Deeth, H. C.; Alewood, P. F. Resolution and Characterisation of Multiple Isoforms of Bovine κ-Casein by 2-DE Following a Reversible Cysteine-Tagging Enrichment Strategy. *Proteomics* 2006, 6 (10), 3087–3095. https://doi.org/10.1002/PMIC.200500780.
- (143) Saito, T.; Itoh, T. Variations and Distributions of O-Glycosidically Linked Sugar Chains in Bovine κ-Casein. J. Dairy Sci. 1992, 75 (7), 1768–1774. https://doi.org/10.3168/JDS.S0022-0302(92)77936-3.
- (144) Huth, P. J.; Layman, D. K.; Brown, P. H. The Emerging Role of Dairy Proteins and Bioactive Peptides in Nutrition and Health: Foreword. J. Nutr. 2004, 134 (4), 989–995.
- (145) Brück, W. M.; Redgrave, M.; Tuohy, K. M.; Lönnerdal, B.; Graverholt, G.; Hernell, O.; Gibson, G. R. Effects of Bovine α-Lactalbumin and Casein Glycomacropeptide-Enriched Infant Formulae on Faecal Microbiota in Healthy Term Infants. *J. Pediatr. Gastroenterol. Nutr.* 2006, 43 (5), 673–679. https://doi.org/10.1097/01.MPG.0000232019.79025.8F.
- (146) Wang, Y.; Gänzle, M.; Schwab, C. Exopolysaccharide Synthesized by Lactobacillus Reuteri Decreases the Ability of Enterotoxigenic Escherichia Coli to Bind to Porcine Erythrocytes. Appl Env. Microbiol 2010, 76 (14), 4863–4866. https://doi.org/10.1128/aem.03137-09.
- (147) Nakajima, K.; Tamura, N.; Kobayashi-Hattori, K.; Yoshida, T.; Hara-Kudo, Y.; Ikedo, M.; Sugita-Konishi, Y.; Hattori, M. Prevention of Intestinal Infection by Glycomacropeptide. *Biosci. Biotechnol. Biochem.* 2005, 69 (12), 2294–2301. https://doi.org/10.1271/BBB.69.2294.
- (148) Isoda, H.; Kawasaki, Y.; Tanimoto, M.; Dosako, S.; Idota, T. Use of Compounds Containing or Binding Sialic Acid to Neutralize Bacterial Toxins - European Patents. EP0385118A2, September 5, 1990.
- (149) Sauvé, M. F.; Spahis, S.; Delvin, E.; Levy, E. Glycomacropeptide: A Bioactive Milk

Derivative to Alleviate Metabolic Syndrome Outcomes. *Antioxidants Redox Signal.* **2021**, *34* (3), 201–222. https://doi.org/10.1089/ars.2019.7994.

- (150) DuPont, H. Pathogenesis of Traveler's Diarrhea. Chemotherapy 1995, 41 Suppl 1, 33–39. https://doi.org/10.1159/000239395.
- (151) Qadri, F.; Svennerholm, A.-M.; Faruque, A. S. G.; Sack, R. B. Enterotoxigenic *Escherichia Coli* in Developing Countries: Epidemiology, Microbiology, Clinical Features, Treatment, and Prevention. *Clin. Microbiol. Rev.* 2005, *18* (3), 465–483. https://doi.org/10.1128/CMR.18.3.465-483.2005.
- (152) Jin, L. Z.; Zhao, X. Intestinal Receptors for Adhesive Fimbriae of Enterotoxigenic *Escherichia Coli* (ETEC) K88 in Swine a Review. *Appl. Microbiol. Biotechnol.* 2000, 54 (3), 311–318. https://doi.org/10.1007/s002530000404.
- (153) Chen, X. Y.; Woodward, A.; Zijlstra, R. T.; Gänzle, M. G. Exopolysaccharides Synthesized by *Lactobacillus Reuteri* Protect against Enterotoxigenic *Escherichia Coli* in Piglets. *Appl. Environ. Microbiol.* **2014**, *80* (18), 5752–5760. https://doi.org/10.1128/AEM.01782-14.
- (154) Nagy, B.; Fekete, P. Z. Enterotoxigenic *Escherichia Coli* in Veterinary Medicine. *Int. J. Med. Microbiol.* 2005, 295 (6–7), 443–454. https://doi.org/10.1016/J.IJMM.2005.07.003.
- (155) Kulkarni, A. A.; Weiss, A. A.; Iyer, S. S. Glycan-Based High-Affinity Ligands for Toxins and Pathogen Receptors. *Med. Res. Rev.* 2010, 30 (2), 327–393. https://doi.org/10.1002/MED.20196.
- (156) Shoaf-Sweeney, K. D.; Hutkins, R. W. Chapter 2 Adherence, Anti-adherence, and Oligosaccharides: Preventing Pathogens from Sticking to the Host. In Advances in Food and Nutrition Research; Academic Press, 2008; Vol. 55, pp 101–161. https://doi.org/10.1016/S1043-4526(08)00402-6.
- (157) Moonens, K.; Van Den Broeck, I.; De Kerpel, M.; Deboeck, F.; Raymaekers, H.; Remaut, H.; De Greve, H. Structural and Functional Insight into the Carbohydrate Receptor Binding of F4 Fimbriae-Producing Enterotoxigenic *Escherichia Coli. J. Biol. Chem.* 2015, 290 (13), 8409–8419. https://doi.org/10.1074/JBC.M114.618595.

- (158) Krachler, A. M.; Orth, K. Targeting the Bacteria–Host Interface. Virulence 2013, 4 (4), 284–294. https://doi.org/10.4161/VIRU.24606.
- (159) Rong, Y.; Lu, Z.; Zhang, H.; Zhang, L.; Song, D.; Wang, Y. Effects of Casein Glycomacropeptide Supplementation on Growth Performance, Intestinal Morphology, Intestinal Barrier Permeability and Inflammatory Responses in *Escherichia Coli* K88 Challenged Piglets. *Anim. Nutr.* 2015, *1* (2), 54–59. https://doi.org/10.1016/j.aninu.2015.05.006.
- (160) Onwulata, C.; Huth, P. *Whey Processing, Functionality and Health Benefits*; Jhon Wiley and Sons, 2009; Vol. 82.
- (161) Peng, X.; Xiong, Y. L.; Kong, B. Antioxidant Activity of Peptide Fractions from Whey Protein Hydrolysates as Measured by Electron Spin Resonance. *Food Chem.* 2009, *113* (1), 196–201. https://doi.org/10.1016/J.FOODCHEM.2008.07.068.
- (162) Jafar, S.; Kamal, H.; Mudgil, P.; Hassan, H. M.; Maqsood, S. Camel Whey Protein Hydrolysates Displayed Enhanced Cholesteryl Esterase and Lipase Inhibitory, Anti-Hypertensive and Anti-Haemolytic Properties. *LWT* 2018, 98, 212–218. https://doi.org/10.1016/J.LWT.2018.08.024.
- (163) El-Agamy, E. I.; Elsayed, I. Bioactive Components in Camel Milk. Bioactive Component in Milk and Dairy Products. In *books.google.com*; 2009; Vol. 107, pp 159–192.
- (164) Farah, Z.; Streiff, T.; Bachmann, M. R. Short Communication: Preparation and Consumer Acceptability Tests of Fermented Camel Milk in Kenya. J. Dairy Res. 1990, 57 (2), 281– 283. https://doi.org/10.1017/S002202990002690X.
- (165) Farah, Z. Composition and Characteristics of Camel Milk. J. Dairy Res. 1993, 60 (4), 603–626. https://doi.org/10.1017/S0022029900027953.
- (166) Mihic, T.; Rainkie, D.; Wilby, K. J.; Pawluk, S. A. The Therapeutic Effects of Camel Milk: A Systematic Review of Animal and Human Trials. *J. Evid. Based. Complementary Altern. Med.* 2016, *21* (4), NP110–NP126. https://doi.org/10.1177/2156587216658846.
- (167) Ahmed, A. S.; El-Bassiony, T.; Elmalt, L. M.; Ibrahim, H. R. Identification of Potent

Antioxidant Bioactive Peptides From Goat Milk Proteins. *Food Res. Int.* **2015**, *74*, 80–88. https://doi.org/10.1016/J.FOODRES.2015.04.032.

- (168) Eckert, E.; Zambrowicz, A.; Bobak, Ł.; Zabłocka, A.; Chrzanowska, J.; Trziszka, T. Production and Identification of Biologically Active Peptides Derived from By-Product of Hen Egg-Yolk Phospholipid Extraction. *Int. J. Pept. Res. Ther.* 2019, 25 (2), 669–680. https://doi.org/10.1007/S10989-018-9713-X/FIGURES/3.
- (169) Li-Jun, L.; Chuan-he, Z.; Zheng, Z. Analyzing Molecular Weight Distribution of Whey Protein Hydrolysates. *Food Bioprod. Process.* 2008, 86 (1), 1–6.
- (170) Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. *Japanese J. Nutr. Diet.* **1986**, *44* (6), 307–315. https://doi.org/10.5264/EIYOGAKUZASHI.44.307.
- (171) Kong, B.; Xiong, Y. L. Antioxidant Activity of Zein Hydrolysates in a Liposome System and the Possible Mode of Action. J. Agric. Food Chem. 2006, 54 (16), 6059–6068. https://doi.org/10.1021/JF060632Q.
- (172) Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; Dufour, C.; Egger, L.; Golding, M.; Karakaya, S.; Kirkhus, B.; Le Feunteun, S.; Lesmes, U.; MacIerzanka, A.; MacKie, A.; Marze, S.; McClements, D. J.; Ménard, O.; Recio, I.; Santos, C. N.; Singh, R. P.; Vegarud, G. E.; Wickham, M. S. J.; Weitschies, W.; Brodkorb, A. A Standardised Static in Vitro Digestion Method Suitable for Food - an International Consensus. *Food Funct.* 2014, *5* (6), 1113– 1124. https://doi.org/10.1039/C3FO60702J.
- (173) Bamdad, F.; Wu, J.; Chen, L. Effects of Enzymatic Hydrolysis on Molecular Structure and Antioxidant Activity of Barley Hordein. J. Cereal Sci. 2011, 54 (1), 20–28. https://doi.org/10.1016/J.JCS.2011.01.006.
- (174) Marambe, P. W. M. L. H. K.; Shand, P. J.; Wanasundara, J. P. D. An In-Vitro Investigation of Selected Biological Activities of Hydrolysed Flaxseed (Linum Usitatissimum L.) Proteins. *JAOCS*, *J. Am. Oil Chem. Soc.* 2008, *85* (12), 1155–1164. https://doi.org/10.1007/S11746-008-1293-Z.

- (175) Xia, Y.; Bamdad, F.; Gänzle, M.; Chen, L. Fractionation and Characterization of Antioxidant Peptides Derived from Barley Glutelin by Enzymatic Hydrolysis. *Food Chem.* 2012, *134* (3), 1509–1518. https://doi.org/10.1016/j.foodchem.2012.03.063.
- (176) Zhang, J.; Zhang, H.; Wang, L.; Guo, X.; Wang, X.; Yao, H. Antioxidant Activities of the Rice Endosperm Protein Hydrolysate: Identification of the Active Peptide. *Eur. Food Res. Technol.* 2009, 229 (4), 709–719. https://doi.org/10.1007/S00217-009-1103-3/FIGURES/5.
- (177) Salami, M.; Moosavi-Movahedi, A. A.; Ehsani, M. R.; Yousefi, R.; Haertlé, T.; Chobert, J. M.; Razavi, S. H.; Henrich, R.; Balalaie, S.; Ebadi, S. A.; Pourtakdoost, S.; Niasari-Naslaji, A. Improvement of the Antimicrobial and Antioxidant Activities of Camel and Bovine Whey Proteins by Limited Proteolysis. *J. Agric. Food Chem.* 2010, *58* (6), 3297–3302. https://doi.org/10.1021/JF9033283.
- (178) Kumar, D.; Chatli, M. K.; Singh, R.; Mehta, N.; Kumar, P. Antioxidant and Antimicrobial Activity of Camel Milk Casein Hydrolysates and Its Fractions. *Small Rumin. Res.* 2016, 139, 20–25. https://doi.org/10.1016/J.SMALLRUMRES.2016.05.002.
- (179) Zhu, L.; Jie, C.; Tang, X.; Xiong, Y. L. Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysate. *J. Agric. Food Chem.* 2008, *56* (8), 2714–2721. https://doi.org/10.1021/JF703697E.
- (180) Ahn, C. B.; Lee, K. H.; Je, J. Y. Enzymatic Production of Bioactive Protein Hydrolysates from Tuna Liver: Effects of Enzymes and Molecular Weight on Bioactivity. *Int. J. Food Sci. Technol.* **2010**, *45* (3), 562–568. https://doi.org/10.1111/J.1365-2621.2009.02166.X.
- (181) TURGEON, S. L.; GAUTHIER, S. F. Whey Peptide Fractions Obtained with a Two-Step Ultrafiltration Process: Production and Characterization. J. Food Sci. 1990, 55 (1), 106– 110. https://doi.org/10.1111/J.1365-2621.1990.TB06028.X.
- (182) Gu, F.; Kim, J. M.; Hayat, K.; Xia, S.; Feng, B.; Zhang, X. Characteristics and Antioxidant Activity of Ultrafiltrated Maillard Reaction Products from a Casein-Glucose Model System. *Food Chem.* 2009, *117* (1), 48–54. https://doi.org/10.1016/J.FOODCHEM.2009.03.074.
- (183) Wu, H. C.; Chen, H. M.; Shiau, C. Y. Free Amino Acids and Peptides as Related to

Antioxidant Properties in Protein Hydrolysates of Mackerel (Scomber Austriasicus). *Food Res. Int.* **2003**, *36* (9–10), 949–957. https://doi.org/10.1016/S0963-9969(03)00104-2.

- (184) Vanderheeren, G.; Hanssens, I. Thermal Unfolding of Bovine Alpha-Lactalbumin. Comparison of Circular Dichroism with Hydrophobicity Measurements. J. Biol. Chem. 1994, 269 (10), 7090–7094. https://doi.org/10.1016/S0021-9258(17)37250-2.
- (185) Radha, C.; Prakash, V. Structural and Functional Properties of Heat-Processed Soybean Flour: Effect of Proteolytic Modification: *Food Sci. Technol. Int.* 2009, *15* (5), 453–463. https://doi.org/10.1177/1082013209350347.
- (186) Nakai, S.; Li-Chan, E. Hydrophobic Interaction in Food Systems; CRC Press, 2018. https://doi.org/10.1201/9781351073318/HYDROPHOBIC-INTERACTIONS-FOOD-SYSTEMS-SHURYO-NAKAI-EUNICE-LI-CHAN.
- (187) AKITA, E. M.; NAKAI, S. Lipophilization of B-lactoglobulin: Effect on Hydrophobicity, Conformation and Surface Functional Properties. J. Food Sci. 1990, 55 (3), 711–717. https://doi.org/10.1111/J.1365-2621.1990.TB05213.X.
- (188) MAHMOUD, M. I.; MALONE, W. T.; CORDLE, C. T. Enzymatic Hydrolysis of Casein: Effect of Degree of Hydrolysis on Antigenicity and Physical Properties. *J. Food Sci.* 1992, 57 (5), 1223–1229. https://doi.org/10.1111/J.1365-2621.1992.TB11304.X.
- (189) Dickinson, E. Surface and Emulsifying Properties of Caseins. J. Dairy Res. 1989, 56 (3),
 471–477. https://doi.org/10.1017/S0022029900028958.
- (190) Severin, S.; Xia, W. S. Enzymatic Hydrolysis of Whey Proteins by Two Different Proteases and Their Effect on the Functional Properties of Resulting Protein Hydrolysates. *J. Food Biochem.* 2006, *30* (1), 77–97. https://doi.org/10.1111/J.1745-4514.2005.00048.X.
- (191) TOWNSEND, A. -A; NAKAI, S. Relationships Between Hydrophobicity and Foaming Characteristics of Food Proteins. J. Food Sci. 1983, 48 (2), 588–594. https://doi.org/10.1111/J.1365-2621.1983.TB10796.X.
- (192) Perin, D.; Murano, E. Starch Polysaccharides in the Human Diet: Effect of the Different Source and Processing on Its Absorption. *Nat. Prod. Commun.* 2017, *12* (4), 837–853.

- (193) Augustin, L. S. A.; Kendall, C. W. C.; Jenkins, D. J. A.; Willett, W. C.; Astrup, A.; Barclay, A. W.; Björck, I.; Brand-Miller, J. C.; Brighenti, F.; Buyken, A. E.; Ceriello, A.; La Vecchia, C.; Livesey, G.; Liu, S.; Riccardi, G.; Rizkalla, S. W.; Sievenpiper, J. L.; Trichopoulou, A.; Wolever, T. M. S.; Baer-Sinnott, S.; Poli, A. Glycemic Index, Glycemic Load and Glycemic Response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). *Nutr. Metab. Cardiovasc. Dis.* 2015, *25* (9), 795–815. https://doi.org/10.1016/J.NUMECD.2015.05.005.
- (194) Englyst, H. N.; Kingman, S. M.; Cummings, J. H. Classification and Measurement of Nutritionally Important Starch Fractions. *Eur. J. Clin. Nutr.* **1992**, *46 Suppl 2* (SUPPL. 2), S33-50.
- (195) Hasek, L. Y.; Phillips, R. J.; Zhang, G.; Kinzig, K. P.; Young Kim, C.; Powley, T. L.; Hamaker, B. R. Dietary Slowly Digestible Starch Triggers the Gut-Brain Axis in Obese Rats with Accompanied Reduced Food Intake HHS Public Access. *Mol Nutr Food Res* 2018, *62* (5). https://doi.org/10.1002/mnfr.201700117.
- (196) Hanefeld, M.; Schaper, F. The Role of Alpha-Glucosidase Inhibitors (Acarbose). *Pharmacother. diabetes new Dev. Improv. life Progn. Diabet. patients* 2007, 143–152. https://doi.org/10.1007/978-0-387-69737-6_13.
- (197) Bhandari, M. R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. α-Glucosidase and α-Amylase Inhibitory Activities of Nepalese Medicinal Herb Pakhanbhed (Bergenia Ciliata, Haw.). *Food Chem.* 2008, 106 (1), 247–252. https://doi.org/10.1016/J.FOODCHEM.2007.05.077.
- (198) Lopez-Rubio, A.; Flanagan, B. M.; Shrestha, A. K.; Gidley, M. J.; Gilbert, E. P. Molecular Rearrangement of Starch during in Vitro Digestion: Toward a Better Understanding of Enzyme Resistant Starch Formation in Processed Starches. *Biomacromolecules* 2008, 9 (7), 1951–1958. https://doi.org/10.1021/BM800213H.
- (199) Luo, S.; Zeng, Z.; Mei, Y.; Huang, K.; Wu, J.; Liu, C.; Hu, X. Improving Ordered Arrangement of the Short-Chain Amylose-Lipid Complex by Narrowing Molecular Weight Distribution of Short-Chain Amylose. *Carbohydr. Polym.* **2020**, *240*, 116364.

https://doi.org/10.1016/J.CARBPOL.2020.116359.

- (200) Simsek, M.; Quezada-Calvillo, R.; Nichols, B. L.; Hamaker, B. R. Phenolic Compounds Increase the Transcription of Mouse Intestinal Maltase-Glucoamylase and Sucrase-Isomaltase. *Food Funct.* 2017, 8 (5), 1915–1924. https://doi.org/10.1039/C7FO00015D.
- (201) Sun, L.; Warren, F. J.; Gidley, M. J. Soluble Polysaccharides Reduce Binding and Inhibitory Activity of Tea Polyphenols against Porcine Pancreatic α-Amylase. *Food Hydrocoll.* 2018, 79, 63–70. https://doi.org/10.1016/J.FOODHYD.2017.12.011.
- (202) Ai, Y.; Hasjim, J.; Jane, J. L. Effects of Lipids on Enzymatic Hydrolysis and Physical Properties of Starch. *Carbohydr. Polym.* 2013, 92 (1), 120–127. https://doi.org/10.1016/J.CARBPOL.2012.08.092.
- (203) Zhou, X.; Ying, Y.; Hu, B.; Pang, Y.; Bao, J. Physicochemical Properties and Digestibility of Endosperm Starches in Four Indica Rice Mutants. *Carbohydr. Polym.* 2018, 195, 1–8. https://doi.org/10.1016/J.CARBPOL.2018.04.070.
- (204) Bhattarai, R. R.; Dhital, S.; Mense, A.; Gidley, M. J.; Shi, Y. C. Intact Cellular Structure in Cereal Endosperm Limits Starch Digestion in Vitro. *Food Hydrocoll.* 2018, *81*, 139–148. https://doi.org/10.1016/J.FOODHYD.2018.02.027.
- (205) Lacroix, I. M. E.; Li-Chan, E. C. Y. Isolation and Characterization of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity from Pepsin-Treated Bovine Whey Proteins. *Peptides* 2014, 54, 39–48. https://doi.org/10.1016/J.PEPTIDES.2014.01.002.
- (206) Lacroix, I. M. E.; Li-Chan, E. C. Y. Evaluation of the Potential of Dietary Proteins as Precursors of Dipeptidyl Peptidase (DPP)-IV Inhibitors by an in Silico Approach. J. Funct. Foods 2012, 4 (2), 403–422. https://doi.org/10.1016/J.JFF.2012.01.008.
- (207) Lacroix, I. M. E.; Li-Chan, E. C. Y. Dipeptidyl Peptidase-IV Inhibitory Activity of Dairy Protein Hydrolysates. *Int. Dairy J.* 2012, 25 (2), 97–102. https://doi.org/10.1016/J.IDAIRYJ.2012.01.003.
- (208) Oku, T.; Tanabe, K.; Ogawa, S.; Sadamori, N.; Nakamura, S. Similarity of Hydrolyzing Activity of Human and Rat Small Intestinal Disaccharidases. *Clin. Exp. Gastroenterol.*

2011, *4*, 155–161. https://doi.org/10.2147/CEG.S19961.

- (209) Lacroix, I. M. E.; Li-Chan, E. C. Y. Inhibition of Dipeptidyl Peptidase (DPP)-IV and α-Glucosidase Activities by Pepsin-Treated Whey Proteins. J. Agric. Food Chem. 2013, 61 (31), 7500–7506. https://doi.org/10.1021/JF401000S.
- (210) Ngoh, Y. Y.; Gan, C. Y. Enzyme-Assisted Extraction and Identification of Antioxidative and α-Amylase Inhibitory Peptides from Pinto Beans (Phaseolus Vulgaris Cv. Pinto). *Food Chem.* 2016, 190, 331–337. https://doi.org/10.1016/J.FOODCHEM.2015.05.120.
- (211) Siow, H. L.; Gan, C. Y. Extraction, Identification, and Structure–Activity Relationship of Antioxidative and α-Amylase Inhibitory Peptides from Cumin Seeds (Cuminum Cyminum). J. Funct. Foods 2016, 22, 1–12. https://doi.org/10.1016/J.JFF.2016.01.011.
- (212) Uchida, M.; Ohshiba, Y.; Mogami, O. Novel Dipeptidyl Peptidase-4-Inhibiting Peptide Derived from β-Lactoglobulin. J. Pharmacol. Sci. 2011, 117 (1), 63–66. https://doi.org/10.1254/JPHS.11089SC.
- (213) Silveira, S. T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl Peptidase-IV Inhibitory Peptides Generated by Tryptic Hydrolysis of a Whey Protein Concentrate Rich in β-Lactoglobulin. *Food Chem.* **2013**, *141* (2), 1072–1077. https://doi.org/10.1016/J.FOODCHEM.2013.03.056.
- (214) Hermes, R. G.; Manzanilla, E. G.; Martín-Orúe, S. M.; Pérez, J. F.; Klasing, K. C. Influence of Dietary Ingredients on in Vitro Inflammatory Response of Intestinal Porcine Epithelial Cells Challenged by an Enterotoxigenic *Escherichia Coli* (K88). *Comp. Immunol. Microbiol. Infect. Dis.* 2011, 34 (6), 479–488. https://doi.org/10.1016/j.cimid.2011.08.006.
- (215) Sun, X.; Gänzle, M.; Wu, J. Glycopeptides from Egg White Ovomucin Inhibit K88 Ac Enterotoxigenic *Escherichia Coli* Adhesion to Porcine Small Intestinal Epithelial Cell-Line. *J. Funct. Foods* **2019**, *54* (January), 320–328. https://doi.org/10.1016/j.jff.2019.01.033.
- (216) Sun, X.; Gänzle, M.; Wu, J. Identification and Characterization of Glycopeptides from Egg Protein Ovomucin with Anti-Agglutinating Activity against Porcine K88 Enterotoxigenic *Escherichia Coli* Strains. J. Agric. Food Chem. 2017, 65 (4), 777–783.

https://doi.org/10.1021/acs.jafc.6b04299.

- (217) Docic, M.; Bilkei, G. Differences in Antibiotic Resistance in *Escherichia Coli*, Isolated from East-European Swine Herds with or without Prophylactic Use of Antibiotics. J. Vet. Med. Ser. B 2003, 50 (1), 27–30. https://doi.org/10.1046/j.1439-0450.2003.00609.x.
- (218) Fong, B.; Ma, K.; McJarrow, P. Quantification of Bovine Milk Oligosaccharides Using Liquid Chromatography–Selected Reaction Monitoring–Mass Spectrometry. J. Agric. Food Chem. 2011, 59 (18), 9788–9795. https://doi.org/10.1021/JF202035M.
- (219) Bode, L.; Contractor, N.; Barile, D.; Pohl, N.; Prudden, A. R.; Boons, G.-J.; Jin, Y.-S.; Jennewein, S. Overcoming the Limited Availability of Human Milk Oligosaccharides: Challenges and Opportunities for Research and Application. *Nutr. Rev.* 2016, 74 (10), 635. https://doi.org/10.1093/NUTRIT/NUW025.
- (220) Ackerman, D. L.; Craft, K. M.; Townsend, S. D. Infant Food Applications of Complex Carbohydrates: Structure, Synthesis, and Function. *Carbohydr. Res.* 2017, 437, 16. https://doi.org/10.1016/J.CARRES.2016.11.007.
- (221) Li, E. W. Y.; Mine, Y. Technical Note: Comparison of Chromatographic Profile of Glycomacropeptide from Cheese Whey Isolated Using Different Methods. J. Dairy Sci. 2004, 87, 174–177. https://doi.org/10.3168/jds.S0022-0302(04)73155-0.
- (222) Al-Ruwaili, M. A.; Khalil, O. M.; Selim, S. A. Viral and Bacterial Infections Associated with Camel (*Camelus Dromedarius*) Calf Diarrhea in North Province, Saudi Arabia. *Saudi J. Biol. Sci.* 2012, *19* (1), 35–41. https://doi.org/10.1016/J.SJBS.2011.10.001.
- (223) Warren, L. The Thiobarbituric Acid Assay of Sialic Acids. J. Biol. Chem. 1959, 234 (8), 1971–1975. https://doi.org/10.1016/S0021-9258(18)69851-5.
- (224) Wang, D.; Bodovitz, S. Single Cell Analysis: The New Frontier in 'Omics.' Trends Biotechnol. 2010, 28 (6), 281–290.
- (225) Ishii-Karakasa, I.; Iwase, H.; Hotta, K.; Tanaka, Y.; Omura, S. Partial Purification and Characterization of an Endo-Alpha-N-Acetylgalactosaminidase from the Culture Medium of *Streptomyces* Sp. OH-11242. *Biochem. J.* **1992**, *288* (Pt 2), 482.

https://doi.org/10.1042/BJ2880475.

- (226) Jrad, Z.; El Hatmi, H.; Adt, I.; Girardet, J.-M.; Cakir-Kiefer, C.; Jardin, J.; Degraeve, P.; Khorchani, T.; Oulahal, N.; Jrad, Z.; El Hatmi, H.; Khorchani, T.; Adt, I.; Degraeve, P.; Oulahal, N.; Girardet, M.; Cakir-Kiefer, C.; Jardin, J. Effect of Digestive Enzymes on Antimicrobial, Radical Scavenging and Angiotensin I-Converting Enzyme Inhibitory Activities of Camel Colostrum and Milk Proteins. *Dairy Sci. Technol.* **2014**, *94*, 205–224. https://doi.org/10.1007/s13594-013-0154-1ï.
- (227) Mollé, D.; Léonil, J. Heterogeneity of the Bovine κ-Casein Caseinomacropeptide, Resolved by Liquid Chromatography on-Line with Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 1995, 708 (2), 223–230. https://doi.org/10.1016/0021-9673(95)00386-2.
- (228) Mollé, D.; Léonil, J. Quantitative Determination of Bovine κ-Casein Macropeptide in Dairy Products by Liquid Chromatography/Electrospray Coupled to Mass Spectrometry (LC-ESI/MS) and Liquid Chromatography/Electrospray Coupled to Tamdem Mass Spectrometry (LC-ESI/MS/MS). *Int. Dairy J.* 2005, *15* (5), 419–428. https://doi.org/10.1016/j.idairyj.2004.08.013.
- (229) Kreuss, M.; Krause, I.; Kulozik, U. Separation of a Glycosylated and Non-Glycosylated Fraction of Caseinomacropeptide Using Different Anion-Exchange Stationary Phases. J. Chromatogr. A 2008, 1208 (1–2), 126–132. https://doi.org/10.1016/J.CHROMA.2008.08.073.
- (230) Farías, M. E.; Martinez, M. J.; Pilosof, A. M. R. Casein Glycomacropeptide PH-Dependent Self-Assembly and Cold Gelation. *Int. Dairy J.* 2010, 20 (2), 79–88. https://doi.org/10.1016/J.IDAIRYJ.2009.09.002.
- (231) Mikkelsen, T. L.; Frøkiaer, H.; Topp, C.; Bonomi, F.; Iametti, S.; Picariello, G.; Ferranti, P.; Barkholt, V. Caseinomacropeptide Self-Association Is Dependent on Whether the Peptide Is Free or Restricted in κ-Casein. J. Dairy Sci. 2005, 88, 4228–4238. https://doi.org/10.3168/jds.S0022-0302(05)73109-X.
- (232) Nakano, T.; Noriaki, I.; Ozimek, L. Detection of Sialylated Phosphorylated κ-Casein Glycomacropeptide Electrophoresed on Polyacrylamide Gels and Cellulose Acetate Strips

by the Thiobarbituric Acid and Malachite Green Dye Reactions. *J. Agric. Food Chem.* **2007**, *55* (7), 2714–2726. https://doi.org/10.1021/JF062987F.

- (233) Dolgopyatova, N. V; Novikov, V. Y.; Konovalova, I. N.; Putintsev, N. M. Organic and Petrochemical Processes Mechanism of Acid Hydrolysis of N-Acetyl-D-Glucosamine. *Russ. J. Appl. Chem.* 2013, 86 (7), 1052–1058. https://doi.org/10.1134/S1070427213070070.
- (234) Gizatulina, G. A.; Chebotok, E. N.; Novikov, V. Y.; Konovalova, I. N. Kinetics of Acid Hydrolysis of Acetylglucosamine. *Russ. J. Appl. Chem.* 2005, 78 (5), 791–793. https://doi.org/10.1007/S11167-005-0393-X.
- (235) Prechtl, R. M.; Wefers, D.; Jakob, F.; Vogel, R. F. Structural Characterization of the Surface-Associated Heteropolysaccharide of *Lactobacillus Plantarum* TMW 1.1478 and Genetic Analysis of Its Putative Biosynthesis Cluster. *Carbohydr. Polym.* 2018, 202, 236– 245. https://doi.org/10.1016/J.CARBPOL.2018.08.115.
- (236) Hrynets, Y.; Ndagijimana, M.; Betti, M. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. *J. Agric. Food Chem.* 2015, 63 (27), 6249–6261. https://doi.org/10.1021/ACS.JAFC.5B02664.
- (237) Zhu, W.; Chen, X.; Yuan, L.; Wu, J.; Yao, J. Degradation Kinetics and Shelf Life of N-Acetylneuraminic Acid at Different PH Values. *Molecules* 2020, 25 (21), 5141. https://doi.org/10.3390/MOLECULES25215141.
- (238) Rong, J.; Zheng, H.; Liu, M.; Hu, X.; Wang, T.; Zhang, X.; Jin, F.; Wang, L. Probiotic and Anti-Inflammatory Attributes of an Isolate *Lactobacillus Helveticus* NS8 from Mongolian Fermented Koumiss Microbe-Host Interactions and Microbial Pathogenicity. *BMC Microbiol.* 2015, *15* (1), 1–11. https://doi.org/10.1186/s12866-015-0525-2.
- (239) McClure, S. B.; Magill, C.; Podrug, E.; Moore, A. M. T.; Harper, T. K.; Culleton, B. J.; Kennett, D. J.; Freeman, K. H. Fatty Acid Specific Δ13C Values Reveal Earliest Mediterranean Cheese Production 7,200 Years Ago. *PLoS One* 2018, *13* (9), 1–15. https://doi.org/10.1371/JOURNAL.PONE.0202807.

- (240) Smithers, G. W. Whey and Whey Proteins—From 'Gutter-to-Gold.' *Int. Dairy J.* 2008, *18*(7), 695–704. https://doi.org/10.1016/J.IDAIRYJ.2008.03.008.
- (241) Brandelli, A.; Daroit, D. J.; Corrêa, A. P. F. Whey as a Source of Peptides with Remarkable Biological Activities. *Food Res. Int.* 2015, 73, 149–161. https://doi.org/10.1016/J.FOODRES.2015.01.016.
- (242) Althnaibat, R. M.; Koch, M.; Bruce, H. L.; Wefers, D.; Gaenzle, M. G. Glycomacropeptide from Camel Milk Inhibits the Adhesion of Enterotoxigenic Escherichia Coli K88 to Porcine Cells. *Int. Dairy J.* 2022, *134* (105448), 1–9. https://doi.org/10.1016/j.idairyj.2022.105448.

Appendices

Table S1: Potential antioxidant peptides derived from caseins and whey proteins of camel, cow, goat, and sheep milk predicated by BIOPEP database (<u>http://www.uwn.edu.pl/biochemia/index.php/pl/Biopep</u>)

Protein fraction	Amino acid sequences of antioxidant peptides			
	Cow milk	Camel milk	Goat milk	Sheep milk
Milk protein:				
Casein:				
α -casein	ID: P02662	ID: 097943	ID: P18626	ID: P04653
	¹²⁰ LH ¹²¹	$^{100} m LH^{101}$	⁹¹ YLGY ⁹⁴	¹²⁰ LH ¹²¹
	¹⁴³ AY ¹⁴⁴	160 HL 161	¹²⁰ LH ¹²¹	¹⁴³ AY ¹⁴⁴
	¹⁵⁸ AY ¹⁵⁹	$^{157}AY^{158}$	¹⁴³ AY ¹⁴⁴	¹⁵⁸ AY ¹⁵⁹
	¹⁴⁴ YFYPEL ¹⁴⁹	134 LY 135	¹⁵⁸ AY ¹⁵⁹	¹²⁹ AH ¹³⁰
	³⁹ EL ⁴⁰	¹⁸⁹ AH ¹⁹⁰	¹²⁹ AH ¹³⁰	³⁹ EL ⁴⁰
	¹⁴¹ EL ¹⁴²	³⁰ EL ³¹	³⁹ EL ⁴⁰	¹⁴¹ EL ¹⁴²
	$^{148}\text{EL}^{149}$	⁴⁶ EL ⁴⁷	¹⁴¹ EL ¹⁴²	¹⁶⁴ WY ¹⁶⁵
	164 WY 165	$^{99}\overline{\rm EL}^{100}$	164 WY 165	¹⁶⁵ YYL ¹⁶⁷
	¹⁶⁵ YYV ¹⁶⁷	$^{178}WY^{179}$	¹⁶⁵ YYL ¹⁶⁷	¹⁶⁴ WYY ¹⁶⁶
	¹⁶⁴ WYY ¹⁶⁶	178WYY 180	¹⁶⁴ WYY ¹⁶⁶	¹⁴⁴ YFY ¹⁴⁶
	¹⁴⁴ YFY ¹⁴⁶	100 LHR 102	¹⁴⁴ YFY ¹⁴⁶	¹²⁰ LHS ¹²²
	¹²⁰ LHS ¹²²	¹²³ VKL ¹²⁵	¹²⁰ LHS ¹²²	⁴² KD ⁴³
	42 KD 43	¹⁴⁹ VKV ¹⁵¹	⁴² KD ⁴³	¹⁰¹ LK ¹⁰²
	¹⁴⁷ PEL ¹⁴⁹	⁴⁸ KD ⁴⁹	101 LK 102	¹⁴⁴ YFYPOL ¹⁴⁹
	¹⁴⁶ YPEL ¹⁴⁹	⁸⁴ KD ⁸⁵	¹⁴⁴ YFYPQL ¹⁴⁹	¹⁶³ AW ¹⁶⁴

	145 FYPEL 145 101 LK 102 163 AW 164 198 LW 199 170 GTQY 173 158 AYPS 161 154 YQLD 157 93 GYLEQ 97 146 YPELF 150 100 LKKY 104 20 LLR 22 98 LLR 100 154 YQL 156 153 FYQL 156	¹¹⁴ IR ¹¹⁵ ⁴⁷ LK ⁴⁸ ⁸⁷ LK ⁸⁸ ¹⁷⁷ AW ¹⁷⁸	 ¹⁶³ AW ¹⁶⁴ ¹⁹⁸ LW ¹⁹⁹ ¹⁷⁰ GTQY ¹⁷³ ¹⁵⁸ AYPS ¹⁶¹ ¹⁵⁴ YQLD ¹⁶¹ ⁹³ GYLEQ ⁹⁷ ¹⁰⁰ RLKKY ¹⁰⁴ ²⁰ LLR ²² ⁹⁸ LLR ¹⁰⁰ ¹⁵⁴ YQL ¹⁵⁶ ¹⁵³ FYQL ¹⁵⁶ ¹⁷ NEN ¹⁹ ¹⁰² KKY ¹⁰⁴ 	¹⁹⁸ LW ¹⁹⁹ ¹⁷⁰ GTQY ¹⁷³ ¹⁵⁸ AYPS ¹⁶¹ ¹⁵⁴ YQLD ¹⁶¹ ⁹³ GYLEQ ⁹⁷ ¹⁰⁰ RLKKY ¹⁰⁴ ²⁰ LLR ²² ⁹⁸ LLR ¹⁰⁰ ¹⁵⁴ YQL ¹⁵⁶ ¹⁵³ FYQL ¹⁵⁶ ¹⁷ NEN ¹⁹ ¹⁰² KKY ¹⁰⁴
B-casein	ID: P02666 ¹³³ LH ¹³⁴ ¹³⁴ HL ¹³⁵ ⁹⁸ VSKVKEAM ¹⁰⁵ ¹⁹² LY ¹⁹³ ¹⁷⁷ AVPYPQR ¹⁸³ ² EL ³ ⁵ EL ⁶ ⁴⁴ LQ ⁴⁵ ¹⁷⁹ PYPQ ¹⁸² ¹³³ LHL ¹³⁵ ¹⁴⁷ PHQ ¹⁴⁹ ⁵⁹ VY ⁶⁰ ¹⁷⁸ VPYPQ ¹⁸² ¹⁹⁹ PVRGPFPIIV ²⁰⁸ ¹⁸³ RDMPIQA ¹⁸⁸	$ \begin{array}{l} \text{ID: Q9TVD0} \\ {}^{134}\text{LH}^{135} \\ {}^{205}\text{LH}^{206} \\ {}^{135}\text{HL}^{136} \\ {}^{50}\text{IY}^{51} \\ {}^{180}\text{PYPQ}^{183} \\ {}^{134}\text{ LHL}^{136} \\ {}^{145}\text{MY}^{146} \\ {}^{60}\text{VY}^{61} \\ {}^{179}\text{VPYPQ}^{183} \end{array} $	ID: P33048 ¹³³ LH ¹³⁴ ¹³⁴ HL ¹³⁵ ¹⁹⁰ LY ¹⁹¹ ¹⁶⁹ KVLPVPQK ¹⁷⁶ ¹⁷⁰ VLPVPQK ¹⁷⁶ ¹⁹¹ YQEP ¹⁹⁴ ¹⁹¹ YQEPVLGP ¹⁹⁴ ⁵ EL ⁶ ⁴⁴ EL ⁴⁵ ¹³³ LHL ¹³⁵ ⁵⁹ VY ⁶⁰ ¹⁸¹ RDMPIQ ¹⁸⁶	ID: P11839 ¹³³ LH ¹³⁴ ¹³⁴ HL ¹³⁵ ¹⁹⁰ LY ¹⁹¹ ¹⁶⁹ KVLPVPQK ¹⁷⁶ ¹⁷⁰ VLPVPQK ¹⁷⁶ ¹⁹¹ YQEP ¹⁹⁴ ¹⁹¹ YQEPVLGP ¹⁹⁴ ⁵ EL ⁶ ⁴⁴ EL ⁴⁵ ¹³³ LHL ¹³⁵ ⁵⁹ VY ⁶⁰ ¹⁸¹ RDMPIQ ¹⁸⁶
K-casein	ID: P02668 ¹²¹ HPHL ¹²⁴ ⁸⁰ PYY ⁸²	ID: P79139 ⁶⁹ LH ⁷⁰ ⁴² YYQ ⁴⁴	ID: P02670 ¹⁰⁰ HPHL ¹⁰³ ⁵⁹ PYY ⁶¹	ID: P02669 ¹⁰⁰ HPHL ¹⁰³ ⁵⁹ PYY ⁶¹

	¹¹⁹ HPH ¹²¹	⁴¹ NYY ⁴³	⁹⁸ HPH ¹⁰⁰	⁹⁸ HPH ¹⁰⁰
	¹²¹ HPH ¹²³	⁶⁹ LHA ⁷¹	¹⁰⁰ HPH ¹⁰²	¹⁰⁰ HPH ¹⁰²
	¹²³ HL	⁶⁷ IR ⁶⁸	102 HL 103	102 HL 103
	¹²⁴¹¹⁷ ARHPHPHLSFM	⁶³ KP ⁶⁴	⁹⁶ ARHPHPHLSFM ¹⁰⁶	⁹⁶ ARHPHPHLSFM ¹⁰⁶
	127	³⁴ RYPS ³⁷	⁶⁰ YYA ⁶²	⁶⁰ YYA ⁶²
	⁸¹ YYA ⁸³	³³ SRYPS ³⁷	⁴² YYQ ⁴⁴	⁴² YYQ ⁴⁴
	⁶³ YYQ ⁶⁵	⁶¹ YAKP ⁶⁴	⁴¹ NYY ⁴³	⁴¹ NYY ⁴³
	⁶² NYY ⁶⁴		¹⁰¹ PHL ¹⁰³	¹⁰¹ PHL ¹⁰³
	¹²² PHL ¹²⁴		¹³ KD ¹⁴	¹³ KD ¹⁴
	³⁴ KD ³⁵		¹¹² KD ¹¹³	¹¹² KD ¹¹³
	⁴⁹ IQY ⁵¹		²⁸ IQY ³⁰	²⁸ IQY ³⁰
	⁵¹ YVL ⁵³		³⁰ YVL ³²	³⁰ YVL ³²
	³⁰ IR ³¹		⁶³ KP ⁶⁴	⁶³ KP ⁶⁴
	⁶⁷ KP ⁶⁸		²⁶ IPIQYVL ³²	²⁶ IPIQYVL ³²
	⁸⁴ KP ⁸⁵		⁹⁶ ARHPHP ¹⁰¹	⁹⁶ ARHPHP ¹⁰¹
	¹⁸⁶ TSTA ¹⁸⁹		⁹⁷ RHPHP ¹⁰¹	⁹⁷ RHPHP ¹⁰¹
	⁴⁷ IPIQYVL ⁵³		³⁴ RYPS ³⁷	³⁴ RYPS ³⁷
	⁸² YAKPA ⁸⁶		³³ SRYPS ³⁷	³³ SRYPS ³⁷
	¹¹⁷ ARHPHP ¹²²		⁶¹ YAKP ⁶⁴	⁶¹ YAKP ⁶⁴
	¹¹⁸ RHPIP ¹²²		³¹ VLSRYPS ³⁷	³¹ VLSRYPS ³⁷
	⁵⁵ RYPS ⁵⁸		³⁸ YGLN ⁴¹	³⁸ YGLN ⁴¹
	⁵⁴ SRYPS ⁵⁸			
	⁸² YAKP ⁸⁵			
	⁵² VLSRYPS ⁵⁸			
	¹⁴⁵ TIASGEP ¹⁵¹			
	⁵⁹ YGLN ⁶²			
GMP	⁶⁰ TSTA ⁶³		7 KD 8	7 KD 8
	¹⁹ TIASGEP ²⁵			
Whey protein				
A-lactalbumin	ID: P00711	ID: P00710	ID: P00712	ID: P09462
	¹²⁵ AHK ¹²⁷	106 AHK 108	¹⁰⁶ AHK ¹⁰⁸	¹⁰⁶ AHK ¹⁰⁸
	¹²⁵ AH ¹²⁶	¹⁰⁶ AH ¹⁰⁷	¹⁰⁶ AH ¹⁰⁷	¹⁰⁶ AH ¹⁰⁷
	³⁰ EL ³¹	¹¹ EL ¹²	⁶⁷ PHS ⁶⁹	¹¹ EL ¹²

	⁸⁶ PHS ⁸⁸	¹³ KD ¹⁴	¹³ KD ¹⁴	⁶⁷ PHS ⁶⁹
	³² KD ³³	¹² LK ¹³	¹⁶ KD ¹⁷	¹³ KD ¹⁴
	⁸¹ KD ⁸²	¹⁰⁸ KP ¹⁰⁹	⁶² KD ⁶³	¹⁶ KD ¹⁷
	³¹ LK ³²	⁶⁴ NEN ⁶⁶	¹² LK ¹³	⁶² KD ⁶³
	³⁴ LK ³⁵		¹⁵ LK ¹⁶	¹² LK ¹³
				15 LK 16
β-lactoglobulin	ID: P02754		ID: P02756	ID: P67976
, 0	⁶¹ EL ⁶²		¹⁹ WYSLAMAASDI ²⁹	⁴⁵ EL ⁴⁶
	³⁵ WYSLAMAASDI ⁴⁵		⁴⁵ EL ⁴⁶	¹⁴⁵ MHIRL ¹⁴⁶
	¹⁶¹ MHIRL ¹⁶⁵		¹⁴⁵ MHIRL ¹⁴⁹	⁴² YVEEL ⁴⁶
	⁵⁸ YVEEL ⁶²		⁴² YVEEL ⁴⁶	¹⁴⁷ IR ¹⁴⁸
	³⁵ WY ³⁶		19 WY 20	⁴⁶ LKP ⁴⁸
	³⁵ WYS ³⁷		¹⁹ WYS ²¹	⁴⁶ LK ⁴⁷
	³⁵ WYSL ³⁸		¹⁹ WYSL ²²	¹⁴⁰ LK ¹⁴¹
	³⁵ WYSLA ³⁹		¹⁹ WYSLA ²³	⁴⁷ KP ⁴⁸
	³⁵ WYSLAM ⁴⁰		¹⁹ WYSLAM ²⁴	41 VY 42
	³⁵ WYSLAMA ⁴¹		¹⁹ WYSLAMA ²⁵	⁹⁷ TDY ⁹⁹
	¹⁶³ IR ¹⁶⁴		¹⁴⁷ IR ¹⁴⁸	¹⁸ TW ¹⁹
	⁶² LKP ⁶⁴		⁴⁶ LKP ⁴⁸	¹⁷ GTW ¹⁹
	⁶² LK ⁶³		⁴⁶ LK ⁴⁷	⁵⁹ OKW ⁶¹
	¹⁵⁶ LK ¹⁵⁷		¹⁴⁰ LK ¹⁴¹	⁶¹ WEN ⁶³
	⁶³ KP ⁶⁴		⁴⁷ KP ⁴⁸	¹⁰⁵ FC ¹⁰⁶
	57 VY 58		41 VY 42	⁶⁴ GEC ⁶⁶
	¹¹³ TDY ¹¹⁵		⁹⁷ TDY ⁹⁹	⁶⁵ ECA ⁶⁷
	³⁴ TW ³⁵		¹⁸ TW ¹⁹	⁶⁶ CAO ⁶⁸
			¹⁷ GTW ¹⁹	¹⁰² YLL ¹⁰⁴
			⁵⁹ OKW ⁶¹	¹⁰⁴ LFC ¹⁰⁶
			⁶¹ WEN ⁶³	¹⁰⁵ FCM ¹⁰⁷
			¹⁰⁵ FC ¹⁰⁶	¹⁰⁶ CME ¹⁰⁸
			⁶⁴ GEC ⁶⁶	¹¹⁷ LAC ¹¹⁹
			⁶⁵ ECA ⁶⁷	¹¹⁸ ACO ¹²⁰
			66 CAO 68	¹¹⁹ COC ¹²¹
			¹⁰² YLL ¹⁰⁴	¹²⁰ QCL ¹²²

			¹⁰⁴ LFC ¹⁰⁶	¹²¹ CLV ¹²³
			105 FCM 107	¹⁴³ LPM ¹⁴⁵
			106 CME 108	41 VYV 43
			¹¹⁷ LAC ¹¹⁹	⁴² YVE ⁴⁴
			118 ACO 120	⁸⁸ NEN ⁹⁰
			119 COC 121	⁹⁸ DYK ¹⁰⁰
			¹²⁰ OCL ¹²²	¹⁰⁰ KKY ¹⁰²
			¹²¹ CLV ¹²³	¹⁰¹ KYL ¹⁰³
			¹⁴³ LPM ¹⁴⁵	¹⁴⁵ MHI ¹⁴⁷
			⁴¹ VYV ⁴³	
			⁴² YVE ⁴⁴	
			⁹⁸ NENDYK ¹⁰⁰	
			¹⁰⁰ KKY ¹⁰²	
			¹⁰¹ KYL ¹⁰³	
			¹⁴⁵ MHI ¹⁴⁷	
			¹⁵ VAGTWY ²⁰	
Lactoferrin	ID: D0VAV0	ID: Q9TUM0	ID: Q29477	ID: D3G9G3
	⁶¹² LH ⁶¹³	²⁴⁶ HL ²⁴⁷	³³⁷ EL ³³⁸	⁶¹² LH ⁶¹³
	²⁴⁶ HL ²⁴⁷	⁵⁸⁸ HL ⁵⁸⁹	³⁷ IR ³⁸	²⁴⁶ HL ²⁴⁷
	⁵⁸⁸ HL ⁵⁸⁹	⁶⁰⁶ HL ⁶⁰⁷	³³⁸ LK ³³⁹	¹⁶⁵ AY ¹⁶⁶
	$^{165} \mathrm{AY}^{166}$	³¹⁸ LY ³¹⁹	⁶¹² LH ⁶¹³	³¹⁸ LY ³¹⁹
	³¹⁸ LY ³¹⁹	³⁹⁹ IY ⁴⁰⁰	²⁴⁶ HL ²⁴⁷	⁸¹ IY ⁸²
	⁸¹ IY ⁸²	⁶⁰⁵ AH ⁶⁰⁶	¹⁶⁵ AY ¹⁶⁶	³⁹⁹ IY ⁴⁰⁰
	³⁹⁹ IY ⁴⁰⁰	⁶¹⁶ AH ⁶¹⁷	³¹⁸ LY ³¹⁹	⁶⁰⁵ AH ⁶⁰⁶
	⁶⁰⁵ AH ⁶⁰⁶	²²⁸ EL ²²⁹	⁸¹ IY ⁸²	²²⁸ EL ²²⁹
	²²⁸ EL ²²⁹	³³⁹ EL ³⁴⁰	³⁹⁹ IY ⁴⁰⁰	²⁶⁹ EL ²⁷⁰
	⁹¹ HYY ⁹³	⁵⁷⁰ EL ⁵⁷¹	⁶⁰⁵ AH ⁶⁰⁶	⁹¹ HYY ⁹³
	⁵²² KYY ⁵²⁴	⁹¹ HYY ⁹³	²²⁸ EL ²²⁹	⁵²² KYY ⁵²⁴
	⁹² YYA ⁹⁴	⁵²² RYY ⁵²⁴	²⁶⁹ EL ²⁷⁰	⁹² YYQ ⁹⁴
	⁵²² KYY ⁵²⁴	⁹² YYA ⁹⁴	⁹¹ HYY ⁹³	⁵²³ YYG ⁵²⁵
	⁹² YYA ⁹⁴	⁵²³ YYG ⁵²⁵	⁵²² KYY ⁵²⁴	³⁹⁸ YIY ⁴⁰⁰
	⁵²³ YYG ⁵²⁵	³⁹⁸ YIY ⁴⁰⁰	⁹² YYQ ⁹⁴	⁵²⁴ YGY ⁵²⁶
	³⁹⁸ YIY ⁴⁰⁰	⁵² 4 YGY ⁵²⁶	⁵²³ YYG ⁵²⁵	⁶¹² LHQ ⁶¹⁴

⁵²⁴ YGY ⁵²⁶	²¹⁰ KD ²¹¹	³⁹⁸ YIY ⁴⁰⁰	²⁹⁶ KD ²⁹⁷
⁶¹² LHQ ⁶¹⁴	²⁹⁶ KD ²⁹⁷	⁵²⁴ YGY ⁵²⁶	³⁰¹ KD ³⁰²
²¹ RWQ ²³	³⁰¹ KD ³⁰²	⁶¹² LHQ ⁶¹⁴	⁷ RW ⁸
301 KD 302	⁵⁴⁴ KD ⁵⁴⁵	²⁹⁶ KD ²⁹⁷	⁴⁶ IR ⁴⁷
⁴⁵² KD ⁴⁵³	⁵⁶² KD ⁵⁶³	³⁰¹ KD ³⁰²	³²⁸ LK ³²⁹
7 RW 8	⁷ RW ⁸	⁷ RW ⁸	³⁸⁵ LK ³⁸⁶
²¹ RW ²²	³²⁸ IR ³²⁹	⁴⁶ IR ⁴⁷	⁴⁵¹ LK ⁴⁵²
⁴⁶ IR ⁴⁷	¹¹² LK ¹¹³	³²⁸ LK ³²⁹	⁶⁷² LK ⁶⁷³
³²⁸ LK ³²⁹	³⁵⁶ LK ³⁵⁷	³⁸⁵ LK ³⁸⁶	⁵⁷⁹ KP ⁵⁸⁰
³⁸⁵ OS ³⁸⁶	³⁸⁵ LK ³⁸⁶	⁴⁵¹ LK ⁴⁵²	⁶⁵⁶ TY ⁶⁵⁷
⁴⁵¹ LK ⁴⁵²	⁵⁶⁴ LK ⁵⁶⁵	⁶⁷² LK ⁶⁷³	¹²³ AGWNIP ¹²⁸
⁶⁷² LK ⁶⁷³	²³⁷ KP ²³⁸	⁵⁷⁹ KP ⁵⁸⁰	⁴⁶⁵ AGWNIP ⁴⁷⁰
⁵⁷⁹ KP ⁵⁸⁰	²⁸² KP ²⁸³	⁶⁵⁶ TY ⁶⁵⁷	¹²³ AGWNI ¹²⁷
⁶⁵⁶ TY ⁶⁵⁷	⁵⁷⁹ KP ⁵⁸⁰	¹²³ AGWNIP ¹²⁸	⁴⁶⁵ AGWNI ⁴⁶⁹
⁴⁶⁵ AGWNIP ⁴⁷⁰	⁶⁵⁶ TY ⁶⁵⁷	⁴⁶⁵ AGWNIP ⁴⁷⁰	¹²⁵ WNIP ¹²⁸
⁴⁶⁵ AGWNI ⁴⁶⁹	⁶⁴ VY ⁶⁵	¹²³ AGWNI ¹²⁷	⁴⁶⁷ WNIP ⁴⁷⁰
⁴⁶⁷ WNIP ⁴⁷⁰	⁸¹ VY ⁸²	⁴⁶⁵ AGWNI ⁴⁶⁹	¹²⁴ GWNIP ^{128,}
⁴⁶⁶ GWNIP ⁴⁷⁰	¹²³ AGWNIP ¹²⁸	¹²⁵ WNIP ¹²⁸	⁴⁶⁶ GWNIP ⁴⁷⁰
⁴⁶⁶ GWNI ⁴⁶⁹	⁴⁶⁵ AGWNIP ⁴⁷⁰	⁴⁶⁷ WNIP ⁴⁷⁰	¹²⁴ GWNI ¹²⁷
⁵²⁴ YGYTGA ⁵²⁹	¹²³ AGWNI ¹²⁷	¹²⁴ GWNIP ^{128,}	⁴⁶⁶ GWNI ⁴⁶⁹
⁵⁹⁴ NHAV ⁵⁹⁷	⁴⁶⁵ AGWNI ⁴⁶⁹	⁴⁶⁶ GWNIP ⁴⁷⁰	⁵²⁴ YGYTGA ⁵²⁹
447 TW 448	¹²⁵ WNIP ¹²⁸	¹²⁴ GWNI ¹²⁷	⁵⁹⁴ NHAV ⁵⁹⁷
³⁴⁶ VW ³⁴⁷	⁴⁶⁷ WNIP ⁴⁷⁰	⁴⁶⁶ GWNI ⁴⁶⁹	⁴⁴⁷ TW ⁴⁴⁸
⁵⁴⁸ VW ⁵⁴⁹	¹²⁴ GWNIP ¹²⁸	⁵²⁴ YGYTGA ⁵²⁹	³⁴⁶ VW ³⁴⁷
⁶⁵² GGRP ⁶⁵⁵	⁴⁶⁶ GWNIP ⁴⁷⁰	⁵⁹⁴ NHAV ⁵⁹⁷	⁵⁴⁸ VW ⁵⁴⁹
	¹²⁴ GWNI ¹²⁷	⁴⁴⁷ TW ⁴⁴⁸	²⁷⁰ LLR ²⁷²
	⁴⁶⁶ GWNI ⁴⁶⁹	³⁴⁶ VW ³⁴⁷	⁶⁵² GGRP ⁶⁵⁵
	⁵²⁴ YGYTGA ⁵²⁹	⁵⁴⁸ VW ⁵⁴⁹	¹⁹⁷ KCL ¹⁹⁹
	⁵⁹⁴ NHAV ⁵⁹⁷	²⁷⁰ LLR ²⁷²	⁵⁴⁹ WEN ⁵⁵¹
	⁴⁷⁷ TW ⁴⁴⁸	⁶⁵² GGRP ⁶⁵⁵	¹⁹³ SGAF ¹⁹⁶
	³⁴⁶ VW ³⁴⁷	¹⁹⁷ KCL ¹⁹⁹	⁶²⁹ FC ⁶³⁰
	¹³¹ LLR ¹³³	⁵⁴⁹ WEN ⁵⁵¹	⁶⁵⁹ KYL ⁶⁶¹
	³⁰⁷ LLR ³⁰⁹	¹⁹³ SGAF ¹⁹⁶	

	⁶¹¹ LLR ⁶¹³	⁶²⁹ FC ⁶³⁰	
	¹⁴⁰ GPP ¹⁴²	⁶⁵⁹ KYL ⁶⁶¹	
	¹⁹⁷ KCL ¹⁹⁹		
	¹⁹³ SGAF ¹⁹⁶		
	⁶²⁹ FC ⁶³⁰		
	¹⁹ CAQ ²¹		

Protein fraction	Amino acid sequences of antidiabetic peptides				
	Cow milk	Camel milk	Goat milk	Sheep milk	
Milk protein:					
Casein:					
a -casein	ID: P02662 ¹⁹⁶ MP ¹⁹⁷	ID: O97943 ¹⁸¹ PP ¹⁸²	ID: P18626	ID: P04653	
	$^{25}VA^{26}$	⁹¹ MP ⁹²	$^{25}VA^{26}$	$^{25}VA^{26}$	
	$^{142}LA^{143}$	211 MP 212	61 KA 62	61 KA 62	
	$^{26}AP^{27}$	$^{176}VA^{177}$	$^{142}LA^{143}$	$^{142}LA^{143}$	
	$^{176}AP^{177}$	$^{31}LA^{32}$	²⁶ AP ²⁷	$^{26}AP^{27}$	
	$^{11}LP^{12}$	$^{108}LL^{109}$	$^{176}AP^{177}$	$^{176}AP^{177}$	
	$^{72}VP^{73}$	$^{33}VV^{34}$	128 PA 129	128 PA 129	
	⁸⁶ VP ⁸⁷	$^{76}VV^{77}$	$^{167}LP^{168}$	$^{167}LP^{168}$	
	106 VP 107	$^{151}VV^{152}$	15 VP 16	72 VP 73	
	112 VP 113	$^{120}\mathrm{IP}^{121}$	$^{72}VP^{73}$	$^{86}VP^{87}$	
	167 VP 168	$^{196}\mathrm{TP}^{197}$	86 VP 87	106 VP 107	
	$^{20}LL^{21}$	³⁵ SP ³⁶	106 VP 107	112 VP 113	
	⁹⁸ LL ⁹⁹	173 SP 174	112 VP 113	$^{20}LL^{21}$	
	¹²⁸ HA ¹²⁹	164 FP 165	$^{20}LL^{21}$	⁹⁸ LL ⁹⁹	
	¹⁶⁷ VPL ¹⁶⁹	$^{1}\mathbf{RP}^{2}$	⁹⁸ LL ⁹⁹	$^{24}VV^{25}$	
	182 IP 183	$^{128}\mathrm{HP}^{129}$	$^{24}VV^{25}$	$^{182}{ m IP}^{183}$	
	²⁸ FP ²⁹	$^{142}\text{HP}^{143}$	182 IP 183	²⁸ FP ²⁹	
	$^{1}\mathbf{RP}^{2}$	190 HP 191	12 SP 13	$^{1}\mathbf{RP}^{2}$	
	$^{4}\text{HP}^{5}$	4 YP ⁵	²⁸ FP ²⁹	$^{4}\text{HP}^{5}$	

Table S2: Potential antidiabetic peptides derived from caseins and whey proteins of camel, cow, goat, and sheep milk predicated by BIOPEP database (http://www.uwn.edu.pl/biochemia/index.php/pl/Biopep)

¹⁴⁶ YP ¹⁴⁷	⁸ YP ⁹	$^{1}\mathbf{RP}^{2}$	146 YP ¹⁴⁷
¹⁵⁹ YP ¹⁶⁰	180 YP ¹⁸¹	⁴ HP ⁵	159 YP ¹⁶⁰
$^{162}GA^{163}$	$^{171}GA^{172}$	146 YP 147	$^{162}GA^{163}$
¹³³ EP ¹³⁴	188 IA 189	159 YP 160	136 IA 137
¹⁸⁴ NP ¹⁸⁵	²⁰⁰ IA ²⁰¹	$^{162}GA^{163}$	$^{127}NP^{128}$
³⁵ EK ³⁶	¹⁵ EP ¹⁶	¹³⁶ IA ¹³⁷	¹⁸⁴ NP ¹⁸⁵
¹⁹² EK ¹⁹³	⁵³ EP ⁵⁴	$^{127}NP^{128}$	133 OP 134
$^{10}GL^{11}$	$^{147}{\rm EP^{148}}$	¹⁸⁴ NP ¹⁸⁵	$^{10}GL^{11}$
$^{168}PL^{169}$	$^{162}{\rm EP}^{163}$	133 OP 134	$^{167}LPL^{169}$
$^{197}\mathrm{PL}^{198}$	$^{160}\mathrm{HL}^{161}$	$^{10}GL^{11}$	168 PL 169
$^{164}WY^{165}$	⁵ PL ⁶	$^{167}LPL^{169}$	$^{197}\mathrm{PL}^{198}$
$^{198}LW^{199}$	$^{178}WY^{179}$	168 PL 169	$^{164}WY^{165}$
$^{163}AW^{164}$	²¹⁴ WW ²¹⁵	$^{197}PL^{198}$	$^{198}LW^{199}$
173 YT 174	$^{177}AW^{178}$	$^{164}WY^{165}$	$^{163}AW^{164}$
$^{62}AE^{63}$	¹⁸⁹ AH ¹⁹⁰	$^{198}LW^{199}$	173 YT 174
$^{116}AE^{117}$	$^{172}AS^{173}$	$^{163}AW^{164}$	⁷⁶ AE ⁷⁷
$^{143}AY^{144}$	$^{201}AS^{202}$	173 YT 174	$^{116}AE^{117}$
¹⁵⁸ AY ¹⁵⁹	$^{32}AV^{33}$	⁷⁶ AE ⁷⁷	$^{62}AG^{63}$
51 DQ 52	$^{157}AY^{158}$	$^{116}AE^{117}$	¹²⁹ AH ¹³⁰
$^{125} EG^{126}$	140 DN 141	$^{62}AG^{63}$	$^{137}AV^{138}$
⁷⁰ EL ⁷¹	116 DQ 117	¹²⁹ AH ¹³⁰	$^{143}AY^{144}$
$^{110}\mathrm{EL}^{111}$	$^{198}\mathrm{EG}^{199}$	$^{137}AV^{138}$	$^{158}AY^{159}$
$^{47}\text{ES}^{48}$	$^{67}ES^{68}$	$^{143}AY^{144}$	⁵¹ DQ ⁵²
⁶³ ES ⁶⁴	$^{10}{\rm EV}^{11}$	¹⁵⁸ AY ¹⁵⁹	$^{125}\mathrm{EG}^{126}$
$^{14}{\rm EV^{15}}$	$^{21}EV^{22}$	51 DQ 52	$^{70}EI^{71}$
$^{30}{ m EV}^{31}$	⁷⁵ EV ⁷⁶	$^{125} EG^{126}$	$^{110}\mathrm{EI}^{111}$
150 FR 151	12 FQ 13	⁷⁰ EI ⁷¹	$^{47}\text{ES}^{48}$
$^{126}GI^{127}$	168 FQ 169	$^{110}\mathrm{EI}^{111}$	$^{14}{\rm EV}^{15}$
$^{137}{ m GV^{138}}$	39 FR 40	$^{47}ES^{48}$	$^{30}EV^{31}$
⁹³ GY ⁹⁴	$^{146}GE^{147}$	$^{14}{\rm EV}^{15}$	32 FR 33
⁸⁰ HI ⁸¹	$^{205}GG^{206}$	$^{30}{\rm EV}^{31}$	150 FR 151
$^{121}\text{HS}^{122}$	199 GI 200	32 FR 33	⁹³ GY ⁹⁴
¹²⁷ IH ¹²⁸	⁵⁸ HI ⁵⁹	150 FR 151	121 HS 122

⁸¹ IQ ⁸²	101 HR 102	⁹³ GY ⁹⁴	⁶ IN ⁷
³⁴ KE ³⁵	²⁸ IL ²⁹	⁸ HR ⁹	³⁷ IN ³⁸
⁸³ KE ⁸⁴	⁸⁶ IL ⁸⁷	121 HS 122	⁸¹ IO ⁸²
$^{124}\text{KE}^{125}$	⁵⁹ IM ⁶⁰	6 IN 7	³⁴ KE ³⁵
132 KE 133	¹³⁷ IN ¹³⁸	³⁷ IN ³⁸	⁸³ KE ⁸⁴
$^{3}\mathrm{KH}^{4}$	³⁷ IQ ³⁸	⁸¹ IQ ⁸²	124 KE 125
$^{7}\mathrm{KH}^{8}$	114 IR 115	³⁴ KE ³⁵	3 KH 4
⁷⁹ KH ⁸⁰	⁶⁶ KE ⁶⁷	⁸³ KE ⁸⁴	102 KK 103
102 KK 103	⁸⁸ KE ⁸⁹	124 KE 125	114 KS 115
$^{193}\mathrm{KT}^{194}$	²⁷ KI ²⁸	$^{3}\mathrm{KH}^{4}$	⁷⁹ KY ⁸⁰
36 KV 37	25 KR 26	102 KK 103	103 KY 104
$^{105}{ m KV}^{106}$	207 KT 208	114 KS 115	$^{120}LH^{121}$
$^{103}\mathrm{KY}^{104}$	150 KV 151	¹⁹³ KT ¹⁹⁴	¹³⁵ MI ¹³⁶
$^{120}LH^{121}$	3 KY ⁴	⁷⁹ KY ⁸⁰	$^{60}MK^{61}$
$^{16}LN^{17}$	105 KY 106	103 KY 104	¹²³ MK ¹²⁴
⁵⁴ ME ⁵⁵	$^{100}LH^{101}$	$^{120}LH^{121}$	¹⁷ NE ¹⁸
$^{60}{ m ME}^{61}$	$^{119}LI^{120}$	$^{135}MI^{136}$	³⁸ NE ³⁹
$^{135}MI^{136}$	$^{23}LN^{24}$	$^{60}MK^{61}$	¹⁹ NL ²⁰
$^{123}MK^{124}$	$^{103}LN^{104}$	$^{123}MK^{124}$	$^{139}NQ^{140}$
¹⁷ NE ¹⁸	$^{60}ME^{61}$	¹⁷ NE ¹⁸	$105 NV^{106}$
³⁸ NE ³⁹	$^{185}MQ^{186}$	³⁸ NE ³⁹	$^{27}PF^{28}$
¹⁹ NL ²⁰	$^{14}NE^{15}$	$^{7}\mathrm{NH^{8}}$	⁵ PI ⁶
¹³⁹ NQ ¹⁴⁰	⁵² NE ⁵³	¹⁹ NL ²⁰	¹⁸⁵ PI ¹⁸⁶
$^{27}{ m PF}^{28}$	¹³⁸ NE ¹³⁹	$^{139}NQ^{140}$	² PK ³
⁵ PI ⁶	¹⁴¹ NH ¹⁴²	$^{105}NV^{106}$	¹¹³ PK ¹¹⁴
¹⁸⁵ PI ¹⁸⁶	$^{163}\mathrm{PF}^{164}$	$^{27}{ m PF}^{28}$	¹³⁴ PM ¹³⁵
² PK ³	³⁶ PI ³⁷	⁵ PI ⁶	⁷³ PN ⁷⁴
¹³⁴ PM ¹³⁵	² PK ³	$^{185}\mathrm{PI}^{186}$	183 PN 184
⁷³ PN ⁷⁴	$^{143}PQ^{144}$	$^{2}\mathrm{PK}^{3}$	107 PQ 108
113 PN 114	$^{165}PQ^{166}$	113 PK 114	147 PQ 148
183 PN 184	$^{182}PQ^{183}$	134 PM 135	⁸⁷ PS ⁸⁸
$^{12}PQ^{13}$	$^{212}PQ^{213}$	16 PN 17	160 PS 161
$^{107}PQ^{108}$	⁹² PS ⁹³	⁷³ PN ⁷⁴	177 PS 178

⁸⁷ PS ⁸⁸	¹⁹¹ PS ¹⁹²	¹⁸³ PN ¹⁸⁴	⁵² OA ⁵³
¹⁶⁰ PS ¹⁶¹	⁵⁴ PT ⁵⁵	$107 PO^{108}$	$^{140}OE^{141}$
177 PS 178	148 PV 149	$^{147}PO^{148}$	$^{152}OF^{153}$
⁵² OA ⁵³	$^{129}\mathrm{PY}^{130}$	⁸⁷ PS ⁸⁸	⁹⁷ OL ⁹⁸
$^{13}OE^{14}$	174 PY ¹⁷⁵	160 PS 161	$108 OL^{109}$
¹⁴⁰ OE ¹⁴¹	¹⁵⁶ OA ¹⁵⁷	177 PS 178	$^{119}OL^{120}$
¹⁵² OF ¹⁵³	⁴¹ OE ⁴²	⁵² OA ⁵³	$^{148}OL^{149}$
⁹ OG ¹⁰	$^{154}OE^{155}$	$^{140}OE^{141}$	$^{155}OL^{156}$
⁹⁷ OL ⁹⁸	³⁸ OF ³⁹	$^{152}OF^{153}$	$^{172}OY^{173}$
$108 OL^{109}$	$^{166}OF^{167}$	⁹⁷ OL ⁹⁸	${}^{9}RG^{10}$
¹⁵⁵ QL ¹⁵⁶	$^{110}OL^{111}$	$^{108}OL^{109}$	³³ RK ³⁴
¹³⁰ OO ¹³¹	$^{133}\text{OL}^{134}$	$^{119}OL^{120}$	100 RL 101
¹⁷² OY ¹⁷³	$^{144}OL^{145}$	$^{148}OL^{149}$	$^{178}{ m SF}^{179}$
$100 RL^{101}$	$^{169}OL^{170}$	$^{155}OL^{156}$	$^{41}SK^{42}$
119 RL 120	13 ON 14	$^{172}OY^{173}$	174 TD 175
$^{178}{ m SF}^{179}$	183 $\rm OV^{184}$	${}^{9}RG^{10}$	¹⁹⁵ TM ¹⁹⁶
$^{64}{ m SI}^{65}$	²¹³ QW ²¹⁴	³³ RK ³⁴	171 TQ 172
$^{41}SK^{42}$	$^{186}OY^{187}$	100 RL 101	$^{31}VF^{32}$
$^{75}{ m SV}^{76}$	¹³⁶ RI ¹³⁷	$^{178}{ m SF}^{179}$	¹³⁸ VN ¹³⁹
$^{174}\text{TD}^{175}$	26 RK 27	$^{41}SK^{42}$	$^{144}YF^{145}$
⁴⁹ TE ⁵⁰	⁶⁵ RK ⁶⁶	$^{174}\text{TD}^{175}$	80 YI 81
$^{195}TM^{196}$	102 RL 103	⁴⁹ TE ⁵⁰	⁹¹ YL ⁹²
$^{171}\mathrm{TQ}^{172}$	⁵¹ RN ⁵²	$^{195}TM^{196}$	⁹⁴ YL ⁹⁵
¹⁹⁴ TT ¹⁹⁵	$^{127}\mathrm{SH}^{128}$	171 TQ 172	166 YL 167
⁷⁶ VE ⁷⁷	$^{18}SI^{19}$	$^{194}\mathrm{TT}^{195}$	104 YN 105
$^{31}VF^{32}$	$^{193}SY^{194}$	³¹ VF ³²	154 YQ 155
$^{15}VL^{16}$	$^{208}\text{TD}^{209}$	¹³⁸ VN ¹³⁹	165 YY 166
³⁷ VN ³⁸	⁵⁵ TE ⁵⁶	$^{144}{ m YF^{145}}$	193 KI 194
$^{138}VN^{139}$	⁶³ TE ⁶⁴	80 YI 81	$^{16}LN^{17}$
$^{144} m YF^{145}$	⁸¹ TE ⁸²	⁹¹ YL ⁹²	⁹ QG ¹⁰
$^{104} m YK^{105}$	153 TQ 154	⁹⁴ YL ⁹⁵	⁴⁸ SI ⁴⁹
⁹¹ YL ⁹²	50 TR 51	166 YL 167	
⁹⁴ YL ⁹⁵	⁸⁰ TT ⁸¹	104 YN 105	

	¹⁵⁴ YO ¹⁵⁵	$^{11}VF^{12}$	¹⁵⁴ YO ¹⁵⁵	
	$166 Y V^{167}$	$^{123}VK^{124}$	$165 YY^{166}$	
	$^{165}YY^{166}$	$^{149}VK^{150}$	⁴ HPINHR ⁹	
	$^{11}LPO^{13}$	$^{22}VL^{23}$		
		184 VM 185		
		210 VM 211		
		$^{34}VS^{35}$		
		$^{77}VS^{78}$		
		152 VT 153		
		194 YD 195		
		¹⁵⁸ YF ¹⁵⁹		
		187 YI 188		
		$^{106}YK^{107}$		
		⁹⁶ YL ⁹⁷		
		130 YL 131		
		135 YR 136		
		175 YV 176		
		$^{179}YY^{180}$		
B-casein	ID: P02666	ID: Q9TVD0	ID: P33048	ID: P11839
	$^{64}{ m GP}^{65}$	⁷⁸ PP ⁷⁹	⁶⁴ GP ⁶⁵	152 PP 153
	$^{199}\text{GP}^{200}$	¹⁵⁹ PP ¹⁶⁰	197 GP 198	$^{151}LP^{152}$
	203 GP 204	110 MP 111	201 GP 202	⁶⁴ GP ⁶⁵
	⁷⁵ PP ⁷⁶	186 MP 187	⁸⁵ PP ⁸⁶	197 GP 198
	⁸⁵ PP ⁸⁶	⁸² PA ⁸³	147 PP 148	201 GP 202
	152 PP 153	⁷² LP ⁷³	¹⁵⁸ PP ¹⁵⁹	⁸⁵ PP ⁸⁶
	¹⁵⁸ PP ¹⁵⁹	⁷⁷ LP ⁷⁸	$^{109}MP^{110}$	147 PP 148
	$^{109}MP^{110}$	$^{136}LP^{137}$	$^{183}MP^{184}$	¹⁵⁸ PP ¹⁵⁹
	$^{185}MP^{186}$	$^{138}LP^{139}$	176 KA 177	109 MP 110
	$^{102}MA^{103}$	$^{172}LP^{173}$	⁵² FA ⁵³	$^{183}MP^{184}$
	176 KA 177	$^{192}LP^{193}$	$^{70}LP^{71}$	176 KA 177
	⁵² FA ⁵³	⁸⁶ VP ⁸⁷	⁷⁵ LP ⁷⁶	⁵² FA ⁵³
	$^{103}AP^{104}$	⁹⁶ VP ⁹⁷	$^{135}LP^{136}$	$^{70}LP^{71}$

⁷⁰ LP ⁷¹	118 VP 119	$^{137}LP^{138}$	⁷⁵ LP ⁷⁶
¹³⁵ LP ¹³⁶	$^{152}VP^{153}$	$^{171}LP^{172}$	¹³⁵ LP ¹³⁶
¹³⁷ LP ¹³⁸	$174 VP^{175}$	⁸⁴ VP ⁸⁵	¹³⁷ LP ¹³⁸
¹⁵¹ LP ¹⁵²	$179 VP^{180}$	⁹⁵ VP ⁹⁶	$^{171}LP^{172}$
$^{171}LP^{172}$	198 VP 199	103 VP 104	⁸⁴ VP ⁸⁵
⁸ VP ⁹	208 VP 209	173 VP 174	⁹⁵ VP ⁹⁶
⁸⁴ VP ⁸⁵	213 VP 214	178 VP ¹⁷⁹	103 VP 104
173 VP 174	$^{112}LL^{113}$	$^{189}LL^{190}$	173 VP 174
178 VP 179	$^{140}LL^{141}$	$^{8}\mathrm{VV}^{9}$	178 VP 179
$^{139}LL^{140}$	$^{163}LL^{164}$	$^{82}VV^{83}$	$^{189}LL^{190}$
$^{191}\overline{L}\overline{L}^{192}$	$117\overline{VV}^{118}$	⁸³ VV ⁸⁴	$^{8}VV^{9}$
$^{82}VV^{83}$	67 IP 68	66 IP 67	$^{82}VV^{83}$
$^{83}VV^{84}$	104 IP 105	80 TP 81	⁸³ VV ⁸⁴
⁶⁶ IP ⁶⁷	$^{148}\mathrm{IP}^{149}$	152 SP 153	⁶⁶ IP ⁶⁷
$^{74}{ m IP}^{75}$	158 IP 159	111 FP 112	⁸⁰ TP ⁸¹
⁸⁰ TP ⁸¹	¹⁵⁵ TP ¹⁵⁶	157 FP 158	111 FP 112
⁶² FP ⁶³	115 SP 116	203 FP 204	¹⁵⁷ FP ¹⁵⁸
111 FP 112	⁵³ FP ⁵⁴	⁵⁰ HP ⁵¹	203 FP 204
157 FP 158	²⁰⁶ HP ²⁰⁷	$^{60}{ m YP^{61}}$	⁵⁰ HP ⁵¹
205 FP 206	⁶⁹ YP ⁷⁰	114 YP 115	$^{60}{ m YP^{61}}$
⁵⁰ HP ⁵¹	181 YP 182	$^{117}{ m EP}^{118}$	114 YP 115
60 YP 61	²¹⁶ IA ²¹⁷	$^{193}\mathrm{EP}^{194}$	$^{117}{\rm EP}^{118}$
114 YP 115	184 RA 185	⁸⁹ QP ⁹⁰	$^{193}{\rm EP}^{194}$
180 YP 181	⁶⁵ EP ⁶⁶	$^{146}OP^{147}$	⁸⁹ QP ⁹⁰
$^{117}{ m EP}^{118}$	¹⁹⁶ EP ¹⁹⁷	¹⁴⁹ OP ¹⁵⁰	$^{146}OP^{147}$
$^{195}{\rm EP}^{196}$	⁸ TA ⁹	$^{167} \widetilde{OP}^{168}$	149 QP ¹⁵⁰
⁸⁹ QP ⁹⁰	⁵⁵ QP ⁵⁶	⁸⁷ FL ⁸⁸	$167 \widetilde{OP}^{168}$
$^{146} OP^{147}$	$^{81}\widetilde{\mathrm{QP}}^{82}$	188 FL 189	⁸⁷ FL ⁸⁸
$^{149}\tilde{OP}^{150}$	⁹⁰ QP ⁹¹	¹³⁴ HL ¹³⁵	188 FL 189
⁸⁷ FL ⁸⁸	150 QP ¹⁵¹	³¹ EK ³²	134 HL 135
$^{190}\mathrm{FL}^{191}$	$210 \tilde{\mathbf{O}} \mathbf{P}^{211}$	¹³¹ EK ¹³²	³¹ EK ³²
$^{134}\text{HL}^{135}$	⁷⁶ FL ⁷⁷	$^{15}SL^{16}$	131 EK 132
³¹ EK ³²	⁸⁸ FL ⁸⁹	⁵⁷ SL ⁵⁸	$^{15}SL^{16}$

1501 16	135111 136	69 CI 70	5701 58
57 GL 58		124 gr 125	69 SL 70
69 GL 70	² EK ²	164 GL 165	⁵⁷ SL ⁷⁷ 124 gr 125
⁵⁷ SL ⁷⁰	12×13	¹⁰³ SL ¹⁰³	$127 SL^{125}$
124 SL $125164 xz 165$	$\begin{bmatrix} 12 \text{AL}^{13} \\ 58 \text{at} 59 \end{bmatrix}$	°'FLQP ⁹⁰	$^{103}SL^{103}$
$104SL^{103}$	³⁰ SL ³⁹	$195 VLGP^{196}$	⁶⁷ FLQP ⁵⁰
⁸⁷ FLQP ⁹⁰	$^{125}SL^{126}$	$^{199}VR^{200}$	¹⁹⁵ VLGP ¹⁹⁸
^{19/} VLGP ²⁰⁰	143 SL 144	^{/5} LPL ^{//}	¹⁹⁹ VR ²⁰⁰
$^{20}1VR^{20}$	162 SL 163	$^{135}LPL^{137}$	⁷⁵ LPL ⁷⁷
$^{135}LPL^{137}$	165 SL 166	$^{137}LPL^{139}$	$^{135}LPL^{137}$
$^{137}LPL^{139}$	204 GL 205	¹³⁵ LPLPL ¹³⁹	$^{137}LPL^{139}$
^{135L} PLPL ¹³⁹	^{88F} LQ ^{P91}	⁷⁶ PL ⁷⁷	¹³⁵ LPLPL ¹³⁹
⁷⁶ PL ⁷⁷	202 VR 203	$^{136}PL^{137}$	⁷⁶ PL ⁷⁷
$^{136}\text{PL}^{137}$	$^{136}LPL^{138}$	$^{138}PL^{139}$	136 PL 137
$^{138}\text{PL}^{139}$	$^{138}LPL^{140}$	150 PL 151	$^{138}PL^{139}$
$^{150}\mathrm{PL}^{151}$	136L PLPL 140	143 WM 144	$^{150}\mathrm{PL}^{151}$
⁷⁵ PPL ⁷⁷	⁷⁹ PL ⁸⁰	⁸⁸ LOP ⁹⁰	143 WM 144
⁷⁰ LPONIPP ⁷⁶	111 PL 112	$^{187}AF^{188}$	⁸⁸ LOP ⁹⁰
⁶² FPGPIPN ⁶⁸	$^{137}\mathrm{PL}^{138}$	$^{177}AV^{178}$	¹⁸⁷ AF ¹⁸⁸
⁷⁴ IPPLTOTPV ⁸²	139 PL 140	⁹¹ EI ⁹²	$^{177}AV^{178}$
¹⁴³ WM ¹⁴⁴	211 PL 212	$^{14}ES^{15}$	⁹¹ EI ⁹²
⁸⁸ LOP ⁹⁰	⁷⁸ PPL ⁸⁰	$^{21}ES^{22}$	$^{14}ES^{15}$
$^{189}AF^{190}$	⁸⁰ LOP ⁸²	121 ES 122	$^{21}ES^{22}$
$^{177}\mathrm{AV}^{178}$	⁸⁹ LOP ⁹¹	$^{11}{\rm ET}^{12}$	$^{121}\text{ES}^{122}$
$^{11}{ m EI}^{12}$	⁵¹ YT ⁵²	$^{100}\mathrm{ET}^{101}$	$^{11}{\rm ET}^{12}$
$^{14}\text{ES}^{15}$	⁹ AG ¹⁰	³³ FO ³⁴	$^{100}\mathrm{ET}^{101}$
21 ES 22	$^{83}AV^{84}$	$^{10}GE^{11}$	³³ FO ³⁴
$^{121}\text{ES}^{122}$	$^{190}AV^{191}$	⁹⁴ GV ⁹⁵	$^{10}GE^{11}$
⁹¹ EV ⁹²	$^{200}\text{DP}^{201}$	²⁵ HI ²⁶	⁹⁴ GV ⁹⁵
$^{33}FO^{34}$	$^{14}ES^{15}$	⁴⁹ IH ⁵⁰	²⁵ HI ²⁶
10^{-10}GE^{11}	$^{21}ES^{22}$	⁷⁴ IL ⁷⁵	⁴⁹ IH ⁵⁰
⁹⁴ GV ⁹⁵	$^{122}ES^{123}$	205 m^{206}	⁷⁴ IL ⁷⁵
⁴⁹ IH ⁵⁰	101 ET 102	⁹² IM ⁹³	$205 \Pi^{206}$
207 _{II} 208	194 FO ¹⁹⁵	26 IN 27	⁹² IM ⁹³

²⁶ IN ²⁷	$^{10}\text{GE}^{11}$	¹⁸⁵ IO ¹⁸⁶	26 IN 27
^{187I} O ¹⁸⁸	²⁵ HI ²⁶	⁹⁹ KE ¹⁰⁰	¹⁸⁵ IO ¹⁸⁶
⁹⁹ KE ¹⁰⁰	⁶³ HT ⁶⁴	107 KE 108	⁹⁹ KE ¹⁰⁰
107 KE 108	103H^{104}	32 KF ³³	107 KE 108
³² KF ³³	$^{71}\mathrm{IL}^{72}$	105 KH 106	³² KF ³³
105 KH 106	²⁶ IN ²⁷	²⁹ KI ³⁰	105 KH 106
²⁹ KI ³⁰	$^{3}\text{KE}^{4}$	⁴⁸ KI ⁴⁹	²⁹ KI ³⁰
⁴⁸ KI ⁴⁹	100 KE 101	²⁸ KK ²⁹	⁴⁸ KI ⁴⁹
²⁸ KK ²⁹	108 KE 109	⁹⁷ KV ⁹⁸	²⁸ KK ²⁹
⁹⁷ KV ⁹⁸	³³ KF ³⁴	169 KV 170	⁹⁷ KV ⁹⁸
169 KV 170	³⁰ KI ³¹	¹¹³ KY ¹¹⁴	169 KV 170
113 KY 114	³⁵ KI ³⁶	¹³³ LH ¹³⁴	113 KY 114
$^{133}LH^{134}$	⁴⁹ KI ⁵⁰	$^{6}LN^{7}$	¹³³ LH ¹³⁴
${}^{6}LN^{7}$	106 KR 107	⁷⁷ LT ⁷⁸	⁶ LN ⁷
⁷⁷ LT ⁷⁸	⁷ KT ⁸	$^{125}LT^{126}$	⁷⁷ LT ⁷⁸
$^{125}LT^{126}$	⁹⁸ KT ⁹⁹	$^{127}LT^{128}$	$^{125}LT^{126}$
$^{127}LT^{128}$	⁹² KV ⁹³	⁵⁸ LV ⁵⁹	$^{127}LT^{128}$
⁵⁸ LV ⁵⁹	170 KV 171	$^{139}LV^{140}$	⁵⁸ LV ⁵⁹
$^{156}{ m MF}^{157}$	¹³⁴ LH ¹³⁵	$^{206}LV^{207}$	$^{139}LV^{140}$
⁹³ MG ⁹⁴	²⁰⁵ LH ²⁰⁶	$^{156}{ m MF}^{157}$	$^{206}LV^{207}$
$^{144}MH^{145}$	$^{144}LM^{145}$	⁹³ MG ⁹⁴	$^{156}{ m MF}^{157}$
$^{132}NL^{133}$	$^{126}LT^{127}$	$^{144}MH^{145}$	⁹³ MG ⁹⁴
$^{7}NV^{8}$	$^{128}LT^{129}$	$^{102}MV^{103}$	$^{144}MH^{145}$
⁵¹ PF ⁵²	$^{59}LV^{60}$	$^{7}NV^{8}$	102 MV 103
⁶¹ PF ⁶²	$^{212}LV^{213}$	⁵¹ PF ⁵²	$^{7}NV^{8}$
⁸⁶ PF ⁸⁷	$^{157}MI^{158}$	⁶¹ PF ⁶²	⁵¹ PF ⁵²
$^{110}\mathrm{PF}^{111}$	$^{85}MV^{86}$	⁸⁶ PF ⁸⁷	⁶¹ PF ⁶²
$^{118}\mathrm{PF}^{119}$	$^{178}{ m MV}^{179}$	$^{110}\mathrm{PF}^{111}$	⁸⁶ PF ⁸⁷
²⁰⁴ PF ²⁰⁵	$^{14}MY^{146}$	$^{118}\mathrm{PF}^{119}$	$^{110}\mathrm{PF}^{111}$
⁹ PG ¹⁰	⁷⁵ NF ⁷⁶	$^{202}\mathrm{PF}^{203}$	¹¹⁸ PF ¹¹⁹
⁶³ PG ⁶⁴	¹³³ NL ¹³⁴	⁶⁵ PI ⁶⁶	²⁰² PF ²⁰³
$^{147}\mathrm{PH}^{148}$	⁸⁷ PF ⁸⁸	184 PI 185	⁶⁵ PI ⁶⁶
⁶⁵ PI ⁶⁶	$^{119}\mathrm{PF}^{120}$	²⁰⁴ PI ²⁰⁵	$^{184}\mathrm{PI}^{185}$

¹⁸⁶ PI ¹⁸⁷	¹⁹³ PF ¹⁹⁴	⁹⁶ PK ⁹⁷	$^{204}\mathrm{PI}^{205}$
²⁰⁶ PI ²⁰⁷	⁶⁶ PI ⁶⁷	104 PK 105	⁹⁶ PK ⁹⁷
¹⁰⁴ PK ¹⁰⁵	⁷⁰ PI ⁷¹	112 PK 113	104 PK 105
¹¹² PK ¹¹³	⁹¹ PK ⁹²	168 PK 169	112 PK 113
⁶⁷ PN ⁶⁸	⁹⁷ PK ⁹⁸	⁶⁷ PN ⁶⁸	¹⁶⁸ PK ¹⁶⁹
⁷¹ PO ⁷²	$^{105}\mathrm{PK}^{106}$	$^{71}PO^{72}$	67 PN 68
¹⁵⁹ PO ¹⁶⁰	¹⁵⁶ PM ¹⁵⁷	¹⁴⁸ PO ¹⁴⁹	71 PO ⁷²
¹⁷⁴ PO ¹⁷⁵	⁵⁴ PO ⁵⁵	$^{159}PO^{160}$	¹⁴⁸ PO ¹⁴⁹
¹⁸¹ PO ¹⁸²	⁵⁶ PO ⁵⁷	¹⁷⁴ PO ¹⁷⁵	$^{159}PO^{160}$
$^{153}\mathrm{PT}^{154}$	$^{73}PO^{74}$	179 PO ¹⁸⁰	174 PO ¹⁷⁵
$^{81}PV^{82}$	¹⁴⁹ PO ¹⁵⁰	¹⁵³ PT ¹⁵⁴	$^{179}PO^{180}$
$^{115}{ m PV}^{116}$	$^{153}PO^{154}$	$^{81}PV^{82}$	¹⁵³ PT ¹⁵⁴
172 PV 173	$^{160}PO^{161}$	115 PV 116	${}^{81}PV^{82}$
$^{196}\mathrm{PV}^{197}$	$^{175}PO^{176}$	172 PV 173	115 PV 116
$^{200}{ m PV}^{201}$	$^{182}PO^{183}$	194 PV 195	172 PV 173
$^{179}\mathrm{PY}^{180}$	$^{209}PO^{210}$	$^{198}\mathrm{PV}^{199}$	¹⁹⁴ PV ¹⁹⁵
¹⁸⁸ QA ¹⁸⁹	$^{116} PV^{117}$	⁵⁴ QA ⁵⁵	¹⁹⁸ PV ¹⁹⁹
⁴⁶ QD ⁴⁷	151 PV 152	¹⁸⁶ QA ¹⁸⁷	⁵⁴ QA ⁵⁵
¹⁹⁴ OE ¹⁹⁵	173 PV 174	$^{46}OD^{47}$	$^{186}OA^{187}$
⁷² QN ⁷³	187 PV 188	$^{3}OE^{4}$	$^{46}OD^{47}$
³⁸ OO ³⁹	197 PV 198	192 OE 193	$^{3}OE^{4}$
³⁹ QQ ⁴⁰	201 PV 202	72 QN 73	192 QE 193
³⁴ QS ³⁵	207 PV 208	$^{38}QQ^{39}$	⁷² QN ⁷³
⁵⁶ QS ⁵⁷	214 PV 215	$^{39}QQ^{40}$	${}^{38}\overline{\rm Q}{\rm Q}{}^{39}$
$123^{\circ}{ m OS}^{124}$	⁶⁸ PY ⁶⁹	³⁴ QS ³⁵	$^{39}QQ^{40}$
141 QS 142	180 PY 181	⁵⁶ QS ⁵⁷	$^{34}QS^{35}$
$^{160}OS^{161}$	189 QA 190	$^{123}\mathrm{QS}^{124}$	⁵⁶ QS ⁵⁷
$^{167} m QS^{168}$	$47QD^{48}$	141 QS 142	$^{123}\mathrm{QS}^{124}$
$^{40}QT^{41}$	$^{195}{ m QE}^{196}$	160 QS ¹⁶¹	141 QS 142
⁵⁴ QT ⁵⁵	$^{168} m QF^{169}$	$^{40}QT^{41}$	160 QS 161
⁷⁹ QT ⁸⁰	147 $\widetilde{\mathbf{QI}}^{148}$	⁷⁹ QT ⁸⁰	⁴⁰ QT ⁴¹
$202 RG^{203}$	⁷⁴ QN ⁷⁵	200 RG ²⁰¹	⁷⁹ QT ⁸⁰
25 RI 26	$^{39}QQ^{40}$	$^{22}SI^{23}$	200 RG ²⁰¹

²² SI ²³	$^{40}OO^{41}$	$^{161}SV^{162}$	$^{22}SI^{23}$
⁹⁶ SK ⁹⁷	⁴⁶ OO ⁴⁷	142 SW ¹⁴³	$^{161}SV^{162}$
¹⁶⁸ SK ¹⁶⁹	$^{176}OO^{177}$	$^{128}\text{TD}^{129}$	$^{142}SW^{143}$
$^{161}SV^{162}$	⁵⁷ OS ⁵⁸	$^{41}\text{TE}^{42}$	$^{128}\text{TD}^{129}$
$^{142}SW^{143}$	$^{114}OS^{115}$	$^{120}\text{TE}^{121}$	$^{41}\text{TE}^{42}$
$^{128}\text{TD}^{129}$	$^{124}OS^{125}$	$^{63}\text{TG}^{64}$	$^{120}\text{TE}^{121}$
⁴¹ TE ⁴²	¹⁴² OS ¹⁴³	²⁴ TH ²⁵	⁶³ TG ⁶⁴
$^{120}\mathrm{TE}^{121}$	$^{161}OS^{162}$	$^{126}\mathrm{TL}^{127}$	²⁴ TH ²⁵
$^{126}\mathrm{TL}^{127}$	⁴¹ OT ⁴²	$^{101} \mathrm{TM}^{102}$	$^{126}\mathrm{TL}^{127}$
⁵⁵ TO ⁵⁶	¹⁵⁴ OT ¹⁵⁵	⁷⁸ TO ⁷⁹	101 TM 102
⁷⁸ TO ⁷⁹	203 RG ²⁰⁴	$^{12}\text{TV}^{13}$	⁷⁸ TO ⁷⁹
²⁴ TR ²⁵	107 RK 108	$^{154}\mathrm{TV}^{155}$	$^{12}\mathrm{TV}^{13}$
$^{154}\mathrm{TV}^{155}$	⁶² SH ⁶³	$^{13}VE^{14}$	154 TV 155
$^{13}VE^{14}$	$^{15}SI^{16}$	¹¹⁶ VE ¹¹⁷	$^{13}VE^{14}$
$^{116}VE^{117}$	$^{22}SI^{23}$	¹³⁰ VE ¹³¹	$^{116}VE^{117}$
$^{130}VE^{131}$	$^{129}\text{TD}^{130}$	⁹ VG ¹⁰	$^{130}VE^{131}$
⁹⁸ VK ⁹⁹	⁴² TE ⁴³	⁹⁸ VK ⁹⁹	⁹ VG ¹⁰
162 VL 163	⁶⁴ TE ⁶⁵	$^{162}VL^{163}$	⁹⁸ VK ⁹⁹
170 VL 171	$^{121}\text{TE}^{122}$	$^{170}\mathrm{VL}^{171}$	162 VL 163
197 VL 198	⁵² TF ⁵³	¹⁹⁵ VL ¹⁹⁶	170 VL 171
⁹² VM ⁹³	²⁴ TH ²⁵	155 VM 156	¹⁹⁵ VL ¹⁹⁶
155 VM 156	$^{102}\mathrm{TI}^{103}$	140 VQ 141	¹⁵⁵ VM ¹⁵⁶
⁹⁵ VS ⁹⁶	⁹⁹ TK ¹⁰⁰	⁵⁹ VY ⁶⁰	140 VQ 141
⁵⁹ VY ⁶⁰	$^{127}\mathrm{TL}^{128}$	¹⁹¹ YQ ¹⁹²	⁵⁹ VY ⁶⁰
¹⁹³ YQ ¹⁹⁴	215 VI 216	¹⁹⁷ GPV ¹⁹⁹	191 YQ 192
⁷¹ PQNIPPL ⁷⁷	171 VL 172	²⁰¹ GPFPILV ²⁰⁷	¹⁹⁷ GPV ¹⁹⁹
199 GPV 201	¹⁹¹ VL ¹⁹²	¹¹⁴ YPVEPF ¹¹⁹	²⁰¹ GPFPILV ²⁰⁷
⁷⁰ LPQNIPPL ⁷⁷	⁸⁴ VM ⁸⁵	⁷⁰ LPQ ⁷²	¹¹⁴ YPVEPF ¹¹⁹
114 YPVEPF 119	⁹³ VM ⁹⁴		⁷⁰ LPQ ⁷²
⁷⁰ LPQ ⁷²	188 VQ 189		_
-	$^{60}VY^{\bar{6}1}$		
	146 YQ 147		
	⁶¹ YS ⁶²		

		⁷² LPQ ⁷⁴		
K-casein	ID: P02668	ID: P79139	ID: P02670	ID: P02669
	²⁵ IP ^{I27}	⁸⁴ PP ⁸⁵	²⁵ IP ^{I27}	25 IP ^{I27}
	108 PP 109	101 PP 102	108 PP 109	108 PP 109
	¹⁵⁵ PP ¹⁵⁶	122 PP 123	⁴⁷ VA ⁴⁸	$^{47}VA^{48}$
	$^{47}VA^{48}$	⁶⁵ VA ⁶⁶	⁶⁴ VA ⁶⁵	⁶⁴ VA ⁶⁵
	$^{142}VA^{143}$	117 VA 118	$^{105}MA^{106}$	$^{105}MA^{106}$
	⁹⁴ MA ⁹⁵	$[47LA^{48}]$	⁹⁴ LA ⁹⁵	⁹⁴ MA ⁹⁵
	$^{105}MA^{106}$	112 PA 113	⁶⁹ PA ⁷⁰	$^{157}AP^{158}$
	⁶³ PA ⁶⁴	130 PA 131	⁸³ PA ⁸⁴	$^{140}VV^{141}$
	⁶⁹ PA ⁷⁰	$^{79}LP^{80}$	119 PA 120	118 IPA 120
	⁸³ PA ⁸⁴	⁴⁹ VP ⁵⁰	⁵⁵ LP ⁵⁶	$^{118}\mathrm{IP}^{119}$
	⁵⁵ LP ⁵⁶	$^{17}LL^{18}$	$^{78}\text{LP}^{79}$	⁹² TA ⁹³
	⁸² VP ⁸³	135 VV 136	$^{82}VP^{83}$	⁸¹ AV ⁸²
	25 IP 26	⁷⁰ HA ⁷¹	118 VP 119	$^{139}AV^{140}$
	107 IP 108	⁵⁶ IP ⁵⁷	25 IP 26	$^{143}AV^{144}$
	118 IP 119	73 IP 74	107 IP 108	$^{117}\mathrm{EI}^{118}$
	$^{132}\text{TP}^{133}$	100 IP 101	$^{134}\text{TP}^{135}$	⁶⁹ PA ⁷⁰
	⁶⁸ SP ⁶⁹	125 IP 126	⁶⁸ SP ⁶⁹	⁸³ PA ⁸⁴
	148 SP 149	$^{149}\mathrm{TP}^{150}$	⁴⁵ RP ⁴⁶	119 PA 120
	¹⁵⁴ SP ¹⁵⁵	26 FP ²⁷	⁶² KP ⁶³	⁵⁵ LP ⁵⁶
	⁴⁵ KP ⁴⁶	⁹⁰ RP ⁹¹	⁹⁷ HP ⁹⁸	⁷⁸ LP ⁷⁹
	⁶² KP ⁶³	⁹² RP ⁹³	⁹⁹ HP ¹⁰⁰	⁸² VP ⁸³
	⁹⁷ HP ⁹⁸	⁹⁴ RP ⁹⁵	34 YP ³⁵	⁸⁰ NA ⁸¹
	⁹⁹ HP ¹⁰⁰	⁶³ KP ⁶⁴	⁵⁷ YP ⁵⁸	$^{142}NA^{143}$
	³⁴ YP ³⁵	³⁵ YP ³⁶	21 IA 22	$^{7}\mathrm{RI}^{8}$
	⁵⁷ YP ⁵⁸	⁵⁸ YP ⁵⁹	124 IA 125	25 IP 26
	$^{21}LA^{22}$	⁹⁸ IA ⁹⁹	154 IA 155	107 IP 108
	$^{124}LA^{125}$	137 IA 138	$^{128}\text{EP}^{129}$	¹³⁴ TP ¹³⁵
	$^{128}\text{EP}^{129}$	$^{121}\text{EP}^{122}$	$^{146}NP^{147}$	⁶⁸ SP ⁶⁹
	$^{166}TA^{167}$	$^{129}\text{EP}^{130}$	$^{162}TA^{163}$	⁴⁵ RP ⁴⁶
	⁶ QP ⁷	¹¹¹ NP ¹¹²	⁶ Q ^{P7}	⁶² KP ⁶³
	⁹⁰ QP ⁹¹	$^{127}TA^{128}$	⁹⁰ QP ⁹¹	⁹⁷ HP ⁹⁸

⁵⁴ FL ⁵⁵	⁷ OP ⁸	⁵⁴ FL ⁵⁵	⁹⁹ HP ¹⁰⁰
¹⁰¹ HL ¹⁰²	$^{12}\text{EK}^{13}$	$^{10}1 HL^{102}$	34 YP ³⁵
$^{11}{ m EK}^{12}$	$^{20}EK^{21}$	$^{11}{\rm EK}^{12}$	⁵⁷ YP ⁵⁸
⁴⁸ AL ⁴⁹	⁷⁸ AL ⁷⁹	⁴⁸ AL ⁴⁹	²¹ IA ²²
³⁸ GL ³⁹	$^{128}AE^{129}$	³⁸ GL ³⁹	124 IA 125
⁶⁶ VR ⁶⁷	$^{138}AE^{139}$	$^{66}VR^{67}$	¹⁵⁴ IA ¹⁵⁵
²⁵ IPIOY ²⁹	$^{140}AS^{141}$	²⁵ IPIOY ²⁹	$^{128}\text{EP}^{129}$
55LPYPY ⁵⁹	$^{118}AT^{119}$	⁵⁵ LPYPY ⁵⁹	$^{146}NP^{147}$
57 YPYY ⁶⁰	$^{48}AV^{49}$	⁵⁷ YPYY ⁶⁰	$^{162}TA^{163}$
⁵⁷ YPY ⁵⁹	$^{131}AV^{132}$	⁵⁷ YPY ⁵⁹	⁹⁰ OP ⁹¹
⁶⁴ AA ⁶⁵	⁸³ DP ⁸⁴	⁷⁵ WO ⁷⁶	⁵⁴ FL ⁵⁵
⁷⁵ WO ⁷⁶	$^{161}\mathrm{EI}^{162}$	$^{127}AE^{128}$	$^{10}1 HL^{102}$
$^{125}AS^{126}$	¹⁵¹ ET ¹⁵²	$^{125}AS^{126}$	$^{11}{ m EK}^{12}$
$^{143}AT^{144}$	$^{1}\mathrm{EV}^{2}$	$^{149}AS^{150}$	$^{48}AL^{49}$
$^{65}AV^{66}$	$^{39}GI^{40}$	¹⁵⁵ AS ¹⁵⁶	³⁸ GL ³⁹
$^{137}AV^{138}$	⁴⁵ HR ⁴⁶	¹⁵⁷ AS ¹⁵⁸	⁶⁶ VR ⁶⁷
$^{167}\mathrm{AV}^{168}$	40 IN 41	$^{65}AV^{66}$	²⁵ IPIOY ²⁹
$^{117}{ m EI}^{118}$	⁵¹ IN ⁵²	145 DN 146	⁵⁵ LPYPY ⁵⁹
$^{157}\mathrm{EI}^{158}$	114 IN 115	⁸⁹ DO ⁹⁰	⁵⁷ YPYY ⁶⁰
$^{139}\text{ES}^{140]}$	²⁸ IO ²⁹	112 DO 113	⁵⁷ YPY ⁵⁹
$^{153}\text{ES}^{154}$	67IR ⁶⁸	$^{152}\text{ES}^{153}$	⁷⁵ WO ⁷⁶
$^{15}0EV^{151}$	103 KK 104	$^{159}\mathrm{ET}^{160}$	$^{127}AE^{128}$
$^{127}\text{GE}^{128}$	21 KT 22	$^{117}{\rm EV}^{118}$	$^{125}AS^{126}$
⁷² IL ⁷³	$^{104}\mathrm{KT}^{105}$	$^{169}\mathrm{EV}^{170}$	$^{149}AS^{150}$
⁵⁰ IN ⁵¹	$^{108}\mathrm{KT}^{109}$	$^{132}\text{HS}^{133}$	$^{155}AS^{156}$
121 IN 122	13 KV 14	⁵⁰ IN ⁵¹	$^{65}AV^{66}$
158 IN 159	24 KY 25	121 IN 122	145 DN 146
²⁷ IQ ²⁸	⁶⁹ LH ⁷⁰	²⁷ IQ ²⁸	⁸⁹ DQ ⁹⁰
⁸ IR ⁹	$^{18}LN^{19}$	20 KI ²¹	112 DQ 113
20 KI 21	$^{19}NE^{20}$	110 KK 111	$^{152}\text{ES}^{153}$
110 KK 111	⁵² NN ⁵³	⁸⁵ KS ⁸⁶	¹⁵⁹ ET ¹⁶⁰
⁸⁵ KS ⁸⁶	$^{4}NO^{5}$	115 KT 116	$^{169}\mathrm{EV}^{170}$
115 KT 116	$^{53}NQ^{54}$	23 KY 24	$^{132}\text{HS}^{133}$

23 KY ²⁴	¹¹⁵ NT ¹¹⁶	⁴⁹ LI ⁵⁰	⁵⁰ IN ⁵¹
⁴⁹ L ⁵⁰	¹³³ NT ¹³⁴	$^{39}LN^{40}$	121 IN 122
³⁹ LN ⁴⁰	$^{41}NY^{42}$	⁵¹ NN ⁵²	²⁷ IO ²⁸
⁵¹ NN ⁵²	⁶⁰ NY ⁶¹	$^{3}NO^{4}$	20 KI ²¹
$^{3}NO^{4}$	$^{27}\rm{PI}^{28}$	⁵² NO ⁵³	110 KK 111
⁵² NO ⁵³	⁵⁰ PI ⁵¹	⁸⁰ NT ⁸¹	⁸⁵ KS ⁸⁶
¹¹² NO ¹¹³	102 PK 103	$^{142}NT^{143}$	¹¹⁵ KT ¹¹⁶
⁸⁰ NT ⁸¹	⁵⁹ PN ⁶⁰	$^{7}\rm{PI}^{8}$	23 KY ²⁴
$^{122}NT^{123}$	80 PN 81	$^{122}\rm{NT}^{123}$	⁴⁹ LI ⁵⁰
$^{159}\rm{NT}^{160}$	⁷⁴ PO ⁷⁵	¹⁶¹ NT1 ⁶²	$^{39}LN^{40}$
$^{40}NY^{41}$	³⁶ PS ³⁷	$^{40}NY^{41}$	⁵¹ NN ⁵²
⁹⁸ PH ⁹⁹	⁹⁵ PS ⁹⁶	⁹⁸ PH ⁹⁹	$^{3}NO^{4}$
$^{100}\mathrm{PH}^{101}$	⁸ PT ⁹	$^{100}\mathrm{PH}^{101}$	⁵² NO ⁵³
$^{7}\mathrm{PI}^{8}$	⁸⁵ PT ⁸⁶	²⁶ PI ²⁷	$122 NT^{123}$
$^{26}\mathrm{PI}^{27}$	$^{126}\mathrm{PT}^{127}$	109 PK 110	¹⁶¹ NT1 ⁶²
$^{109}\mathrm{PK}^{110}$	$^{64}PV^{65}$	⁷⁹ PN ⁸⁰	$^{40}NY^{41}$
³⁵ PS ³⁶	123 PV 124	³⁵ PS ³⁶	⁹⁸ PH ⁹⁹
⁹¹ PT ⁹²	⁵⁷ PY ⁵⁸	⁹¹ PT ⁹²	$^{100}\mathrm{PH}^{101}$
$^{119}\mathrm{PT}^{120}$	⁷⁷ QA ⁷⁸	¹²⁹ PT ¹³⁰	²⁶ PI ²⁷
$^{129}\mathrm{PT}^{130}$	$106 OD^{107}$	¹³⁵ PT ¹³⁶	$^{109}\mathrm{PK}^{110}$
¹³³ PT ¹³⁴	${}^{5}OE^{6}$	$^{46}PV^{47}$	⁷⁹ PN ⁸⁰
$^{46}PV^{47}$	²⁹ QF ³⁰	⁶³ PV ⁶⁴	³⁵ PS ³⁶
⁵⁶ PY ⁵⁷	⁵⁴ QF ⁵⁵	⁵⁶ PY ⁵⁷	⁹¹ PT ⁹²
⁵⁸ PY ⁵⁹	⁴⁴ QH ⁴⁵	⁵⁸ PY ⁵⁹	¹²⁹ PT ¹³⁰
⁸⁸ QA ⁸⁹	72 QI 73	⁸⁸ QD ⁸⁹	¹³⁵ PT ¹³⁶
113 QD 114	$^{156}OI^{157}$	113 QD 114	$^{46}PV^{47}$
$^{4}\text{QE}^{5}$	$^{3}QN^{4}$	$^{4}\text{QE}^{5}$	⁶³ PV ⁶⁴
⁵³ QF ⁵⁴	32 QS ³³	⁵³ QF ⁵⁴	⁵⁶ PY ⁵⁷
71 QI 72	16 RL 17	$^{2}QN^{3}$	⁵⁸ PY ⁵⁹
$2QN^3$	$^{46}RL^{47}$	$^{43}QQ^{44}$	⁸⁸ QD ⁸⁹
43QQ44	⁶⁸ RL ⁶⁹	$^{71}QT^{72}$	113 QD 114
76QV77	⁸⁹ RR ⁹⁰	76 QV 77	$^{4}\text{QE}^{5}$
$162 QV^{163}$	⁹⁶ SF ⁹⁷	164 QV 165	⁵³ QF ⁵⁴

⁷⁴ OW	75	³⁷ SY ³⁸	⁷⁴ OW ⁷⁵	$^{2}ON^{3}$
$^{28}\mathrm{OY}^2$	9	$^{160}\mathrm{TE}^{161}$	$^{28}OY^{29}$	⁴³ OO ⁴⁴
⁹⁶ RH ⁹	7	$^{105}\mathrm{TO}^{106}$	⁹⁶ RH ⁹⁷	71 OT 72
103 SF ¹	04	¹⁴⁷ TS ¹⁴⁸	103 SF 104	$^{76}OV^{77}$
$^{36}{ m SY}^{37}$	7	¹⁵⁸ TS ¹⁵⁹	¹⁵³ SI ¹⁵⁴	¹⁶⁴ OV ¹⁶⁵
$^{116}TE^{1}$	17	$^{146}\mathrm{TT}^{147}$	³⁶ SY ³⁷	⁷⁴ OW ⁷⁵
¹³⁵ TE ¹	136	$^{152}\mathrm{TT}^{153}$	$^{116}\text{TE}^{117}$	²⁸ OY ²⁹
120TI 12	21	¹⁵³ TT ¹⁵⁴	¹³⁷ TE ¹³⁸	⁹⁶ RH ⁹⁷
123TI 12	24	$^{22}TV^{23}$	¹⁶⁸ TE ¹⁶⁹	$^{103}SF^{104}$
$^{144}\mathrm{TL}^{1}$	45	$^{86}TV^{87}$	$^{123}\mathrm{TI}^{124}$	$^{153}SI^{154}$
⁹³ TM ⁹	04	$^{109}\mathrm{TV}^{110}$	$^{72}TL^{73}$	³⁶ SY ³⁷
¹³⁰ TS ¹	31	$^{116}\mathrm{TV}^{117}$	¹⁶⁰ TN ¹⁶¹	$^{116}\mathrm{TE}^{117}$
$^{164}TS^1$	65	$^{119}\mathrm{TV}^{120}$	¹⁶⁶ TS1 ⁶⁷	$^{137}\text{TE}^{138}$
⁹² TT ⁹³	3	134 TV 135	$^{136}\mathrm{TT}^{137}$	$^{168}\mathrm{TE}^{169}$
$^{134}TT^{1}$	135	154 TV 155	$^{130}\mathrm{TV}^{131}$	$^{123}\mathrm{TI}^{124}$
$81 TV^{82}$	2	¹⁴ VE ¹⁵	¹⁴⁴ VD ¹⁴⁵	⁷² TL ⁷³
¹⁴¹ TV	142	⁸⁷ VE ⁸⁸	¹³¹ VH ¹³²	¹⁶⁰ TN ¹⁶¹
¹⁶⁰ TV	161	$^{120}VE^{121}$	30 VL 31	¹⁶⁶ TS1 ⁶⁷
¹³⁸ VE	139	$^{124}VI^{125}$	77 VL 78	$^{136}\mathrm{TT}^{137}$
$^{151}VI^{12}$	52	¹³⁶ VI ¹³⁷	¹⁴¹ VN ¹⁴²	¹³⁰ TV ¹³¹
$^{30}VL^{31}$	1	²³ VK ²⁴	$^{165}VT^{166}$	¹⁴⁴ VD ¹⁴⁵
77 VL ⁷⁸	8	110 VN 111	⁶⁰ YA ⁶¹	¹³¹ VH ¹³²
¹⁶¹ VQ	162	¹³² VN ¹³³	$^{37}YG^{38}$	30 VL 31
¹⁶³ VT	164	$^{2}VQ^{3}$	24 YI 25	77 VL 78
⁶⁰ YA ⁶	1	31 VQ ³²	42 YQ 43	141 VN 142
³⁷ YG ³	8	$^{155}VQ^{156}$	29 YV 30	$^{165}VT^{166}$
²⁴ YI ²⁵		⁶¹ YA ⁶²	$^{41}YY^{42}$	60 YA 61
42YQ ⁴	3	²⁵ YF ²⁶	⁵⁹ YY ⁶⁰	$^{37}YG^{38}$
²⁹ YV ³	0	³⁸ YG ³⁹	⁵⁰ INNQFLPYPY ⁵⁹	24 YI 25
$^{41}YY^{4}$	2	⁴³ YQ ⁴⁴	$^{143}\mathrm{TV}^{144}$	$^{42}YQ^{43}$
⁵⁹ YY ⁶	0	$^{42}YY^{43}$	⁹³ TL ⁹⁴	²⁹ YV ³⁰
⁵⁰ INN	QFLPYPY ⁵⁹		⁹² TT ⁹³	$^{41}YY^{42}$
			⁸¹ TV ⁸²	⁵⁹ YY ⁶⁰

				⁵⁰ INNQFLPYPY ⁵⁹
GMP	⁴ PP ⁵	⁴ PP ⁵	$^{14}VP^{15}$	⁵³ AP ⁵⁴
	⁵¹ PP ⁵²	²⁵ PP ²⁶	⁵³ AS ⁵⁴	36 VV 37
	³⁸ VA ³⁹	$^{20}VA^{21}$	$^{13}{ m EV}^{14}$	14 IPA 16
	$^{1}MA^{2}$	15 PA 16	³⁸ NT ³⁹	14 IP 15
	3 IP 4	³³ PA ³⁴	$^{39}TV^{40}$	³⁸ NA ³⁹
	14 IP 15	³⁸ VV ³⁹	⁴ PP ⁵	$^{35}AV^{36}$
	²⁸ TP ²⁹	$^{3}\mathrm{IP}^{4}$	$^{1}MA^{2}$	$^{39}AV^{40}$
	⁴⁴ SP ⁴⁵	28 IP 29	$^{15}PA^{16}$	$^{13}EI^{14}$
	⁵⁰ SP ⁵¹	⁵² TP ⁵³	3 IP 4	$^{4}\text{PP}^{5}$
	20 IA 21	1 IA 2	$^{30}\text{TP}^{31}$	$^{1}MA^{2}$
	$^{24}\text{EP}^{25}$	40 IA 41	20 IA 21	15 PA 16
	$^{62}TA^{63}$	$^{24}\text{EP}^{25}$	⁵⁰ IA ⁵¹	$^{3}\mathrm{IP}^{4}$
	$^{21}AS^{22}$	³² EP ³³	$^{24}\text{EP}^{25}$	$^{30}\text{TP}^{31}$
	³⁹ AT ⁴⁰	¹⁴ NP ¹⁵	⁴² NP ⁴³	20 IA 21
	$^{33}AV^{34}$	³⁰ TA ³¹	⁵⁹ TA ⁶⁰	⁵⁰ IA ⁵¹
	$^{63}AV^{64}$	$^{31}AE^{32}$	$^{23}AE^{24}$	$^{24}\text{EP}^{25}$
	$^{13}\text{EI}^{14}$	$^{41}AE^{42}$	$^{21}AS^{22}$	$^{42}NP^{43}$
	⁵³ EI ⁵⁴	⁴³ AS ⁴⁴	$^{45}AS^{46}$	$^{59}TA^{60}$
	$^{35}ES^{36}$	$^{21}AT^{22}$	⁵¹ AS ⁵²	$^{23}AE^{24}$
	$^{49}ES^{50}$	$^{34}AV^{35}$	41 DN 42	$^{21}AS^{22}$
	$^{46}{ m EV}^{47}$	⁶⁴ EI ⁶⁵	$^{8}\mathrm{DQ}^{9}$	$^{45}AS^{46}$
	$^{23}GE^{24}$	⁵⁴ ET ⁵⁵	$^{48}ES^{49}$	$^{51}AS^{52}$
	17 IN 18	17 IN 18	⁵⁶ ET ⁵⁷	41 DN 42
	⁵⁴ IN ⁵⁵	⁶ KK ⁷	$^{66}{ m EV}^{67}$	$^{8}\text{DQ}^{9}$
	⁶ KK ⁷	$^{7}\mathrm{KT}^{8}$	$^{28}\text{HS}^{29}$	$^{48}\text{ES}^{49}$
	11 KT 12	11 KT 12	17 IN 18	⁵⁶ ET ⁵⁷
	⁸ NQ ⁹	$^{18}NT^{19}$	⁶ KK ⁷	$^{66}{ m EV}^{67}$
	¹⁸ NT ¹⁹	³⁶ NT ³⁷	11 KT 12	$^{28}\text{HS}^{29}$
	⁵⁵ NT ⁵⁶	⁵ PK ⁶	$^{18}NT^{19}$	17 IN 18
	⁵ PK ⁶	²⁹ PT ³⁰	⁵⁸ NT ⁵⁹	⁶ KK ⁷
	$^{15}PT^{16}$	$^{26}PV^{27}$	⁵ PK ⁶	11 KT 12
	$^{25}\text{PT}^{26}$	${}^{9}\text{QD}^{10}$	$^{25}\text{PT}^{26}$	$^{18}NT^{19}$

	290730	59~160	31pm32	582 10059
	Pop10		90D10	5 NI 5 DIG
	⁵ QD ¹⁰	^{os} TE ^o	SQD ¹⁰	² PK ⁰
	3^{30} QV ³⁹	°TQ ⁹	$^{01}_{40}$ QV ⁰²	²³ PT ²⁰
	$^{12}\text{TE}^{13}$	50 TS ⁵¹	⁴⁹ SI ⁵⁰	$^{31}\text{PT}^{32}$
	$^{31}\text{TE}^{32}$	⁶¹ TS ⁶²	$^{12}\text{TE}^{13}$	⁹ QD ¹⁰
	$^{16}\text{TI}^{17}$	$^{49}\text{TT}^{50}$	$^{33}\text{TE}^{34}$	$^{61}{ m QV}^{62}$
	¹⁹ TI ²⁰	⁵⁵ TT ⁵⁶	⁶⁵ TE ⁶⁶	$^{49}SI^{50}$
	$^{40}\text{TL}^{41}$	⁵⁶ TT ⁵⁷	$^{19}\text{TI}^{20}$	$^{12}\text{TE}^{13}$
	$^{26}TS^{27}$	$^{12}\text{TV}^{13}$	⁵⁷ TN ⁵⁸	³³ TE ³⁴
	⁶⁰ TS ⁶¹	$^{19}\text{TV}^{20}$	⁶³ TS ⁶⁴	⁶⁵ TE ⁶⁶
	$^{30}TT^{31}$	$^{22}TV^{23}$	³² TT ³³	$^{19}\text{TI}^{20}$
	$^{37}\text{TV}^{38}$	$^{37}TV^{38}$	$^{26}TV^{27}$	⁵⁷ TN ⁵⁸
	⁵⁶ TV ⁵⁷	⁵⁷ TV ⁵⁸	$^{40}VD^{41}$	⁶³ TS ⁶⁴
	$^{34}VE^{35}$	$^{23}VF^{24}$	$^{27}VH^{28}$	³² TT ³³
	$47 V I^{48}$	$27 V I^{28}$	$^{37}VN^{38}$	$^{26}\mathrm{TV}^{27}$
	⁵⁷ VO ⁵⁸	³⁹ VI ⁴⁰	$^{62}VT^{63}$	$^{40}VD^{41}$
	⁵⁹ VT ⁶⁰	13 VN ¹⁴		$^{27}VH^{28}$
	V I	35VN36		37VN ³⁸
		⁵⁸ VQ ⁵⁹		⁶² VT ⁶³
Whey protein		~~~~		
A-lactalbumin	ID: P00711	ID: P00710	ID: P00712	ID: P09462
	108 KA 109	$^{23}LA^{24}$	108 KA 109	⁸⁹ IM ⁹⁰
	¹⁰⁵ LA ¹⁰⁶	¹⁰⁵ LA ¹⁰⁶	$^{105}LA^{106}$	10 O E ¹¹
	$^{23}LP^{24}$	$^{41}VV^{42}$	$^{23}LP^{24}$	$^{92}VK^{93}$
	⁶⁶ NP ⁶⁷	¹⁰⁸ KP ¹⁰⁹	⁶⁶ NP ⁶⁷	108 K A 109
	⁸⁰ FI ⁸¹	⁸⁰ FL ⁸¹	$^{29}TA^{30}$	105LA106
	$^{26}WV^{27}$	113 FK ¹¹⁴	⁸⁰ FI ⁸¹	²³ I P ²⁴
	113 _{FK} 114	$^{121}\rm{EK}^{122}$	$^{26}WV^{27}$	66 _{NP} 67
	121 FK	⁵¹ CI ⁵²	113 FK 114	$29 T \wedge 30$
	109 A I 110	109 DI 110	$121_{\rm EK}$	80 _{FI} 81
	22 SI 23	104 W/T 105	109 A T 110	26 \\/ \/27
	51CI 52	118WO119	22 SI 23	113 EV 114
	$\begin{array}{c} \mathbf{OL} \\ 23\mathbf{I} \mathbf{DEWA} \mathbf{CTTE} \mathbf{I} 32 \end{array}$	26 XX71 27	51 CI 52	121EV122
	LPEWVUIIFH ²²	VV 1 ⁻	GL	EK
¹⁰⁵ LAHKALCSEK ¹¹⁴	$^{60}WC^{61}$	¹⁰⁵ LAHKALCSEK ¹¹⁴	$^{109}AL^{110}$	
--	---------------------------------	--	--	
⁶⁰ WCKDDONPHS ⁶⁹	$^{24}AE^{25}$	⁶⁰ WCKDDONPHS ⁶⁹	$^{22}SL^{23}$	
¹¹⁰ LCSEKLDOWL ¹¹⁹	$^{106}AH^{107}$	¹¹⁰ LCSEKLDOWL ¹¹⁹	⁵¹ GL ⁵²	
¹ EOLTKCEVFR ¹⁰	⁶³ DN ⁶⁴	³¹ FHTSGYDTOA ⁴⁰	¹⁰⁵ LAHKALCSEK ¹¹⁴	
⁸ VFRELKDLKG ¹⁷	⁹⁹ EG ¹⁰⁰	³³ TSGYDTOAIV ⁴²	⁶⁰ WCKDDONPHS ⁶⁹	
¹⁷ GYGGVSLPEW ²⁶	³⁹ ET ⁴⁰	³⁷ DTOAIVONND ⁴⁶	¹¹⁰ LCSEKLDOWL ¹¹⁹	
³¹ FHTSGYDTOA ⁴⁰	$^{25}EW^{26}$	$104 WL^{105}$	³¹ FHTSGYDTOA ⁴⁰	
³³ TSGYDTOAIV ⁴²	⁴⁹ EY ⁵⁰	118 WL 119	³³ TSGYDTOAIV ⁴²	
³⁷ DTOAIVONND ⁴⁶	⁵³ FO ⁵⁴	$^{60}WC^{61}$	³⁷ DTOAIVONND ⁴⁶	
⁶¹ CKDDONPHSS ⁷⁰	$^{19}GG^{20}$	$^{30}AF^{31}$	$104WL^{105}$	
⁶⁵ ONPHSSNICN ⁷⁴	$^{17}GH^{18}$	$^{106}AH^{107}$	118 WL 119	
$104 WL^{105}$	$^{20}GI^{21}$	$^{64}\text{DO}^{65}$	$^{60}WC^{61}$	
$^{118}WL^{119}$	$^{100}\mathrm{GI}^{101}$	116 DO 117	$^{30}AF^{31}$	
$^{60}WC^{61}$	³⁵ GY ³⁶	$^{7}\mathrm{EV}^{8}$	$^{106}AH^{107}$	
$^{106}\mathrm{AH}^{107}$	²⁹ II ³⁰	$^{25}EW^{26}$	⁶⁴ DO ⁶⁵	
64 DQ 65	⁹⁵ IL ⁹⁶	⁴⁹ EY ⁵⁰	$^{116} \dot{DQ}^{117}$	
$^{116} DQ^{117}$	⁵⁵ IN ⁵⁶	${}^{9}\mathrm{FQ}^{10}$	$^{7}\mathrm{EV}^{8}$	
$^{7}\mathrm{EV}^{8}$	⁵⁹ IW ⁶⁰	⁵³ FQ ⁵⁴	$^{25}EW^{26}$	
$^{25}{ m EW}^{26}$	⁹⁸ KE ⁹⁹	$^{19}GG^{20}$	⁴⁹ EY ⁵⁰	
$^{49}{ m EY^{50}}$	⁷⁹ KF ⁸⁰	$^{100}\mathrm{GI}^{101}$	⁹ FQ ¹⁰	
⁵³ FQ ⁵⁴	⁵⁸ KI ⁵⁹	$^{20}{ m GV}^{21}$	⁵³ FQ ⁵⁴	
⁹ FR ¹⁰	⁹⁴ KI ⁹⁵	$^{35}GY^{36}$	$^{19}GG^{20}$	
$^{19}GG^{20}$	⁹³ KK ⁹⁴	⁶⁸ HS ⁶⁹	$^{100}\mathrm{GI}^{101}$	
$^{100}{ m GI}^{101}$	122 KW 123	³² HT ³³	20 GV 21	
$^{20}{ m GV}^{21}$	⁸⁵ LT ⁸⁶	⁹⁵ IL ⁹⁶	$^{35}GY^{36}$	
$^{17}{ m GY^{18}}$	$^{15}MN^{16}$	⁵⁵ IN ⁵⁶	⁶⁸ HS ⁶⁹	
³⁵ GY ³⁶	⁶⁴ NE ⁶⁵	101 IN 102	³² HT ³³	
⁶⁸ HS ⁶⁹	$^{16}NG^{17}$	⁵⁹ IW ⁶⁰	⁹⁵ IL ⁹⁶	
³² HT ³³	⁴⁵ NG ⁴⁶	⁷⁹ KF ⁸⁰	⁵⁵ IN ⁵⁶	
⁹⁵ IL ⁹⁶	⁶⁶ NL ⁶⁷	⁵⁸ KI ⁵⁹	101 IN 102	
89 IM 90	⁴⁴ NN ⁴⁵	⁹⁴ KI ⁹⁵	⁵⁹ IW ⁶⁰	
⁵⁵ IN ⁵⁶	⁵⁶ NN ⁵⁷	⁹³ KK ⁹⁴	$^{79}{ m KF^{80}}$	
101 IN 102	⁴⁷ NR ⁴⁸	⁹⁸ KV ⁹⁹	⁵⁸ KI ⁵⁹	

⁵⁹ IW ⁶⁰	$^{2}\mathrm{OF}^{3}$	$^{3}LT^{4}$	⁹⁴ KI ⁹⁵
⁷⁹ KF ⁸⁰	⁵⁴ OI ⁵⁵	⁸⁵ LT ⁸⁶	⁹³ KK ⁹⁴
16 KG ¹⁷	⁶⁸ OS ⁶⁹	⁴⁵ ND ⁴⁶	⁹⁸ KV ⁹⁹
⁵⁸ KI ⁵⁹	117 OW 118	⁴⁴ NN ⁴⁵	$^{3}\mathrm{LT}^{4}$
⁹⁴ KI ⁹⁵	70 RN 71	⁵⁶ NN ⁵⁷	⁸⁵ LT ⁸⁶
⁹³ KK ⁹⁴	⁸⁶ TD ⁸⁷	$102 NY^{103}$	⁴⁵ ND ⁴⁶
⁹⁸ KV ⁹⁹	³⁸ TE ³⁹	⁶⁷ PH ⁶⁸	⁴⁴ NN ⁴⁵
$^{3}\mathrm{LT}^{4}$	$^{4}\text{TK}^{5}$	$^{39}OA^{40}$	⁵⁶ NN ⁵⁷
⁸⁵ LT ⁸⁶	$^{22}TL^{23}$	⁵⁴ OI ⁵⁵	$^{102}NY^{103}$
$^{45}ND^{46}$	$^{40}{ m TV}^{41}$	$^{2}OL^{3}$	⁶⁷ PH ⁶⁸
⁴⁴ NN ⁴⁵	$^{42}VS^{43}$	43QN44	$^{39}QA^{40}$
⁵⁶ NN ⁵⁷	36 YD 37	⁶⁵ QN ⁶⁶	⁵⁴ QI ⁵⁵
$^{102}\mathrm{NY}^{103}$	⁵⁰ YG ⁵¹	$^{117}OW^{118}$	$^{2}\text{QL}^{3}$
⁶⁷ PH ⁶⁸	103 YW 104	$^{70}RN^{71}$	⁴³ ON ⁴⁴
³⁹ QA ⁴⁰		⁸⁶ TD ⁸⁷	⁶⁵ ON ⁶⁶
⁵⁴ QI ⁵⁵		$^{48}\text{TE}^{49}$	117 ${\rm OW}^{118}$
$^{2}\text{QL}^{3}$		$^{4}\mathrm{TK}^{5}$	$^{70}RN^{71}$
⁴³ QN ⁴⁴		³⁸ TQ ³⁹	⁸⁶ TD ⁸⁷
⁶⁵ QN ⁶⁶		³³ TS ³⁴	⁴⁸ TE ⁴⁹
117 0 W^{118}		⁸ VF ⁹	$^{4}\mathrm{TK}^{5}$
⁸⁶ TD ⁸⁷		$^{99}VG^{100}$	³⁸ TQ ³⁹
⁴⁸ TE ⁴⁹		$^{42}VQ^{43}$	³³ TS ³⁴
³⁰ TF ³¹		$^{21}VS^{22}$	⁸ VF ⁹
4TK^5		³⁶ YD ³⁷	⁹⁹ VG ¹⁰⁰
³⁸ TQ ³⁹		$^{18}{ m YG^{19}}$	$^{42}VQ^{43}$
³³ TS ³⁴		$^{50}YG^{51}$	$^{21}VS^{22}$
²⁹ TT ³⁰		103 YW 104	³⁶ YD ³⁷
⁸ VF ⁹			$^{18}YG^{19}$
$^{99}VG^{100}$			$^{50}YG^{51}$
⁹² VK ⁹³			103 YW 104
$^{42}VQ^{43}$			
$2^{1}VS^{22}$			
³⁶ YD ³⁷			

	$^{18}YG^{19}$		
	50 YG ⁵¹		
	$103 YW^{104}$		
<i>B-lactoglobulin</i>	ID: P02754	 ID: P02756	ID: P67976
<i>p</i>	$^{15}VA^{16}$	20 YS ²¹	129 DN 130
	$^{24}MA^{25}$	15 VAGTWY ²⁰	$^{20}\text{HS}^{21}$
	¹³⁸ K A ¹³⁹	$^{19}WY^{20}$	¹³⁰ NF ¹³¹
	¹⁴¹ K A ¹⁴²	130 KE ¹³¹	$^{19}WH^{20}$
	$^{22}LA^{23}$	$^{15}VA^{16}$	$^{15}VA^{16}$
	¹¹⁷ LA ¹¹⁸	$^{24}MA^{25}$	$^{24}MA^{25}$
	$37 \mathbf{AP}^{38}$	138 K A ¹³⁹	138 K A 139
	⁷⁹ PA ⁸⁰	141 KA 142	141 KA 142
	$^{143}LP^{144}$	$^{22}LA^{23}$	$^{22}LA^{23}$
	$^{31}LL^{32}$	$^{117}LA^{118}$	$^{117}LA^{118}$
	⁵⁷ LL ⁵⁸	$^{149}LA^{150}$	$^{149}LA^{150}$
	$103LL^{104}$	$^{37}AP^{38}$	$^{37}AP^{38}$
	⁷⁸ IPA ⁸⁰	⁷⁹ PA ⁸⁰	⁷⁹ PA ⁸⁰
	⁴⁶ LKPTOEGDL ⁵⁴	$^{143}LP^{144}$	$^{143}LP^{144}$
	⁴⁶ LKPTPEGDLEIL ⁵⁷	³¹ LL ³²	$^{31}LL^{32}$
	⁷⁸ IP ⁷⁹	⁵⁷ LL ⁵⁸	⁵⁷ LL ⁵⁸
	⁴⁹ TP ⁵⁰	$^{103}LL^{104}$	$^{103}LL^{104}$
	$^{125}\text{TP}^{126}$	⁷⁸ IPA ⁸⁰	⁷⁸ IPA ⁸⁰
	47 KP 48	78 IP 79	⁷⁸ IP ⁷⁹
	¹⁵ VAGTWY ²⁰	⁴⁹ TP ⁵⁰	⁴⁹ TP ⁵⁰
	⁷² IA ⁷³	$^{125}\mathrm{TP}^{126}$	¹²⁵ TP ¹²⁶
	$^{112}\text{EP}^{113}$	$^{47}\text{KP}^{48}$	⁴⁷ KP ⁴⁸
	¹⁵² NP ¹⁵³	72 IA 73	$^{72}IA^{73}$
	⁷⁴ EK ⁷⁵	$^{112}\text{EP}^{113}$	$^{112}\text{EP}^{113}$
	¹³⁴ EK ¹³⁵	$^{152}NP^{153}$	$^{152}NP^{153}$
	⁸⁶ AL ⁸⁷	⁷⁴ EK ⁷⁵	⁷⁴ EK ⁷⁵
	$^{132}AL^{133}$	$^{134}\text{EK}^{135}$	¹³⁴ EK ¹³⁵
	$^{139}AL^{140}$	⁸⁶ AL ⁸⁷	$^{86}AL^{87}$
	$^{142}AL^{143}$	$^{132}AL^{133}$	$^{132}AL^{133}$

	1	120 - 140	120 - 140
21 SL 22		$^{139}AL^{140}$	$^{139}AL^{140}$
30 SL 31		$^{142}AL^{143}$	$^{142}AL^{143}$
116 SL 117		21 SL 22	21 SL 22
${}^{9}GL^{10}$		$^{30}SL^{31}$	30 SL 31
123 VR 124		116 SL 117	$^{116}{ m SL}^{117}$
¹²⁵ TPEVDDEALEK ¹³⁵		${}^{9}GL^{10}$	${}^{9}GL^{10}$
78 IPAVF 82		123 VR 124	123 VR 124
⁷⁸ IPAVFK ⁸³		⁷⁸ IPAVF ⁸²	⁷⁸ IPAVF ⁸²
92VLVLDTDYK ¹⁰⁰		⁷⁸ IPAVFK ⁸³	⁷⁸ IPAVFK ⁸³
⁷⁸ IPAVFKIDAL ⁸⁷		92VLVLDTDYK ¹⁰⁰	92VLVLDTDYK ¹⁰⁰
$^{25}AA^{26}$		⁷⁸ IPAVFKIDAL ⁸⁷	⁷⁸ IPAVFKIDAL ⁸⁷
³⁸ PL ³⁹		²⁵ AA ²⁶	$^{25}AA^{26}$
$^{19}WY^{20}$		³⁸ PL ³⁹	³⁸ PL ³⁹
$^{61}WE^{62}$		⁶¹ WE ⁶²	⁶¹ WE ⁶²
⁷³ AE ⁷⁴		⁷³ AE ⁷⁴	⁷³ AE ⁷⁴
$^{111}AE^{112}$		$^{111}AE^{112}$	$^{111}AE^{112}$
$^{16}AG^{17}$		¹⁵⁰ AF ¹⁵¹	¹⁵⁰ AF ¹⁵¹
$^{26}AS^{27}$		$^{16}AG^{17}$	$^{16}AG^{17}$
$^{80}AV^{81}$		²⁶ AS ²⁷	$^{26}AS^{27}$
⁵¹ EG ⁵²		⁸⁰ AV ⁸¹	$^{80}AV^{81}$
⁵⁵ EI ⁵⁶		⁵¹ EG ⁵²	⁵¹ EG ⁵²
$^{127}{ m EV}^{128}$		¹⁵⁷ EG ¹⁵⁸	¹⁵⁷ EG ¹⁵⁸
¹⁵¹ FN ¹⁵²		⁵⁵ EI ⁵⁶	⁵⁵ EI ⁵⁶
$^{64}{ m GE}^{65}$		$^{127}\mathrm{EV}^{128}$	$^{127}\mathrm{EV}^{128}$
$^{146}\mathrm{HI}^{147}$		¹⁵¹ FN ¹⁵²	¹⁵¹ FN ¹⁵²
$^{161}\mathrm{HI}^{162}$		⁶⁴ GE ⁶⁵	⁶⁴ GE ⁶⁵
$^{71}{ m H}^{72}$		$^{146}\mathrm{HI}^{147}$	$^{146}\mathrm{HI}^{147}$
⁵⁶ IL ⁵⁷		¹⁶¹ HV ¹⁶²	161 HV 162
$^{12}IO^{13}$		$^{1}\mathrm{H}^{2}$	$^{1}\mathrm{H}^{2}$
¹⁴⁷ IR ¹⁴⁸		$^{71}\mathrm{H}^{72}$	$^{71}\mathrm{H}^{72}$
¹³⁵ KF ¹³⁶		⁵⁶ IL ⁵⁷	⁵⁶ IL ⁵⁷
⁸ KG ⁹		12 IO 13	¹² IO ¹³
$^{70}{ m KI}^{71}$		147 IR 148	147 IR 148

7717178	1351215136	1351212136
¹ K1 ¹ ° 8317 184	⁸ KF ¹⁵⁰	⁸⁰ KF ¹⁵⁰
⁶³ Kl ⁶⁴	°KG ⁹	${}^{\circ}KG^{2}$
⁶⁹ KK ⁷⁰	70 KI ⁷¹	⁷⁰ KI ⁷¹
¹⁰⁰ KK ¹⁰¹	$^{\prime\prime}$ KI ^{/8}	$^{\prime\prime}$ KI ⁷⁸ ,
⁷⁵ KT ⁷⁶	⁸³ KI ⁸⁴	⁸³ KI ⁸⁴
$^{14}\text{KV}^{15}$	⁶⁹ KK ⁷⁰	⁶⁹ KK ⁷⁰
⁹¹ KV ⁹²	100 KK 101	100 KK 101
60 KW 61	⁷⁵ KT ⁷⁶	⁷⁵ KT ⁷⁶
$^{101}\mathrm{KY}^{102}$	14 KV 15	14 KV 15
$^{1}LI^{2}$	91 KV 92	91 KV 92
⁸⁷ LN ⁸⁸	60 KW 61	60 KW 61
⁹³ LV ⁹⁴	$^{101}\mathrm{KY}^{102}$	$^{101}\mathrm{KY}^{102}$
$^{122}LV^{123}$	⁸⁷ LN ⁸⁸	$^{87}LN^{88}$
$^{107}{ m ME}^{108}$	⁹³ LV ⁹⁴	$^{93}LV^{94}$
$^{145}MH^{146}$	$^{122}LV^{123}$	$^{122}LV^{123}$
$^{7}MK^{8}$	$^{107}{ m ME}^{108}$	$^{107}{ m ME}^{108}$
⁸⁸ NE ⁸⁹	$^{145}MH^{146}$	$^{145}MH^{146}$
⁶³ NG ⁶⁴	⁷ MK ⁸	⁷ MK ⁸
¹⁴⁴ PM ¹⁴⁵	⁸⁸ NE ⁸⁹	⁸⁸ NE ⁸⁹
⁴⁸ PT ⁴⁹	⁶³ NG ⁶⁴	$^{63}NG^{64}$
¹⁵³ P T ¹⁵⁴	⁵³ NL ⁵⁴	⁵³ NL ⁵⁴
¹⁵⁵ OL ¹⁵⁶	144 PM 145	144 PM 145
350836	⁴⁸ PT ⁴⁹	⁴⁸ PT ⁴⁹
¹¹⁵ OS ¹¹⁶	¹⁵³ PT ¹⁵⁴	¹⁵³ PT ¹⁵⁴
50T ⁶	¹⁵⁵ OI ¹⁵⁶	¹⁵⁵ OI ¹⁵⁶
¹⁴⁸ PI ¹⁴⁹	350536	³⁵ OS ³⁶
150 SF 151	¹¹⁵ OS ¹¹⁶	¹¹⁵ OS ¹¹⁶
⁹⁷ TD ⁹⁸	50T ⁶	50T ⁶
76 TK 77	148 PI 149	¹⁴⁸ RI ¹⁴⁹
6TM ⁷	97TD ⁹⁸	97TD ⁹⁸
$4 T O^5$	76 TK 77	76 TK 77
1 154TO155	6TM ⁷	6TM ⁷
1 Q 18TW19	4TO2	$4TO_2$
1 W	10	1 Q ²

	12810129	1	15470155	154TO155
			1877119	1877V19
	81x JP82		$10^{10} I W^{19}$	128 m 129
	$^{01}VF^{02}$		120 VD ¹²	$\frac{120}{\sqrt{D^{12}}}$
	$92VL^{95}$		⁴³ VE ⁴⁴	
	94VL93		$^{61}VF^{62}$	$^{61}VF^{62}$
	$^{3}\mathrm{VT}^{4}$		92VL93	⁹² VL ⁹³
	$4^{1}VY^{42}$		94VL95	⁹⁴ VL ⁹⁵
	$^{99}YK^{100}$		$^{3}VT^{4}$	$^{3}\mathrm{VT}^{4}$
	102 YL 103		$^{41}VY^{42}$	$^{41}VY^{42}$
	20 YS 21		$^{99}YK^{100}$	⁹⁹ YK ¹⁰⁰
	$^{42}YV^{43}$		102 YL 103	102 YL 103
			$^{42}YV^{43}$	42 YV 43
Lactoferrin	ID: D0VAV0	ID: Q9TUM0	ID: Q29477	ID: D3G9G3
J.	382 VL 383	³⁸⁴ VL ³⁸⁵	³⁸⁴ VL ³⁸⁵	³⁸⁴ VL ³⁸⁵
	384 VL 385	410 VL 411	426 VL 427	426 VL 427
	410 VL 411	⁵⁴⁸ VL ⁵⁴⁹	610 VL 611	610 VL 611
	$^{426}VL^{427}$	610 VL 611	$^{383}LV^{384}$	$^{383}LV^{384}$
	610 VL 611	$^{63}LV^{64}$	$^{407}LV^{408}$	$^{407}LV^{408}$
	$^{383}LV^{384}$	$271 UV^{272}$	131Π 132	¹³¹ IL ¹³²
	$407 L V^{408}$	$^{383}LV^{384}$	²⁶⁶ IL ²⁶⁷	266 ₁₁ 267
	³⁸¹ IV ³⁸²	$407 LV^{408}$	⁴⁷³ IL ⁴⁷⁴	473 IL 474
	474IV 475	266L I267	²²⁹ LL ²³⁰	²²⁹ LL ²³⁰
	¹³¹ II. ¹³²	¹³¹ LL ¹³²	270 LL ²⁷¹	270 LL 271
	266 _{II} 267	²²⁹ LL ²³⁰	²⁹⁸ LL ²⁹⁹	²⁹⁸ LL ²⁹⁹
	473 _{II} 474	270 L 271	571 I I 572	571L I 572
	¹²⁶ H ¹²⁷	²⁹⁸ LL ²⁹⁹	⁶¹¹ LL ⁶¹²	⁶¹¹ LL ⁶¹²
	²²⁹ LL ²³⁰	307LL308	639LL 640	639LL 640
	270 <u>1</u> 1 271	473 I I 474	680 <u>1</u> <u>1</u> 681	680 <u>1</u> <u>6</u> 81
	298L I 299	571 I I 572	346VW347	346 VW 347
	571 I 572	611 <u>1</u> 1612	548VW549	548 _{VW} 549
	611 <u>1</u> 1612	639 <u>1</u> 1640	351 GP352	³⁵¹ CP ³⁵²
			Ur	Ur

639LL 640	680LL 681	⁷⁷ VA ⁷⁸	⁷⁷ VA ⁷⁸
680 LL 681	$^{346}VW^{347}$	⁹⁵ VA ⁹⁶	⁹⁵ VA ⁹⁶
³⁴⁶ VW ³⁴⁷	³¹ GP ³²	$^{149}VA^{150}$	149 VA ¹⁵⁰
$548VW^{549}$	140 GP ¹⁴¹	$206 V A^{207}$	206VA 207
³⁵¹ GP ³⁵²	662 GP ⁶⁶³	256 VA 257	$^{256}VA^{257}$
²⁹² PP ²⁹³	¹⁴¹ PP ¹⁴²	⁴³⁶ VA ⁴³⁷	⁴³⁶ VA ⁴³⁷
77VA ⁷⁸	⁹⁵ VA ⁹⁶	⁵⁴⁰ VA ⁵⁴¹	⁵⁴⁰ VA ⁵⁴¹
⁹⁵ VA ⁹⁶	$^{149}VA^{150}$	⁵⁹¹ VA ⁵⁹²	⁵⁹¹ VA ⁵⁹²
¹⁴⁹ VA ¹⁵⁰	$^{206}VA^{207}$	⁴¹¹ MA ⁴¹²	$^{411}MA^{412}$
²⁰⁶ VA ²⁰⁷	²⁵⁶ VA ²⁵⁷	164 KA 165	¹⁶⁴ KA ¹⁶⁵
²⁵⁶ VA ²⁵⁷	$^{436}VA^{437}$	221 KA 222	²²¹ KA ²²²
$^{436}VA^{437}$	⁵⁴⁰ VA ⁵⁴¹	273 KA 274	273 KA 274
⁵⁴⁰ VA ⁵⁴¹	⁵⁹¹ VA ⁵⁹²	339 KA 340	³³⁹ KA ³⁴⁰
⁵⁹¹ VA ⁵⁹²	$^{604}VA^{605}$	⁴⁴¹ KA ⁴⁴²	⁴⁴¹ KA ⁴⁴²
⁵³ KA ⁵⁴	⁵³ KA ⁵⁴	²⁴⁷ LA ²⁴⁸	$^{247}LA^{248}$
²²¹ KA ²²²	147 KA 148	⁴³⁴ LA ⁴³⁵	⁴³⁴ LA ⁴³⁵
²⁷³ KA ²⁷⁴	²²¹ KA ²²²	⁵³³ LA ⁵³⁴	⁵³³ LA ⁵³⁴
³³⁹ KA ³⁴⁰	273 KA 274	⁵⁸⁹ LA ⁵⁹⁰	⁵⁸⁹ LA ⁵⁹⁰
⁴⁴¹ KA ⁴⁴²	⁴⁴¹ KA ⁴⁴²	⁶⁴⁸ LA ⁶⁴⁹	$^{648}LA^{649}$
²⁴⁷ LA ²⁴⁸	²⁴⁷ LA ²⁴⁸	$^{1}\mathrm{AP}^{2}$	$^{1}AP^{2}$
⁴¹¹ LA ⁴¹²	⁴¹¹ LA ⁴¹²	$^{31}AP^{32}$	$^{31}AP^{32}$
⁴³⁴ LA ⁴³⁵	⁴³⁴ LA ⁴³⁵	$^{237}AP^{238}$	$^{237}AP^{238}$
⁵³³ LA ⁵³⁴	⁵³³ LA ⁵³⁴	$^{492}AP^{493}$	$^{492}AP^{493}$
⁵⁸⁹ LA ⁵⁹⁰	⁵⁸⁹ LA ⁵⁹⁰	⁵⁹² AP ⁵⁹³	⁵⁹² AP ⁵⁹³
$^{648}LA^{649}$	⁶⁴⁸ LA ⁶⁴⁹	$^{13}LP^{14}$	$^{218}LP^{219}$
⁴¹ FA ⁴²	⁴⁹² AP ⁴⁹³	$^{218}\text{LP}^{219}$	158 VP 159
$^{1}AP^{2}$	⁵⁹² AP ⁵⁹³	158 VP 159	250 VP 251
³¹ AP ³²	$^{13}PA^{14}$	250 VP 251	408 VP 409
²³⁷ AP ²³⁸	²¹⁹ PA ²²⁰	$^{408}VP^{409}$	⁵¹⁶ VP ⁵¹⁷
⁴⁹² AP ⁴⁹³	²⁹² PA ²⁹³	516 VP 517	²²⁹ VP ²³⁰
⁵⁹² AP ⁵⁹³	$^{218}LP^{219}$	$^{229}VP^{230}$	270 VP 271
²¹⁸ LP ²¹⁹	158 VP 159	270 VP 271	²⁹⁸ VP ²⁹⁹
158 VP 159	$^{250}VP^{251}$	²⁹⁸ VP ²⁹⁹	⁵⁷¹ VP ⁵⁷²

²⁵⁰ VP ²⁵¹	408 VP 409	⁵⁷¹ VP ⁵⁷²	611 VP 612
$408 V P^{409}$	⁵¹⁶ VP ⁵¹⁷	611 VP 612	⁶³⁹ VP ⁶⁴⁰
516VP517	¹³¹ LL ¹³²	639 VP ⁶⁴⁰	⁶⁸⁰ VP ⁶⁸¹
²²⁹ LL ²³⁰	$^{229}LL^{230}$	680 VP ⁶⁸¹	⁹⁷ VV ⁹⁸
²⁷⁰ LL ²⁷¹	$^{270}LL^{271}$	⁹⁷ VV ⁹⁸	$255 VV^{256}$
²⁹⁸ LL ²⁹⁹	²⁹⁸ LL ²⁹⁹	$255 VV^{256}$	$^{345}VV^{346}$
⁵⁷¹ LL ⁵⁷²	$^{307}LL^{308}$	345 VV 346	⁴³⁸ VV ⁴³⁹
$^{611}LL^{612}$	$^{473}LL^{474}$	438 VV 439	⁵⁹⁷ VV ⁵⁹⁸
$^{639}LL^{640}$	⁵⁷¹ LL ⁵⁷²	⁵⁹⁷ VV ⁵⁹⁸	²⁵³ HA ²⁵⁴
$^{680}LL^{681}$	$^{611}LL^{612}$	²⁵³ HA ²⁵⁴	⁵⁹⁵ HA ⁵⁹⁶
$97 VV^{98}$	$^{639}LL^{640}$	⁵⁹⁵ HA ⁵⁹⁶	⁴⁹² APG ⁴⁹⁴
$^{255}VV^{256}$	$^{680}LL^{681}$	⁴⁹² APG ⁴⁹⁴	$^{127}\mathrm{IP}^{128}$
³⁴⁵ VV ³⁴⁶	255 VV 256	127 IP 128	$^{310}\mathrm{IP}^{311}$
$^{438}VV^{439}$	345 VV 346	310 IP 311	469 IP 470
⁵⁹⁷ VV ⁵⁹⁸	$^{369}VV^{370}$	469 IP 470	⁸⁷ SP ⁸⁸
²⁵³ HA ²⁵⁴	438 VV 439	⁸⁷ SP ⁸⁸	²⁹¹ SP ²⁹²
⁵⁹⁵ HA ⁵⁹⁶	⁵⁹⁷ VV ⁵⁹⁸	²⁹¹ SP ²⁹²	⁶⁷⁸ SP ⁶⁷⁹
⁴⁹² APG ⁴⁹⁴	²⁵³ HA ²⁵⁴	⁶⁷⁸ SP ⁶⁷⁹	⁷⁵ RP ⁷⁶
$^{127}\mathrm{IP}^{128}$	⁵⁹⁵ HA ⁵⁹⁶	⁷⁵ RP ⁷⁶	¹³³ RP ¹³⁴
310 IP 311	⁴⁹² APG ⁴⁹⁴	133 RP 134	⁴²⁸ RP ⁴²⁹
$^{469}\mathrm{IP}^{470}$	127 IP 128	⁴²⁸ RP ⁴²⁹	⁶⁵⁴ RP ⁶⁵⁵
87 SP 88	469 IP 470	⁶⁵⁴ RP ⁶⁵⁵	⁵⁷⁹ KP ⁵⁸⁰
²⁹¹ SP ²⁹²	12 SP 13	⁵⁷⁹ KP ⁵⁸⁰	166 YP 167
678 SP 679	²⁹¹ SP ²⁹²	166 YP 167	$^{30}GA^{31}$
⁷⁵ RP ⁷⁶	417 SP 418	$^{30}GA^{31}$	$^{147}GA^{148}$
133 RP 134	⁶⁷⁸ SP ⁶⁷⁹	$^{147}GA^{148}$	$^{194}GA^{195}$
428 RP 429	⁷⁵ RP ⁷⁶	$^{194}GA^{195}$	$^{202}GA^{203}$
654 RP 655	133 RP 134	$^{202}GA^{203}$	⁴⁹⁴ GA ⁴⁹⁵
⁵⁷⁹ KP ⁵⁸⁰	428 RP 429	⁴⁹⁴ GA ⁴⁹⁵	⁵²⁸ GA ⁵²⁹
166 YP 167	²³⁷ KP ²³⁸	⁵²⁸ GA ⁵²⁹	⁴⁹ IA ⁵⁰
$^{30}GA^{31}$	²⁸² KP ²⁸³	⁴⁹ IA ⁵⁰	³⁸¹ IA ³⁸²
$^{147}GA^{148}$	⁵⁷⁹ KP ⁵⁸⁰	³⁸¹ IA ³⁸²	^{474I} A ⁴⁷⁵
$^{194}GA^{195}$	166 YP 167	^{474I} A ⁴⁷⁵	⁶⁶⁹ IA ⁶⁷⁰

$^{202}GA^{203}$	$^{194}GA^{195}$	⁶⁶⁹ IA ⁶⁷⁰	$^{47}RA^{48}$
⁴⁹⁴ GA ⁴⁹⁵	$^{202}GA^{203}$	$^{47}RA^{48}$	236 RA 237
⁵²⁸ GA ⁵²⁹	⁵²⁸ GA ⁵²⁹	236 RA 237	603 RA 604
⁴⁹ IA ⁵⁰	⁷⁷ IA ⁷⁸	603 RA 604	⁵⁶⁰ WA ⁵⁶¹
669 I A ⁶⁷⁰	⁹⁷ IA ⁹⁸	⁵⁶⁰ WA ⁵⁶¹	$^{143}\text{EP}^{144}$
³⁹ RA ⁴⁰	³⁸¹ IA ³⁸²	$^{143}\text{EP}^{144}$	$^{187}\text{EP}^{188}$
47RA 48	⁴⁰¹ IA ⁴⁰²	$^{187}{\rm EP}^{188}$	³²⁶ TA ³²⁷
236 RA 237	⁶⁶⁹ IA ⁶⁷⁰	³²⁶ TA ³²⁷	³³⁴ TA ³³⁵
603 RA 604	$^{342}RA^{343}$	³³⁴ TA ³³⁵	$^{401}TA^{402}$
⁵⁶⁰ WA ⁵⁶¹	⁵⁶⁰ WA ⁵⁶¹	³⁷³ TA ³⁷⁴	$^{459}\text{TA}^{460}$
$^{143}\text{EP}^{144}$	$^{143}\text{EP}^{144}$	$^{401}TA^{402}$	⁴⁶⁴ TA ⁴⁶⁵
$^{187}{ m EP^{188}}$	$^{187}{\rm EP}^{188}$	$^{459}\text{TA}^{460}$	⁶⁶⁷ TA ⁶⁶⁸
³³⁴ TA ³³⁵	⁸⁷ NP ⁸⁸	$^{464}\text{TA}^{465}$	135 FL 136
³⁷³ TA ³⁷⁴	³²⁶ TA ³²⁷	⁶⁶⁷ TA ⁶⁶⁸	⁶⁸⁶ FL ⁶⁸⁷
⁴⁰¹ TA ⁴⁰²	³³⁴ TA ³³⁵	¹³⁵ FL ¹³⁶	²⁴⁶ HL ²⁴⁷
⁴⁵⁹ TA ⁴⁶⁰	³⁷³ TA ³⁷⁴	⁶⁸⁶ FL ⁶⁸⁷	⁸⁵ EK ⁸⁶
⁴⁶⁴ TA ⁴⁶⁵	$^{459}\text{TA}^{460}$	²⁴⁶ HL ²⁴⁷	²²⁰ EK ²²¹
⁵⁵⁷ TA ⁵⁵⁸	⁴⁶⁴ TA ⁴⁶⁵	⁸⁵ EK ⁸⁶	²⁷⁶ EK ^{I277}
⁶⁶⁷ TA ⁶⁶⁸	⁶⁶⁷ TA ⁶⁶⁸	$^{220}\text{EK}^{221}$	⁵²¹ EK ⁵²²
13 OP 14	¹³⁵ FL ¹³⁶	²⁷⁶ EK ^{I277}	⁶⁵⁸ EK ⁶⁵⁹
$^{307}FL^{308}$	⁴⁸⁶ FL ⁴⁸⁷	⁵²¹ EK ⁵²²	$^{42}AL^{43}$
⁶⁸⁶ FL ⁶⁸⁷	⁶⁸⁶ FL ⁶⁸⁷	⁶⁵⁸ EK ⁶⁵⁹	$^{304}AL^{305}$
²⁴⁶ HL ²⁴⁷	²⁴⁶ HL ²⁴⁷	$^{42}AL^{43}$	³¹⁷ AL ³¹⁸
⁵⁸⁸ HL ⁵⁸⁹	⁵⁸⁸ HL ⁵⁸⁹	$^{304}AL^{305}$	$^{327}AL^{328}$
⁵¹ EK ⁵²	⁶⁰⁶ HL ⁶⁰⁷	$^{317}AL^{318}$	³⁸² AL ³⁸³
²²⁰ EK ²²¹	⁵² EK ⁵³	$^{327}AL^{328}$	³⁹¹ AL ³⁹²
²⁷⁶ EK ²⁷⁷	²⁷⁶ EK ²⁷⁷	$^{382}AL^{383}$	$^{503}AL^{504}$
⁵²¹ EK ⁵²²	$^{304}AL^{305}$	³⁹¹ AL ³⁹²	⁶¹⁶ AL ⁶¹⁷
$^{42}AL^{43}$	$^{382}AL^{383}$	$^{503}AL^{504}$	³⁹³ SL ³⁹⁴
$^{304}AL^{305}$	³⁹¹ AL ³⁹²	$^{616}AL^{617}$	$^{422}SL^{423}$
³¹⁷ AL ³¹⁸	$^{503}AL^{504}$	$^{12}SL^{13}$	450 SL 451
³⁹¹ AL ³⁹²	217 SL 218	³⁹³ SL ³⁹⁴	500 SL 501
$^{503}AL^{504}$	393 SL 394	$^{422}SL^{423}$	⁶⁸ GL ⁶⁹

	450 451	450 451	110 110
⁶¹⁶ AL ⁶¹⁷	450 SL 451	$^{450}SL^{451}$	$^{118}GL^{119}$
141 SL 142	$^{62}GL^{63}$	500 SL 501	$^{406}GL^{407}$
⁴²² SL ⁴²³	⁶⁸ GL ⁶⁹	⁶⁸ GL ⁶⁹	$^{445}GL^{446}$
450 SL 451	111 GL 112	118 GL 119	$^{472}GL^{473}$
$^{118}\mathrm{GL}^{119}$	118 GL 119	$^{406}GL^{407}$	511 GL 512
$^{406}GL^{407}$	$^{130}\mathrm{GL}^{131}$	$^{445}GL^{446}$	$^{6}VR^{7}$
$^{445}GL^{446}$	$^{306}GL^{307}$	472 GL 473	³⁰⁸ VR ³⁰⁹
⁴⁷² GL ⁴⁷³	³¹⁷ GL ³¹⁸	⁵¹¹ GL ⁵¹²	⁷⁸ AA ⁷⁹
⁵¹¹ GL ⁵¹²	330 GL 331	$^{6}\mathrm{VR}^{7}$	$^{604}AA^{605}$
$^{6}VR^{7}$	⁴⁰⁶ GL ⁴⁰⁷	308 VR 309	144 PL 145
³⁷ VR ³⁸	$^{422}GL^{423}$	⁷⁸ AA ⁷⁹	⁶⁷⁹ PL ⁶⁸⁰
24 WRM 26	$^{472}\text{GL}^{473}$	$^{604}AA^{605}$	$^{22}WO^{23}$
⁷⁸ AA ⁷⁹	$^{6}\mathrm{VR}^{7}$	$^{144}PL^{145}$	¹²⁵ WN ¹²⁶
$^{604}AA^{605}$	29 VR 30	⁶⁷⁹ PL ⁶⁸⁰	⁴⁴⁸ WN ⁴⁴⁹
$^{144}PL^{145}$	439 VR 440	$^{22}WO^{23}$	⁴⁶⁷ WN ⁴⁶⁸
679 PL 680	⁷⁸ AA ⁷⁹	¹²⁵ WN ¹²⁶	⁸ WC ⁹
²⁹² PPG ²⁹⁴	³³⁵ AA ³³⁶	⁴⁴⁸ WN ⁴⁴⁹	$^{347}WC^{348}$
$^{24}WR^{25}$	144 PL 145	⁴⁶⁷ WN ⁴⁶⁸	$^{138}WT^{139}$
$^{268}WK^{269}$	⁶⁷⁹ PL ⁶⁸⁰	⁸ WC ⁹	$^{361}WS^{362}$
$^{22}WO^{23}$	²⁶⁸ WK ²⁶⁹	$^{347}WC^{348}$	$^{268}WE^{269}$
¹²⁵ WI ¹²⁶	$^{22}WO^{23}$	$^{138}WT^{139}$	⁵⁴⁹ WE ⁵⁵⁰
⁴⁴⁸ WN ⁴⁴⁹	¹²⁵ WN ¹²⁶	$^{16}WS^{17]}$	400 YT 401
⁴⁶⁷ WN ⁴⁶⁸	⁴⁴⁸ WN ⁴⁴⁹	$^{361}WS^{362}$	⁵²⁶ YT ⁵²⁷
⁸ WC ⁹	⁴⁶⁷ WN ⁴⁶⁸	²⁶⁸ WE ²⁶⁹	⁵⁴ AD ⁵⁵
$^{347}WC^{348}$	⁸ WC ⁹	⁵⁴⁹ WE ⁵⁵⁰	$^{222}AD^{223}$
$^{138}WT^{139}$	³⁴⁷ WC ³⁴⁸	400 YT 401	³⁸⁹ AD ³⁹⁰
$^{361}WS^{362}$	$^{138}WT^{139}$	⁵²⁶ YT ⁵²⁷	⁴⁹⁵ AD ⁴⁹⁶
⁵⁴⁹ WE ⁵⁵⁰	$^{361}WS^{362}$	⁵⁴ AD ⁵⁵	⁵⁵⁸ AD ⁵⁵⁹
$^{16}{ m WF^{17}}$	526YT 527	$^{222}AD^{223}$	⁷⁹ AE ⁸⁰
³⁴² YT ³⁴³	⁵⁴ AD ⁵⁵	³⁸⁹ AD ³⁹⁰	$^{142}AE^{143}$
$^{400} m YT^{401}$	$^{222}AD^{223}$	⁴⁹⁵ AD ⁴⁹⁶	$^{335}AE^{336}$
526 YT 527	$^{389}AD^{390}$	⁵⁵⁸ AD ⁵⁵⁹	$^{412}AE^{413}$
⁵⁴ AD ⁵⁵	$^{14}AE^{15}$	⁷⁹ AE ⁸⁰	⁵³⁴ AE ⁵³⁵

²²² A D ²²³	⁷⁹ A F ⁸⁰ ,	142 A E ¹⁴³	195 A E196
³⁸⁹ A D ³⁹⁰	336 A F 337	$335 \Lambda E^{336}$	207 A F^{208}
495 A D ⁴⁹⁶	412 A E 413	$\frac{AL}{412 \Lambda \mathbf{E}^{413}}$	241 A E 242
558 A D 559	534 A E 535	534 A E 535	482 A E483
50 AD	584 A E 585	195 A E ¹⁹⁶	529 A E ⁵³⁰
79 AE	$195 \wedge \mathbf{F}^{196},$	$207 \Lambda F^{208}$	541 A E ⁵⁴²
³³⁵ A F ³³⁶	$\frac{207}{\Delta F^{208}}$	$^{241}\Delta F^{242}$	685 A F686
412 A F ⁴¹³	$^{241}AF^{242}$	$482 \Delta F^{483}$	$^{50}AG^{51}$
534 <u>A</u> F ⁵³⁵	⁵²⁹ A F ⁵³⁰	⁵²⁹ AF ⁵³⁰	⁶⁷ AG ⁶⁸
$40^{40}AF^{41}$	⁵⁴¹ AF ⁵⁴²	⁵⁴¹ AF ⁵⁴²	$^{123}AG^{124}$
¹⁹⁵ AF ¹⁹⁶	⁶⁸⁵ AF ⁶⁸⁶	⁶⁸⁵ AF ⁶⁸⁶	$^{203}AG^{204}$
²⁰⁷ AF ²⁰⁸	⁶⁷ AG ⁶⁸	⁵⁰ AG ⁵¹	402AG 403
²⁴¹ AF ²⁴²	$^{123}AG^{124}$	⁶⁷ AG ⁶⁸	⁴⁶⁵ AG ⁴⁶⁶
⁴⁸² AF ⁴⁸³	$^{174}AG^{175}$	$^{123}AG^{124}$	⁵⁰⁶ AG ⁵⁰⁷
⁵²⁹ AF ⁵³⁰	$^{203}AG^{204}$	$^{203}AG^{204}$	⁶⁰⁵ AH ⁶⁰⁶
⁵⁴¹ AF ⁵⁴²	²⁹³ AG ²⁹⁴	$^{402}AG^{403}$	155AS156
⁶⁸⁵ AF ⁶⁸⁶	$^{402}AG^{403}$	$^{465}AG^{466}$	$^{374}AS^{375}$
$^{67}AG^{68}$	$^{465}AG^{466}$	$^{506}AG^{507}$	⁵⁶ AV ⁵⁷
$^{123}AG^{124}$	⁵⁰⁶ AG ⁵⁰⁷	⁶⁰⁵ AH ⁶⁰⁶	⁹⁴ AV ⁹⁵
$^{203}AG^{204}$	$^{605}AH^{606}$	$^{155}AS^{156}$	⁹⁶ AV ⁹⁷
$^{402}AG^{403}$	⁶¹⁶ AH ⁶¹⁷	$^{374}AS^{375}$	$^{148}AV^{149}$
$^{465}AG^{466}$	$^{1}AS^{2}$	$^{372}AT^{373}$	$^{254}AV^{255}$
⁵⁰⁶ AG ⁵⁰⁷	¹⁵⁵ AS ¹⁵⁶	⁵⁶ AV ⁵⁷	$^{349}AV^{350}$
⁶⁰⁵ AH ⁶⁰⁶	³⁷⁴ AS ³⁷⁵	⁹⁴ AV ⁹⁵	$^{435}AV^{436}$
¹⁵⁵ AS ¹⁵⁶	³⁷² AT ³⁷³	⁹⁶ AV ⁹⁷	$^{437}AV^{438}$
³⁷⁴ AS ³⁷⁵	⁵⁶ AV ⁵⁷	$^{148}AV^{149}$	$^{460}AV^{461}$
³⁷² AT ³⁷³	$^{94}AV^{95}$	$^{254}AV^{255}$	$^{590}AV^{591}$
$^{56}AV^{57}$	$^{148}AV^{149}$	$^{349}AV^{350}$	$^{596}AV^{597}$
$^{94}AV^{95}$	$^{254}AV^{255}$	$^{435}AV^{436}$	$^{165}AY^{166}$
⁹⁶ AV ⁹⁷	$^{349}AV^{350}$	$^{437}AV^{438}$	⁶⁴³ DN ⁶⁴⁴
$^{148}\mathrm{AV}^{149}$	$^{435}AV^{436}$	$^{460}AV^{461}$	70 DP 71
$^{254}AV^{255}$	$^{437}AV^{438}$,	$^{590}AV^{591}$	⁴⁹⁶ DP ⁴⁹⁷
$^{349}AV^{350}$	$^{460}AV^{461}$	⁵⁹⁶ AV ⁵⁹⁷	107 DQ 108

⁴³⁵ AV ⁴³	6 5	⁹⁰ AV ⁵⁹¹	$^{165}AY^{166}$	225 DO 226
⁴³⁷ AV ⁴³	8 5	⁹⁶ AV ⁵⁹⁷	⁶⁴³ DN ⁶⁴⁴	$509 DO^{510}$
460AV46	1 5.	⁵⁰ DN ⁵⁵¹	70 DP ⁷¹	627 DO ⁶²⁸
[590AV5	6	⁴³ DN ⁶⁴⁴	⁴⁹⁶ DP ⁴⁹⁷	223 DR 224
⁵⁹⁶ AV ⁵⁹	7 7	$^{0}\mathrm{DP}^{71}$	$107 DO^{108}$	⁴⁶² DR ⁴⁶³
165AY ¹⁶	6 4	⁹⁶ DP ⁴⁹⁷	$^{225}DO^{226}$	602 DR ⁶⁰³
⁶⁴³ DN ⁶⁴	4 2	²⁵ DO ²²⁶	$509 DO^{510}$	⁴³¹ EG ⁴³²
⁷⁰ DP ⁷¹	2	23 DR ²²⁴	627 DO ⁶²⁸	⁴⁴⁴ EG ⁴⁴⁵
⁴⁹⁶ DP ⁴⁹⁷	4	62 DR 463	223 DR 224	^{[80} EI ⁸¹
$107 DO^{10}$	8 5	$^{10}\mathrm{EG}^{511}$	462 DR 463	$^{140}\mathrm{ES}^{141}$
$225 DO^{22}$	6 1	⁵ ES ¹⁶	${}^{602}\text{DR}{}^{603}$	⁵⁵⁵ ES ⁵⁵⁶
⁵⁰⁹ DO ⁵¹	0 2	$^{16}ES^{217}$	$^{293}\mathrm{EG}^{294}$	$^{211}\mathrm{ET}^{212}$
$^{162}DR^{16}$	3 4	$^{13}ES^{414}$	$^{431}EG^{432}$	³³³ ET ³³⁴
$^{223}DR^{22}$	4 4	$^{19}ES^{420}$	⁴⁴⁴ EG ⁴⁴⁵	⁶³⁵ ET ⁶³⁶
⁴⁶² DR ⁴⁶	3 5	⁸⁵ ES ⁵⁸⁶	^{[80} EI ⁸¹	⁶⁶⁴ EY ⁶⁶⁵
602 DR 60	3 3.	³³ ET ³³⁴	$^{140}\mathrm{ES}^{141}$	$^{641}\overline{\text{FN}}^{642}$
¹⁷⁶ EG ^{17′}	7 8	${}^{0}\mathrm{EV}^{81}$	⁵⁵⁵ ES ⁵⁵⁶	104 FO 105
$^{431}EG^{432}$	2 3.	$^{37}{\rm EV}^{338}$	²¹¹ ET ²¹²	286 FO ²⁸⁷
⁴⁴⁴ EG ⁴⁴	5 30	$^{60}\mathrm{EW}^{361}$	³³³ ET ³³⁴	⁵³⁰ FR ⁵³¹
⁸⁰ EI ⁸¹	1	⁶⁵ EY ¹⁶⁶	⁶³⁵ ET ⁶³⁶	⁵⁶⁹ FR ⁵⁷⁰
⁸⁶ ES ⁸⁷	6.	⁵⁹ EY ⁶⁶⁰	$^{15}{ m EW}^{16}$	177 GE 178
$^{140}\mathrm{ES}^{141}$	6	41 FN 642	⁶⁶⁴ EY ⁶⁶⁵	³⁸⁷ GE ³⁸⁸
⁵⁵⁵ ES ⁵⁵⁶	1	04 FQ 105	⁶⁴¹ FN ⁶⁴²	⁵⁵⁴ GE ⁵⁵⁵
²¹¹ ET ²¹²	24	42 FO ²⁴³	104 FQ 105	$^{306}GF^{307}$
³³³ ET ³³⁴	2	⁸⁶ FQ ²⁸⁷	286 FQ 287	³⁹⁶ GG ³⁹⁷
⁶³⁵ ET ⁶³⁶	6.	32 FO ⁶³³	⁵³⁰ FR ⁵³¹	⁶⁵² GG ⁶⁵³
³³⁷ EV ³³	3 5	30 FR 531	⁵⁶⁹ FR ⁵⁷⁰	130 GI 131
$^{15}EW^{16}$	1	⁷⁷ GE ¹⁷⁸	$^{177}GE^{178}$	¹⁷⁵ GV ¹⁷⁶
⁶⁵⁹ EY ⁶⁶⁰	3	⁸⁷ GE ³⁸⁸	³⁸⁷ GE ³⁸⁸	¹²⁴ GW ¹²⁵
⁶⁶⁴ EY ⁶⁶³	5 2	⁸⁵ GF ²⁸⁶	⁵⁵⁴ GE ⁵⁵⁵	$^{466}GW^{467}$
⁶⁴¹ FN ⁶⁴²	6	$^{1}GG^{62}$	³⁰⁶ GF ³⁰⁷	¹⁹¹ GY ¹⁹²
104 FO 102	5 3	⁹⁶ GG ³⁹⁷	³⁹⁶ GG ³⁹⁷	³⁹⁷ GY ³⁹⁸
286 FQ ²⁸⁵	1	²⁴ GW ¹²⁵	$^{652}GG^{653}$	⁴³² GY ⁴³³

⁵³⁰ FR ⁵³¹	$^{466}GW^{467}$	$^{130}\mathrm{GI}^{131}$	⁵²⁵ GY ⁵²⁶
⁵⁶⁹ FR ⁵⁷⁰	$^{191}\mathrm{GY}^{192}$	175 GV 176	⁴⁵⁸ HT ⁴⁵⁹
¹⁷⁵ GE ¹⁷⁶	³⁹⁷ GY ³⁹⁸	124 GW 125	$^{606}HV^{607}$
$^{177}GE^{178}$	$^{432}GY^{433}$	$^{466}GW^{467}$	⁹¹ HY ⁹²
³⁸⁷ GE ³⁸⁸	⁵²⁵ GY ⁵²⁶	$^{191}\mathrm{GY}^{192}$	$^{131}\mathrm{IL}^{132}$
⁵⁵⁴ GE ⁵⁵⁵	⁶¹⁷ HF ⁶¹⁸	³⁹⁷ GY ³⁹⁸	46 IR 47
³⁰⁶ GF ³⁰⁷	⁴²⁷ HR ⁴²⁸	$^{432}GY^{433}$	267 IW 268
$^{61}GG^{62}$	$^{116}\mathrm{HT}^{117}$	⁵²⁵ GY ⁵²⁶	²¹⁰ KE ²¹¹
³⁹⁶ GG ³⁹⁷	⁴⁵⁸ HT ⁴⁵⁹	⁴⁵⁸ HT ⁴⁵⁹	²⁴³ KE ²⁴⁴
$^{652}GG^{653}$	$^{91}{ m HY}^{92}$	$^{606}\mathrm{HV}^{607}$	²⁶³ KE ²⁶⁴
$^{130}\mathrm{GI}^{131}$	⁴⁶ IO ⁴⁷	⁹¹ HY ⁹²	⁵²⁰ KE ⁵²¹
$^{124}GW^{125}$	³²⁸ IR ³²⁹	131 IL 132	277 KF 278
$^{466}GW^{467}$	267 IW 268	³⁷ IR ³⁸	$^{100}{ m KG}^{101}$
¹⁹¹ GY ¹⁹²	164 KE 165	⁴⁶ IR ⁴⁷	174 KG 175
³⁹⁷ GY ³⁹⁸	263 KE 264	267 IW 268	³⁸⁶ KG ³⁸⁷
⁴³² GY ⁴³³	151 KF 152	210 KE 211	452 KG 453
⁵²⁵ GY ⁵²⁶	277 KF 278	243 KE 244	⁹⁹ KK ¹⁰⁰
$^{420}\text{HS}^{421}$	⁶²⁸ KF ⁶²⁹	263 KE 264	440 KK 441
$^{116}\mathrm{HT}^{117}$	100 KG 101	520KE 521	⁴⁵⁴ KK ⁴⁵⁵
⁴⁵⁸ HT ⁴⁵⁹	³⁸⁶ KG ³⁸⁷	277 KF 278	⁶⁷³ KK ⁶⁷⁴
$^{606}\mathrm{HV}^{607}$	431 KG 432	100 KG 101	⁸⁶ KS ⁸⁷
⁹¹ HY ⁹²	³¹³ KI ³¹⁴	174 KG 175	113 KS 114
$^{126}\mathrm{H}^{127}$	⁴⁴⁵ KI ⁴⁴⁶	³⁸⁶ KG ³⁸⁷	²⁸² KS ²⁸³
$^{131}\mathrm{IL}^{132}$	$^{3}KK^{4}$	452 KG 453	⁴⁵⁵ KS ⁴⁵⁶
46 IR 47	27 KK 28	⁹⁹ KK ¹⁰⁰	⁴⁹⁸ KS ⁴⁹⁹
267 IW 268	³⁸ KK ³⁹	440 KK 441	⁶³³ KS ⁶³⁴
⁸⁵ KE ⁸⁶	99 KK 100	⁴⁵⁴ KK ⁴⁵⁵	³¹³ KV ³¹⁴
²¹⁰ KE ²¹¹	⁴⁵⁴ KK ⁴⁵⁵	⁶⁷³ KK ⁶⁷⁴	⁴¹⁹ KY ⁴²⁰
²⁴³ KE ²⁴⁴	4 KS ⁵	⁸⁶ KS ⁸⁷	⁵²² KY ⁵²³
263 KE 264	113 KS 114	113 KS 114	⁶⁵⁹ KY ⁶⁶⁰
⁵²⁰ KE ⁵²¹	455 KS 456	282 KS 283	⁶¹² LH ⁶¹³
151 KF 152	39 KT 40	416 KS 417	$^{266}LI^{267}$
²⁷⁷ KF ²⁷⁸	⁶³⁵ KT ⁶³⁶	⁴⁵⁵ KS ⁴⁵⁶	$^{473}\text{LI}^{474}$

628175629	6541700655	49817 0499	232 + +233
100=5 × 101	28	⁴⁹⁰ KS ⁴⁹⁹	$^{232}LN^{233}$
	²⁸ KV ²⁹	⁶³³ KS ⁶³⁴	$^{504}LN^{505}$
174 KG 175	603 KV 604	313 KV 314	$^{325}LT^{326}$
386 KG ³⁸⁷	$^{266}\text{LI}^{267}$	419 KY 420	$^{446}LT^{447}$
⁴¹⁹ KH ⁴²⁰	$^{687}LM^{688}$	522 KY 523	$^{687}LT^{688}$
²⁷ KK ²⁸	$^{106}LN^{107}$	⁶⁵⁹ KY ⁶⁶⁰	$^{383}LV^{384}$
⁵² KK ⁵³	⁵⁷⁴ LN ⁵⁷⁵	⁶¹² LH ⁶¹³	$^{407}LV^{408}$
⁹⁹ KK ¹⁰⁰	$^{63}LV^{64}$	²⁶⁶ LI ²⁶⁷	$^{117}MG^{118}$
³⁵⁶ KK ³⁵⁷	$^{271}LV^{272}$	⁴⁷³ LI ⁴⁷⁴	$^{471}MG^{472}$
440 KK 441	$^{383}LV^{384}$	$^{232}LN^{233}$	$^{26}MR^{27}$
454 KK 455	$^{407}LV^{408}$	⁵⁶⁴ LN ⁵⁶⁵	$^{63}MV^{64}$
⁶⁷³ KK ⁶⁷⁴	$^{129}MG^{130}$	³²⁵ LT ³²⁶	⁵³ NA ⁵⁴
113 KS 114	$^{471}MG^{472}$	$^{446}LT^{447}$	⁵⁴⁵ ND ⁵⁴⁶
282 KS 283	²⁶ MK ²⁷	⁶⁸⁷ LT ⁶⁸⁸	⁶⁴² ND ⁶⁴³
416 KS 417	⁶⁸⁸ MR ⁶⁸⁹	³⁸³ LV ³⁸⁴	⁴⁴³ NE ⁴⁴⁴
⁴⁵⁵ KS ⁴⁵⁶	⁴⁴³ ND ⁴⁴⁴	$^{407}\overline{LV}^{408}$	$^{103}NF^{104}$
⁴⁹⁸ KS ⁴⁹⁹	$^{642}ND^{643}$	$^{117}MG^{118}$	⁵⁵³ NG ⁵⁵⁴
⁶³³ KS ⁶³⁴	⁵⁰⁸ NE ⁵⁰⁹	$^{471}MG^{472}$	⁶²¹ NG ⁶²²
³¹³ KV ³¹⁴	$^{103}{ m NF}^{104}$	$^{26}MR^{27}$	⁵⁹⁴ NH ⁵⁹⁵
⁵²² KY ⁵²³	²⁶¹ NG ²⁶²	$^{63}MV^{64}$	$^{168}NL^{169}$
⁶¹² LH ⁶¹³	⁵⁷⁵ NG ⁵⁷⁶	⁵³ NA ⁵⁴	$^{217}NL^{218}$
²⁶⁶ LI ²⁶⁷	⁶²¹ NG ⁶²²	⁵⁴⁵ ND ⁵⁴⁶	²⁶⁵ NL ²⁶⁶
⁴⁷³ LI ⁴⁷⁴	⁵⁹⁴ NH ⁵⁹⁵	$^{642}ND^{643}$	³³⁰ NL ³³¹
²³² LN ²³³	¹⁶⁸ NL ¹⁶⁹	⁴⁴³ NE ⁴⁴⁴	⁵⁶³ NL ⁵⁶⁴
³⁹² LN ³⁹³	⁶³⁸ NL ⁶³⁹	$^{103}{ m NF}^{104}$	⁶³⁸ NL ⁶³⁹
⁵⁶⁴ LN ⁵⁶⁵	⁸⁶ NN ⁸⁷	⁵⁵³ NG ⁵⁵⁴	⁶⁷¹ NL ⁶⁷²
³²⁵ LT ³²⁶	²³³ NN ²³⁴	$^{621}NG^{622}$	²³³ NN ²³⁴
446LT ⁴⁴⁷	$^{107}NO^{108}$	⁵⁹⁴ NH ⁵⁹⁵	⁴⁷⁶ NO ⁴⁷⁷
⁶⁸⁷ LT ⁶⁸⁸	³⁶⁶ NO ³⁶⁷	$^{168}NL^{169}$	⁴¹⁴ NR ⁴¹⁵
³⁸³ LV ³⁸⁴	²³⁴ NT ²³⁵	$^{217}NL^{218}$	⁵⁶⁵ NR ⁵⁶⁶
$407 U^{408}$	$^{477}NT^{478}$	$^{265}NL^{266}$	²³⁴ NT ²³⁵
$^{129}MG^{130}$	⁵⁵¹ NT ⁵⁵²	$^{330}NL^{331}$	⁵⁵¹ NT ⁵⁵²
⁴⁷¹ MG ⁴⁷²	⁵⁵⁶ NT ⁵⁵⁷	⁵⁶³ NL ⁵⁶⁴	⁶⁴⁴ NT ⁶⁴⁵

²⁶ MK ²⁷	⁶⁴⁴ NT ⁶⁴⁵	⁶³⁸ NL ⁶³⁹	⁵ NV ⁶
$^{63}MV^{64}$	⁵³⁶ NV ⁵³⁷	$^{671}NL^{672}$	$^{368}NV^{369}$
⁵⁴⁵ ND ⁵⁴⁶	³²³ NY ³²⁴	²³³ NN ²³⁴	$^{134}\mathrm{PF}^{135}$
⁶⁴² ND ⁶⁴³	$^{134}\mathrm{PF}^{135}$	⁴⁷⁶ NO ⁴⁷⁷	⁴⁹³ PG ⁴⁹⁴
⁴⁴³ NE ⁴⁴⁴	⁴⁹³ PG ⁴⁹⁴	⁴¹⁴ NR ⁴¹⁵	⁴⁹⁷ PK ⁴⁹⁸
$^{103}{ m NF}^{104}$	$^{626}PG^{627}$	⁵⁶⁵ NR ⁵⁶⁶	470 PM 471
⁵⁵³ NG ⁵⁵⁴	⁷⁶ PI ⁷⁷	²³⁴ NT ²³⁵	167 PN 168
⁶²¹ NG ⁶²²	128 PM 129	⁵⁵¹ NT ⁵⁵²	⁵¹⁷ PN ⁵¹⁸
⁵⁹⁴ NH ⁵⁹⁵	470 PM 471	⁶⁴⁴ NT ⁶⁴⁵	⁵⁹³ PN ⁵⁹⁴
$^{168}NL^{169}$	167 PN 168	$^{5}NV^{6}$	⁸⁸ PO ⁸⁹
²¹⁷ NL ²¹⁸	232 PN 233	³⁶⁸ NV ³⁶⁹	³² PS ³³
³³⁰ NL ³³¹	517 PN 518	$^{134}\mathrm{PF}^{135}$	251 PS 252
³⁹³ NL ³⁹⁴	⁵⁹³ PN ⁵⁹⁴	⁴⁹³ PG ⁴⁹⁴	³¹¹ PS ³¹²
⁵⁶³ NL ⁵⁶⁴	⁸⁸ PO ⁸⁹	⁴⁹⁷ PK ⁴⁹⁸	⁴²⁹ PT ⁴³⁰
⁶³⁸ NL ⁶³⁹	⁶⁶³ PQ ⁶⁶⁴	470 PM 471	⁶⁵⁵ PT ⁶⁵⁶
⁶⁷¹ NL ⁶⁷²	$^{32}\text{PS}^{33}$	167 PN 168	$^{76}PV^{77}$
²³³ NN ²³⁴	²⁵¹ PS ²⁵²	517 PN 518	²³⁸ PV ²³⁹
¹⁷⁹ NQ ¹⁸⁰	²⁸³ PS ²⁸⁴	⁵⁹³ PN ⁵⁹⁴	$^{409}PV^{410}$
⁴⁷⁶ NQ ⁴⁷⁷	²³⁸ PV ²³⁹	⁸⁸ PQ ⁸⁹	⁵⁸⁰ PV ⁵⁸¹
⁴¹⁴ NR ⁴¹⁵	409 PV 410	³² PS ³³	71 PY 72
⁵⁶⁵ NR ⁵⁶⁶	$^{429}PV^{430}$	251 PS 252	¹⁸⁸ PY ¹⁸⁹
⁵⁵¹ NT ⁵⁵²	580 PV 581	³¹¹ PS ³¹²	⁶¹⁵ QA ⁶¹⁶
⁶⁴⁴ NT ⁶⁴⁵	71 PY 72	$^{429}{\rm PT}^{430}$	200 QD 201
$^{5}\mathrm{NV}^{6}$	$^{188}\mathrm{PY}^{189}$	⁶⁵⁵ PT ⁶⁵⁶	$^{186}{ m QE}^{187}$
$^{368}NV^{369}$	$^{47}QA^{48}$	$^{76}{ m PV}^{77}$	275 QE 276
²⁹³ PG ²⁹⁴	⁶¹⁵ QA ⁶¹⁶	$^{128}\mathrm{PV}^{129}$	$^{628}{ m QF}^{629}$
⁴⁹³ PG ⁴⁹⁴	$^{200}QD^{201}$	238 PV 239	110 QG 111
⁴⁹⁷ PK ⁴⁹⁸	$^{186} m{Q}E^{187}$	$^{409}{ m PV}^{410}$	$^{146} m QG^{147}$
128 PM 129	$^{243}\text{QE}^{244}$	580 PV 581	⁵¹⁰ QG ⁵¹¹
470 PM 471	²⁷⁵ QE ²⁷⁶	71 PY 72	$^{105}{ m QL}^{106}$
$^{167}PN^{168}$	359 QE ³⁶⁰	$^{188}\mathrm{PY}^{189}$	$^{108}\mathrm{QL}^{109}$
⁵¹⁷ PN ⁵¹⁸	110 QG 111	⁶¹⁵ QA ⁶¹⁶	171 QL 172
⁵⁹³ PN ⁵⁹⁴	$^{652}QG^{653}$	200 QD 201	287 QL 288

⁸⁸ PO ⁸⁹	$^{105}{ m OL}^{106}$	¹⁸⁶ OE ¹⁸⁷	³⁶⁷ ON ³⁶⁸
$^{32}PS^{33}$	$108 OL^{109}$	$^{275}OE^{276}$	³⁵⁹ OO ³⁶⁰
$^{251}\text{PS}^{252}$	$^{171}OL^{172}$	⁶²⁸ OF ⁶²⁹	⁶¹⁴ OO ⁶¹⁵
³¹¹ PS ³¹²	²⁸⁷ OL ²⁸⁸	$^{110}OG^{111}$	$^{364}OS^{365}$
⁴²⁹ PT ⁴³⁰	$^{355}OL^{356}$	¹⁴⁶ OG ¹⁴⁷	⁴⁸⁹ OS ⁴⁹⁰
⁶⁵⁵ PT ⁶⁵⁶	⁵¹² ON ⁵¹³	⁵¹⁰ OG ⁵¹¹	⁵⁸⁵ OS ⁵⁸⁶
$^{76}PV^{77}$	⁴¹⁵ OO ⁴¹⁶	$105 OL^{106}$	⁸⁹ OT ⁹⁰
²³⁸ PV ²³⁹	⁶¹⁴ OO ⁶¹⁵	$108 OL^{109}$	477OT478
$^{409}{ m PV}^{410}$	³⁶⁴ OS ³⁶⁵	$^{171}OL^{172}$	$^{249}OV^{250}$
580 PV 581	³⁶⁷ OS ³⁶⁸	²⁸⁷ OL ²⁸⁸	$609 OV^{610}$
⁷¹ PY ⁷²	$^{416}OS^{417}$	³⁶⁷ QN ³⁶⁸	21 QW ²²
¹³⁴ PY ¹³⁵	⁴⁸⁹ OS ⁴⁹⁰	³⁵⁹ OQ ³⁶⁰	$^{360}OW^{361}$
¹⁸⁸ PY ¹⁸⁹	⁶³³ QS ⁶³⁴	614 QQ 615	²²⁶ QY ²²⁷
¹⁶⁴ QA ¹⁶⁵	⁸⁹ QT ⁹⁰	²⁸⁴ QS ²⁸⁵	³⁰⁹ RI ³¹⁰
⁶¹⁵ QA ⁶¹⁶	³⁴⁴ QV ³⁴⁵	³⁵⁵ QS ³⁵⁶	$^{3}RK^{4}$
²⁰⁰ QD ²⁰¹	609 QV 610	³⁶⁴ QS ³⁶⁵	27 RK 28
²⁷⁵ QE ²⁷⁶	21 QW ²²	⁴⁸⁹ QS ⁴⁹⁰	272 RK 273
$^{110}QG^{111}$	⁵⁵⁹ QW ⁵⁶⁰	⁵⁸⁵ QS ⁵⁸⁶	⁵⁷⁰ RL ⁵⁷¹
$^{146}QG^{147}$	²²⁶ QY ²²⁷	⁸⁹ QT ⁹⁰	25 RM 26
⁵¹⁰ QG ⁵¹¹	⁶⁶⁴ QY ⁶⁶⁵	⁴⁷⁷ QT ⁴⁷⁸	24 RR 25
105 QL 106	30 RG ³¹	249 QV 250	³⁸ RR ³⁹
$^{108}{ m QL}^{109}$	280 RG 281	$^{609}{ m QV}^{610}$	²⁹⁵ RR ²⁹⁶
171 QL 172	329 RG 330	21 QW 22	$^{7}RW^{8}$
287 QL 288	452 RG 453	360 QW 361	$^{252}SH^{253}$
³⁶⁷ QN ³⁶⁸	309 RI 310	²²⁶ QY ²²⁷	$^{33}SI^{34}$
³⁵⁹ QQ ³⁶⁰	600 RI 601	309 RI 310	$^{17}SK^{18}$
$^{363}QQ^{364}$	236 RK 237	$^{3}RK^{4}$	$^{312}SK^{313}$
$^{614}QQ^{615}$	440 RK 441	27 RK 28	$^{356}SK^{357}$
$^{364}QS^{365}$	⁵⁷⁸ RK ⁵⁷⁹	272 RK 273	418 SK 419
⁴⁸⁹ QS ⁴⁹⁰	25 RM 26	415 RK 416	⁵¹⁹ SK ⁵²⁰
⁵⁸⁵ QS ⁵⁸⁶	620 RN 621	570 RL 571	²⁵⁹ SK ²⁶⁰
⁸⁹ QT ⁹⁰	24 RR 25	25 RM 26	137 SW 138
⁴⁷⁷ QT ⁴⁷⁸	341 RR 342	24 RR 25	377 TD 378

²⁴⁹ OV ²⁵⁰	673 R 674	³⁸ RR ³⁹	⁸⁴ TE ⁸⁵
⁶⁰⁹ OV ⁶¹⁰	$^{7}\mathrm{RW}^{8}$	295 R 296	¹³⁹ TE ¹⁴⁰
²³ OW ²⁴	²⁵² SH ²⁵³	$^{7}\mathrm{RW}^{8}$	⁴³⁰ TE ⁴³¹
³⁶⁰ OW ³⁶¹	2 SK 3	²⁸⁵ SF ²⁸⁶	⁵⁸² TE ⁵⁸³
²²⁶ OY ²²⁷	$^{17}SK^{18}$	²⁵² SH ²⁵³	⁶⁴⁵ TE ⁶⁴⁶
³⁰⁹ RI ³¹⁰	³¹² SK ^{313,}	³³ SI ³⁴	⁶⁶³ TE ⁶⁶⁴
$^{3}\text{RK}^{4}$	⁴⁷⁵ SK ⁴⁷⁶	$^{17}SK^{18}$	$^{478}\mathrm{TG}^{479}$
112 RK 113	⁴⁹⁹ SK ⁵⁰⁰	³¹² SK ³¹³	⁵²⁷ TG ⁵²⁸
⁴¹⁵ RK ⁴¹⁶	⁶³⁴ SK ⁶³⁵	³⁵⁶ SK ³⁵⁷	⁹⁰ TH ⁹¹
⁵⁷⁸ RK ⁵⁷⁹	$^{5}\mathrm{SV}^{6}$	$^{418}SK^{419}$	⁵⁷⁸ TK ⁵⁷⁹
⁵⁰⁰ RL ⁵⁰¹	$^{33}SV^{34}$	$^{519}SK^{520}$	⁶³⁶ TK ⁶³⁷
⁵⁷⁰ RL ⁵⁷¹	$^{259}SV^{260}$	$^{259}SK^{260}$	⁵⁸ TL ⁵⁹
25 RM 26	$^{368}SV^{369}$	137 SW 138	⁵⁵² TN ⁵⁵³
20 RR 21	⁴⁷⁸ TD ⁴⁷⁹	³⁷⁷ TD ³⁷⁸	235 TR 236
³⁸ RR ³⁹	⁵⁵² TD ⁵⁵³	⁸⁴ TE ⁸⁵	³⁴³ TR ³⁴⁴
⁷ RW ⁸	⁵¹ TE ⁵²	$^{139}\text{TE}^{140}$	⁶⁸⁸ TR ⁶⁸⁹
21 RW 22	$^{84}\text{TE}^{85}$	$^{430}\text{TE}^{431}$	$^{40}TS^{41}$
²⁸⁵ SF ²⁸⁶	³⁷⁷ TE ³⁷⁸	⁵⁸² TE ⁵⁸³	677 TS 678
²⁵² SH ²⁵³	⁵⁵⁷ TE ⁵⁵⁸	⁶⁴⁵ TE ⁶⁴⁶	212 TT 213
³³ SI ³⁴	⁵⁸² TE ⁵⁸³	⁶⁶³ TE ⁶⁶⁴	$^{376}\mathrm{TT}^{377}$
²⁷² SK ²⁷³	$^{645}\text{TE}^{646}$	⁴⁷⁸ TG ⁴⁷⁹	$^{577}\mathrm{TT}^{578}$
³¹² SK ³¹³	$^{117}TG^{118}$	⁵²⁷ TG ⁵²⁸	213 TV 214
⁴¹⁸ SK ⁴¹⁹	$^{139}TG^{140}$	⁹⁰ TH ⁹¹	$^{547}\mathrm{TV}^{548}$
⁵¹⁹ SK ⁵²⁰	$^{176}TG^{177}$	⁵⁷⁸ TK ⁵⁷⁹	447 TW 448
259 SV 260	⁵²⁷ TG ⁵²⁸	⁶³⁶ TK ⁶³⁷	$^{656}\mathrm{TY}^{657}$
$^{137}SW^{138}$	⁹⁰ TH ⁹¹	⁵⁸ TL ⁵⁹	161 VD 162
³⁷⁷ TD ³⁷⁸	⁶³⁶ TK ⁶³⁷	⁵⁵² TN ⁵⁵³	239 VD 240
$^{139}\text{TE}^{140}$	⁵⁸ TL ⁵⁹	235 TR 236	260 VD 261
⁴³⁰ TE ⁴³¹	102 TN 103	343 TR 344	³¹⁴ VD ³¹⁵
⁵⁸² TE ⁵⁸³	235 TR 236	688 TR 689	461 VD 462
⁶⁴⁵ TE ⁶⁴⁶	⁵⁷⁷ TR ⁵⁷⁸	$^{40}TS^{41}$	$^{607}VE^{608}$
⁶⁶³ TE ⁶⁶⁴	11 TS 12	$^{677}TS^{678}$	⁶⁴ VF ⁶⁵
$^{117}TG^{118}$	$^{40}TS^{41}$	$^{212}TT^{213}$	$^{214}VF^{215}$

	478	6777776678	37677377	1761 0 177
	527m ~ 528		57777777	250 x ~ 251
	527 FG ⁵²⁶		317/I [®] I ³⁷⁸	$^{550}VG^{551}$
	⁹⁰ TH ⁹¹	³⁷⁶ TT ³⁷⁷	213 TV 214	⁵³ /VG ⁵³⁸
	$^{10}\text{TI}^{11}$	⁶⁵⁵ TT ⁶⁵⁶	$^{547}\mathrm{TV}^{548}$	$^{98}VK^{99}$
	⁸⁴ TK ⁸⁵	213 TV 214	$^{447}\mathrm{TW}^{448}$	$^{209}VK^{210}$
	⁶³⁶ TK ⁶³⁷	$^{547}\mathrm{TV}^{548}$	⁶⁵⁶ TY ⁶⁵⁷	$^{439}VK^{440}$
	⁵⁸ TL ⁵⁹	447 TW 448	161 VD 162	⁵⁴³ VK ⁵⁴⁴
	³²⁷ TL ³²⁸	$^{656}\mathrm{TY}^{657}$	239 VD 240	³⁸⁴ VL ³⁸⁵
	⁵⁵² TN ⁵⁵³	161 VD 162	260 VD 261	⁴²⁶ VL ⁴²⁷
	³⁴³ TR ³⁴⁴	239 VD 240	314 VD 315	610 VL 611
	⁵⁷⁷ TR ⁵⁷⁸	⁴⁶¹ VD ⁴⁶²	461 VD 462	410 VM 411
	⁶⁸⁸ TR ⁶⁸⁹	³³⁸ VE ³³⁹	$^{607}VE^{608}$	⁵⁹⁸ VS ⁵⁹⁹
	⁶⁷⁷ TS ⁶⁷⁸	$^{214}VF^{215}$	⁶⁴ VF ⁶⁵	⁵⁷ VT ⁵⁸
	²¹² TT ²¹³	$^{350}VG^{351}$	$^{214}VF^{215}$	³⁶⁹ VT ³⁷⁰
	³²⁶ TT ³²⁷	⁵³⁷ VG ⁵³⁸	$^{129}VG^{130}$	⁵⁸¹ VT ⁵⁸²
	³⁷⁶ TT ³⁷⁷	⁴²⁶ VH ⁴²⁷	¹⁷⁶ VG1 ⁷⁷	⁶⁶⁶ VT ⁶⁶⁷
	$^{213}\mathrm{TV}^{214}$	³⁷ VK ³⁸	³⁵⁰ VG ³⁵¹	$^{346}VW^{347}$
	⁵⁴⁷ TV ⁵⁴⁸	$^{209}VK^{210}$	⁵³⁷ VG ⁵³⁸	⁵⁴⁸ VW ⁵⁴⁹
	⁴⁴⁷ TW ⁴⁴⁸	$^{272}VK^{273}$	⁹⁸ VK ⁹⁹	⁹³ YA ⁹⁴
	656 TY 657	$^{430}VK^{431}$	$^{209}VK^{210}$	$^{227}\mathrm{YE}^{228}$
	$^{239}VD^{240}$	⁵⁴³ VK ⁵⁴⁴	439 VK 440	⁶⁵⁷ YE ⁶⁵⁸
	$^{260}VD^{261}$	³⁸⁴ VL ³⁸⁵	⁵⁴³ VK ⁵⁴⁴	$^{189}\mathrm{YF}^{190}$
	$^{314}VD^{315}$	410VL 411	³⁸⁴ VL ³⁸⁵	⁸² YG ⁸³
	$^{461}VD^{462}$	⁵⁴⁸ VL ⁵⁴⁹	$^{426}VL^{427}$	⁵²⁴ YG ⁵²⁵
	$^{64}VF^{65}$	610VL 611	610 VL 611	³⁹⁸ YI ³⁹⁹
	$^{214}VF^{215}$	$260 VN^{261}$	$^{410}VM^{411}$	$^{72}VK^{73}$
	$^{350}VG^{351}$	598VS ⁵⁹⁹	⁵⁹⁸ VS ⁵⁹⁹	³¹⁹ VI ³²⁰
	⁵³⁷ VG ⁵³⁸	$^{34}VT^{35}$	⁵⁷ VT ⁵⁸	³²⁴ YL ³²⁵
	⁹⁸ VK ⁹⁹	⁵⁷ VT ⁵⁸	³⁶⁹ VT ³⁷⁰	⁴³³ YL ⁴³⁴
	$^{209}VK^{210}$	⁵⁴⁶ VT ⁵⁴⁷	⁵⁸¹ VT ⁵⁸²	⁵⁸⁸ YL ⁵⁸⁹
	³³⁸ VK ³³⁹	⁵⁸¹ VT ⁵⁸²	⁶⁶⁶ VT ⁶⁶⁷	660YL 661
	$^{439}VK^{440}$	⁶⁶⁶ VT ⁶⁶⁷	$^{346}VW^{347}$	20 VO ²¹
	⁵⁴³ VK ⁵⁴⁴	$^{346}VW^{347}$	⁵⁴⁸ VW ⁵⁴⁹	192 YS ¹⁹³
	·			-~

⁶⁰⁷ VK ⁶⁰⁸	⁶⁴ VY ⁶⁵	⁹³ YA ⁹⁴	⁴²⁰ YS ⁴²¹
	$^{81}VY^{82}$	$^{227}\mathrm{YE}^{228}$	665YV666
³⁸² VL ³⁸³	⁹³ YA ⁹⁴	⁶⁵⁷ YE ⁶⁵⁸	$92 YY^{93}$
³⁸⁴ VL ³⁸⁵	⁶⁵ YD ⁶⁶	$^{189}YF^{190}$	⁵²³ YY ⁵²⁴
410VL 411	227 YE ²²⁸	⁸² YG ⁸³	⁴⁶⁹ IPM ⁴⁷¹
⁴²⁶ VL ⁴²⁷	⁶⁵⁷ YE ⁶⁵⁸	⁵²⁴ YG ⁵²⁵	¹³ PP ¹⁴
⁶¹⁰ VL ⁶¹¹	$^{189}YF^{190}$	³⁹⁸ YI ³⁹⁹	³⁷³ MA ³⁷⁴
⁴⁷⁵ VN ⁴⁷⁶	$^{82}YG^{83}$	$^{72}YK^{73}$	⁵³ KA ⁵⁴
⁵⁹⁸ VS ⁵⁹⁹	⁵²⁴ YG ⁵²⁵	³¹⁹ YL ³²⁰	12 SP 13
⁵⁷ VT ⁵⁸	³²⁴ YI ³²⁵	324 YL 325	37 VR 38
³⁶⁹ VT ³⁷⁰	³⁹⁸ YI ³⁹⁹	⁴³³ YL ⁴³⁴	$^{15}EG^{16}$
⁵⁸¹ VT ⁵⁸²	400 YI 401	⁵⁸⁸ YL ⁵⁸⁹	³⁵⁴ EH ³⁵⁵
⁶⁶⁶ VT ⁶⁶⁷	⁷² YK ⁷³	660 YL 661	$^{416}\text{ES}^{417}$
$^{346}VW^{347}$	³¹⁹ YL ³²⁰	20 YQ 21	$^{337}EV^{338}$
$^{548}VW^{549}$	⁴³³ YL ⁴³⁴	$^{192}YS^{193}$	³⁵⁵ HS ³⁵⁶
⁹³ YA ⁹⁴	660 YL 661	420 YS 421	⁵² KK ⁵³
²²⁷ YE ²²⁸	$^{192}YS^{193}$	665 YV 666	$^{512}LN^{513}$
⁶⁵⁷ YE ⁶⁵⁸	665 YV 666	⁹² YY ⁹³	$^{129}MG^{130}$
$^{189} m YF^{190}$	⁹² YY ⁹³	⁵²³ YY ⁵²⁴	128 PM 129
⁸² YG ⁸³	⁵²³ YY ⁵²⁴	⁴⁶⁹ IPM ⁴⁷¹	292 PQ 293
524 YG 525	¹²⁷ IPM ¹²⁹		$^{293}QG^{294}$
³⁹⁸ YI ³⁹⁹	⁴⁶⁹ IPM ⁴⁷¹		$^{259}SV^{260}$
⁷² YK ⁷³			³³⁸ VK ³³⁹
135 YL 136			127 IPM 129
³¹⁹ YL ³²⁰			
324 YL 325			
⁴³³ YL ⁴³⁴			
⁶⁶⁰ YL ⁶⁶¹			
$^{192}YS^{193}$			
⁶⁶⁵ YV ⁶⁶⁶			
⁹² YY ⁹³			
⁵²³ YY ⁵²⁴			
$127 IPM^{129}$			

⁴⁶⁹ IPM ⁴⁷¹		
11 111		

Figure S1. Protein surface hydrophobicity of the flavourzyme hydrolysate before, during, and after digestion by pepsin and trypsin.

Figure S2. Conformation of peptide of the flavourzyme hydrolysate before, during, and after digestion by pepsin and trypsin.

Figure S3: LC-MS analyses of bovine GMP (panel A) and GMP from Bactrian camels (panel B)