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Abstract 

Breast cancer is a complex multifactorial disease with the interplay of genetic, 

environmental and lifestyle factors contributing to the disease risk.  Studies based on 

twins estimated that ~30% of the risk is due to genetic factors. High and moderate 

penetrant mutations along with low penetrance variants accounted for a proportion of the 

total heritable risk. Remaining heritability is yet to be accounted for.  

My thesis is based on genome-wide analysis of both SNPs and Copy Number Variations 

(CNVs) as genetic determinants of breast cancer risk.   

(i) Characterization of the SNP rs1429142 conferring premenopausal breast cancer 

risk  

I focused on SNP (rs1429142 on chromosome locus 4q31.22) associated with 

premenopausal breast cancer risk, first of its kind in literature reported by the Damaraju 

laboratory (Stages 1-3). In the current study additional cases were genotyped (Stage 4).  

In the analysis of the combined samples (Stage1-4; 4331 cases/4271 controls) the index 

SNP showed genome-wide significance (OR 1.25, p-value 4.35x10-8). Analysis of 

rs1429142 showed elevated risk in premenopausal women (n=1503 cases/4271 controls; 

odds ratio (OR) 1.40, p-value 5.81x10-10). Postmenopausal Caucasian women (n=2700 

cases/4271 controls) showed modest risk (OR 1.17; p-value 7.81x10-04) and this finding 

was confirmed in the postmenopausal cohort from Cancer Genetic Markers of 

Susceptibility study (CGEMS, USA). SNP rs1429142 showed an association among 

premenopausal women with African ancestry (OR minor allele 0.82; p-value-1.45x10-02). 
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Since the index SNP, rs1429142, was in an intergenic regiona, fine-scale mapping of the 

locus 4q31.22 revealed 135 SNPs to be associated with premenopausal risk. Conditional 

regression analysis did not reveal any additional peaks of association. Likelihood ratio 

analysis excluded five variants that were less likely causal compared to the strongly 

associated SNP. I further refined the putative loci (130 SNPs) by linkage disequilibrium 

(LD) block mapping and compared patterns for Caucasian and African populations 

(HapMap data).  

I examined active enhancer functions based on chromatin state (histone marks, DNase 

hypersensitive sites) in human breast cell lines (HMEC, vHEMC) and breast 

myoepithelial primary cells using data from publicly available resources. I found 

evidence for the binding of the transcription factors (C-FOS, STAT1/3, POL2/3) at SNP 

sites in the human breast cell line MCF10A-Er-Src.  Three SNPs (rs1366691, rs1429139, 

rs7667633) were identified as potentially causal and appeared to be part of the predicted 

Topologically Associated Domain (TAD), helping to explain short-range interactions and 

enhancer-promoter cross-talk.  

(ii) CNV association studies: I studied CNVs, which are larger in size (>50 bp and up to 

1Mb) relative to the single base changes of SNPs. CNVs harbor both coding and non-

coding genes and may exert gene-dosage effects or regulatory functions. Whole genome 

CNVs were captured in 422 cases and 348 controls using the Human Affymetrix SNP 6 

array platform (discovery dataset). Whole genome copy number estimation was 

                                                 

a Intergenic regions are also referred as ‘gene desert regions’ in the thesis 
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performed and the CNVs with frequencies > 10% and overlapping protein-coding genes 

were considered further. Association analysis revealed a total of 200 contiguous CNV 

regions (CNVRs) or CNVs associated with breast cancer risk (q-value < 0.05).  

I investigated if any of the breast cancer associated CNVs show prognostic relevance 

since SNP GWAS attempts to identify prognostic markers were thus far unsuccessful. 

Among the 200 associated CNVs/CNVRs, 21 CNVRs (overlapping with 22 genes) 

showed association with Overall survival (OS) and Recurrence Free Survival (RFS). 

CNVs were interrogated for gene dosage effects by correlating copy number status with 

breast tumor tissue gene expression.  Also, I interrogated the role of germline CNVs 

harboring small-noncoding RNAs in conferring breast cancer risk. Further, I investigated 

the breast tissue specific expression of CNV-embedded small-noncoding RNAs (CNV-

sncRNAs) to understand the post-transcriptional gene regulatory mechanisms and how 

they might contribute to breast cancer.  I used 495 samples (Affymetrix 6 array data) 

available in the TCGA as my validation set and identified 1812 breast cancer associated 

CNVs harboring miRNAs (n=38), piRNAs (n=9865), snoRNAs (n=71) and tRNAs 

(n=12) genes. A subset of CNV-sncRNAs expressed in breast tissue (tumor and normal) 

in TCGA dataset, also showed correlation with germline copy numbers.  

In summary, I have fine-mapped premenopausal breast cancer locus and identified 

potential causal variants which are predicted to have enhancer functions Germline CNVs 

also are useful markers for breast cancer susceptibility and prognosis. 
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1 Introduction and Review of Literature 

1.1.  Breast cancer epidemiology 

Breast cancer is the second most commonly diagnosed cancer in the world and the most 

prevalent cancer among women. Nearly 1.7 million breast cancer cases were diagnosed 

globally in 2012, representing 25% of all cancers diagnosed1. The incidence rate varies 

across different countries; however, breast cancer remains the leading cancer diagnosis in 

women in both developed countries as well as in developing/under developed countries1. 

The differences in incidence rates across the countries can be ascribed to the better 

awareness, screening programs and access to health care in the developed world.  

Breast cancer is a disease with one of highest mortality rates and ranks fifth among 

overall cancer related deaths1. Mortality rates are higher in the developing or under 

developed countries, relative to the developed world due to poorer access to health care1. 

Early diagnosis and treatments specific to subtypes and availability of treatment 

modalities (surgery, radiation and chemotherapies) contribute to better outcomes2. 

According to the 2017 Canadian Cancer Society statistics3 breast cancer is the third most 

commonly diagnosed cancer in Canada. However, it is the leading cancer diagnosis 

representing 25.5% of all cancer diagnoses among women.  One in 8 Canadian women is 

expected to develop breast cancer during their lifetime. The age distribution of breast 

cancer incidence in Canada shows that, of women diagnosed with breast cancer, 17% are 

< 50 years (predominantly pre-menopausal), nearly 51% are between 50-69 years of age 

(predominantly post-menopausal) and 32% are above the age of 70 years. Traditionally 

incidence rates were reported based on age at diagnosis and not based on menopausal 
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status. Considering the age cut-offs, the above statistics do not fully explain the 

individual incidence rates for perimenopausal- and premenopausal women with breast 

cancer, since the average age at menopause is ~52 in Europe and North America4.  

Also, breast cancer continues to be the second leading cause of cancer related death 

(13%) among women in Canada. However, the Age-Standardized Mortality Rates 

(ASMR) have declined since 1988 from 41.7 to 23.2 deaths per 100,000 in 20173. This 

steady decline is due to more effective screening and better therapies. Similar trends of 

decline in ASMR have been noted in other developed countries such as the United States, 

the United Kingdom and Australia3.  

1.1.1. Risk factors  

Breast cancer is a complex multifactorial disease. There is strong interplay of genetic, 

lifestyle and environmental factors in conferring disease risk5. There are two major types 

of risk factors: (i) non-modifiable risk factors such as genetic factors, race or ethnicity, 

family history, age, age at menarche, age at menopause., and (ii) modifiable risk factors 

such as body mass index (BMI), and lifestyle factors (including smoking, alcohol 

consumption, physical activity, breast feeding, oral contraceptive use, hormone 

replacement therapy). A combination of the above factors influences the overall risk6. 
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1.2. Genetic risk factors for breast cancer susceptibility 

Epidemiological studies have identified health, lifestyle and environmental factors as the 

major contributors to risk of breast cancer. However, strong familial clusteringb of breast 

cancer cases point to a predominant genetic contribution irrespective of the shared 

environmental factors. In support of this premise, a study based on identical 

(monozygotic) and non-identical (dizygotic) twins was conducted under the assumption 

that identical twins share the genetic and common environmental, while non-identical 

twins share only the environmental, components. These findings were based on 47,788 

pairs of twins from Sweden, Denmark and Finland and contributed to the current 

understanding on the role of health, lifestyle and environmental factors as the major 

contributors to risk of breast cancer. It is estimated that up to 30% of the risk associated 

with breast cancer is from heritable factors5. Therefore, to understand the genetic 

architecture of breast cancer, several approaches, including linkage analysis and genetic 

association study designs, have been adopted to address breast cancer heritability in 

populations.  

1.2.1. Genetic linkage analysis 

The initial searches for genetic risk factors based on families with multiple individuals 

affected with breast cancer using linkage analysis7 were successful in identification of 

high and moderate penetrancec variants (explained in detail in ensuing text). Linkage 

                                                 

b Familial clustering is the ratio of the risk of breast cancer for a relative of an affected individual 

compared to the general population 
c Penetrance measures the proportion of individuals in a population who carry a specific allele and express 

the related trait. 
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analysis is a powerful tool to identify disease gene(s) since genes that physically reside in 

nearby locations on a chromosome are likely to co-segregate during meiosis, an 

indication that they are linked. If a disease gene is in linkage with known marker genes in 

the locus, the affected individual is likely to pass the disease gene to the offspring who 

inherit the marker. Based on the patterns of segregation, disease loci can be mapped. 

However, this approach requires large numbers of families with multiple affected 

individuals. The linkage between two loci can be estimated using a statistical approach of 

comparing the probability of two loci being linked versus not being linked. The estimated 

score is called the logarithm (base 10) of odds (LOD) score. Positive and negative LOD 

scores indicate the presence and absence of linkages,8 respectively, and explain a 

proportion of the genetic risk associated with breast cancer. 

(i) High penetrance mutations 

The strong familial clustering seen among breast cancer cases was explained in part by 

single alleles conferring high risk. These high-risk variants are extremely rare but confer 

high penetrance. Family based linkage studies based on high-risk breast cancer cases 

have led to the discovery of disease loci which helped identify tumor suppressor genes, 

i.e., BReast CAncer genes (BRCA1, in the year 19937,9,10 and BRCA2, in the year 

1994)11, with the odds ratios ranging from ~10 to 20. These findings also led to the 

discovery that women harboring mutations in BRCA1 and/or BRCA2 are predisposed to 

ovarian cancer. While the role of BRCA genes is acknowledged in conferring familial 

risk, these genes explained only a small portion of heritable component: 52% of the 

breast cancer patients with multiple affected family members carried BRCA1 mutations, 
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32% carried BRCA2 mutations and patients with breast and ovarian cancers carried either 

BRCA1 (84%) or BRCA2 (14%) gene mutations.  

The BRCA1 gene is located on chr17q21 with 24 exons (including two non-translating 

exons) and encodes a protein of 1863 amino acids. BRCA1, now a known tumor 

suppressor gene, plays a role in cell cycle and DNA damage repair. BRCA2 is located on 

chr13q12 with 27 exons (including one non-translating exon) and encodes a protein of 

3418 amino acids. BRCA2 binds with BRCA1 in response to DNA damage and aids in 

repair. The functional mutations are often small deletions or insertions, of which 85% are 

frameshift or nonsense mutations leading to translation of truncated proteins12. The 

frequency of these mutationsd is extremely rare, and the frequency and mutational sites 

vary by population. For instance, in the Ashkenazi Jewish population, the mutational hot 

spots are at 185delAG at frequency of 1.09%13 and 5382insC at frequency of 0.13%13 in 

BRCA114 and at 6174delT at frequency of 1.52% in BRCA2, whereas in high risk 

Swedish families, BRCA1 mutations are often at 3171ins5. The lifetime risk of breast 

cancer among carriers of these mutations varies from 60-80%9,16.  

For the ease of discussion, I refer to familial breast cancers as those affected individuals 

with  a family history of breast cancer but without any known gene mutations or specific 

patterns of inheritance6. On the other hand, hereditary breast cancers are those in which 

familial clustering has been ascribed to gene mutations, often high penetrance (e.g., 

BRCA1/2) with clear patterns of inheritance18. Both hereditary and familial forms of 

breast cancers tend to occur with early age of onset. The emphasis in this thesis is on 

                                                 

d Mutation is a small change in the DNA sequence and frequency <1% in the population 
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breast cancers with late age at onset (>45 years) and with no family history, cases which 

are often mentioned in the literature as sporadic breast cancers6,19. Sporadic breast 

cancers comprise 80% or more of all breast cancers diagnosed. There is paucity of 

literature in terms of the genetic basis for sporadic breast cancers, which has been 

addressed recently by adopting a population-based case-control design and identifying 

common low penetrant variants19,20 (see ensuing text for more in depth discussion).  

The pathology of hereditary breast cancers among BRCA1/2 carriers is different 

compared to that of non-BRCA1/2 familial breast cancers or sporadic breast cancers. 

Breast cancers among BRCA1 carriers are often “basal-like” tumors21 with high grades, 

high mitotic rates, and receptors including estrogen (ER), progesterone (PR) and HER2 

are negative22,23. Expression of basal markers including  basal keratins24, P-cadherin and 

epidermal growth factor receptor and over-expression of cell-cycle proteins including 

cyclins A, B1 and E, and S-phase kinase-associated protein 2 are frequent25. On the other 

hand, breast cancers in BRCA2 carriers are rarely basal-like tumors22, but are of high 

grade and are ER/PR positive 26,27. Also, higher expression of cell cycle proteins such as 

cyclin D1 and p27 is noted. Overall,  non-BRCA related tumors are less aggressive with 

low grade and mitotic counts compared to BRCA1/2 positive tumors 25. 

There are other high penetrance mutations associated with breast cancer in genes 

including TP53, PTEN, STK11/LKB1 andCDH1. These mutations are rare in populations 

and confer about two to ten-fold increased risk for breast cancer (Table 1.1).  

TP53 is a tumor suppressor gene in which mutations confer Li-Fraumeni syndrome in 

children and adults. About 5% of TP53 mutation carriers diagnosed with breast cancer 
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before age of 30 28. Compared to the general population, the mutation carriers have an 18 

to 60-fold increased risk for early age of onset breast cancer <45 years old 29-32. The 

lifetime cancer risk for individuals with a mutation in TP53 is more than 90% and breast 

cancer is the most frequent cancer. 

PTEN is a tumor suppressor gene in which mutations confer Cowden syndrome. The 

disease is characterized by multiple hamartomas (normally benign tumors in tissue of 

origin), but with high risk of both benign and malignant tumors in thyroid, breast and 

endometrium. The lifetime risk for developing breast cancer among PTEN carriers is 

about 50%.  

STK11/LKB1 is a tumor suppressor gene with a role in apoptosis and the cell cycle. 

Mutational carriers are at risk for developing Peutz-Jeghers Syndrome, characterized by 

mucocutaneous pigmentation and  hamartomatous polyps33 and there is also an increased 

risk for developing cancers of breast, lung, ovary, cervix, testis, pancreas, and/or the 

gastrointestinal tract including esophagus, stomach, small bowel and colon34. The 

lifetime risk for developing any of these cancers among STK11/LKB1 mutation carriers is 

about 85%35.  

CDH belongs to the E-cadherin family of genes and is a calcium dependent cell-cell 

adhesion molecule expressed in epithelial cell junctions. Often mutational carriers are at 

risk of developing diffuse gastric carcinoma and have increased risk of developing 

lobular breast and colon cancers. About 40-54% of the women carriers develop breast 

cancer during their lifetime 36. 

(ii) Moderate penetrance variants 
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Family based linkage studies failed to identify additional highly or moderately penetrant 

variants and that has led to alternate approaches to address the heritability of breast 

cancers. Candidate genes chosen for investigation were based on their cellular functions 

in studies that were conducted among familial breast cancer cases. This approach has 

successfully identified moderately penetrant variants (confers about two-fold increased 

risk) in genes such as CHEK237, ATM38, PALB239, and BRIP1 (BACH1)40. The proteins 

encoded by these genes play a role in DNA repair by interacting with BRCA pathways.  

CHEK2 encodes for the protein kinase that regulates the G2 phase of the cell cycle in 

response to DNA damage. CHEK2 gets phosphorylated to become the active form, which 

stabilizes TP53 and interacts with BRCA1. CHEK2*1100delC is the most commonly 

seen mutation (up to 1-2%) in the general population and up to 5% among individuals 

with familial or hereditary breast cancers. It confers a two-fold increase among female 

carriers and a ten-fold increase among male carriers for breast cancer risk37. There are 

additional rare mutations in CHEK2, identified in the Ashkenazi Jewish population, that 

are suggestive of a founder effect41. However, there is no additional risk among co-

carriers of mutations in BRCA and CHEK2, suggestive of an overlapping effect in the 

DNA repair pathways37.  

ATM encodes a protein kinase that was shown to play a role in repair of double stranded 

breaks in DNA, and in regulation of BRCA1 and CHEK2. Impaired regulation of DNA 

repair pathways increases the risk of developing cancers. Biallelic mutations in ATM 

causes the autosomal recessive disease, ataxia telangiectasia, and such homozygous 

variants confer susceptibility to breast cancer with a relative risk 2.3-fold higher than that 

of women in the general population.  
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BRIP1 protein interacts with the C-Terminus (BRCT) domain of BRCA1. Mutations in 

BRIP1 are rare (< 1%) among breast cancer cases, and the majority lead to formation of 

truncated proteins. Biallelic mutations in BRIP1 are associated with Fanconi anemia. It is 

estimated that there is a two-fold higher relative risk for early onset breast cancer among 

the mutational carriers with strong family history.  

PALB2 encodes a protein that interacts with BRCA2.The relative risk for breast cancer 

among women < 50 years with PALP2 mutations is three-fold higher39,42. Biallelic 

mutations cause Fanconi anemia type N and a higher incidence of childhood cancers. 

Also, a higher incidence of male breast cancer is associated with PALB2 mutations43, 

however it only accounts for a minority of familial breast cancer cases. 
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Table 1.1 High and moderately penetrant variants associated with 

breast cancer 

Locus  Genes  RAF  Relative risk 
Familial 

relative risk  

Breast cancer 

incidence  

High penetrance variants 

17q21 BRCA1 0.0006 5-45 10% 
82% lifetime 

risk 13q12.3 BRCA2 0.001 9-21 12% 

17p13.1 TP53 rare 2-10 ND 25% by age 74 

10q23.3 PTEN rare 2-10 ND 
85% lifetime 

risk 

19p13.3 STK11 rare 2-10 ND 32% by age 60 

16q22.1 CDH1 rare 2-10 ND 

39% lifetime 

risk of lobular 

breast cancer 

Moderate penetrance variants 

11q22.3 ATM 0.003 2-3 

5% ND 
22q12.1 CHEK2 0.004 2-3 

17q22-q24 BRIP1 0.001 2-3 

16p12.1 PALB2 rare 2-4 

ND, not determined; RAF, risk allele frequency  

Relative risk is the ratio of the probability of event (breast cancer) occurring in an exposed 

group (mutation carriers) to the probability of event (breast cancer) occurring in an 

unexposed group (non-mutation carriers 

Familial relative risk is the relative risk of breast cancer incidence within the families of 

breast cancer affected individuals 
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1.2.2. Common Disease-Common Variant hypothesis: 

Family-based linkage studies and identification of loci associated with breast cancer 

together with subsequent sequencing studies have led to discovery of high penetrance 

variants (e.g., BRCA1/2 mutations). However, these attempts explained only a proportion 

of the heritability associated with familial breast cancer. Most of the unexplained risk 

among familial cases was thought to be explained by a polygenic model of inheritance, in 

which multiple low penetrance variants (>5% frequency) contribute to the phenotype44. 

However, because the majority of breast cancer cases are sporadic (i.e., no family history 

of breast cancer), linkage studies are not feasible. Their sporadic nature implies that 

breast cancers, and other commonly occurring sporadic diseases, have a different genetic 

architecture. This premise has led to the hypothesis of Common Disease-Common 

Variants (CDCV)45-48, which states that common genetic variations (frequency more than 

5%) in a population contribute to a small but finite risk to explain genetic susceptibility. 

The Human Genome Project Consortium49 efforts led to the current understanding that up 

to 99.9% of all human populations share a similar DNA sequence, and yet small genetic 

variations of 0.1% could still account for large phenotypic variations, lending credence to 

the CDCV hypothesis.  

1.2.3. Genetic association studies 

In family-based linkage studies genetic loci are mapped based on their segregation with 

phenotypes within pedigrees. In contrast, genetic association aims to detect variants 

associated with phenotypes based on family or population-based study designs. The two 
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commonly adopted association study approaches are (i) candidate gene associations, and 

(ii) genome-wide association study (GWAS) designs. In both approaches, the frequencies 

of genetic variants are compared between cases and controls using a statistical test. In 

family-based linkage studies, microsatellite markers are more commonly used, however 

these have limitations, i.e., microsatellites are fewer in number (~4000), meaning less 

dense, and therefore the resolution of mapping of loci is lower. Microsatellites are also 

unstable because they are mutable. Currently high resolution genetic mapping is feasible 

using polymorphisms (see below) whose densities in the genome are several orders of 

magnitude higher than microsatellite markers. The three main classes of DNA variations 

include single-base-pair variants or Single Nucleotide Polymorphismse (SNPs), 

insertions/deletionsf and structural variantsg (including copy number variations, or 

CNVs). Due to their high densities across the genome and their stability, being 

evolutionarily conserved across populations, SNPs and CNVs are the preferred genetic 

markers for association studies. 

(i) Candidate gene association studies  

Candidate gene association studies aim to identify common variants (those 

polymorphisms with allele frequencies >5%) present within the select candidate gene(s) 

or flanking regions (5’ and 3’ untranslated regions of the gene in question) that may 

affect functions (e.g., translational efficiency, splicing, gene regulation) and thereby 

                                                 

e SNPs are single base-pair changes in the DNA sequence that occur at frequencies of more than 1% in the 

general population.  
f Insertion or deletion of a single stretch of DNA sequence, from two to hundreds of base-pairs in length.  
g Structural changes in the DNA sequence, including copy number variations (CNVs) and chromosomal 

rearrangements. 
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confer a phenotype. Candidate gene studies are hypothesis driven and focus on genes 

with known cellular functions (e.g., DNA repair, apoptosis, cell cycle), investigating the 

role of common variants in conferring breast cancer risk. Although several candidate 

gene association studies have been conducted to identify variants associated with breast 

cancer50-56, only one, a study of CASP8,  has successfully identified a SNP rs104548548 in 

the coding region that confers risk for breast cancer. This finding was replicated by 

several independent studies57. Despite several decades of effort, candidate gene 

association studies have been largely unsuccessful in identifying additional breast cancer 

risk variants58. Inherent limitations of candidate SNP association studies include 

inadequate study design power (small sample size), selection of SNPs, genotyping errors, 

sampling bias and population stratification leading to failures in the replication of the 

findings. Therefore, technological and methodological developments were needed to 

design well powered studies, including access to large numbers of cases and controls and 

a sound statistical framework.  

(ii) Genome-wide association studies (GWASs)  

GWASs offer a systematic and unbiased approach for genome wide screening for 

common variants. GWASs are hypothesis-free wherein the entire genome is screened for 

variants associated with the phenotype being investigated, followed by multiple 

replication stages. GWASs embrace the CDCV hypothesis to identify multiple common 

variants (albeit, with low effect sizesh). Such studies utilize large sample sizes, providing 

                                                 

h Effect size is the quantitative measure of the magnitude of risk or a phenomenon. Odds Ratio and 

Relative risk are measure of effect size. In this thesis effect sizes and odds ratios are used interchangeably. 
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statistical power, and reliable high throughput genotyping platforms. Further, the 

association statistics are adjusted for multiple marker hypothesis testing by various 

methods59 (Bonferroni correction, Benjamini and Hochberg false discovery rate 

correction60) to limit false positive associations. Human Genome, HapMap and 1000 

Genomes projects helped catalogue variants with their allele frequencies, with estimates 

of linkage disequilibrium (LD) in diverse populations. Patterns of inheritance are guided 

by the process of meiotic recombination events. Large chunks (referred to as LD blocks) 

of the genome are stably inherited from parents by off spring, and these patterns are 

highly specific for individual ancestries. Typically, LD blocks vary in size from 1 

kilobase (kb) to 100 kb. SNPs present within LD blocks are highly correlated, and high 

throughput platforms have evolved to reduce the redundancy of genotyping based on the 

LD patterns. The technique of selecting fewer SNPs representing an entire LD block is 

termed tagging, and the resulting SNPs are called tagSNPs. This approach is cost-

efficient, making genome wide coverage of markers feasible for mapping of associated 

genes/loci.  

1.3. Success stories of breast cancer GWASs 

Over the last decade, GWAS approaches were widely utilized to identify the common 

genetic variants associated with breast cancer. To date GWASs have identified about 172 

risk variants with effect sizes (odds ratio, OR) 1.04 to 1.53 and explain ~18% of the total 

heritable risk associated with breast cancer61. Genotyping platforms have evolved over 

the last decade, and consortia efforts are now more predominant in the study designs to 

enable large sample sizes, and statistical power to detect variants even with modest effect 

size. Tools for detecting population stratification, data analytics and strategies to identify 
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causal variants have also contributed to the overall success of GWASs. The timeline of 

GWASs along with the approaches adopted can be divided into three groups: 

(i) Early era (2007-2013)  

The first breast cancer GWASs were published in 2007 by Easton et al.62 and Hunter 

etal.19 and subsequently additional studies were published reporting novel findings and 

replication of previously reported variants. During this early era, the studies typically 

utilized whole genome genotyping platforms from a small number of samples (also called 

the discovery stage, ~300-500 each of cases and controls), and highly statistically 

significant SNPs from the discovery stage were further replicated in larger sample sizes 

(independent replication stages). I compiled the following data from the catalogue of 

GWAS variants63 for the putative breast cancer susceptibility loci. This catalogue adopted 

a cut-off p-value <10-5. A total of 17 breast cancer GWASs were attempted during the 

early phase on Caucasian populations, including one from the Damaraju laboratory20. Of 

the reported novel loci, 21 had effect sizes >1.20, 36 had effect sizes between 1.1-1.9, 

and 42 had effect sizes between 1.04-1.1. A total of 13 GWASs were published in non-

Caucasian populations, including three studies each in Chinese 64-66 and Japanese67-69, 

two each in Ashkenazi Jewish70 71 and African72 and one in Korean73 populations.  In 

total, 33 novel loci were identified from diverse populations, of which 22 SNPs had effect 

sizes > 1.2, and the remaining 11 SNPs had effect sizes of 1.08-1.9. Table 1.2 below 

summarizes the studies on breast cancer associated SNPs with effect sizes >1.2 for both 

Caucasian and other ancestries. 
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Table 1.2 GWASs reported for breast cancer risk between 2007 to 2013 

# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

1 

Hunter DJ et al. 

(2007)19            

A genome-wide 

association 

study identifies 

alleles in 

FGFR2 

associated with 

risk of sporadic 

postmenopausal 

breast cancer. 

1,145 

Europea

n 

ancestry 

cases, 

1,142 

Europea

n 

ancestry 

controls 

874 

European 

ancestry 

cases, 1,478 

European 

ancestry 

controls, 

302 cases, 

594 controls 

10q26.13 FGFR2 rs1219648-G 0.4 1.00E-10 
1.2 

[1.07-1.42] 

2 

Stacey et al. 

(2007)74  

Common 

variants on 

chromosomes 

2q35 and 16q12 

confer 

susceptibility to 

estrogen 

receptor-positive 

breast cancer. 

1,599 

Europea

n 

ancestry 

cases, 

11,546 

Europea

n 

ancestry 

controls 

2,954 

European 

ancestry 

cases, 5,967 

European 

ancestry 

controls, Up 

to 561 

Japanese 

ancestry 

cases, Up to 

565 

Japanese 

ancestry 

control, Up 

to 422 

African 

American 

cases, Up to 

2q35 intergenic 
rs13387042-

A 
0.5 1.00E-13 

1.2      

[1.14-1.26] 

16q12.1 TNRC9 rs3803662-T 0.27 6.00E-19 
1.28 

[1.21-1.35] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

448 African 

American 

controls, Up 

to 418 

Hispanic 

cases, Up to 

422 

Hispanic 

controls, Up 

to 148 cases, 

Up to 293 

controls 

3 

Easton DF et al. 

(2007)62 

Genome-wide 

association 

study identifies 

novel breast 

cancer 

susceptibility 

loci. 

390 

Europea

n 

ancestry 

cases, 

364 

Europea

n 

ancestry 

controls 

4,364 East 

Asian 

ancestry 

cases, 

24,174 

European 

ancestry 

controls, 

3,564 East 

Asian 

ancestry 

controls, 

24,391 

European 

ancestry 

controls 

10q26.13 FGFR2 rs2981582-A 0.38 2.00E-76 
1.26 

[1.23-1.30] 

16q12.1 

TNRC9, 

LOC6437

14 

rs3803662-T 0.25 1.00E-36 
1.2 

[1.16-1.24] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

4 

Thomas G et al. 

(2009)75 A 

multistage 

genome-wide 

association 

study in breast 

cancer identifies 

two new risk 

alleles at 1p11.2 

and 14q24.1 

(RAD51L1). 

1,145 

Europea

n 

ancestry 

cases, 

1,142 

Europea

n 

ancestry 

controls 

8,625 

European 

ancestry 

cases, 9,657 

European 

ancestry 

controls 

5q11.2 MAP3K1 
rs16886165-

G 
0.15 5.00E-07 

1.23 

[1.12-1.35] 

(Het) 

2q35 intergenic 
rs13387042-

A 
0.51 2.00E-08 

1.25 

[1.15-1.37] 

(Het) 

5 

Turnbull C et al. 

(2010)76   

Genome-wide 

association 

study identifies 

five new breast 

cancer 

susceptibility 

loci. 

3,659 

Europea

n 

ancestry 

cases, 

4,897 

Europea

n 

ancestry 

controls 

12,576 

European 

ancestry 

cases, 

12,223 

European 

ancestry 

controls 

10q26.13 FGFR2 rs2981579-A 0.42 4.00E-31 
1.43 

[1.35-1.53] 

16q12.1 TOX3 rs3803662-A 0.26 3.00E-15 
1.3 

[1.22-1.39] 

5q11.2 MAP3K1 rs889312-C 0.28 5.00E-09 
1.22  

[1.14-1.30] 

2q35 intergenic 
rs13387042-

A 
0.49 2.00E-10 

1.21   

[1.14-1.29] 

6q25.1 
ESR1, 

C6orf97 
rs3757318-A 0.07 3.00E-06 

1.3  

[1.17-1.46] 

6 

Antoniou AC et 

al. (2010)77   A 

locus on 19p13 

modifies risk of 

breast cancer in 

BRCA1 

mutation carriers 

and is associated 

with hormone 

receptor-

negative breast 

cancer in the 

1,193 

Europea

n 

ancestry 

cases, 

1,190 

Europea

n 

ancestry 

controls 

2,974 

European 

ancestry 

cases, 3,012 

European 

ancestry 

controls 

19p13.11 

ANKLE, 

C19orf6,

ABHD8 

rs8170-A 0.17 2.00E-09 
1.26  

[1.17-1.35] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

general 

population. 

7 

Fletcher O et al. 

(2011)78        

Novel breast 

cancer 

susceptibility 

locus at 9q31.2: 

results of a 

genome-wide 

association 

study. 

2,839 

Europea

n 

ancestry 

cases, 

3,507 

Europea

n 

ancestry 

controls 

9,041 

European 

ancestry 

cases, 8,980 

European 

ancestry 

controls 

10q26.13 FGFR2 rs1219648-? 0.42 1.00E-30 
1.31 

[1.25-1.37] 

8 

Li J et al. 

(2010)79 A 

combined 

analysis of 

genome-wide 

association 

studies in breast 

cancer. 

2,702 

Europea

n 

ancestry 

female 

cases, 

5,726 

Europea

n 

ancestry 

controls 

Up to 7,386 

cases, 7,576 

controls 

10q26.13 FGFR2 rs1219648-G 0.42 2.00E-13 
1.32 

[1.22-1.42] 

16q12.1 TOX3 rs3803662-A 0.3 4.00E-07 
1.22  

[1.13-1.32] 

5p12 MRPS30 rs7716600-A 0.23 7.00E-07 
1.24  

[1.14-1.34] 

9 

Sehrawat B et 

al. (2011)20 

Potential novel 

candidate 

polymorphisms 

identified in 

genome-wide 

302 

Europea

n 

ancestry 

female 

cases, 

321 

1,153 

European 

ancestry 

female 

cases, 1,215 

European 

ancestry 

5p15.2 ROPN1L rs1092913 0.13 2.00E-06 
1.45  

[1.24-1.69] 

19q13.41 ZNF577 rs10411161 0.13 7.00E-07 
1.42  

[1.22-1.65] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

association 

study for breast 

cancer 

susceptibility. 

Europea

n 

ancestry 

female 

controls 

female 

controls 

10 

Siddiq A et al. 

(2012)80   A 

meta-analysis of 

genome-wide 

association 

studies of breast 

cancer identifies 

two novel 

susceptibility 

loci at 6q14 and 

20q11. 

3,666 

Europea

n 

ancestry 

cases, 

28,864 

Europea

n 

ancestry 

controls, 

1,004 

African 

America

n cases, 

2,744 

African 

America

n 

controls 

562 

European 

ancestry 

cases, 6,410 

European 

ancestry 

controls, 84 

Japanese 

ancestry 

cases, 830 

Japanese 

ancestry 

controls, 

300 Latino 

cases, 1,164 

Latino 

controls 

6q25.1 - rs9383938 - 2.00E-10 1.28 

11 

Orr N et al. 

(2012)81 

Genome-wide 

association 

study identifies 

a common 

variant in 

RAD51B 

associated with 

823 

Europea

n 

ancestry 

cases, 

2,795 

Europea

n 

ancestry 

438 

European 

ancestry 

cases, 474 

European 

ancestry 

controls 

1p31.1 PRKACB rs903263 - 1.00E-06 
1.27  

[1.10-1.34] 

14q24.1 RAD51B rs1314913 - 3.00E-13 
1.57  

[1.39-1.77] 

16q12.1 
LOC6437

4, TOX3 
rs3803662 - 4.00E-15 

1.5  

[1.35-1.66] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

male breast 

cancer risk. 

controls 

12 

Garcia-Closas M 

et al. (2013)82 

Genome-wide 

association 

studies identify 

four ER 

negative-

specific breast 

cancer risk loci. 

4,193 

Europea

n 

ancestry 

cases, 

35,194 

Europea

n 

ancestry 

controls 

6,514 

European 

ancestry 

cases, 

41,455 

European 

ancestry 

controls 

12p11.22 PTHLH rs10771399 0.89 2.00E-12 
1.2  

[1.15-1.27] 

13q13.1 
BRCA2, 

N4BP2L1 
rs11571833 0.5 6.00E-07 

1.52  

[1.31-1.77] 

13 

Michailidou K  

(2013)83  Large-

scale genotyping 

identifies 41 

new loci 

associated with 

breast cancer 

risk. 

10,052 

Europea

n 

ancestry 

cases, 

12,575 

Europea

n 

ancestry 

controls 

45,290 

European 

ancestry 

cases, 

41,880 

European 

ancestry 

controls 

13q13.1 

BRCA2, 

N4BP2L, 

N4BP2L2 

rs11571833 0.008 5.00E-08 
1.26  

[1.14-1.39] 

10q26.13 FGFR2 rs2981579 0.4 
2.00E-

170 

1.27  

[1.24-1.29] 

11q13.3 intergenic rs614367 0.15 2.00E-63 
1.21  

[1.18-1.24] 

16q12.1 TOX3 rs3803662 0.26 
2.00E-

114 

1.24  

[1.21-1.27] 

10p12.31 DNAJC1 rs11814448 0.02 9.00E-16 
1.26  

[1.18-1.35] 

14 

Purrington KS 

(2013)84 

Genome-wide 

association 

study identifies 

25 known breast 

cancer 

susceptibility 

loci as risk 

factors for 

1,529 

Europea

n 

ancestry 

cases, 

3,399 

Europea

n 

ancestry 

controls 

2,148 

European 

ancestry 

cases, 1,309 

European 

ancestry 

controls 

5p15.33 TERT rs10069690 - 1.00E-07 
1.24  

[1.14-1.34] 

6q25.1 ESR1 rs3757318 - 9.00E-07 
1.33  

[1.17-1.51] 

19p13.11 intergenic rs2363956 - 2.00E-08 
1.22  

[1.14-1.3] 

12p11.22 PTHLH rs10771399 
 

2.00E-08 
1.39  

[1.25-1.56] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

triple-negative 

breast cancer. 

15 

Gold B et al. 

(2008)70 

Genome-wide 

association 

study provides 

evidence for a 

breast cancer 

risk locus at 

6q22.33. 

249 

Ashkena

zi 

Jewish 

non-

BRCA1/

2 

carriers 

cases, 

299 

Ashkena

zi 

Jewish 

non-

BRCA1/

2 

carriers 

controls 

1,193 

Ashkenazi 

Jewish non-

BRCA1/2 

carriers 

cases, 1,166 

Ashkenazi 

Jewish non-

BRCA1/2 

carriers 

controls 

6q22.33 
ECHDC, 

RNF146 
rs2180341 0.21 3.00E-08 

1.41  

[1.25-1.59] 

16 

Zheng et al. 

(2009)64 

Genome-wide 

association 

study identifies 

a new breast 

cancer 

susceptibility 

locus at 6q25.1. 

1,505 

Chinese 

ancestry 

cases, 

1,522 

Chinese 

ancestry 

controls 

5,026 

Chinese 

ancestry 

cases, 2,476 

Chinese 

ancestry 

controls, 

1,591 

European 

ancestry 

cases, 1,466 

European 

ancestry 

6q25.1 
ESR1, 

C6orf97 
rs2046210 0.37 2.00E-15 

1.29 

[1.21-1.37] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

controls 

17 

Long et al. 

(2010)65 

Identification of 

a functional 

genetic variant 

at 16q12.1 for 

breast cancer 

risk: results 

from the Asia 

Breast Cancer 

Consortium. 

2,073 

Chinese 

ancestry 

cases, 

2,084 

Chinese 

ancestry 

controls 

15,159 East 

Asian 

ancestry 

cases, 

12,993 East 

Asian 

ancestry 

controls, 

2,797 

European 

ancestry 

cases, 2,662 

European 

ancestry 

controls 

16q12.1 TOX3 rs4784227 0.24 1.00E-28 
1.24  

[1.20-1.29] 

18 

Shu Xo et al. 

(2012)85 Novel 

genetic markers 

of breast cancer 

survival 

identified by a 

genome-wide 

association 

study. 

1,950 

Chinese 

ancestry 

cases 

4,160 

Chinese 

ancestry 

cases 

14q24.1 RAD51L1 rs3784099 - 1.00E-07 
1.49  

[1.28-1.72] 

14q24.1 RAD51L1 rs3784099 - 3.00E-07 
1.43  

[1.25-1.64] 

16q22.3 intergenic rs9934948 - 6.00E-06 
1.29  

[1.16-1.44] 

19 

Kim HC et al. 

(2012)86 A 

genome-wide 

association 

study identifies 

a breast cancer 

risk variant in 

ERBB4 at 2q34: 

2,273 

Korean 

ancestry 

cases, 

2,052 

Korean 

ancestry 

controls 

4,049 

Korean 

ancestry 

cases, 3,845 

Korean 

ancestry 

controls 

2q34 ERBB4 rs13393577 0.05 9.00E-14 
1.53  

[1.37-1.70] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

results from the 

Seoul Breast 

Cancer Study. 

20 

Elgazzar S et al. 

(2012)68 A 

genome-wide 

association 

study identifies 

a genetic variant 

in the SIAH2 

locus associated 

with hormonal 

receptor-positive 

breast cancer in 

Japanese. 

1,086 

Japanes

e 

ancestry 

cases, 

1,816 

Japanes

e 

ancestry 

controls 

1,653 

Japanese 

ancestry 

cases, 2,797 

Japanese 

ancestry 

controls 

3q25.1 SIAH2 rs6788895 0.65 9.00E-08 
1.22  

[1.13-1.31] 

10q26.13 FGFR2 rs3750817 0.49 8.00E-08 1.22 

21 

Rinella ES et al. 

(2013)71 Genetic 

variants 

associated with 

breast cancer 

risk for 

Ashkenazi 

Jewish women 

with strong 

family histories 

but no 

identifiable 

BRCA1/2 

mutation. 

477 

Ashkena

zi 

Jewish 

cases, 

524 

Ashkena

zi 

Jewish 

controls 

203 

Ashkenazi 

Jewish 

cases, 263 

Ashkenazi 

Jewish 

controls 

10q26.13 FGFR2 rs1078806 0.39 2.00E-06 1.43 

6p22.3 intergenic rs16882214 0.81 2.00E-06 1.43 

15q24.3 intergenic rs12906542 0.93 7.00E-07 2 

22 

Song C et al. 

(2013)87 A 

genome-wide 

scan for breast 

3,016 

African 

America

n cases, 

NA 10q22.3 
 

rs12355688 0.22 6.00E-06 
1.24  

[1.13-1.36] 

NA 1p36.23 SLC45A1 
rs2305016; 

rs7535752; 
- 5.00E-06 

1.23  

[1.12-1.35] 
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# Study 

Initial 

Sample 

Size 

Replication 

Sample Size 
Region Gene 

Risk SNP-

allele 
RAF P-value 

OR  

[95% CI] 

cancer risk 

haplotypes 

among African 

American 

women. 

2,745 

African 

America

n 

controls 

rs9628987; 

rs12711517; 

rs2289731 

NA 4q27 TNIP3 
rs17435444; 

rs13116936 
0.64 3.00E-07 

1.23  

[1.13-1.33] 

NA 10p15.1 
 

rs4414128; 

rs2386661; 

rs17141741 

- 5.00E-06 
1.27  

[1.14-1.39] 

NA 14q24.1 
 

rs765899; 

rs757369; 

rs10132579; 

rs2842347; 

rs737387; 

rs2842346 

- 2.00E-06 
1.67  

[1.35-2.08] 

23 

Low SK 

(2013)69 

Genome-wide 

association 

study of breast 

cancer in the 

Japanese 

population. 

2,642 

Japanes

e 

ancestry 

cases, 

2,099 

Japanes

e 

ancestry 

controls 

2,885 

Japanese 

ancestry 

cases, 3,395 

Japanese 

ancestry 

controls 

10q26.13 FGFR2 rs2981578 0.51 1.00E-12 
1.23  

[1.15-1.29] 

16q12.2 

TOX3, 

LOC6437

14 

rs12922061 0.24 4.00E-10 
1.23  

[1.15-1.31] 

16q12.1 

TOX3, 

LOC6437

14 

rs3803662 0.52 3.00E-11 
1.21  

[1.15-1.28] 

12p13.1 ATF7IP rs17221259 0.20 7.00E-06 
1.25  

[1.14-1.38] 

The above table represents the GWASs published between 2007 to 2013 that reported one or more variants with OR ≥1.2 in 

both Caucasian and non-Caucasian population. RAF -Risk Allele Frequency 
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(ii) Collaborative Oncologic Gene-environment Study (COGS) Era 

(2012- 2015) 

GWASs reported 27 common variants in the early era and accounted for ~9% of 

estimated breast cancer risk. To identify additional genomic variants, a collaborative 

effort led by the COGS consortium (http://www.cogseu.org/)  focused on identification of 

gene-environment interactions contributing to the risk of breast, prostate and ovarian 

cancers. A custom panel of genotyping array was designed with ~200,000 SNPs and used 

an Illumina genotyping platform (called as iCOG array). In 2013, an association study 

using the iCOG array was reported by Michailidou et al.88. The study utilized 45,290 

breast cancer cases and 41,880 controls of European ancestry (from 41 studies from the 

Breast Cancer Association Consortium (BCAC)). The study identified 41 new loci and 

replicated 27 previously identified breast cancer loci of various effect sizes. Of the 41 

newly identified loci, 13 SNPs showed specific association with ER positive and one with 

ER negative breast cancers. Independent studies also utilized the iCOGS array with 4,193 

ER negative cases and 35,194 controls from 40 BCAC studies to identify four SNPs 

associated with ER negative breast cancer82. Together, all reported GWASs and large-

scale replication studies have identified 79 variants accounting for about 14% of 

heritability associated with familial breast cancer. In 2015, a meta-analysis89 based on 11 

previously published GWASs (15,748 breast cancer cases and 18,084 controls) and 41 

BCAC studies (46,785 cases and 42,892 controls) using genotypes based on the iCOG 

array were performed and replicated 71 previously reported loci. Furthermore, imputation 

and excluding variants within 500 kb of the previously identified SNPs led to the 

identification of 15 additional new SNPs89 associated with breast cancer. In summary, the 

http://www.cogseu.org/
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total number of identified loci in these iCOGS attempts were 94 SNPs with a total 

estimated familial breast cancer heritability of 16%. Overall, the iCOGS array catalyzed 

utilization of samples from consortia and independent studies to effectively mine for 

additional risk variants that were otherwise missed due to inadequate sample size. It is 

also expected that higher sample sizes and mining the same genotype data sources will 

likely identify variants of lower effect size. In line with these expectations, 94 variants 

showed effect size of <1.2. There are potentially other variants from the above studies 

waiting to be discovered to account for the overall heritability of breast cancer beyond the 

16%. 

(iii) OncoArray era (2015-present) 

The OncoArray Network90, a collaborative effort to uncover the genetic architecture of 

breast, ovarian, prostrate, colorectal and lung cancers, used the iCOG array, a custom 

high-density array from Illumina, also known as the OncoArray BeadChip (~570,000 

SNPs). The iCOG array includes ~260,000 tagSNPs, providing extensive coverage of 

common variants across the genome, and GWASs identified SNPs for each of the cancer 

types and SNPs from fine-mapping studies of previously identified loci. The OncoArray 

study reported in 2017 utilized 61,282 breast cancer cases and 45,494 controls of 

European ancestry which are part of the previously published reports from 68 studies, 

including BCAC and Discovery, Biology and Risk of Inherited Variants in Breast Cancer 

Consortium (DRIVE). The OncoArray study used the iCOG array for genotyping 

followed by subsequent imputation resulting in a total of 11.8 million SNPs (MAF > 

0.5% and imputation quality score > 0.3). A meta-analysis combining the results from the 

above study and other previous studies based on iCOG arrays with 11 previously reported 
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GWASs were conducted. Together a total of 122,977 breast cancer cases and 105,974 

controls of European ancestry and 14,068 breast cancer cases and 13,104 controls of East 

Asian ancestry were utilized. The meta-analysis reported the association of 65 new breast 

cancer risk loci with genome wide significance among European ancestry61 of which 19 

of the 65 SNPs were associated with ER-positive and two with ER negative breast 

cancers. A majority of the variants identified thus far are associated with ER positive 

breast cancer (Figure 1.1). Therefore, another study, which stratified the above cases 

based on ER status, identified ten additional variants associated with ER negative breast 

cancer91. This summarizes the massive data mining attempts by international consortia to 

identify all potential variants associated with breast cancer. However, the estimates from 

all 172 common SNPs/loci identified contribute to a heritable risk of ~18%, suggesting 

additional variants are yet to be discovered. 

1.3.1. SNPs associated with pathological subtypes of breast cancer and 

BRCA 

Following identification of loci associated with breast cancer risk, several subsequent 

studies investigated the association of these risk loci with histopathology of breast tumors 

including triple negative breast cancer92-94 and the risk conferred by common variants 

among the BRCA177,95 and BRCA2 mutation carriers96. However, detailed discussion into 

these topics is beyond the scope of the thesis and I have included the pertinent references 

for interested readers. 
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Figure 1.1 GWAS-identified variants associated with breast cancer 

based on estrogen receptor status  

GWAS-identified breast cancer associated variants with respect to (a) ER positive and (b) 

ER negative breast cancers. The Y-axis indicates the effect size (odds ratio, OR) and the 

X- axis indicates the effect allele frequency (EAF). The figure is from Lilyquist et al 

(2018)97. The arrow indicates OR 1.2, to draw attention to the small number of SNPs with 

this effect size relative to all variants identified so far.  
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1.3.2. Post-GWAS era in breast cancer   

In the post-GWAS era in breast cancer, GWAS designs for mapping disease associations 

were based on using SNPs across the genome (equidistant and dense representation of 

markers), rather than using SNPs with putative functional consequences as in candidate 

gene studies. The very premise of GWAS is based on LD patterns, and GWAS-identified 

SNPs are likely proxies for causal variants.  Strategies to identify the causal variants 

underlying disease associations were sought through fine-mapping approaches. 

Interrogation of the catalogue of variants identified through GWASs of various 

phenotypes indicated that a large proportion of the SNPs (~88%) were in the intergenic 

(gene desert) or intronic regions98. The scenario is no different for breast cancer in that 

the challenge is to find putative biological functions for GWAS-identified variants. To 

date, a limited number of studies have performed fine-mapping of hits from GWASs, and 

the approaches and strategies used in fine-mapping are discussed elsewhere99. The 

overview of the steps post GWAS to gain functional insights of the loci so identified is 

depicted100 in Figure 1.2.  

 

Figure 1.2 Roadmap from GWAS to elucidation of functional relevance 

of disease associated loci 

This figure illustrates the roadmap from association to functional characterization of a 

GWAS identified variant (a) Outline of GWAS study design identifying common 

variants associated with disease, (b) the linkage disequilibrium pattern of the associated 

region, (c-e) functional annotation indicating the state of the chromatin and binding of 

potential transcription factors in the associated loci and (f) different functional assays for 

validating the SNPs in predicted function. The figure is from Harismendy et al (2009)100. 
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1.4. Fine-mapping approaches  

1.4.1. Dense genotyping and imputation 

The GWAS approach reveals associations of genomic loci with phenotypes. Since it 

greatly relies on tagSNPs, the GWAS-associated tagSNPs may not necessarily have 

direct functional consequences but may be in LD with potential causal SNPs101. Pair-wise 

correlations of SNPs in a region or “block,” indicated by r2 (in the range 0-1), with a 

value of 0 indicating no LD and 1 being in perfect LD, signifies that all SNPs in the block 

are correlated to varying degree. The size of the LD blocks varies in different ethnic 

groups, for instance LD blocks are larger in European populations (used interchangeably 

in this thesis as Caucasian populations) compared to African or Asian populations in 

which a LD block may have been broken down due to extensive meiotic 

recombination102. Therefore, fewer tagSNPs for each LD block are sufficient to provide 

coverage for populations of European ancestry, compared to populations of other 

ancestries103. Because GWAS-associated SNPs are often not directly linked to function, a 

successful fine-mapping approach is needed to identify the functional variants underlying 

the GWAS-associated signal. The first step in the fine-mapping approach is to capture all 

the variants that are correlated with the GWAS-associated tagSNPs.   

 

(i) Targeted sequencing  
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The initial approaches utilized targeted sequencing of the GWAS-associated locus in a 

limited number of subjects, ensuring identification of all variants that could have been 

associated104. However, sequencing small numbers of samples detects common variants 

whereas sequencing large numbers of samples is required to detect associations with rare 

variants in the loci, making targeted sequencing a technically challenging and expensive 

approach.  

(ii) High density Arrays 

The 1000 Genomes project, which has comprehensively sequenced the DNA of 1092 

subjects of different ethnic groups, sufficiently captured and catalogued the variants with 

minor allele frequencies >1%105. The collaborative effort of the consortia ( Wellcome 

Trust Case Control Consortium (WTCCC), Genetic Investigation of Anthropometric 

Traits, and BCAC) put forth their common interest in developing high density genotyping 

chips such as Immunochip106, Metabochip107 and iCOGs array88 enabling fine-scale 

mapping of GWAS loci based on an array design for affordable genotyping in larger 

cohorts. The consortia’s efforts are thus to genotype large numbers of samples, with 

increased power to detect association signals. Since the array designs are based on 

selected SNPs, the coverage and density of SNPs on the genome are biased towards 

previously identified loci for fine-mapping108. These array techniques helped identify a 

limited number of causal variants although the array design limits the numbers of SNPs 

selected in a region, unlike imputation-based approaches. However, custom arrays also 

helped to reconfirm the originally reported associations (index SNPs), and the array 

based fine-mapping yielded additional variants conferring breast cancer risk which also 

showed genome wide significance, but the effect sizes were low109.  Even though large 
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sample sizes are available through the consortia, the cost associated with genotyping and 

the inability of the genotyping arrays to capture all SNPs in a given LD block has led to 

different strategies for fine-mapping of disease associated loci.  

(iii) Imputation  

Imputation is a statistical technique which is used to estimate the genotype probabilities 

of ungenotyped SNPs for a subject. Imputation relies on the concept of LD and the high 

correlation between SNP genotypes. As the array-based platforms mostly use tagSNPs 

and not all SNPs in the LD block are captured, imputation is a way of finding the missing 

genotypes. The imputation algorithms utilize a reference genome panel (1000 Genomes 

Panel) to predict the missing genotypes. Imputation has advantages over other methods 

(described above) for fine-mapping of associated disease loci and in identifying putative 

causal variants. Imputation is now widely used in fine-mapping studies. The two 

commonly used imputation algorithms are IMPUTE2110 and MACH111.  In the work 

presented in this thesis, the IMPUTE2 algorithm was used to predict the missing 

genotypes. The different steps in imputation analysis are discussed below for IMPUTE2, 

an algorithm that has optimal performance when used in combination with the 1000 

Genomes Panel as the reference dataset112.  

 

 

Steps in imputation:  

a. Pre-processing 
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This step involves quality control for the data at the sample and genotype levels. The 

sample level quality controls include call rate filtering, heterozygosity, and relatedness 

between genotyped individuals. The genotype level quality controls include call rates, 

Hardy-Weinberg Equilibrium and exclude SNPs with low minor allele frequencies. I used 

National Center for Biotechnology Information (NCBI) genome build 37 (hg19) for all 

genomic annotations in this thesis. I aligned the genotype data to the same strand 

convention as the reference panel. Often the SNP probes in the genotyping array are 

optimized either for the positive or negative strand. However, the reference genome is 

always aligned with the positive strand and GTOOL can align the study genotypes from 

the negative strand to the positive stand. The genotype output file from GTOOL is saved 

for each individual chromosome in “GEN file” format and a “Sample file” which has 

sample identifiers.  

b. Pre-phasing  

This step reduces the computational burden by calling the haplotypes prior to imputation. 

IMPUTE2 and SHAPEIT algorithms estimate the phased haplotypes as input genotypes.  

c. Imputation  

Imputation is the process of filling the missing genotypes in the input phased haplotypes 

based on the reference panel haplotypes. The imputation algorithm handles small chunks 

of data at a time (5 Mb), however it is not necessary to physically split the chromosome, 

instead the IMPUTE2110 algorithm can take arguments defining the 5-Mb chunks. The 

output from the imputation is provided as a probability of individual genotypes along the 

physical length of the chromosome. The quality control metric for imputation is indicated 
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as a concordance table that captures the estimates of concordance between the genotyped 

and imputed SNPs using one-fold cross validation. Detailed usage of the IMPUTE2 

algorithm is described in https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#home 

and 

https://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cookbook#

Imputation. Since whole genome imputation is computationally intense, the analysis 

should be performed using a high-performance computing cluster (e.g., Compute Canada 

Server, https://www.computecanada.ca/).  

1.4.2. Fine-mapping based on LD patterns  

As discussed earlier, GWASs and fine-mapping greatly rely on LD patterns. However, 

LD patterns vary across ancestral populations. This approach is also referred to in the 

literature as cross-ethnic mapping. Most GWASs have been performed in the European 

population wherein larger LD block patterns are common, and several SNPs in the fine-

mapped regions correlate with GWAS-identified SNPs, making it challenging to identify 

putative causal variants. To address this problem, cross ethnic mapping has been adopted 

in the literature 113 wherein associations are tested in different ethnic groups, usually 

African or Asian populations. Often the original GWAS-identified SNP may show 

potential associations in these diverse populations, although the size of LD blocks may 

vary (and smaller LD blocks are more informative) in these populations relative to those 

of European ancestry. Thus, the index GWAS SNP may now be confined to a smaller LD 

block or putative causal SNPs may be in a different LD block and with fewer correlated 

SNPs (of equal or higher statistical significance in the association tests). This approach 

narrows the region in which the putative causal allele resides103. Even though this 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#home
https://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cookbook#Imputation
https://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes_Imputation_Cookbook#Imputation
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approach is logical and appears simple, the underlying assumptions are that the GWAS-

identified SNP also shows statistically significant associations in other populations and 

that finer LD block patterns need to be discernable across diverse populations for the 

given genomic locus of interest.  

1.4.3. Conditional regression to identify independent peaks of 

association  

Fine-mapping across a locus of interest (> 100kb long) may yield several independent 

peaks of association flanking a GWAS-identified SNP with several correlated SNPs 

within each peak. Such sets of correlated SNPs are also termed “independent Correlated 

Highly trait-Associated Variants” (iCHAVs)99,114. The initial step in identification of 

casual variants and exclusion of non-causal variants is to determine the number of 

iCHAV peaks, which can typically be done using forward conditional logistic regression. 

Conditional regression, extension of the logistic regression method, in this context, the 

regression analysis is subjected to conditioning based on top associated SNP to identify 

independently associated SNPs. In the fine-mapping of the 11q13114 breast cancer loci 

identified multiple iCHAVs by adopting conditional regression analysis and revealed 

stronger signals compared to the original GWAS SNP.  

1.4.4. Likelihood ratio analysis to identify potential causal variants 

among the associated SNPs 

Likelihood ratio test is a statistical test to exclude non-causal variants present within each 

independent association peak. Comparing the risk of each variant with that of the strongly 
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associated potential causal variants within the iCHAV allows exclusion of variants with 

likelihood ratios >100109. This method is informative provided the sample size is 

adequate, and the above statistical methods have reduced the number of highly correlated 

SNPs. Nonetheless, it is still possible to end up with several potential causal variants that 

may require independent data pruning strategies104,114,115. An additional benefit of fine-

mapping is that SNPs from multiple iCHAVs (each with a finite risk) may explain larger 

proportions of heritability than estimated from the original GWAS116. However, each of 

the iCHAV SNPs may regulate target genes by independent mechanisms88,114. While 

statistical approaches eliminate the less likely causal SNPs, the challenges are in 

elucidating biological functions for each causal variant. For determining the functions of 

non-coding variants, there are an array of computational approaches, databases and 

online resources discussed in detail in the following section. 

1.4.5. Functional annotation  

Most GWAS-identified variants are in the non-coding regions of the genome. There are 

several steps in elucidating potential regulatory functions for such SNPs. Transcription of 

a gene is a complex process that depends on interactions between proteins and DNA. The 

transcriptional machinery involves binding of RNA polymerase II (RNA Pol II) and 

transcription factors (TFs) at gene promoters.  The active state of transcription depends 

on histone modifications, vis-à-vis, chromatin accessibility. Regulatory signals can act 

over long distances influencing interactions of promoter and enhancer elements via the 

three-dimensional conformation of DNA. To elucidate potential regulatory functions, 

several lines of experimental data need to be integrated. ENCODE117 and the National 

Institutes of Health (NIH)-Roadmap Epigenomics Projects118 have generated data that is 
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available in the public domain and are of immense help for understanding the functional 

roles of regulatory variants. These databases provide experimental evidence for open 

chromatin structure, histone modifications, TF binding, and high throughput sequencing 

and genotyping data from diverse cell types of both normal and cancer cell lines. The 

information from these databases can be directly accessed or interrogated using online 

bioinformatic tools such as RegulomeDB119 and HaploReg120. Table 1.3 summarizes the 

different datasets, their descriptions and the online resources.  

(i) Open chromatin  

The open chromatin state in DNA is due to depletion of nucleosomes, which may 

indicate sites of active gene transcription. Openness of a chromatin state is assayed using 

DNase-Seq and FAIRE-seq. DNase-Seq targets DNase hypersensitivity sites which are 

open and not bound by nucleosomes, indicating open chromatin states at the loci of 

interest. FAIRE-seq121 (Formaldehyde-Assisted Isolation of Regulatory Elements) uses a 

different approach, wherein DNA is cross linked with bound nucleosomes using 

formaldehyde, fragmented and extracted using phenol-chloroform. The nucleosome 

depleted DNA is separated from the DNA with bound protein during the phase 

separation. The nucleosome depleted DNA is later sequencedi. Both methods are 

complimentary and offer insights into the open chromatin states.  

(ii) DNA-protein interactions  

                                                 

i I refer to the use of Next Generation Sequencing (NGS) technologies in the context of DNA sequencing 

throughout this thesis, unless specified otherwise 
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Binding of different types of proteins to DNA sequences may lead to gene expression or 

regulatory functions, depending on the nature of the protein and its sequence specificity. 

For instance, the binding of TFs to DNA can be computationally predicted using Position 

Weighted Matrices (PWM). However, the experimental evidence of protein binding to 

DNA is assayed using ChIP-seq122 and DNase foot printing123. In ChIP-seq, DNA is 

cross-linked with bound protein using formaldehyde and fragmented, after which specific 

antibodies attached to magnetic beads are used to pull down the bound protein of interest. 

The enriched DNA bound protein is de-crosslinked, and the DNA is sequenced. This 

assay specifically detects DNA sequence motifs for binding to the protein of interest. 

DNase foot printing can also detect binding of proteins to DNA, using enzymatic 

cleavage, wherein the DNA with bound protein is often protected from the enzymatic 

reaction compared to free DNA. The bound and unbound DNA fragments can be 

distinguished from each other because they migrate during gel electrophoresis at different 

mobilities. 

(iii) DNA methylation  

Methylation of cytosine residues in CpG islands indicates gene silencing or repression of 

gene expression124,125. DNA methylation patterns determine if a gene is off or on. 

Methylation patterns can be captured using a number of high throughput techniques such 

as methylation array126 and bisulphite sequencing127.  

(iv) RNA expression  

The level of transcriptional activity can be measured based on quantification of 

transcribed RNAs. There are different types of RNAs - protein coding RNAs, non-coding 
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RNAs (small and long non-coding RNAs) and alternatively spliced RNAs (isoforms). 

The individual species of RNAs can be profiled and using gene expression microarray 

platforms as well as RNA-seq experiment (NGS platform)99. NGS offers an absolute 

quantification of expression of transcripts, whereas microarray-based technologies offer 

relative quantification of transcripts.  

(v) Histone Modifications 

Histone proteins together with nucleosomes bound to DNA form the fundamental blocks 

of eukaryotic chromatin. Modifications of residues in the tail domains of histone proteins 

play an important role in epigenetic regulatory activities128. There are different 

modifications including methylation and acetylation at different lysine residues. The 

combinations of these histone modifications (histone code) can determine the state of 

chromatin as either active or inactive. The histone modifications are conserved across the 

cell types and are tissue specific. Methylation patterns (mono, di or tri methylations) or 

acetylation on histones are specific in promoters or enhancers. For instance, H3K4me1,  

H3K4me2 or H3K4me3 indicate active promoters or enhancers; H3K27me3 indicates 

inactive promoters; H3K79me2 indicates transcription transition; H3K27ac indicates 

active regulatory regions; H3K9ac indicates promoters; H3K9me1indicates active 

chromatin; H3K9me3indicates repressed chromatin128. Histone modifications can be 

assayed using ChIP-seq method utilizing specific antibodies.  

(vi) Chromatin interactions  

The interactions facilitated by DNA looping brings together regulatory motifs (such as 

enhancers and promoters) to impart gene regulation. These mechanisms are complex and 
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tissue-specific. With comprehensive genomics approaches, and the data deposited in the 

public domain, delineation of complex gene regulatory mechanisms is now feasible. The 

higher dimensional interactions of DNA can be captured using techniques such as 

Chromosome Conformation Capture (3C)129, Circular Chromosome Conformation 

Capture (4C)130,131, Carbon-Copy Chromosome Conformation Capture (5C)132, 

Combined 3C-ChIP-Cloning (6C); Hi-C (High Throughout Sequencing and an extension 

of the technique of 3C)133, Chromatin Interaction Analysis by Paired-End Tag 

Sequencing (ChIA-PET)134. All the above techniques are derived from 3C, which 

typically captures the three-dimensional conformation of DNA using DNA crosslinking, 

ligating cross-linked ends, de-crosslinking and sequencing. A schematic representation of 

these methods is illustrated in Figure 1.3.
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Figure 1.3 Illustration of special organization of chromatin within a cell by chromatin conformation 

technologies 

Figure is from Li et al (2014)135. The basic methodology of conformation capture assays depicted here (top panel) involves 

crosslinking of the chromatin using formaldehyde to freeze the interacting genomic loci, followed by digestion with restriction 

enzymes and random ligation that favors ligation of the ends that are crosslinked fragments compared to non-interacting 

fragments. The bottom panel explaining different methods including 3C,4C,5C, Hi-C, ChiP-loop and ChiA-PET. Finally, 

interacting loci are quantified using PCR with known primers in 3C. 4C captures the interaction between one locus versus all 

other genomic loci. It involves digestion with restriction enzyme (every 4 base pairs) and ligation to form self-circularized 

DNA fragments and followed by inverse PCR. Microarray or sequencing of the PCR amplification can capture about million 

interactions. 5C method captures interactions between all restriction digested fragments. Universal Primers were ligated to the 

fragments and amplified. The amplified fragments were captured using microarray or sequencing. Capturing the genome-wide 

complex interactions by the 5C method were limited by the number of primers needed. Hi-C method used high throughput 

sequencing to detect the fragments of obtained by restriction digestion and detected by adopting pair-end sequencing to 

captures the interacting fragments. ChiP-loop combines 3C with ChiP-seq to detect interacting loci mediated by protein of 

interest. ChIA-PET is combination of Hi-C and ChiP-seq, to detect all interacting loci mediated by specific protein.  
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(vii) Expression Quantitative Trait Loci (eQTL) 

A subset of genomic variants is capable of conferring phenotypes (termed Quantitative 

Trait Loci) and those variants regulating tissue specific gene expression are termed 

expression Quantitative Trait Loci (eQTL). The heritable nature of the germline variants 

and their correlations with genotypes are useful to explain a proportion of genetic 

variance in gene expression phenotypes99. Several studies have shown that the SNPs in 

the GWAS-identified loci are eQTLs regulating putative target genes. There are several 

statistical methods available to identify genotype-gene expression correlations. However, 

eQTL mapping studies are informative only if the genotype data and specific tissue level 

gene expression data are available from the same individuals. There are online 

resources136,137 wherein such matched data sets (in normal and cancerous tissues) are used 

and a summary of the eQTLs is available for interrogation. Such databases require input 

of SNP identifiers.  

(viii) Allelic specific expression:  

In allelic specific expression, the effects of the alleles (major and minor) are investigated 

for their influence on gene expression in contrast with eQTL correlations wherein 

genotypic influence on gene expression is investigated. If the variant of interest is in a 

regulatory region, allelic specific analysis will reveal if binding of TFs to the allele can 

influence the gene expression114. This helps to understand the effect of the risk allele on 

gene expression compared to the referent or wild type allele99,105. If the SNP is in a 

coding exon, its allelic expression reflects the preferential transcript expressed in the cell. 

However, for allele specific analysis, the genotype and gene expression profiles from 
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heterozygote individuals or relevant cell lines are needed. Overall allelic expression is 

also influenced by histone modifications and the open chromatin state of the DNA. 

Table 1.3 Bioinformatics tools and resources for functional annotation 

of regulatory variants 

Feature 
Experimental 

Approach 

Bioinformatic Tools and 

Online Resources 

Open 

chromatin 

DNase-seq, FAIRE 

sequencing 

ENCODE, NIH Roadmap, Epigenomics 

Project, RegulomeDB, HaploReg, 

FunciSNP 

TF-binding 

prediction 

Position Weight 

Matrices 
TRANSFAC, JASPAR, MAPPER2 

DNA-protein 

interaction 

ChIP-seq, DNase 

foot-printing 

ENCODE, NRCistrome, RegulomeDB, 

HaploReg 

DNA 

methylation 

methylation array, 

bisulphite 

sequencing 

ENCODE, NIH Roadmap, Epigenomics 

Project, MethDB, EpiGraph 

RNA 

expression 

RNA-seq, RNA-

PET, CAGE 

ENCODE, Gene Expression 

Omnibus, Galaxy 

Histone 

modifications 
ChIP-seq 

ENCODE, NIH Roadmap Epigenomics 

Project, NRCistrome, RegulomeDB, 

HaploReg, ChromHMM, GWAS3D, 

Segway, ChroMoS 

Chromatin 

interactions 

3C, 4C, 5C, 6C, Hi-

C, ChIA-PET 

GWAS3D, Hi-C Project, 

ChIA-PET Browser 
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1.5. Copy Number Variants 

Germline CNVs are a class of structural variants of DNA, involving loss or gain of 

segments of size >50bp138. The base pair coverage by all genomic CNVs is an order of 

magnitude higher than the cumulative genomic coverage by all SNPs139-144. CNVs are 

also polymorphic and those with population frequencies of >5% are termed common 

CNVs (similar definitions are ascribed to SNPs). CNVs are relatively stable, heritable 

and contribute to genetic predisposition of diseases and traits. CNVs have not been 

studied much for genetic heritability in breast cancer although studies on rare CNVs and 

predisposition to breast cancer have been reported145-148.  However, the common CNVs 

and breast cancer risk are currently a subject of intensive investigations in the Damaraju 

laboratory.  

CNVs are complex and copy status can be anywhere from a total deletion (single copy or 

both copies) to multicopy amplification of the same region. As such, CNVs may confer 

gene dosage effects and therefore a higher phenotypic variance can be explained at a 

population level. Phenotypic effects may vary, i.e., those that confer survival advantage 

to species (adaptive traits), or cause diseases or embryonic lethality. Such deleterious 

CNVs may be selectively eliminated during evolution149,150. For instance, CNVs affecting 

the gene encoding alpha-amylase contribute to the adaptation to starch consumption151. 

CNVs have also been linked to a number of disease conditions such as autism152,153, 

schizophrenia154, Crohn’s disease141,155, rheumatoid arthritis141, type1 diabetes141, 

obesity156 and developmental disorders142,157-159. Germline CNVs have also been 

investigated for their role in susceptibility to familial breast cancer145-148,160,161 and 
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cancers of prostate162-164, ovary161,165-167, pancreas168-170, colon and rectum147,171-175, 

endometrium176, lung177-179 and melanoma180,181.  

1.5.1. Mechanism of CNV formation 

The genomic rearrangements implicated from recombination-based mechanisms such as 

nonallelic homologous recombination (NAHR), nonhomologous end-joining182 (NHEJ) 

and retrotransposition183-186 result in the formation of CNVs. Recently replication-based 

mechanisms, fork stalling and template switching (FoSTeS) mechanisms 187,188 were also 

proposed to contribute to the formation of CNVs (Figure 1.4). The CNV formation and 

the role of DNA recombination pathways are complex. The following models were 

proposed as a basis to understand the CNV origins. 

(i) Nonallelic homologous recombination (NAHR):  

NAHR occurs during meiosis and mitosis, involving alignment and crossover of two non-

allelic or paralogous DNA sequences at the region of sequence repeats sharing high 

similarity190. However, if repeats are on the same chromosome, and the same orientation, 

a duplication or deletion event can occur, wherein inverted repeats mediate inversion of 

the genomic interval flanked by the repeats. If the repeats are on different chromosomes, 

they may lead to chromosomal translocation. Substrates for NAHR are the low copy 

repeats (LCR) or segmental duplication of size more than 10kb with > 95% sequence 

similarity190,191. NAHR rates on the genome are determined by genetic and environmental 

factors. Thus, NAHR contributes to genomic rearrangements and the resulting phenotypic 

variations in populations. NAHR during meiosis results in unequal crossing over leading 

to genomic rearrangements. CNVs originating from NAHR may be benign or contribute 
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to inherited genomic disorders144,182,192. Another class of CNVs to which NAHR 

contributes are called de novo CNVs which may once again be benign or disease causing. 

Autism spectrum193,194, neurodevelopmental diseases and schizophrenia195-197 are 

representative genetic disorders with de novo CNVs contributing to the disease etiology.  

(ii) Nonhomologous end-joining (NHEJ):  

Nonhomologous end-joining (Figure 1.4) is a mechanism utilized by human cells to 

repair double strand breaks (DSBs) in DNA caused by ionizing radiation or reactive 

oxygen species198-200. NHEJ is distinct from NAHR in that NHEJ does not require 

substrates with extended homologies and in the process can lose or add several 

nucleotides at the joined end.  

(iii) Fork stalling and template switching (FoSTeS): 

Lee et al.187 proposed the mechanism of fork stalling and template switching (FoSTeS) as 

one possible mechanism for genomic rearrangements. According to this model, the DNA 

replication fork stalls, and the lagging strand uncouples from the original template and 

switches to another replication fork, restarting DNA synthesis with a new fork. This 

happens via small homology between the switched arm and the original fork 187. The new 

template formed may not be adjacent to the original replication fork at the primary 

sequence but may be in proximity in three-dimensional space. Depending on the fork 

progression and location downstream or upstream of the original fork, template switching 

may result in deletion or duplication.  
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(iv) L1 Retrotransposition: 

Long interspersed elements-1 (L1) cover up to 17% of human genomic DNA and are 

known to contribute to CNVs 183,201. L1 elements are known as active transposons in 

human genomes. Nearly 15% of the structural variants that are detected are due to retro 

transposition events184.   

 

Figure 1.4 Mechanism of copy number variation 

The figure illustrates the mechanism of copy number variants described above (a) 

Nonallelic homologous recombination (NAHR) - regions of recombination at repeats 

such as low copy repeats regions, Alu element or L1- element. (b) Nonhomologous end-

joining (NHEJ)- double strand break repair mechanism via recombination (c) Fork 

stalling and template switching (FoSTeS)- single FoSTeS (x1) and multiple FoSTeS (x2) 

causes simple and complex rearrangements respectively. (d) L1 retrotransposition. TS, 

target site and TSD, Target Site duplication. The figure is from Zhang F et al.189 (2009). 

Thick colored bars indicate different genomic fragments and different colors (orange and 

red in NHEJ/L1 transposition or orange/red/green in FoSTeS×2) indicate that there is no 

homology between the two fragments. Bars represented in shades of blue (NAHR) 

indicate extensive homology with each other. The triangles (filled or empty) symbolize 

short sequences sharing microhomologies.  

 

1.5.2. Function of CNVs in gene regulation  

The DNA sequence coverage for CNVs is ~10% of the genome. CNVs harbor coding 

regions and non-coding regulatory regions and may confer profound phenotypic effects 

relative to effects caused by SNPs202-204. CNVs have a multitude of effects based on their 
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genomic location, including gene dosage effects and cis-regulatory functions164. Since the 

distribution of CNVs across the genome is disproportionate with a higher proportion in 

non-coding than coding regions, their functional impact on phenotype is not clear. 

However, CNVs that overlap protein coding genes offer insights into disease phenotypes 

and associated biology142. Nearly 80% of cancer genes harbor CNVs205 and support the 

premise that CNVs in genes contribute to phenotypic variance.  

A study based on the HapMap dataset, which includes data from 270 human 

lymphoblastoid cell lines, assessed the impact of CNVs on gene expression. It has been 

estimated that ~20% of measurable genetic impact on gene expression is due to CNVs206. 

CNVs can modify gene expression by gene dosage through either amplifications or 

deletions. Figure 1.5 may be consulted for potential mechanisms of CNVs influencing 

gene expression or regulation.  CNVs can disrupt gene structure, including gene fusion 

events that lead to formation of novel transcripts207. CNVs can also influence regulation 

of genes from long distances through cis- or trans- mechanisms, and not necessarily by 

gene dosage effects207-211. Gene dosage effects can occur if the gene overlaps a structural 

variant due to inversion or translocation207. There are also other mechanisms by which 

the regulatory molecules such as the microRNAs and other small non-coding RNAs 

harbored within the CNV regions can potentially play a role in gene regulation.  

 

Figure 1.5 Potential mechanisms of how CNVs influence phenotypes 

The above figure describes the possible mechanism by which structural variants can 

influence gene expression and contribute to phenotypes. The figure is used from Feuk et 

al (2006)207. The green bars in the figure is shown in pairs (homologous chromosomes) to 
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indicate the diploid status of human genome. (a) Genes that are encompassed by 

structural variants are affected by dosage sensitivity. Deletion or duplication of dosage 

sensitive gene will result in the phenotype. Deletion is depicted in the figure. Deletion of 

dosage insensitive gene may result in phenotype by activation of the recessive mutant 

allele on the homologous chromosome. (b) Genes that overlap structural variants can be 

disrupted directly by inversion (upper panel), deletion or translocation (lower panel) 

which leads to the reduced expression of dosage-sensitive genes. (c) Genes that flank a 

structural variant can also result in dosage sensitivity, upper panel depicts the deletion of 

the regulatory element can alter the gene expression or may unmask of a functional 

polymorphism. (d) Genes that are involved in complex disorders, where a combination of 

variations can produce phenotype.   

 

CNVs are known to play a role in several disease phenotypes. They have been 

exhaustively investigated for their role in neurodevelopmental disorders, however their 

role in cancer predisposition is slowly evolving. Understanding of the role of germline 

CNVs in breast cancer is in its early stages, with the majority of studies reporting rare 

CNVs associated in familial breast cancer. Studies describing CNVs as genetic 

determinants of sporadic breast cancer are limited. Long et al.212 considered a candidate 

CNV for detailed analysis. The study used a case-control approach in subjects of Chinese 

ancestry (Stage 1: 2623 breast cancer patients and 1946 control subjects and Stage 2: 

4254 breast cancer patients and 4387 control subjects) and reported the association of a 

common deletion in APOBEC genes with breast cancer. The study reported that the effect 

size associated with one-copy deletion is 1.31 (95% CI = 1.21 to 1.42) and two-copy 

deletion is 1.76 (95% CI = 1.57 to 1.97). Later the association was replicated in 

European213 and Iranian populations214.  I have described the association of a number of 

candidate common CNVs associated with sporadic breast cancer in Chapter 3215 and 
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Chapter 4216. The Damaraju laboratory is the first to report CNV GWAS for sporadic 

breast cancer in Caucasian populations.  

1.6. Genetic risk factors for predisposition to breast cancer prognosis 

Even though breast cancer prognosis is often determined by histopathological features of 

the tumor, there are a subset of patients who experience poor outcomes irrespective of the 

predicted good prognosis. Current tumor-based markers for prognosis are useful in 

guiding treatments but markers with higher specificity would be more useful in 

addressing inter-individual variations in breast cancer prognosis. Several gene expression 

profiling studies from tumors have identified potential prognostic mRNA-based217,218 and 

miRNA-based219 markers. However, germline DNA markers for prognosis are 

unexplored. I reasoned that germline prognostic markers may complement the existing 

tumor-based markers to yield prognostic models of higher specificity and accuracy. 

According to the gene predisposition model for prognosis220, it is believed that the 

genetic burden of the host can play a role in the expression of metastatic phenotypes of 

tumors. There are attempts in the literature to find SNPs and CNVs of prognostic value 

(discussed below). GWAS-identified SNPs showing association with breast cancer 

susceptibility were not prognostic221,222. Also, independent SNP based GWASs for 

prognosis in breast cancer were not informative3,221-224. However, the Damaraju 

laboratory previously described that germline Copy Neutral Loss of Heterozygosity (CN-

LOH, a class of CNVs) are associated with recurrence free survival in breast cancer225. 

These initial findings prompted me to undertake an in-depth investigation of the role of 

common CNVs as prognostic markers. I address these in Chapter 3 of this thesis215. 

CNVs are informative compared to SNPs, since CNVs and their embedded genes may 
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confer higher levels of penetrance (relative to SNPs) owing to loss or gain of functions. 

Germline CNVs have been identified as prognostic markers for several cancer types 

including prostate cancer226, ovarian cancer166 and colorectal cancer227. CNVs provide 

mechanistic insights and allow deciphering the biological roles of the affected genes. 

Understanding the genes and/or pathways affected may offer therapeutics developments. 

In my current efforts, I focused on the prognostic relevance of the CNVs which showed 

association with breast cancer. This work therefore should lay the foundation that CNVs 

play a role in both breast cancer susceptibility and prognosis. An independent CNV-

GWAS study for breast cancer prognosis was beyond the scope of the study.  

1.7. Gaps in the literature  

The rationale to conduct the current study was to uncover genetic variants associated with 

breast cancer. GWASs have identified several variants to be associated with breast cancer 

susceptibility61. Yet the variants reported so far showed increased risk among 

predominantly postmenopausal cases (both familial and sporadic cases)19,62. However, 

premenopausal women also develop breast cancer in sporadic cases (age at onset >45 and 

without any family history). Previous studies from the Damaraju laboratory identified a 

novel locus on chr4q31.22 to be associated with premenopausal breast cancer risk20,222. In 

my study, I have reconfirmed these findings and fine-mapped the locus to identify 

putative causal variants. While SNP-based GWASs could not fully account for breast 

cancer heritability, there is a need to identify other genetic variants which can potentially 

account for the missing heritability. I have investigated the role of CNVs in breast cancer 

susceptibility. As mentioned above, SNPs showing association with breast cancer 

susceptibility were not prognostic221,222, and independent SNP-based GWASs did not 
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reveal variants associated with breast cancer prognosis221-224,226,227. Therefore, I further 

explored the contribution of breast cancer associated CNVs in prognosis.  

 

1.8. Hypothesis  

Common germline polymorphisms (SNPs and CNVs) are heritable determinants for 

breast cancer susceptibility and prognosis.  

1.9. Objective 

The specific objectives of the research described in this thesis were as follows:  

1. To replicate and validate the association at the chr4q31.22 locus with premenopausal 

breast cancer risk in Caucasian and non-Caucasian populations (Chapter 2).  

2. To fine-map the chr4q31.22 locus to identify putative causal variants (Chapter 2). 

3. To identify the germline copy number variants harboring coding genes and show 

association with breast cancer susceptibility and prognosis (Chapter 3). 

4. To identify the germline copy number variants harboring small non-coding RNA genes 

and their role in conferring breast cancer risk (Chapter 4). 

1.10. Organization of the thesis  

The thesis has been organized into six chapters, each addressing a specific objective as 

described below. Introduction pertinent to individual study objectives are provided in the 
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corresponding chapters. At the outset, the following historical account offers the premise 

for the findings summarized in this thesis. 

Earlier studies published from the Damaraju laboratory reported six putative variants 20 

associated with sporadic breast cancer. Stage 1 of the study consisted of 348 breast 

cancer cases and 348 controls of Caucasian ancestry and utilized whole genome 

genotyping platform Affymetrix Human SNP 6.0 array (~906,600 SNPs). Following 

population stratification analysis, 302 cases and 321 controls that clustered with HapMap 

Caucasian subjects were retained for association analysis. Genotype level data filtering 

resulted in a total of 782,838 SNPs that were amenable for single-locus association tests. 

Association analysis revealed 35,859 SNPs associated with breast cancer at statistical 

significance P<0.05.  

Of the associated SNPs, 35 were selected as described for Stage 2 replication20. Stage 2 

consisted of 1,153 breast cancer cases and 1,215 controls. Six of the 35 SNPs (rs1429142 

on chr4q31.22, rs1092913 on chr5p15.2, rs10411161, rs3848562, rs11878583 on 

chr19q13.33, rs1981867 on chr16q23.2) were replicated. Subsequently, an independent 

Stage 3 replication study 222 consisting of 1,294 breast cancer cases and 2,934 controls of 

Caucasian ancestry from Alberta, Canada, replicated the association of the two SNPs 

rs1429142 on chr4q31.22 and rs1092913 on chr5p15.2. In the combined analysis of 

Stages 1-3, rs1429142 on chr4q31.22 showed association with overall risk for breast 

cancer association reaching near genome level significance (adjusted for BMI, P =1.5x10-

7). In the stratified analysis of Stages 1-3 cases and controls, SNP rs1429142 showed 

elevated risk with premenopausal breast cancer risk compared to post-menopausal breast 

cancer and showed genome wide significance (adjusted for BMI, P=10-10). Stratified 



 55 

analysis based on luminal A status, menopausal status, family history of breast cancer, 

tumor stage and grade did not reveal any elevated risk associated with the SNPs. 

Characterization of the second variant (rs1092913) described by the Damaraju laboratory, 

and which showed replication in three stages, warrants further investigations. 

In chapter 2, I address objectives 1 and 2. I reconfirmed the association for rs1429142 

for elevated breast cancer risk among premenopausal women using an independent set of 

1502 breast cancer cases (Stage 4). In Stage 4 of the study, the association of SNP 

rs1429142 with overall risk for breast cancer was also replicated. In the combined Stages 

1-4, the association of SNP rs1429142 reached genome-wide significance. I also 

investigated the association of SNP rs1429142 in independent external datasets of 

Caucasian (CGEMs study: 1144 cases and 1143 controls, all postmenopausal), and non- 

Caucasian populations (African Diaspora: 1607 cases and 2041 controls).  

Objective 2 consisted of fine-mapping of the chr4q31.22 locus previously shown to be 

associated with premenopausal breast cancer risk. The fine-mapping approaches adopted 

in the study were aimed at identification of potential causal variants.  

In chapter 3, I describe (objective 3) the identification of common CNVs overlapping 

with protein coding genes and their association with breast cancer susceptibility. I also 

describe the contribution of a subset of breast cancer associated CNVs in conferring 

genetic predisposition for prognosis (Overall Survival and Recurrence Free Survival).  

In chapter 4, I describe (objective 4) the identification of CNVs harboring small-non-

coding RNA genes (microRNA, piwi-interacting RNA, small nucleolar RNA and transfer 

RNA) and their association with breast cancer susceptibility. I investigated expression of 
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these small non-coding RNAs in breast tissue and their role in post transcriptional gene 

regulation. Profiling of small non-coding RNAs in breast tissues and their role in 

prognosis was addressed earlier by the Damaraju laboratory219,228-230. The role of CNV 

embedded small non-coding RNAs in prognosis is not addressed here due to the lower 

frequencies of these CNVs. I used common CNVs harboring protein coding genes (>10% 

frequency). Therefore, larger sample size is needed to capture the low frequency variants, 

and adequate number of events (survival or recurrence events) to address prognostic 

relevance.  

Further, the overall discussion (chapter 5), conclusions and future directions (chapter 6) 

are described, followed by appendices and bibliography. 
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2 Fine-mapping of a novel premenopausal breast cancer 

susceptibility locus at Chr4q31.22 in Caucasian women 

and validation in African womenj  
2.  

2.1. Introduction 

Breast cancer is the most commonly diagnosed cancer among women worldwide1,2. 

Genome Wide Association Study (GWAS) approaches have identified to-date a total of 

172 common low penetrance variants associated with breast cancer risk3. SNPs identified 

by GWAS approaches using high-density genotyping arrays are usually tagSNPs. 

GWAS-identified SNPs are often in linkage disequilibrium (LD) with putative causal 

variant(s) contributing to the phenotype4. Therefore, it is necessary to comprehensively 

investigate GWAS-identified loci by fine-scale mapping to identify putative causal 

variants and their functional significance5. While fine-mapping approaches are well 

described in the literature, it is challenging to elucidate functional relevance of GWAS 

SNPs, which are predominantly from gene deserts potentially conferring gene regulation. 

Thus far only 14 breast cancer associated GWAS variants have been fine-mapped and 

characterized for putative biological roles6-19.  

                                                 

j The GWAS of Breast Cancer in the African Diaspora was conducted by the University of Chicago and 

supported by the National Cancer Institute (R01 CA142996-02). This manuscript was not prepared in 

collaboration with investigators of the GWAS of Breast Cancer in the African Diaspora and does not 

necessarily reflect the opinions or views of University of Chicago, or NCI. The dataset was accessed from 

dbGaP and study Accession: phs000383.v1.p1. I would like to thank Jennifer Dufour and Preethi Krishnan 

for providing technical assistance. 
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A previous study from the Damaraju laboratory reported six putative variants20 from a 

GWAS in a Caucasian population (Alberta, Canada), of which four were from different 

chromosomes showing association with sporadic (>40 years of age at onset and no family 

history) breast cancer risk. One SNP, rs1429142 on Chr4q31.22, showed consistent 

associations in two independent replication studies for the overall risk (Stages 1-3, 

P=1.5x10-7 adjusted for BMI; OR 1.28). The GWAS discovery stage (Affymetrix SNP 

6.0 array) had 348 cases/348 controls; Stages 2 and 3 replication cohorts had 1,153 

cases/1,215 controls20 and 1,294 cases/2,934  controls, respectively21. Analysis based on 

menopausal status (Stages 1-3) revealed that SNP rs1429142 had an elevated risk for 

breast cancer among premenopausal women21 (BMI adjusted p-value of 6.22x10-10 and 

OR per-allele of 1.49) compared to postmenopausal women (BMI adjusted p-value of 

7.79x10-03 and OR per-allele of 1.17) with a p-value of heterogeneity < 10-03.  

In the current study, we (i) accessed an additional 1502 breast cancer cases (Stage 4) 

from Alberta, Canada, and reanalyzed the SNP rs1429142 for overall breast cancer risk in 

a stratified analysis based on menopausal status; (ii) extended the study to validate 

findings in women of African ancestry, and (iii) conducted a fine-scale mapping of the 

Chr4q31.22 locus. The goal was to identify the potential causal variants and their putative 

functions.  

2.2. Methods  

I performed all the experiments and analysis, unless otherwise indicated in the text. 
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2.2.1. Study population  

Written informed consent was obtained from all study participants, and the study protocol 

was approved by the Health Research Ethics Board of Alberta (HREBA)-Cancer 

Committee. Samples from Alberta, Canada (Internal dataset, Stages 1-4) 

The study includes breast cancer cases and apparently healthy control samples recruited 

from the province of Alberta, Canada. The description of described cases for the Stages 

1-3 (age matched 2,750 breast cancer cases and 4472 controls) is available elsewhere20,21. 

The cases were accessed from the Alberta Cancer Research Biobank 

(http://www.acrb.ca/about-us/), which enrolled patients into the bank between 2001–

2005. The study inclusion criteria for cases were: (i) invasive breast cancer, and (ii) non-

metastatic at the time of diagnosis. The cases in Stages 1and 2 had no documented family 

history of breast cancer. For Stage 4 of the study, we accessed independent breast cancer 

cases (n=1722) diagnosed between 2002 till 2015 from the Alberta Research Tumor Bank 

and the study inclusion criteria were the same as in the previously described20,21. Cases 

recruited were independent of family history for Stages 3 and 4 to facilitate comparisons 

of the variants identified by GWAS in a stratified analysis based on family history.  

Controls were accessed from the Tomorrow Project, a longitudinal cohort study that is 

described elsewhere (www. https://myatp.ca/)20,21. Inclusion criteria for controls included 

no personal history of cancer at the time of enrolment, resident of Alberta, Canada, age 

between 35-69 Y. The controls were progressively followed for incidence of cancer. The 

control samples from individuals who had developed cancer (n= 201) since the time of 

http://www.acrb.ca/about-us/
https://myatp.ca/
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enrollment in the study were excluded from the current analysis, bringing the total 

number of controls to 4271. All case and control subjects were of Caucasian origin.  

The biobanks provided buffy coat samples for both cases and controls to isolate germline 

DNA, and pertinent demographical and patient clinical characteristics (Appendix Table 

A.1).  

2.2.2. Patient demographics 

Total sample size (n=9235) for the current study included 4964 (cases) and 4271 

(controls). Among the cases, 33% and 67% were pre- and post-menopausal cases (self-

declared at the time of diagnosis), respectively. Luminal cancers were predominant 

(77%) and this frequency was maintained when cases were stratified by menopausal 

status. Up to 94% of the total breast cancer cases in this study were >40 Y of age. The 

cases and controls showed similar frequencies for age and BMI distribution (Appendix 

Table A.1 and Figure A.1).  

External datasets  

(i) CGEMS: The Cancer Genetic Markers of Susceptibility (CGEMS) case-control 

study for breast cancer was based on postmenopausal women of European ancestry and is 

a subset of the longitudinal cohort from the Nurses’ Health Study (NHS)22,23. The study 

includes invasive breast cancer cases (n=1,145) and controls (n=1,142) and we analysed 

rs1429142 (C>T polymorphism) in this cohort, wherein the whole genome data was 

generated on Illumina HumanHap550 and genotypes of 528,173 SNPs were available in 

the open access database. Genotype and phenotype information was accessed from 
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dbGaP under study Accession: phs000147.v1.p1. Briefly, the study is based on Caucasian 

populations, cases had confirmed diagnosis of invasive breast cancer, and controls were 

matched for age and menopausal status.  

(ii) African Diaspora: Dataset for breast cancer GWASs was accessed from dbGaP 

(Study Accession: phs000383.v1.p1) to analyze rs1429142 (T>C polymorphism). In this 

population T is the minor allele, whereas C is the minor allele in Caucasian populations. 

The study includes women of African ancestry (n= 3766) living in Nigeria, Barbados and 

the United States of America. Genotyping was performed using Illumina 

HumanOmni2.5-Quad platform. Following data filtering as described below, we retained 

2091 controls and 1641 breast cancer cases for association analysis. 

2.2.3. DNA extraction and genotyping  

Genomic DNA was extracted from buffy coat samples using a commercially available 

Qiagen Tm kit (Mississauga, Ontario, Canada). Genotyping was performed using 

Sequenom iPLEX Gold platform (San Diego, CA, USA) and utilized the services 

provided by McGill University and Genome Quebec Innovation Center, Montreal, 

Canada.  

2.2.4. SNP selection and genotyping  

Stage 1 of the study had whole genome genotype data available in Human Affymetrix 

SNP 6.0 array (906,600 SNPs) for 348 cases and 348 controls. Principal component 

analysis was used to identify outliers (n=72) and the remaining 624 samples clustered 

with HapMap population of Caucasian ancestry20. I applied a call rate filter (>99%) and 

assessed for deviations from Hardy-Weinberg equilibrium (cut-off of p<0.001 on 
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controls). I also performed identity by decent analysis24 based on the genotypes to 

identify cryptic relatedness (with pairwise correlation r2 > 0.25). Chromosome (Chr) 4 

with 40,146 SNPs with genotype calls on Affymetrix array was used for imputation. I 

used GTOOL for flipping the strand for the SNPs genotyped from the minus strand in 

Affymetrix to the same strand convention as the reference panel. Followed by strand 

flipping Chr4 is phased using SHAPEIT algorithm25 prior to imputation. For imputation 

we used the best guess method, implemented within IMPUTE2 algorithm26 and the 1000 

Genomes panel based on diverse populations was used as the reference for imputation.  

I imputed 952,002 SNPs with imputation info score > 0.7. SNPs imputed were filtered for 

genotype call rate > 95% and minor allele frequency > 1%. I selected 2019 SNPs in the 1 

MB region flanking the index SNP rs1429142 and tagSNP were selected from the locus. 

Of the 2019 SNPs, 209 are genotypes from the Affymetrix platform and the rest are 

imputed SNPs. Instead of genotyping all the 2019 SNPs across all samples as cost 

effective strategy, we selected SNPs that will give coverage across the 1MB region and 

that enabled second round of imputation in all Stages 1-4 samples. I used Tagger, a SNP 

selection tool implemented within Haploview ver4.2 and selected 63 tagSNPs. Multiplex 

assay system on Sequenom iPLEX Gold platform was validated for 56 SNPs (including 

SNP rs1429142). I genotyped all cases and controls from Stages 1-4, and 4331 case and 

4271 controls passed genotyping. (Supplementary Table3). The 56 SNPs (spanning 

Chr4:147,802,550-148,781,409, Hg19 build) are in LD (r2 > 0.2) with rs1429142. SNP 

call rates for 56 SNPs were > 92%. I also estimated the imputation and genotyping 

concordance for these 56 tagSNPs in the Stage 1 samples. All the SNPs had a correlation 

(r2) of > 0.80, of which 44 SNPs had r2 of > 0.90. I included several technical replicates 
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for each SNP, and genotype concordance was 100%. I estimated the concordance 

between genotyping batches (previous genotype calls for Stage 1-3 samples) which also 

showed 100% concordance. 

I re-imputed data from 56 SNPs and from pre-menopausal cases (n=1503) and controls 

(n=4271), as the focus of this investigation was on assessing breast cancer risk and 

replicating previous findings. I imputed 1715 SNPs using one-phase imputation approach 

with imputation info score value > 0.7. After applying genotyping quality filter, 587 

SNPs were retained with 85% genotype call rate and minor allele frequency > 5% for 

fine-mapping association analysis.  

2.2.5. Statistical analysis  

I used correlation/trend test for allelic correlation tests with one degree of freedom (d.f) 

for unadjusted analysis in the association study between cases and controls. 

Unconditional logistic regression was used to estimate the odds ratio (OR) with 95% 

confidence interval (adjusted for BMI). Subgroup analysis were carried out based on 

menopausal status, disease stage (I, II versus III), grade (high versus low), molecular 

subtype (luminal A versus non-luminal). P-heterogeneity was estimated between the 

subgroups. All association analyses were performed using Golden Helix SNP & 

Variation suite and Plink v1.07 27. Conditional logistic regression analysis was conducted 

with adjustments for the highly associated variants (rs13134510, rs1366691, rs1429139 

and rs12501429) using binary logistic regression analysis in PLINK. Likelihood ratio 

analyses were carried out using IBM SPSS Statistics (IBM Corp. Released 2013. IBM 

SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp) to identify the 
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potential casual variants. The top associated SNP rs13134510 was used as a reference, to 

test fine-mapped SNPs with 4 degrees of freedom. I excluded SNPs with p-value > 0.01.  

2.2.6. In silico predictions for functional relevance of the fine-mapped 

SNPs  

To elucidate the functional relevance, we annotated a total of 130 breast cancer risk 

variants (p-value < 0.05). The annotation used data from ENCODE (Encyclopedia of 

DNA Elements)28, Roadmap Epigenomics consortium29 available through Regulome DB 

ver1.130, HaploReg v4.131 and Washington University Epigenome Browser 

(https://epigenomegateway.wustl.edu/). I scored all 130 variants using RegulomeDB, 

variants with scores of 1- 4 were considered and these variants were annotated for histone 

marks such as H3K4me1, H3K4Me3 indicative for enhancer and promoter activity 

respectively. I used the histone marks data generated in normal breast epithelial cell lines 

such as Mammary Epithelial Primary Cells (HMEC), Breast variant Human Mammary 

Epithelial Cells (vHMEC) and Breast Myoepithelial Primary Cells. I also utilized datasets 

for DNase Hypersensitivity sites informative about the open chromatin state in the breast 

epithelial cell lines. For transcription factor (TF) binding, we used the ChIP-seq datasets 

generated for the breast cancer cell lines MCF10A-ER-Src, HMEC and MCF7. 

Polymorphisms potentially affecting the TF binding motifs were predicted using position 

weighted matrix (PWM) for each variant, when applicable. I accessed the encode Hi-C 

datasets for HMEC and ChIA-PET data for POL2A and CTCF in the MCF-7 cell line. 

TAD domain predictions based on the Hi-C data was predicted using the 3D genome 

browser32 (http://promoter.bx.psu.edu/hi-c/view.php). Interaction arcs based on the ChIA-

http://promoter.bx.psu.edu/hi-c/view.php
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PET data was generated based on Washington University Epigenome Browser. I also 

captured the expression of nearby genes (~2MB spanning the SNP rs1429142) based on 

the RNA-Seq for the HMEC cell line.   

2.2.7. Expression quantitative trait loci (eQTL) analysis  

eQTL data for normal breast tissues and heart left ventricle were used for the 

interpretation of the results based on GTEx database (GTEx portal was accessed on 

07/04/2018, GTEx analysis V7 (dbGaP Accession phs000424.v7.p2)). eQTL based on 

lymphoblastoid cell lines were inferred from ENCODE project.  

2.3. Results 

2.3.1. Association of SNP rs1429142 at Chr4q31.22 with overall and 

premenopausal breast cancer risk in Caucasian women 

I replicated the association of the previously identified SNP rs1429142 (C/T) with breast 

cancer risk among Caucasian women. The SNP is located at Chr4:148289398 

(GRCh37/hg19), with minor allele ‘C’ (frequency, MAF ~18%) among the Caucasian 

population. The association p-value (adjusted for BMI) for overall breast cancer risk 

(Stage 4) was 1.20x10-04 with ORs of 1.23 [1.11-1.37] (Table 2.1). In the combined 

analysis for overall breast cancer risk (Stages 1-4; total n= 4331 cases/4271 controls), 

SNP rs1429142 showed genome level significance with adjusted p-value 4.35x10-08 and 

OR of 1.25 [1.15-1.35]. The genome wide significance threshold was calculated based on 

testing 782,838 SNPs for association in Stage I study (0.05/782,838=6.4x10-8).  
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In a subgroup analysis (samples from Stages 1-4) based on menopausal status, the 

association of rs1429142 with premenopausal breast cancer risk in women of Caucasian 

ancestry reached genome level significance with adjusted p-value of 5.81x10-10 and OR 

of 1.40 [1.26-1.56]. However, the association among postmenopausal women of 

Caucasian ancestry was moderate even upon adjusting for BMI (OR of 1.17 [1.07-1.28], 

p-value of 7.81x10-04) (Table 2.1). The p-value for the test of heterogeneity comparing 

the ORs between premenopausal and post-menopausal women was statistically 

significant at 1.84x10-02 (Table 2.2), consistent with the earlier findings21.  

Data in Appendix Table A.1 summarize the patient demographic data for the study 

samples, Stages 1-4. SNP rs1429142 was initially shown to be associated with sporadic 

breast cancer (Stages 1 and 2). In subsequent replication studies (Stages 3 and 4), we 

recruited cases irrespective of family history. Association analysis of SNP rs1429142 

based on family history in all stages 1-4, showed a trend of elevated risk and stronger 

association of SNP with sporadic breast cancer (n= 1886 cases /4271 controls, p-value 

5.09x10-8 OR 1.31) compared to cases with family history (n=1640 cases/4271 controls, 

p-value 1.86 x10-4 OR 1.21) (Table 2.2). Even though, the p-value of heterogeneity (p-het 

0.37) between these strata is not significant, the trend of association validates the study 

premise. Other subgroup analysis based on clinicopathological features such as molecular 

subtype (luminal versus non-luminal), tumor grade (high versus low), and stage (<III 

versus ≥III) were also considered. None of these associations showed trends of elevated 

risk between the strata and the p-value for heterogeneity was not significant (Table 2.2).   

I analyzed the association of SNP rs1429142 in the Cancer Genetic Markers of 

Susceptibility dataset (CGEMs; 1144 cases/1143 controls) consisting of all 
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postmenopausal women as study subjects.  SNP rs1429142 showed modest risk, OR 

1.05; p-value - 6.8x10-01 (Table 2.1).  

2.3.2. Association of SNP rs1429142 with premenopausal breast cancer 

risk in women of African ancestry 

The association of SNP rs1429142 was tested using datasets from the African Diaspora 

study. SNP rs1429142 has a T/C polymorphism in the African population with a minor 

allele (T) frequency of 25%. Since the C allele is a risk allele in Caucasian population, 

the data represented for the association study findings are in reference to the C allele. I 

initially tested rs1429142 in 1607 cases/2041 controls for overall risk of breast cancer 

and the SNP did not show statistically significant association (p-value 6.08x10-01). The C 

allele showed trends for risk (1.08 [0.92-1.14]). Interestingly, in the stratified analysis, 

SNP rs1429142 was associated with breast cancer risk among premenopausal women and 

the C allele showed risk (p-value 1.45x10-02; OR of 1.2 [1.03-1.40]). Risk for 

postmenopausal women was not statistically significant (8.56x10-01, OR of 1.01 [0.87-

1.17]). 

Therefore, based on this study findings, I report a novel premenopausal risk variant with 

a moderately high effect size for breast cancer in the Caucasian population (OR 1.40). 

This variant was validated in premenopausal African women (Table 2.1). These findings 

warrant further fine-scale mapping of the locus to identify potential causal variant(s) and 

their putative roles in conferring breast cancer susceptibility. 
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Table 2.1 Replication and validation of SNP rs1429142 at Chr4q31.22 and association with 

premenopausal breast cancer risk 

  Sample size, n Status 

Risk Allele 

/Allele 

frequency 

P-value Allelic OR [95% CI] 

Replication (Caucasian population) 

Caucasian, Stages 1-

3a (Canada)* 
2829 cases/4271 controls Overall C/0.18 6.17E-07 1.26 [1.15-1.38] 

Caucasian, Stage 4a 

(Canada) 
1502 cases/4271 controls Overall C/0.18 1.20E-04 1.23 [1.11-1.37] 

Caucasian,  

Stages 1-3a  

(Canada) 

4331 cases /4271 controls Overall C/0.18 4.35E-08 1.25 [1.15-1.35] 

1503 cases /4271 controls Premenopausal C/0.17 5.81E-10 1.40 [1.26-1.56] 

2700 cases /4271 controls Postmenopausal C/0.18 7.81E-04 1.17 [1.07-1.28] 

Caucasian  

(CGEMs study) 
1144 cases /1143 controls Postmenopausal C/0.17 6.80E-01 1.05[0.89-1.22] 

Validation (Diverse population) 

African Diaspora 

1607 cases /2041 controls Overall  C/0.75 6.08E-01 1.03 [0.92-1.14] 

645 cases /2041 controls Premenopausal  C/0.75 1.45E-02 1.21 [1.04-1.40] 

663 cases /2041 controls Postmenopausal   T/0.75 8.56E-01 1.01 [0.88-1.17] 

*Indicates the association analysis adjusted for Body Mass Index (BMI) available for cases and controls in Canadian populations. 

BMI information was not available or missing for several samples for other cohorts. *Data for Stages 1-3 was based on reanalyzed 

samples from a previous study21 and SNP rs1429142 was independently genotyped, taking into account the longitudinal follow-up 

on cases and controls as described in methods. Replication of the association with respect to menopausal status in the Caucasian 

population is indicated using internal dataset (Stage 4 and Stages 1-4 combined analysis) and CGEMS cohorts. Validation study 

utilized African population. For SNP rs1429142, the minor allele is C in the Caucasian whereas it is T in the African population 

(T/C). Note that the frequencies of the minor alleles across the populations are different. The results are presented with respect to the 

risk allele ‘C’.  
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Table 2.2 Association of SNP rs1429142 at chr4q31.22 with breast 

cancer risk 

All analysis was adjusted for BMI. This table represents the association of SNP 

rs1429142 across different subgroups and the Phet is indicated. 

2.3.3. Identification of potential causal variants by fine-scale mapping of 

Chr4q31.22  

Fine-scale mapping of SNP rs1429142 was performed to identify putative causal variants. 

I fine-mapped a ~1 MB region, 147802550 to 148781409 (GRCh37/hg19) flanking the 

SNP, rs1429142 located at Chr4:148289389. Whole genome imputation of Chr4 was 

performed for the Stage 1 samples for which the data from the Affymetrix Human SNP 6 

array was available. IMPUTE2 algorithm was used for imputation and the 1000 Genomes 

data (multiethnic populations) as a reference panel as recommended elsewhere33. 

  

Sample 

size  

(cases/ 

controls) 

Adjusted analysis (allelic) 

P het P-value OR [95% CI] 

Family history          

Yes 1640/4271 1.86E-04 1.21 [1.10-1.35] 3.69E-01 

No 1886/4271 5.09E-08 1.31 [1.19-1.44]   

          

Subtype         

Luminal A cases 2421/4271 7.16E-07 1.22 [1.11-1.34] 6.60E-01 
Non luminal 

cases  1058/4271 7.48E-04 1.30 [1.12-1.51]   

          

Grade         

High 1582/4271 1.89E-06 1.28 [1.16-1.42] 4.99E-01 

Low 2074/4271 4.18E-05 1.22 [1.11-1.34]   

          

Stage         

Stage <III 3472/4271 3.03E-07 1.24 [1.14-1.34] 1 

Stage >III 1013/4271 2.48E-04 1.45 [1.19-1.78]   
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Following imputation, imputed genotype data with an imputation info score >0.7, call 

rate > 95% and MAF >1% were retained. I selected 2019 SNPs within 1 MB region for 

further analysis. A total of 63 Tag SNPs (see methods for SNP selection strategy) were 

selected using the HAPLOVIEW algorithm. Selected SNPs were genotyped in all 

samples (cases and controls) from Stages 1-4 of which 56 SNPs were amenable for 

multiplex genotyping and passed the internal quality control criteria (Appendix Table 

A.3). Based on the 56 genotyped tagSNPs, I re-imputed (one phased imputation method) 

for all premenopausal cases and all controls. A total of 1715 SNPs with an imputation 

info score value > 0.7 were obtained and 587 SNPs were retained based on > 85% 

genotype call rate and MAF > 5%.  

Association testing of 587 fine-mapped SNPs in the premenopausal cases and controls 

identified 135 SNPs with p-values of < 0.05 and 49 SNPs at < 10-8 (Figure 2.1a and 

Appendix Table A.2, p-values unadjusted and adjusted for BMI). There were four SNPs 

(rs13134510, rs1366691, rs1429139 and rs12501429) showing highest association with 

p-values of < 10-11. All these four fine-mapped SNPs are in LD with the originally 

identified SNP rs1429142. SNP rs13134510 showed highest statistical significance 

(unadjusted p-value 1.11x10-12). Conditional regression analysis based on these four 

SNPs did not reveal any additional independent signals (Figure 2.2: a-d and Appendix 

Table A.4).  
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Figure 2.1 Association of the fine-mapped SNPs with premenopausal breast cancer risk and their 

functional annotation  

This figure represents the association of the fine-mapped SNPs with premenopausal breast cancer risk and the functional 

relevance of the SNP is indicated in cell line data. (a.) The locus zoom plot indicates the association p-value (log scale) on the 

Y-axis and genomic location on the x-axis. The 587 fine-mapped SNPs are represented as squares (imputed) and circles 

(genotyped), and the LD (r2) between the SNPs were indicated according to the color scale.  The GWAS SNP rs1429142 is 

indicated. (b) The functional relevance of the fine-mapped SNPs was indicated using human breast cell lines (HMEC, HMF 

and MCF-7). The DNase hypersensitive sites (HMEC, HMF), histone marks (HMEC and MCF-7) and chromatin states 

(Encode cell lines) were inferred from corresponding cell lines. The SNPs with RegulomeDb score (1-4) are indicated. 
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Figure 2.2 Conditional regression analysis  

The data in this figure (a-d) represents the conditional regression plots generated based 

on the top four associated SNPs. Each plot represents the analysis adjusted for (a) 

rs13134510, (b) rs1366691, (c) rs1429139 and (d) rs12501429. The plot represents the 

association of the fine-mapped SNPs after conditioning. The Y-axis represents the p-

value in logarithmic scale and genomic co-ordinates on the X - axis. Conditional 

regression analysis did not reveal any additional independent signal. 

 

Multiple methods, tools and annotation algorithms were used assess the functional 

relevance of the associated and fine-mapped SNPs and described below.  

(i) Log likelihood ratio analysis- This was carried out as an independent pruning method 

which revealed five SNPs with a p-value of >0.05. These five SNPs were excluded and 

the remaining 130 SNPs (including the top four SNPs showing highest association) were 
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identified as potentially causal variants showing a statistical significance at p < 0.01 

(Appendix Table A.5). 

(ii) LD mapping- Given the expected small LD block patterns in African populations and 

the statistical significance observed among premenopausal women. The fine-mapped 

region (130 SNPs) was refined based on the LD block patterns using the HapMap dataset. 

I noted that the Caucasian population had fewer but larger LD blocks consisting of the 

fine-mapped SNPs and the GWAS SNP rs1429142 (Figure. 8a). As expected, we 

observed multiple smaller LD blocks in African populations in the fine-mapped region in 

contrast to Caucasian populations. The fine-mapped variants (130 SNPs) were scattered 

across multiple LD blocks in African populations. In the African population, ten of the 

highly significant fine-mapped SNPs (p-values < 10-10) (rs1366691, rs1429139, 

rs12501429, rs1583003, rs2163012, rs2163011, rs12498595, rs13120678, rs1366679, 

rs13134510) were clustered in a single LD block and the remaining SNPs, including the 

GWAS index SNP rs1429142, were scattered over multiple LD blocks (Figure. 8b). This 

contrasts with the Caucasian population wherein the index SNP along with the ten highly 

associated SNPs were found in a single LD block. 
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Figure 2.3 Linkage disequilibrium plot for the fine-mapped locus chr4q22.31 in 

Caucasian and African population  

The LD plot for the (a) Caucasian and (b) African populations for the fine-mapped SNPs 

generated based on HapMap populations. The fine-mapped SNPs indicated as (▼) are 

highly associated (p-value < 10-08) with premenopausal breast cancer risk and GWAS 

SNP rs1429142 is indicated as (▼). The GWAS SNP is in a different but nearby LD 

block to the fine-mapped region in both populations. The LD plots were generated using 

the tool (https://snpinfo.niehs.nih.gov/snpinfo/snptag.html).  

 

(iii)Putative regulatory functions for the causal variants- I have annotated all 130 

variants for functional relevance. I used RegulomeDB-ver1.1 (Appendix Table A.6 and 

A.7) and HaploReg-v4.1 (Appendix Table A.8) for functional annotations. I identified 19 

SNPs (Appendix Table A.7) with Regulome scores between 1 to 4 (1 being the most 

informative); these are derived from composite scores from the inferred regulatory 

functional states such as DNase hypersensitivity sites, transcription factor binding, 

chromatin state, histone marks and changes in binding motifs of bound proteins. Among 

the 19 SNPs with putative regulatory functions, five SNPs (with p-values) were predicted 

https://snpinfo.niehs.nih.gov/snpinfo/snptag.html
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to have enhancer roles inferred from chromatin marks (post translational modification of 

histone protein):  rs1366691 (1.91x10-12), rs1429139 (6.64 x10-12), rs7667633 (5.05x10-

08), rs6836670 (1.41x10-07) and rs17023196 (1.01x10-04).  The combination of the 

chromatin marks was used to predict enhancer functions using the method chromHMM 

(multivariate hidden Markov model). The chromatin state at the locus of interest harbored 

the histone marks: H3K4me1, H3K27ac, and H3K9ac, captured by ChIP-seq assay in 

normal breast cell lines: Mammary Epithelial Primary Cells (HMEC) and Breast variant 

Human Mammary Epithelial Cells (vHMEC) (Appendix Table A.8). There was evidence 

of DNase hypersensitivity peaks near these SNPs captured in HMEC, vHMEC and Breast 

Myoepithelial Primary Cells (Appendix Table A.8).  

Among the 19 SNPs that were annotated for putative regulatory functions, SNPs 

rs1568136, rs6821368 and rs6822565 were present within the intron of the EDNRA gene. 

The histone marks at these loci indicated weak transcriptional activity in HMEC, 

vHMEC and Breast Myoepithelial Primary Cells. Additionally, SNP rs1568136 affected 

binding of transcription factors such as EN1 and SNP rs6821368 affected binding of NF-

AT, SOX, HDAC2, HOXA4, PAX-4, POU2F2, POU3F2, and SIN3AK-20 (Appendix 

Table A.8) judged from the Position Weighted Matrix (PWM) scores. 

(iv) Binding of transcription factors at the SNP sites- The dataset from the ENCODE 

project offered further insights into binding of transcription factors (TFs) at three SNPs, 

rs1366691, rs7667633 and rs7668383. Evidence for binding of three TFs (FOS, STAT3 

and POL2A) at these sites was obtained from the MCF10A-Er-Src cell line (derived from 

parental MCF-10A cells which are negative for estrogen receptor expression). However, 

MCF10A-Er-Src contains a variant of the Src kinase oncoprotein that is fused to the 
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ligand binding domain of the estrogen receptor and is induced by adding Tamoxifen 

(TAM) (Appendix Table A.7). Src expression leads to transformation of cells as 

evidenced by visible morphological changes between 24-36 hours. ENCODE project has 

also captured binding of TFs to target sites in TAM treated and untreated cells at 4-hr,12-

hr and 36-hr time intervals. Based on ChIP-sequencing, FOS binding was noted to be 

high at rs1366691, rs7667633 and rs7668383 loci in the TAM-treated group relative to 

the untreated group when analysed at different time intervals in the MCF10A-Er-Src cell 

line (Figure 2.4).  

In summary, the evidence presented from the various methods described above indicated 

that a select number of SNPs (i and ii) among the fine-mapped region appeared to be 

active enhancer domains judged from the collective experimental evidence (iii and iv) 

from various cell lines (epigenetic marks and transcription factor binding). Three SNPs, 

rs1366691, rs1429139 (p-value <10-10) and rs7667633 (p-value 10-08) were identified to 

be the likely causal SNPs. I based the conclusions on the combined evidence from 

strengths of association and functionality as enhancers (inferred from chromatin state and 

binding of transcription factors). These loci may exhibit complex long or short-range 

DNA interactions, and such interactions between the enhancer(s) and promoters may 

contribute to the overall regulatory effects. 
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Figure 2.4 Transcriptional activity at the fine-mapped locus  

The figure represents transcriptional activity at the fine-mapped locus. The binding of the transcription factors (left top corner) 

were determined using ChIP-Seq data capturing the binding of -fos, STAT1/3 and Pol2/3 were described in breast cell lines 

(MCF10A-Er-Src, HMEC) and Encode cell lines. Similarly, transcriptional activity (left bottom panel) estimated from the 
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RNA-seq data generated in HMEC cell line. The binding of the transcription factors (right-side top) such as EN1, SOX and 

NF-AT may potentially be affected by polymorphism in the intron of the EDNRA gene estimated from position weighted 

matrix. The source of the data is shown in the column (ChIP-seq for c-FOS, POL2, STAT3 based on MCF10A-Er-Src were 

generated from Harvard, for the encode cell lines: c-FOS captured in HUVEC from University of Southern California; STAT1 

captured in GM12878 from Stanford University; C-FOS and Pol3 captured in GM12878 from Yale University. Figure was 

generated based on the output from the browser http://epigenomegateway.wustl.edu/browser/ 

http://epigenomegateway.wustl.edu/browser/


112 

 

2.3.4. Gene regulation by short range DNA interactions 

The fine-mapped region was interrogated for possible short-range interactions based on 

the Hi-C data available for the HMEC cell line. The fine-mapped regions harbored 

multiple interactions with the neighboring region and were predicted to be present within 

Topologically Associated Domains (TADs) (Figure 2.5a). TADs consist of regions of 

DNA that preferentially interact with each other. The interactions are predominantly seen 

within the TAD boundaries and are less likely to interact outside of the TAD34. Since 

TADs are derived by complex DNA looping and interactions, they play a role in gene 

regulation, wherein promoters interact with local enhancer elements. CCCTC-binding 

factor (CTCF) and Cohesin (a multi-subunit protein complex) are the common DNA 

binding proteins known to be enriched in TAD regions. DNA looping is mediated by the 

binding of CTCF proteins and that brings about the physical contact of the DNA 

domains. I analysed the data from the Chromatin Interaction Analysis by Paired End Tag 

(ChIA-PET) data generated from MCF-7 enriched for CTCF and POL2 (Figure 2.5b). I 

observed multiple interactions between fine-mapped SNPs and upstream promoter 

elements of nearby genes including EDNRA, PRMT10, ARHGAP10 and TMEM18C 

(potential eQTLs, Appendix Table A.9). Further experiments are needed to gain 

mechanistic insights on the regulation of the target genes and interactions with the 

identified potential causal variants. 
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Figure 2.5 TADs and short-range interactions captured by Hi-C and 

ChIA-PET data  

This figure represents Topological Associated Domain (TAD) and short range 

interactions in the fine-mapped region (chr4: 147000000-149000000) estimated from Hi-
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C and ChIA-PET dataset in breast cell lines. (a.) The TADs were predicted based on the 

Hi-C in HMEC cell line, the heat map presents the frequency of the interaction, and the 

intensity of the heatmap varies according to the interaction frequency 

(http://promoter.bx.psu.edu/hi-c/view.php). (b) The short-range interactions indicated by 

arcs; estimated in MCF-7 cell lines and ChIA-PET enriched for POL2 and CTCF 

proteins.  

 

2.4. Discussion  

I report three potential causal variants (rs1366691, rs1429139 and rs7667633) from fine-

mapping and annotation analysis which are strongly associated with premenopausal 

breast cancer risk. The effect size for the three novel variants are in line with the 

originally described index SNP rs1429142 (OR 1.4, Table 2.1 and Appendix Table A.2). 

Analysis of the GWAS literature identified fewer variants with effect sizes in the range 

1.25-1.4, largely from familial breast cancers and breast cancers in postmenopausal 

women. The index SNP rs1429142, which was originally described to be associated with 

sporadic breast cancer, also showed association among cases with family history, albeit at 

lower risk than the sporadic cases in the combined analysis of Stages 1-4 , confirming the 

original findings21. In stratified analyses based on disease stage, grade and ER status, the 

SNP rs1429142 did not show differences in risk between the groups (Table 2.2). FGFR2 

variants and others from previous GWAS literature which were known to confer risk in 

familial cases were also reproduced in a this study samples (Stage 1-3), i.e., the effect 

size was higher in familial cases than in sporadic cases21.  

A previous study from the Damaraju laboratory reported a SNP from GWASs (Stages 1-

3), rs1429142 at Chr4q31.22, to be a novel locus associated with breast cancer risk and 
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that the risk was higher for premenopausal women21. In this study, I further replicated the 

association of SNP rs1429142 with breast cancer risk using an independent set of breast 

cancer cases (Stage 4). In the combined analysis of all Stages (1-4, n = 4331 cases and 

4271 controls) for overall risk, SNP rs1429142 reached genome level significance at p-

value 4.35x10-08 with an OR of 1.25 [1.15-1.35]. In the stratified analysis based on 

menopausal status, SNP rs1429142 showed strong association with premenopausal breast 

cancer, p-value 5.81x10-10 with an OR 1.40 [1.26-1.56] (Table 2.1). The overall breast 

cancer risk conferred by SNP rs1429142 was not affected by luminal status, tumor grade 

or stage (Table 2.2). In an independent analysis, the SNP rs1429142 did not show 

elevated risk to estrogen receptor (ER) status (ER positive vs. ER negative cases, Table 

2.2). The majority of the GWAS identified SNPs in earlier studies were shown to confer 

risk in women with ER positive disease35,36 and in postmenopausal cases22. 

I stratified cases based on menopausal status to identify risk with an emphasis on 

identifying risk variants for breast cancer in women with age of onset of disease >40Y, 

which has hitherto not been addressed in the breast cancer GWAS literature. Limited 

GWASs addressed sporadic breast cancer without emphasis to menopausal status 22,37,38, 

or those that addressed focused predominantly on postmenopausal women with familial 

component. I have validated the study premise by analyzing the postmenopausal cohort 

from CGEMS and showed that SNP rs1429142 was not associated with breast cancer 

risk, lending credence to the observations on premenopausal women. In a previous 

study21, the association of the literature reported GWAS SNPs  were replicated, and these 

SNPs showed stronger association with familial breast cancer risk in the study population 

(Alberta, Canada) stratified based on family history. I replicated these findings in that the 
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effect size was higher in familial cases compared to sporadic breast cancer cases (age of 

onset of disease >40 and no family history of breast cancer). However, the literature-

reported SNPs did not show elevated risk when cases were stratified based on 

menopausal status21. These findings, taken together, demonstrate that the variant 

rs1429142 described in this study is novel and confers breast cancer risk in 

premenopausal women.  

Among African populations, an allele reversal was noted wherein C is the major allele 

and T is the minor allele with 75% and 25% frequencies, respectively. In the overall 

association, SNP rs1429142 was not associated with breast cancer, however in the 

subgroup analysis its association was significant among premenopausal breast cancer risk 

(p-value < 0.05). The C allele remained the risk allele across different populations 

irrespective of its association with breast cancer risk (Table 2.1), an observation that 

aligns with the higher prevalence of premenopausal breast cancer among women of 

African ancestry39-42.  

In the fine-scale mapping of the associated region at the Chr4q31.22 locus, we identified 

587 SNPs within the 1Mb region flanking SNP rs1429142. Of the 587 SNPs, 135 were 

associated with premenopausal breast cancer risk. Conditional regression analysis did not 

reveal any independently associated signals. Likelihood analysis retained 130 as 

putatively causal SNPs with p-values < 0.01. The fine-mapped region and the SNPs 

showing association with premenopausal breast cancer risk were present within fewer but 

large LD blocks in the Caucasian population, whereas there were multiple but smaller LD 

blocks for the same region in the African population. These findings agree with the 
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higher level of recombination events and resultant decay of LD in African populations 

(Figure 2.3). Consistent with current knowledge of LD in diverse populations,  

Functional scoring revealed five SNPs (rs1366691, rs1429139, rs7667633, rs6836670 

and rs17023196) at highest predicted levels of functionality (i.e., as enhancers). The 

DNase hypersensitivity peaks revealed an open chromatin state at these loci. In addition, 

the histone methylation pattern, H3K4me1 and acetylation of H3K9ac and H3K27ac 

suggested potential enhancer roles based on HMEC, vHMEC and breast myoepithelial 

primary cell lines. To decipher transcription factors binding at these loci, we utilized the 

ChIP-Seq data from ENCODE for the MCF10-src cell line. The characteristic feature of 

MCF10-Src cells is that upon transformation by Tamoxifen induction, the cells exhibit 

increased motility, invasion, formation of foci, formation of single cell colonies, 

mammospheres and confer formation of tumor in mouse xenografts43,44. Based on the 

ENCODE data, transcription factors including FOS, STAT3 and POL2RA were bound to 

SNPs rs136691, r7667633 and rs7668383 from among the fine-mapped loci. These 

results suggested active enhancer regions at the putative causal loci which potentially 

regulate the expression of downstream target genes flanking the index SNP. For instance, 

the nearest target gene identified was EDNRA, located 2 kb gene downstream of putative 

causal SNP rs1366691.  

STAT3 protein is a well characterized transcription factor implicated in many cancer 

types45-47. STAT3 expression alone was sufficient to initiate tumorigenesis, and its over 

expression brings about transformation of both human fibroblast 48 and MCF10 derived 

(MCF10-ER-Src) 49cell lines. Induction of Src expression transforms the cells, conferring 

the phenotypic changes characteristics of cancers 43,44. The process of transformation 
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involves epigenetic switch and inflammatory pathway gene expressions. STAT3 

exclusively binds to open chromatin regions and regulates expression of NFKB1 which in 

turn regulates expression of IL6, a cascade of events that is part of the well characterized 

feed-back loop involving these transcription factors and inflammatory mediators50. Often 

STAT3 and FOS proteins coregulate the transcription of genes. In this study, STAT3 and 

FOS bound to the sequences at SNP sites, rs1366691 and rs7667633 in the MCF10-ER-

Src cell line during the process of transformation.  

Since the fine-mapped variants were predicted to have an enhancer function, they are 

likely to influence promoters of the nearby genes by DNA looping. Based on the DNA 

interaction profiles generated in HMEC cells, we confirmed that the fine-mapped loci 

have multiple local interactions and were present within TAD domains. TAD domains, 

which were recently described34, consist of regions of DNA that are likely to interact with 

each other within the TAD boundaries. These are complex mechanisms of gene 

regulation and TAD domains are conserved across the tissues and species34,51. 

Several SNPs from the fine-mapped region appeared to be eQTLs (in different tissues 

other than breast) regulating nearby genes ENDRA, ARHGAP10 present within ~800kb 

(Appendix Table A.9). ENDRA is well known for its role in vasoconstriction and in 

arterial diseases. However these genes are also often noted to be dysregulated in cancer; 

EDNRA bound by endothelin-1 triggers a cascade of signaling pathways leading to 

proliferation52,53, angiogenesis54, invasion/ tumor progression55,56 and inhibition of cell 

death57,58,  when activated by Hypoxia induced factor1-Alpha. Overexpression of 

EDNRA has been observed in several cancer types53,56,57 and is an independent predictor 

of prognosis59.  Similarly, ARHGAP10 belongs to the family of Rho GTPase-activating 
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proteins that are known to play a role in cell cytoskeleton organization, cellular migration 

and adhesion, regulation of transcription60. ARHGAP10 was associated with invasive 

breast cancer prognosis61, pediatric leukemia62, and ovarian63 and lung cancers64. 

ARHGAP10 is often downregulated in tumors and may play a role as a tumor 

suppressor63,64. The eQTL role for the fine-mapped variants in breast tissues warrants 

further work and is recognized as a potential limitation for generalizability of the 

findings. 

The fine-mapped variants in this study are common polymorphisms (MAF 18%). A 

higher sample size might have enabled the identification of low frequency putative causal 

variants within the susceptibility locus to gain additional biological insights5,18. Due to 

the challenges in the functional characterization of the fine-mapped loci, only a limited 

number of breast cancer studies successfully identified the target genes (FGFR211, 

CCND110,MAP3K113, TERT9, IGFBP512, TET214, STXBP416) with role in breast cancer 

etiology.   

In summary, we have identified three potential causal variants (rs1366691, rs1429139, 

rs7667633) strongly associated with premenopausal breast cancer risk and the variants 

appear to have enhancer functions, likely regulating the nearby target genes. Further 

experimental evidence is needed to elucidate the mechanism by which these genes may 

increase the risk for breast cancer among premenopausal women. The novel locus 

associated with premenopausal breast cancer in this study and a fine-mapping analysis of 

the locus revealed binding of transcription factors known to play a role in inflammatory 

pathways, also a common etiological basis of many cancers.  
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3 Germline copy number variations are associated with 

breast cancer risk and prognosisk 
3.  

3.1. Introduction 

Breast Cancer is one of the commonly diagnosed cancers among women worldwide1, in 

Canada, breast cancer accounts for about 25% of all diagnosed cancers, and 15% of all 

cancer deaths2. Based on twin studies, estimated heritable genetic factors contribute to 

about 30% for breast cancer risk, the remaining risk being due to environmental and 

lifestyle factors3. Family based linkage and genome sequencing studies have identified 

high and moderate penetrant mutations in genes such as BRCA 1 or BRCA 24,5 PTEN6, 

PALB27, ATM8, TP539, and CHECK210 that contribute to the genetic risk of breast 

cancers. Subsequently, large scale population based Genome Wide Association Studies 

(GWAS) were successful in identifying several low penetrant common genetic variants 

(Single Nucleotide Polymorphisms, SNPs) associated with breast cancer risk. Among 

these, a limited number of GWAS SNPs (7 SNPs) showed effect sizes (odds ratio or 

ORs) between 1.25 – 1.5 and the remaining SNPs showed effect sizes <1.2511,12. SNP 

based GWAS served as a valuable tool in uncovering novel genes or loci associated with 

breast cancer aetiology. Low, moderate and high penetrant SNPs and mutations together 

explain up to 50% of the genetic risk associated with breast cancer11,12, and the 

remaining variants to explain the “missing heritability” are yet to be discovered. Copy 
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Number Variations (CNVs) in the germline DNA are currently being investigated to 

explain missing heritable risk for breast cancer13.  

Germline CNVs are a class of structural variations and are defined as loss or gain of 

genomic DNA in size range of 50bp to 1Mb14. Germline CNVs are studied as genetic 

determinants for susceptibility for familial breast cancer15-20 and also cancers of 

prostate21-23, ovary18,24-26, pancreas27-29, colon, rectum16,30-34, endometrium35, lung36-38 and 

melanoma39,40.  

The DNA sequence coverage for CNVs is ~10% of the genome. CNVs harbour coding 

regions and non-coding regulatory regions and may confer profound phenotypic effects 

relative to effects caused by SNPs41-43. CNVs have a multitude of effects based on their 

genomic location including gene dosage effects and cis-regulatory functions23. Since the 

distribution of CNVs across the genome is disproportionate with a higher proportion in 

non-coding than coding regions, their functional impact on phenotype is not clear. 

However, CNVs that overlap protein coding genes offer insights into disease phenotypes 

and associated biology44. Nearly 80% of cancer genes harbour CNVs45 and support the 

above premise.  

The majority of the CNVs that have been identified to-date for breast cancer are rare 

(frequency < 1%) and may potentially confer high penetrance (odds ratios >3.0) in 

familial breast cancer18,20. Associations of low penetrant common CNVs identified using 

GWAS have been shown in prostate21,22 and pancreatic29 cancers. CNV-GWAS has met 

with considerable success in several complex disease phenotypes46 but is lagging in 

breast cancer with a limited number of studies adopting this approach. Long et al. in 2013 
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was the first to report a common CNV (deletion) in a coding gene using GWAS, wherein 

APOBEC3 loci were shown to be associated with breast cancer risk in a Chinese 

population47. This deletion polymorphism was also validated in a Caucasian population48. 

These results support the goal of searching for common germline CNVs associated with 

sporadic breast cancer to address missing heritability in populations. This is in contrast to 

earlier claims that common CNVs were not associated with breast cancer49.  

Tumor based markers for prognosis are useful in guiding treatments but markers with 

higher specificity are needed to account for inter-individual variations in breast cancer 

prognosis. DNA level aberrations (CNVs) from tumor (somatic) genomes were shown to 

be prognostic. However, such studies do not distinguish origins from germline CNVs or 

de novo copy number aberrations in somatic cells due to genomic instability. Current 

emphasis is to assess the role of germline copy number variations for their prognostic 

value. SNPs showing association with breast cancer susceptibility were not 

prognostic50,51. Because independent SNP based GWAS for prognosis in breast cancer 

were not informative2,50-53, I focused on identifying germline CNVs associated with 

breast cancer susceptibility and prognosis.  

Since germline structural variations and their coverage on the genome is higher than 

SNPs, I reasoned that CNVs are suitable candidates to explore for their associations with 

prognosis. Germline CNVs have been identified as prognostic markers for several cancer 

types including prostate cancer54, ovarian cancer25 and colorectal cancer55. Our group 

showed that germline Copy Neutral Loss of Heterozygosity (CN-LOH), a class of CNVs, 

are associated with recurrence free survival in breast cancer56.  
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Our aim was to conduct GWAS to identify common germline CNVs associated with 

breast cancer risk and assess if subsets of the risk associated CNVs are also associated 

with prognosis. Earlier studies on CNV association in familial breast cancer were 

restricted to identifying disease risk variants but not prognosis18-20. Specifically, I 

conducted CNV-GWAS, firstly focusing on identifying common CNVs overlapping with 

protein coding genes for association with breast cancer risk, secondly investigating the 

prognostic significance of the risk associated CNVs and thirdly correlating breast cancer 

risk associated CNVs with breast tumor tissue specific gene expression.  have identified 

several common CNVs associated with breast cancer and determined that subsets of these 

CNVs are associated with both disease risk and prognosis. These findings highlight the 

importance of pursuing common germline CNVs to address the knowledge gap in the 

literature. 

3.2. Methods  

I performed all the experiments and analysis, unless otherwise indicated in the text 

3.2.1. Study ethics approval  

The study was approved by the local Health Research Ethics Board of Alberta (HREBA) 

- Cancer Committee. Written informed consents were obtained from all study 

participants. All experiments performed using specimens from study samples were 

carried out under approved guidelines and regulation.  
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3.2.2. Study population 

Women with confirmed diagnosis of invasive breast cancer (cases, n=422) were recruited 

from Alberta, Canada between 1987 to 200651,56, and were described earlier. Briefly, the 

cases were non-metastatic at the time of diagnosis. Median age at diagnosis was 52 years, 

and 90% of cases were diagnosed at age >40 years (late age at onset); these are referred 

to as sporadic cases. Germline DNA and the clinical pathological information was 

accessed from the provincial tumor bank, the Alberta Cancer Research Biobank (formerly 

Canadian Breast Cancer Foundation (CBCF) Tumor Bank), located at the Cross-Cancer 

Institute, Edmonton, Alberta, Canada (http://www.acrb.ca/about-us/). At the time of 

study completion, the median follow-up time was 8.96 years and the number of events of 

breast cancer recurrence and death were n=171 and n=150, respectively. The controls 

(n=348) were healthy women (median age 50 years) with no personal or family history of 

cancer at the time of recruitment. The controls were accessed from a prospective cohort 

study called the Tomorrow Project ((http://in4tomorrow.ca) from Alberta, Canada. 

Comprehensive information about study participants (cases and controls) and methods to 

extract germline DNA from buffy coats are described elsewhere56,57.  

3.2.3. Genotyping and quality control  

DNA extracted from buffy coat samples were genotyped using Affymetrix Genome-Wide 

Human SNP 6.0 array following manufacture’s protocol56. Affymetrix SNP 6 array has 

independent probes for SNPs (~ 906,600 probes) and CNVs (~ 946,000 probes).  

Genotyping quality control was assessed using Birdseed V2 algorithm in Affymetrix 

http://www.acrb.ca/about-us/
http://in4tomorrow.ca/


135 

 

genotyping console. Sample Contrast Quality Control (CQC) ≥1.7 indicates acceptable 

genotyping quality. All our study samples had a CQC value more than 2.  

3.2.4. Population stratification  

Principle Component Analysis (PCA) using EIGENSTRAT algorithm implemented in 

Golden Helix SNP and Variation suite v8.5.0 uses SNP genotypes generated on study 

samples (n=762) to infer the population stratification. Genotype data from 270 HapMap 

samples were used as a reference to infer the genetic ancestry of the study samples, and 

these were described previously56,58. After removing the outlier samples, I had 366 cases 

and 320 controls classified as European ancestry, and these were used for copy number 

analysis.  

I also carried out Identity by Descent (IBD) analysis based on SNP probes using Golden 

Helix SNP and Variation suite v8.5.0. These analyses did not reveal any cryptic 

relatedness in samples with pair-wise correlation cut off < 0.25. 

3.2.5. Copy number detection and gene annotation 

Study design is described in Figure 3.1. Copy number analysis was performed using 

Partek® Genomics Suite™ 6.6 (PGS). Affymetrix array generated CEL files were used 

as input files for the program. GC wave correction was applied using default functions. I 

created a reference baseline (all sample normalization) using all the study samples to 

assign a diploid status and to infer the relative copy number estimates in individual cases 

and controls. A genomic segmentation algorithm implemented in the software was used 

to call the genomic segments with the following default criteria: genomic markers >10; 
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P-value threshold = 0.001; Signal/Noise (S/N) ratio = 0.3. The copy number status was 

assigned for each inferred segment relative to the normalized intensity (i.e., 1.7-2.3 was 

considered as diploid); intensity values of >2.3 and <1.7 were called copy gains and 

losses, respectively. The CNVs were annotated using RefSeq genes using human genome 

build Hg19 (GRCh 37). The CNVs occurring at a frequency of >10% (termed common 

CNVs) of the study samples and mapping (or overlapping) to the protein coding gene 

regions were considered for downstream analysis. I excluded the regions that mapped to 

small and long non-coding RNA genes and pseudogenes. Multiple CNVs with contiguous 

genomic break points and similar copy status in a genomic region were merged into a 

single Copy Number Variation Region (CNVR).  

3.2.6. Mapping to publicly available CNV databases  

The identified CNVs were mapped to the Database for Genomic Variants59 (DGV, to 

ascertain CNVs calls). The structural variant data currently available through 1000 

Genomes Project phase 3 has information about 60,000 structural variations captured at 

the population level. The project utilized low coverage whole genome sequencing and 

exome sequencing and microarray technologies. These germline datasets were utilized to 

compare the break points estimated for CNVs in our study and for potential overlap with 

coding genes60.  
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3.2.7. Statistical Analysis 

(i) Power calculations:  

Power to detect CNVs associated with breast cancer susceptibility was calculated with 

“gap” package61,62 using R program63 I estimate that the study design and the sample size 

used will confer 94% power to detect associations for breast cancer risk. The following 

assumptions were made to compute power with a sample size of n=770: an additive 

model for genetic inheritance, the lifetime risk for breast cancer is 11% (1 in 9 among 

Caucasians) and at a genotype relative risk of 2 and a risk allele frequency of 10%.  

(ii) Association analysis:  

The association frequencies of the CNVs (diploid, gain and loss) between sample 

categories (cases, controls) were compared using chi-square (2X3) test implemented in 

Partek® Genomics Suite™ 6.6. A multiple hypothesis testing was accounted for using a 

false discovery rate method (reported as q-value). CNVs were considered significant if q-

value were < 0.05. 

(iii) Survival analysis and Cox-proportional hazards model:  

CNVRs significantly associated with breast cancer risk by chi-square test were assessed 

for their prognostic significance of overall survival (OS) and recurrence free survival 

(RFS) using Cox-proportional hazards model, estimating Hazards Ratios (HRs) by the 

copy number status (diploid vs. gain/loss). Differences in survival probabilities among 

cases by the copy status (diploid vs gain/loss) were described using Kaplan-Meier 

survival curves. Survival analysis and Cox proportional hazards model were performed 
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using “KMsurv” and “survival”64,65 packages, respectively, implemented in R63. Since 

only breast cancer associated CNVs with overlap to coding genes (n=200 CNVs/CNVRs) 

and corrected for false discovery (q-value <0.05) were considered for Cox analysis, I did 

not apply additional multiple hypothesis corrections.  

 

Figure 3.1 Study Design 
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3.2.8. TaqMan copy number assays for validation of CNVs 

CNVs were validated using TaqMan copy number assays from Applied Biosystems. 

Copy caller software supplied from Applied Biosystems was used for the data analysis. 

Representative CNVs were selected from three genes. I used predesigned assays for 

APOBEC3B (Hs04504055_cn), GSTM1 (Hs00273142_cn) and a custom assay for 

FGFR2 gene (assay location, chr10:123346308). Selection of genes for validation was 

based on the frequency of CNVs in our study cohort, availability of DNA in the 

corresponding samples with the inferred copy status for each sample from the copy 

number analysis. APOBE3B47 and GSTM1 loci66 were previously characterized to show 

copy number deletions. I used RNAase P as an internal control and followed the 

manufacturer-supplied protocols. I used two genomic DNA specimens from the Coriell 

DNA panel as positive controls. NA18635, which is of Chinese ancestry and diploid for 

all three genes tested, was used for data normalization. NA05299 belongs to European 

ancestry and has deletion in FGFR2 region.  

3.2.9. Gene expression (mRNA) analysis in breast tumor tissues 

mRNA dataset (Gene expression dataset) generated on breast tumor samples using 

Agilent Whole Human Genome Microarray 4x44K (GEO Accession ID: GSE22820) was 

available in-house with patient clinical characteristics (n=90). The 90 breast cancer cases 

were a subset of 366 (PCA stratified) cases with copy number profiles. Raw intensity 

files were quantile normalized, and log2 transformed using Partek Genomics Suite v6.6. 

The linear correlation was estimated between the germline copy number status and gene 

expression using PGS algorithms. In the correlation analysis, I considered only those 
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gene expression probes whose location is within the breakpoints of the CNVs 

interrogated.  

The objectives were to characterize the gene dosage effects and the relative expression of 

CNV-genes in breast tissues: (i) The dosage sensitive genes were determined by 

Pearson’s correlation analysis (using PGS) between copy number and gene expression, 

and correlation value r>0.20. For the significantly correlated CNVs, dot plots of breast 

tumor gene expression versus germline copy number status were plotted. (ii) The 

prognostic significance of the genes overlapping in the germline CNV-genes from RFS 

and OS were also examined for breast tumor tissue specific gene expression. Fifteen of 

the 16 genes overlapping in the CNVR associated with OS were expressed. For ten genes 

in CNVR associated with RFS, eight genes were expressed in the mRNA dataset. 

Considering these genes as continuous variables, Univariate Cox proportional hazards 

regression was performed using SPSS v21. 

3.3. Results  

3.3.1.  CNV-GWAS: Identification of breast cancer associated CNVs in 

coding regions 

I identified 11628 CNVs in autosomes in an analysis that was restricted to common 

variants at frequency >10% in the study samples (see Figure 3.1 for study design). CNV 

frequencies compared between cases and controls (2x3 chi-square test) resulted in 

identification of 5395 CNVs which were statistically significantly associated with breast 

cancer at q-values <0.05. I only considered CNVs with size more than 1 kb for further 

analysis to increase confidence in CNV segments estimated by the algorithm. Although I 
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identified CNVs in both protein coding and non-coding genes, those overlapping protein-

coding genes have higher potential to contribute to phenotypic variation44 and therefore 

focused on identification of CNVs overlapping with protein coding genes. CNVs were 

annotated for protein coding genes using RefSeq (GRCh37/ Human genome, Hg19 build) 

gene annotations. Of the 5395 CNVs that were significantly associated (q<0.05) with 

breast cancer, 1108 CNVs were mapped to 258 protein coding genes. I merged multiple 

contiguous CNVs from the set of 1108 into a single Copy Number Variable Region 

(CNVR) and interrogation of the overlapping genes for association with breast cancer 

yielded 200 altogether (144 CNVRs and 56 CNVs). The size ranges of the CNVRs and 

CNVs were 1.1 – 237 kb and 1.1 – 9Mb, respectively. The list of all associated 

CNVs/CNVRs is given (provide as electronic Supplementary dataset 1 

https://doi.org/10.1038/s41598-017-14799-7)  and the list of the top CNVRs/CNVs (with q-

values <10-5) is given in Table 3.1.  

(i) Mapping of CNVs to publicly available structural variation 

databases  

Different genomic segmentation algorithms have their strengths and limitations58; the 

CNV break points called by different algorithms may or may not overlap and some 

algorithms tend to overcall CNVs58. Therefore, it was important to ascertain that the 

called CNVs were reliable by independent methods, and CNVs were mapped to the DGV 

and 1000 Genomes Project phase 3 data to assess concordances for the CNVs identified 

in this study. Ninety percent of CNVs associated with breast cancer mapped to the DGV, 

and while this is a common approach, this database has limitations. DGV curation is 

https://doi.org/10.1038/s41598-017-14799-7
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ongoing; its datasets are generated on diverse microarray platforms and by diverse CNV 

calling algorithms58. I therefore, considered a second method using higher resolution 

structural variation data available in the public domain from the 1000 Genomes Project 

(Phase 3). I mapped 76% of the 200 CNVRs/CNVs to the 1000 Genomes Project data 

and most of these (94%) also had hits in DGV, giving confidence in the CNV calling 

methods utilized in this study.  

 



143 

 

Table 3.1 Top associated germ line CNV/CNVR signature associated with breast cancer risk 

CNV region 
Cytoban

d 

Size 

(bp) 

Total 

CNV 

/CNVR 

Frequenc

y in 

cohort 

Average 

Frequenc

y of CNV 

cases 

(gain/loss

) 

Average   

Frequenc

y of CNV 

Controls 

(gain/loss

) 

q-value Overlapping gene Mapping 

Chr5-69784291-

70254895 
5q13.2 

47060

5 
44 31 (13/18) 59 (3/56) 1.46x10-21 

SMN2, ERF1A, 

GUSBP9, SERF1B, 

SMN1, SMA5, 

GUSBP3 

1000g, DGV 

Chr5-70254905-

70328368 
5q13.2 73469 31 26 (11/15) 37 (7/30) 

3x10-02 to 

1.76x10-13 
NAIP 1000g.DGV 

Chr21-40184963-

40190820 
21q22.2 2792 15 7 (3/4) 24 (0/24) 

1.58x10-10 to 4.3 

x10-12 
ETS2 - 

Chr9-40784158-

40800446 
9p13.1 60428 19 12 (5/7) 28 (3/25) 

1.09x10-11 to 

5.23-12 
ZNF658 DGV 

Chr8-7827144-7831849 8p23.1 4707 24 15 (7/8) 33 (4/29) 
1.02x10-09 to 

1.65x10-09   
FAM66E, USP17L8 DGV 

Chr9-67899911-

68067313 
9q13 

16740

4 
18 8 (2/6) 29 (4/25) 

1.86x10-08 to 

1.52x10-09 

ANKRD20A1, 

ANKRD20A3 
DGV 

Chr1-248683401-

248687808 
1q44 4409 29 23 (8/15) 35 (1/34) 

2.38x10-08 to 

6.47x10-09 
OR2G6 DGV 

Chr11-55418110-

55421252 
11q11 3143 85 94 (49/45) 76 (32/44) 1.21x10-08 OR4S2 1000g, DGV 

Chr8-93005629-

93015066 
8q21.3 9444 11 5 (2/3) 18 (0/18) 

7.69x10-08 to 

5.94x10-09 
RUNX1T1 - 

Chr6-34516636-

34517772 
6p21.31 1143 11 17 (13/4) 6 (0/6) 

1.34x10-07 to 

1.02x10-08 
SPDEF DGV 

Chr11-55403771-

55407672 
11q11 3902 85 93 (49/44) 77 (33/44) 4.18x10-08 OR4P4 

1000g, DGV 

Chr1-149548719-

149563724 
1q21.2 15005 30 26 (10/16) 35 (2/33) 6.61x10-08 PPIAL4A, PPIAL4C 

1000g, DGV 

Chr10-123346484-

123348045 
10q26.13 1569 11 7 (3/4) 15 (0/15) 

6.04x10-07 to 

1.05x10-07 
FGFR2 - 

Chr16-10788745-

10790882 
16p13.13 2137 10 7 (4/3) 14 (0/14) 4.24x10-07 TEKT5 

1000g, DGV 
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CNV region 
Cytoban

d 

Size 

(bp) 

Total 

CNV 

/CNVR 

Frequenc

y in 

cohort 

Average 

Frequenc

y of CNV 

cases 

(gain/loss

) 

Average   

Frequenc

y of CNV 

Controls 

(gain/loss

) 

q-value Overlapping gene Mapping 

Chr1-356492-380356 1p36.33 23865 21 16 (8/8) 28 (4/24) 5.62x10-07 
OR4F16, OR4F29, 

OR4F3 

1000g, DGV 

Chr9-67789400-

67808579 
9q13 19180 19 10 (2/8) 28 (3/25) 7.98x10-07 FAM27B 

1000g, DGV 

Chr4-144288613-

144293270 
4q31.21 4667 18 11 (5/6) 26 (2/24) 

1.5x10-05 to 

2.4x10-11 
GAB1 DGV 

Chr4-69505724-

69536970 
4q13.2 31250 32 29 (12/17) 35 (5/30) 

1.29x10-03 to 

1.10x10-06 
UGT2B15 1000g, DGV 

Chr11-55430518-

55436423 
11q11 5907 81 87 (46/41) 73 (30/43) 

1.68x10-05 to 

2.79x10-08 
OR4C6 DGV 

Chr9-67753281-

67808579 
9q13 55300 19 11 (2/9) 28 (3/25) 

1.46x10-06 to 

7.87x10-07 
FAM27E3, 1000g, DGV 

Chr13-67509369-

67513167 
13q21.32 3811 11 7 (3/4) 14 (1/14) 

1.24x10-03 to 

2.07x10-06 
PCDH9 DGV 

Chr7-75044860-

75062133 
7q11.23 17277 12 

7 (3/4)  17 (0/17)  
2.09x10-06 to 

1.76x10-07 
NSUN5P1, POM121C DGV 

Chr17-20346165-

20366887 
17p11.2 20725 11 7 (3/4) 15 (0/15) 

2.08x10-06 to 

6.78x10-07 
LGALS9B 1000g, DGV 

Chr4-55106768-

55120708 
4q12 13940 17 15 (6/9) 19 (0/19) 

5.21x10-03 to 

6.14x10-08 
PDGFRA - 

Chr13-48968806-

48977635 
13q14.2 8835 11 7 (3/4) 17 (0/17) 

1.53x10-06 to 

6.19x10-07 
RB1 1000g 

Chr3-127422064-

127423993 
3q21.3 1931 10 6 (2/4) 15 (0/15) 

6.29x10-06 to 

4.01x10-06 
MGLL 

1000g, DGV 

Chr5-180425664-

180437832 
5q35.3 12170 19 19 (9/10) 18 (1/17) 

4.71x10-05 to 

2.62x10-05 
BTNL3 

1000g, DGV 

Chr1-152572873-

152574332 
1q21.3 2728 75 83 (40/43) 67 (24/43) 

4.71x10-05 to 

2.64x10-05 
LCE3C 

1000g, DGV 

Chr22-39363651-

39371629 
22q13.1 1119 19 21 (3/18) 17 (3/14) 

3.65x10-02 to 

2.73x10-02 
APOBEC3A_B 

1000g, DGV 
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3.3.2.  CNVRs associated with breast cancer prognosis 

Since SNPs associated with breast cancer risk are poor prognosticators52 , I investigated if 

the CNVs associated with breast cancer risk would have prognostic significance. I tested 

the 200 CNVRs/CNVs that showed association with breast cancer risk for prognostic 

significance using the Cox proportional hazards model. I compared the hazard function 

among the cases with diploid gene copy versus copy gain or loss. The identified 

prognostic CNVRs for Overall Survival (OS) and Recurrence Free Survival (RFS) are 

summarized in Tables 3.2 and 3.3. I identified 21 CNVRs overlapping 22 genes that 

showed associations with both breast cancer risk and prognosis. 

Table 3.2 CNVRs associated with breast cancer risk and OS 

CNVR region Gene name 
CNVR 

Size (kb) 

Copy 

number 

status  

P-value 
Hazards Ratio 

[95% CI] 

chr19:36846012-

36847567* 
ZFP14 1.55 gain 4.78x10-3 

2.38 

[1.3-4.36] 

chr1:65393459-

65410228* 
JAK1 16.77 gain 1.07 x10-2 

3.24 

[1.31-8.01] 

chr1:110225034-

110226615 
GSTM2 1.58 gain 1.30 x10-2 

1.81 

[1.13-2.89] 

chr17:80646036-

80647251 
RAB40B 1.21 gain 1.60x10-2 

2.57 

[1.19-5.52] 

chr6:32487136-

32497161 

HLA-DRB5,  

HLA-DRB6  
10.02 gain 2.25x10-2 

0.59 

[0.38-0.93] 

chr8:72213838-

72215337 
EYA1 1.49 gain 3.09x10-2 

1.59 

[1.04-2.43] 

chr6:161032642-

161068568* 
LPA 35.92 gain 3.13x10-2 

0.37 

[0.15-0.91] 

chr3:50951343-

50960775 
DOCK3 9.43 gain 3.18x10-2 

2.20 

[1.07-4.52] 

chr12:99796328-

99797863 
ANKS1B 1.53 gain 3.35x10-2 

1.94 

[1.05-3.57] 

chr12:2254285-

2256046 
CACNA1C 1.76 gain 3.49x10-2 

0.48 

[0.24-0.95] 

chr4:55111660-

55120708* 
PDGFRA 9.05 loss 6.58x10-3 

0.35 

[0.16-0.74] 
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This table describes the list of CNVRs associated with both risk and overall survival 

identified using Cox proportional hazard model. Only the associated copy number status 

(either loss or gain) compared with diploid is indicated in the table. The CNVR region 

marked with “*” indicate common CNVRs between OS and RFS. Abbreviation: CI – 

Confidence Interval. 

 

(i) Germline CNVRs and OS in Breast cancer  

I identified 15 CNVRs (with 16 overlapping genes) associated with breast cancer risk and 

OS (Table 3.2). Among these, 11 CNVRs overlapped with 12 genes (GSTM2, RAB40B, 

HLA_DRB5, HLA_DRB6, EYA1, DOCK3, ANKS1B, CACNA1C, RAB11FIP3, BAGE, 

SGCZ, POM121c) and were specifically associated with breast cancer risk and OS. The 

remaining four CNVRs overlapped with genes ZFP14, JAK1, LPA, PDGFRA and were 

also associated with RFS in breast cancer. The P-values for the identified 15 CNVRs 

were in the range of 4.77x10-2 to 4.78x10-3. Both gains and losses contributed to 

prognostic significance. Copy gains showed both risk elevating and protective effects 

whereas copy losses showed only protective effects. The Kaplan-Meier (KM) survival 

plot for the top associated CNVR with OS is shown in Figure 3.2.  Copy number gains in 

the genes ZFP14, GSTM2 and JAK1 were shown to be associated with poor OS in the 

univariate Cox analysis. P-values and HRs estimated for these genes were as follows: 

ZFP14 (P-value =4.78x10-3 and HR 2.38), GSTM2 (P=1.30x10-2 and HR 1.81) and JAK1 

chr16:515664-

536683 
RAB11FIP3 21.02 loss 1.66x10-2 

0.43 

[0.22-0.86] 

chr21:11053457-

11069332 

BAGE 15.87 loss 2.01x10-2 0.40 

[0.19-0.87] 

chr8:14284477-

14288732 

SGCZ 4.25 loss 2.41x10-2 0.27 

[0.08-0.84] 

chr7:75044860-

75054268 

POM121c 9.41 loss 4.77x10-2 0.20 

[0.06-0.98] 
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(P-value =1.07x10-2 and HR 3.24). KM plots describing the survival differences and 

estimated log rank p-values are shown in Figure 3.2 (a-c). The estimated survival 

differences (log rank p-values) for cases with copy gains compared to cases with diploid 

copies of the genes ZFP14, GSTM2, and JAK1 were 0.004, 0.11 and 0.008 respectively. 

Copy number loss of PDGFRA was associated with OS (P-value 6.58x10-3 and HR 0.35) 

and cases with copy loss had better survival outcomes compared with cases with diploid 

copies, the log rank p-value estimated for the difference in survival value was 4x10-3. 
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Figure 3.2 KM plots for CNVRs associated with overall Survival  

KM plots were constructed based on the copy number status of each gene to determine 

the difference in overall survival (OS) between cases with genes harbouring copy number 
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variation (gain/loss) versus diploid status. Blue indicates Diploid copy number; Green 

indicates Copy number gain; Red indicates Copy number loss. “ + ” indicates the 

censored events. The number of cases, n, in the analysis is indicated and the number of 

events in the study for each survival curve is indicated in parenthesis. Log rank p-value 

for significance between the curves is indicated at the bottom of each panel within the 

figure.  

 

(ii) Germline CNVRs and RFS in Breast cancer 

I identified a total of ten CNVRs associated with breast cancer risk and RFS (Table 3.3). 

Among the ten CNVRs, six CNVRs overlapped with the genes (SORBS2, LCE3C, MLIP, 

OR2T11, MUC20, LGALS) that were specifically associated with RFS; and four CNVRs 

(ZFP14, JAK1, LPA, PDGFRA) were also associated with OS. The associated CNVRs 

had P-values in the range of 3.65x10-2 to 3.82x10-4. Both copy gains and losses were 

associated with elevated risk or protective effects. The KM plots for the top associated 

CNVRs with RFS are illustrated in Figure 3.3. I observed that copy gains in ZFP14 and 

LEC3C were associated with poor RFS with P-values 3.82x10-4 and 1.94x10-2 and HRs 

2.89 and 1.75, respectively. The log rank p-value estimated from KM plots (Figure 3.3a, 

3.3d) for the genes ZFP14 and LEC3C were 2.0x10-4 and 1.7x10-2, respectively. In 

PDGRA gene copy loss associated with RFS and cases with copy loss had better survival 

outcomes compared with diploid copy status (RFS, P-value 7.92 X 10-3 and HR 0.42). The 

log rank p-value estimated was 6x10-3 based on KM plot (Figure 3.3b). A similar trend 

was observed for OS as well. Another interesting CNVR was in the SORBS2 gene in 

which both copy gain and loss were associated with poor RFS. For copy gain, the P-value 

was 1.35 X 10-2 and HR was 3.54; for copy loss, the P-value was 3.65 X 10-2, and the HR 
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was 1.93. The log rank p-value for the difference in the copy gain/loss versus diploid 

copy status was 4x10-3 (Figure 3.3c). 

I observed that copy number deletion in APOBEC3A_B was not associated with either 

RFS and OS in breast cancer, which agrees with published findings67. 

Table 3.3 CNVRs associated with breast cancer risk and RFS 

CNVR region 
Gene 

name 

CNVR 

Size (kb) 

CNV 

type 

Cox 

P-value 

Hazards Ratio 

[95% CI] 
chr19:36846012-

36847567* 
ZFP14 1.55 Gain 3.82x10-4 

2.89 

[1.61-5.19] 

chr4:186629984-

186634169 

SORBS2
+ 

4.18 Gain 1.35x10-2 
3.54 

[1.3-9.64] 

chr1:152572873-

152574332 
LCE3C 1.46 Gain 1.94x10-2 

1.75 

[1.1-2.81] 

chr1:248787969-

248794876 
OR2T11 6.91 Gain 2.64x10-2 

2.09 

[1.09-4] 

chr3:195456468-

195461506 
MUC20 5.04 Gain 3.46x10-2 

0.62 

[0.39-0.97] 

chr1:65393459-

65410228* 
JAK1 16.77 Gain 3.47x10-2 

2.6 

[1.07-6.47] 

chr6:161032642-

161068568* 
LPA 35.92 Gain 5.08x10-3 

0.31 

[0.13-0.70] 

chr17:20346165-

20366887 

LGALS9

B 
20.72 Gain 3.52x10-2 

2.27 

[1.06-4.87] 

chr4:55111660-

55120708* 

PDGFR

A 
9.05 Loss 7.92x10-3 

0.42 

[0.22-0.8] 

chr6:53931117-

53933601 
MLIP 2.48 Loss 2.53x10-2 

0.62 

[0.4-0.94] 

chr4:186629984-

186634169 
SORBS2+ 4.18 Loss 3.65x10-2 

1.93 

[1.04-3.58] 

This table represents the list of CNVRs associated with both risk and RFS identified 

using Cox proportional hazard model. Only the associated copy number status (either loss 

or gain) compared with diploid is indicated in the table. The CNVR region marked with 

“*” indicate common CNVRs between OS and RFS “+” Indicates that gene that has both 

gain and loss associated with recurrence free survival when compared to diploid. 

Abbreviation: CI – Confidence Interval. 
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Figure 3.3 KM plots for CNVRs associated with RFS  

KM plots were constructed based on the copy number status of each gene to determine 

the difference in recurrence free survival (RFS) between cases with genes harbouring 

copy number variation (gain/loss) versus diploid status. Blue indicates Diploid copy 

number; Green indicates Copy number gain; Red indicates Copy number loss. “ + ” 

indicates the censored events. Number of cases, n in the analysis is indicated and the 

number of events in the study for each survival curve is indicated in parenthesis. Log 

rank p-value for significance between the curves is indicated at the bottom of each panel 

within the figure. 
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3.3.3.  C: Validation of associated CNVs  

(i) Cross platform validation of CNVs using the TaqMan Assay 

Breast cancer associated CNVs overlapping with the genes APOBEC3B, GSTM1 and 

FGFR2 were validated using the TaqMan assay. For APOBEC3B, 13 samples were 

tested (Figure 3.4a): one sample (healthy control) had two copy deletions, ten samples 

had one copy deletion (4 healthy controls and 6 breast cancer cases) and two samples 

(breast cancer cases) had diploid copy numbers. For GSTM1, I identified 16 samples (7 

controls, 9 cases) with two copy deletions and 11 samples (3 controls and 8 cases) with 

one copy deletion (Figure 3.4b). Both APOBEC3 and GSTM1 quantifications by the 

TaqMan assays showed excellent agreement with the predicted copy status from PGS 

(this study) and the 1000 genomes data.  

CNVs identified in FGFR2 predominantly showed copy deletions as inferred by PGS; the 

same CNVs, when mapped to the 1000 genomes data, showed diploid status. I tested 29 

samples (19 controls and 10 cases) by the TaqMan assay to verify copy status; all 

samples showed diploid status. To ensure the quality of the assay design, I used the 

Coriell DNA sample (NA05299) that had one copy deletion in FGFR2 as a positive 

control for FGFR2 deletion thereby demonstrating that the technical aspects of the 

TaqMan assay did not contribute to disagreement in the copy deletions noted (data not 

shown). A targeted re-sequencing of this region is needed to confirm these findings. 
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Figure 3.4 Copy number status estimated study samples using TaqMan 

Assay  

Copy number status of genes APOBEC3B (a) and GSTM1 (b) are represented for each 

sample. The Human RNAase P was used as internal normalization and the Coriell sample 

NA18635, which is diploid for both genes, were also used in copy number estimation. 
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(ii) Detailed characteristics of the validated CNVs: (a) APOBEC3A_B loci: A deletion 

of APOBEC3A_B was previously reported to be associated with breast cancer risk in 

Chinese47, European48 and Iranian68 populations. In this study, I have also identified 

CNVs showing a deletion in the APOBEC3B gene and associated with breast cancer risk 

(Table 3.1). I validated the deletion in our cohort using the TaqMan assay as an 

independent genotyping platform. A single copy deletion of APOBEC3A_B was observed 

at frequencies of 14% among controls and 18% of cases (Caucasian ancestry), which is 

comparable with results of previous reports48. This is the second such study based on a 

Caucasian population to independently validate a common CNV and its association with 

breast cancer.  

(b) GSTM1: Although the role of germline CNVs in the GSTM family of genes, which 

are involved in xenobiotic detoxification and drug metabolism pathways is well 

documented in other cancer types69, their role in breast cancer is not clear. I identified 

CNVs (both gains and losses) in GSTM1 and GSTM2 and their frequencies in the total 

cohort were 78% and 27% in the Caucasian population, respectively (provided as 

electronic Supplementary dataset 1 https://doi.org/10.1038/s41598-017-14799-7). The 

relative frequencies of deletions in GSTM1 (Cases, 40%; Controls, 31%) and GSTM2 

(Cases, 15%; Controls, 8%). CNVs were higher among the cases compared to the 

controls. The CNVs identified in GSTM loci were also observed in 1000 Genomes 

Project data as a copy variable region.  

(c) Correlation of germline CNV copy status of protein coding genes with gene 

expression in breast tumors: One of the mechanisms by which germline CNVs may 

bring about phenotypic effects is gene dosage, and in this context “functionality” refers to 

https://doi.org/10.1038/s41598-017-14799-7
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underlying gene expression changes in breast tumor tissues rather than specific changes 

in cellular morphology or proliferation rates. To identify gene dosage effects due to 

germline CNVs, I looked for correlations between gene expression profiles derived from 

breast tumor biopsy samples (n=90) and the germline CNV data available from the same 

cases. I expected only a subset of genes to be expressed in a tissue specific manner and 

our observations support this premise. The expression of nine genes correlated with 

corresponding germline CNVs with correlation coefficients in the range 0.2 to 0.39 

(Appendix Table A.10). Seven of the nine genes also were statistically significant at 

p<0.05 and two showed trends of association (p<0.1). The association of gene expression 

as a function of the germline copy number status is illustrated in Figure 3.5. Mean 

expression levels among cases with copy number deletions were consistently less than 

among cases with diploid copy number or amplification. The correlated genes are well 

known to harbour germline copy number variations70-72, and the association of CNVs in 

these genes with breast cancer risk and the altered expression of these genes in breast 

tumor tissues is noteworthy.  

In addition to the linear correlation of gene expression with CNVs, I also tested if the 

genes overlapping in the prognostic CNVs (n=22) were also associated with RFS and OS. 

Eighteen of the 22 genes overlapping in the CNVRs also showed expression in breast 

tumor tissues. Of these, expression of five genes (GSTM2, SGCZ, HLA_DRB5, ZFP14, 

LCE3C) showed association with prognosis (Appendix Table A.11). 
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Figure 3.5 Association of germline copy number status and gene expression in  

breast tumor tissue  

Germline copy number status of individual genes was plotted against gene expression in 

breast tumors from matched samples. The colours indicated in green, grey and red 

represent gain, diploid and deletion, respectively. 
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3.4. Discussion 

In this study, I sought to identify germline CNVs that predispose to both breast cancer 

susceptibility and prognosis. Using 686 samples for copy number analysis, I identified 

200 CNVs/CNVRs (frequencies >10%) that overlapped with protein coding genes at q-

values <0.05. I compared the identified CNVs/CNVRs break points to the structural 

variation data available from the 1000 Genomes Project to ascertain CNV calls, an 

approach that was unique to our study. Another novel aspect was the assessment of 

prognostic relevance of breast cancer susceptibility CNVs. I demonstrated that some 

CNVs were only associated with disease risk whereas some were associated with both 

disease risk and prognosis. These findings are in contrast to SNP based association 

studies in which susceptibility SNPs from GWAS did not show prognostic relevance, 

with one exception, the SNP rs1328161573 on chromosome 8q24.21 locus which myself 

and others showed as associated with both OS and RFS in breast cancer51. Further, 

independent SNP based GWAS was not successful in identifying variants associated with 

breast cancer prognosis52. CNVs cover 10% of the genome based on nucleotide coverage 

and our study rationale assumed that CNVs overlapping with coding genes (deletions or 

gains) influence phenotypes.  

Of relevance was the replication in my study of the APOBEC3A_B gene deletion (Chr22-

39363651-39364770), which was originally reported in Chinese populations as a breast 

cancer susceptibility CNV in sporadic cases47. Subsequently the same was replicated in 

European48 and Iranian populations68. There were both gains and losses at this locus in 

this study; frequencies of gains were the same in both cases and controls (at 3%) whereas 

the above published studies reported only copy loss. The copy number deletion is the risk 
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allele and the frequencies were 18% and 14%, respectively, in cases and controls (this 

study). These were in agreement with reported studies74 in Caucasian populations (Table 

3.1). APOBEC3B gene was not shown to be associated with prognosis (OS)67, which I 

confirmed in this study.  

I have identified a CNV (Chr1:110230244-110233070) showing association with breast 

cancer and harbouring the GSTM1 gene. Earlier candidate gene studies identified SNPs in 

GSTM1 to be associated with breast cancer risk75. I report a common CNV approximately 

3kb in size in a locus encompassing GSTM1 associated with breast cancer risk. The 1000 

genome annotation indicates that a CNV in this genomic locus spans about 20kb in size 

and encompasses the entire gene. The CNV encompassing GSTM1 showed both gains 

and losses at high frequencies in cases and controls (provided as electronic 

Supplementary dataset 1 https://doi.org/10.1038/s41598-017-14799-7). The frequencies 

were approximately the same for gains in cases and controls (43% vs. 42%). However, 

deletion frequencies differed between cases and controls (40% vs. 31%), with cases 

showing higher frequencies. Although a germline CNV overlapping GSTM1 was shown 

to be associated with prognosis in prostate and bladder cancers69, this CNV was not 

associated with prognosis in this study. SNP based studies in the GSTM1 gene associated 

with breast cancer risk but not with prognosis76,77. I validated both APOBEC3 and 

GSTM1 CNV deletions using the TaqMan assays. Interestingly, the representative genes 

(APOBEC3B and GSTM1) validated by the TaqMan assays were also identified as copy 

variable genes by the 1000 genomes project.  

The characteristics and putative biological roles for representative genes associated with 

breast cancer susceptibility and/or prognosis are summarized here:  

https://doi.org/10.1038/s41598-017-14799-7
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(i) PDGFRA, Platelet-Derived Growth Factor Receptor Alpha is a tyrosine kinase 

receptor that is overexpressed in malignancies including the breast. I observed a CNV in 

PDGFRA is not only associated with BC risk and but a copy loss in this gene is 

conferring protective effect for RFS and OS. A higher frequency of copy gain was seen in 

cases (~6%) compared to 0% frequency among controls. However, frequency of deletion 

observed in controls was higher (19%) compared to cases (9%). Overexpression of 

PDGFRA is also known to play a role in tumorigenesis and its amplification or genetic 

alteration is believed to activate the PDGFRA mediated signaling pathway78. 

LPA (Lysophosphatidic acid), a lipid biomolecule that functions as a growth factor 

mediating cell proliferation, migration and progression, processes that are central to 

tumorigenesis79,80. Both CNV and gene expression profiles of LPA are associated with 

both susceptibility and prognosis. Copy number gain was associated with protective 

effect for OS and RFS.  

A germline CNV in ZFP14 (Zinc Finger protein) was associated with risk and prognosis 

in our analysis. CNV in ZFP14 is associated with prostate cancer23, in which a deletion is 

protective for prostate cancer risk. I observed copy gains among the cases and there were 

associated with poor prognosis. Somatic copy number aberration is also observed in 

ZFP14 gene in breast tumors81,82.  

The CNV association studies in breast cancer reported thus far have focused on cases that 

are BRCA positive or with family history with or without BRCA mutations18 and with 

limited sample sizes (n=30-60). These studies identified rare CNVs (frequency <1% in 

total cohort). Recently a CNV-GWAS study was conducted using cases with early onset 
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of breast cancer (age <40 Years; 200 cases and 293 controls) and genotyping was 

performed using Illumina Human610-Quad BeadChip15 and CNV calls were inferred 

based on SNP probe intensities. Our study utilized cases that were diagnosed with 

invasive breast cancer with late age at onset of the disease (>40 Years; 422 cases and 348 

controls) and focused on common CNVs. I used Affymetrix SNP 6 arrays and CNV calls 

were based both on SNP and CNV probes. Because SNP density is lower in CNV dense 

regions, our study benefitted from using the Affymetrix arrays. Most existing studies on 

CNV associations with breast cancer have relied on SNP probes, and CNV calling 

algorithms are also diverse. Hence potential overlap of the genes identified in our study 

with those previously described are likely to be highly restrictive. Our use of both CNV 

and SNP probes to infer copy status may have contributed to higher numbers of CNVs 

associated with breast cancer. As with any GWAS study, Stage-1 study identifies several 

variants associated with the phenotype, and our data conforms with the GWAS literature. 

However, I addressed multiple hypothesis testing by implementing q-value (<0.05) 

thresholds. In addition, I also mapped the associated CNVs with breast cancer to 1000 

Genomes Project database and confirmed that a majority of CNVs identified were indeed 

common CNVs. I have replicated CNVs (n=5) from the familial breast cancer study, 

including CNVs in genes ANKS1B19 , OR4C11, OR4P4, UGT2B17, OR4C6, OR4S215. 

Even though previous studies have ascribed these CNV overlapping genes to early onset 

of breast cancer, independent replication of these findings in late age at onset of breast 

cancer (this study) suggests that some CNVs may be common and emphasizes the more 

general role these genes play in the aetiology of breast cancer.  
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The breast cancer risk associated CNVs (Table 3.1) that mapped to 1000 genomes 

(NME7, RB1, UGT2B15, BTNL3, RBL1, LGALS9B, MGLL, GSTM1, and PML) were also 

captured in a recent breast tumor tissue (somatic) profiling study, confirming that the 

identified genes are primarily in copy number variable regions82.  

I tested the 200 CNVRs overlapping protein coding genes for their associations with 

breast cancer RFS and OS using the Cox proportional hazard model. The cases in our 

study have well annotated clinical data and long years of follow up, and compared the 

survival benefit of cases based on the germline copy number status (gain or loss) against 

diploid copy for a given CNVR. I identified CNVRs to be associated with RFS and/or OS 

among the cases. Genes within the four CNVRs (i.e., ZFP14, JAK1, LPA, PDGFRA) 

were associated with both RFS and OS; these genes are also known to harbour somatic 

copy number aberrations in breast tumors81-83.  

It is critical to demonstrate the functionality of genes overlapping with CNVs. I therefore 

examined their dosage sensitivities and identified nine genes whose expression is breast 

tissue specific. The dot plots (Figure 3.5) clearly indicate the differences in expression 

levels between deletion versus diploid genes. The well-known germline CNV harbouring 

genes, GSTT1, UGT2B17, are involved in detoxification, steroid and drug metabolism 

pathways. and their dosage sensitivities are well studied76,84,85. These genes are also 

associated with breast cancer risk and demonstrating dosage sensitivity at the tissue level 

will contribute to an understanding of the mechanistic basis for disease aetiology. Even 

though GST family of genes showed associations at the CNV level, their correlation with 

gene expression was not significant due to the unequal distribution of samples across 

different copy number states and the limited sample size of 90. A larger sample size with 
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gene expression and germline CNV profiles will allow us to detect correlations between 

CNVs and gene expression.  

3.5. Conclusion 

In this study I restricted the analysis to CNVs overlapping with protein coding regions, 

the preferred approach in most CNV based association studies reported in the 

literature44,47. Although intergenic CNVs in non-coding regions also merits attention, 

access to matched data sets (germline CNVs and gene expression data) is needed and 

these are to be addressed in future studies. Such data mining approaches have shown 

promising leads in disease settings other than breast cancer86,87. In this study, the 

identified CNVs associated with breast cancer phenotypes, vis-à-vis, heritable 

determinants for disease susceptibility and prognosis and predict that our results also 

apply to CNVs that harbour non-coding RNA genes.  

3.6. Availability of data and material 

All data generated or analysed during this study are included in the published article and 

its supplementary information files. The dataset is provided as electronic Supplementary 

dataset 1 https://doi.org/10.1038/s41598-017-14799-7. 
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4 Breast cancer associated germline structural variants 

harboring small noncoding RNAs impact post-

transcriptional gene regulationl 

4.  

4.1. Introduction  

Globally, breast cancer (BC) is one of the most common cancers diagnosed among 

women1. It is estimated from twin studies that genetic factors contribute up to 30% of the 

risk for breast cancer2. To date, high, moderate and low penetrance single nucleotide 

variants associated with breast cancer explained only 50% of the heritable risk and much 

of the remaining genetic susceptibility (so-called missing heritability) remains 

unexplored3,4. However, majority of these variants are present in the intronic or intergenic 

regions and therefore precludes delineation of their role in breast cancer pathogenesis. 

Therefore, there is a need to explore the significance of other forms of genetic variants 

for their role in breast heritability. 

Copy Number Variations (CNVs), a class of structural variations of DNA (> 50 bp in 

size), which includes amplification or deletion of genomic segments. CNVs can influence 

phenotype in a variety of ways: through gene dosage (correlation of copy status and 

ensuing tissue specific gene expression changes), partial deletions in genic regions 

                                                 

l A version of this chapter has been published. Kumaran et al., 2018. Scientific Reports. © 2018 Kumaran 

et al. This article published in Scientific Reports is licensed under a Creative Commons Attribution 4.0 

International License. The author owns the copyright for the article.  Ms. Jennifer Dufour is acknowledged 

for technical support. The results published or shown here are in whole or part based upon data generated 

by the TCGA Research Network: http://cancergenome.nih.gov/. 
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leading to fusion genes, or complete deletions of genes, and lastly, changes that lead to 

more complex levels of cis or trans regulatory functions5,6.  

Recently, genetic susceptibility has been explained in part by common germline CNVs 

(>5% in frequency) and rare germline CNVs (1-5% in frequency) for sporadic and 

familial breast cancers, respectively6,7. A common germline CNV deletion affecting 

APOBEC3 loci resulted in a fusion protein, APOBEC3A_B, which was reported to confer 

breast cancer susceptibility in diverse populations6,8,9. Recently, I demonstrated that 

germline CNVs overlapping with protein coding genes are associated with breast cancer 

risk and prognosis. Also the associated CNVs showed gene dosage effects, i.e., germline 

copy status (gain, loss or diploid status) and showed correlation with breast tissue gene 

expression7. Even though previous studies have suggested that a significant proportion of 

CNVs reside in the intergenic regions which harbor non-coding genes, there were no 

direct studies to address their relevance to breast cancer. I reasoned that studies of 

germline CNVs harboring small non-coding RNAs (hereafter referred to as CNV-

sncRNAs) such as microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), small 

nucleolar RNAs (snoRNAs) and transfer RNAs (tRNAs) and their relative levels of 

expression in breast tissues potentially offers biological insights into the role of CNV-

sncRNAs in breast cancer risk. 

The sncRNAs are less than 200 nucleotides in size and include different classes of RNAs 

– miRNAs, piRNAs, snoRNAs and tRNAs. While miRNAs and piRNAs are known post-

transcriptional regulators of gene expression, snoRNAs and tRNAs are also currently 

being investigated as potential regulators of gene expression. Although the canonical 

roles of snoRNAs and tRNAs include RNA modification/splicing and translation, 
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respectively, novel functions of these RNAs are emerging. The nucleotide sequences 

within these RNAs show sequence homology with mature miRNAs and piRNAs. 

snoRNAs and tRNAs may undergo nucleolytic processing to unmask cryptic miRNAs 

and piRNAs. Dysregulation of all four classes of sncRNAs has been observed in various 

cancer types, including breast cancer, and its clinical significance has been addressed in 

some detail (miRNAs and piRNAs)10,11 or is emerging (snoRNAs and tRNAs)12,13.  

Germline single nucleotide polymorphisms (SNPs) present in pre-miRNA regions are 

known to affect their biogenesis and target binding efficiencies of miRNAs, thereby 

influencing disease predisposition14-16. Germline CNVs may also affect disease 

predisposition by independent mechanisms. For instance, a copy number deletion of a 

miRNA cluster present on chr22q11.2 locus is a classic example of a germline CNV as a 

genetic determinant of schizophrenia17-19. Additionally, germline CNVs and their 

embedded miRNAs (CNV-miRNAs) were shown to be associated with  autism20, roles in 

brain aging and neurodegeneration21 and congenital heart disease22. Prior studies have 

predicted that the target genes conferring the phenotypes are likely regulated by CNV-

miRNAs19. However, there is no direct experimental evidence to support this premise.  

I hypothesized that germline CNVs are associated with the phenotype of breast cancer, 

and that CNV-sncRNAs are indeed expressed in breast tissues, show gene dosage effects 

and mediate the regulation of downstream target genes. I show evidence in support of this 

hypothesis and offer insights on the role of disease associated CNVs. Firstly, I identified 

germline breast cancer associated CNVs using a genome wide association study (GWAS) 

design (Fig. 1) and identified embedded sncRNA gene regions. Secondly, I showed that 

sncRNAs originating in CNVs are indeed expressed in breast tissues and show 
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correlation with germline copy status. Thirdly, I identified the target mRNAs regulated 

by CNV-miRNAs. I therefore infer that cancer associated CNVs harboring sncRNAs 

contribute to the pathogenesis of breast cancer. 

4.2. Methods  

I performed all the experiments and analysis, unless otherwise indicated in the text 

4.2.1. Study ethics approval  

The study was approved by the local Health Research Ethics Board of Alberta (HREBA) 

- Cancer Committee. Written informed consents were obtained from all study 

participants. All experiments performed using specimens from study samples were 

carried out under approved guidelines and regulation.  

4.2.2. Study subjects and whole genome platforms 

A schematic of the overall study design is summarized (Figure 4.1) and details of the 

protocols followed are summarized below. The flowchart depicts the overall study 

design, summary of the datasets, and experimental platforms used at each stage of the 

analysis. Detailed protocols and data analysis methods are discussed in the methods 

section.  

4.2.3. Discovery dataset 

The study included women from Alberta, Canada with confirmed diagnosis of invasive 

breast cancer (cases, n=422)7,23. The cases were non-metastatic at the time of diagnosis. 

Biological specimens and clinical-pathological information were accessed from the 
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Alberta Cancer Research Biobank, located at the Cross-Cancer Institute, Edmonton, 

Alberta, Canada24.The controls (n=348) included in this study were age matched healthy 

women (no personal or family history of cancer at the time of recruitment). The controls 

were accessed from a prospective cohort study called the Tomorrow Project25 based in 

Alberta, Canada. Affymetrix Human SNP 6.0 array data and information about the study 

participants and the specimens can be found elsewhere23,26 and in the ensuing text. 

 

Figure 4.1 Study design  



181 

 

The flowchart depicts the overall study design, summary of the datasets, and 

experimental platforms used at each stage of the analysis. Detailed protocols and data 

analysis methods are discussed in the methods section. 

 

4.2.4. Validation dataset (The Cancer Genome Atlas Project, TCGA) 

I have accessed the dataset from TCGA study with cases diagnosed with invasive breast 

cancer. This study meets the publication guidelines provided by TCGA 

(http://cancergenome.nih.gov/publications/publicationguidelines). I accessed level 1 and 

level 3 TCGA datasets for Whole Genome Copy number profiles, small RNA sequencing 

data and mRNA sequencing datasets, respectively. The datasets were available for 1088 

Invasive breast cancer cases. I selected 516 cases based on the study inclusion criteria: i) 

no history of other malignancy, ii) no metastasis at the time of diagnosis and iii) 

diagnosis of invasive ductal or lobular carcinoma. 

4.2.5. Germline CNV dataset from TCGA: Affymetrix Human SNP 

array 6.0 platform 

I utilized Affymetrix generated (.CEL files) data from germline DNA. Based on the SNP 

genotype calls for the 516 cases, I performed population stratification analysis using 

Principal Component Analysis (PCA) as described in the ensuing text. I identified 495 

cases with Caucasian ancestry which were used for the down-stream analysis.  
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4.2.6. Breast tissue transcriptome data set from TCGA for small non-

coding RNAs: Next Generation Sequencing platform 

I accessed datasets for small RNA sequencing files (level 1 data; .bam files) matching to 

495 cases of Caucasian ancestry.  Of these, sequencing data were available for 469 breast 

tumor tissues. However, for a subset of cases data were available on both tumor and 

adjacent normal tissues specimens. Sequencing data from Illumina HiSeq and Genome 

Analyzer (GA) platforms from TCGA were accessed (254 breast tumor samples and 18 

adjacent normal samples from HiSeq and 215 breast tumor samples and 13 adjacent 

normal samples from GA).  

4.2.7. Breast tissue transcriptome data set from TCGA for mRNAs: 

Next Generation Sequencing platform  

I accessed mRNA sequencing data from breast tumors generated on Illumina HiSeq 

platform. Level 3 data (Reads Per Kilobase Million, RPKM normalized) was used for all 

analysis. mRNA sequencing data was available for 198 cases and these were matched 

with the data available for sncRNAs on the same HiSeq platform. This enabled the 

identification of post-transcriptionally regulated target mRNAs by CNV-miRNAs.  

4.2.8. DNA extraction  

DNA was extracted from peripheral blood samples of cases and controls (discovery 

dataset, n=770). DNA isolation was carried out by using commercially available 

QiagenTM (Mississauga, Ontario, Canada) DNA isolation kits, as described earlier 23,26. 
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4.2.9. Genotyping and quality control  

DNAs extracted from study samples was genotyped using Affymetrix Human SNP array 

6.0 following manufacturer’s protocol and are described elsewhere 26. Affymetrix SNP 

array 6.0 has an independent set of probes for SNPs and CNVs. Genotyping quality 

control was assessed using Birdseed V2 algorithm in Affymetrix genotyping console. 

Sample Contrast Quality Control (CQC) ≥1.7 indicates acceptable genotyping quality. 

All study samples (both discovery and validation data) had a CQC values > 2.  

4.2.10. Population stratification  

Principle component analysis was performed using EIGENSTRAT algorithm 

implemented in Golden Helix SNP and Variation suite v8.5.0. Genotype data from 270 

HapMap samples were used as reference to infer genetic ancestry of the study samples. 

Variance was accounted for by the top two principal components and a threshold of three 

standard deviations was set to determine the outliers. 

Of the 770 samples in the discovery dataset, 686 samples co-clustered with the European 

ancestry samples from the HapMap data, and 84 samples were identified as outliers.  Of 

the 516 TCGA samples, 495 samples were identified as belonging to the European 

ancestry and 21 samples were removed as outliers. Identity by descent (IBD) analysis did 

not reveal any cryptic relatedness among the study subjects as judged from the pair-wise 

correlation cut off < 0.25 in both datasets.  
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4.2.11. Copy number estimation and association analysis 

Copy Number Analysis was performed using Partek® Genomics Suite™ 6.6 (PGS) and 

the default parameters as described below. Affymetrix. CEL files served as the source 

files. The CNV analysis was performed for 686 samples (320 controls and 366 cases) and 

all sample normalization was used to create a reference baseline to infer the relative copy 

number estimate. Genomic segmentation algorithm implemented in the software was 

used to call the genomic segments based on the following default criteria: genomic 

markers >10; segmentation p-value threshold = 0.001; Signal/Noise (S/N) ratio = 0.3. 

The copy number status for each inferred segment was assigned based on the normalized 

intensity as diploid copy number = 1.7-2.3, copy gain >2.3 and copy loss <1.7. CNV 

association analysis was performed using 2X3 Chi-square association test estimates the 

difference in frequency of a CNV (gain/loss/diploid) between the cases and controls. 

Data was corrected for multiple hypothesis testing using Benjamin-Hochberg false 

discovery rate method and CNVs with q-value < 0.05 were considered significant.  

CNV estimation for the 495-breast cancer TCGA samples (validation set) was performed 

similar to the discovery dataset, except for the normalization. I used HapMap 270 

samples as a reference for a diploid status (controls) to infer copy status in TCGA 

samples (cases). Associated CNV regions and break-points from the discovery data set 

were mapped to the CNV profiles and break-points in TCGA samples.  

4.2.12. Gene annotation for the CNV regions  

Breast cancer associated CNV regions were annotated for sncRNAs from the following 

sources: mature miRNAs using miRBase ver20 27, snoRNAs using Ensembl 28, piRNAs 
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using piRNAdb 29 and tRNAs 30 using UCSC genome browser. Protein coding and 

lncRNA genes were annotated using UCSC.  

4.2.13. Expression analysis of sncRNAs 

Partek® Genomics Suite was used for the analysis of sncRNAs and .bam files as a source 

of sequence data. TCGA samples (both breast tumor and adjacent normal tissues) 

sequenced using Illumina HiSeq platform and Genome Analyzer were analyzed 

separately using PGS. sncRNA annotation was based on the database sources described 

above. For sncRNA expression analysis, a cut-off at least 5 read counts in 50% of the 

samples was considered for further analysis. I restricted integrative analysis of CNV 

status, sncRNAs and mRNAs to HiSeq data because read depths may vary between 

HiSeq and GA platforms. 

4.2.14. Correlation of the breast tissue expression of sncRNAs with 

germline copy number estimates  

It was important to ascertain if there was a correlation between CNV copy status and 

expression of CNV embedded genes (e.g., encoding sncRNAs) in breast tumor tissues to 

assess the role of the latter in disease risk. I used Pearson Correlation analysis (p-value 

<0.1) to demonstrate the relationship between copy status and sncRNA expression.  I 

used 198 samples with germline CNV data and compared with sncRNA expression in 

matched breast tumor tissues from the TCGA cohort. sncRNA read counts (5 counts in at 

least 50% of the samples as a cut-off) were RPKM normalized and log-transformed to 

compare with the germline copy status as a categorical variable. Copy number status for 

each inferred segment was assigned based on the normalized intensity as diploid copy 
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number (i.e., 1.7-2.3), with copy gain > 2.3 and copy loss < 1.7, as described above. Even 

though sncRNAs may originate from multiple genomic locations, I considered only 

expression of RNAs present within the breast cancer associated CNV regions.   

4.2.15. Target predictions for miRNAs embedded within CNVs, tissue 

level mRNA-miRNA expressions and correlations with copy status 

Target mRNAs for the 10 miRNAs were predicted in silico using TargetScan version 7.1. 

I accessed level 3 data for mRNA (HiSeq) from the TCGA cohort which is RPKM 

normalized and log-transformed. All of the predicted targets were expressed in the HiSeq 

mRNA data (albeit at varying expression levels). I performed RPKM normalization and 

log transformation of the miRNA expression data from HiSeq. The samples (n=198) were 

initially classified into two groups based on their copy number status; Diploid and copy 

gains.  Correlated mRNA-miRNAs were identified using Pearson Correlation coefficients 

and a negative correlation with r < - 0.2 and p-value <0.05 was considered as indicative 

of regulated genes.  

4.2.16. Ingenuity Pathway Analysis (IPA)  

Data were analyzed using the IPA platform (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) to identify 

potentially affected pathways. Coding genes targeted by miRNAs were used as an input 

to assess the pathways involved. Separate analysis was conducted for the genes identified 

in the stratified groups based on copy status. Enrichment p-value <0.05 was considered 

significant.  
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4.3. Results  

4.3.1. Identification of germline CNVs encompassing sncRNA genes and 

their association with breast cancer risk  

I conducted a GWAS (discovery dataset) using 366 cases/320 controls and germline 

CNVs as polymorphic markers. I identified 7496 CNVs that were associated with breast 

cancer risk (q-value < 0.05) 7. Of these, 59.3% of the CNVs mapped to genic regions 

including protein coding genes, non-coding RNA genes and pseudogenes and the 

remaining 40.7% mapped to the non-genic regions. Among, the CNVs mapping to the 

genic regions, 25.0% (n=1876) mapped to protein coding genes and another 23.9% CNVs 

(n=1789) mapped to non-coding RNA genes, including genes for long non-coding RNAs, 

sncRNAs and to pseudogenes. I observed that 10.4% of the breast cancer associated 

CNVs (n=776) mapped to both protein coding and non-coding genes because introns of 

the protein coding genes also serve as a source of non-coding RNAs (Figure 4.2a). I have 

earlier described CNVs with embedded protein coding genes and their relevance to breast 

cancer 7. Of the total 2565 CNVs (1789 non-coding RNA genes plus 776 non-coding 

RNA genes originating from protein coding introns), I considered 1812 CNVs harboring 

four classes of sncRNA genes (miRNAs, piRNAs, snoRNAs and tRNAs) for further 

analysis as these are known to play a role in post-transcriptional gene regulatory 

mechanisms.  

The distribution of sncRNA genes within the 1812 breast cancer associated CNVs 

included miRNA (n=38) and tRNA genes (n=15), embedded within 26 and 10 CNVs, 

respectively. Each of the miRNA and tRNA genes that mapped within CNVs were non-
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redundant, in that none originated from multiple chromosomal locations. In contrast, 

piRNAs and snoRNAs showed redundancy, in that the same piRNA or snoRNA genes 

were found within multiple CNV loci across chromosomes. For instance, 9865 redundant 

piRNA genes were mapped to 1760 CNVs regions, of which 1292 piRNAs were unique. 

Seventy-one (or 66 non-redundant) snoRNAs were mapped to 52 CNV regions. 

(provided as electronic Supplementary Table S1 at https://doi.org/10.1038/s41598-018-

25801-1). Individual frequencies of CNVs in cases and controls as well as the copy gain 

or copy loss frequencies are also summarized to facilitate comparisons. The average size 

of the associated CNVs was about 25kb (range 50bp to 9Mbp). The number of sncRNA 

genes present within a CNV varied from 2 and 240, depending on the size of the CNV. 

About 36 CNVs harbored more than one class of sncRNAs, and piRNAs genes were 

predominant (provided as electronic Supplementary Table S1 at 

https://doi.org/10.1038/s41598-018-25801-1). Chromosomes 19, 9 and 1 showed the highest 

number of breast cancer associated CNVs, (295, 210 and 132, respectively), harboring 

sncRNAs (Figure 4.2b), relative to other chromosomes. In summary, I have not only 

identified CNVs associated with breast cancer risk across the genome, but also the 

embedded CNV-sncRNAs. I identified CNVs that overlapped with SNORD-115 and 

SNORD-116 clusters (chr15: 25296245-25326762) and were found to be associated with 

breast cancer (provided as electronic Supplementary Table S1 at 

https://doi.org/10.1038/s41598-018-25801-1). Deletion of these clusters were initially 

described in patients with Prader-Willi Syndrome (PWS)31. In our study, the SNORD 

locus showed both copy-gain (5 -14%) and copy-loss (3-8%) in the cases but not in 

controls. 

https://doi.org/10.1038/s41598-018-25801-1
https://doi.org/10.1038/s41598-018-25801-1
https://doi.org/10.1038/s41598-018-25801-1
https://doi.org/10.1038/s41598-018-25801-1
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Figure 4.2 Genome wide distribution of germline CNVs  

In the Figure 4.2a, the distribution of genomic features overlapping germline CNVs are 

shown. Figure shows a Venn diagram of the genome wide distribution of germline CNVs 

associated (q<0.05) with breast cancer. Represented genic regions were: protein coding 

(25%) and non-protein coding genes including pseudogenes and small and long non-

coding RNAs (23.9%). An overlap of these regions (10.4%) capture non-coding RNAs 

originating from the intronic regions of the coding genes. 40.7% of CNVs do not show 

embedded genes (genome build hg19), hence labelled as non-genic regions. In Figure 

4.2b, Distribution of associated CNV-sncRNAs across the chromosomes are shown. This 

figure illustrates the distribution of breast cancer associated CNVs (q<0.05) harboring 

small non-coding RNA genes (miRNA, piRNA, tRNA and snoRNAs) for all 

chromosomes 
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.  

4.3.2. Validation of CNV breakpoints in TCGA dataset  

GWAS (n=686) allowed us to identify CNVs (with embedded sncRNAs) that are 

associated with breast cancer risk. I used the TCGA cohort as a validation dataset to 

address the following: Firstly, to validate the CNVs from the discovery stage GWAS and 

to assess the replicability of copy number estimates between the datasets called by the 

same algorithm. Secondly, to examine breast tissue specific expression of sncRNAs 

embedded within CNVs. Thirdly, to identify regulatory potential of miRNAs (subset of 

all sncRNAs identified) using mRNA expression dataset from the same breast tumors 

from which sncRNAs were profiled.  

I successfully mapped the 1812 CNVs (with embedded sncRNAs) from the discovery 

dataset to the TCGA dataset, thus validating the copy number estimates called by the 

algorithm (provided as electronic Supplementary Table S2 at 

https://doi.org/10.1038/s41598-018-25801-1). For comparisons of CNV break points in the 

discovery and TCGA data sets, I defined 100% overlap as those CNVs that had break 

points exactly matching or embedded within CNVs identified from either of the datasets. 

CNVs may have an influence on the level of expression of sncRNAs, and regulation of 

their downstream target mRNAs by diverse mechanisms. There is evidence to suggest 

that CNVs overlapping miRNA genes are more likely to exhibit phenotypic effects32, and 

I now extend this premise for other sncRNAs. Subsequent data analysis was based on 

TCGA cohorts for breast tissue expression analysis of sncRNAs and mRNAs from the 

matched samples. 

https://doi.org/10.1038/s41598-018-25801-1
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4.3.3. Breast tissue specific expression of CNV-sncRNAs in TCGA 

dataset 

Detailed analysis of sncRNAs identified in breast tumors and adjacent normal tissues 

using HiSeq (n=254) and Genome Analyzer, (GA) (n=215) platforms are summarized in 

Appendix Table A.12. Breast tissue specific expression of sncRNAs (miRNAs, piRNAs, 

snoRNAs and tRNAs) were analyzed. I compared the total number of sncRNAs 

expressed with the total number of sncRNAs originating from within the CNV regions. 

The total number of sncRNAs expressed were comparable between normal and tumor 

tissues. Similarly, I have also compared the total number of CNV-sncRNAs showing 

expression in normal and tumor tissues. (Figure 4.3). Overall, I have identified 38 CNV-

sncRNAs (14 miRNAs, 1 piRNA, 11 snoRNAs and12 tRNAs) expressed in both breast 

tumors and adjacent normal tissues. While CNV embedded snoRNAs, tRNAs and 

piRNAs were expressed similarly in both tumor or adjacent normal tissues, a subset of 

miRNAs detected were present either in tumor or normal tissues. Five of the miRNAs 

(hsa-miR-154-3p, hsa-miR-4999-5p, hsa-miR-382-3p, hsa-miR-487a-5p, hsa-miR-539-

5p) were expressed only in adjacent normal tissues, at the cut-off criteria of 5 read counts 

in 50% of the samples. Using a similar cut-off criterion, one miRNA (hsa-miR-4746-5p) 

was expressed only in tumor tissues (Appendix Table A.13). A higher number of piRNA 

genes mapped to the breast cancer associated CNVs. However, CNV-piRNA, hsa-piR-

20636 was the only one expressed in breast tumor tissue. In case of the snoRNA, I noted 

the C/D box SNORD 116 from the PWS loci showed expression in both breast tumors 

and adjacent normal tissues.  
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Breast cancer associated CNV regions showing overlap between discovery and validation 

datasets and harboring the embedded sncRNAs (n=38) are summarized (Table 4.1). It is 

interesting to note that 27% of CNVs (showing expression of embedded sncRNAs) were 

also reported as copy variable regions in the 1000 Genomes Phase 3 Project. A majority 

of the CNV frequencies were higher in cases relative to controls, thereby explaining the 

limited overlap with the 1000 Genomes data which is generated from the control 

populations.  

 

Figure 4.3 Expression profiles of small non-coding RNAs in breast tumor and 

adjacent normal tissues (HiSeq) 

This figure illustrates the expression profiles from the four classes of sncRNAs between 

tumor and adjacent normal tissues. Individual bar graphs capture the expressed total 

sncRNAs and CNV-sncRNAs. Data presented is from TCGA Illumina Hiseq (n=254 

cases and 18 adjacent normal). 
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Table 4.1 Germline CNVs in discovery cohort showing association with breast cancer risk and 

expression of embedded small RNAs in breast tumor tissues from TCGA 

Discovery Dataset TCGA Dataset 

CNV region Cytoband 
length 

(bps) 
p-value q-value 

CNV frequency       

gain/loss (%) CNV region 

 

Small RNAs expressed 

in breast tumors 
Cases Controls 

*chr14:101513466-101514318 14q32.31 853 7.71E-05 9.21E-04 5/1 0/0 
chr14:101513466-

101517099 

hsa-miR-539-5p (+), 

hsa-miR-889-3p (+) 

*chr14:101515194-101519779 14q32.31 4586 4.84E-05 6.52E-04 5/1 0/0 

chr14:101513466-

101517099; 

chr14:101517099-

101527707 

hsa-miR-655-3p (+), 

hsa-miR-487a-5p 

*chr14:101519779-101525402 14q32.31 5624 5.53E-05 7.27E-04 5/1 0/0 
chr14:101517099-

101527707 

hsa-miR-134-3p (+), 

hsa-miR-134-5p (+), 

hsa-miR-323b-3p (+), 

hsa-miR-382-5p (+), 

hsa-miR-485-3p (+), 

hsa-miR-382-3p 

*chr14:101525779-101527707 14q32.31 1929 8.94E-04 5.41E-03 4/1 0/0 
chr14:101517099-

101527707 

hsa-miR-154-3p (+), 

hsa-miR-154-5p (+), 

chr19:4437681-4494605 19p13.3 56925 3.09E-04 2.53E-03 3/2 0/0 
chr19:4424993-

4664433 
hsa-miR-4746-5p (+) 

chr1:149676729-149684202 1q21.2 7474 9.33E-06 1.77E-04 2/5 0/16 
chr1:149676729-

149684202 
hsa-piR-20636 

chr15:25296245-25297449 15q11.2 1205 4.32E-04 3.26E-03 5/1 0/0 
chr15:25296245-

25297449 

snoRNA_SNORD116-1-

201 (+) 

chr15:25297449-25300158 15q11.2 2710 5.92E-07 1.92E-05 8/1 0/0 
chr15:25298903-

25300158 

snoRNA_SNORD116-2-

201 (+) 

*chr15:25300158-25306451 15q11.2 6294 2.26E-07 8.49E-06 9/1 0/0 

chr15:25300158-

25304384; 

chr15:25305396-

25308383 

snoRNA_SNORD116-3-

201 (+) 
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Discovery Dataset TCGA Dataset 

CNV region Cytoband 
length 

(bps) 
p-value q-value 

CNV frequency       

gain/loss (%) CNV region 

 

Small RNAs expressed 

in breast tumors 
Cases Controls 

chr15:25307985-25310508 15q11.2 2524 6.12E-08 2.82E-06 9/1 0/0 

chr15:25305396-

25308383; 

chr15:25308383-

25310928 

snoRNA_SNORD116-6-

201 (+) 

chr15:25310508-25316405 15q11.2 5898 9.95E-08 4.25E-06 9/1 0/0 
chr15:25310928-

25318258 

snoRNA_SNORD116-8-

201 (+) 

chr15:25316405-25318258 15q11.2 1854 2.62E-07 9.64E-06 8/1 0/0 
chr15:25310928-

25318258 

snoRNA_SNORD116-9-

201 (+) 

chr15:25318258-25324279 15q11.2 6022 9.95E-08 4.25E-06 8/2 0/0 
chr15:25318258-

25325686 

snoRNA_SNORD116-9-

201 (+) , 

chr15:25324512-25325686 15q11.2 1175 2.87E-06 6.76E-05 6/2 0/0 
chr15:25318258-

25325686 

snoRNA_SNORD116-

14-201 (+) 

chr15:25325686-25326762 15q11.2 1077 4.61E-06 9.87E-05 6/1 0/0 
chr15:25325686-

25326762 

snoRNA_SNORD116-

15-201 (+) 

chr16:2011427-2016398 16p13.3 4972 6.98E-04 4.58E-03 3/2 0/1 
chr16:2011427-

2016398 

snoRNA_SNORA10-

201 (-), 

snoRNA_SNORA64-

201 (-) 

chr19:3975155-3984201 19p13.3 9047 3.09E-04 2.53E-03 3/2 0/0 
chr19:3768181-

4110048 

snoRNA_SNORD37-

201 (-) 

chr1:148580449-148606453 1q21.2 26005 7.50E-09 4.65E-07 7/14 10/32 
chr1:148580449-

148632305 

chr1.trna108-AsnGTT (-

) 

chr1:148705208-148768557 1q21.2 63350 7.26E-04 4.72E-03 4/11 4/22 
chr1:148662374-

148789654 

chr1.trna107-AsnGTT (-

) 

chr1:149598086-149617469 1q21.2 19384 4.48E-10 4.08E-08 9/12 2/29 
chr1:149598086-

149631220 

chr1.trna30-AsnGTT 

(+), 

chr1:149661965-149670179 1q21.2 8215 3.70E-06 8.35E-05 4/8 1/19 
chr1:149652461-

149676729 
chr1.trna94-GluTTC (-) 
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Discovery Dataset TCGA Dataset 

CNV region Cytoband 
length 

(bps) 
p-value q-value 

CNV frequency       

gain/loss (%) CNV region 

 

Small RNAs expressed 

in breast tumors 
Cases Controls 

chr1:149670179-149676729 1q21.2 6551 3.60E-06 8.17E-05 2/6 0/17 
chr1:149652461-

149676729 
chr1.trna92-PheGAA (-) 

chr1:149676729-149684202 1q21.2 7474 9.33E-06 1.77E-04 2/5 0/16 
chr1:149676729-

149684202 

chr1.trna90-ValCAC (-), 

chr1.trna91-GlyCCC (-) 

chr6:26286287-26287456 6p22.2 1170 2.38E-04 2.13E-03 3/4 0/1 
chr6:26274458-

26287456 
chr6.trna2-MetCAT (+) 

*chr19:1381502-1407359 19p13.3 25858 1.23E-04 1.29E-03 4/2 0/0 
chr19:1342160-

1547869 

chr19.trna1-AsnGTT 

(+), chr19.trna14-

PheGAA (-) 

*chr19:4658652-4771070 19p13.3 112419 3.09E-04 2.53E-03 3/2 0/0 
chr19:4714925-

4751218 

chr19.trna13-ValCAC (-

), chr19.trna2-GlyTCC 

(+) 

The above table represents the selected CNV regions associated with breast cancer that also included one of the four classes of 

sncRNAs. The statistics represented in this table are based on the discovery dataset (cases/control =686) and includes the CNV 

region mapped in validation dataset (TCGA). These sncRNAs were expressed in the breast tissue (either breast tumor or 

adjacent normal tissues or both) in the TCGA dataset. The rows marked with * symbol indicates the CNVs that are also seen as 

copy number variable regions in 1000 genomes Phase 3 project. 
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4.3.4. Correlation of expressed CNV-sncRNAs to copy status  

CNVs are known to confer gene dosage effects among protein coding genes7,33, and 

whether or not CNV-sncRNAs also show gene dosage effects was investigated. 

Correlation of the expression of the CNV-sncRNAs with corresponding copy status was 

addressed using Pearson Correlation analysis. Overall, 15 sncRNAs (one piRNA, eight 

tRNAs, six snoRNAs) showed correlation (Appendix Table A.14 and Appendix Figure 

A.2); of these 13 correlated at p-value <0.05 and two correlated at p-value < 0.1. One 

piRNA and five tRNAs showed positive correlation whereas three tRNAs and six 

snoRNAs showed negative correlations. The positively correlated sncRNA genes showed 

r=14% to 21% and p-values 10-2 to 10-3. Negatively correlated snoRNAs showed r= -13% 

to -45% and p-values 10-2 to 10-11. Expression and regulation of sncRNAs are thus 

complex; while a positive correlation with copy status indicates potential gene dosage 

effects, a negative correlation may potentially indicate gene disruption or epigenetic 

regulation. This kind of negative correlations were also noted by others34 and there is no 

clear consensus mechanisms identified to explain these correlations. I observed that 

negatively correlated tRNAs originated from intergenic regions, whereas negatively 

correlated snoRNAs originated from intronic regions. I did not observe any significant 

correlations between copy status and miRNA expression. This could be due to the diverse 

mechanisms regulating miRNA expression. I could not distinguish if the CNV-miRNA 

itself is regulated by upstream elements within the CNV region or a combination of all 

the above.  



197 

 

4.3.5. Gene targets for CNV-miRNAs and pathway analysis 

I reasoned that a germline copy status for CNV-miRNA may show pronounced effects on 

downstream mRNA targets. To demonstrate such effects, I stratified breast cancer cases 

(mRNA expressions from n=198 breast tumors from HiSeq Platform) based on germline 

status. Therefore, a correlation between miRNA and mRNA expressions may reveal 

higher number of targets that are regulated as a function of CNV copy status, as an 

indirect measure of miRNA copies. For instance, I examined CNV embedded hsa-miR-

4746-5p in 198 breast cancer cases; 52 cases exhibited copy gains and 146 were diploid. 

Gene targets for the CNV-hsa-miR-4746-5p were predicted using TargetScan and these 

predicted targets were identified in the mRNA expression data sets (HiSeq platform). A 

correlation analysis revealed 25 common target genes for both diploid and copy gain 

cases; an additional 29 targets were identified for copy-gain cases (Appendix Table 

A.15). The miRNA-mRNA correlation (r) values were from -0.20 to-0.34; and from -0.27 

to -0.42, for the diploid and copy gain cases respectively. The targets regulated by hsa-

miR-4746-5p among the copy gain cases were enriched for key signaling molecules 

(growth hormone, FLT3, NGF, PTEN, G-protein coupled receptor) and glutamine 

biosynthesis pathways. The identified targets in this study have been well addressed in 

literature for their association with cancer 35-37.  

Except for the CNV region overlapping with hsa-miRNA-4746-5p, copy status for other 

nine CNV-miRNAs showed predominantly a diploid status, and therefore the correlation 

between miRNA and mRNA expressions were restricted to cases (n=195) with diploid 

status (Appendix Table A.15). Ingenuity Pathway Analysis of the identified target genes 

regulated by hsa-miR-655, hsa-miR-134-3p, hsa-miR-4746 showed significant 
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enrichment of several pathways (Appendix Table A.16). hsa-miR-655-3p and hsa-miR-

134-3p had a common target gene, DLD (dihydrolipoamide dehydrogenase) which plays 

an important role in cellular biosynthesis and degradation of amino acid pathways. In 

addition, miRNA-134-3p targeted CDK5 (Cyclin Dependent kinase 5)38,39, POLE (DNA 

polymerase epsilon, catalytic subunit)40 and RAN (member RAS oncogene family)41 with 

potential role in cell cycle.  

4.4. Discussion  

GWAS approaches have identified several SNPs of low penetrance that contributed to the 

genetic risk of breast cancer 26,42,43. However, the putative causal variants have not been 

identified for a majority of GWAS-identified loci and thus limit our understanding of the 

role of these variants in disease etiology. CNVs are complex genomic variants which may 

show an overlap with protein coding and non-coding regions. Therefore, characterizing 

CNVs associated with breast cancer may offer potential mechanistic insights. CNVs can 

influence gene expression in several ways, including gene dosage effects and cis/trans 

regulation. In this study, I have addressed the role of germline CNVs with embedded 

sncRNAs in breast cancer. Although CNV embedded sncRNAs may play a role in 

disease pathogenesis, a direct demonstration of expression of sncRNA genes from CNV-

sncRNAs was lacking 5. This is the first study to identify associated CNVs containing 

four different classes of sncRNAs including miRNAs. I identified 1812 CNVs mapping 

small RNA genes (38 miRNAs, 9865 piRNAs, 15 tRNAs and 71 snoRNAs) significantly 

associated with breast cancer risk using a case-control approach. I gained insights into the 

associated CNV loci by quantifying the expression of the embedded sncRNA genes in 

both breast tumors and adjacent normal tissues.  
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The sncRNAs play key roles in post-transcriptional gene regulation events, and variations 

in expression of sncRNAs may potentially affect their downstream targets. I identified a 

subset of CNV-sncRNAs that were expressed in both breast tumor and adjacent normal 

tissues. Since gene expressions are tissue specific, I expect only a small subset of 

sncRNAs to be expressed in breast tissues despite several sncRNA genes were annotated 

to the CNV regions. Recent studies on neurodevelopmental disorders have also identified 

CNVs were shown to be enriched with miRNA genes17-21. Several mechanisms have been 

proposed to explain the impact on the miRNAs based on the extent of CNV overlap with 

miRNA genes e.g., dosage effects attributed to loss of expression depending on the extent 

of overlap32. Other key findings of the study were as follows. 

(i) Among the breast cancer associated CNVs (Table 4.1), four CNVs at 14q32.31 locus 

with embedded miRNA genes were confirmed as copy variable regions in the 1000 

Genomes Phase 3 project. These CNV-miRNAs showed tissue specific expression in this 

study. Literature evidence suggests that regulated targets are influenced by levels of 

miRNA expression which in turn are regulated by feedback mechanisms 44. Extending 

this premise, I reasoned that CNV-miRNA gene can potentially modulate expression 

levels and therefore affect downstream targets. However, I did not observe direct 

correlation of copy status and expression of the embedded-miRNAs. Instead, I observed 

that cases with germline copy gain regions with hsa-miR-4746-5p regulated more target 

genes than cases with diploid copy status for the same miRNA. Pathway analysis of the 

regulated genes indicated their involvement in cell cycle, receptor mediated signaling, 

proliferation and/or apoptosis. 
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(ii)  piRNAs are known to play a role in maintaining  genomic stability by repression of 

transposons through gene silencing mechanisms45 and are well studied in gonadal cells 46. 

However, the role of piRNAs in somatic tissues and in cancer context are beginning to 

emerge. I showed piRNAs were differentially expressed between breast tumor and 

normal tissues and that piRNAs and their biogenesis pathway molecules (PIWI proteins) 

are prognostic47. miRNAs bind to the 3’-untranslated regions (UTR) of protein-coding 

genes and piRNAs also share similar mechanisms to mediate translational arrest or 

mRNA degradation10. In the Autism genetic database (AGD)48 which catalogs autism 

related CNV signatures, a higher proportion of CNVs harbored piRNA genes compared 

to other classes of small non-coding RNA genes. A similar trend was seen in this study 

wherein CNVs harbored several piRNAs compared to other sncRNAs, which cannot be 

fully attributed to multiple copies of piRNA genes. Instead, their tendency to be enriched 

in CNV regions may have evolutionary significance since earlier studies have noted that 

there are selective constraints on the origins of piRNA49 clusters in African populations. 

This is corroborated by the observed rates of insertion of transposable elements in 

African populations 17. Although I mapped several piRNA genes to the breast cancer 

associated CNVs, only one (hsa-piR-20636) was expressed in both the breast tissues and 

showed trends of dosage effects. The functional significance of hsa-piR-20636 in the 

context of breast cancer warrants further studies.  

(iii) I identified breast cancer associated CNVs (q-value <10-3) overlapping with 

SNORD-115 and 116 clusters (15q11.2). Theses CNV were present only among breast 

cancer cases and showed a higher frequency of copy gain than copy loss.  A previous 

study reported a CNV overlapping with the above loci at 15q11.2-13, spanning many 



201 

 

protein and non-protein coding genes including the SNORD-115 and 116 clusters, which 

have been implicated in PWS31. In another study, wherein copy number gain in loci 

(chr15:24738239-24749581) upstream of the SNORD-116 cluster but in PWS loci was 

associated with obesity50. These findings suggest that copy gain or loss at these loci may 

confer diverse phenotypes including breast cancer. Genotyping platforms and CNV 

calling algorithms may contribute to the variation in the detected CNV breakpoints, 

therefore fine scale analysis is needed to confirm the exact breakpoints to delineate the 

mechanisms by which germline CNVs exerts pleotropic effects. I observed expression of 

eight snoRNAs from the SNORD116 cluster, and the expression of SNORD37, 

SNORA10 and SNORA 64 in both tumor and adjacent normal breast tissues. There are 

no known target RNAs regulated by SNORD116 in humans. However, SNORD 37 

(target: 28S rRNA A3697) guides methylation, snoRNA 10 (target RNA: 18S rRNA 

U210 and 28S rRNA U4491) and SNORA 64 (target RNA: 28S rRNA U4975) 

directs  pseudouridylation of the corresponding target rRNAs51. This supports the 

premise, that CNV embedded snoRNAs may play a role in regulation and maturation of 

the rRNA targets, although more direct experimental evidence is needed. Understanding 

the biological functions of these RNAs in the context of breast cancer susceptibility or 

tumorigenesis is needed.  

(iv) tRNAs play a critical role in protein translation and previous studies have shown that 

expression of tRNAs and tRNA derived fragments were dysregulated in breast tumors13. 

Although the 1000 Genomes Phase 3 project has catalogued CNVs overlapping tRNA 

genes in the human genome, the role of germline CNVs with embedded tRNA genes was 

not studied in a disease context. Studies with model organisms demonstrated that copy 
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number variation of tRNA genes alter the relative abundance of tRNAs, thereby altering 

codon usage 18,31,52,53 and potentially stalling translation leading to formation of 

misfolded proteins 54,55. The current study is the first to report the association of CNV-

tRNAs with breast cancer and demonstrated their expression in breast tissues. Even 

though I correlated tRNA expression in breast tissues with germline copy status, our 

study limitation is in the direct extrapolation of findings to the tRNA abundance and their 

effects on translational mechanisms. While the current study focused on sncRNA, long 

non-coding RNAs are also known to regulate genes at the post-transcriptional level and 

their effects warrant independent investigations.  

4.5. Conclusion  

In summary, I identified and validated germline CNVs associated with breast cancer. The 

break points identified in the discovery cohort were independently confirmed using the 

TCGA dataset. I was able to use the TCGA datasets since the discovery data set and the 

TCGA datasets were profiled for CNVs with the Affymetrix Human SNP 6.0 array 

platform. I acknowledge the potential limitation in the absolute calls of copy status due to 

differences in the control populations used as a reference. However, the unique aspect of 

the study was the integrative analysis of CNV calls, sncRNA and mRNA expressions in 

matched TCGA subjects. I showed that germline CNVs can potentially influence tissue 

level gene expression through their embedded sncRNA genes. Our findings provide a 

compelling rationale that germline CNVs have functional consequences, possibly 

mediated through gene dosage mechanisms. 



203 

 

4.6. Availability of data and material 

All data generated or analysed during this study are included in this published article and 

its supplementary information files. The dataset is provided as electronic Supplementary 

Table S1 and S2 at https://doi.org/10.1038/s41598-017-14799-7  
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5 Discussion 

In this thesis, I investigated the genetic architecture of breast cancer. Breast cancer is a 

complex, multifactorial and polygenic disease. I investigated the role of common 

polymorphisms (SNPs and CNVs) and their contributions to the heritability in breast 

cancer. Several independent GWASs have collectively reported 172 variants to be 

associated with breast cancer accounting for about 18% of heritability1. Previous studies 

from the Damaraju laboratory were among the GWASs reported for breast cancer, 

wherein a multistage GWAS study design was implemented, discovery (Stage 1) and 

replication (Stages 2-3)2,3 which led to the identification of the SNP rs1429142 (in 

chr4q31.22) associated with sporadic breast cancer risk as well as  a trend of elevated risk 

for premenopausal breast cancer3. In my study, (chapter 2) I utilized an independent 

replication cohort (Stage 4) also based on a Caucasian population from Alberta, Canada 

to reproduce the findings. I replicated the association of the SNP rs1429142 with breast 

cancer risk (Stages 1-4 combined cases and controls from previous Stages 1-3) which is 

now significant after genome wide correction (OR 1.25, 4.35x10-8). Further, in the 

combined analysis of all premenopausal cases and controls from Stages 1-4, the SNP 

showed genome-wide significance at P-value < 10-10 (OR 1.4) Also consistent with 

previous studies, I replicated the marginal association of the SNP with post-menopausal 

breast cancer risk.  I also tested for associations based on luminal vs non-luminal, high vs 

low tumor grade, and ER positive vs ER negative and noted that the difference in risk 

(OR) between these subgroups were not statistically significant (P-heterogeneity>0.05). I 

also used external datasets for replication and validation of the association: (i) CGEMS 

dataset includes postmenopausal cases and controls of Caucasian ancestry. I showed that 
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rs1429142 is not significant among postmenopausal breast cancer and at the sample sizes 

indicated (total n=2287). However, at a larger sample size (n=6971), this SNP showed 

statistically significant associations but was not genome wide significant. The effect size 

was modest in both CGEMs and the lab datasets (OR, 1.03 to 1.17) for post-menopausal 

women, in agreement with my hypothesis and consistent with the previous reports. (ii) I 

used a dataset of African ancestry (African Diaspora study from dbGap) to validate the 

association of the index SNP. Once again, rs1429142 was associated with premenopausal 

breast cancer risk and not with postmenopausal breast cancer risk. In summary, I was 

able to confirm the association of the SNP rs1429142 with breast cancer risk among 

Caucasian women and specific risk associated with premenopausal breast cancer among 

Caucasian and African populations.  

I fine-mapped the chr4q31.22 locus to identify putative causal variants and sought 

functional relevance to breast cancer. I used several fine-mapping approaches 

(imputation, genotyping of the imputed SNPs, functional annotation for regulatory 

variants). In the fine-mapped locus, I identified 135 SNPs associated with premenopausal 

breast cancer risk. Based on data filtering and annotation techniques (as discussed in 

chapter 2), I identified SNPs (rs1366691, rs1429139, rs7667633, rs6836670 and 

rs17023196) at highest predicted level of functionality as enhancers. In support of this 

interpretation, I identified DNase I hypersensitivity peaks (indicated open chromatin 

state), histone methylation (H3K4me1) and acetylation (H3K9ac and H3K27ac) patterns 

in breast cell lines. Also, ChIP-Seq data based on MCF10-src cell line revealed the 

binding of FOS, STAT3 and POL2RA of the transcription factors at SNP locus rs136691, 

r7667633, rs7668383. The binding of transcription factors at the SNP locus was shown 
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during the process of transformation in the of MCF10-Src cell line (exhibits increased 

motility, invasion, formation of foci, single cell colonies and mammospheres4,5) and 

suggests that transcription factors binding to these regions impart the cellular phenotypes. 

STAT3 is well known for its role as a transcriptional regulator in many cancer types, and 

during the process of transformation, STAT3 acts as an epigenetic switch regulating the 

inflammatory pathways including NFKB1 and IL6 cascade6.   

The fine-mapped variants were predicted to have enhancer functions, and they are likely 

to interact with the promoters of nearby gene(s) and regulate them. Interaction of 

enhancers and promoters are facilitated by DNA looping. The SNP locus is present 

within a topologically associated domain (TAD), wherein the interactions are likely to be 

short range and within the domain boundaries. The data from high throughput DNA 

conformation assays using the HMEC cell line revealed multiple short-range interactions 

at the SNP locus supporting the premise of TADs.   

I also investigated for potential eQTLs between the fine-mapped SNPs and the 

neighboring genes within 1 Mb distance. I identified eQTLs and the evidence presented 

supported the regulation of ENDRA and ARHGAP10 in heart left ventricle and 

lymphoblastoid tissues. Functional roles of EDNRA7-14 and ARHGAP1015-19 were 

previously described in cancer.  

In summary, I fine-mapped and identified rs1366691, rs1429139, rs7667633 potential 

causal variants associated with premenopausal breast cancer risk. However, further 

experimental evidence is needed in model systems to delineate the mechanisms by which 

these variants regulate the targets and confer breast cancer risk. 
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In chapters 3 and 4, I investigated the role of germline CNVs and their contribution to 

breast cancer risk.  The function of the CNVs vary according to the genomic locations 

(genic and gene desert/intergenic region) and genes they harbor (protein coding gene 

regions, non-coding RNA genes). In my thesis, I explored the functional consequences of 

the CNVs overlapping with the protein coding genes (in Chapter 3) and small-non-coding 

RNA genes (in chapter 4) which are key players in post transcriptional gene regulation.  

CNVs overlapping protein coding genes may offer insights to the target genes and their 

role in breast cancer susceptibility. I utilized a case-control approach (as described in 

chapter 3) and identified 200 common CNVs/contiguous CNV Regions or CNVRs 

(>10%) overlapping protein coding genes associated with breast cancer risk20. Long et al. 

identified a common deletion polymorphism in APOBEC3 loci associated with breast 

cancer risk in Chinese ancestry21. These findings were further validated in different 

populations22,23. I replicated the association of deletion of APOBEC3 genes with breast 

cancer risk in Caucasian population (Alberta, Canada).  I also validated the deletion of 

APOBEC3 genes and GSTM1 using the TaqMan assay. The majority of the CNVs 

identified in my study are also catalogued as common CNVs in the 1000 Genomes phase 

3 project, serving as a confirmatory analysis for common CNVs. I showed CNVs 

associated with breast cancer risk that overlap with protein coding genes resulting in gene 

dosage effects. I identified nine genes whose expression correlates with germline copy 

status. I replicated the previously reported association of the CNVs (ANKS1B19, 

OR4C11, OR4P4, UGT2B17, OR4C6, OR4S215) from a familial breast cancer study20. 

Germline CNVs and their embedded genes are expressed in breast tissues, thus offering 

functional insights. CNVs as susceptibility determinants could serve the dual purpose of 
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identifying high risk individuals, and the embedded genes and the pathways regulated can 

serve as potential therapeutic targets.  

I investigated the prognostic potential of the breast cancer associated genes. Of the 200 

CNVs/CNVRs associated with breast cancer risk, 21 CNVRs were associated with breast 

cancer prognosis (OS and RFS). Four CNVRs showed overlap with the genes ZFP14, 

JAK1, LPA, PDGFRA and were associated with both RFS and OS.  Six CNVs 

overlapping the genes (SORBS2, LCE3C, MLIP, OR2T11, MUC20, LGALS) were 

specifically associated with RFS. 11 CNVRs overlapped with 12 genes (GSTM2, 

RAB40B, HLA_DRB5, HLA_DRB6, EYA1, DOCK3, ANKS1B, CACNA1C, RAB11FIP3, 

BAGE, SGCZ, POM121c) were specifically associated with OS20. This is the first study 

in the literature to describe the prognostic relevance for breast cancer risk associated 

CNVs. Given that CNVs have the potential to confer risk for both susceptibility and 

prognosis, therapeutics development based on these markers may help in breast cancer 

prevention as well as in treatments for better outcomes.  

In chapter 4, I investigated the effects of the CNVs on embedded small-non-coding 

RNAs and their role at the post transcriptional level of gene regulatory mechanisms. 

Distribution of the CNVs across the genome is disproportionate and most CNVs are 

harbored in the non-coding genome. However, the functional significance of such CNVs 

in the disease context is not clear. Therefore, in my study I identified CNVs associated 

with breast cancer (at p-value <0.05) using the case-control approach (as described in 

chapter 4). Of the associated CNVs, 1812 had embedded small non-coding RNAs (38 

miRNA, 9865 piRNA, 71 snoRNA and 15 tRNA) genes24. I also utilized an external 

dataset (TCGA) and validated the CNV breakpoints. Next, I interrogated the expression 
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of the CNV embedded small-RNA (CNV-sncRNAs) genes in breast tissue. Even though 

several sncRNAs were harbored at the CNV regions, only a subset of the snc-RNAs 

showed expression in breast tissues24.  Since sncRNAs are key regulators in post 

transcriptional gene regulatory events, any variation in the expression of sncRNA due to 

CNVs may affect downstream target genes. Similar studies have identified CNV overlap 

with miRNA genes enriched in neurodevelopmental disorders25-29 using in silico 

predictions.  

I demonstrated for the first time the expression of CNV embedded protein coding and 

small RNA genes in breast tissues, hence their functional relevance.  Gene dosage effects 

were more pronounced for protein coding genes. I noted the copy gain region with 

embedded hsa-miR-4746-5p regulated more target genes (compared to diploid copy 

status) and these genes regulated cell cycle, receptor mediated signaling, proliferation 

and/or apoptosis. Similarly, I identified several piRNAs to be embedded within the 

associated CNVs 30 but only one piRNA (hsa-piR-20636) was expressed in breast tissue, 

and showed gene-dosage effects. The expression of a number of piRNAs in the breast 

tissue, but the expression of CNV embedded piRNAs are limited. The functional 

significance in the context of breast cancer needs further investigations.   

I also identified snoRNAs harbored in the CNV region, the key findings include the CNV 

overlapping the SNORD-115 and 116 clusters (15q11.2). CNV in the same cluster is also 

implicated in Prader-Willi Syndrome31 and obesity32. The expression analysis indicated 

eight snoRNAs from the SNORD116 cluster, and the expression of SNORD37, 

SNORA10 and SNORA 64 in the breast tissues. snoRNAs guide in the methylation and 

pseudouridylation of the corresponding target rRNAs33 and play a role in 
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regulation/maturation of the rRNAs. However, the functional consequences of these 

rRNAs in breast cancer is yet to be determined.  

The tRNAs have a unique role in the modulation of protein translation. Based on animal 

models, studies have described that the relative abundance and variation of the expression 

of tRNA can directly affect the codon usage26,31,34,35 and potentially stalling translation 

leading to formation of misfolded proteins36,37. The current study is the first to describe 

the role of CNV of tRNAs in the context of breast cancer, and I also described correlation 

between copy status and tRNA expression.  

5.  

5.1. Study limitations and strategies to overcome 

Potential limitations of the described studies are indicated below.  

The lack of access to GWAS data sets in literature and in the open access databases 

limited the stratified analysis based on menopausal status in Caucasian women based on 

external datasets. However, this limitation does not hamper the generalizability of my 

findings. I was able to access the African diaspora which helped to confirm the major 

findings in this study, i.e., premenopausal risk conferred is by rs1429142.  

(i) The sample size of this study (overall cases and controls ~9000), which is moderate 

compared to consortium-based studies (~40,000 cases and controls each)38 is a limitation. 

However, with minor allele frequency (at ~18%) and OR at ~1.25 (overall breast cancer 

risk) and OR at ~1.40 (premenopausal breast cancer risk), the estimated power is ~0.99 

under additive or multiplicative models of risk, and a population disease prevalence of 

1/839. Therefore, higher sample size would have potentially added strength to the 
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association (p-value) but would not have influenced the estimated risk (OR) for 

premenopausal or overall breast cancer risk.   

(ii) Higher sample size is needed to identify putative causal variants at low minor allele 

frequencies. As such the current study may have underestimated the number of 

causal/regulatory variants. This limitation can be overcome by consortia led studies 

wherein sample sizes upwards of 100,000 each of cases and controls are used1. 

Collaborations with breast cancer consortia are needed to address this gap. 

(iii) Experimental evidences are needed in model systems to delineate the mechanisms 

by which these variants regulate the targets and confer breast cancer risk.  

(iv) I identified several CNVs associated with breast cancer risk and prognosis. (a) The 

study lacked a replication Stage (as in traditional multistage GWAS). Publicly available 

data sets were limited, and where available, only data from cases could be utilized 

(TCGA). Since, no matching germline controls were available within the TCGA, I could 

not attempt an independent case control analysis for CNVs associated with breast cancer 

susceptibility. To overcome this limitation, I ascertained the CNV calls by comparing 

with the 1000 Genome Project data from controls. (b) I validated representative CNVs on 

TaqMan assays (APOBE3C, GSTM1, known breast cancer susceptibility alleles, hence 

my study met the needed power to detect associations for common CNVs >10%). (c) 

Further, the Damaraju laboratory has data on matched samples (gene expression data and 

CNV data generated on array platforms for the same individual breast cancer cases). 

Mapping for the embedded protein coding genes within the CNVs and showing gene-

dosage effects is a unique strength of my study. (d) The break points observed for cases 

were from the Partek algorithm implemented in this study, and these were compared with 
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the break points from the TCGA data. Both TCGA and the data was generated on the 

same Affymetrix array 6 platforms, and CNVs were called on both datasets using Partek 

bioinformatics platform to maintain consistency. Again, the embedded small non-coding 

RNA gene expressions (TCGA), and gene-dosage effects were assessed, lending 

confidence to the study findings. 
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6 Future directions and Conclusions 
1  

6.  

6.1. Future directions 

In my thesis, I identified genetic variants associated with breast cancer susceptibility and 

prognosis. Previous GWASs from the Damaraju laboratory reported a novel SNP 

rs14291421,2 associated with breast cancer. This is an addition to the known high, 

moderate and low penetrant variants reported thus far. I also identified CNVs as potential 

breast cancer susceptibility determinants, an emerging theme in breast cancer literature in 

accounting for “missing heritability”.  

In chapter 2, I replicated and validated the previously identified GWAS locus. I further 

fine-mapped the locus and identified putative causal SNP variants.  I also described 

potential functions based on available online annotation resources. Fine-mapped variants 

function as potential enhancer regions, likely interact with the promoters of the target 

genes by DNA looping. Further investigations are needed to elucidate the mechanisms by 

which the causal variants regulate the target genes and confer the breast cancer risk. 

Future investigations should include demonstrating binding of the transcription factors 

(STAT, FOS) to the SNP sites and electrophoretic mobility shift assays to identify allele-

specific binding of these factors3-5. Currently, the datasets available through ENCODE 

are based on MCF-10, HMEC, vHMEC or breast myoepithelial cell lines. However, 

choosing the appropriate cell line or model system closely depicting premenopausal 

breast cancer would be advantageous. Binding of the TFs could be assayed at different 

conditions, competitive binding3,4,6 with other transcription factors could be tested. Future 
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investigations should also confirm the physical interactions between the enhancer and 

promoter based on high throughput DNA looping experiments in different cell lines. This 

will help identify novel target genes that are regulated by the interaction of the enhancer 

and promoter, which in turn may provide new insights into biological pathways in 

conferring the breast cancer risk among the premenopausal women.  

In chapters 3 and 4, I described several CNVs to be associated with breast cancer. It 

would be valuable to replicate at least a subset of the CNVs in large sample sizes similar 

to GWAS stages, a study design adopted by Long et al7in identifying a CNV in 

APOBE3C locus as a breast cancer susceptibility determinant. To enable large scale 

replication of candidate CNVs described in this thesis, the currently available CNV 

genotyping platforms are not adequate or cost-effective. High throughput and multiplex 

platforms are needed to advance these studies to the level of SNP studies.  

CNVs have the potential to be associated with risk as well as prognosis. Compared to 

SNPs, CNVs are amenable for interpretation of the putative functions, including 

embedded genes and gene-dosage effects. There is the potential to adopt germline CNVs 

as therapeutic targets and genetic biomarkers. Utility of CNV based biomarkers for 

screening and diagnosis of several inherited genetic conditions or developmental 

disorders have demonstrated the feasibility of such approaches.  

6.2. Conclusions 

Overall, I investigated the genetic variants that play a role in genetic architecture of 

breast cancer. SNP based GWAS approaches, as well as fine-mapping of GWAS 

variants, were widely adopted to identify novel variants associated with breast cancer. I 
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fine-mapped the locus associated with premenopausal breast cancer risk based on 

bioinformatics and statistical approaches. I report several variants in the locus that are 

highly correlated. I adopted different strategies (statistical and functional annotations) to 

narrow down the set of putative causal variants. I inferred the functional significance of 

these variants based on a number of experimental datasets (e.g., ENCODE8, Roadmap 

epigenomics project9). I identified potential target genes that are regulated by these 

variants. My study has laid the foundations for future studies to identify mechanistic 

insights on how the target genes are regulated and their effects on the phenotype. Despite 

exhaustive searches based on SNP GWAS approaches, there are variants yet to be 

discovered to account for the missing heritability. I showed that CNVs are candidates to 

explore and to identify the missing heritability. I comprehensively investigated the role of 

germline CNVs in conferring breast cancer risk and prognosis by adopting CNV GWAS 

study design (described in detail in chapters 3 and 4). I investigated the effects of the 

CNVs overlapping with the protein-coding genes and the small-non-coding RNA genes. 

A correlation between the copy status and gene expression is demonstrated to explore the 

possible biological significances. I identified several candidate CNVs overlapping with 

both protein-coding and small-non-coding RNA genes for future replication studies and 

the potential to explain a proportion of the missing heritability. 
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A. Appendix 

a.  Distribution of Age in cases and controls (Internal dataset Stages 1-4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age 

group 

Cases 

 

All 

Controls 

(n) 
Pre-

menopaus

al (n) 

Post- 

menopaus

al (n) 

All (n) 

Median 46 [21-70] 62 [35-93] 57 [21-93] 53 [34-78] 

<40 284 7 295 340 

40-50 876 105 1007 1382 

50-60 353 952 1355 1561 

60-70 15 1055 1095 1090 

70-80  467 486 144 

>80  154 160  
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b. Distribution of the Body Mass Index between cases and controls (Internal dataset 

Stages 1 - 4) 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Distribution of Age and Body Mass Index in the study 

population 

A. A 

Table A.1 Patient Demographics for the internal dataset (Stages 1-4) 

 

Premenopausal 

cases (total 

n=1670) 

Postmenopausal 

cases (n=3163) 

 

All cases 

combined 

n=4964* 

Subtype    

Luminal A 1006 (60%) 2146 (68%) 3229 (65%) 

Luminal B 269 (16%) 329 (10%) 610 (12%) 

HER 2+ 75 (4%) 119 (4%) 203 (4%) 

Sample status 

Median [25th -75th 

percentile] 

All cases 27.55 [24.22-31.92] 

Premenopausal cases 25.98 [23.24-30.40] 

Postmenopausal cases 28.19[25.05-32.45] 

Controls 25.40 [22.73-29.23] 
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Triple 

Negative 
192 (11%) 325 (10%) 525 (11%) 

Unknown 128 (8%) 244 (8%) 397 (8%) 

Stage    

0-111A 1588 (95%) 2991 (95%) 4693 (95%) 

IIIB 82 (5%) 174 (6%) 271 (5%) 

Grade    

             Low 652 (39%) 1293 (41%) 1993 (40%) 

High 609 (36%) 772 (24%) 1409 (28%) 

Unknown 409 (24%) 1098 (35%) 1562 (31%) 

Family history    

Yes 729 (44%) 1208 (38%) 1974 (40%) 

No 826 (49%) 1796 (57%) 2654 (53%) 

Unknown 115 (7%)  159 (5%) 336 (7%) 
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Table A.2 Association of fine-mapped SNPs with a premenopausal breast cancer risk 

Marker 
M

A 

M

AF 

Corr/

Trend 

P-

value 

OR [95% 

CI] Allelic 

OR 

[95% 

CI] 

Heterozygote 

OR 

[95% 

CI] Minor 
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P 

Adjust

ed 

OR [95% 

CI] Allelic 

OR 

[95% 

CI] 

Heterozygote 

OR 

[95% 

CI] 

Minor 

Homozy

gote 

Genotypi

ng 

rs13134510 C 0.2

3 

1.11E-

12 

1.43 [1.3-

1.58] 

1.32 

[1.15-1.5] 

2.17 

[1.72-

2.74] 

7.78

E-12 

1.43 [1.29-

1.58] 

1.34 

[1.17-

1.54] 

2.22 

[1.74-

2.84] 

Genotyped 

rs1366691 C 0.2

1 

1.91E-

12 

1.43 

[1.29-

1.58] 

1.27 

[1.11-

1.45] 

2.1 

 [1.71-

2.71] 

2.96

E-11 

1.41 [1.27-

1.56] 

1.3 [1.13-

1.49] 

2.22 

[1.74-

2.82] 

Imputed 

rs1429139 T 0.2

2 

6.64E-

12 

1.42 

[1.29-

1.57] 

1.25 

[1.09-

1.43] 

2.16 

[1.72-

2.72] 

3.33

E-11 

1.41 [1.27-

1.56] 

1.29 

[1.12-

1.49] 

2.24 

[1.76-

2.85] 

Imputed 

rs12501429 T 0.2

1 

1.19E-

11 

1.42 

[1.28-

1.57] 

1.27 

[1.11-

1.45] 

2.1 [1.67-

2.65] 

1.65

E-10 

1.39 [1.26-

1.54] 

1.28 

[1.11-

1.48] 

2.18 

[1.71-

2.78] 

Imputed 

rs1583003 A 0.2

2 

1.30E-

11 

1.39 

[1.27-

1.54] 

1.31 

[1.16-

1.49] 

2.07 

[1.63-

2.62] 

1.51

E-11 

1.41 [1.28-

1.56] 

1.34 

[1.17-

1.53] 

2.18 

[1.7-

2.79] 

Genotyped 

rs2163012 G 0.2

2 

2.45E-

11 

1.4 [1.27-

1.55] 

1.25 

[1.09-

1.43] 

2.05 

[1.64-

2.57] 

1.56

E-10 

1.39 [1.25-

1.53] 

1.28 

[1.11-

1.48] 

2.12 

[1.68-

2.69] 

Imputed 

rs10519886 T 0.2

4 

2.93E-

11 

1.38 

[1.25-

1.52] 

1.26 

[1.11-

1.43] 

2.07 

[1.66-

2.59] 

1.07

E-10 

1.38 [1.25-

1.53] 

1.29 

[1.13-

1.47] 

2.12 

[1.67-

2.67] 

Genotyped 

rs2163011 A 0.2

3 

4.13E-

11 

1.39 

[1.26-

1.53] 

1.27 

[1.12-

1.45] 

1.99 

[1.59-

2.49] 

2.40

E-10 

1.38 [1.25-

1.52] 

1.31 

[1.14-1.5] 

2.04 

[1.61-

2.57] 

Imputed 

rs12498595 C 0.2

3 

6.85E-

11 

1.38 

[1.26-

1.26 

[1.11-

1.99 

[1.59-

4.13

E-10 

1.37 [1.24-

1.52] 

1.3 [1.13-

1.49] 

2.03 

[1.61-

Imputed 
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Trend 
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OR 
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Adjust
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CI] 
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OR 

[95% 

CI] 
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gote 

Genotypi

ng 

1.53] 1.44] 2.48] 2.57] 

rs13120678 G 0.2

2 

1.16E-

10 

1.39 

[1.26-

1.54] 

1.24 

[1.08-

1.42] 

2.04 

[1.63-

2.57] 

1.00

E-09 

1.37 [1.24-

1.52] 

1.27 [1.1-

1.46] 

2.1 

[1.65-

2.67] 

Imputed 

rs12511935 T 0.2

1 

2.41E-

10 

1.39 

[1.25-

1.53] 

1.29 

[1.13-

1.47] 

1.97 

[1.55-

2.51] 

1.15

E-09 

1.38 [1.24-

1.53] 

1.31 

[1.14-1.5] 

2.06 

[1.6-

2.65] 

Imputed 

rs12500103 G 0.2

1 

2.85E-

10 

1.39 

[1.25-

1.54] 

1.29 

[1.13-

1.47] 

1.96 

[1.54-2.5] 

1.43

E-09 

1.38 [1.24-

1.53] 

1.31 

[1.14-

1.51] 

2.05 

[1.59-

2.64] 

Imputed 

rs1366679 G 0.2

1 

4.57E-

10 

1.38 

[1.25-

1.53] 

1.29 

[1.13-

1.47] 

1.94 

[1.53-

2.48] 

2.45

E-09 

1.37 [1.24-

1.52] 

1.3 [1.13-

1.5] 

2.03 

[1.57-

2.61] 

Imputed 

rs11735996 T 0.2

1 

5.14E-

10 

1.37 

[1.24-

1.52] 

1.28 

[1.13-

1.46] 

1.94 

[1.53-

2.46] 

1.83

E-09 

1.37 [1.24-

1.51] 

1.3 [1.13-

1.5] 

2.02 

[1.57-

2.6] 

Imputed 

rs28645698 C 0.1

8 

1.57E-

09 

1.37 

[1.24-

1.52] 

1.36 [1.2-

1.54] 

1.85 [1.4-

2.45] 

1.22

E-09 

1.39 [1.25-

1.55] 

1.4 [1.22-

1.6] 

1.93 

[1.44-

2.6] 

Genotyped 

rs1429133 C 0.2

1 

3.33E-

09 

1.34 

[1.22-

1.48] 

1.26 

[1.11-

1.43] 

1.94 

[1.52-

2.48] 

2.74

E-09 

1.36 [1.23-

1.5] 

1.29 

[1.13-

1.47] 

2.03 

[1.58-

2.62] 

Genotyped 

rs6810798 A 0.1

8 

3.58E-

09 

1.36 

[1.23-

1.51] 

1.36 [1.2-

1.55] 

1.8 [1.36-

2.39] 

2.83

E-09 

1.38 [1.24-

1.54] 

1.4 [1.22-

1.6] 

1.87 

[1.39-

2.52] 

Genotyped 

rs28720373 T 0.1

8 

4.73E-

09 

1.36 

[1.23-

1.51] 

1.37 [1.2-

1.56] 

1.77 

[1.32-

2.36] 

2.03

E-09 

1.39 [1.25-

1.55] 

1.4 [1.23-

1.61] 

1.89 

[1.4-

2.55] 

Genotyped 

rs1429142 C 0.1 4.99E- 1.35 1.33 1.89 5.81 1.40 [1.26- 1.40 1.96 Genotyped 
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CI] Allelic 

OR 
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1.51] 

1.25 

[1.08-

1.44] 
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Imputed 

rs1346600 A 0.2

0 

1.24E-
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1.35 
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[1.07-1.4] 

1.94 

[1.52-

2.48] 

2.69

E-08 

1.34 [1.21-

1.49] 

1.25 

[1.08-

1.44] 

2.03 

[1.57-

2.62] 

Imputed 

rs1864248 C 0.1

9 

1.25E-

08 

1.35 

[1.22-1.5] 

1.22 

[1.07-1.4] 

1.94 

[1.52-

2.48] 

2.49

E-08 

1.34 [1.21-

1.49] 

1.25 

[1.09-

1.44] 

2.03 

[1.57-

2.62] 

Imputed 

rs2562873 T 0.1

9 

1.29E-

08 

1.35 

[1.22-1.5] 

1.22 

[1.06-

1.39] 

1.97 

[1.54-

2.52] 

1.94

E-08 

1.35 [1.22-

1.5] 

1.25 

[1.08-

1.44] 

2.08 

[1.61-

2.69] 

Imputed 

rs1429112 G 0.1

9 

1.34E-

08 

1.35 

[1.22-1.5] 

1.21 

[1.06-

1.39] 

1.98 

[1.54-

2.54] 

2.58

E-08 

1.35 [1.21-

1.5] 

1.24 

[1.07-

1.43] 

2.09 

[1.61-

2.71] 

Imputed 

rs2562871 T 0.1

9 

1.39E-

08 

1.35 

[1.22-1.5] 

1.22 

[1.06-

1.39] 

1.97 

[1.53-

2.52] 

2.07

E-08 

1.35 [1.22-

1.5] 

1.24 

[1.08-

1.44] 

2.08 

[1.6-

2.69] 

Imputed 

rs2435095 A 0.1

9 

1.53E-

08 

1.35 

[1.22-1.5] 

1.21 

[1.06-

1.39] 

1.97 

[1.53-

2.52] 

2.21

E-08 

1.35 [1.22-

1.5] 

1.24 

[1.08-

1.43] 

2.08 

[1.6-

2.69] 

Imputed 

rs28623525 C 0.1

8 

1.60E-

08 

1.36 

[1.22-

1.51] 

1.32 

[1.16-

1.51] 

1.81 

[1.37-

2.41] 

9.02

E-09 

1.38 [1.23-

1.53] 

1.37 

[1.19-

1.57] 

1.92 

[1.43-

2.58] 

Imputed 

rs2562875 T 0.1

9 

1.62E-

08 

1.35 

[1.22-1.5] 

1.21 

[1.06-

1.39] 

1.97 

[1.54-

2.52] 

2.66

E-08 

1.35 [1.21-

1.5] 

1.24 

[1.07-

1.43] 

2.08 

[1.61-

2.69] 

Imputed 
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E-08 
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1.5] 

1.23 
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2.1 

[1.62-

2.73] 
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rs2562877 T 0.1

9 

2.04E-

08 

1.35 

[1.22-1.5] 

1.21 

[1.05-

1.38] 

1.97 

[1.53-

2.52] 

3.87

E-08 

1.34 [1.21-

1.49] 

1.23 

[1.06-

1.42] 

2.08 

[1.6-

2.69] 

Imputed 

rs2562878 G 0.1

9 

2.04E-

08 

1.35 

[1.22-1.5] 

1.21 

[1.05-

1.38] 

1.97 

[1.53-

2.52] 

3.87

E-08 

1.34 [1.21-

1.49] 

1.23 

[1.06-

1.42] 

2.08 

[1.6-

2.69] 

Imputed 

rs11737107 G 0.1

9 

2.06E-

08 

1.35 

[1.21-1.5] 

1.21 

[1.06-

1.39] 

1.95 

[1.52-2.5] 

3.48

E-08 

1.34 [1.21-

1.49] 

1.24 

[1.07-

1.43] 

2.06 

[1.59-

2.67] 
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rs2059904 G 0.1

8 

2.08E-

08 

1.35 

[1.21-

1.49] 

1.31 
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1.49] 

1.85 

[1.39-

2.45] 
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E-08 
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1.34 
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1.93 

[1.43-

2.59] 

Genotyped 
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9 

2.18E-

08 
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2.51] 

3.13

E-08 
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Imputed 
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*MA-Minor Allele, MAF - Minor Allele Frequency 

This table represents the association of the fine-mapped SNPs with premenopausal breast cancer risk. The table represents 135 

SNPs associated (p-value <0.05). The p-value and odds ratio with 95% confidence interval was estimated in both unadjusted 

and adjusted analysis. The analysis was adjusted for BMI. The unadjusted p-value was estimated using correlation trend test 

and p-value for the adjusted analysis was estimated using binary logistic regression. Odds ratio was estimated by assuming 

allelic and genotypic model. 
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Table A.3 List of tag SNPs genotyped from finemapped locus 4q31.22 

Marker 1 

Imputation 

and  

Genotyping  

concordance 

(r2) 

Call Rate 
Minor  

Allele 

Major  

Allele 

Minor  

Allele  

Frequency 

Major 

Allele 

Frequency 

rs1429142 0.99 1.00 C T 0.18 0.82 

rs2195469 0.93 1.00 T C 0.04 0.96 

rs28722867 0.98 1.00 T C 0.02 0.98 

rs1594082 0.97 1.00 G T 0.18 0.82 

rs28645698 0.96 0.99 C T 0.19 0.81 

rs6537474 0.94 0.99 T C 0.05 0.95 

rs6817192 0.89 0.99 A G 0.05 0.95 

rs73855101 0.88 0.99 T C 0.04 0.96 

rs2357607 0.97 0.99 T A 0.06 0.94 

rs1567180 0.96 0.99 C T 0.05 0.95 

rs11737828 0.95 0.99 A G 0.01 0.99 

rs2884222 0.92 0.99 C T 0.12 0.88 

rs1981987 0.89 0.99 G C 0.04 0.96 

rs4399964 0.95 0.99 A G 0.15 0.85 

rs11100939 0.92 0.99 C T 0.50 0.50 

rs17022364 0.85 0.99 A T 0.05 0.95 

rs1429133 0.93 0.99 G A 0.21 0.79 

rs17022379 0.96 0.99 G A 0.02 0.98 

rs11722693 0.93 0.99 C T 0.41 0.59 

rs9917863 0.91 0.99 C G 0.13 0.87 

rs10034043 0.92 0.99 A C 0.40 0.60 

rs72958286 0.80 0.99 A G 0.02 0.98 

rs1466985 0.94 0.99 T A 0.09 0.91 

rs4835072 0.85 0.99 C A 0.05 0.95 

rs2043702 0.93 0.99 C G 0.38 0.62 

rs7675774 0.92 0.99 G A 0.42 0.58 

rs4835370 0.94 0.99 C T 0.16 0.84 

rs10028838 0.95 0.99 G T 0.40 0.60 

rs78335024 0.93 0.99 G C 0.05 0.95 

rs1429130 0.90 0.99 C T 0.05 0.95 

rs2118258 0.92 0.99 T C 0.15 0.85 

rs6810798 0.97 0.99 A G 0.19 0.81 
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Allele 

Minor  

Allele  

Frequency 

Major 

Allele 

Frequency 

rs4835408 0.89 0.99 A G 0.11 0.89 

rs17611755 0.92 0.99 T C 0.11 0.89 

rs4835362 0.94 0.99 A G 0.18 0.82 

rs150873193 0.86 0.99 A G 0.03 0.97 

rs143682942 0.86 0.99 T G 0.04 0.96 

rs17022600 1.00 0.99 G A 0.01 0.99 

rs4835084 0.93 0.99 A T 0.30 0.70 

rs1507500 0.86 0.99 C T 0.11 0.89 

rs1583003 0.96 0.99 T C 0.23 0.77 

rs6822565 0.95 0.99 C T 0.25 0.75 

rs28720373 0.96 0.99 T C 0.19 0.81 

rs6537450 0.93 0.99 A G 0.40 0.60 

rs2059904 0.96 0.99 C T 0.18 0.82 

rs11731096 0.91 0.99 G A 0.29 0.71 

rs9307838 0.95 0.98 G A 0.25 0.75 

rs7699439 0.89 0.98 T C 0.29 0.71 

rs6836670 0.96 0.98 G A 0.18 0.82 

rs4835456 0.92 0.98 A T 0.14 0.86 

rs10519886 0.93 0.97 A G 0.24 0.76 

rs4110 0.95 0.97 A G 0.33 0.67 

rs1346595 0.89 0.97 G A 0.26 0.74 

rs1429116 0.91 0.94 C T 0.35 0.65 

rs13134510 0.93 0.93 C T 0.23 0.77 

rs7669311 0.82 0.92 T C 0.27 0.73 

This table includes the 57 Tag SNPs selected from the Finemapped region which are 

imputed and genotyped in stage 1-4 samples. The Concordance is calculated between 

imputation and genotyping of stage 1 samples. All the SNPs had concordance r2>0.80. 

The callrate and allele frequencies are estimated based on the stage 1-4 samples. 
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Table A.4 Conditional Regression analysis 

SNP 
P conditioned 

rs1366691 

P conditioned 

rs1429139 

P conditioned 

rs12501429 

P conditioned 

rs13134510 

rs11735996 6.49E-02 6.33E-02 2.00E-01 1.82E-01 

rs2217348 8.71E-02 1.28E-01 7.54E-02 5.11E-02 

rs80077485 8.72E-02 9.69E-02 9.73E-02 7.04E-02 

rs1366679 9.80E-02 9.05E-02 2.76E-01 1.70E-01 

rs12511935 1.02E-01 9.48E-02 2.89E-01 1.81E-01 

rs1579452 1.06E-01 1.26E-01 9.24E-02 8.32E-02 

rs2562880 1.08E-01 8.18E-02 5.59E-02 1.97E-01 

rs2562879 1.19E-01 8.45E-02 5.84E-02 1.85E-01 

rs2562876 1.22E-01 8.60E-02 6.75E-02 1.87E-01 

rs1429100 1.30E-01 1.53E-01 1.19E-01 7.94E-02 

rs28612496 1.31E-01 1.71E-01 9.78E-02 1.18E-01 

rs12500103 1.31E-01 1.17E-01 3.40E-01 2.07E-01 

rs28406843 1.31E-01 1.71E-01 1.04E-01 1.09E-01 

rs2174801 1.63E-01 1.32E-01 1.27E-01 2.32E-01 

rs1583003 1.69E-01 1.49E-01 5.82E-01 1.38E-01 

rs13120678 1.76E-01 8.72E-02 1.67E-01 9.89E-02 

rs2714900 1.76E-01 1.14E-01 4.53E-02 1.95E-01 

rs2714901 1.80E-01 1.18E-01 7.70E-02 1.69E-01 

rs1878404 1.83E-01 2.53E-01 2.23E-01 2.02E-01 

rs1594082 1.88E-01 2.54E-01 2.34E-01 1.18E-01 

rs7674137 2.01E-01 3.05E-01 2.49E-01 2.14E-01 

rs1864247 2.09E-01 1.09E-01 5.77E-02 2.18E-01 

rs72953535 2.19E-01 3.22E-01 1.60E-01 4.56E-01 

rs6537487 2.21E-01 3.54E-01 2.59E-01 2.53E-01 

rs55771464 2.24E-01 3.16E-01 1.38E-01 5.35E-01 

rs6821368 2.25E-01 3.38E-01 2.91E-01 2.80E-01 

rs61379585 2.37E-01 1.96E-01 2.01E-01 2.54E-01 

rs9647489 2.41E-01 2.03E-01 1.76E-01 3.14E-01 

rs78865503 2.45E-01 2.09E-01 2.09E-01 2.79E-01 

rs2435094 2.50E-01 1.65E-01 7.30E-02 2.52E-01 

rs6812432 2.63E-01 4.83E-01 2.09E-01 4.08E-01 

rs17023182 2.67E-01 3.48E-01 1.70E-01 6.14E-01 

rs28602756 2.75E-01 3.87E-01 2.17E-01 3.76E-01 

rs937881 2.78E-01 2.13E-01 2.31E-01 2.39E-01 

rs2562874 3.13E-01 2.66E-01 1.78E-01 3.93E-01 

rs1828034 3.21E-01 2.29E-01 1.75E-01 5.21E-01 

rs1429106 3.33E-01 5.56E-01 2.76E-01 5.07E-01 
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SNP 
P conditioned 

rs1366691 

P conditioned 

rs1429139 

P conditioned 

rs12501429 

P conditioned 

rs13134510 

rs7671190 3.34E-01 5.57E-01 2.76E-01 5.24E-01 

rs1429105 3.35E-01 5.58E-01 2.85E-01 5.33E-01 

rs11726718 3.39E-01 5.54E-01 2.53E-01 5.23E-01 

rs1429141 3.44E-01 4.49E-01 3.07E-01 3.20E-01 

rs11100960 3.50E-01 5.74E-01 2.69E-01 4.60E-01 

rs13147231 3.55E-01 5.55E-01 2.44E-01 4.87E-01 

rs6812819 3.56E-01 4.16E-01 3.07E-01 3.11E-01 

rs11728738 3.58E-01 5.55E-01 2.63E-01 4.38E-01 

rs2357778 3.65E-01 5.63E-01 2.81E-01 4.65E-01 

rs2357779 3.65E-01 5.63E-01 2.81E-01 4.65E-01 

rs2059904 3.68E-01 4.45E-01 2.52E-01 3.40E-01 

rs13105529 3.74E-01 6.40E-01 2.97E-01 5.86E-01 

rs12645918 3.93E-01 5.11E-01 2.75E-01 7.37E-01 

rs1366689 3.93E-01 4.56E-01 2.37E-01 4.82E-01 

rs9654228 4.09E-01 4.99E-01 3.40E-01 3.82E-01 

rs1568137 4.15E-01 4.47E-01 3.61E-01 2.52E-01 

rs2562869 4.19E-01 2.96E-01 2.61E-01 4.59E-01 

rs369660577 4.21E-01 4.62E-01 3.35E-01 2.26E-01 

rs376650129 4.21E-01 4.62E-01 3.35E-01 2.26E-01 

rs10519886 4.25E-01 9.44E-01 8.00E-01 7.11E-01 

rs7668383 4.27E-01 3.80E-01 3.60E-01 2.04E-01 

rs1346595 4.47E-01 6.39E-01 2.87E-01 6.77E-01 

rs2435095 4.50E-01 3.91E-01 2.61E-01 6.79E-01 

rs11737107 4.61E-01 4.03E-01 2.88E-01 6.44E-01 

rs12646693 4.77E-01 5.74E-01 4.21E-01 6.40E-01 

rs1346594 4.78E-01 7.29E-01 3.27E-01 8.09E-01 

rs28623525 4.81E-01 5.80E-01 3.34E-01 4.06E-01 

rs2562871 4.89E-01 3.82E-01 2.75E-01 6.37E-01 

rs2562873 4.91E-01 4.23E-01 2.75E-01 7.22E-01 

rs1346598 5.03E-01 3.04E-01 2.03E-01 6.52E-01 

rs11938488 5.10E-01 3.93E-01 4.75E-01 4.89E-01 

rs2714905 5.11E-01 4.29E-01 3.21E-01 6.40E-01 

rs17611755 5.12E-01 5.75E-01 5.33E-01 6.92E-01 

rs13132657 5.15E-01 5.06E-01 4.27E-01 2.68E-01 

rs17023141 5.16E-01 5.74E-01 3.88E-01 3.85E-01 

rs57997710 5.24E-01 6.69E-01 3.66E-01 9.91E-01 

rs1429112 5.43E-01 4.61E-01 3.49E-01 6.86E-01 

rs1568136 5.44E-01 7.35E-01 6.90E-01 4.76E-01 

rs17023196 5.44E-01 6.66E-01 4.03E-01 8.26E-01 



305 

 

SNP 
P conditioned 

rs1366691 

P conditioned 

rs1429139 

P conditioned 

rs12501429 

P conditioned 

rs13134510 

rs2562882 5.46E-01 4.23E-01 2.55E-01 5.97E-01 

rs6836670 5.46E-01 6.52E-01 5.49E-01 3.95E-01 

rs2562875 5.49E-01 4.80E-01 3.36E-01 7.05E-01 

rs6836562 5.49E-01 5.92E-01 4.25E-01 4.34E-01 

rs1816280 5.50E-01 4.26E-01 2.57E-01 6.01E-01 

rs6812093 5.56E-01 7.59E-01 7.21E-01 4.27E-01 

rs58983705 5.64E-01 6.87E-01 4.23E-01 8.64E-01 

rs2562870 5.72E-01 4.45E-01 3.43E-01 7.29E-01 

rs6836525 5.74E-01 6.19E-01 4.32E-01 4.43E-01 

rs17023204 5.79E-01 7.04E-01 4.55E-01 8.88E-01 

rs6822565 5.83E-01 8.17E-01 7.33E-01 4.17E-01 

rs1429111 5.86E-01 7.45E-01 5.70E-01 7.93E-01 

rs2562877 5.97E-01 5.07E-01 3.95E-01 7.07E-01 

rs2562878 5.97E-01 5.07E-01 3.95E-01 7.07E-01 

rs937880 5.99E-01 4.90E-01 5.63E-01 5.41E-01 

rs28645698 6.06E-01 7.20E-01 6.66E-01 6.21E-01 

rs4593108 6.07E-01 6.97E-01 5.17E-01 5.41E-01 

rs1975060 6.12E-01 4.74E-01 2.87E-01 6.60E-01 

rs12640442 6.13E-01 7.41E-01 4.82E-01 9.49E-01 

rs1429137 6.27E-01 7.12E-01 4.94E-01 5.40E-01 

rs1560226 6.35E-01 5.01E-01 2.95E-01 6.30E-01 

rs28720373 6.35E-01 7.48E-01 6.81E-01 4.17E-01 

rs1864248 6.55E-01 4.62E-01 3.09E-01 7.62E-01 

rs2884222 6.66E-01 7.00E-01 6.29E-01 9.44E-01 

rs17022714 6.83E-01 6.00E-01 6.05E-01 8.56E-01 

rs59834135 6.83E-01 5.48E-01 6.38E-01 8.81E-01 

rs1354885 6.94E-01 6.10E-01 6.52E-01 7.52E-01 

rs1429134 6.94E-01 5.64E-01 3.41E-01 8.58E-01 

rs7667633 6.96E-01 7.89E-01 5.08E-01 6.28E-01 

rs58378349 6.99E-01 6.15E-01 6.44E-01 9.16E-01 

rs11947583 7.05E-01 6.00E-01 6.27E-01 8.54E-01 

rs934146 7.13E-01 5.76E-01 3.55E-01 7.28E-01 

rs1429109 7.24E-01 8.22E-01 5.89E-01 7.57E-01 

rs1346600 7.28E-01 5.22E-01 3.59E-01 8.29E-01 

rs9942219 7.39E-01 8.43E-01 6.10E-01 7.64E-01 

rs6810798 7.41E-01 9.65E-01 7.51E-01 5.70E-01 

rs7697539 7.51E-01 8.49E-01 5.74E-01 7.16E-01 

rs75311641 7.53E-01 7.12E-01 6.85E-01 9.52E-01 

rs62341515 7.69E-01 7.14E-01 7.21E-01 8.73E-01 
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SNP 
P conditioned 

rs1366691 

P conditioned 

rs1429139 

P conditioned 

rs12501429 

P conditioned 

rs13134510 

rs62341517 7.73E-01 7.20E-01 7.05E-01 8.66E-01 

rs73853371 7.75E-01 7.01E-01 6.82E-01 9.67E-01 

rs113128727 7.93E-01 7.09E-01 7.30E-01 9.95E-01 

rs62341516 8.00E-01 7.15E-01 7.36E-01 9.95E-01 

rs1429142 8.30E-01 7.58E-01 7.16E-01 9.56E-01 

rs62341519 8.47E-01 7.65E-01 8.59E-01 9.45E-01 

rs1466985 8.51E-01 7.09E-01 6.54E-01 8.90E-01 

rs2163012 8.57E-01 8.41E-01 5.57E-01 9.13E-01 

rs12498595 8.98E-01 7.56E-01 7.76E-01 7.88E-01 

rs1354884 8.99E-01 9.82E-01 9.54E-01 6.69E-01 

rs4399964 9.04E-01 8.61E-01 8.24E-01 6.52E-01 

rs2163011 9.21E-01 7.37E-01 7.84E-01 8.99E-01 

rs2303839 9.34E-01 7.67E-01 5.17E-01 7.60E-01 

rs1429110 9.39E-01 9.92E-01 7.69E-01 8.27E-01 

rs1429133 9.46E-01 5.58E-01 4.06E-01 8.18E-01 

rs2357604 9.99E-01 9.61E-01 9.70E-01 6.95E-01 

rs12501429 NA NA NA NA 

rs13134510 NA NA NA NA 

rs1366691 NA NA NA NA 

rs1429139 NA NA NA NA 

The table represents the conditional regression analysis conditioned on the top 4 SNPs. 

Corresponding p-value estimates from the regression analysis as indicated. 
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Table A.5 Potential functional causal variant predicted using likelihood 

ratio analysis 

Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

rs13134510 6123.128 Referent  >0.05 

Potential functional causal 

variant   

rs28645698 6121.273 1.855 >0.05 Excluded variants 

rs2884222 6118.57 4.558 >0.05 Excluded variants 

rs1594082 6118.408 4.72 >0.05 Excluded variants 

rs1429133 6115.49 7.638 >0.05 Excluded variants 

rs1466985 6113.879 9.249 

0.05 to 

0.01 Excluded variants 

rs4399964 6112.56 10.568 <0.01 

Potential functional causal 

variant   

rs1583003 6104.122 19.006 <0.01 

Potential functional causal 

variant   

rs17611755 6103.807 19.321 <0.01 

Potential functional causal 

variant   

rs6822565 6099.999 23.129 <0.01 

Potential functional causal 

variant   

rs2059904 6090.463 32.665 <0.01 

Potential functional causal 

variant   

rs6810798 6087.017 36.111 <0.01 

Potential functional causal 

variant   

rs28720373 6073.079 50.049 <0.01 

Potential functional causal 

variant   

rs6812093 6032.227 90.901 <0.01 

Potential functional causal 

variant   

rs10519886 6022.739 100.389 <0.01 

Potential functional causal 

variant   

rs1346595 6019.228 103.9 <0.01 

Potential functional causal 

variant   

rs6836670 6006.46 116.668 <0.01 

Potential functional causal 

variant   

rs1568136 6003.462 119.666 <0.01 

Potential functional causal 

variant   

rs1346594 6001.358 121.77 <0.01 

Potential functional causal 

variant   

rs11947583 5983.166 139.962 <0.01 

Potential functional causal 

variant   

rs17022714 5979.445 143.683 <0.01 

Potential functional causal 

variant   

rs1354885 5974.907 148.221 <0.01 Potential functional causal 
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Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

variant   

rs28623525 5967.853 155.275 <0.01 

Potential functional causal 

variant   

rs62341515 5959.886 163.242 <0.01 

Potential functional causal 

variant   

rs73853371 5954.522 168.606 <0.01 

Potential functional causal 

variant   

rs62341517 5954.399 168.729 <0.01 

Potential functional causal 

variant   

rs62341519 5936.181 186.947 <0.01 

Potential functional causal 

variant   

rs75311641 5931.761 191.367 <0.01 

Potential functional causal 

variant   

rs113128727 5930.281 192.847 <0.01 

Potential functional causal 

variant   

rs62341516 5924.165 198.963 <0.01 

Potential functional causal 

variant   

rs58378349 5921.051 202.077 <0.01 

Potential functional causal 

variant   

rs59834135 5905.393 217.735 <0.01 

Potential functional causal 

variant   

rs1429141 5899.825 223.303 <0.01 

Potential functional causal 

variant   

rs2357604 5899.179 223.949 <0.01 

Potential functional causal 

variant   

rs2217348 5897.983 225.145 <0.01 

Potential functional causal 

variant   

rs9654228 5890.799 232.329 <0.01 

Potential functional causal 

variant   

rs13132657 5882.017 241.111 <0.01 

Potential functional causal 

variant   

rs7671190 5876.471 246.657 <0.01 

Potential functional causal 

variant   

rs1429106 5873.905 249.223 <0.01 

Potential functional causal 

variant   

rs6812819 5870.066 253.062 <0.01 

Potential functional causal 

variant   

rs1429105 5869.766 253.362 <0.01 

Potential functional causal 

variant   

rs1354884 5860.684 262.444 <0.01 

Potential functional causal 

variant   

rs11735996 5858.13 264.998 <0.01 

Potential functional causal 

variant   
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Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

rs13105529 5856.449 266.679 <0.01 

Potential functional causal 

variant   

rs6812432 5853.793 269.335 <0.01 

Potential functional causal 

variant   

rs28406843 5850.483 272.645 <0.01 

Potential functional causal 

variant   

rs1568137 5847.867 275.261 <0.01 

Potential functional causal 

variant   

rs11726718 5836.949 286.179 <0.01 

Potential functional causal 

variant   

rs2163011 5835.072 288.056 <0.01 

Potential functional causal 

variant   

rs13147231 5826.961 296.167 <0.01 

Potential functional causal 

variant   

rs12498595 5808.559 314.569 <0.01 

Potential functional causal 

variant   

rs1366691 5803.278 319.85 <0.01 

Potential functional causal 

variant   

rs1346600 5801.051 322.077 <0.01 

Potential functional causal 

variant   

rs28612496 5799.913 323.215 <0.01 

Potential functional causal 

variant   

rs11728738 5791.917 331.211 <0.01 

Potential functional causal 

variant   

rs376650129 5790.732 332.396 <0.01 

Potential functional causal 

variant   

rs369660577 5790.732 332.396 <0.01 

Potential functional causal 

variant   

rs1864248 5790.543 332.585 <0.01 

Potential functional causal 

variant   

rs12511935 5780.621 342.507 <0.01 

Potential functional causal 

variant   

rs2357778 5777.205 345.923 <0.01 

Potential functional causal 

variant   

rs2357779 5777.205 345.923 <0.01 

Potential functional causal 

variant   

rs11100960 5772.671 350.457 <0.01 

Potential functional causal 

variant   

rs1429134 5766.16 356.968 <0.01 

Potential functional causal 

variant   

rs72953535 5764.977 358.151 <0.01 

Potential functional causal 

variant   

rs1828034 5753.122 370.006 <0.01 

Potential functional causal 

variant   
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Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

rs2562871 5752.659 370.469 <0.01 

Potential functional causal 

variant   

rs2562873 5747.017 376.111 <0.01 

Potential functional causal 

variant   

rs61379585 5744.806 378.322 <0.01 

Potential functional causal 

variant   

rs12500103 5744.61 378.518 <0.01 

Potential functional causal 

variant   

rs2435095 5739.167 383.961 <0.01 

Potential functional causal 

variant   

rs78865503 5738.491 384.637 <0.01 

Potential functional causal 

variant   

rs2562875 5733.313 389.815 <0.01 

Potential functional causal 

variant   

rs1366689 5727.215 395.913 <0.01 

Potential functional causal 

variant   

rs1366679 5726.927 396.201 <0.01 

Potential functional causal 

variant   

rs2174801 5722.277 400.851 <0.01 

Potential functional causal 

variant   

rs937880 5720.549 402.579 <0.01 

Potential functional causal 

variant   

rs1429112 5719.114 404.014 <0.01 

Potential functional causal 

variant   

rs2714905 5718.711 404.417 <0.01 

Potential functional causal 

variant   

rs2562870 5711.467 411.661 <0.01 

Potential functional causal 

variant   

rs1579452 5710.671 412.457 <0.01 

Potential functional causal 

variant   

rs11737107 5700.103 423.025 <0.01 

Potential functional causal 

variant   

rs12501429 5699.323 423.805 <0.01 

Potential functional causal 

variant   

rs2562877 5699.127 424.001 <0.01 

Potential functional causal 

variant   

rs2562878 5699.127 424.001 <0.01 

Potential functional causal 

variant   

rs17023141 5692.805 430.323 <0.01 

Potential functional causal 

variant   

rs1429100 5671.086 452.042 <0.01 

Potential functional causal 

variant   

rs11938488 5670.605 452.523 <0.01 

Potential functional causal 

variant   
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Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

rs2163012 5669.722 453.406 <0.01 

Potential functional causal 

variant   

rs1429139 5660.401 462.727 <0.01 

Potential functional causal 

variant   

rs1560226 5649.677 473.451 <0.01 

Potential functional causal 

variant   

rs1816280 5645.906 477.222 <0.01 

Potential functional causal 

variant   

rs1864247 5645.494 477.634 <0.01 

Potential functional causal 

variant   

rs2562882 5642.709 480.419 <0.01 

Potential functional causal 

variant   

rs12645918 5640.232 482.896 <0.01 

Potential functional causal 

variant   

rs1346598 5639.014 484.114 <0.01 

Potential functional causal 

variant   

rs7667633 5635.779 487.349 <0.01 

Potential functional causal 

variant   

rs2714900 5629.698 493.43 <0.01 

Potential functional causal 

variant   

rs2435094 5625.065 498.063 <0.01 

Potential functional causal 

variant   

rs1975060 5620.444 502.684 <0.01 

Potential functional causal 

variant   

rs1429142 5614.404 508.724 <0.01 

Potential functional causal 

variant   

rs13120678 5611.446 511.682 <0.01 

Potential functional causal 

variant   

rs2714901 5609.582 513.546 <0.01 

Potential functional causal 

variant   

rs28602756 5599.816 523.312 <0.01 

Potential functional causal 

variant   

rs2303839 5599.224 523.904 <0.01 

Potential functional causal 

variant   

rs937881 5592.426 530.702 <0.01 

Potential functional causal 

variant   

rs55771464 5587.225 535.903 <0.01 

Potential functional causal 

variant   

rs1429137 5583.346 539.782 <0.01 

Potential functional causal 

variant   

rs17023182 5572.162 550.966 <0.01 

Potential functional causal 

variant   

rs4593108 5568.512 554.616 <0.01 

Potential functional causal 

variant   
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Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

rs934146 5562.088 561.04 <0.01 

Potential functional causal 

variant   

rs6836525 5556.706 566.422 <0.01 

Potential functional causal 

variant   

rs6836562 5552.469 570.659 <0.01 

Potential functional causal 

variant   

rs2562879 5544.743 578.385 <0.01 

Potential functional causal 

variant   

rs17023196 5541.492 581.636 <0.01 

Potential functional causal 

variant   

rs2562880 5528.4 594.728 <0.01 

Potential functional causal 

variant   

rs2562874 5524.898 598.23 <0.01 

Potential functional causal 

variant   

rs17023204 5513.566 609.562 <0.01 

Potential functional causal 

variant   

rs2562876 5506.79 616.338 <0.01 

Potential functional causal 

variant   

rs12640442 5506.736 616.392 <0.01 

Potential functional causal 

variant   

rs57997710 5501.155 621.973 <0.01 

Potential functional causal 

variant   

rs2562869 5499.954 623.174 <0.01 

Potential functional causal 

variant   

rs12646693 5498.434 624.694 <0.01 

Potential functional causal 

variant   

rs58983705 5473.385 649.743 <0.01 

Potential functional causal 

variant   

rs7668383 5451.504 671.624 <0.01 

Potential functional causal 

variant   

rs1429110 5435.298 687.83 <0.01 

Potential functional causal 

variant   

rs1429111 5432.214 690.914 <0.01 

Potential functional causal 

variant   

rs1429109 5411.501 711.627 <0.01 

Potential functional causal 

variant   

rs9942219 5377.737 745.391 <0.01 

Potential functional causal 

variant   

rs7697539 5340.1 783.028 <0.01 

Potential functional causal 

variant   

rs80077485 5330.665 792.463 <0.01 

Potential functional causal 

variant   

rs6821368 5290.765 832.363 <0.01 

Potential functional causal 

variant   
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Marker 

2 log 

Likelihood 

Likelihoo

d ratio p-value Variant 

rs6537487 5262.915 860.213 <0.01 

Potential functional causal 

variant   

rs7674137 5233.649 889.479 <0.01 

Potential functional causal 

variant   

rs1878404 5193.807 929.321 <0.01 

Potential functional causal 

variant   

rs9647489 5191.911 931.217 <0.01 

Potential functional causal 

variant   

Each associated SNPs were compared to the top associated SNP (rs13134510) and 

likelihood of potential causal variant is estimated. SNPs with likelihood ratio P-value 

<0.01 was considered significant and potential causal variant 
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Table A.6 Regulome Db scoring of associated SNPs 

Coordinate db SNP ID 
Regulome 

DB score 
Resources 

chr4:148318047 rs7671190 1e UCSC | ENSEMBL | dbSNP 

chr4:148084304 rs4399964 1f UCSC | ENSEMBL | dbSNP 

chr4:148244801 rs2714900 1f UCSC | ENSEMBL | dbSNP 

chr4:148253323 rs2562873 1f UCSC | ENSEMBL | dbSNP 

chr4:148265187 rs1560226 1f UCSC | ENSEMBL | dbSNP 

chr4:148281811 rs1366691 1f UCSC | ENSEMBL | dbSNP 

chr4:148284103 rs1429139 1f UCSC | ENSEMBL | dbSNP 

chr4:148328867 rs17023196 1f UCSC | ENSEMBL | dbSNP 

chr4:148329645 rs17023204 1f UCSC | ENSEMBL | dbSNP 

chr4:148284372 rs6836670 2b UCSC | ENSEMBL | dbSNP 

chr4:148262343 rs2562880 3a UCSC | ENSEMBL | dbSNP 

chr4:148287359 rs9654228 3a UCSC | ENSEMBL | dbSNP 

chr4:148432439 rs1568136 3a UCSC | ENSEMBL | dbSNP 

chr4:148435009 rs6821368 3a UCSC | ENSEMBL | dbSNP 

chr4:148248189 rs2562871 4 UCSC | ENSEMBL | dbSNP 

chr4:148272794 rs7668383 4 UCSC | ENSEMBL | dbSNP 

chr4:148283139 rs7667633 4 UCSC | ENSEMBL | dbSNP 

chr4:148287511 rs13134510 4 UCSC | ENSEMBL | dbSNP 

chr4:148437511 rs6822565 4 UCSC | ENSEMBL | dbSNP 

chr4:148056169 rs937880 5 UCSC | ENSEMBL | dbSNP 

chr4:148062990 rs1354885 5 UCSC | ENSEMBL | dbSNP 

chr4:148064828 rs11947583 5 UCSC | ENSEMBL | dbSNP 

chr4:148077417 rs2357604 5 UCSC | ENSEMBL | dbSNP 

chr4:148248745 rs2163011 5 UCSC | ENSEMBL | dbSNP 

chr4:148267129 rs1975060 5 UCSC | ENSEMBL | dbSNP 

chr4:148276042 rs12501429 5 UCSC | ENSEMBL | dbSNP 

chr4:148276399 rs2059904 5 UCSC | ENSEMBL | dbSNP 

chr4:148285766 rs6812819 5 UCSC | ENSEMBL | dbSNP 

chr4:148289388 rs1429142 5 UCSC | ENSEMBL | dbSNP 

chr4:148291580 rs28406843 5 UCSC | ENSEMBL | dbSNP 

chr4:148310347 rs17023182 5 UCSC | ENSEMBL | dbSNP 

chr4:148317339 rs1429105 5 UCSC | ENSEMBL | dbSNP 

chr4:148317564 rs1429106 5 UCSC | ENSEMBL | dbSNP 

chr4:148317855 rs11726718 5 UCSC | ENSEMBL | dbSNP 

http://www.regulomedb.org/snp/chr4/148318047
http://www.regulomedb.org/snp/chr4/148084304
http://www.regulomedb.org/snp/chr4/148244801
http://www.regulomedb.org/snp/chr4/148253323
http://www.regulomedb.org/snp/chr4/148265187
http://www.regulomedb.org/snp/chr4/148281811
http://www.regulomedb.org/snp/chr4/148284103
http://www.regulomedb.org/snp/chr4/148328867
http://www.regulomedb.org/snp/chr4/148329645
http://www.regulomedb.org/snp/chr4/148284372
http://www.regulomedb.org/snp/chr4/148262343
http://www.regulomedb.org/snp/chr4/148287359
http://www.regulomedb.org/snp/chr4/148432439
http://www.regulomedb.org/snp/chr4/148435009
http://www.regulomedb.org/snp/chr4/148248189
http://www.regulomedb.org/snp/chr4/148272794
http://www.regulomedb.org/snp/chr4/148283139
http://www.regulomedb.org/snp/chr4/148287511
http://www.regulomedb.org/snp/chr4/148437511
http://www.regulomedb.org/snp/chr4/148056169
http://www.regulomedb.org/snp/chr4/148062990
http://www.regulomedb.org/snp/chr4/148064828
http://www.regulomedb.org/snp/chr4/148077417
http://www.regulomedb.org/snp/chr4/148248745
http://www.regulomedb.org/snp/chr4/148267129
http://www.regulomedb.org/snp/chr4/148276042
http://www.regulomedb.org/snp/chr4/148276399
http://www.regulomedb.org/snp/chr4/148285766
http://www.regulomedb.org/snp/chr4/148289388
http://www.regulomedb.org/snp/chr4/148291580
http://www.regulomedb.org/snp/chr4/148310347
http://www.regulomedb.org/snp/chr4/148317339
http://www.regulomedb.org/snp/chr4/148317564
http://www.regulomedb.org/snp/chr4/148317855
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Coordinate db SNP ID 
Regulome 

DB score 
Resources 

chr4:148330068 rs7697539 5 UCSC | ENSEMBL | dbSNP 

chr4:148330344 rs1429109 5 UCSC | ENSEMBL | dbSNP 

chr4:148330379 rs1429110 5 UCSC | ENSEMBL | dbSNP 

chr4:148375146 rs13132657 5 UCSC | ENSEMBL | dbSNP 

chr4:148439600 rs7674137 5 UCSC | ENSEMBL | dbSNP 

chr4:148066685 rs73853371 6 UCSC | ENSEMBL | dbSNP 

chr4:148067083 rs62341516 6 UCSC | ENSEMBL | dbSNP 

chr4:148067378 rs9647489 6 UCSC | ENSEMBL | dbSNP 

chr4:148067562 rs113128727 6 UCSC | ENSEMBL | dbSNP 

chr4:148067746 rs62341517 6 UCSC | ENSEMBL | dbSNP 

chr4:148068052 rs75311641 6 UCSC | ENSEMBL | dbSNP 

chr4:148068715 rs58378349 6 UCSC | ENSEMBL | dbSNP 

chr4:148069855 rs59834135 6 UCSC | ENSEMBL | dbSNP 

chr4:148073976 rs62341519 6 UCSC | ENSEMBL | dbSNP 

chr4:148075339 rs1354884 6 UCSC | ENSEMBL | dbSNP 

chr4:148090485 rs1828034 6 UCSC | ENSEMBL | dbSNP 

chr4:148233472 rs2303839 6 UCSC | ENSEMBL | dbSNP 

chr4:148236537 rs1346598 6 UCSC | ENSEMBL | dbSNP 

chr4:148236731 rs10519886 6 UCSC | ENSEMBL | dbSNP 

chr4:148241452 rs1346600 6 UCSC | ENSEMBL | dbSNP 

chr4:148243616 rs1864248 6 UCSC | ENSEMBL | dbSNP 

chr4:148245248 rs2435094 6 UCSC | ENSEMBL | dbSNP 

chr4:148245634 rs1429134 6 UCSC | ENSEMBL | dbSNP 

chr4:148247352 rs2562869 6 UCSC | ENSEMBL | dbSNP 

chr4:148247481 rs2714901 6 UCSC | ENSEMBL | dbSNP 

chr4:148253069 rs12498595 6 UCSC | ENSEMBL | dbSNP 

chr4:148254878 rs2435095 6 UCSC | ENSEMBL | dbSNP 

chr4:148259421 rs2562876 6 UCSC | ENSEMBL | dbSNP 

chr4:148260069 rs2714905 6 UCSC | ENSEMBL | dbSNP 

chr4:148260760 rs2562877 6 UCSC | ENSEMBL | dbSNP 

chr4:148260895 rs2562878 6 UCSC | ENSEMBL | dbSNP 

chr4:148262921 rs1429112 6 UCSC | ENSEMBL | dbSNP 

chr4:148264672 rs2562882 6 UCSC | ENSEMBL | dbSNP 

chr4:148268026 rs2163012 6 UCSC | ENSEMBL | dbSNP 

chr4:148282108 rs1429137 6 UCSC | ENSEMBL | dbSNP 

chr4:148288066 rs1429141 6 UCSC | ENSEMBL | dbSNP 

chr4:148296024 rs1583003 6 UCSC | ENSEMBL | dbSNP 

http://www.regulomedb.org/snp/chr4/148330068
http://www.regulomedb.org/snp/chr4/148330344
http://www.regulomedb.org/snp/chr4/148330379
http://www.regulomedb.org/snp/chr4/148375146
http://www.regulomedb.org/snp/chr4/148439600
http://www.regulomedb.org/snp/chr4/148066685
http://www.regulomedb.org/snp/chr4/148067083
http://www.regulomedb.org/snp/chr4/148067378
http://www.regulomedb.org/snp/chr4/148067562
http://www.regulomedb.org/snp/chr4/148067746
http://www.regulomedb.org/snp/chr4/148068052
http://www.regulomedb.org/snp/chr4/148068715
http://www.regulomedb.org/snp/chr4/148069855
http://www.regulomedb.org/snp/chr4/148073976
http://www.regulomedb.org/snp/chr4/148075339
http://www.regulomedb.org/snp/chr4/148090485
http://www.regulomedb.org/snp/chr4/148233472
http://www.regulomedb.org/snp/chr4/148236537
http://www.regulomedb.org/snp/chr4/148236731
http://www.regulomedb.org/snp/chr4/148241452
http://www.regulomedb.org/snp/chr4/148243616
http://www.regulomedb.org/snp/chr4/148245248
http://www.regulomedb.org/snp/chr4/148245634
http://www.regulomedb.org/snp/chr4/148247352
http://www.regulomedb.org/snp/chr4/148247481
http://www.regulomedb.org/snp/chr4/148253069
http://www.regulomedb.org/snp/chr4/148254878
http://www.regulomedb.org/snp/chr4/148259421
http://www.regulomedb.org/snp/chr4/148260069
http://www.regulomedb.org/snp/chr4/148260760
http://www.regulomedb.org/snp/chr4/148260895
http://www.regulomedb.org/snp/chr4/148262921
http://www.regulomedb.org/snp/chr4/148264672
http://www.regulomedb.org/snp/chr4/148268026
http://www.regulomedb.org/snp/chr4/148282108
http://www.regulomedb.org/snp/chr4/148288066
http://www.regulomedb.org/snp/chr4/148296024
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Coordinate db SNP ID 
Regulome 

DB score 
Resources 

chr4:148296556 rs1579452 6 UCSC | ENSEMBL | dbSNP 

chr4:148296856 rs1429100 6 UCSC | ENSEMBL | dbSNP 

chr4:148296903 rs12511935 6 UCSC | ENSEMBL | dbSNP 

chr4:148297051 rs12500103 6 UCSC | ENSEMBL | dbSNP 

chr4:148297179 rs1366679 6 UCSC | ENSEMBL | dbSNP 

chr4:148313802 rs13105529 6 UCSC | ENSEMBL | dbSNP 

chr4:148315662 rs11100960 6 UCSC | ENSEMBL | dbSNP 

chr4:148315684 rs6812432 6 UCSC | ENSEMBL | dbSNP 

chr4:148316576 rs2357778 6 UCSC | ENSEMBL | dbSNP 

chr4:148318634 rs1346594 6 UCSC | ENSEMBL | dbSNP 

chr4:148318729 rs1346595 6 UCSC | ENSEMBL | dbSNP 

chr4:148320198 rs12645918 6 UCSC | ENSEMBL | dbSNP 

chr4:148329350 rs58983705 6 UCSC | ENSEMBL | dbSNP 

chr4:148329381 rs57997710 6 UCSC | ENSEMBL | dbSNP 

chr4:148330513 rs1429111 6 UCSC | ENSEMBL | dbSNP 

chr4:148330969 rs9942219 6 UCSC | ENSEMBL | dbSNP 

chr4:148373899 rs376650129 6 UCSC | ENSEMBL | dbSNP 

chr4:148373900 rs369660577 6 UCSC | ENSEMBL | dbSNP 

chr4:148429410 rs6537487 6 UCSC | ENSEMBL | dbSNP 

chr4:148437154 rs6812093 6 UCSC | ENSEMBL | dbSNP 

chr4:148055431 rs11938488 No Data UCSC | ENSEMBL | dbSNP 

chr4:148056319 rs937881 No Data UCSC | ENSEMBL | dbSNP 

chr4:148058971 rs17611755 No Data UCSC | ENSEMBL | dbSNP 

chr4:148060450 rs61379585 No Data UCSC | ENSEMBL | dbSNP 

chr4:148061275 rs78865503 No Data UCSC | ENSEMBL | dbSNP 

chr4:148062555 rs62341515 No Data UCSC | ENSEMBL | dbSNP 

chr4:148065511 rs17022714 No Data UCSC | ENSEMBL | dbSNP 

chr4:148069539 rs2174801 No Data UCSC | ENSEMBL | dbSNP 

chr4:148243297 rs1864247 No Data UCSC | ENSEMBL | dbSNP 

chr4:148247367 rs2562870 No Data UCSC | ENSEMBL | dbSNP 

chr4:148254263 rs2562874 No Data UCSC | ENSEMBL | dbSNP 

chr4:148256734 rs1366689 No Data UCSC | ENSEMBL | dbSNP 

chr4:148256890 rs2562875 No Data UCSC | ENSEMBL | dbSNP 

chr4:148259751 rs11737107 No Data UCSC | ENSEMBL | dbSNP 

chr4:148260922 rs2562879 No Data UCSC | ENSEMBL | dbSNP 

chr4:148263828 rs1816280 No Data UCSC | ENSEMBL | dbSNP 

chr4:148268650 rs934146 No Data UCSC | ENSEMBL | dbSNP 

http://www.regulomedb.org/snp/chr4/148296556
http://www.regulomedb.org/snp/chr4/148296856
http://www.regulomedb.org/snp/chr4/148296903
http://www.regulomedb.org/snp/chr4/148297051
http://www.regulomedb.org/snp/chr4/148297179
http://www.regulomedb.org/snp/chr4/148313802
http://www.regulomedb.org/snp/chr4/148315662
http://www.regulomedb.org/snp/chr4/148315684
http://www.regulomedb.org/snp/chr4/148316576
http://www.regulomedb.org/snp/chr4/148318634
http://www.regulomedb.org/snp/chr4/148318729
http://www.regulomedb.org/snp/chr4/148320198
http://www.regulomedb.org/snp/chr4/148329350
http://www.regulomedb.org/snp/chr4/148329381
http://www.regulomedb.org/snp/chr4/148330513
http://www.regulomedb.org/snp/chr4/148330969
http://www.regulomedb.org/snp/chr4/148373899
http://www.regulomedb.org/snp/chr4/148373900
http://www.regulomedb.org/snp/chr4/148429410
http://www.regulomedb.org/snp/chr4/148437154
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Coordinate db SNP ID 
Regulome 

DB score 
Resources 

chr4:148273396 rs13120678 No Data UCSC | ENSEMBL | dbSNP 

chr4:148278845 rs6836525 No Data UCSC | ENSEMBL | dbSNP 

chr4:148278890 rs6836562 No Data UCSC | ENSEMBL | dbSNP 

chr4:148281000 rs4593108 No Data UCSC | ENSEMBL | dbSNP 

chr4:148283783 rs17023141 No Data UCSC | ENSEMBL | dbSNP 

chr4:148290817 rs6810798 No Data UCSC | ENSEMBL | dbSNP 

chr4:148291241 rs28720373 No Data UCSC | ENSEMBL | dbSNP 

chr4:148291242 rs28623525 No Data UCSC | ENSEMBL | dbSNP 

chr4:148291437 rs28612496 No Data UCSC | ENSEMBL | dbSNP 

chr4:148293946 rs2217348 No Data UCSC | ENSEMBL | dbSNP 

chr4:148296165 rs11735996 No Data UCSC | ENSEMBL | dbSNP 

chr4:148315855 rs55771464 No Data UCSC | ENSEMBL | dbSNP 

chr4:148316668 rs2357779 No Data UCSC | ENSEMBL | dbSNP 

chr4:148319116 rs11728738 No Data UCSC | ENSEMBL | dbSNP 

chr4:148319184 rs28602756 No Data UCSC | ENSEMBL | dbSNP 

chr4:148319262 rs72953535 No Data UCSC | ENSEMBL | dbSNP 

chr4:148319554 rs13147231 No Data UCSC | ENSEMBL | dbSNP 

chr4:148326781 rs12640442 No Data UCSC | ENSEMBL | dbSNP 

chr4:148326866 rs12646693 No Data UCSC | ENSEMBL | dbSNP 

chr4:148334943 rs80077485 No Data UCSC | ENSEMBL | dbSNP 

chr4:148398228 rs1568137 No Data UCSC | ENSEMBL | dbSNP 

chr4:148440624 rs1878404 No Data UCSC | ENSEMBL | dbSNP 

The table represents the RegulomeDB scoring of the associated SNPs. The scores range 

from 1-6. The description of the scores include: 1a- eQTL + TF binding + matched TF 

motif + matched DNase Footprint + DNase peak ; 1b -eQTL + TF binding + any motif + 

DNase Footprint + DNase peak ; 1c- eQTL + TF binding + matched TF motif + DNase 

peak; 1d-eQTL + TF binding + any motif + DNase peak; 1e-eQTL + TF binding + 

matched TF motif; 1f-eQTL + TF binding / DNase peak; 2a- TF binding + matched TF 

motif + matched DNase Footprint + DNase peak;  2b-TF binding + any motif + DNase 

Footprint + DNase peak; 2c-TF binding + matched TF motif + DNase peak; 3a-TF 

binding + any motif + DNase peak ; 3b-TF binding + matched TF motif ; 4-TF binding + 

DNase peak; 5-TF binding or DNase peak; 6-other. 
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Table A.7 Description of the RegulomeDB scoring of the associated SNPs in breast cancer cell lines 

db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs1366691 1f 

chr4:148281608..1

48281858/FOS/M

CF10A-Er-

Src/4ohtam_1um_

12hr; 

chr4:148281590..1

48281840/FOS/M

CF10A-Er-

Src/4ohtam_1um_

4hr 

  
ARHGAP10/L

ymphoblastoid;  
  

chr4:148281200..148285000/Enhancers/ENCO

DE/HMEC Mammary Epithelial Primary Cells; 

chr4:148281200..148285000/Enhancers/Epitheli

al/Breast variant Human Mammary Epithelial 

Cells (vHMEC); 

chr4:148253600..148282800/Quiescent/Low/Epi

thelial/Breast Myoepithelial Primary Cells 

rs1429139 1f     
ARHGAP10/L

ymphoblastoid;  

DNase-seq/ 

chr4:148284006..14

8284533/ 

Mcf7 

chr4:148281200..148285000/Enhancers/ENCO

DE/HMEC Mammary Epithelial Primary Cells;   

chr4:148281200..148285000/Enhancers/Epitheli

al/Breast variant Human Mammary Epithelial 

Cells (vHMEC) ;                                                                              

chr4:148282800..148285000/Enhancers/Epitheli

al/Breast Myoepithelial Primary Cells; 

rs17023196 1f     
ARHGAP10/L

ymphoblastoid;  
  

chr4:148328600..148329000/Enhancers/ENCO

DE/HMEC Mammary Epithelial Primary Cells; 

chr4:148309800..148330000/Weak 

transcription/Epithelial/Breast variant Human 

Mammary Epithelial Cells (vHMEC); 

chr4:148326400.148329800 

/Quiescent/Low/Epithelial/Breast Myoepithelial 

Primary Cells 

http://www.regulomedb.org/snp/chr4/148281811
http://www.regulomedb.org/snp/chr4/148284103
http://www.regulomedb.org/snp/chr4/148328867
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs6836670 2b   

Footpri

nting/ch

r4:1482

84371..

148284

386/ 

HMGIY

/Mcf7H

ypoxlac

;                         

Footpri

nting/ch

r4:1482

84371..

148284

386/HM

GIY/ 

Mcf7; 

  

DNase-

seq/chr4:148284006

..148284533/Mcf7; 

DNase-

seq/chr4:148284152

..148284521/Mcf7; 

DNase-

seq/chr4:148284157

..148284475/Mcf7; 

DNase-

seq/chr4:148284207

..148284494/T47d;    

DNase-

seq/chr4:148284260

..148284430/Mcf7; 

DNase-

seq/chr4:148284280

..148284430/Mcf7; 

DNaseeq/chr4:1482

84244.148284396/

Mcf7/Hypoxlac 

chr4:148281200..148285000/Enhancers/Epitheli

al/Breast variant Human Mammary Epithelial 

Cells (vHMEC); 

hr4:148281200..148285000/Enhancers 

ENCODE/HMEC Mammary Epithelial Primary 

Cells;   chr4:148282800..148285000/Enhancers 

EpithelialBreast Myoepithelial Primary Cells 

http://www.regulomedb.org/snp/chr4/148284372
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs7667633 4  

ChIP-

seq/chr4:14828287

5..148283415/POL

R2A/MCF10A-Er-

Src/01pct/ENCOD

E 

ChIP-

seq/chr4:14828292

8..148283244/STA

T3/MCF10A-Er-

Src/4ohtam_1um_

36hr/ENCODE 

ChIP-

seq/chr4:14828296

4..148283240/STA

T3/MCF10A-Er-

Src/01pct_4hr/EN

CODE 

    

DNase-

seq/chr4:148282821

..148283215/Mcf7//

ENCODE 

DNase-

seq/chr4:148282821

..148283215/Mcf7/

Ctcfshrna/ENCOD

E 

DNase-

seq/chr4:148282826

..148283183/Mcf7/

Hypoxlac/ENCOD

E 

DNase-

seq/chr4:148283125

..148283275/Hmec/

/ENCODE 

ChromHMM/chr4:148281200..148285000/Enha

ncers/Epithelial/Breast variant Human 

Mammary Epithelial Cells (vHMEC) 

ChromHMM/chr4:148281200..148285000/Enha

ncers/ENCODE/HMEC Mammary Epithelial 

Primary Cells 

ChromHMM/chr4:148282800..148285000/Enha

ncers/Epithelial/Breast Myoepithelial Primary 

Cells 

rs1560226 1f     
ARHGAP10/L

ymphoblastoid;  
  

chr4:148262000..148272000/Weak 

transcriptionEpithelial/ 

Breast variant Human Mammary Epithelial Cells 

(vHMEC); 

chr4:148262600..148272000/Quiescent/Low/EN

CODE/ 

HMEC Mammary Epithelial Primary Cells;                 

chr4:148253600..148282800/Quiescent/Low/Epi

thelial/Breast Myoepithelial Primary Cells 

http://www.regulomedb.org/snp/chr4/148283139
http://www.regulomedb.org/snp/chr4/148265187
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs17023204 1f     
ARHGAP10/L

ymphoblastoid;  
  

chr4:148309800..148330000/Weak 

transcription/Epithelial/Breast variant Human 

Mammary Epithelial Cells (vHMEC);                            

chr4:148329000..148330200/Weak 

transcription/ENCODE/HMEC Mammary 

Epithelial Primary Cells 

rs2562873 1f   

PWMch

r4:1482

53323..

148253

337 

NFATC

1 

ARHGAP10/L

ymphoblastoid;  
  

chr4:148238000..148255800/Weak transcription 

Epithelial/Breast variant Human Mammary 

Epithelial Cells (vHMEC); 

chr4:148253200..148253400/Quiescent/Low/Epi

thelial/Breast Myoepithelial Primary 

Cells/chr4:148209000..148261200 

Quiescent/Low/ENCODE/HMEC Mammary 

Epithelial Primary Cells 

rs2714900 1f     

ARHGAP10/L

ymphoblastoid; 

LSM6/ 

Lymphoblastoi

d 

  

chr4:148238000..148255800/ Weak 

transcription/ Epithelial/ 

Breast variant Human Mammary Epithelial Cells 

(vHMEC);                                   

chr4:148209000..148261200Quiescent/Low/EN

CODE/HMEC Mammary Epithelial 

PrimaryCells; 

chr4:148240600..148251400/Quiescent/Low/Epi

thelial/Breast Myoepithelial Primary Cells 

http://www.regulomedb.org/snp/chr4/148329645
http://www.regulomedb.org/snp/chr4/148253323
http://www.regulomedb.org/snp/chr4/148244801
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs4399964 1f     

ARHGAP10/L

ymphoblastoid; 

LSM6/ 

Lymphoblastoi

d 

  

chr4:148079800..148096800/Quiescent/Low/Epi

thelial/Breast variant Human Mammary 

Epithelial Cells (vHMEC);                           

chr4:148080000..148138800/Quiescent/Low/Epi

thelial/Breast Myoepithelial Primary Cells;                                                             

chr4:148080000..148205600/Quiescent/Low/H

MEC Mammary Epithelial Primary Cells; 

rs7671190 1e   

chr4:14

831804

1..1483

18060/

HNF4 

ARHGAP10/L

ymphoblastoid 
  

chr4:148309800..148328600 

/Quiescent/Low/HMEC Mammary Epithelial 

Primary Cells ; 

chr4:148309800..148330000/Weak 

transcription/Epithelial/Breast variant Human 

Mammary Epithelial Cells (vHMEC) ; 

chr4:148316200..148324600/Quiescent/Low/Epi

thelial/ 

Breast Myoepithelial Primary Cells 

rs13134510 4          

ChromHMM/chr4:148285000..148291200/Wea

k transcription/Epithelial/Breast variant Human 

Mammary Epithelial Cells (vHMEC) 

ChromHMM/chr4:148285000..148291600/Quie

scent/Low/Epithelial/Breast Myoepithelial 

Primary Cells 

ChromHMM/chr4:148285000..148290200/Wea

k transcription/ENCODE/HMEC Mammary 

Epithelial Primary Cells 

http://www.regulomedb.org/snp/chr4/148084304
http://www.regulomedb.org/snp/chr4/148318047
http://www.regulomedb.org/snp/chr4/148287511
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs2562871 4          

chr4:148238000..148255800/Weak 

transcription/Epithelial/Breast variant Human 

Mammary Epithelial Cells (vHMEC) REMC 

chr4:148240600..148251400/Quiescent/Low/Epi

thelial/Breast Myoepithelial Primary Cells  

rs2562880 3a         

chr4:148253600..148282800/Quiescent/Low/Epi

thelial 

Breast Myoepithelial Primary Cells; 

chr4:148262000..148272000/Weak transcription 

Epithelial/Breast variant Human Mammary 

Epithelial Cells 

(vHMEC);chr4:148261200..148262600 

Enhancers 

ENCODE 

HMEC Mammary Epithelial Primary Cells 

rs7668383 4  

chr4:148272676..1

48272920/FOS/M

CF10A-Er-

Src/01pct 

chr4:148272676..1

48272926/FOS/M

CF10A-Er- 

Src/4ohtam_1um_

4hr 

chr4:148272652..1

48272932/STAT3/

MCF10A-Er-

Src/4ohtam_1um_

12hr 

chr4:148272621..1

48272901/STAT3/

    

chr4:148272700..14

8272850 

Hmec 

  

http://www.regulomedb.org/snp/chr4/148248189
http://www.regulomedb.org/snp/chr4/148262343
http://www.regulomedb.org/snp/chr4/148272794
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

MCF10A-Er-

Src/01pct_12hr 

chr4:148272720..1

48272848/FOS/M

CF10A-Er-

Src/4ohtam_1um_

12hr 

chr4:148272734..1

48272837/FOS/M

CF10A-Er-

Src/4ohtam_1um_

36hr 

rs9654228 3a   

chr4:14

828734

0..1482

87364 

Gfi-1 

    

chr4:148285000..148291200/Weak 

transcription/Epithelial 

Breast variant Human Mammary Epithelial Cells 

(vHMEC);chr4:148285000..148291600/Quiesce

nt/Low 

Epithelial/Breast Myoepithelial Primary Cells; 

chr4:148285000..148290200/Weak 

transcription/ENCODE/ 

HMEC Mammary Epithelial Primary Cells 

http://www.regulomedb.org/snp/chr4/148287359
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db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs1568136 3a   

chr4:14

843243

8..1484

32451/E

N1 

    

ChromHMM/chr4:148420000..148438800 

/Weak transcription/Epithelial Breast variant 

Human Mammary Epithelial Cells (vHMEC) 

REMC                      

ChromHMM/chr4:148420200..148439400/Quie

scent/Low 

ENCODE/HMEC Mammary Epithelial Primary 

Cells/REMC     

ChromHMM/chr4:148422600..148433600/Wea

k transcription 

Epithelial/Breast Myoepithelial Primary 

Cells/REMC 

rs6821368 3a   

chr4:14

843500

0..1484

35010/

NF-AT   

chr4:14

843500

8..1484

35021/S

OX 

    

ChromHMM/chr4:148420000..148438800/Wea

k transcription 

Epithelial/Breast variant Human Mammary 

Epithelial Cells (vHMEC)/REMC                                                               

ChromHMM 

/chr4:148434400..148447400/Weak 

transcription 

Epithelial/Breast Myoepithelial Primary 

Cells/REMC            

ChromHMM/chr4:148420200..148439400/Quie

scent/Low 

ENCODE/HMEC Mammary Epithelial Primary 

Cells/REMC 

http://www.regulomedb.org/snp/chr4/148432439
http://www.regulomedb.org/snp/chr4/148435009


326 

 

db SNP 

ID 

Regulome 

DB score 

Protein 

binding 

(Chip-seq) 

Motif eQTLs  

DNAase 

hypersensitive 

site 

Histone Modification (REMC, 

Regulome Db) 

rs6822565 4    

      ChromHMM/chr4:148420000..148438800/Wea

k transcription 

Epithelial/Breast variant Human Mammary 

Epithelial Cells (vHMEC)/REMC 

ChromHMM/chr4:148434400..148447400/Wea

k transcription 

Epithelial/Breast Myoepithelial Primary 

Cells/REMC    

ChromHMM/chr4:148420200..148439400/Quie

scent/Low 

ENCODE/HMEC Mammary Epithelial Primary 

Cells/REMC 

 

This table represents the description of the RegulomeDb score for the associated SNPs with score from 1-4. The description 

includes transcription factor binding (ChIP-seq), changes in motif binding, eQTLs, hypersensitive sites, and histone 

modification in breast cell lines including, Human Mammary Epithelial Cells (HMEC), Breast variant Human Mammary 

Epithelial Cells (vHMEC), Breast Myoepithelial Primary Cells; MCF-7. Eqtl data was available based on Lymphoblastoid cell 

lines. 

 

http://www.regulomedb.org/snp/chr4/148437511
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Table A.8 HaploReg analysis of the 19 putative functional SNPs in Human Mammary Cell lines 

Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

rs13134

510                     

 

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

    

H3K

4me

1_En

h 

        

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

      

            

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells                   

rs13666

91                     

 

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

      DNase 

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

  
15_Enh

AF 
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

7_Enh 
15_Enh

AF 

H3K

4me

1_En

h 

  
H3K27ac

_Enh 

H3K9ac

_Pro 
DNase 

    

rs14291

39                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

      DNase 

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

        

    

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

  
H3K27ac

_Enh 

H3K9ac

_Pro 
DNase 

    

rs17023

196                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

    

H3K

4me

1_En

h 

        

    

E027 
BRST.MY

O 

Breast 

Myoepitheli
    

H3K

4me
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

al Primary 

Cells 

1_En

h 

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

7_Enh   

H3K

4me

1_En

h 

      

      

rs76676

33                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

      DNase 

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

      

      

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

7_Enh 
13_Enh

A1 

H3K

4me

1_En

h 

  
H3K27ac

_Enh 

H3K9ac

_Pro 
DNase 

    

  

MCF10A-

Er-Src                 

POL2 / 

STAT3   

rs76683

83                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

  
19_DNa

se 

H3K

4me

1_En

h 

      DNase 
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

Epithelial 

Cells 

(vHMEC) 

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

  
19_DNa

se 
    

          

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

  
19_DNa

se 
        DNase 

    

rs76711

90                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

              

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

            

      

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

            

      

rs27149

00                       
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

              

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

    

H3K

4me

1_En

h 

      

      

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

            

      

rs25628

73                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

              

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

    

H3K

4me

1_En

h 

      

      

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

rs15602

26                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

              

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

            

      

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

            

      

rs17023

204                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

    

H3K

4me

1_En

h 

        

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

    

H3K

4me

1_En

h             

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

    

H3K

4me

1_En
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

Primary 

Cells 

h 

rs68366

70                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

      DNase 

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

      

      

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

7_Enh 
14_Enh

A2 

H3K

4me

1_En

h 

  
H3K27ac

_Enh 

H3K9ac

_Pro 
DNase 

    

  
MCF10A-

Er-Src 
STAT3             

      

rs25628

80                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

    

H3K

4me

1_En

h 

        

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

    

H3K

4me

1_En
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

Cells h 

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells 

7_Enh   

H3K

4me

1_En

h 

  

          

rs96542

28                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

    

H3K

4me

1_En

h 

        

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

      

            

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells                   

rs25628

71                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

  

                

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells                   

rs15681

36                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

              

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

      

            

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells                   

                      EN1, CEBPB,PAX6 

rs68213

68                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 
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Epigen

ome ID 
Mnemonic Description 

Chroma

tin 

states 

(Core 

15-state 

model) 

Chroma

tin 

states 

(25-

state 

model 

using 

12 

imputed 

marks) 

H3K

4me

1 

H3K4

me3 
H3K27ac H3K9ac DNase 

Bound 

Proteins  

Regulatory motifs 

altered (Position 

Weighted Matrix) 

Epithelial 

Cells 

(vHMEC) 

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

      

            

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells                   

      

                

HDAC2,HOXA4,NF-

AT,PAX4,POU2F2,PO

U3F2,SOX,ZFP187 

rs68225

65                       

E028 
BRST.HM

EC.35 

Breast 

variant 

Human 

Mammary 

Epithelial 

Cells 

(vHMEC) 

    H3K

4me

1_En

h 

        

    

E027 
BRST.MY

O 

Breast 

Myoepitheli

al Primary 

Cells 

    

H3K

4me

1_En

h     

H3K9ac

_Pro       

E119 
BRST.HM

EC 

HMEC 

Mammary 

Epithelial 

Primary 

Cells                   
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Table A.9 eQTL for the fine-mapped SNPs 

The table represents the eQTLs of the fine-mapped SNPs based on the data available 

from TCGA data analysis, HapMap335 dataset and GTEx dataset. In each of the dataset, 

eQTL was estimated in different tissues.  

  

dbSNP ID                                    eQTL  Source 

Gene/ Tissue P-value  

rs7671190 
ARHGAP10/Lymphoblastoid - HapMap 

EDNRA/ Heart - Left Ventricle 1.20E-07 GTEx 

rs4399964 
ARHGAP10/Lymphoblastoid; 

LSM6/Lymphoblastoid; 

- HapMap 

rs2714900 

ARHGAP10/Lymphoblastoid; 

LSM6/Lymphoblastoid; 

- HapMap 

EDNRA/ Heart - Left Ventricle 1.50E-09 GTEx 

rs2562873 
ARHGAP10/Lymphoblastoid; - HapMap 

EDNRA/ Heart - Left Ventricle 2.40E-09 GTEx 

rs1560226 
ARHGAP10/Lymphoblastoid; - HapMap 

EDNRA/ Heart - Left Ventricle 7.70E-09 GTEx 

rs1366691 
ARHGAP10/Lymphoblastoid; - HapMap 

EDNRA/ Heart - Left Ventricle 9.70E-09 GTEx 

rs1429139 
ARHGAP10/Lymphoblastoid; - HapMap 

EDNRA/ Heart - Left Ventricle 1.00E-08 GTEx 

rs17023196 
ARHGAP10/Lymphoblastoid; - HapMap 

EDNRA/ Testis 2.30E-05 GTEx 

rs17023204 
ARHGAP10/Lymphoblastoid; - HapMap 

EDNRA/ Testis 2.30E-05 GTEx 



338 

 

Table A.10 List of genes (overlapped by CNV) that showed correlation 

with copy number specific gene dosage in breast tumor gene expression 

Copy Number region 
Agilent gene 

Probe ID 
Gene 

Pearson 

correlation 

p-value                  

(correlation) 

chr22:24323073-

24329964 
A_23_P357571 GSTT2 0.39 1.44x10-04 

chr22:24323073-

24329964 
A_23_P109427 GSTT2 0.37 3.27x10-04 

chr6:32482478-

32487136 
A_23_P45099 

HLA-

DRB5 
0.35 6.20x10-04 

chr17:44662938-

44720330 
A_24_P221634 NSF 0.33 1.64x10-03 

chr4:69396464-

69403345 
A_23_P501624 UGT2B17 0.29 5.16x10-03 

chr7:143952878-

143957098 
A_23_P134566 OR2A7 0.24 2.36x10-02 

chr1:152572419-

152575355 
A_23_P405295 LCE3C 0.23 2.64x10-02 

chr1:196790951-

196794804 
A_24_P336510 CFHR1 0.23 3.26x10-02 

chr5:69313680-

69784291 
A_24_P126682 SMN2 0.21 5.12x10-02 

chr5:69313680-

69784291 
A_24_P935881 SERF1B 0.2 5.75x10-02 

This table shows correlations (r=0.2) between copy status and breast tumor tissue specific 

gene expression. The tumor gene expression profiles were derived from subset of patients 

(n=90) who also have their copy number profiles estimated. 

Table A.11 Breast tumor tissue specific expression of genes (overlapped 

by prognostic CNVs) and their association with prognosis 

Gene P-value HR [95% CI] Outcome 

GSTM2 0.03 0.68 [0.48-0.95] OS 

SGCZ 0.11 1.29 [0.95-1.74] OS 

HLA_DRB5 0.13 0.78 [0.57-1.07] OS 

ZFP14 0.19 0.81 [0.59-1.11] OS 

LCE3C 0.03 0.73 [0.55-0.98] RFS 

This table shows the gene that are overlapped by prognostic CNVs (as listed in Table 2 & 

3) expressed at the breast tumor tissue and their association with prognosis. The tumor 

gene expression profiles were derived from subset of patients (n=90) who also have their 

copy number profiles estimated. 
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Figure A.2 Gene dosage analysis of CNV-sncRNAs 

Gene Dosage for the embedded CNV-sncRNAs were estimated by correlating the 

germline copy status and sncRNA expression in breast tumor tissue data (HiSeq, n=198, 

RPKM normalized log transformed) using Pearson correlation. We observed significant 

positive and negative correlation among the correlated sncRNAs. Gray line in the plots 

represent the mean expression of sncRNA 
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Table A.12 NGS generated sequences and sncRNA annotations 

Small 

RNA 

Platfor

m 
Tissue type 

No of 

samples 

Total 

sncRNAs 

identified 

in tissues 

No of 

sncRNAs 

retained 

after read 

count 

filtering 

No of 

sncRNAs 

mapping 

to CNV 

regions 

miRNA HiSeq Tumor 254 2235 445 10 

miRNA GA Tumor 215 2068 360 7 

miRNA HiSeq 
Adjacent 

normal 
18 1616 484 12 

miRNA GA 
Adjacent 

normal 
13 1370 430 12 

       
piRNA HiSeq Tumor 254 65074 168 1 

piRNA GA Tumor 215 47695 147 1 

piRNA HiSeq 
Adjacent 

normal 
18 9325 187 1 

piRNA GA 
Adjacent 

normal 
13 4063 122 1 

       
snoRN

A 
HiSeq Tumor 254 1182 210 10 

snoRN

A 
GA Tumor 215 1001 201 10 

snoRN

A 
HiSeq 

Adjacent 

normal 
18 665 218 11 

snoRN

A 
GA 

Adjacent 

normal 
13 558 177 8 

       
tRNA HiSeq Tumor 254 609 380 12 

tRNA GA Tumor 215 597 364 8 

tRNA HiSeq 
Adjacent 

normal 
18 563 386 12 

tRNA GA 
Adjacent 

normal 
13 524 305 6 

This table summarizes the result of sncRNA sequencing analysis, indicating the number 

of sncRNAs profiled in the tissue, number of sncRNA retained after read count filtering 

criteria (5 Read Counts (RC) in at least 50% of samples) and number of sncRNAs 

originating from the associated CNV regions. The results were summarized for tumor and 
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adjacent normal tissues, as well as for the two sequencing platforms, Illumina HiSeq and 

Genome analyzer. There are no common samples between the two sequencing platforms. 

Table A.13 List of 38 expressed sncRNAs (in TCGA dataset) embedded 

within the breast cancer associated CNVs 

chr start stop 
stran

d 
Small RNA Tissue Platform 

14 
101513

666 

1015136

88 
+ hsa-miR-539-5p Adjacent normal 

HiSeq, 

GA 

14 
101514

286 

1015143

07 
+ hsa-miR-889-3p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101515

947 

1015159

69 
+ hsa-miR-655-3p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101518

795 

1015188

17 
+ hsa-miR-487a-5p Adjacent normal 

HiSeq, 

GA 

14 
101520

653 

1015206

75 
+ hsa-miR-382-5p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101520

689 

1015207

10 
+ hsa-miR-382-3p Adjacent normal 

HiSeq, 

GA 

14 
101521

031 

1015210

53 
+ hsa-miR-134-5p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101521

069 

1015210

92 
+ hsa-miR-134-3p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101521

801 

1015218

23 
+ hsa-miR-485-3p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101522

606 

1015226

28 
+ hsa-miR-323b-3p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101526

106 

1015261

28 
+ hsa-miR-154-5p 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

14 
101526

142 

1015261

64 
+ hsa-miR-154-3p Adjacent normal GA 

19 
444598

4 
4446007 + hsa-miR-4746-5p Tumor HiSeq 

19 
845422

4 
8454245 - hsa-miR-4999-5p Adjacent normal HiSeq 

1 
149680

248 

1496802

74 
+ hsa-piR-20636 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 
252966

24 

2529671

9 
+ 

snoRNA_SNORD116-

1-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 
252993

57 

2529945

2 
+ 

snoRNA_SNORD116-

2-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 
253020

07 

2530210

2 
+ 

snoRNA_SNORD116-

3-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 
253101

73 

2531026

9 
+ 

snoRNA_SNORD116-

6-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 
253155

79 

2531567

4 
+ 

snoRNA_SNORD116-

8-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 253182 2531834 + snoRNA_SNORD116- Tumor, Adjacent HiSeq, 
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chr start stop 
stran

d 
Small RNA Tissue Platform 

54 9 9-201 normal GA 

15 
253252

89 

2532538

1 
+ 

snoRNA_SNORD116-

14-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

15 
253264

34 

2532652

6 
+ 

snoRNA_SNORD116-

15-201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

16 
201233

5 
2012468 - 

snoRNA_SNORA10-

201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

16 
201297

4 
2013108 - 

snoRNA_SNORA64-

201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

19 
398250

5 
3982571 - 

snoRNA_SNORD37-

201 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

1 
148598

314 

1485983

88 
- chr1.trna108-AsnGTT 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

1 
148760

356 

1487604

30 
- chr1.trna107-AsnGTT 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

1 
149608

609 

1496086

83 
+ chr1.trna30-AsnGTT 

Tumor, Adjacent 

normal 
HiSeq 

1 
149664

355 

1496644

28 
- chr1.trna94-GluTTC 

Tumor, Adjacent 

normal 
HiSeq 

1 
149672

905 

1496729

77 
- chr1.trna92-PheGAA 

Tumor, Adjacent 

normal 
HiSeq 

1 
149680

210 

1496802

81 
- chr1.trna91-GlyCCC 

Tumor, Adjacent 

normal 
HiSeq 

1 
149684

088 

1496841

62 
- chr1.trna90-ValCAC 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

6 
262867

54 

2628682

6 
+ chr6.trna2-MetCAT 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

19 
138336

1 
1383434 - chr19.trna14-PheGAA 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

19 
138356

2 
1383636 + chr19.trna1-AsnGTT 

Tumor, Adjacent 

normal 
HiSeq 

19 
472408

2 
4724154 + chr19.trna2-GlyTCC 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

19 
472464

7 
4724720 - chr19.trna13-ValCAC 

Tumor, Adjacent 

normal 

HiSeq, 

GA 

This table lists the different classes of CNV-sncRNAs expressed in breast tumor and 

adjacent normal tissues, which were profiled using Illumina HiSeq and Genome analyzer 

platforms. 
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Table A.14 Gene Dosage analysis for CNV-sncRNAs 

CNV region 
 Expressed CNV-

sncRNAs 

Pearson 

Correlati

on 

Coefficie

nt ( r ) 

p-value 

(correlatio

n) 

No of 

sample

s 

1-148662374-

148789654 chr1.trna107-AsnGTT 
0.14 5.44E-02 198 

1-148580449-

148632305 chr1.trna108-AsnGTT 
0.17 1.40E-02 198 

1-149676729-

149684202 chr1.trna91-GlyCCC 
0.21 3.52E-03 198 

1-149652461-

149676729 chr1.trna92-PheGAA 
0.20 3.90E-03 198 

19-4714925-4751218 chr19.trna13-ValCAC -0.18 1.06E-02 198 

19-1342160-1547869 chr19.trna14-PheGAA -0.19 6.07E-03 198 

19-4714925-4751218 chr19.trna2-GlyTCC -0.21 2.94E-03 198 

6-26274458-

26287456 chr6.trna2-MetCAT 
0.18 1.20E-02 198 

1-149676729-

149684202 hsa-piR-20636 
0.21 2.64E-03 198 

15-25298903-

25300158 

snoRNA_SNORD116-2-

201 
-0.13 7.29E-02 198 

15-25318258-

25325686 

snoRNA_SNORD116-9-

201 
-0.34 1.03E-06 198 

15-25300158-

25304384 

snoRNA_SNORD116-3-

201 
-0.25 3.66E-04 198 

15-25308383-

25310928 

snoRNA_SNORD116-6-

201 
-0.40 5.05E-09 198 

15-25310928-

25318258 

snoRNA_SNORD116-8-

201 
-0.45 2.46E-11 198 

19-3768181-4110048 snoRNA_SNORD37-201 -0.15 3.16E-02 198 

Gene Dosage for the embedded CNV-sncRNAs were estimated by correlating the 

germline copy status and sncRNA expression data (HiSeq, n=198, RPKM normalized log 

transformed) using Pearson correlation. We observed significant positive and negative 

correlation among the correlated sncRNAs. 
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Table A.15 Gene targets for expressed CNV-miRNAs 

miRNA 

Copy 

status 

(no of 

samples) 

No of 

Predict

ed and 

express

ed 

targets 

No of 

correla

ted 

targets 

p-

value 

Pearson 

Correlat

ion 

coeffici

ent (r) 

Correlated target genes 

considered for IPA 

analysis 

hsa-miR-134-3p 
Diploid 

(n=195) 
4444 61 <10-2 

-0.20 to 

-0.27 

NAA40, TTF2, 

POLE,CDCA5,KDM2B,SE

TD8,ACP1,NCAPG2,TME

D4,PGAM5,WDR77,DDX1

1,CDK5,GSG2,PTCD3,AG

K,UBE2C,SRPK1,FARSB,S

NRPD1,ELAVL1DLD,RAN,

USP13,TBRG4,C18orf25,P

LCXD1,NUDT19,ZNF131,

TROAP,VPS33A,DUS4L,T

RIP13,RBBP4,ANKRD45,C

11orf48,MOV10,ZNF695,F

AM64A,MRS2,NUF2,DOC

K3,PPIL1,MAP4K2,KNTC1

,FBXO41,RSPO4,ABCF2,Z

SCAN16,KIAA1549,NCAP

H,FBRSL1,ZNF76,ATAD3B

,ULK3,FANCA,RNF165,AT

P5F1,PFDN6,PSMG1,FAF

1 

hsa-miR-134-5p 
Diploid 

(n=195) 
176 3 <10-2 

-0.20 to 

-0.22 
DPH2, NIPA1, EXD1 

hsa-miR-154-3p 
Diploid 

(n=195) 
23 0 

   

hsa-miR-323b-

3p 

Diploid 

(n=195) 
2638 0 

   

hsa-miR-382-3p 
Diploid 

(n=195) 
202 2 <10-2 

-0.20 to 

-0.25 
OCIAD2, HMGN3 

hsa-miR-485-3p 
Diploid 

(n=195) 
389 6 <10-2 

-0.20 to 

-0.22 
C18orf25, AGAP3, PEX5, 

FXR2, POM121C, POM121 

hsa-miR-539 
Diploid 

(n=195) 
3082 0 

   

hsa-miR-655 
Diploid 

(n=195) 
805 3 <10-2 

-0.20 to 

-0.22 
VKORC1L1, DLD, WHSC1 

hsa-miR-889 
Diploid 

(n=195) 
4339 0 

   

hsa-miR-4746 
Diploid 

(n=146) 
699 25 <10-2 

-0.20 to 

-0.34 

NRIP2, 

TXNDC15,NISCH,MXD4,C

LEC14A,CD34,APBB2,ZN

F446,EDNRB,RAX2,PCDH

1,CDH5,ADAMTS13,AQP1
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miRNA 

Copy 

status 

(no of 

samples) 

No of 

Predict

ed and 

express

ed 

targets 

No of 

correla

ted 

targets 

p-

value 

Pearson 

Correlat

ion 

coeffici

ent (r) 

Correlated target genes 

considered for IPA 

analysis 

,PALM,PDE11A,UNKL,F1

0,GIPR,PHF2,PDPK1,PHF

1,LMX1B,NUDT16L1,AKA

P12 

hsa-miR-4746 

Copy 

gain  

(n=52) 

699 54 < 10-2 
-0.27 to 

-0.42 

KLF10,NISCH,PCDH1,NRI

P2,ZNF407,SLC35E2,CLE

C14A,PTGER3,GIGYF1,ZN

F423,UBR1,TBC1D2B,CAS

Z1,IQSEC1,ADAMTS13,AD

AMTSL1,CDH5,RAX2,CD3

4,LMX1B,ZBTB46,RPS6KA

2,MXD4,ANKRD52,KBTB

D11,CEP120,WDR81,SLC3

5E2,IGF1R,PDPK1,ERLIN

2,EDNRB,LMTK2,MADD,P

DE11A,MNT,ATOH8,CRX,

CAMK2N1,CXorf23,CBX6,

PHF2,KIAA1429,MOCS1,

MGRN1,SERTAD1,SHOX,

AQP1,ZHX3,ZBTB20,GLU

L,PRDM2,KSR2,TMEM184

A 
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Table A.16 Ingenuity Pathway Analysis for the target genes regulated by CNV-

miRNAs 

miRNA name Pathway 
P-

value  
Target genes  

hsa-miR-655  

(Diploid)  

Branched-chain α-keto acid 

Dehydrogenase Complex 

5.62

E-04 DLD 

2-ketoglutarate Dehydrogenase 

Complex 

7.08

E-04 DLD 

2-oxobutanoate Degradation I 

7.08

E-04 DLD 

Glycine Cleavage Complex 

8.51

E-04 DLD 

Acetyl-CoA Biosynthesis I (Pyruvate 

Dehydrogenase Complex) 

9.77

E-04 DLD 

Isoleucine Degradation I 

2.00

E-03 DLD 

Valine Degradation I 

2.51

E-03 DLD 

TCA Cycle II (Eukaryotic) 

3.24

E-03 DLD 

Super pathway of Methionine 

Degradation 

4.47

E-03 DLD 

hsa-miR-134-3p 

(Diploid)  

Cell Cycle Control of Chromosomal 

Replication 

4.79

E-03 CDK5, POLE 

Branched-chain α-keto acid 

Dehydrogenase Complex 

1.10

E-02 DLD 

2-ketoglutarate Dehydrogenase 

Complex 

1.35

E-02 DLD 

2-oxobutanoate Degradation I 

1.35

E-02 DLD 

Glycine Cleavage Complex 

1.62

E-02 DLD 

Acetyl-CoA Biosynthesis I (Pyruvate 

Dehydrogenase Complex) 

1.91

E-02 DLD 

BER pathway 

3.24

E-02 POLE 

NAD Phosphorylation and 

Dephosphorylation 

3.47

E-02 ACP1 

Isoleucine Degradation I 

3.72

E-02 DLD 

RAN Signaling 

4.27

E-02 RAN 

Valine Degradation I 

4.79

E-02 DLD 
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miRNA name Pathway 
P-

value  
Target genes  

hsa-miR-4746  

(Copy gain)  

Growth Hormone Signaling 

1.15

E-03 

IGF1R, PDPK1, 

RPS6KA2 

Glutamine Biosynthesis I 

2.48

E-03 GLUL 

FLT3 Signaling in Hematopoietic 

Progenitor Cells 

1.89

E-02 

PDPK1, 

RPS6KA2 

IGF-1 Signaling  

2.85

E-02 IGF1R,PDPK1 

G-Protein Coupled Receptor Signaling 

3.02

E-02 

PDE11A,PDPK

1,PTGER3 

NGF Signaling 

3.55

E-02 

PDPK1,RPS6K

A2 

PTEN Signaling 

3.55

E-02 IGF1R,PDPK1 

hsa-miR-4746 

(Diploid) 

Cardiac β-adrenergic Signaling 

1.12

E-02 

AKAP12,PDE11

A 

eNOS Signaling 

1.41

E-02 AQP1,PDPK1 

Extrinsic Prothrombin Activation 

Pathway 

1.86

E-02 F10 

Agranulocyte Adhesion and Diapedesis 

2.04

E-02 CDH5,CD34 

RAR Activation 

2.09

E-02 NRIP2,PDPK1 

cAMP-mediated signaling 

2.82

E-02 

AKAP12,PDE11

A 

Intrinsic Prothrombin Activation 

Pathway 

3.39

E-02 F10 

G-Protein Coupled Receptor Signaling 

4.07

E-02 

PDPK1,PDE11

A 

Coagulation System 

4.07

E-02 F10 

tRNA Splicing 

4.47

E-02 PDE11A 

This table represents the findings from the IPA; represented are the pathways 

significantly enriched at p-value <0.05. For the hsa-miR-4746, we performed the analysis 

based on the targets identified in each of the copy number groups (diploid and copy gain). 

For the other two miRNAs, we used the identified targets genes based on cases with 

diploid copy status. 

 


