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ABSTRACT

The classical Smith Predictor method for single variable
systems with time delays is extended to a class of linear multi-
variable systems. Derivations of the multivariable Smith Predictor
are presented for both continuous time and discrete time systems
which contain time delays in the control variables and/or output
variables. As.in the classical method, use of the multivariable
Smith Predictor eliminates the time delays from the characteristic
equation of the closed-loop system. The multivariable Smith
Predictor is applied to a double effect evaporator pilot plant in
both simulation and experimental runs and the effect of modelling
errors on the predictor response is also examined in the simulation
runs.

Finally, algorithms are derived for more complex cases
sucn as systems with only some delayed control variables or with time
varying or inaccurately determined delays.

The simulated and experimental results demonstrate the
ability of the multivariable Smith Predictor method to efficiently
handle delays in the control and/or output variables while main-

taining freedom in the design of the feedback control matrix.
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CHAPTER ONE
INTRODUCTION

The existence of time delays is of common occurrence in many
process control systems. In fact, classical methods for process
modelling often include a time delay in the system transfer function.

Time delays often occur due to transportation lines for
fluids, pneumatic instrument signals, etc. or due to the time delays
associated with measurements (e.g. time required to analyze chemical
composition).

The detrimental effects of time delays on system stability
and control are well-known to both control system designers and per-
sonnel responsible for plant operation. From the classical viewpoint,
the phase lag introduced by a time delay tends to reduce system
stability and make satisfactory controi more difficuit to achieve.
Furthermore, time delays greatly complicate control system design for
multivariable systems since many design approaches are either not
applicable to time delay systems or the resulting control system may

be unduly complicated and difficult to apply.

1.1 Literature Survey

Several methods for the control of multivariable systems with
time delays have been proposed in the literature. For example, opti-
mal control design methods have been extended to systems with time
delays [1-4], but except for special cases, the derivation of the
control law is often difficult, relies heavily on complicated control
algorithms and consequently, actual implementation of these optimal

control algorithms in process control systems is seldom attractive.



On the other hand, various methods for single variable control
systems have been reported in the literature that utilize a predictive
approach for compensation of the time delays, but it appears that these
methods have been applied to actual processes in only very few cases
[5-12]. These predictive methods involve the use of a time delay in a
feedback loop around the controller since a controller which uses the
information that the process has a delay should be able to make more
intelligent corrections than a controller that receives only the delayed
error signal.

An efficient continuous time predictor, (the Smith Linear
Predictor), was derived by Smith [5,6], for single variable systems.
Applications of this predictor scheme and comparative studies with
classical I, PI and PID controllers were reported in the literature
[7-10], for continuous and sampled data systems. The conclusions
resulting from these studies do not agree in all the cases especially
as far as the effectiveness of the Smith Linear Predictor for regulatory
control is concerned. Shinskey [7], and Nielsen [8] reported that the
Linear Predictor and the similar "complementary feedback technique" are
of questionable value for regulatory control of time delay processes
while Buckley [9,10] and Lupfer and Oglesby [11,12] applied the Smith
Linear Predictor on actual processes with excellent results for regula-
tory control. Single variable, sampled data controllers utilizing the
Smith Predictor approach have been designed and simulated results have
been reported in the literature [13,14]. Moore [15] derived a digital
algoritam for single variable discrete-time systems with time delays
that is conceptually similar to the Smith Linear Predictor, the differ-

ence being mainly a more extensive use of the mathematical model of the



process than in the Smith Predictor scheme. Results for actual pro-
cesses with this predictor indicate a satisfactory regulatory control
and better performance than the classical methods of I, PI and PID
control [15].

Although many studies have considered predictors for single
variable systems, no suitable predictor has been reported for multi-
variable systems with time delays. The analysis required presents
more difficulties and complexities than in the single variable case
since, typically, combinations of delayed and undelayed process
variables and/or measurements occur in multivariable control systems.

Jacobson [16] proposed an extension of the digital predictor
algorithm derived by Moore [15] to compensate for the measurement
delay introduced by the digital interface in computer control systems.
He applied this scheme to a double effect evaporator pilot plant at
the University of Alberta with satisfactory results; however, no general
method has been reported for the more general case of time delays in

multivariable control systems.

1.2 Objectives of the Study

This study is concerned with the development of a suitable
predictor scheme for the control of multivariable systems that contain
time delays. The Smith Linear Predictor was extended to the case of
multivariable systems. Since the Smith Linear Predictor permits design
of the control by using methods suitable for undelayed systems, this
method was considered particularly suitable for multivariable systems.

The derivation of the control algorithm had to conform to the

following requirements:



(i) Satisfactory control for linear multivariable systems with time
delays in the manipulated and/or the measurement variables.
(i) Ability to handle the cases when only some of the control vari-
ables or some of the measurement variables are delayed.
(iii) Easy implementation of the control algorithm on a digital control

computer.

1.3 Structure of the Thesis

The thesis is concerned with the derivation and evaluation of
a predictor algorithm for several classes of multivariable systems with
time delays.

In Chapter Two, the theoretical derivation is presented for
certain continuous and discrete time systems together with a theoretical
investigation of more complex cases and techniques for situations
encountered often in practice. In Chapter Three, simulated results of
the multivariable predictor are given for the double effect evaporator
mode] and several combinations of measurement and process time delays.
In Chapter Four, the results of an experimental application of the
multivariable predictor on the evaporator pilot plant, using the IBM 1800
process control computer are given and in Chapter Five, the overall
conclusions are given for the multivariable predictor control scheme

developed in this thesis.



CHAPTER TWO
THEORETICAL DEVELOPMENT

2.1 Introduction

In 1957, 0.J.M. Smith (Smith 1957, 1959) proposed a control
technique for single variable control systems which contain time delays.
This technique, which became known as the Smith Predictor (or Smith
Linear Predictor), is illustrated in Figures 2.1 and 2.2. The chief
advantage of the Smith Predictor method is that time delays are
eliminated from the characteristic equation of the closed-loop system.
This is achieved by including a mathematical model of the process in
the feedback loop around the controller.

The output of the predictor block in Figure 2.2 is the dif-
ference between two model responses: the response of the system with-
out the time delay minus the response of the system with the time
delay. If the process models were perfect, then the actual process
response, y(s), would be cancelled by the model response and the
control action would be based on the response of the model without time
delay. For the control system in Figure 2.2, the closed-loop transfer

function for load changes is

(s 6.(s)6,(s)G (s)e™™

atsy = 6.(s) - 7% G (STG, (SIATS) (2.1)

The characteristic equation for the closed-loop system in Figure 2.2 is

given by

1 +'Gc(s)Gp(s)H(s) = 0 (2.2)
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Figure 2.2 Smith Predictor for the Feedback Control of Figure 2.1



which is also the characteristic equation for the system in Figure

2.1 when the time delay is zero. Thus the Smith Predictor has success-
fully eliminated the time delay from the characteristic equation and
the design of a suitable control matrix can be done with any method

appropriate for undelayed systems.

2.2 Multivariable Continuous Time Systems

Consider the following linear, stationary, state-space

model with time delays in the output variables and the control vari-

ables:
x(t) = Ax(t) +Bu(t-a)+Dd(t) (2.3)
y(t) = g x(t) + G, x(t - b) (2.4)
where: x(t) = state vector of dimension n,
u(t) = control vector of dimension m,
d(t) = disturbance vector of dimension p,
y(t) = output-vector of dimension r,
a,b = constant time delays
Q,Q,g],gz and Q are constant, real matrices of appropriate
dimensions.

The time delays in this state-space model can be given the
following physical interpretation. Time delay a, is associated with
the calculation and implementation of control, that is, a time delay
in all control! variables. The more general case of some control vari-
ables delayed and some not is theoretically examined in s 2.4. In
many physical systems, time delays are also associated with the measure-

ment of certain state variables. A notable example in process control



systems is chemical composition. This variable is, in general, diffi-
cult to measure and often requires a period of time to carry out the
analysis, i.e. a time delay. The inclusicn of time delay, b, in
Equation (2.4) provides a general model for systems in which some
state variables can be measured instantaneously but time delays are
jnvolved in the measurement of other state variables. Apparently, the
output equation in Equation (2.4) has not been widely used in previous
investigations of time delay systems despite its obvious practical
importance.

2.2.1 Time Delay in Output Variables

If no time delay is present in the control variables (i.e.
a = 0 in Equation (2.3)), the state-space model in Equations (2.3) and

(2.4) reduces to

x(t) (2.5)
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g(t) = G x(t) + G, x(t - b) (2.6)

Assuming zero initial conditions and taking the Laplace transform of

Equations (2.5) and (2.6) gives, after rearrangement,

x(s) = &y(s) uls) + G (s) d(s) (2.7)
y(s) = ¢ x(s) + & &% x(s) (2.8)
where I = nxn identity matrix
§p(s) = (sI - Q)'lg = process transfer function matrix
EL(S) = (s; - é)']g = Joad transfer function matrix

and it is implicitly assumed throughout this thesis that matrix inverses

exist.



Suppose an output feedback control law of the form
uls) = - G.(s) y(s) (2.9)

is assumed where gc(s) js the matrix of feedback controller transfer
functions. Then combining Equations (2.7) - (2.9) gives the following

characteristic equation:
| I+ By(s)B(s)(gy + e )| = o (2.10)

where in is an n x n identity matrix and the symbol | | denotes the
determinant.

Next, it will be demonstrated that the Smith Predictor method
can be used to eliminate the time delay from the characteristic equation.
Consider the block diagram shown in Figure 2.3. As for the single
variable system in § 2.1, the feedback loop around the controller con-
tains a mathematical model of the process, both with and without time

delays. From the block diagram in Figure 2.3, it follows that for

r(s) =0,
u(s) = - 6 yls) - & G G(1 - e™) uls) (2.11)

where G and Ep denote §C(s) and gp(s), respectively. Rearranging

Equation (2.11) gives the following control aigorithm
u(s) = ~[1,78.E,8,1 7" GLu(s)-Gp8,e™" u(s)] (2.12)
Combining Equations (2.11), (2.7) and (2.8) gives

x(s) = G d(s) - G,8.Lqx(s) - G.B.Lo(x(s)-G d(s))

bsg d(s) (2.13)

h Epgcgze JL=
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or rearranging gives
- -bs
x(s) = [1,+G,8.(Cq¥Cp)] '[1,#8,8.C,(1-e7%)1g d(s) (2.14)

From Equation (2.14) it is apparent that the characteristic equation

for the closed loop system is

+66.(C; +C)| = 0 (2.15)

=}
1l

o
il
(9)
§

which is also the characteristic equation for the system without time
delays (i.e. b = 0 in Equation (2.6)). Thus the multivariable Smith
Predictor has eliminated the time delay from the characteristic
equation. The design of the controller transfer function matrix
gc(s) can then proceed using design techniques developed for systems
without time delays.

2.2.2 Time Delays in Both Control Variables and Output Variables

The case is considered where constant time delays occur in
both the control variables and the measured outputs. The system of
interest is given in Equations (2.3) and (2.4). Assuming zero initial
conditions and taking the Laplace transform of Equations (2.3) and

(2.4) gives

6, e u(s) + § d(s) (2.16)

x(s) G

1) = G () + G e™S x(s) (2.17)

The multivariablie Smith Predictor for this system consists of
two feedback loops around the controller as shown in Figure 2.4. From

Figure 2.4 it follows that for r(s) = 0,

u(s) = -8y(s) - Ge(Cyip)Gu(s) + B GiGe Su(s) + GGge” T u(s) (218)
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or rearranging gives the following control algorithm

- - -1 (e - -bsy_-3S o ,
u(s) = ~[L8(C e8] G luls)-(GGp €)™ Gus)] - (219)
Combining Equations (2.16), (2.17) and (2.18) gives the result

£(5) = (176,866, T Ly L1-e gy (10" F0)g 1 o) (220

From Equation (2.20) it follows that the characteristic equation for the

closed loop system is

lin * Spgc(g]+§2)‘ =0 (2.21)

Thus, the Smith Predictor is again successful in eliminating time

delays from the characteristic equation. Furthermore, the resulting
characteristic equation in Equation (2.21) can easily be shown to be
the characteristic equation for the system without time delays (i.e.

the system in Equations (2.3) and (2.4) with a = b = 0).

2.3 Multivariable Discrete-Time Systems

A multivariable Smith Predictor can be developed in an
analogous fashion for discrete-time systems which contain time delays.

Consider the following stationary state-space model

x(n+1) = ¢ x(n) + g u(n-a) + 4 d(n) (2.22)
y(n) =g %(n) + Cp x(n-b) (2.23)
where x(n) = state vector of dimension n,
u(n) = manipulated vector of dimension m,

d(n) disturbance vector of dimension p,
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Z(") output vector of dimension r,
a,b = constant time delays which are integers (i.e. positive
integer multiples of the sampling period, T)
2’2’3’51 and g are constant matrices of appropriate dimen-
sions.
As in the continuous time case, a multivariable Smith
Predictor algorithm can be developed by considering feedback loops
around the controller. Suppose a proportional feedback control law

is assumed of the form

u(n) = - K. y(n) (2.24)

=<

where 5c is a constant m x r matrix. Then a suitable algorithm for the

Smith Predictor is

u(n) = - K. y(n) - Kp(n) (2.25)
pn) = G2y (n) + Cppy(n) (2.26)

where | |
Bi(n) = ¢ (n=1) + Guln-1) - ¢ yln-a-Nforn 21 . (2.27)
Ba(n) = ¢p,(n=1) + 8uln-1) - 3 uln-a-b-1)for n Z 1 (2.28)

and

This formulation of the predictor algorithm eliminates the time delays
from the characteristic equation of the closed-loop system as it is
shown below. Taking the z-transform of Equations (2.22), (2.23) and
(2.25) - (2.28) gives
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zX(z) = Mez ? U(z) + Mad(z) (2.29)
¥(z) = CX(z) + Gz 0K(2) (2.30)
u(z) = KJY(z) - K.P(2) (2.31)
P(z) = GCiPy(2) + EPy(2) (2.32)
Pi(z) = Z[eby(2) + 8U(2) - 827 2U(2)] (2.33)
Pp(2) = 2 [ep,(2) + gu(a) - ~3%)gy()] (2.34)

where, the notation, X(z) = z-transform of x(n), is used. Equations
(2.29) - (2.34) can be combined and rearranged to give the following

expression:
K(z) =[21 oK (Cy#e) T [L ek & (1-27) 27
sk G, (-2 B N (2.39)

where y(z) is defined as

)
T
1—
]
N
1
—
o
S”
]
——

M(z) (2.36)

Equation (2.35) implies that the characteristic equation for the system

with the Smith Predictor is

21 +Mok (¢, +¢,)| =0 (2.37)

=N

no

]

It can easily be shown that Equation (2.37) is also the characteristic
equation for the original system in Equations (2.22)- and (2.23) when
the time delays are zero (i.e. a = b = 0). Thus the Smith Predictor

algorithm in Equations (2.25) - (2.28) can be used to eliminate time
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delays from the characteristic equation. The design of the feedback
controllier matrix 5c can then proceed using the wide variety of design
techniques developed for systems without time delays. The above
analysis could also be extended to other types of multivariable control

techniques such as proportional plus integral control.

2.4 Application of Predictor Algorithm to Systems With Delay Only in

Some Manipulated Variables

2.4.1 Introduction

The case of systems with some control variables delayed and
some nut can be considered a generalization of the previously considered
case of a delay in all of the control variables. From a practical point
of view this situation is more commonly found in practice where usually
it is expected that the delays in the various control variables will
be dif%erent or zero (different length of pneumatic transmission lines,
-etc.).

Assume that a system can be described by the following state-

space model:

x(t) = Ax(t) + By uj(t) + B, uy(t-a) (2.38)

x(t) (for simplicity) (2.39)

y(t)

Here, the control vector has been partitioned as

----- (2.40)

u(t)

where Uy denotes the 2 undelayed control variables and Uy the (m-2)
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control variables which are delayed. An equivalent representation of

the system in Equations (2.38) and (2.39) is given by
x(t) = Ax(t) + Byu(t) + Byu(t-a) (2.41)
y(t) = x(t) (2.42)

where §] and B, are defined by

[:51
B, = [52

where 51 and B, are n x m matrices and the notation is the same as in

§ 2.2 for the other matrices and vectors.

(2.43)

neo
—
1

no
1

(2.44)

no
1

Taking the Laplace transform of Equations (2.41) and (2.42)

gives
x(s) = Gq(s)u(s) + Go(s)e™u(s) + Gy(s)d(s) (2.45)
y(s) = x(s) (2.46)
where
q(s) = GI-A7 g (2.47)
g(s) = (I-87 g (2.48)

In applying the predictor scheme on a system described by
Equations (2.45) and (2.46) a difficulty is encountered due to the

interaction between the delayed and undelayed parts of the system.
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The search for a suitable predictor scheme for this system

was directed towards finding an algorithm that will in effect decouple

the system in the sense that any predictive action on the delayed’

manipulated variables will not affect the undelayed portion of the

system.

2.4.2 Theoretical Development

For the system represented by Equation (2.45), the following

notation is used.

1.

Due to the definition of B4 and B, in Equations (2.43) and (2.44),

matrices E](s) and gz(s) are of the form

3]
-
]
- -
L
[Jp)
N
1
[}
]
)
[ F

o
no

__ =12 ] L_ =22 |

where the partitioning serves the purpose of separating the
undelayed and delayed control variables.

G, and G, are n x m matrices and if the number of undelayed
manipulated variables is 2, the dimensions of the partitions are,
Gyp = &X2s Gyp = (n-2)x2, Byq = ax(m-2)5 Gpo = (n-2)x(m-2).

Define a matrix K as

o
no

~
[}
i

[ ]

[}
- -
]

]

1

RZ:

13-
—

K = mxm matrix
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Ky = (m-2)xz matrix

(m-2)x(m-2) matrix

RS~

3. The control matrix gc(s) is written as

1

O
"
!
]
]
1
]

- —————

where the dimensions of the partitions aré

G, = mxn, QC] = XL, Ecz = x(n-2), §c3 = (m-2)x2, §c4 = (m-2)x(n-2)
The assumption is made that all states are measurable.

A satisfactory predictor technique was devised, based on the block

diagram in Figure 2.5 and by placing the following two conditions on

matrices K and Qc:

Condition 1

Matrix K is selected such that

KiGe1 = (I - Kp)Ges (2.49)

K182 = (I - KlEy (2.50)

where I is the (m-g)x(m-2) unit matrix. This conditions is easily
satisfied by selecting 5] =0, 52 = 1.
Condition 2

The restriction is imposed on the partitions §c3 and §c4 of

the control matrix that they must satisfy the following relation:

Go3 817 * Gg Gy = 0 (2.51)

It can easily be shown by direct substitution tiat if conditions 1 and 2
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are satisfied, the following equations hold

KS & = 0 (2.52)
52 5 Ec = 52 Ec (2.53)
El 5 Ec - 2 (2.54)

By virtue of Equations (2.52) - (2.54) a satisfactory predictor control

law can be derived as follows.

Assume that a control law is desired of the form

u(s) = - §; x(s) - w(s) (2.55)
where
x(s) = measurement vector of dimension n
w(s) = predictor output vector of dimension m

It will be shown that if w(s) is selected as

w(s) = K G, p(s) (2.56)

[
e

where

p(s) = predictor output of dimension n
then the effect of the delayed control action can be compensated by a
prediction with no effect on the undelayed part of the control action.
Substitution of Equation (2.56) into (2.55) gives the following

control law
u(s) = - G.x(s) - KG.p(s) (2.57)

Substitution of the expression for u(s) from Equation (2.57) into

Equation (2.47) gives
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K(s) = - G8X(S) - GEGR(S) - GpBce x(s) - GKGee pls)
+ ng(s) (2.58)
Combining Equations (2.53), (2.54) and (2.58) gives
) x(s) = - ngcf(s) - gzgce'as5(s) - gzgce'asg(s) + ELQ(S) (2.59)
and combining Equations (2.59), (2.52), (2.53) and (2.45) gives
x(s) = = G5 x(s) + §d(s) - §EG e d(s)
- Ezgcgze'zasg(s) - gsze-asg(s) (z.60)
or
x(s) = = Gi6x(s) + [1-G,6ce™*°16,d(s)
- 88 LG " u(s) + pls)] (2.61)

Application of the Smith Predictor in the feedback 1oop around the

controller will result in the following expression for p(s)
p(s) = - G,e %u(s) + G, uls) (262

Combining Equations (2.62), (2.61) and utilizing Equations (2.52) -
(2.54) gives

2(8) = - (8 * §)Ecx(s) + [1p#88(1-e7%)1g, d(s) (2.63)
or rearranging
x(s) = [L, + (64881 [L, + §8.01 - €7)1g d(s) (2.64)

which gives the closed loop expression for the state vector. From
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Equation (2.64) it is obvious that the characteristic equation of the

closed loop system is given by
Iin + (51 + gz)gcl = 0 (2.65)

which is also the characteristic equation of the system without time
delays. It should be noted that Equation (2.65) can be derived from

Equation (2.21) by assuming

G, = G

6, = §*&

G+t& = 1

The case of incomplete state measurement that is when
y(s) = € x(s) (2.66)

where
C = rxn measurement matrix

can also be included in this scheme by modifying Equation (2.52) as

follows

(2.67)

"=
0o
neo
(K’
n
no

c 1

No other modification of Equations (2.52) - (2.54) is needed and the

resulting closed loop expression for x(s) is
x(s) = [, + (GrEI8fl ™ [I *+ G801 - e™Igdls)  (268)

2.4.3 Discrete-Time Systems

The discrete time case follows along the same lines. Assume

that the state-space equation for the system is given by
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x(n#1) = ex(n) + 8, uy(n) + g, upln-a) + ad(n)  (2.69)

y(n) x(n) (2.70)

where the control vector is partitioned as

1]
<
sy
~
3
S
~~
[AS]

u(n) 71)
An equivalent expression for Equation (2.69) is given by
x(n+1) = gx(n) + gyu(n) + gou(n-a) + ad(n) (2.72)

where 8, and g, are defined by

6, = [8,; 1 0] (2.73)
=1 =1 Vo=
- H !
5 = [0} 8] (2.74)
[]
and the dimensions are the same as for the continuous time case.
Taking the Z-transformation of Equation (2.72) gives
z2%(2) = Me,U(z) + Mg,z U(2) + HaD(2) (2.73)
where M is defined as in Equation (2.36).
If we denote
Mo, = 87 » M, = 8 » M= 2 (2.74)

then the conditions described by Equations (2.51) - (2.54) take the

following form in discrete time notation
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Keaf1r * Keaiz = 2 (2.75)
'é=c21" =g (2.76)
22"5 Ke = _i'_zuﬁc (2.77)
o KK = 0 (2.78)

where K. is the discrete time control matrix, K is the same matrix as

in Equations (2.49), (2.50) and the partitioning of matrices K, Ke»

1 1
81 > & is done in the same way as in the continuous time case.
The derivation of the closed loop expression for X(z) is
easily done by following the similar continuous time procedure and

X(z) is given by
M) = [2L, + (g g kT [, g KON (279)

with characteristic equation given by

|21 + (8, + 8 K| = 0 (2.80)

which is also the characteristic equation for the system without time

delay.

2.5 Modification of the Predictor Scheme for Compensation of

Inaccurately Determined or Time Varying Delays

2.5.1 General
An inaccurate representation of the delay in the predictor
loop can occur for the following reasons:
(1) Inaccurate determination of the delay.
(2) Use of an approximation (Padé etc.) for the time delay transfer

function.
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(3) Time varying delay.

(4) Time delay which is not an integer multiple of the sampling
interval in the discrete time case.

The effect of approximating the actual delay by various methods

(Padé, etc.) on the response of the closed loop predictor system

has been examined by Buckley [9,10] for single variable, continuous

time systems. In the multivariable discrete time case, a time delay

which is not an exact integer multiple of the sampling interval can

be handled by the method used by Jacobson [16] in compensating for

a delay equal to half the sampling interval which is a consequence

of the digital interface, [15].

2.5.2 Digital Algorithm for the Determination of Inaccurately Known

or Time Varying Delays

In this section an algorithm is derived to improve the
predictor performance when time varying or inaccurately determined
time delays occur. This digital algorithm is realizable if an
accurate discrete time model of the process without delays is avail-

able.

The derivation concerns the case of a single delay in all
the control variables. Measurement delays are not considered since
usually there is less uncertainty concerning these values.

Analysis of the digital algorithm

In the discrete time Smith Predictor, the time delay in the
predictor loop is realized by storing the value of the control vector
in a table and then selecting from this table of past vectors the
appropriate delayed control vector. In the case of inaccurate deter-

mination of the delay, a wrong selection of the control vector will
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adversely affect the control, especially in cases of large sampling
intervals.

This method of representing the time delay in the predictor
loop has the advantage of making possible compensation for uncertain
or time varying delays according to the following reasoning.

Consider a system with a delay in all the manipulated
variables equal to a sampling interval and which can be represented

by an accurate, discrete-time mathematical model as
x(n) = ¢ x(n-1) + & u(n-a-1) + & d(n-1) (2.81)

where the notation is the same as for Equation (2.22). For the system
of Equation (2.81) all state variables are assumed to be measured. The
basic function of the Smith Predictor is the cancellation of the effect
of the delayed control action and the replacement of it by a prediction
of the system response for the system without a time delay. In cases
of inaccurate representation of the delay in the predictor loop, the
cancellation will be incomplete. However, if an accurate model of the
undelayed system is available, the following calculations are feasible:
1. Calculation of changes in x due to an unmeasured load variable.
2. Calculation of the state vector for the case where the effect of
the delayed control action is completely cancelled.
The calculation of the state vector if complete cancellation of the
control action is assumed can be accomplished by using the model and

the measurement and forming the following vector:

s(n) = g x(n-1) + & d(n-7) (2.82)
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where

x(n-1)
d(n-1)

previous state measurement

load variabie vector

The load change can be calculated from the first deviation of x from
the steady state value. Any change in the measurement can be inter-
preted as a load change, assuming that the system is already at

steady state. The measurement in perturbed form will then be given

by

x(n) = 4 d(n)

ne

It should be noted that only the product A d(n) needs to be calculated
and that the actual value of d(n) is not required. Under steady

state conditions, inaccuracies in the predictor do not affect the
response since the output of the predictor will be equal to zero.
Combining Equations (2.81) and (2.82), the following equation can be

written

x(n) - 8 u(n-a-1) = S(n) (2.83)

According to the scheme given in Figure 2.6, the following procedure is

followed:

(1) An approximate value for the actual delay a is assumed and denoted
as a'.

(2) The vector S(n) is calcuiated from Equation (2.82) using the pre-
vious measurement, x(n-1) and estimated or measured values of the
disturbance.

(3) The delayed control vector u(n-a'-1) is obtained from the stored

past values of the control vector.
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(4) The product © u(n-a'-1) is calculated and subtracted from the
present measurement x(n) and the result compared to S(n). As
seen from Equation (2.83), the result of the forementioned
subtraction should be equal to S(n) when a' = a.

If this comparison is satisfactory, then a' = a and the vector

g(n-a'-]) is sent to the predictor loop. In the opposite case, the

search of the table of past values continues sequentially by assum-

ing larger values of a'. In the case of initially unknown but con-
stant time delays, the search can be stopped once the value of the
delay has been established. Assuming that the system was initially
at steady state, determination of the actual delay will be possible
only after a time interval equal to the actual time delay, since
until that time the response of the system is open loop due to the
time delay.

In the case of slowly varying time delays, the previously
described search will be continued but the algorithm has to be
modified to include the ability of distinguishing between Toad
changes and changes in the magnitude of the time de]ay. This is
necessary since although the predictor control scheme does not
require knowledge of load changes , the determination of the time
delay does require knowledge of any load changes.

The algorithm proceeds as follows. It is initially assumed
that any unexpected change in the state vector, §(n), is due to a
change in the value of the time delay, a. Furthermore, it is also
assumed that the time delay is restricted to a known range of values.
This assumption restricts the search of the table of past control

vectors to a certain predetermined range. If no conirol vector is
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found inside this range that satisfies the requirements of Equation
(2.83), then a change in the load is assumed to have occurred. Then,
using the best available estimate of the time delay, the respective
control vector is selected from the table and the new load change is
calculated from the model. This calculation is done by subtracting
from the current measurement, a calculated vaiue of the current

measurement which is formed as follows:
XCAL(") = S(n) + 8 u{n-a'-1) (2.84)

where S(n) is given by Equation (2.82).

Subtraction of XCAL(") from the present measurement will give
_)S(n) - XCAL(n) = é [Q(n'” - gEST(n-])] (2-85)

which can be solved for & dpg(n-1) where dpo(n-1) is the estimated
value of the load vector. Since calculation of S(n) requires the value
of the product 2 QEST(n-1), no calculation of the %load vector gEST(n-])
is required for the subsequent calculations. This procedure is valid
as long as a change in the load does nat happen at the same time as a
change in the time delay.

This.algorithm can also be applied to the case of delays in
only some of the manipulated variables with no serious modifications
required.

In Chapter 3, simulated results are presented, that demon-
strate the ability of the algorithm to estimate a delay in the process
as well as distinguishing between load changes and changes in the
delay, if an accurate mathematical model of the system (without time

delays) is available. Simulated responses for a discrete-time system
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are also given in Chapter 3, to illustrate the effect of an inaccurate

representation of the time delay in the predictor loop.

2.6 A Numerical Example on the Multivariable Predictor Control

To illustrate the operation of the multivariable Smith
Predictor, time delays were introduced into the third order system
considered by Takahashi et al. [17]. Two cases will be considered:
(a) Time delay in the control variables.

(b) Time delays in both the control and output variabiles.

The system equations for this example are:

%(t) = A x(t) + B u(t-a) + D d(t) (2.86)
c x(t) for case (a)
y(t) = (2.87)
91 x(t) + S, x(t-b) for case (b)
where:
-3 1 0 1 0
A=1|2 -3 2 B = D = [0 1
1 -3 0 1 0 0

no
L}
o
—
o
—
ne
a—
i}
(o9}
—
o
neo
N
1
o
Q
o

o
o
—
L

lo o o [0 0 1

The corresponding discrete time model for T = 0.5 can be
obtained in the standard manner, using the analytical solution to
Equation (2.86) (Lapidus and Luus, [18]) and is given in Equations
(2.88) and (2.89).
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x(nt1) = ¢ x(n) + 6 u(n-a) + 4 d(n) (2.88)
C x(n) for case (a)
X(n) = | (2.89)
¢4 x(n) + G, x(n-b) for case (b)
where
(0.2840 0.1310 0.0606 0.2760 0.0148
$ = 0.2620 0.3440 0.2620 6= 0.1030 0.1030
| 0.0606 0.1310 0.2840 0.0148 0.2760
0.2760 0.0516
A = 0.1030 0.2900
| 0.0148 0.0516
A feedback control law of the form
u(n) = - K. y(n) (2.90)

js desired. Since the Smith Predictor algorithm will be used, EC can
be designed using conventional design techniques for sys*ems without
time delays, and the state-space model in Equations (2.86) and (2.87)
with a = b = 0. For example, a modification of the direct synthesis
method of Porter and Crossley [19], can be used to design K. so that a
specified closed-loop system matrix, I, results.

This approach was used to design §c as

0.0257  0.0556
K = (2.91)
-0.4770  -1.0300

corresponding to the closed loop system matrix, T = ¢ + 9K.C where T
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was selected to be

0.2840 0.1310  0.0606
T = |o0.2620 0.2970  0.2000 (2.92)
- 0.0606 0 0

Transient responses of the closed-loop system including the
Smith Predictor are shown in Figures 2.7 and 2.8 for cases (a) and (b),
respectively. A1l responses are for the feedback control matrix in
Equation (2.91), the Smith Predictor algorithm of. Equations (2.31) -
(2.34) and a unit step change in the disturbance vector, d. Figure
2.7 illustrates the effect of a delay in the control variables on the
system response. The open and closed-loop responses for the system
without time delays are given by curves 5 and 1, respectively. When
the control variables are delayed as in curves 2-4, the system response
initially follows the open-loop response, then changes direction and
eventually approaches the closed-loop response for the undelayed system.

Thus, by using the multivariable Smith Predictor and a feed-
back control matrix designed for the system without time delays, a
satisfactory load response is obtained with no offset between the
predictor response and the response of the undelayed system.

In Figure 2.8 time delays in both the control variables and
output variables are considered for the same disturbance and control
scheme that were used in Figure 2.7. The responses are qualitatively
similar to those in Figure 2.7 and are judged to give a satisfactory

degree of control.
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CHAPTER THREE
SIMULATION RESULTS FOR THE PREDICTOR SCHEME APPLIED
TO A DOUBLE EFFECT EVAPORATOR

3.1 Introduction

The multivariable predictor algorithm developed in Chapter

h order

Two was simulated on an IBM 1800 Digital Computer using a 5t
state space model of the pilot scale, double effect evaporator in the
Department of Chemical and Petroleum Engineering at the University
of Alberta. The control algorithm used in the simulation was later
easily incorporated in the multivariable control program developed
by Newell [21] for experimental verification of the simulated results
on the actual evaporator.

The use of a digital computer in the simulation and experi-

mental studies of the predictor algorithm was ideal since the repre-

sentation of the time ‘delays could be made exact without approximation.

3.2 Mathematical Model

The pilot plant scale, double effect evaporator is represented
in the simplifiea schematic diagram of Figure 3.1.

The first effect is 'a natural circulation calandria type unit,
heated with a nominal 2 1b./min. of fresh steam and fed with a nominal
5 1b./min. of three percent triethylene glycol by weight. First effect
vapour is used to heat the second effect, an externally forced-
circulation long tube vertical unit, which concentrates first effect
product to about ten percent. The second effect is kept under tight
pressure control by a vacuum system and condenser. The evaporator has

been extensively modelled by Andre [22], Newell £21] and Wilson [20].
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The mathematical model used in the simulation and experimental runs is
due to Wilson [20]. The nonlinear model was linearized, with the
variables in normalized perturbation form and is expressed in state

space notation by:
x(t) = A x(t) + B u(t) + D d(t) (3.1)

The model used here is a five state, linear time invariant
model with matrices A, B and D having the numerical values given in

Table 3.1 where the state, disturbance and control vectors are denoted

as

Xy Wy

Xo 4

X = X3 1 = |'M

L

x4 w2
| %5 | | G

u.| S!

u = u | = | B
| Y3 | | B |

4, F

d = b | = | %
| 93 _ | Pe |

where Wi, Ci, S', etc. denote normalized perturbation variabies.

Wa = W
e.g. Wy = B (ss = steady state)

1 w1ss
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For the digital algorithm used in the simulation and experimental
application, the state difference equation was obtained from the con-
tinuous time equation of Table 3.1 by using the analytical solution,
[20], to Equation (3.1) and a time base of 64 secs. The resulting

discrete time model is given by:
x(n+1) = ¢ x(n) + & u(n) + 4 d(n) (3.2)

with matrices ¢, 6 and A having the numerical values given in Table 3.2.
For the purpose of simulating measurement delays, the following output

equation was used

y(n) = G x(n) + G, x(n-b) (3.3)
where
y(n) = output vector of dimension r
b = constant measurement delay

91,92 = constant matrices of dimension rxn

The assumption was made that all state variables are available. For the

case of delay in the product concentration, (C2), measuremant matrices

s L, would be
1 0 0 0 0] 0 0 0 0 O]
0 1 0o 0 O 0 0 0 0 O
g] = c 0 1 0 O > G = ¢ 0 0 0 O
o 0 0 1 O 6 0 0 0 O
o 0 0 ¢ O] o 0 0 0 1]

while for the case of delay in the control variables only,
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G =1, &

1
o

where I is the 5x5 identity matrix.

3.3 Predictor Algorithm

For the simulated application of the predictor, the equations
developed in Chapter Two for the Multivariable Discrete-Time case were
used, namely, Equations (2.22) - (2.28).

The simulation of the time delay in the control variables was
accomplished by delaying the control action, and the measurement delay
by using past values of the stored state variable vector. The time
delay used in the predictor algorithm (Equation (2.28)) was achieved in
a similar fashion by forming a table of past control variable vectors
and selecting the appropriate one according to the value of the time
delay. In all of the simulation runs it was assumed that the time delay
is an integer multiple of the sampling time. Throughout the simulation

and experimental runs a control law of the form:
u(n) = K(x(n) + p(n)) (3.4)

was used where K is a constant proportional control matrix and p(n) is
the predictor output. This control law implies a change in the sign
of the right hand side of Equation (2.25) and this is the only change
made to the Equations (2.22) - (2.28).

3.4 Multiloop Control

Multiloop control has been extensively applied to the double
effect evaporator at the University of Alberta, and the theoretical

considerations involved along with further details can be found in the
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theses by Newell [21] and Jacobson [1e].

A multiloop control scheme consists of several single variable
control systems, i.e. each control variable is affected by the changes
in only one of the state variables. In the evaporator application the

usual pairing of manipulated and controlled variables is [16,21,23],

Control Variable State Variable
S C2
B, Wy

The control matrix for multiloop control was derived by Oliver [23] and
is given by
0 0 0 0 -4.89

Keg = 352 0 0 O 0 (3.5)

A comparison of simulated open and closed 1oop responses for the model
in Table 3.1 and the muitiloop control scheme of Equation (3.5) is
presented in Figure 3.2, where horizontal arrows denote the initial
steady state values. As can be seen in Figure 3.2, the uncontrolled
{(open loop) system is not self-regulatory due to the integrating

nature of the two holdups. The final steady state values (i.e. offsets)
after the +20% step change in feed flow are given in Table 3.3.

3.4.1 Multiloop Control of System With Time Delays

The actual double effect evaporator does not have any
important time delays. Hence, time delays were arbitrarily introduced
into the mathematical model, and transient responses were calculated

for multiloop control and different values of the delays. In the
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TABLE 3.3
Offsets Resulting from Simulated Multiloop Control After a Step
Change of +20% in Feed Flow

Variable  Offset (%)
s 5.84
C: -0.58
hl 2.97
Wy 1.52
o -3.40
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simulation runs all states are assumed measurable and the load change
consists of a 20% step increase in the total feed flow starting at the
first sampling interval (i.e. at t = 64 sec.).

Results were obtained for two cases:

1) Time delay in all the manipulated variables, (Process Delay).

2) A measurement delay in some of the state variables.

In the first case, a single time delay was introduced in all the mani-
pulated variables. Such a case could arise in practice from the
existence of long pneumatic lines for the actuation of pneumatic

valves [24]. The case of a delay in some manipulated variables was

not examined in the simulated or experimental runs. However, a pre-
dictor scheme for this case was theoretically derived and the necessary
conditions were presented in Chapter Two.

The measurement delay case is restricted to a time delay in
product concentration measurement. The behavior of the system for
delays in the measurement of other state variables is examined in con-
nection with multivariable control in § 3.5. Due to the fact that in
the double effect evaporator an on-line refractometer is used for con-
tinuous product concentration measurement, no significant delay exists.
Therefore, a delay is introduced in the model for purposes of study,
since delays in the measurement of concentraticn are of common
occurrence in other processes and tend to deteriorate the control in
a dramatic fashion. Examples of the detrimental effects of the delay
in the concentration measurement can be found in the study of distilla-
tion column control at the University of Alberta by McGinnis [25].

Delay in the Manipulated Variables

The transient response of the system was obtained under
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multiloop control for process delays of 64 and 128 sec. As shown in
Figure 3.3, the responses are underdamped for a delay of 64 sec. and
remain underdamped for a delay of 128 sec. for all states except the
second effect holdup (wz) which becomes unstable. The unstable
behavior of w2 is due to the high controller gain in the WZ-B2 control
Toop (i.e. K34 = 15.8). Decreasing this gain will result in less
oscillations but the offset will increase. Furthermore, the stable
closed loop response would still tend to become unstable for larger
values of the time delay. The effect of lowering the controller gain
is considered in conjunction with measurement delays in Figure 3.8.

Measurement Delav

The transient response of the system for delays 0, 192 and
256 sec. in the measurement of the product concentration with multi-
loop control is given in Figure 3.4. The response remains under-
damped for a delay of 192 sec. with larger oscillations in C2 than
in the other state variables. For a delay of 256 sec. the responses
become unstable for all the state variables. Improvement of the
responses can again be accomplished by Towering the gains of the
control matrix to a certain extent.

Discussion of Results

A series of simulation runs were conducted in order to evalu-
ate the ability of multiloop proportional feedback control in com-
pensating for the detrimental effects of time delays in the double
effect evaporator model.

For both cases of delays in the control or measurement vari-
ables, the multiloop control scheme in Equation (3.5) proved unsatis-

factory. For example, the system is unstable for a delay in all the
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control variables of 128 sec. or a measurement delay in 02 of 192 sec.
Further improvement of the response can be accomplished by 1dwering
the gains of the feedback control matrix but this has the well known
disadvantage of increased offsets and more sluggish response.

3.4.2 Multiloop Control with a Predictor

Introduction

The predictor algorithm, derived in Chapter Two, was simu-
lated as discussed in § 3.2.2 and used together with the multiloop
control matrix given by Equation (3.5).

Theoretical considerations imply that the predictor response
will have the same stability characteristicé and follow the response
of the undelayed system with the same control matrix; The same two
_cases are considered as in the previous section.

Multiloop Predictor with Delay in the Manipulated Variables

The simulated response of the evaporator model was obtained
under multiloop proportional predictor control for delays of 128, 256
and 384 sec. in all of the manipulated variables. The responses are
given in Figure 3.5 together with the response of the system without
time delays. As it is shown in Figure 3.5, the predictor response is
stable and drives the response to the one of the undelayed system.
Comparison of the responses in Figures 3.3 and 3.5 shows the improve-
ment on the response when the predictor is used, since the system
without the predictor becomes unstable for a delay of 128 sec. The
predictor response results in an increase of the offset in the first
effect holdup (w1), due to the small gain of the respective control

loop (w]-B]), which eventually disappears.
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Multiloop predictor with measurement delay

The simulated response of the evaporator model was obtained
under multiloop proportional predictor control for delays of 128, 384 and
640 sec.in the measurement of the product concentration. The responses
are given in Figure 3.6 together with the response of the system
without time delays and the same control matrix. The stabilizing
effect of the predictor is obvious by comparing the responses of
Figure 3.6 and Figure 3.4. The predictor response closely follows the
response of the undelayed system with no increase in the offset. The
responses of w] and N2 are hardly affected since the delay is only in

C, and muitiloop control is used (i.e. value of S only has a small

2
effect on w] and w2). The improvement in the response due to the use
of the predictor is more dramatically depicted in Figure 3.7.

As mentioned in Section 3.3.1, the effect of the time delays
can be compensated to a certain extent by lowering the gains in the
proportiéna] feedback control matrix, when a predictor is not used.

In Figure 3.8 a comparison is made between the predictor response with
the initial multiloop proportional control matrix and the responses of
the system without predictor but using smaller gain in the C2 - S
control Toop (i.e. K]5). The simulated responses correspond to the
evaporator model with a measurement delay of 192 sec. in C2. Since
the responses of w], w2 and C1 are satisfactory for this case, the
gains of the other control loops (W.I-B.l and w2-82) were left unchanged.
As expected, the result of the lower gain is stabilization of the
response. At the same time, the offset increases and the response

is slower in reaching the steady state. Comparison of the predictor

response (with the initial control matrix) with the low gain response
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shows the advantages of the predictor scheme. If a larger delay is
used, these advantages will be even more dramatic.

3.4.3 Effect of Model Inaccuracy on the Predictor Response

The use of an inaccurate mathematicg1 model for the con-
trolled process was examined for the case of the multiloop predictor
control. The effect of inaccuracies in the mathematical model of the
double effect evaporator was examined by simulating an inaccurate
delay in the predictor feedback loop around the controller. Due to
the fact that the sampling interval used was 64 sec. with delays
taken as integer multiples of this sampling time, the inaccuracies
introduced in the simulation were severe. In the case of delay in
the manipulated variables, the response was obtained for a delay of

256 sec. in all control variables while the delay in the predictor

"loop was assumed to be 320 sec. As shown in Figure 3.9,.the response

15 still satisfactory for Cz, C1 and w] while w2 became unstable.

This is due primarily to the high gain in the control loop for W,

(K34 = 15.8). Lowering of this gain from 15.8 to 5.0 resulted in a

stable response for W, and the response of the other state variables

became even better. The effect of using inaccuraté estimates of the

time delay in the predictor is shown in Figure 3.10. The Tow gain

(for w2) control matrix was used with an actual delay of 256 sec. and

assumed delays in the predictor loop of 192 and 320 sec., respectively.

As it is shown, the response is worse for a low estimate of the deilay.
The case of measurement delay was examined for a measure-

ment delay of 384 sec. in the product concentration. The initial feed-

back control matrix in Equation (3.5) was used as well as a predictor

with an estimated delay of 320 and 448 sec., respectively. The



58

¥ i T R z
:
SE N =
r::% -~ =
2
=
1
2
L)
O 4+ 4
prd
—
=
2 c1
q‘ - —_—
' : : .
Delay (sec)
Actual Predictor
256 320
----------- K34 - ]5.8
8" - _5¥{__f%?__nf_+
D CpmmmeZmmmmmmeTooTTERTI T T
U
T
_.? N
= Y
< L
> ¥ +
- \ ¢ LA 3 ’\\WE' v
= - ~ o~ - ~ 7 N { 7 3 { H
>'_ '
- |
~t T
x
i
i
'i
_l‘ + ; e m = .-.._i.-_.._. e e ._!A
O 20 =0 a0 1850 T

TIME IN MINUTES

FIGURE 3.9 Effect of Model Inaccuracy. Simulated Multiloop Predictor
Response with a Delay in the Control Variable (+20% Step
Change in Feed Flow)



59

1_‘.“_ 1 J‘__ t L T
i
i
o4 ~ b
e ‘!—\ TN e Lo
tj N—
(I
>-)
3 1
() ‘
L N o +
== !
—
=z
L
==z —1
[—"1 o | S
3 — 5
T4 +
i
|
|
{
l ! .
1

) g T T

256 g

--------------- 320 !

_———— = 192 }

i ¢

. - _1_

2 u e e m e mm e m—m—— == T \;ﬂ:l_i

R ;

= / T e e T T T ST T
—/?

— 4

o .i...-.. (R

R
P .
b vs
Kf‘"'/::\\ e == h—c‘z—b‘
G |
- '1
—
i | !
T
|
|
; ! . ; - i
C =0 &0 =0 120 150

TIME T MINUTES

FIGURE 3.10 Simulated Multilcop Response With an Inaccurate Predictor
and a Delay 256 sec. in the Control Variables (+20% Step
Change in Feed Flow, K3y = 5.0)



60 -

; ; % 3
I
E
=R AN czh
-'=l - = :
{J ' |
>—
J.]
1)
[ F~ — -If_
=
i
=
J
& Ci
O f~ >
< T +
Predictor delay (sec)
384
----------------- 448
_— = - 320
1 L
o
(|
y¥
- Wi
z >
< i
zZ =T ;
H
we
TR ;
e
e
)
-~
N .
o 3C =0 SC 10 =8

TIME T MINUTES

FIGURE 3.11 Simulated Multiloop Response with Inaccurate Predictor and
Measurement Delay of 384 sec. in C2 (+20% Step Change in
Feed Flow)



61

CONON IN PC GLYCGOL
0

i
N — =
=TT =
.- - - - _
~

T

(V4

Mmr
Delay (sec)
Actual Predictor
—_— 192 256
P 512 576
L uT —_—— 896 260 +
z "
<L 4
=z <t
H p—
1 & 1
(9]
=
l:JJ :
~ |
,!_ S T L . e e e e 2
O 30 &0 Qi 1ot g

FIGURE 3.12

TIME  IN  MINUIES

Simulated Multiloop Response with Inaccurate Predictor and
Measurement Delay in C2 (+20% Step Change in Feed Flow)



62

simulated responses in Figure 3.11 indicate that the predictor response
remains essentially unaffected for both cases of over- and under-
estimation of the delay in the predictor loop. The effect of the
magnitude of the actual delay for the same degree of inaccuracy is
shown in Figure 3.12, where the actual delays are 192, 512 and 896

sec. while the assumed predictor delays are 256, 576 and 960 sec.

As can be seen in Figure 3.12, the response is far better for smali

values of the actual delay.

3.5 Multivariable Control

Multivariable control of the double effect evaporator pilot
plant has been studied and applied extensively by Newell [21],

Jacobson [16], Wilson [20], Hamilton [26], and Oliver [23]. The genera-
tion of an appropriate proportional feedback control matrix is done by
applying discrete dynamic programming techniques to a formulation based
on a quadratic performance index, and:the standard linear, time
invariant, state space model. The model used in the simulation of
multivariable control is the discrete fifth order state space model
given in Section 3.2. The proportional feedback control matrix u;ed

is due to Wilson [20] and is derived for heavy weighting of the product
concentration in the performance index, it is given in Table 3.4.

A11 state variables are assumed to be measured as in the
multiloop case. Examination of this proportional feedback control
matrix indicates that steam flowrate (S) depends mainly on product
concentration, (CZ)’ and the product flowrate (Bz) depends mainly on
C2 and the second effect iiquid holdup, wz.

The simulated closed Joop response for this control configura-

tion is given in Figure 3.13 together with the open Joop response for a
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TABLE 3.4

Multivariable Control Scheme and Offsets

Multivariable proportional feedback control matrix

5.09 -1.48 -2.68 0.0 -14.6
K = 3.95 0.36 0.21 0.0 7.39
5.31 1.19 -0.11 15.8 18.8

Steady state offsets for step change of +20% in feed flow

Variable Offset (%)
Wi 5.65 '
c: 0.242
hi 5.44
Né 0.028
c, -0.511
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step change in feed flowrate of +20%, introduced on the second sampling
interval. The final steady state values of the perturbation variables
are also given in Table 3.4.

3.5.1 Multivariable Control of System with Time Delays

As mentioned in Section 3.4.1, the double effect evaporator
does not have any important time delays. For the simulation runs under
multivariable control process, measurement and combination of process
and measurement delays were assumed and the load responses were for a
step change of +20% in the feed flow, introduced on the secdnd sampling
interval.

Delay in the Manipulated Variables

The simulated response of the double effect evaporator is
given in Figure 3.14 for delays of 0, 64 and 128 sec. in all the mani-
pulated variables. As can be seen from Figure 3.14, the system becomes
unstable for a delay of 128 sec. Comparison of Figures 3.14 and 3.3
shows tnat the multiloop control scheme gives a more stable response
due to the lower controller gains.

Measurement Delay

The simulated response of the system in the presence of
measurement delays is given in Figure 3.15. A delay of 64, 128 and 192
sec. in the measurement of the product concentration, (CZ)’ was con-
sidered. The system response gradually becomes unstable with a delay
of 128 sec. and is obviously unstable for a delay of 192 sec. As in
the case of delays in the manipulated variables, the response of the
system with a delay is better for multiloop control than it is for
multivariable control (cf. Figures 3.15 and 3.4). 1In Figure 3.16 the

simulated response is given for the case of a delay of 192 sec. in the
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measurement of w1. The overall response is better than for the case of
delay of the same magnitude in concentration measurement due to the
larger weighting of C2 in the derivation of the optimal feedback control
matrix. As is shown in Figure 3.16, the measurement delay in the first
effect holdup (w]) affects the concentration more than a delay in the
measurement of wz, as would be expected from physical intuition (i.e.

B, affects C, while B, does not).

3.5.2 Multivariable Predictor Control

The same predictor algorithm as in the multiloop case is used,
the only difference being the use of the proportional feedback control
matrix given in Table 3.4. Three cases are considered: delay in the
manipulated variables, measurement delays and a combination of both
types of delays.

Multivariable Predictor with Delays in the Manipulated Variables

The simulated response of the evaporator model under multi-
variable predictor control was obtained for process delays of 64, 128
and 256 sec. As is shown in Figure 3.17, the response is stable, and
eventually approaches the response of the undelayed system except for
the first effect holdup (w]) that shows the same apparent offset as was
observed in the multiloop simulated runs.

Multivariable Predictor with Delays in the Measurements and/or

Manipulated Variables

The simulated response for the evaporator with multivariable
predictor control and delays of 128, 384 and 640 sec. in the measure-
ment of the product concentration, (C2), is given in Figure 3.18
together with the response of the system without delays. For predictor

control the response is stable and follows closely the response of the
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system without delays. No difference in offsets is obtained between
the predictor response and the response of the undelayed system. In
Figure 3.19 the response is given for delays in both manipulated and
measured variables. The introduction of the delay in the manipulated
variables resulted in increased offset in W, similar to that obtained
for delay in only the manipuiated variables, (Figure 3.5); otherwise,
the response is similar to the one given in Figure 3.18 for measure-
ment delays.

Effect of Model Inaccuracy on the Predictor Response

The effect of model inaccuracy was simulated (as in the
multiloop case) by using inaccurate representation of the time delay
in the predictor loop. The case of delayed control variables proved
to be extremely sensitive to inaccurate estimates of the delay. The
simulated response is given in Figure 3.20 for an actual delay of
512 sec. with inaccuracy of I 64 sec. in the assumed predictor loop
delay. The response is unstable and is generally worse for a Tow
estimate (448 sec.) than a high estimate (576 sec.) of the delay.

Similarly for a measurement delay in C2, the effect of an
inaccuracy of t 64 sec. in the assumed predictor loop delay resuilts
in unstable response (not shown). Improvement of the response is
obtained for larger values of the time delay and the same degree of
inaccuracy as shown in Figure 3.27.

It should be noted that conclusions drawn from the simu-
lated responses of Figures 3.20 and 3.21 should not be generalized,
since the dependence on sampling time and delay is an important factor;
eg. faster sampling time will result in less sensitivity for the same

inaccuracy of I 1 sampling interval in the predictor loop delay,
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assuming that the delay is taken as an integer multiple of the sampling
time. For instance, the sensitivity will be different for an error of

+ 50% in the representation of the delay, in the predictor loop, accord-
ing to the sampling time used. As a general conclusion, though, it can
be stated that in the evaporator application the multivariable predictor
is more sensitive to inaccuracies in the predictor loop than the multi-
loop predictor due to the large controller gains in multivariable

control (cf. Equation (3.5) and Table 3.4).

3.6 The Effect of an Inaccurate Time Delay in the Predictor Loop and a

Compensating Algorithm

In this section the compensating algorithm for inaccurate or
time varying delays (see Section 2.5) is applied to the double effect
evaporator model under multiloop predictor control. A delay of 192 sec.
is introduced in all the manipulated variables while the predictor is
jnitially using a delay of 128 sec. According to the theory developed
in § 2.5, the compensating algorithm will start a search of the stored
past control values according to the algorithm developed in § 2.5. The
search of the past control values starts from the initial assumption of
a delay of 128 sec. and continues for larger values of the delay. To
demonstrate the effect of an unmeasured change in the load variable, the
search of the past control values continues at every sampling interval,
although the delay is assumed constant, and the initial disturbance of
+20% in feed flow is changed after 80 sampling intervals to +10%.

The simulated response is given in Figure 3.22 together with
the responses for the ideal case where the predictor used the actual
value of the time delay, (i.e. 192 sec.) and is aware of the feed flow-

rate. As is shown in Figure 3.22, the response follows closely the
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responses for the ideal predictor case. The actual value of the delay
is determined after a time interval approximately equé] to the time
delay. The predictor has knowledge of the initial disturbance of +20%
but not of the load change from +20% to +10%. In the example of Figure
3.22, since the actual delay is constant, the search should stop as
soon as the exact delay was found and this value used in the predictor
loop. The predictor then would function according to the original
predictor scheme without further use of the compensating algorithm.
However, the search was continued at each sampling instant in order to
demonstrate the ability of the algorithm to sense the change in the
disturbance according to the logic developed in § 2.5.

It should be noted that under steady state conditions any
value of the delay in the predictor loop will not affect the response.
Also, the continuous search is necessary only if time varying delays

occur.

3.7 Discussion of Simulation Results

The effect of the time delays on the simulated response of the
double effect evaporator was proved to result in very bad response for
both conventional multiloop and multivariable feedback control schemes.
The system becomes unstable for small values of the time delay. Com-
pensation for the time delay effect can be accomplished by lowering the
contro]]ef gains but, inevitably, results in larger offsets and slower
responses. This procedure does not always resuit in a satisfactory
response especially when large delays are involved. The response of the
delayed system was generally better with multiloop control than with
multivariable control for the control matrices used in the simulation

runs.
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Introduction of the Smith Predictor into the control scheme
significantly improved the response for delays in the measurement
and/or the control variables. Two control schemes were examined in
the Smith Predictor case, multiloop and multivariable predictor
control. In both cases, the detrimental effects of the time delay
were eliminated, even for very large delays. The response of the
system follows the response of the undeiayed system with a small
increase in the offset of the first effect level in the case of delays
in the manipulated variables. This increase in the offset is due to
the small controller gains and eventually decreases to the respective
value for the undelayed system. The Smith Predictor does not intro-
duce any increase in offset and this can be seen in the numerical
example in § 2.6.

Inaccuracies in the process model, expressed as an inaccurate
representation of the time delay in the predictor loop badly affected
the response when multivariable predictor control was used, while the
multiloop predictor scheme demonstrated less sensitivity to modelling
errors. Finally, use of smaller controller gains improves the pre-

dictor response in the case of large modelling errors.
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CHAPTER FOUR
THE MULTIVARIABLE SMITH PREDICTOR APPLIED TO A DOUBLE
EFFECT EVAPORATOR: EXPERIMENTAL RESULTS

4.1 Introduction

In this chapter an experimental application of the multi-
variable Smith Predictor algorithm is presented. The experimental
system consisted of a pilot scale double effect evaporator, inter-
faced to an IBM 1800 data acquisition and control computer. The
theoretical development of the predictor algorithm as well as simulated
results have been presented in the previous two chapters. This chapter
is concerned with the implementation of the predictor algorithm on the

experimental system and with the results obtained.

4.2 Control System

The implementation of the predictor algorithm was achieved
through a modification of the multivariable control program developed
by Newell [21]. The required steps for the implementation of multi-
variable control are given in the block diagram in Figure 4.1. An
IBM 1800 data acquisition and control computer is interfaced to a
pilot plant double effect evaporator, shown djagramatically in Figure
4.2, through analog to digital converters, digital to analog converters,
and required transducers. Detajled descriptions of the equipment as
well as the required electronic instruments etc. can be found in the
theses of Newell [21], Fehr [27] and Andre [22].

The multivariable control program developed by Newell utilizes
the standard Direct Digital Control (DDC) package [28] for assessing

measurements of the state variables and implementing control through
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adjustments of setpoints in the DDC Toops.

The standard multivariable control program shown in block
diagram in Figure 4.1 performs model calculations for estimating the
unmeasured first effect concentration (C1) and performs all the
necessary conversions of analog signals to engineering units and
vice versa. The control program which is written in FORTRAN except
for assembler subroutines used for communications with DDC, is trans-
ferred from disk storage to core for execution at specified time
intervals designated by a high priority timer interrupt. In the
experimental runs presented in this chapter, the control interval
was 64 seconds. Although the standard multivariable program requires
from 4 to 7 seconds execution time, the modifications introduced for
the predictor scheme considerably increased the size of the computer
program. This resulted in an increase of the execution time since
core storage limitations necessitated an increase in disk swapping.

The modifications for the predictor application consisted
of the following parts:

1. The evaporator pilot plant does not have any significant time
delays and no proyision for such a case was included in the multi-
variable program. The time delay was easily simulated in the
multivariable program by disk storage, and subsequent retrieval,
of the measured states. This procedure refers to simulation of
measurement delays; the model calculations for the first effect
concentration proceeded as in the standard multivariable control
program.

2. The program included the discrete-time Smith Predictor algorithm

that was used in the simulation study. This was easily incorporated
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since the standard multivariable program stores values of the past
control vectors. Consequently, these values could be retrieved from
disk, converted to perturbation form, and inserted in the calculations

of the predictor algorithm.

The case of delays in the manipulated variables can also
be easily included in the multivariabie control program by sending a

delayed control signal to the process.

4.3 Experimental Runs

The predictor control scheme was experimentally applied for
the case of a measurement delay in product concentration. A1l experi-
mental runs utilized a step change of +20% in feed flow at the
~ jnitiation of the run. The initial steady states were between 9 and
10% in product concentration. Two values for the measurement delay
were used, 256 and 512 sec. Due to equipment difficulties, multi-
variable control runs were not made.

The behavior of the undelayed system under multiloop control
is shown in Figure 4.3. The control matrix used in all the multiloop
experimental runs is the one given in Table 3.1 for the simulation
studies. The jnitial and final steady state values of the four
measured states are shown in Table 4.1. As indicated in Figure 4.3,
the +20% step change in the feed flow results in significant offsets
in w] and C, since only proportional feedback control is being used.
In Figure 4.4 the response is given for multiloop predictor control
with a time delay of 256 sec. in the measurement of product concentra-
tion. This delay was introduced as described in Section 4.2 and the

same control matrix was used as for the undelayed case of Figure 4.3.
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Comparison of the state and the control variables in Figures 4.3 and
4.4 shows that the predictor response is more oscillatory but follows
the response of the undelayed system quite well with no increase in
the offset. This is more clearly shown in Figure 4.5 where an overplut
is given of the experimental responses corresponding to Figures 4.3
and 4.4. In Figure 4.6 the simulated and experimental multiloop
predictor responses are compared for a measurement delay of 256 sec.
in Cz. Figure 4.6 indicates that the two responses agree quite clearly.
In Figure 4.7 the experimental multiloop predictor response is given
for a measurement delay of 512 sec. in C2. The response of C2 is again
satisfactory and only w2 shows an increase in the degree of oscillations.
In Figure 4.8 the simulated and experimental multiloop predictor
responses are compared for a measurement delay of 516 sec. in C2.

The experimental responses for B, showa in Figures 4.3, 4.4
and 4.7 are somewhat noisier than in previous studies [21,23]. This

was due to a noisy flow transmitter which was corrected later.

4.4 Discussion of Results

The experimental results confirm the conclusions drawn from
the simulation studies. The predictor performed satisfactorily for
delays in the measurement of product concentration as large as 512 sec.
The predictor response follows closely the response of the system
without delays without undue oscillations or increase in offsets.
Furthermore, the experimental runs demonstrate one of the main advan-
tages of the Smith Predictor method, namely, that measurement of the
disturbance is not required.

Another conclusion drawn from the experimental runs is that

mode11ing errors that inevitably exist, did not significantly affect
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the predictor response and this, again, is in agreement with the simu-

Tation studies.

Finally, physical constraints on the control variables which
were not incorporated in the simulation studies did not have adverse

effects on the experimental predictor response.
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CHAPTER FIVE
CONCLUSIONS

The classical Smith Predictor Method (Smith, [5,6]1) for single
variable control systems has been extended to a class of linear multi-
variable systems. Multivariable Smith Predictors have been derived for
both continuous-time and discrete-time systems which contain time
delays in either the control variables and/or the output variables.

An important advantage of the multivariable Smith Predictor is that it
eliminates time delays from the characteristic equation of the closed
Toop system. This allows the control system designer to choose from
the wide variety of synthesis techniques available for systems without
time delays as opposed to the much smaller number of techniques which
are applicable to systems containing time delays. Another advantage of
the multivariable Smith Predictor is that the discrete-time algorithm
in Equations (2.25) - (2.28) can be easily implemented on a real-time
digital computer.

Simulation and experimental runs were carried out to investi-
gate the performance of the predictor algorithm on a double effect
evaporator pilot plant. The simulation runs considered multiloop and
multivariable control scheme while the experimental runs with the
evaporator/IBM 1800 control configuration confirmed the simuiation
results for multiloop control. Simulation runs also examined the effect
of modelling errors on the predictor response with muitiloop and
multivariable control.

Furthermore, systems with time delays in some of the control

variables and time varying or inaccurately determined delays were
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theoretically investigated and algorithms were developed for handling

these more complex systems.



NOMENCLATURE

Alphabetic

a time delay in control variables
A state coefficient matrix

b time delay in output variables
8 control coefficient matrix

B, first effect bottoms flow

B, second effect bottoms flow

E output coefficient matrix

C1 first effect concentration

C2 second effect concentration

CF feed concentration

d load variable

d load vector

D z-transform load vector

D disturbance coefficient matrix
e error

e error vector

F feed flow

G transfer function

E transfer function matrix

h1 first effect enthalpy

he feed enthalpy

H output transfer function

I integral control

g identity matrix

k elements of control matrix

1J
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Nomenclature (continued)

15 | P~

o

{ O

PI
PID

-3

wv W wn

I

1= S -

1

control matrix

constant matrix in Figure 2.5
undelayed control vector dimension
control vector dimension

matrix defined in Equation (2.36)
state vector dimension

load vector dimension

predictor output vector
z-transform of predictor output vector
proportiona]—integra] control
proportiona]-integral-derivative control
output vector dimension

setpoint vector

Laplace operator

steam flow

vector defined in Equation (2.82)
sampling interval

time

discrete state coefficient matrix
control variabie

control vector

z-transform of control vector
vector defined in Equation (2.55)
first effect holdup

second effect holdup

state variable
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Nomenclature (continued)

(B4

1><

- I <

N

Greek

ne . np>

i1-e-

state vector

z-transform of state vector
output variable

output vector

z-transform of output vector

z-transform operator

discrete disturbance coefficient matrix
discrete control coefficient matrix

discrete state coefficient matrix

Subscrigté

c controller

cj partitions of control matrix
CAL ca]cu]ated‘

EST estimated

FB feedback

L Toad

P process

SS steady state

Superscripts

perturbation variable

time derivative
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