
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality o f this reproduction is dependent upon the quality o f the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs i ty o f A lb e r ta

B u l k L o a d in g a L i n e a r H a s h I n d e x

by

C h e n g H u (§)

A thesis subm itted to the Faculty of G raduate Studies and Research in partial
fulfillment of the requirem ents for the degree of M a s te r o f Science.

D epartm ent of Com puting Science

Edmonton, A lberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1 Library and
Archives C anada

Published Heritage
Branch

395 Wellington S treet
Ottawa OtTKIA 0N4
C anada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de Edition

395, rue Wellington
Ottawa ON K1A 0N4
C anada

0-494-09186-X

Your file Votre reference
ISBN:
O ur file Notre reference
ISBN:

NOTICE:
The author has granted a non
exclusive license alloWing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i + i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

In this thesis, we study the problem of bulk loading a linear hash index and

address some of the challenges th a t arise when loading a large da ta set. The

problem is th a t a good hash function is able to distribute records into random

locations in the file; however, performing a random disk access for each record

can be costly and this cost increases with the size of the file. We propose a bulk

loading algorithm th a t can avoid random disk accesses by reducing multiple

accesses to the same location into one and reordering the accesses such th a t

the pages are accessed sequentially. Our analysis shows th a t our algorithm is

optim al with a cost roughly equal to the cost of sorting the da ta set, thus the

algorithm can scale up to very large da ta sets. We integrate our algorithm into

Berkeley DB and run experiments to compare the performance of our m ethod

to the native load utility in Berkeley DB. The result shows th a t our m ethod

can improve upon the Berkeley DB load utility, in term s of running time, by

two orders of magnitude.

with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 B a c k g ro u n d 1

1.2 Hash-based I n d e x 3

1.3 Linear H a s h in g 5

1.4 Loading: An I /O A n a ly s is 6

2 B ulk Loading 10

2.1 Multiple Hash L a y o u t s .. 11

2.2 Optim al A lg o r ith m 13

2.3 Our A lg o r i th m ... 15

3 Layout Param eter E stim ation 18

3.1 Layout Param eter Estim ation based on a user specified I/O . 18

3.1.1 Layout Estim ation for Randomly D istributed D ata . . 19

3.1.2 Layout Estim ation for Skewed D a t a 23

3.2 Layout Param eter E stim ation based on access cost and storage

o v e rh e a d ... 26

3.2.1 Layout Estim ation for Randomly D istributed D ata . . 27

3.2.2 Layout Estim ation for Skewed D a t a 31

3.2.3 Param eter settings of bulk loading 33

4 Im proving Loading in Berkeley D B 37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Experim ents 40

5.1 Performance comparison to naive loading 42

5.2 Performance comparison to the dbJoad utility in Berkeley DB 44

5.2.1 Scalability w ith the size of the da ta s e t 44

5.2.2 The effect of buffer size on the performance 45

5.2.3 Sorting d a ta in advance ... 47

5.3 Quality of the hash f i l e .. 49

6 R elated Work 53

7 C onclusions and Future W ork 58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Two equivalent l a y o u ts 12

2.2 Overview of our bulk loading 14

3.1 A linear hash f i l e 20

3.2 Layout Estim ation for Zipf D istributed D a t a 26

3.3 Layout Estim ation for Bernoulli D istributed D a t a 27

3.4 Penalty score for em pty slots of 1 million random records . . . 29

3.5 Penalty score for overflow buckets of 1 million random records 29

3.6 Overall penalty score of 1 million random r e c o r d s 30

3.7 Average num ber of bits used for addressing varying the penalty

for an overflow re c o rd ... 34

3.8 Average num ber of bits used for addressing varying the penalty

for an em pty s l o t .. 35

5.1 Improvement factor varying the num ber of records for our bulk

loading compared to the naive loading 43

5.2 Running time varying the number of r e c o r d s 46

5.3 Running tim e varying the buffer size for our modified dbJoad . 47

5.4 Loading with sorted r e c o r d s .. 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Nine records with their hash values 13

3.1 Quality of our layout estim ation for random d a t a 23

3.2 Query cost varying the num ber of bits for addressing 35

5.1 Running tim e of our bulk loading compared to a naive loading 43

5.2 Loading records in the hash tables w ith different num ber of

re c o rd s ... 45

5.3 Loading the hash index with different buffer s i z e s 46

5.4 Loading w ith sorted records ... 49

5.5 Query cost comparison between the hash files (user-specified I/O) 51

5.6 Query cost comparison with Berkeley DB (user-specified I/O) 51

5.7 Query cost comparison between the hash files (E /O) 52

5.8 Query cost comparison with Berkeley DB (E / O) 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Background

There are m any applications in which d a ta m ust be loaded into a database

in large volumes at once. This is the case, for instance, when building and

m aintaining a d a ta warehouse, replicating an existing data, building a mir

ror In ternet site or importing d a ta to a new D atabase M anagement Sys

tem (DBMS). There has been work on bulk loading tree-based indexes (e.g.

quadtree [8], R-tree [3] and UB-Tree [6]), loading into an object-oriented

database (e.g. [16,18,19]), loading into a multidimensional index structures

(e.g. [9]) and resuming a long-duration load [11], However, we are not aware

of a bulk loading algorithm for a hash index 1. This m ay seem unnecessary, in

particular, if bo th sequential and random disk accesses are charged a constant

time; bu t given th a t a random access costs on average a seek tim e and half

of a rotational delay more, a general rule of thum b is th a t one can get 500

times more bandw idth by going to a sequential access [7]. This seems to be

consistent with our experimental findings.

Efficiently loading data into a hash-based index is useful in many appli

cations which require direct access to d a ta through equality queries bu t no

range searches. W hen the da ta set is quite large, the load process may take

^ n e of our algorithms has similarities to the incremental data organization of Ja-
gadish [10] but is different; see Sec. 6 for more details.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hours or even days, as some reported in our experiments. The problem to be

addressed in this thesis is to optimize the time to load by both minimizing

the num ber of redundant disk I/O s and reducing or eliminating random disk

accesses. For linear hashing, in particular, redundant I/O s are m ainly due to

bucket splits and record movements. Furthermore, since the location of each

record in the hash file is determined by a hash function which is expected to

produce a random number, loading the records into the hash file can cause a

large num ber of random disk accesses; this obviously reduces the efficiency of

the loading process.

Our proposed solution is to predict the final structure of the hash file before

the d a ta is actually loaded. If we can order the records based on their estim ated

locations in the file, then we can do the loading within one sequential scan.

However, there is not a unique final layout for a given da ta set; often the final

structure varies depending on the order of the insertions and the split policy

th a t is used. Our objective is to find a balance between the access cost and the

storage overhead. To this end, we develop a user-tunable cost function th a t

guides the load toward an optimal layout. Once an optimal layout is fixed,

we accordingly reorder the records to ensure th a t the records th a t belong to

the same bucket are loaded together. W ith this strategy, the bucket splits and

record movements are avoided and the disk accesses all become sequential.

We run experiments w ith real d a ta and compare the timings of our bulk

loading algorithm to the native dbJoad u tility in Berkeley DB [5], an open-

source embedded database library. Our experiment with loading a d a ta set of

30 million 100-byte records, for instance, shows th a t our bulk loading algorithm

runs 150 tim es faster than the dbJoad utility using a Pentium 4 3.0G, 2GB

memory machine running on Red H at 9.0.

Based on this and other experiments reported in Chapter 5, we should

expect for our load algorithms a performance improvement, in term s of running

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time, of roughly two orders of magnitude. W ithout loss of generality, we

will base our algorithms and discussions on linear hashing [12, 14], mainly

because of its efficient dynam ic structure and also its frequent use in practice

[5]. It shouldn’t be hard to extend our algorithms to other hash-based indexes

because of the similarities between these indexes.

This thesis is organized as follows: C hapter 1 provides some background

on linear hashing and an I /O analysis of loading a linear hash file. Chap

ter 2 presents our bulk loading algorithm. Finding an optim al setting of our

bulk loading param eters is discussed in C hapter 3. In C hapter 4, we discuss

the details of partially integrating bulk loading into the dbJoad u tility from

Berkeley DB. C hapter 5 presents and analyzes our experimental results. Fi

nally, Chapter 6 reviews the related work and C hapter 7 concludes the thesis

and discusses possible extensions and future work.

1.2 H ash-based Index

The basic idea of hash-based index is to use a hashing function, which maps

a record key into an address space, to find the page on which a desired da ta

entry belongs. The most common techniques for hashing are sta tic hashing

and dynamic hashing.

The static hashing scheme has a fixed number of hash buckets. The pages

containing the da ta are called hash buckets. A hash layout consists of buckets

0 through N — 1, with one prim ary page per bucket a t the beginning. To search

for a da ta entry, a hash function h is used to identify the bucket to which it

belongs. W hen a record is inserted, the hash function is used to identify the

correct hash bucket and then pu t the record into this bucket. If there is no

space for this record in the bucket, we allocate a new overflow page, insert

the record into this overflow page, and add the page to the overflow chain of

the bucket. When a record is deleted, we also use the hashing function to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

identify the correct bucket, find the da ta entry by searching in the bucket and

then remove it. The main problem of static hashing is th a t the number of

buckets is fixed. Therefore, if a hash file grows a lot, long overflow chains may

be generated causing poor performance. If a file shrinks greatly, many hash

buckets may become em pty and a lot of space is wasted.

An alternative is to use a dynamic hashing technique such as extendible or

linear hashing. In static hashing, when we insert a record into a full bucket, we

need to add an overflow bucket. If we don’t want to add an overflow bucket,

we have to reconstruct the hash index by doubling the num ber of buckets and

redistributing all the records in the hash table into the new address space. This

solution suffers from too may redundant I/O s. All the records in the entire

file have to be read and half of the records are w ritten to the new buckets.

Therefore, twice as m any pages in to ta l have to be written.

The idea of dynamic hashing is th a t instead of splitting all of the hash

buckets and doubling the number of buckets, only the bucket th a t overflowed

are split and the splits are performed in a deterministic order. A bucket split

is to split the bucket by allocating a new bucket and redistributing the records

across the old bucket and its split image. The associated hash function must

change as the table grows. Some schemes may shrink the table to save space

when items are deleted.

Extendible hashing is a well-known dynamic hashing technique. The main

elements of an extendible hashing structure are a directory of pointers, which

points to buckets th a t contain the records. The size of the address space can

be doubled by doubling ju st the size of the directory of pointers but splitting

only the bucket th a t overflowed. The directory always has a size of a power

of 2. The number of bits for addressing in the directory is called the global

depth. A local depth is also m aintained for each bucket. At the beginning, all

local depths are equal to the global depth. To search a key in an extendible

4

with permission of the copyright owner. Further reproduction prohibited without permission.

hashing index, it always find the appropriate entry in the directory based on

its hash value, and follows the pointer to the bucket contains the record. A

record is inserted into the bucket which it belongs using the same method.

A bucket split leads to an increase in the local depth and the split image is

assigned the same local depth. If the local depth becomes greater than the

global depth, a directory doubling occurs and the global depth itself is also

increased by 1.

If the directory fits in memory, an equality search only requires a single disk

access, which is the same as static hashing (in the absence of overflow pages).

Otherwise, two disk accesses are needed. However, chances are high th a t the

directory will fit in memory and the performance of extendible hashing is the

same as for static hashing.

Linear hashing is another dynamic hashing technique. Compared to ex

tendible hashing, the directory structure can be avoided by allocating prim ary

hash buckets consecutively. The details of this hashing technique is discussed

in the next section. In th is thesis, we focus on the bulk loading method on

linear hashing. However, it shouldn’t be hard to extend our bulk loading

algorithm to hashing techniques other than linear hashing because of the sim

ilarities between these indexes.

1.3 Linear H ashing

Linear hashing is a dynamic hashing scheme th a t gracefully accommodates

insertions and deletions by allowing the size of the hash file to grow and shrink

[12]. It is known to exhibit a near-optimal performance in term s of both the

access cost and the storage overhead [12]. Given a hash file with initially N

buckets and a hash function /i() th a t maps each key to a number, ho (key) —

h(key) mod N is called a base hash function and hi(key) = h(key) mod 2* * N

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for i > 0 are called split functions where

K{kcy) -» { 0, 1, ... , 2^ (y v - l) }

and

hi(key) = h ^ i (k e y)

or hi(key) = /ij_i(/cey) + 2,_1 * TV.

Suppose we want to insert a record with ho(key) — 0 into bucket 0 and this

bucket overflows. Let bucket 0 be the first bucket th a t overflows in the file.

The split function h\(key) is then used, and all records with hi(key) — ho(key)

are kept in bucket 0 and all records with h\ (key) = ho(key) + N are moved to

the new bucket N .

Linear hashing does not necessarily split a bucket th a t overflows, bu t always

performs splits in a deterministic order. The buckets are split in a linear order,

starting from bucket 0 and following in buckets 1 , 2 , . . . , TV — 1. A split usually

occurs when there is an overflow. If the bucket th a t is split is not the bucket

th a t overflows, then the overflow record may be stored in an overflow area

and is chained to its home location bucket. The num ber of overflow buckets is

usually kept small and a search for a specific record in the file is expected to

take one or a t most two disk accesses. The situation to trigger a split is also

very flexible. We can split whenever a new overflow page is added or impose

additional conditions such as space utilization in the hash table.

1.4 Loading: A n I /O A nalysis

Given a, set of records to be inserted to a hash file, a bit-random izing hash

function is used to convert each record key into a k-bit hash value. This bit-

randomizing property of the hash function is im portant to obtain radically

different hash values for nearly identical keys [17]. The hash table initially has

a single bucket and grows in generations to 2, 4, . . . , 2" buckets.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A dynamic hash file begins with a single bucket and grows in so-called

generations. In the 0th generation, the hash file grows from a single bucket

to two buckets. Every record of the old bucket with its least significant bit

(referred to here as bit 0) set is moved the new bucket. In the i th generation,

the hash file has 2% buckets which split into 2l+1 buckets in a linear order. For

each record key, the i th bit of its hash value is examined and it is decided if

the record m ust be moved to the newly-created bucket.

There are two m ajor factors th a t can affect the load performance: reading

and writing records into the hash table, and moving records from an old hash

bucket to a newly-generated bucket. For a d a ta set with n records, let P be

the average record size in pages (usually, P < 1). The data set itself is n * P

pages. Reading these n records requires n * P page accesses. Since the location

of each record in the hash table is random due to the bit-random izing hash

function — in the worst case, writing a record into the hash table requires one

page access. Therefore, the total cost of reading and writing is

n * P + n

I/O s. The cost of writing the records in practice can be slightly less due to

the buffering, in particular, if a large fraction of the buckets are found in the

buffer. However, in general the hash probes (i.e. searches for the locations of

the new records) are randomly distributed, and alm ost every probe is likely to

find the corresponding bucket not in the buffer.

The load performance is also affected by the num ber of record movements.

Given a well-designed bit-randomizing hash function, it is safe to assume that

for any bit position i, half of the records have their i th b it set. Therefore, within

the ith generation, half of the records in the former 2' buckets are expected to

move to the newly-generated buckets. Let m denote the average num ber of

records in a hash bucket. We need n / m buckets for the hash file. The to tal

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

num ber of record movements is

m(2° + 21 + 2 2 + ... + 2l(log2m)-1l) *
2

= (2 !°S2^t _ 1) * ^

n m
- (1) * —

m 2
n
2 '

Therefore, half of the records are initially loaded into buckets other than

their home buckets. There is a cost associated to move these records into their

home locations. To slightly simplify our analysis, suppose reading or writing a

hash bucket requires one disk I/O . W ithout considering the effect of buffering,

w ithin the 0th generation, we need to read one bucket, redistribute some of

its records to a new bucket and write back two buckets. Similarly, in the i th

generation, we need to read 2l buckets and write back 2l+1 buckets. Since we

need n / m buckets for the hash file, constructing this hash file requires

2° + 21 + 22 + ... + 2[(log2 m)-1)

= 2log2 £ - i

= — - 1
m

disk reads and

21 + 22 + 23 + ... + 2(log2 m)

= 2 l (1° g 2 m) + 1l — 2

= ~ — 2
m

disk writes. W ithout taking into account the buffering effects, there are

? n - 3
m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I/O s due to bucket splits. Thus the to ta l cost of loading n records is

n 371 „
n * P + n-\---------3

m

I/O s. To have an idea of this cost, loading 20 million 100-bytes records takes

up to 16 hours in our experiments. This is clearly not acceptable for such a

d a ta set using a relatively m odern hardware in 2005.

In another aspect, if the records are uniformly distributed in the address

space, linear hashing has a lower average cost for equality queries than the

extendible hashing because the directory level is eliminated. However, for

skewed distributions, linear hashing could result in many empty or nearly

em pty buckets, leading to poor performance. The reason is linear hashing

does not necessarily split a bucket th a t overflows. Efficiently loading a skewed

d a ta set into a linear hash index with a performance comparable to th a t of

loading random da ta is another challenge.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Bulk Loading

Our analysis in Section 1.4 reveals th a t the cost of loading can be reduced if

we can take the following actions:

• Reduce the number of random page accesses an d /o r replace them with

sequential page accesses when writing the records into the hash file.

Since the final location of a record in the hash file is determ ined by a

hash function which is expected to produce random numbers, writing

the records in their original order of arrival can generate a random disk

access for each record. This is quite costly and m ust be avoided.

• Reduce or eliminate bucket splits and record movements. If we can

predict the final hash layout and store each record in its predictive final

destination bucket, bucket splits and record movements can be avoided.

To avoid random disk accesses, a solution is to sort the records according

to the order they are expected to sit in the final hash file. The design of a

linear hash file (as discussed in the previous section) forces the records within

each bucket to have a few least significant bits of their hash values the same:

in the ith generation, the hash values of the records in each bucket m ust all

have their i least significant bits the same. There is not a unique final layout

th a t satisfies this constraint (as discussed in the next section). The order of

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the records in one bucket of the final layout, for instance, can vary with the

order in which the records are inserted.

2.1 M ultiple H ash Layouts

There are many different ways of ordering a given set of records, and as a

result there are many possible configurations of a hash file. Two different

configurations may be trea ted the same if both have the same space overheads

and I/O costs. To reduce the number of possible hash layouts, we define some

equivalent classes.

D e fin itio n 1. Let R(b) denote the set of records th a t are stored in either the

prim ary bucket b or an overflow bucket linked to prim ary bucket b. Two linear

hash layouts l\ and l2 are equivalent if

1. for every prim ary-area bucket b\ in l\, there is a primary-area. bucket b2

in l2 such th a t R(bi) — R(b2), and

2. for every prim ary-area bucket b2 in l2, there is a prim ary-area bucket b\

in li such th a t R(b2) — R(bi).

Based on this definition, the two hash layouts shown in Figure 2.1, for in

stance, are equivalent. Naturally, the ordering of the records within primary-

area and overflow-area buckets and the ordering of the buckets in two equiv

alent layouts can be different. The reason is th a t even using the same bit-

randomizing hash function, there may be different ways to map records into

the address space according to their hash values.

L e m m a 1. Suppose all records are o f a fixed length and the overflow records are

stored in overflow-area buckets and are chained to some primary-area buckets.

For any pairs of equivalent layouts, the following holds:

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bucket 0:

Bucket 1:

Bucket 2:

Bucket 3:

(a)

i?4

(b)

1.

2 .

The proof can be derived from our definition of equivalent hash layouts.

For two equivalent hash layouts with fixed length records, only the ordering

of the records w ithin buckets and the ordering of the buckets can be different.

These order differences can not affect the space requirements and average I/O s

per probe. For records of variable lengths or when overflow records are handled

using a different strategy than the one in Lemma 1, the storage overhead and

the I /O cost of two equivalent layouts are still expected to be close (if not the

12

Figure 2.1: Two equivalent layouts

the space requirements, in terms of the number of primary-area and

overflow-area buckets, of both layouts is the same,

the average number o f I /O s required fo r a probe in both layouts is the

same i f every record has the same chance o f being probed.

Bucket 0:

Bucket 1:

Bucket 2:

Bucket 3:

Rq
R*
Ri
R y

R 2

Rs
Rg
R-s

R 4
Rg

R2
Rg
Ri
R.7
Rs
Rg

Rr,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same). On the other hand, the construction costs of two equivalent layouts

can be quite different. Consider the two layouts in Figure 2.1, and suppose

the hash values of the records are those shown in Table 2.1.

Records Hash values
Rx (1 0 1 0)
R 2 (0 1 0 1)
Rs (1 1 1 1)
R\ (1 1 0 0)
r 5 (0 1 0 0)
R(x (1 0 0 0)
R- (0 1 1 0)
Rs (1 1 0 1)
Rg (1 0 1 1)

Table 2.1: Nine records with their hash values.

The hash file in Figure 2.1(a) is the result of inserting these records in the

given order into a linear hash file. There are 3 bucket splits and 3 records

movements. If we fix the size of the buffer to one page (for our illustration

purpose), then the first three buckets m ust be fetched more than once. The

hash file in Figure 2.1(b) is the result of sorting the records based on the two

least significant bits of their hash values (after reversing the positions of the

bits) and filling the buckets sequentially. There is no bucket splits nor records

movements, and each bucket is fetched only once.

2.2 O ptim al A lgorithm

Some of the m ajor costs in loading a hash index are associated with the bucket

splits, record movements and fetching a bucket more than once. We develop

a notion of optim ality of a load algorithm to avoid these costs.

D e fin itio n 2. A load algorithm is s-optinral if it can find and use an ordering

of the records such th a t loading the records in th a t order does not involve any

bucket splits or record movements and it does not fetch a bucket after it is

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

written.

This notion of optim ality does not provide us with an actual load algorithm

bu t makes it clear th a t before a bucket is written, all records th a t belong to

the bucket m ust be somehow grouped together. Furthermore, to avoid bucket

splits and record movements, the final layout must be known before the da ta

is actually loaded.

Our bulk loading algorithm estimates both the distribution of the records

and a layout th a t best fits this distribution. Details of our estim ations are

discussed in Section 3. Our algorithm also sorts the records such th a t the

records th a t belong to the same bucket are grouped together. An overview of

our algorithm is shown in Figure 2.2.

Layout sort — > buildparameters
e s t im a t io n

\
Dataset

d b J o a d with
additional parameters

Linear hash f i le

M o d i f ie d vers ion o f B erk e le y DB 1

buffer

sort

buffer

u
load

Figure 2.2: Overview of our bulk loading

Figure 2.2 provides two different m ethods of bulk loading records into a

linear hash index. The fist m ethod is our full algorithm (shown on top), which

is used when we load a d a ta set into an empty hash table. We predict the

hash layout before loading, reorder the records in the d a ta set and then write

the records into the hash table. The hash table of this m ethod is a static hash

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

table. The second m ethod (shown a t the bottom) can be used with both empty

and non-empty hash files, and is discussed in Chapter 4. This m ethod uses a

buffer with a dynamic hash table. If we want to insert records incrementally

into the hash index when they are received, the second m ethod is preferred.

In this thesis, we implement the first m ethod independently, bu t integrate our

second m ethod into Berkeley DB, which is an open source database library.

The details of these two m ethods are discussed in the following sections.

2.3 Our A lgorithm

Algorithm 1 presents the details of our bulk loading method. Suppose the

optim al number of buckets N in the final hash layout is somehow estimated;

the details of our estimation is discussed in the next chapter. For records

in the da ta set, the number of bits of the hash values for addressing can be

calculated as [Zo^A j or [7052 A"|. We reorder the records in the d a ta set

according to their positions in the predictive final hash file, i.e. the records are

sorted based on the right num ber of bits for of their hash values in a reversed

order. Finally, we insert these records into the hash table. There is no buckets

splits or records movements in the last step because both the num ber of bits

for addressing and the number of hash buckets in the final hash file are known.

In Algorithm 1, for each record, r least significant bits of its hash value

gives the address of the bucket where the record must be stored. Before the

split point is reached, the algorithm uses \log<>N] bits for addressing. At the

split point, the number of bits used for addressing is reduced by one to indicate

th a t the buckets after th a t point are not split. W hen log2N is an integer, the

resulting hash file has the sta te of being at the beginning (or the end) of a

generation.

L e m m a 2. Algorithm, 1 is s-optimal.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r ith m 1 Bulk Loading a hash index

Estim ate the number of prim ary buckets in the hash file and denote it with
N i

ri = [Iocj2N \
r2 = f log2N]
Sort the records on r2 least significant bits of their hash values in a reversed
order;

Let p — N — 2n denote the next bucket th a t will split

b = 0; {current bucket th a t is being filled}
r = r2]
w hile there are more records do

Get the next record R w ith the hash value H r]
Let h be the r least significant bits of H r]
Reverse the order of the bits in /i;
if h > b (the record belongs to the next bucket} then

W rite bucket b to the hash file;
b + +;
if b > p {has reached the split point} then

r = r X]
end if

end if
if bucket b is not full then

insert R into bucket b;
else

W rite bucket b to the hash file if it is not written;
if there is an overflow bucket with enough room then

insert R into an overflow bucket;
else

insert R into a new overflow bucket;
link the overflow bucket to bucket b or the other overflow bucket (if
any);
W rite the overflow bucket when it gets full;

end if
end if

end while

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This is because there are 110 buckets splits and records movements and

buckets are not accessed in the algorithm after they are written. The purpose

of hashing is to distribute records random ly into the address space. We choose

the last few bits as the sorting bits because these bits are less significant

compared to the first few bits of the hash values. For many hash functions,

the fist few bits of the hash values they generated are the same.

Estim ating the number of prim ary buckets can be done w ithin on scan and

while the records are being read for sorting, hence it involves no additional

I/O s. Further to sorting, the d a ta is read once and w ritten once and both are

done sequentially. If we pipe the result of the sort to our loading, there is no

additional reading. Thus the to tal cost of the algorithm is the cost of sorting

the records plus the cost of sequentially writing them .

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Layout Param eter Estim ation

3.1 Layout Param eter E stim ation based on a
user specified I /O

An im portant part of our algorithm is the prediction of a “good” hash layout

before d a ta is actually loaded. This prediction is not generally easy for a

dynamic hash file since the final layout depends on both the distribution of

the d a ta and the order in which the records are inserted. Our goal in this

section is to find a hash layout with a user-specified average I/O for retrieving

a record.

A good hash layout should have a low average access cost while keeping the

storage overhead small. Clearly, improving the access cost involves increasing

the storage overhead and vice versa, because a compact hash file with a high

record density has a greater I /O cost per hash probe. To find a good trade-off,

we use a user-tunable I/O cost and seek a layout th a t optimizes this function.

Our bulk loading algorithm is independent of the input ordering; we exploit

the fact th a t the records in every bucket of a final layout has their few least

significant bits the same. We also look for the best layout (for some given

param eters) th a t is equivalent to a final layout, bu t there may not be any

ordering of the input th a t produces th a t particular layout via incremental

insertions.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let L denote the capacity of a bucket, i.e. the maximum number of records

th a t can be stored in a bucket. For variable length records, L can be calculated

as the ratio between the bucket size in any units and the average record size

again in the same units. W ithout loss of generality, suppose reading or writing

a bucket involves one I/O , and th a t to access a record in a bucket, we need

to retrieve the whole bucket. Therefore, retrieving a record in a prim ary hash

bucket requires one I/O , and retrieving a record in an overflow bucket requires

more than one I/O .

We do our estim ation for the following two cases: (1) the hash function

distributes the records uniformly at random in the address space, and (2) the

hash function is skewed toward a few addresses.

3.1 .1 L ayout E stim a tio n for R an d om ly D istr ib u ted D ata

Let N denote the num ber of prim ary buckets in the hash file. We want to

find a value of N th a t optimizes the storage usage and still guarantees a hash

layout th a t has a user specified average cost for retrieving a record. Suppose

the hash function is chosen such th a t it random ly maps each record key into a

k b it hash value. W hen the records are random ly distributed into the address

space, the probability th a t an arb itrary bucket in the final layout has x records

m apped to it can be predicted using the following binomial distribution:

where n is the to ta l num ber of records and C" = n\/{x\{n — a-)!). Com puting

the expression in Equation 3.1 in practice is not easy. Instead, a good approx

im ation of th is function which is easier to compute for large values of n and

N can be given using the following Poisson distribution:

(3.1)

(3.2)

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where A = n / N . The param eter A can be treated as the fill factor of the hash

file, which is the average num ber of records in a hash bucket. We can use

Equation 3.2 to estim ate the distribution of records in the final hash layout.

The expected num ber of buckets with x records is N * P(x).

split p o in t

Area 1

Area2

Area 3

2r

Figure 3.1: A linear hash file

Equation 3.2 is based on the assum ption th a t the records are distributed

random ly in the “entire” address space. However, this assum ption often does

not hold for linear hashing. Take the linear hash file in Figure 3.1 as an

example, where the file consists of three regions with different record densities.

Area 1 includes the buckets which are split; suppose this region has N\ buckets.

Area 2 includes the buckets which are not yet split in the current generation;

suppose this region has N 2 buckets. Area 3 also has N x buckets since every

bucket in Area 1 has its buddy bucket in Area 3. There are two hash functions;

r b its are used for addressing a record in areas 1 and 3, whereas r — 1 bits are

used to address a record in Area 2.

Suppose there are n records and N hash buckets in the entire hash table.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have the following constraints:

n 1 + n 2 + n 1 - n

Ni + N 2 = 2r = 2llos»*J

From these equations, N \ and iV2 can be rew ritten in term s of N as follows:

N i = N - 2 ^ Ni (3.3)

N 2 = 2 ^ ° ^ Ni+1) - N (3.4)

The fill factor Ai or the average number of records in a hash bucket of

A rea 1 and Area 3 is

\ n _ n fo ^
1 = 2 * (M + N 2) ^ 2L’°S2 wj+i t3')

Plugging Ai in Equation 3.2, we can find the probability th a t a bucket in

Area 1 and Area 3 has a: records. The average cost to retrieve a record is the

ratio of the num ber of I /O s to retrieve all records and the num ber of records.

Here, any possible buffering effect is not accounted for. Let Tb(i) denote the

num ber of I/O s to retrieve all i records m apped to a prim ary-area bucket:

[i/Li
Tb(i) — J 2 (i - j * L) (3.6)

o

For example, with L, the capacity of a hash bucket, set to 10, Tb{ 15) is 20; i.e.,

10 I/O s for retrieving the records th a t are physically stored in the primary-

area bucket and 2*5 I/O s for the records th a t are stored in an overflow-area

bucket. Hence, the to ta l num ber of I/O s to retrieve all records in Area 1 and

Area 3 can be computed as:

OO
T 1(N) = 2 * ' £ N 1 * p (i)*Tb(i) (3.7)

< = i

Similarly, the fill factor of Area 2 is:

A2 M + A2 2Li°s^J

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the to ta l number of I /O s to retrieve all records in Area 2 is:

OO
T2(N) ^ = ' £ N 2 * P (i) * T b { i) (3.9)

Thus, the average num ber of I/O s to retrieve a record from the whole hash

L e m m a 3. The average number of I /Os, f, is a monotonically non-increasing

function of N; N is also a monotonically non-increasing function o f f

Lemma 3 can be derived from the fact th a t when N increases, some buckets

in the hash file are split and the records in these buckets may be moved to

the new buckets. The density of the hash file becomes lower and the average

I/O s per probe should also decrease or a t least rem ain the same. Given a

desired number of I/O s, there is only one unknown variable in Equation 3.10

which is N , bu t it is not easy to solve the equation directly. Algorithm 2

presents the steps for finding an optim al value of N. Param eter Max indicates

the maximum value th a t m ust be examined to find an optim al solution to the

equation. In practical cases, our desired num ber of I /O s cannot be too small

or too large. Thus, we can do a binary search for N G [1, n]; the extreme case

N = 1 is when all records are inserted into a single bucket, and the extreme

case N = n is when each bucket has only 1 record on average.

A lg o r ith m 2 Estim ate the num ber of hash buckets for random data

n : {number of records}
I /O : {a user-supplied value which is greater than 1}
f (N) : { th e average I/O cost to retrieve one record}

Do a binary search for f (N) in the interval of [l,Max] to find the smallest

table is:
f (N) = T m + m N)

n
(3.10)

Let f (N) = (T1(N) + T2(N)) / n

N where f (N) < = I /O .

22

with permission of the copyright owner. Further reproduction prohibited without permission.

L e m m a 4. Algorithm 2 correctly finds an optimal number of buckets N.

The proof can Ire easily derived from Lemma 3. As a. proof of concept, we

randomly generated 10 million records, each with a 32-bit random hash value,

and applied Algorithm 2 to find a hash layout with a user-specified bound on

the expected number of I /O s for a hash probe. We also actually built the hash

file and counted the average number of buckets th a t are accessed for a hash

probe. The results are shown in Table 3.1. Given a user-supplied I/O , our

predicted layout has a. real average I/O th a t is very close to the user-supplied

I/O .

Table 3. Quality of our layout estim ation 'or ranc
User-supplied I/O 1.05 1.10 1.20
Real I /O 1.052 1.100 1.223

om data

3.1 .2 L ayout E stim a tio n for Skew ed D a ta

The distribution of records in the address space can vary w ith the hash function

th a t is chosen and the da ta set th a t is being loaded. In general, we may not be

able to guarantee th a t a given hash function converts the keys into hash values

randomly. Therefore, using our earlier analysis to estim ate a hash layout is

questionable. A solution is to construct a histogram for each candidate class

of equivalent layouts, w ith cell i of the histogram showing the tally of records

th a t are going to be m apped to bucket i. Given th a t each bucket has a fixed

size, it is easy to find the exact number of both the overflow records and the

empty slots.

A problem here is th a t we may not have enough memory to construct one

such histogram. Given a layout th a t uses r bits for addressing, the histogram

m ust have 2r cells to accurately show the tallies of records in each bucket. For

r = 40, for instance, if we use two bytes to record a tally, we will need 2 TB

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of memory to construct a histogram. Clearly, this is not feasible for a large

da ta set. An alternative is to choose < r initial b its for addressing and

construct a histogram with 2r* cells. The value of r* can be chosen such th a t

the histogram can fit in the available memory. Each cell of the histogram is

associated with 2r~r' buckets and keeps the to ta l count of the records th a t are

m apped to those buckets. If we can assume th a t the records th a t are mapped

to a histogram cell are random ly distributed within the buckets associated

to the cell, then we can use our earlier analysis for records within a cell. In

particular, Equation 3.10 can be used to estim ate the num ber of I/O s needed to

retrieve the records within a cell. The histogram has 2n cells and N denotes

the num ber of buckets th a t are allocated for the entire hash file, hence the

num ber of buckets for each cell is N / 2 ri. Suppose the average I/O cost to

retrieve a record from cell j is f j (); the average num ber of I/O s for the entire

hash file is
2 ri_ fft .

= 2ri)
j =i n

where n.j is the num ber of records in the j th cell and n is the num ber of records

in the whole histogram.

Algorithm 3 presents the steps for finding an optim al value of N for skewed

data. Since we know the tally for each cell, /_,() can be computed using Equa

tion 3.10 for each histogram cell j . Param eter Max indicates the maximum

value th a t m ust be examined to find an optim al solution to the equation. As

before, Max can be set to n. Clearly, the larger the size of the histogram, the

more accurate our estim ation of the skewness of the data. The limit is th a t

the size of the histogram cannot exceed the size of the allowable memory.

As a proof of concept, we generated two da ta sets w ith 10 million records

each. Each record of the d a ta set had a 32-bit hash value. The first 27 bits of

the records in these two d a ta sets are completely random and the remaining 5

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r ith m 3 Estim ate the number of hash buckets for skewed d a ta

I /O : {a user-supplied value which is greater than 1}
ri\ {initial number of b its for addressing}
r: {number of bits for addressing}
n: {total number of records}
7ij: {number of records in the j th cell in the histogram}
f f . {the average I/O cost of retrieving a record from the j tk cell of the
histogram}

Construct a histogram of the d a ta set using r, initial bits for addressing.

Let /(TV) = Y?j=i yf * / j (N / 2r')

Do a binary search for f { N) in the interval of [l,Max] to find the smallest
N where f (N) <= I /O .

bits are got using two different methods. For one da ta set, 5 least significant

b its of the hash values generated using a Zipfian distribution [13] in which the

frequency of the k th value was proportional to (1/A;)0, where 0 < 6 < 1 was

the skew.

For the other da ta set, 5 least significant bits of the hash values were

generated using a binomial distribution with a biased coin, which means heads

and tails have different probabilities when we flip a coin.

Algorithm 3 was applied on these d a ta sets varying the initial num ber of

bits The desired number of I/O s or the user-input I/O s was set to 1.10, bu t

it could have been equally set to any other number. Figures 3.2 and 3.3 show

th a t building a histogram for skewed d a ta helps, and the benefit increases

with the skewness of the data. Furtherm ore, the more space is allocated for

a histogram , the closer our estimation is to the real number of I/O s. Even a

small histogram can also reduce the effect of the skewness on the final result.

In the example zipf distribution, a 23 = 8 bytes histogram using 3 initial bits

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for addressing helps a lot which can reduce the gap between the user’s input

I /O and real I /O from 0.52 to 0.27 when the skew 6 — 0.8.

0.7
-D - Zipf D istribution, 0 = 0 .8

Zipf Distribution, 0 = 0 .6

0.6

ro o.5

- - q

13 0.4

a .

0.3

0.2a .

0.1

Initial number of bits for addressing

Figure 3.2: Layout Estim ation for Zipf D istributed D ata

3.2 Layout Param eter E stim ation based on ac
cess cost and storage overhead

Instead of using a user-specified I/O value to predict the hash layout, another

m ethod is to use different penalty weights to balance the access cost and

the wasted storage space and then predict a hash layout. This m ethod has

the benefit when the users do not know what I /O value they need. The

overflow buckets and empty slots are assigned different penalty scores. We use

a user-tunable penalty function and seek a layout th a t optimizes this function.

Since the penalty weights of empty buckets and overflow slots are user-defined

values, the hash layouts can easily shrink and grow with different param eters:

increasing the penalty weights of empty buckets may cause a compact hash

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o

TJ
C(0
•o
CD

c
CD<D3
Q)

X I
CLCO

(5

0 1 2 3 4 5 6 7
Initial number of bits for addressing

Figure 3.3: Layout Estim ation for Bernoulli D istributed D ata

file and vice versa. Also, our predicted layout is the hash file a t the beginning

(or the end) of a generation, hence the number of prim ary buckets (excluding

overflow buckets) is 2r where r is the number of bits used for addressing.

Suppose an empty slot in a bucket is penalized by E / L and an overflow

record is penalized by O / L where E and O are some user-defined scores; we

discuss some settings of E and O a t the end of this section. Our goal is to find

a layout th a t minimizes the overall penalty score. We do our estim ation in the

following two cases: (1) the hash function distributes the records uniformly

a t random in the address space, and (2) the hash function is skewed toward a

few addresses.

3.2 .1 Layout E stim a tio n for R an dom ly D istr ib u ted D ata

Let N denote the number of prim ary buckets in the hash file. We want to

find a value of N th a t optimizes the overall penalty score. Suppose the hash

27

1.8 r

1.6 ■

1.4

1.2

0.8 ■

0.6 ■

'hs

0.4

0.2

-D - Bernoulli D istribution, P = 0 .8
Bernoulli D istribution, P = 0 .6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function is chosen in a way th a t it distributes the records randomly in the

address space.

An approxim ation of this function which is easier to compute for large

values of n and N can be given using the following Poisson distribution:

P(x) = e (3. 11)

where A = n / N . The param eter A can be treated as the fill factor of the hash

file, which is the ratio of the number of records and the number of buckets.

Using Equation 3.11, we can estim ate both the num ber of empty slots and

the number of overflow records in the final layout. The expected number of

buckets with i, records in them is N * P(i) , and the number of empty slots

in one such bucket is L — i. Hence, the penalty score for empty slots can be

computed as

Se(N) = y ' £ (L - i) * N * P (i) . (3.12)
L i = 0

Similarly the expected num ber of buckets w ith i overflow records m apped to

them is N * P (L + i). Therefore, the penalty score for overflow records can be

computed as
O 00

* N * P (L + i). (3.13)
L i=i

The overall penalty score for a given value of N is

S (N) = S e(N) + S0(N). (3.14)

If the num ber of records to be loaded is fixed, increasing the number of

hash buckets N should cause more empty buckets and less overflow buckets.

Therefore, S e is a monotonic decreasing function and S a is a monotonic in

creasing function of the fill factor. Fig. 3.4 and Fig. 3.5 listed below are S e

and S0 functions for 1 million random records.

Fig. 3.6 is the overall penalty score function for 1 million random records.

We want to find a value of N th a t minimizes the overall penalty score. Consider

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 L
2

Figure 3.4: Penalty score for empty slots of 1 million random records

1 2 0 0 0 j----------------------- 1----------------------- 1------------------------1----------------------- 1----------------------- 1------------------------1------------------------i----------------------- 1-----------------------

| - D - L = 1 0 , E = 1 ,Q = 2]

10000 - ^
&00

8000 - a -
P

0
P

U)° 6000 - 0
Pa

a
4000 - f f

□
P0

2000 - Aja
0

. . .
q I □ [tj. b - .b --——r -------------------- 1--------------------- 1---------------------1---------------------1--------------------- ■-----------------------1-------------------

2 4 6 8 10 12 14 16 18 20
Fill fac to r = n / N

Figure 3.5: Penalty score for overflow buckets of 1 million random records

29

P

P

P
P

P
P

P

-a B- fr _l____________ I____________I____________ I____________ I____________ l_

 - - - - 1------------ -B -q -q -fn-q-O -Q- lS- Q- D- D- di-B- B -i_
10 12 14 16 18 20

Fill fa c to r = n / N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the case where N = 2r and r is the number of bits used for addressing. Since

in practical settings, the number of bits used for addressing is usually small

(e.g. less than 50), it is not hard to compute S(2r) for all such values of r

using Eq. 3.14 and find the value of r th a t gives the minimum penalty score.

We refer to this value of r as the optim al number of bits for addressing.

x 1042 .5 1----------- 1----------- 1----------- 1----------- 1----------- 1- - - - - - - - - - - ;i i 1- - - - - - - - - - - i

2 - >
h

\

\
'

o 1-5 - 9
CO \
+ \

CO® IS

" \

0.
0.5 - a B a^l'n a-B

q I _______I__________ I__________ I__________ I__________ I__________ I__________ I__________ I__________
2 4 6 8 10 12 14 16 18 20

Fill fa c to r = n / N

Figure 3.6: Overall penalty score of 1 million random records

Algorithm 4 presents the steps for finding an optim al value of N. Param eter

Max in Algorithm 4 indicates the maximum num ber of bits th a t m ust be

examined to find an optimal solution to the equation. This number can vary

depending on the values of E and O. In an extreme case where there is no

penalty for overflow records, i.e. 0 = 0 and E > 0, the optimal value of r is

zero; hence Max can be set to zero. In another extrem e case where there is no

penalty for empty slots, i.e. E = 0 and O > 0, any value of r th a t results in

no overflow records is optimal; hence Max m ust be large enough to guarantee

30

x 10

1
\
\

\
fa

\

\
\

\

9
\
\
£D

\
\

- o - L = 1 0 , E = 1 , O = 2

JOT

_J____________ 1____________ I____________ I____________ I____________ l____________ I____________ L_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o r ith m 4 Optimizing the penalty score for random ly distributed d a ta

m i n s c o r e <— oo {minimum penalty score}
r <— 0 {number of bits for addressing}

fo r i — 0 to Max do
5 = 5e(2i) + 5 0(24)
if S < m i n s c o r e th e n

min^score — S
r = i

e n d if
e n d fo r
N = 2r

th a t there is no overflow records. In practical settings where both E and O

are positive values, Max cannot be a large number.

3 .2 .2 Layout E stim ation for Skew ed D a ta

If the given hash function can not distribute the records randomly, a histogram

is also used for approxim ating the number of prim ary hash buckets in the final

hash layout. We construct a histogram for each candidate layout, with cell i

of the histogram showing the tally of records th a t are going to be m apped to

bucket i. Given th a t each bucket has a fixed size, it is easy to find the exact

number of both the overflow records and the em pty slots. We can calculate a

penalty score using Eq. 3.14 and pick the layout w ith the minimum score.

Similar to our previous m ethod, the histogram itself may be too large to

fit in memory. An alternative is to choose r,; < r initial bits for addressing and

construct a histogram with 2ri cells. The value of r,- can be chosen such th a t

the histogram can fit in m ain memory. Each cell of the histogram is associated

with 2r~ri buckets and keeps the total count of the records th a t are m apped

to those buckets. If we can assume th a t the records m apped to each cell of the

histogram are random ly distributed w ithin the buckets associated to the cell,

then we can use the Poisson distribution to predict the number of both overflow

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

records and empty slots w ithin each cell. The sum of the penalty scores of

all the cells gives the penalty score of the layout. Algorithm 5 presents our

estim ation m ethod in pseudo code.

A lg o r ith m 5 Optimizing the penalty score for skewed d a ta

m i n s c o r e <— oo {minimum penalty score)
/•j : {initial number of b its for addressing)
rm : {number of more bits for addressing)
r = Ti + rm {number of bits for addressing)

Construct a histogram of the d a ta set using r,- initial bits for addressing

fo r j = 0 to M a x — rt do
5 <— 0
fo r each cell c of the histogram do

Set n to the number of records m apped to cell c;
S + = S e(2j) + S 0(2j)

e n d fo r
if S < m i n s c o r e th e n

m i n s c o r e = S
rm = 3

e n d if
e n d fo r
r = n + rm
N = 2r

Clearly, the larger the size of the histogram, the more accurate our estima

tion of the skewness of the data. The limit is th a t the size of the histogram

cannot exceed the size of the memory. Also the step to find the minimum

penalty score requires scanning the histogram many times and can be costly.

An alternative is to examine only a limited number of all possible values for

for N.

An optim al layout in both algorithms 4 and 5 can vary depending on the

values of E and O. If the storage space is more precious, we probably prefer

more overflows records than em pty positions; thus param eter O can be reduced

and E can be increased. This can save some storage space. However, if the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access time is more im portant, we probably prefer more em pty positions than

overflow buckets; hence O can be increased and E can be reduced.

3.2 .3 P aram eter se tt in g s o f bulk load ing

O ur bulk loading algorithm uses the param eters E and O to balance the access

cost and the storage overhead. In an experiment to show the effects of different

settings of these variables, we tried to estim ate the best layout using our

estim ation techniques in Section 3 for different settings of these variables.

We used a da ta set w ith 10 million records and applied Algorithm 5 to

estim ate the number of buckets. The capacity of a bucket was set to 10 records

(i.e. L = 10) and E and O varied. We first fixed E to 1 and varied O from 1

to 10. As is shown in Figure 3.7, when the penalty score for an overflow record

is increasing, the num ber of buckets N and as a result the average num ber of

bits used for addressing r = log2(N) is gradually increasing.

Figure 3.8 shows the scenario where O is fixed to 1 and E is varied to

indicate th a t an empty slot is penalized more than an overflow record. Both

the number of buckets and the average number of bits used for addressing

are either decreasing or rem ain the same, hence the hash file becomes more

compact.

To measure the effect of these param eter settings on the actual query per

formance, we loaded the d a ta using our bulk loading algorithm and with the

number of bits r set to 19, 20 and 21. This resulted in three hash files. We

selected 100,000 random queries from the da ta set and posed them to each one

of the hash files. Each query was posed 100 times and the average response

tim e was recorded. For each hash file, we measured the average running time

of a query and the average num ber of I/O s. To measure the num ber of I/O s,

we counted the number of buckets th a t we needed to access for each query.

Since there could not be much buffering effects for randomly-selected queries,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21.2
r =

O)
% 20.8

"O
■are
U. 20.6

20.4

3 20.2

a>

19.1

19.6

P e n a l ty s c o r e fo r a n o v erflo w re c o rd

Figure 3.7: Average num ber of b its used for addressing varying the penalty
for an overflow record

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y- r = log2 N
a_ r = ro u n d (lo g N)

O)

19.6
■Q

£ 19.4

S’ 19.2

18.8

P e n a lty s c o r e fo r a n e m p ty s lo t

Figure 3.8: Average num ber of bits used for addressing varying the penalty
for an empty slot

the number of buckets th a t needed to be accessed was a good indication of

the number of I/O s. As is shown in Table 3.2, when the number of bits for

addressing is increased from 19 to 21, the hash file becomes more query effi

cient; both the running tim e and the number of I/O s are dropped, bu t this is

for the cost of some additional disk space.

Table 3.2: Query cost varying the number of bits for addressing
r 19 20 21

running tim e (msec) 0.082 0.072 0.070
of I /O s 1.54 1.10 1.00

file size 1.21 GB 1.37 GB 2.48 GB

These experiments confirm th a t setting the param eters E and O is indeed

im portant in balancing the access cost and the wasted storage space, and th a t

the performance of the hash file can be tuned as it is desired by properly

setting these variables.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the rest of the experiments, we set E = 2 and O = 1 to indicate th a t an

empty slot must be penalized twice as much as an overflow record; this setting

is expected to produce a rather compact hash file. We also set the number of

bits for addressing r — round(log2 {N)) where N is the estim ated number of

buckets. The capacity of a bucket L = 10 and the number of records n can

vary from one experiment to next.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Improving Loading in Berkeley
DB

There are efficient implementations of linear hashing in practice (e.g. Berkeley

DB [5]). and dynahash [1]. Berkeley DB supports linear hashing through its

so-called extended linear hashing [17]; it provides functions to construct and

search a linear hash index bu t does not support bulk loading. To use our bulk

loading algorithm, we need to construct a linear hash file th a t can be correctly

recognized by the library. W ithout knowing the detailed file format and the

overflow handling m ethod th a t is used, it is not easy to construct one such

file. In this section, we take a different approach to bulk loading; we trea t

the library as a black box and try to efficiently load data using the external

function calls th a t are provided. The function calls th a t are needed include

a function to insert a record and a function th a t takes a key and returns its

hash value. This m ethod of loading in general can be useful in some of the

systems th a t support linear hashing bu t do .not expose the details of their

implementations.

Berkeley DB provides a load utility, called dbJoad, which when used to

load data, reads one record a t a time and adds this record into the hash

table. Below we list a few param eters of dbJoad utility th a t are useful in our

experiments.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-f Read from the specified input file instead of from the standard

input.

-T The -T option allows non-Berkeley DB applications to easily load

tex t files into databases.

- t Specify the underlying access method. If no -t option is specified,

the database will be loaded into a database of the same type as was dumped;

for example, a Hash database will be created if a Hash database was dum ped.

In our experiment, obviously we set it to “hash” .

The following keywords axe supported for the -c command-line option to

the dbJoad utility.

db.pagesize (number) The size of database pages, in bytes. The minimum

page size is 512 bytes, the maximum page size is 64I< bytes, and the page size

m ust be a power of two. In our experiment, we use the underlying linux

filesystem I/O block size, which is 4096bytes = 4K B .

hJTactor (number) The fill factor of the Hash database. The fill factor is

an approxim ation of the num ber of records allowed to store in one bucket. In

our experiment, since we know the size of the keys and d a ta in our da ta set,

we set the fill factor using Berkeley D B’s recommended formula:

(pagesize — 32) / (average-key .s ize + average^da tasize + 8)

h_nelem (number) The size of the Hash database. In our experiment,

th is param eter is set to the num ber of records in the da ta set.

To integrate our sorting procedure into this utility, we buffer the input

and sort the records inside the buffer based on their reversed hash values. The

buffering partitions the input into smaller chunks, and the sorting reorders the

records in each partition so th a t the records in the same partition which belong

to the same or adjacent buckets are grouped together. Algorithm 6 presents

our modified version of the load utility. We use linux’s qsort command to sort

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the records in the buffer.

A lg o r ith m 6 Our modified version of dbJoad in Berkeley DB

Initialize the memory buffer
w h ile there are more records do

Read a record R from the d a ta set and add it to the buffer
i f the buffer is full th e n

Sort the records in the buffer based on their reversed hash values
Insert all the records in the buffer into the hash table
Clear the buffer

e n d if
e n d w h ile

Obviously, the size of the buffer can directly affect the bulk loading perfor

mance. The larger the buffer, the more records will be grouped according to

their positions in the hash table. We may want to allocate as much buffer space

as possible bu t we are often limited by the size of the main memory. Further

more, sorting a few small partitions can be faster than sorting the whole data

set. Our experiments (reported in the next section) show th a t even adding a

small buffer can significantly improve the performance. The buffer used for

sorting is always more effective than the I /O cache of the same size.

An alternative is to sort all the records, based on their reversed hash values,

using an external sort utility and pipe the result to the original dbJoad utility.

This has the benefit th a t the input ordering pretty much corresponds to the

ordering of the records in the hash file. We compare this solution to the partial

sorting buffering m ethod in our experiments.

39

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Experim ents

To show the scalability and the performance improvements of our algorithms,

we conducted experiments comparing our bulk loading to both our implemen

tation of a naive load algorithm and the loading in Berkeley DB.

Our experiments were conducted on a real d a ta set of URLs. The data

was extracted from a set of crawled pages in the Internet Archive ([2], [4])

collection. A ttached to each URL was a 64-bit unique fingerprint which was

produced using R abin’s fingerprinting scheme [15]. To experiment with larger

keys, we used as our keys the ascii character encoding of each fingerprint; this

gave us a 16-bytes key for each record. Unless sta ted otherwise, we used a

random 100-bytes character string for da ta values. We also tried using URLs

as our keys but the result was p retty much the same and they are not reported

here. The records in our d a ta set look as follows:

Keys D ata

00000000312E637A abcdefghijklmn.....

00000000382E746F abcdefghijklmn.....

00000000672E746F abcdefghijklmn.....

000000006C2E6E75 abcdefghijklmn.....

00000000762E6E75 abcdefghijklmn.....

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

00000032712E74GF abcdefghijklmn..

00000032752E746F abcdefghijklmn..

00000038332E6E75 abcdefghijklmn..

0000004FDEC99112 abcdefghijklmn

00000061312E706C abcdefghijklmn..

All our experiments were conducted on a Pentium 4 machine running Red

H at 9, with a speed of 3.0GHz, a memory of 2 GB, and a stripped array of

three 7200 RPM IDE disks. We used the version 4.2.52 of Berkeley DB, which

was the latest a t the tim e of running our experiments.

For sorting in our algorithm s, we had the option to sort the d a ta by the

right number of bits after the right number of bits was estim ated. However, we

decided not to do it for a few reasons. First, this required a tight integration

of our layout estim ation with our sorting if we wanted to avoid an ex tra scan

of the data. Second, there was not much improvement in term of performance

when the num ber of bits used for sorting was less than the full hash values. For

instance, our experiments w ith external sorting 180 million 130-byte records

showed th a t a sort based on 16 bits takes 85 m inutes whereas a sort based on

64 bits takes 87 minutes. Third, for the partial-sorting algorithm (Alg. 6),

using our approxim ation algorithm, the number of bits for addressing of the

records in the buffer and th a t of records in the final hash layout are differ

ent. W h at’s more, even for the records in the buffer, the number of bits for

addressing is directly affected by the number of records in the buffer. Then,

using different sizes of sorting buffers also requires different numbers of bits

for sorting. Sorting the records based on the reversed hash value instead of

the right number of bits can avoid a lot of troubles and the trivial performance

difference can be om itted. Therefore, our reported experiments here all use

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sorting based on the full hash values.

For both efficiency and scalability reasons, we used external sorting when

the entire d a ta set needed to be sorted. In our experiments, we use linux’s

sort command.

5.1 Perform ance com parison to naive loading

As a baseline comparison to our bulk loading, we implemented a naive loading

of a linear hash file which inserts one record at a time, and compared its

performance to our implementation of the loading algorithm (Alg. 1, using a

user-specified I/O of 1.10). Both im plem entations use the same file format

and overflow handling method.

We varied the size of the d a ta set from 1 million to 50 million records. We

couldn’t run the naive loading for larger da ta sets; it was taking already more

than 55 hours to run it with 50 million records about 5.9 GB. The result of

the comparison is reported in Fig. 5.1 and Table 5.1.

The X axis in the figure is the num ber of records in millions, and the Y

axis is the improvement factor, in term s of running time, of our bulk loading

algorithm compared to the naive loading. Loading 10 million records, for

instance, using our bulk loading algorithm takes 3 m inutes and 16 seconds

whereas it takes 129 minutes and 55 seconds to load the same d a ta set using the

naive algorithm. For 50 million records, using our bulk loading algorithm takes

27 m inutes and 4 seconds whereas the naive algorithm needs 3333 minutes and

18 seconds. O ur algorithm is 123 times faster. Generally speaking, our bulk

loading algorithm outperforms the naive loading by two orders of magnitude,

and its performance even gets be tte r for larger d a ta sets. The reason is there

are huge numbers of bucket splitting and record movements (read and write)

in the naive loading. However, our bulk loading algorithm performs external

sorting and sequential writing. All the splitting and movements are avoided.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 4 0 1---------------- 1---------------:----------------- r

N u m b e r of r e c o r d s (in m illions)

Figure 5.1: Improvement factor varying the num ber of records for our bulk
loading compared to the naive loading

Table 5.1: Running time of our bulk loading compared to a naive loading
Number of records 1M 5M 10M 20M 50M

Size of d a ta set 118M 590M 1.18G 2.36G 5.9G
Bulk loading 0.17 min 1.40 min 3.27 min 10.15 min 27.07 min
Naive loading 3.17 min 49.80 min 129.92 min 752.43 min 3333.30 min

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Perform ance com parison to th e dbJoad u til
ity in B erkeley D B

As another baseline for our comparison, we used the native Berkeley DB load

utility and compared its performance to that of our modified version of the

same utility and also our bulk loading algorithm.

5 .2 .1 Scalab ility w ith th e size o f th e d a ta set

We varied the size of the da ta set from 1 million to 20 million records and

measured the loading tim e. The size of the sorting buffer in our modified

version of the dbJoad u tility was set to 300MB (our next experim ent shows how

the buffer size can affect the load performance). On the other hand, Berkeley

DB autom atically allocated 1 MB I/O cache to dbJoad utility. The to ta l buffer

size of our modified dbJoad utility was 301MB. To make the comparisons fair,

we also set the I /O cache of the native dbJoad u tility to 301 MB. In the

following experiment, all the param eters including db_pagesize, h Jfac to r and

h_nelem of these two utilities are set to their default values by Berkeley DB. We

couldn’t run the experiments for larger da ta sets (such as 50 million records)

with the original dbJoad u tility of Berkeley DB because of the low performance

of Berkeley DB in this case.

The result of the experiment is shown in Figure 5.2. W hen the da ta set

is only 1 million records (or 118 MB), the I/O cache allocated to the native

version of the dbJoad u tility is large enough to keep the whole d a ta set and

therefore, the whole hash table is built in the memory. In this scenario, our

modified version of the dbJoad utility doesn’t outperform the native dbJoad

utility of Berkeley DB. W hen the da ta set is 5 million, the size of the da ta set

is more than 590 MB, and the whole d a ta cannot fit in the sorting buffer of

our modified dbJoad utility or the I /O cache of the native dbJoad utility of

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.2: Loading records in the hash tables with different num ber of records
Number of Records 1M 5M 10M 20M

Running Time of our approach 1.53 min 13.20 min 59.02 min 299.08 min
Running Time of Berkeley DB 7.75 min 86.27 min 216.88 min 893.75 min

Berkeley DB. The results shows th a t sorting the records in the buffer based on

the reversed hash values can improve the performance by a factor of 1.5. When

the da ta set contains more than 10 million records, our experiment shows th a t

our modified dbJoad outperform s the native dbJoad u tility in Berkeley DB by

at least a factor of 3. The performance of our bulk loading algorithm is better

than the other two approaches. It takes only 10 minutes and 23 seconds to load

the da ta set with 20 million records while native dbJoad u tility in Berkeley

DB requires 1682 minutes and 1 seconds. This result shows the sorting-buffer

is more effective than the I /O cache when loading using Berkeley DB. W hen

the size of the memory is limited, we should allocate as much sorting-buffer

as possible.

In Berkeley DB, the num ber of records to be loaded by the dbJoad utility

can be specified by a param eter called “h_nelem.” W hen “hrnelem” is set, the

dbJoad utility a ttem pts to build the whole empty hash table a t the beginning

instead of using the dynam ic hashing strategy. In our experiments, however,

we did not notice any improvements on the performance of the native dbJoad

utility after setting “h_nelem” in advance to load a d a ta set w ith unsorted

records.

5.2 .2 T h e effect o f buffer size on th e perform ance

As shown in Figure 5.2, when the da ta set cannot be fully loaded into the

memory, the sort buffer is always more effective than the I /O cache of the

same size within the native dbJoad utility. In another experiment to measure

the effect of the sort buffer on the performance of our modified dbJoad utility,

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1800
d b J o a d of Berkeley DB

- o - O ur m odified version of d b J o a d (Alg.5)
- 0 - O ur bulk loading algorithm _____________1600

1400

1200
U)
S
C 1000
E
c
0} 800
E
F

600

400

200

20
Number of records in millions

Figure 5.2: Running tim e varying the num ber of records

Table 5.3: Loading the hash index with different buffer sizes
Buffer Size 10M 50M 100M 300M 500M 1G

Total Cost (min) 106.62 39.08 28.68 23.65 18.15 19.53

we fixed the size of the d a ta set to 10 million records and varied the sort

buffer size from 100 MB to 1 GB. Each record contained a 16-bytes key and

a 50-bytes da ta field. T he default I /O cache size of dbJoad was 1 MB. As is

shown in Figure 5.3, increasing the buffer size improves the performance of

the new dbJoad u tility up to a point where the whole d a ta set can be fit in

buffer. After this point, the performance remains the same.

It is clear th a t the sort buffer size has a significant im pact on the running

time of the algorithm. W hen the buffer size is increased from 10MB to 500MB,

the loading time is decreased considerably. This is because when the buffer size

is too small, d a ta is sorted only within small segments and we can’t guarantee

all the records which finally belong to the same bucket are grouped together.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

100

90

70

O)
• u

30

20

1000400 500 600
B uffer s iz e (in MB)

700 800 900100 200 300

Figure 5.3: Running tim e varying the buffer size for our modified dbJoad

However, as is shown in the figure, even allocating a modest-sized buffer (e.g.

50MB) can significantly improve the performance. In the extreme case where

the buffer size is greater than 600MB, the buffer is large enough to load all

the records. The hash table can be built in memory, and increasing the buffer

size has no more impact.

5.2 .3 Sortin g data in advance

In another experiment, we sorted the records based on their reversed hash

values using the external sort command in Linux and loaded the sorted data

using the native dbJoad utility with and w ithout “h_nelem” setting. The

results are compared to th a t of our bulk loading algorithm.

As is shown in Figure 5.4, setting the num ber of records “h_nelem" this

tim e can improve the performance of the native dbJoad u tility by at least a

factor of 3. W hen the d a ta set contained 20 million records, the native dbJoad

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

utility w ith a pre-specified number of elements took an order of magnitude less

tim e than the case when “h_nelem” was not provided. Combining the results

with those in Figure 5.2, we can conclude th a t setting the number of records

in advance can increase the performance only when the records are sorted by

their reversed hash values. This is because it is after th is ordering th a t the

load order becomes the same as the order in which the records sit in the hash

table. Therefore, records movements between hash buckets are avoided.

In this experiment, we’ve also tried to set the “hJTactor” which is called

the fill factor th a t represents the density of the hash file. Berkeley DB suggest

to use the following formula to calculate the average number of records in one

page. However, we did not notice any obvious improvement after setting the

fill factor.

(pagesize — 32) / (average-key .s ize + average.data .size + 8)

120

native d b J o a d with default se tting
- a - native d b J o a d with specified h_nelem
- f r - O ur bulk loading algorithm ____________

100

80
co0J
DC
E

_c
CD

E
P

40

20

Number of records in millions

Figure 5.4: Loading w ith sorted records

48

with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: Loading with sorted records
Number of recrods 1M 5M 10M 20M
Total Cost with speci
fied h_nelem

0.74 min 2.47 min 5.2 min 10.90 min

Total Cost with de
fault setting

1.35 min 8.29 min 30.51 min 110.17 min

The performance of the native dbJoad utility with a pre-specified number of

records is also comparable with th a t of our bulk loading algorithm. After the

records are sorted based on their reversed hash values, both m ethods ju s t read

the records from the data set one by one and then write them into the hash

table. Buckets split and records movements don’t occur. The only difference

is th a t our bulk loading algorithm use Alg. 3 to estim ate the layout before

really building it.

Based on the above experiments with Berkeley DB, to load a d a ta set into

a linear hash index with Berkeley DB should follow the following 2 rules:

• If we want to load the records incrementally when they are received, the

sorting-buffer strategy should be use. The size of the allocated sorting-

buffer should be as large as possible.

• If we want to load the entire da ta set once, we need to sort all the records

based on their reversed hash values. Then load the sorted d a ta set using

dbJoad utility with the number of records specified.

5.3 Q uality of th e hash file

It is clear from our earlier experiments th a t our bulk loading algorithm can

significantly reduce the loading time, but a question th a t arise is how a hash file

generated using our bulk loading algorithm compares to a hash file constructed,

for instance, using Berkeley DB. Reducing the loading time may not be th a t

im portan t if the query response time is much longer.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have proposed two cost functions to approximate the num ber of hash

buckets in the final hash layout or the number of bits for addressing when

hashing. In our first method, we use a user-tunable penalty function and try

to find a hash layout with a user-specified average I/O for retrieving a record.

In our second method, we use E and O as the penalty score for an em pty slot

and an overflow record. Then we define a user-tunable penalty function to

find a good trade-off between the access cost and storage overhead.

We did some experiments using both of the above methods. In the exper

iment using the input I /O m ethod to compare the query response time, we

loaded 10 million records into a hash file using both our bulk loading algorithm

and our naive loading (as discussed earlier). To make a fair query cost com

parison, we forced the hash files in both cases to have the same load factors.

We first generated a hash file using our bulk loading algorithm, w ith average

I /O — 1.10 per probe and calculated the load factor. We then used the same

load factor to generate another hash file for the same d a ta set bu t using the

naive loading algorithm.

We random ly selected 100,000 queries from the da ta set and posed them

to the two hash files. For each query, we measured the running tim e and

calculated the average running tim e for the 100,000 queries. Table 5.5 shows

the result of the comparison.

As is shown in Table 5.5, when the size of the data set and the load factor

are fixed, the size of the two hash files are also the same. More im portantly,

for each query the average number of I/O accesses over our hash file is the

same as th a t over the hash file built using the naive loading. The average

query response times for the two hash files are also nearly the same. From this

experiment, we can say th a t the quality of the hash file built using our bulk

loading algorithm is very close (if not identical) to the hash file built using the

naive loading.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.5: Query cost comparison between the hash files (user-specified I/O)
Size of the
hash file

Load factor Average
query cost

Average I/O
accesses

Bulk loading 1.37 GB 0.95 0.072 msec 1.10
Naive loading 1.37 GB 0.95 0.071 msec 1.10

We also compared the quality of the hash file built using bulk loading to

the one generated using the dbJoad utility of Berkeley DB. The load factors for

the two hash files were fixed to 0.47. This corresponded to I /O = 1.04 in our

bulk loading algorithm. The results are listed in Table 5.G. We can see th a t

the query average response tim e for our algorithm is much more less than th a t

of Berkeley DB. The reason is our algorithm and Berkeley DB use different

file formats. W h at’s more, Berkeley DB seems to do some additional caching

works while querying. W hen we ran the queries for the first tim e in Berkeley

DB, it took more than 8 m inutes to process 100,000 queries. However, it took

only 1 second if we ran all the 100,000 queries again.

Table 5.6: Query cost comparison with Berkeley DB (user-specified I/O]
Size of the hash file Load factor Average query cost

Bulk loading 2.48 GB 0.47 0.070 msec
Berkeley DB 2.62 GB 0.47 4.80 msec

Our two m ethods to predict the hash layout before loading only can af

fect the number of bits for addressing. Their bulk loading procedures are

exactly the same. Therefore, if the load factors are the same, the hash file

using penalty score m ethod of our bulking algorithm should also be very close

(if not identical) to the hash file built using the naive loading. Our further

experiments prove this. In the experiment using the penalty score m ethod to

compare the query response time, we loaded 10 million records into a hash

file using both our bulk loading algorithm and our naive loading (as discussed

earlier). To make a fair query cost comparison, we forced the hash files in

both cases to have the same load factors. We first generated a hash file using

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

our bulk loading algorithm, with param eters E = 2 and 0 = 1 and calculated

the load factor. We then used the same load factor to generate another hash

file for the same d a ta set bu t using the naive loading algorithm. We randomly

selected 100,000 queries from the d a ta set and posed them to the two hash

files. For each query, we m easured both the number of I/O s and the running

time. For linear hashing, a query ideally should cost one I/O , but the actual

cost is typically a bit more due to the overflow records. As our measure of the

number of I/O s, we count the number of buckets th a t are accessed for each

query. This is reasonable since the queries are selected randomly and there

cannot be much buffering effects. To measure the running time, we ran each

query 100 tim es and calculated the average running time.

Table 5.7: Query cost comparison between the hash files (E /O)
Size of the
hash file

Load factor Average
query cost

Average I/O
accesses

Bulk loading 1.37 GB 0.95 0.072 msec 1.10
Naive loading 1.37 GB 0.95 0.071 msec 1.10

As is shown in Table 5.7, using a penalty score function in our bulk loading

m ethod has the same average I/O accesses as the naive loading method. This

result is the same as the user-specified average I/O method. The average query

response tim es for the two hash files are also nearly the same.

We also did the same experiment as th a t of the the user-specified average

I/O m ethod on Berkeley DB. The param eters are set as: E = 1 and 0 = 9

which result in a load factor 0.47. The results are listed in Table 5.8.

Table 5.8: Query cost comparison with Berkeley DB (E /O)
Size of the hash file Load factor Average query cost

Bulk loading 2.48 GB 0.47 0.070 msec
Berkeley DB 2.62 GB 0.47 4.80 msec

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

R elated Work

Closely related to our bulk loading is the incremental d a ta organization of

Jagadish et al. [10] which delays the insertions into a hash file. In this paper,

they propose a “Stepped-Hash” algorithm, which collect the records in piles

and merge them with the main hash only after enough records are collected.

D ata in each pile is organized as a hash index and each bucket of the index

has a block in memory. This idea of lazy insert is similar to our Alg. 6.

Both m ethods reorder the input records to m atch the ordering of the hash

file, hence reducing the num ber of random I/O s. A difference is th a t we use

in-memory sorting and they use in-memory hashing. In the Stepped-Hash

m ethod, although records inside an in-memory hash bucket have the same

value, there is no order a t all inside a hash bucket. Records are m apped to

random positions in the final hash file. In our methods, records are sorted

based on their reversed hash values. Thus the records th a t are m apped to the

same location in the hash file are all adjacent. In other words, the order of

the records in a in-memory block is the same of the order of these records in

the final hash file. This provides a slight benefit a t the load time. In fact, for

a part of the d a ta set, partial sorting is always be tte r than partial hashing,

because records are more organized using sorting. An advantage of these two

m ethods is th a t both of them support store d a ta incrementally as it arrives.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, a lot of splitting and record movements still occur when records are

inserted into a non-em pty hash table. In our experiment, 3 hours are used to

load only 2 GB da ta using Berkeley DB.

Our Alg. 1 is more efficient and is different. The entire da ta is sorted in

advance using external sorting which is typically fast. The to ta l cost of loading

is the cost of sorting, i.e. 3N if there is enough memory to store sqrt(N) pages,

plus N for writing the hash file. The key point is we approxim ate the number

of buckets in the final hash layout even before loading actually is performed.

Therefore, there are no bucket splitting or record movements and buckets are

not fetched again after they are written. On a da ta set with 20 million records,

Alg. 1 is 50 tim es faster than our partial sort-based algorithm (Alg. 6) which

is comparable to lazy insertions of Jagadish’s Stepped-Hash algorithm.

Bercken et al. provide a generic approach to bulk loading m ultidimensional

index structures [9]. Their m ethod is based on an abstract da ta structure called

buffer-tree. The buffer-tree differs from the target index structure mainly in

two points. First, each internal node of the buffer-tree has an additional

buffer where records are tem porarily stored. Second, multiple insertions are

processed sim ultaneously in the buffer-tree. W hen the number of records in

the buffer exceeds a predefined threshold, the insertion processes of all records

in the buffer advance to the next level of the tree. Standard routines for split

ting and merging pages are used. In their m ethod, sorting multidimensional

da ta according to a predefined global ordering is avoided. Second, instead of

inserting the record one by one, they insert multiple records simultaneously

and m ultiple restructuring operations are also processed sim ultaneously in the

tree. An example of how to apply this technique to R-tree was dem onstrated

in their paper. For bulk loading R-trees, their approach requires 0 (n logm n)

disk accesses in the worst case where n and m denote the num ber of da ta pages

and available main memory (in pages), respectively.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bercken’s work avoid sorting the high dimensional d a ta set w ith a prede

fined global ordering. However, this m ethod is not easy to be applied to a

hash index. Merging into a tree-based index is different from merging into

a hash index. Two hash layouts may use different numbers of bits for ad

dressing although their bit-random izing hash functions are the same. Then

merging them may cost a lot of bucket split and movements. To avoid them,

the num ber of hash buckets or the number of bits for addressing has to be

predicted before loading.

Bohm and Kriegel propose a generic bulk loading m ethod which allows the

application of user-defined split strategies in high dimensional index construc

tion [3]. To determine the split dimension, they consider two cases: If the

d a ta subset fits in memory, the split dimension and subset size are obtained

by com puting selectivities or variances from the complete d a ta subset. O ther

wise, decisions are based on a sample of the subset which fits in memory and

can be loaded w ithout too m any random disk accesses.

Fenk et al. ’s work focus on bulk loading into a UB-Tree [6]. The UB-Tree is

a multidimensional clustering index which inherits all good properties of a B-

Tree. Logarithmic performance guarantees are given for the basic operations

of insertion, deletion and point query. The UB-Tree clusters d a ta according to

the space filling Z-curve and proposes a new m ethod to partition the d a ta space

into disjoint Z-regions. The Z-address which represents the position of a tuple

in the Z-curve, determines the Z-region to which the tuple belongs. The key

idea of Fenk’s m ethod is do an external sort of the d a ta set according to their

Z-addresses. Then B-tree standard techniques can be used when loading. This

m ethod can also be used for reorganizing UB-Trees and merging an existing

UB-Tree with another UB-Tree or a new d a ta set, because increm ental loading

only differs slightly from initial loading into a tree-based index. Both of them

update existing pages.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generally speaking, bulk loading into a tree-based or hash index can be

classified into two groups:

• Algorithms using a kind of partition merge strategy, which partition

the d a ta set into small parts th a t fit to main memory. The index is

constructed in memory on this part of the d a ta set and then merged

into the final layout. Jagadish’s stepped-hash method, Bercken’s bulk

loading algorithm into multidimensional index belong to this group.

• Algorithms which apply an external sorting to reorder the d a ta set and

load the sorted da ta into the index. Our bulk loading algorithm (Alg. 1)

and Fenk’s bulk loading algorithm into a UB-Tree belong to this group.

Our partial algorithm (Alg. 6) is a combination of the above two strategies.

We partition the d a ta set into small parts which fit to main memory and sort

the records in memory based on their reversed hash values.

Some bulk loading work has also been done in the area of Object oriented

database. W iener et al. s tudy the problem of bulk loading into Object-oriented

and object-relational databases (OODB) and propose their late-invsort m ethod [18].

The problem is th a t the relationships among the objects make loading into an

OODB rather slow. The d a ta record of object A may show th a t there is a rela

tionship between objects A and B. However, we can not assign an object ID to

B when we read A because B may not have been read yet or it may have been

read bu t is assigned a different ID. The inverse relationships (bidirectional

relationships) exacerbate the problem. Inverse relationships are relationships

th a t are m aintained in bo th directions, so an update in one direction may

cause a change to the other direction.

To solve the problem, W iener et al. build a later updated inverse todo list

to try to assign an OID when the d a ta is read for the first time. Each todo list

entry contains the OID of the object to be updated, the surrogate for the OID

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to store in the object, and an U pdate offset a t which to store the relationship.

Surrogates th a t refer to objects described later in the d a ta set are not assigned

an OID immediately, but updated later. To avoid random reads and updates,

they also sort the todo list so th a t the order of the entries corresponds to the

creation order of the objects in the database. This pre-allocation of OIDs can

avoid updates in the first place. In their performance study, they dem onstrate

th a t this could achieve an improvement of one to two orders of m agnitude over

the naive algorithm.

However, further experim ents using larger da ta sets show th a t the perfor

mance of late-invsort algorithm degrades because the OIDs may be too large

to fit in memory. To address this problem, W iener e t al. later provide a

Partitioned-List Approach [19]. The key idea is th a t the id map is stored

as a persistent partitioned list. If the id map is too large to fit in memory,

they split the id map and the todo list into into several partitions such th a t

each partition can fit in memory. Later, the todo list and inverse todo list are

joined to create an update list. Finally, the update list are sorted by OID of

the object to update and write them out in sorted runs. This algorithm has

comparable performance to late-invsort algorithm for small d a ta sets bu t does

not degrade for large d a ta sets. W hen the id map fits in memory, the parti

tioned list algorithm cost less than twice of th a t of the in-memory. W hen the

id map does not fit in memory, in-memory m ethod is inviable, partitioned-list

m ethod is a t least an order of m agnitude faster.

Not all of the commercial database systems support hash indexes. To

the best of our knowledge, hash indexes are not supported in DB2, Sybase

and Informix. Hash indexes are supported in Oracle, Microsoft SQL Server,

PostgreSQL, MySQL and Berkeley DB (as discussed earlier), bu t we are not

aware of any bulk loading algorithm for these indexes.

57

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

We have presented novel techniques for efficient bulk loading into a linear

hash index. Our experiments confirm th a t our bulk loading algorithm im

proves upon alternative techniques, in term s of running time, by two orders

of m agnitude. We have shown how our proposed algorithm can be integrated

into a commercial open source DBMS and have reported some of the improve

ments th a t can be obtained. Another contribution of this thesis is using a

histogram to predict a hash layout before actually loading the index.

Using a histogram to predict the da ta distribution before loading opens

up a few interesting research directions. The size of the memory th a t needs

to be allocated varies with the skewness of the data; Using a fixed space to

build the histogram , for instance, may not be sufficient for a highly skewed

d a ta set. At the same time, loading a highly skewed d a ta is expected to waste

the disk space and generally is not recommended. An alternative could be to

transform the d a ta (for instance using a different hash function) before loading.

The trade-off between the allocated space for a histogram and the skewness of

the data is not clear. Another issue is the type of the histogram th a t is being

built. Instead of using a fixed-bucket width histogram , it might be better to

use a multi-resolution approach th a t concentrates more histogram memory to

regions of higher skew.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our algorithms can be applied or extended when the hash file is not empty.

For instance, our modified version of the dbJoad utility can still be used when

the hash file is not empty. Our algorithms may also be applied when a hashing

scheme other than linear hashing is used. For instance, our ordering of the

records can be useful in an extendible hash file and can avoid many of the

random accesses. Therefore, this m ethod is still expected to improve the

performance.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] http://ww w.postgresql-\vebsource.com /psql736/source-dynahash.htm .

[2] Internet Archive, h ttp://w w w .archive.org.

[3] C. Bohm and Ii. Kriegel. Efficient bulk loading of large high-dimensional
indexes. In International Conference on Data Warehousing and Knowl
edge Discovery, pages 251-260, 1999.

[4] A. Z. Broder, M. Najork, and J. L. W iener. Efficient url catching for
world wide web crawling. In Proceedings o f the International World Wide
Web Conference (W W W), 2003.

[5] Berkeley DB. http://w w w .sleepycat.conr.

[6] R. Fenk, A. Kawakami, V. Markl, R. Bayer, and S. Osaki. Bulk load
ing a d a ta warehouse built upon a ub-tree. In Proceedings o f o f ID E A S
Conference, pages 179-187, Yokohoma, Japan, 2000.

[7] J. Gray. A conversation with Jinr Gray. A C M Queue, 1(4), 2003.

[8] G. R. Hjaltason, H. Samet, and Y. J. Sussmann. Speeding up bulk-
loading of quadtrees. In Proceedings o f the International A C M Workshop
on Advances in Geographic Information Systems, pages 50-53, Las Vegas,
November 1997.

[9] P. W idmayer J. Bercken, B. Seeger. A generic approach to bulk loading
multidimensional index structures. In Proc. of the VLDB Conference,
page 406, Athens, August 1997.

[10] H.V. Jagadish, P.P.S. Narayan, S. Seshaclri, S. Sudarshan, and R. Kan-
neganti. Incremental organization for d a ta recording and warehousing. In
Proc. o f the VLDB Conference, pages 16-25, Athens, August 1997.

[11] W. Labio, J. L. W iener, H. Garcia-Molina, and V. Gorelik. Efficient
resum ption of interrupted warehouse loads. In Proc. o f the SIGM OD
Conference, pages 46-57, Dallas, May 2000.

[12] P. Larson. Dynamic hash tables. Communications o f the ACM, 31(4):446-
457, April 1988.

[13] Zipf’s Law. http://w w w .nslij-genetics.org/w li/zipf.

[14] W. Litwin. Linear hashing: a new tool for file and table addressing. In
Proceedings o f the VLDB Conference, pages 212-223, Montreal, October
1980.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.postgresql-/vebsource.com/psql736/source-dynahash.htm
http://www.archive.org
http://www.sleepycat.conr
http://www.nslij-genetics.org/wli/zipf

[15] M. O. Rabin. Fingerprinting by random polynomials. Technical Report
TR-15-81, D epartm ent of Com puter Science, Harvard University, 1981.

[16] S. Cluet S. Amer-Yahia. A declarative approach to optimize bulk loading
into databases. A C M Transactions on Database Systems, 29(2):233-281,
June 2004.

[17] M. Seltzer and 0 . Yigit. A new hashing package for unix. In USENIX,
pages 173-184, Dallas, 1991.

[18] J. L. W iener and J. F. Naughton. Bulk loading into an oodb: A per
formance study. In Proceedings o f the VLDB Conference, pages 120-131,
Santiago de Chile, Chile, September 1994.

[19] J. L. W iener and J. F. Naughton. OODB bulk loading revisited: The
partitioned-list approach. In Proceedings of the VLDB Conference, pages
30-41, Zurich, Switzerland, September 1995.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

