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A bstract

In this thesis, we study the problem of bulk loading a linear hash index and 

address some of the challenges th a t arise when loading a large da ta  set. The 

problem is th a t  a good hash function is able to distribute records into random  

locations in the file; however, performing a random  disk access for each record 

can be costly and this cost increases with the size of the file. We propose a  bulk 

loading algorithm th a t can avoid random  disk accesses by reducing multiple 

accesses to  the same location into one and reordering the accesses such th a t 

the pages are accessed sequentially. Our analysis shows th a t our algorithm is 

optim al with a cost roughly equal to  the cost of sorting the da ta  set, thus the 

algorithm  can scale up to very large da ta  sets. We integrate our algorithm into 

Berkeley DB and run experiments to compare the performance of our m ethod 

to  the native load utility in Berkeley DB. The result shows th a t our m ethod 

can improve upon the Berkeley DB load utility, in term s of running time, by 

two orders of magnitude.
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Chapter 1 

Introduction

1.1 Background

There are m any applications in which d a ta  m ust be loaded into a database 

in large volumes at once. This is the case, for instance, when building and 

m aintaining a d a ta  warehouse, replicating an existing data, building a mir

ror In ternet site or importing d a ta  to  a new D atabase M anagement Sys

tem  (DBMS). There has been work on bulk loading tree-based indexes (e.g. 

quadtree [8], R-tree [3] and UB-Tree [6]), loading into an object-oriented 

database (e.g. [16,18,19]), loading into a multidimensional index structures 

(e.g. [9]) and resuming a long-duration load [11], However, we are not aware 

of a bulk loading algorithm for a hash index 1. This m ay seem unnecessary, in 

particular, if bo th  sequential and random  disk accesses are charged a constant 

time; bu t given th a t  a random  access costs on average a seek tim e and half 

of a rotational delay more, a general rule of thum b is th a t one can get 500 

times more bandw idth by going to a  sequential access [7]. This seems to be 

consistent with our experimental findings.

Efficiently loading data  into a hash-based index is useful in many appli

cations which require direct access to  d a ta  through equality queries bu t no 

range searches. W hen the da ta  set is quite large, the load process may take

^ n e  of our algorithms has similarities to  the incremental data organization of Ja- 
gadish [10] but is different; see Sec. 6 for more details.

1
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hours or even days, as some reported in our experiments. The problem to be 

addressed in this thesis is to  optimize the time to load by both  minimizing 

the num ber of redundant disk I/O s and reducing or eliminating random  disk 

accesses. For linear hashing, in particular, redundant I/O s are m ainly due to 

bucket splits and record movements. Furthermore, since the location of each 

record in the hash file is determined by a hash function which is expected to 

produce a random  number, loading the records into the hash file can cause a 

large num ber of random disk accesses; this obviously reduces the efficiency of 

the loading process.

Our proposed solution is to  predict the final structure of the hash file before 

the d a ta  is actually loaded. If we can order the records based on their estim ated 

locations in the file, then we can do the loading within one sequential scan. 

However, there is not a unique final layout for a given da ta  set; often the final 

structure  varies depending on the order of the insertions and the split policy 

th a t is used. Our objective is to find a balance between the access cost and the 

storage overhead. To this end, we develop a user-tunable cost function th a t 

guides the load toward an optimal layout. Once an optimal layout is fixed, 

we accordingly reorder the records to ensure th a t the records th a t belong to 

the same bucket are loaded together. W ith this strategy, the bucket splits and 

record movements are avoided and the disk accesses all become sequential.

We run experiments w ith real d a ta  and compare the timings of our bulk 

loading algorithm  to  the native dbJoad u tility in Berkeley DB [5], an open- 

source embedded database library. Our experiment with loading a d a ta  set of 

30 million 100-byte records, for instance, shows th a t our bulk loading algorithm  

runs 150 tim es faster than  the dbJoad utility using a Pentium  4 3.0G, 2GB 

memory machine running on Red H at 9.0.

Based on this and other experiments reported in Chapter 5, we should 

expect for our load algorithms a performance improvement, in term s of running

2
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time, of roughly two orders of magnitude. W ithout loss of generality, we 

will base our algorithms and discussions on linear hashing [12, 14], mainly 

because of its efficient dynam ic structure and also its frequent use in practice 

[5]. It shouldn’t  be hard to extend our algorithms to other hash-based indexes 

because of the similarities between these indexes.

This thesis is organized as follows: C hapter 1 provides some background 

on linear hashing and an I /O  analysis of loading a linear hash file. Chap

ter 2 presents our bulk loading algorithm. Finding an optim al setting of our 

bulk loading param eters is discussed in C hapter 3. In C hapter 4, we discuss 

the details of partially integrating bulk loading into the dbJoad u tility  from 

Berkeley DB. C hapter 5 presents and analyzes our experimental results. Fi

nally, Chapter 6 reviews the  related work and C hapter 7 concludes the thesis 

and discusses possible extensions and future work.

1.2 H ash-based Index

The basic idea of hash-based index is to  use a  hashing function, which maps 

a  record key into an address space, to  find the page on which a  desired da ta  

entry belongs. The most common techniques for hashing are sta tic  hashing 

and dynamic hashing.

The static  hashing scheme has a fixed number of hash buckets. The pages 

containing the da ta  are called hash buckets. A hash layout consists of buckets 

0 through N  — 1, with one prim ary page per bucket a t the beginning. To search 

for a da ta  entry, a hash function h is used to identify the bucket to which it 

belongs. W hen a  record is inserted, the hash function is used to  identify the 

correct hash bucket and then  pu t the record into this bucket. If there is no 

space for this record in the  bucket, we allocate a  new overflow page, insert 

the record into this overflow page, and add the page to the overflow chain of 

the bucket. When a record is deleted, we also use the hashing function to

3
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identify the correct bucket, find the da ta  entry by searching in the bucket and 

then remove it. The main problem of static  hashing is th a t the number of 

buckets is fixed. Therefore, if a  hash file grows a lot, long overflow chains may 

be generated causing poor performance. If a file shrinks greatly, many hash 

buckets may become em pty and a lot of space is wasted.

An alternative is to use a dynamic hashing technique such as extendible or 

linear hashing. In static  hashing, when we insert a record into a full bucket, we 

need to add an overflow bucket. If we don’t  want to  add an overflow bucket, 

we have to reconstruct the hash index by doubling the num ber of buckets and 

redistributing all the records in the hash table into the new address space. This 

solution suffers from too may redundant I/O s. All the records in the entire 

file have to be read and half of the records are w ritten to  the new buckets. 

Therefore, twice as m any pages in to ta l have to be written.

The idea of dynamic hashing is th a t instead of splitting all of the hash 

buckets and doubling the number of buckets, only the bucket th a t overflowed 

are split and the splits are performed in a deterministic order. A bucket split 

is to split the bucket by allocating a new bucket and redistributing the records 

across the old bucket and its split image. The associated hash function must 

change as the table grows. Some schemes may shrink the table to  save space 

when items are deleted.

Extendible hashing is a well-known dynamic hashing technique. The main 

elements of an extendible hashing structure are a directory of pointers, which 

points to buckets th a t contain the records. The size of the  address space can 

be doubled by doubling ju st the size of the directory of pointers but splitting 

only the bucket th a t overflowed. The directory always has a size of a power 

of 2. The number of bits for addressing in the directory is called the global 

depth. A local depth is also m aintained for each bucket. At the beginning, all 

local depths are equal to the global depth. To search a key in an extendible

4
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hashing index, it always find the appropriate entry in the  directory based on 

its hash value, and follows the pointer to  the bucket contains the record. A 

record is inserted into the bucket which it belongs using the same method. 

A bucket split leads to an increase in the local depth and the split image is 

assigned the same local depth. If the local depth  becomes greater than the 

global depth, a directory doubling occurs and the global depth itself is also 

increased by 1.

If the directory fits in memory, an equality search only requires a single disk 

access, which is the same as static  hashing (in the absence of overflow pages). 

Otherwise, two disk accesses are needed. However, chances are high th a t the 

directory will fit in memory and the performance of extendible hashing is the 

same as for static  hashing.

Linear hashing is another dynamic hashing technique. Compared to ex

tendible hashing, the directory structure can be avoided by allocating prim ary 

hash buckets consecutively. The details of this hashing technique is discussed 

in the next section. In th is thesis, we focus on the bulk loading method on 

linear hashing. However, it shouldn’t be hard to  extend our bulk loading 

algorithm to  hashing techniques other than  linear hashing because of the sim

ilarities between these indexes.

1.3 Linear H ashing

Linear hashing is a dynamic hashing scheme th a t gracefully accommodates 

insertions and deletions by allowing the size of the hash file to  grow and shrink 

[12]. It is known to exhibit a near-optimal performance in term s of both the 

access cost and the storage overhead [12]. Given a hash file with initially N  

buckets and a hash function /i() th a t maps each key to  a  number, ho (key) — 

h(key) mod N  is called a  base hash function and hi(key) = h(key) mod 2* * N

5
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for i >  0 are called split functions where

K{kcy)  -» { 0, 1, ... , 2^ ( y v - l )  }

and

hi(key)  =  h ^ i ( k e y )

or hi(key)  =  /ij_i(/cey) +  2,_1 * TV.

Suppose we want to insert a record with ho(key) — 0 into bucket 0 and this 

bucket overflows. Let bucket 0 be the first bucket th a t overflows in the file. 

The split function h\(key)  is then used, and all records with hi(key) — ho(key) 

are kept in bucket 0 and all records with h\ (key) =  ho(key) +  N  are moved to 

the new bucket N .

Linear hashing does not necessarily split a  bucket th a t overflows, bu t always 

performs splits in a deterministic order. The buckets are split in a linear order, 

starting  from bucket 0 and following in buckets 1 , 2 , . . . ,  TV — 1. A split usually 

occurs when there is an overflow. If the bucket th a t is split is not the bucket 

th a t overflows, then the overflow record may be stored in an overflow area 

and is chained to  its home location bucket. The num ber of overflow buckets is 

usually kept small and a search for a specific record in the file is expected to 

take one or a t most two disk accesses. The situation to  trigger a split is also 

very flexible. We can split whenever a new overflow page is added or impose 

additional conditions such as space utilization in the hash table.

1.4 Loading: A n I /O  A nalysis

Given a, set of records to be inserted to a hash file, a bit-random izing hash 

function is used to  convert each record key into a  k-bit hash value. This bit- 

randomizing property of the hash function is im portant to obtain radically 

different hash values for nearly identical keys [17]. The hash table initially has 

a single bucket and grows in generations to  2, 4, . . . ,  2" buckets.

6
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A dynamic hash file begins with a single bucket and grows in so-called 

generations. In the 0th generation, the hash file grows from a single bucket 

to  two buckets. Every record of the old bucket with its least significant bit 

(referred to  here as bit 0) set is moved the new bucket. In the i th generation, 

the hash file has 2% buckets which split into 2l+1 buckets in a linear order. For 

each record key, the i th bit of its hash value is examined and it is decided if 

the record m ust be moved to  the newly-created bucket.

There are two m ajor factors th a t can affect the  load performance: reading 

and writing records into the hash table, and moving records from an old hash 

bucket to  a  newly-generated bucket. For a  d a ta  set with n  records, let P  be 

the average record size in pages (usually, P  < 1). The data  set itself is n *  P  

pages. Reading these n  records requires n * P  page accesses. Since the location 

of each record in the hash table is random  due to  the bit-random izing hash 

function — in the worst case, writing a record into the hash table requires one 

page access. Therefore, the total cost of reading and writing is

n *  P  + n

I/O s. The cost of writing the records in practice can be slightly less due to 

the buffering, in particular, if a large fraction of the buckets are found in the 

buffer. However, in general the hash probes (i.e. searches for the locations of 

the new records) are randomly distributed, and alm ost every probe is likely to 

find the  corresponding bucket not in the buffer.

The load performance is also affected by the  num ber of record movements. 

Given a  well-designed bit-randomizing hash function, it is safe to assume that 

for any bit position i, half of the records have their i th b it set. Therefore, within 

the ith generation, half of the records in the former 2' buckets are expected to 

move to  the newly-generated buckets. Let m  denote the average num ber of 

records in a  hash bucket. We need n / m  buckets for the hash file. The to tal

7
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num ber of record movements is

m(2° +  21 + 2 2 +  ... +  2l(log2m)-1l) *
2

=  (2 !°S2^t _  1) * ^

n  m
- (  1) * —

m  2
n
2 '

Therefore, half of the records are initially loaded into buckets other than  

their home buckets. There is a cost associated to  move these records into their 

home locations. To slightly simplify our analysis, suppose reading or writing a 

hash bucket requires one disk I/O . W ithout considering the effect of buffering, 

w ithin the 0th generation, we need to  read one bucket, redistribute some of 

its records to  a new bucket and write back two buckets. Similarly, in the i th 

generation, we need to read 2l buckets and write back 2l+1 buckets. Since we 

need n / m  buckets for the hash file, constructing this hash file requires

2° +  21 +  22 +  ... +  2[(log2 m)-1)

=  2log2 £  -  i

=  —  -  1
m

disk reads and

21 +  22 +  23 +  ... +  2(log2 m)

=  2 l (1° g 2 m ) +  1l — 2

=  ~  —  2
m

disk writes. W ithout taking into account the buffering effects, there are

? n - 3
m
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I/O s due to bucket splits. Thus the to ta l cost of loading n  records is

n 371 „
n *  P  + n-\---------3

m

I/O s. To have an idea of this cost, loading 20 million 100-bytes records takes 

up to  16 hours in our experiments. This is clearly not acceptable for such a 

d a ta  set using a relatively m odern hardware in 2005.

In another aspect, if the  records are uniformly distributed in the address 

space, linear hashing has a  lower average cost for equality queries than  the 

extendible hashing because the directory level is eliminated. However, for 

skewed distributions, linear hashing could result in many empty or nearly 

em pty buckets, leading to  poor performance. The reason is linear hashing 

does not necessarily split a bucket th a t overflows. Efficiently loading a skewed 

d a ta  set into a linear hash index with a  performance comparable to  th a t of 

loading random  da ta  is another challenge.

9
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Chapter 2 

Bulk Loading

Our analysis in Section 1.4 reveals th a t the cost of loading can be reduced if 

we can take the following actions:

•  Reduce the number of random  page accesses an d /o r replace them  with 

sequential page accesses when writing the records into the  hash file. 

Since the final location of a  record in the hash file is determ ined by a 

hash function which is expected to  produce random  numbers, writing 

the records in their original order of arrival can generate a  random  disk 

access for each record. This is quite costly and m ust be avoided.

•  Reduce or eliminate bucket splits and record movements. If we can 

predict the final hash layout and store each record in its predictive final 

destination bucket, bucket splits and record movements can be avoided.

To avoid random  disk accesses, a solution is to  sort the records according 

to  the order they are expected to sit in the final hash file. The design of a 

linear hash file (as discussed in the previous section) forces the records within 

each bucket to  have a few least significant bits of their hash values the same: 

in the ith generation, the hash values of the records in each bucket m ust all 

have their i least significant bits the same. There is not a unique final layout 

th a t satisfies this constraint (as discussed in the next section). The order of

10
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the records in one bucket of the final layout, for instance, can vary with the 

order in which the records are inserted.

2.1 M ultiple H ash Layouts

There are many different ways of ordering a given set of records, and as a 

result there are many possible configurations of a hash file. Two different 

configurations may be trea ted  the same if both  have the same space overheads 

and I/O  costs. To reduce the number of possible hash layouts, we define some 

equivalent classes.

D e fin itio n  1. Let R(b) denote the set of records th a t are stored in either the 

prim ary bucket b or an overflow bucket linked to prim ary bucket b. Two linear 

hash layouts l\ and l2 are equivalent if

1. for every prim ary-area bucket b\ in l\, there is a primary-area. bucket b2 

in l2 such th a t R(bi) — R(b2), and

2. for every prim ary-area bucket b2 in l2, there is a  prim ary-area bucket b\ 

in li such th a t R(b2) — R(bi).

Based on this definition, the two hash layouts shown in Figure 2.1, for in

stance, are equivalent. Naturally, the ordering of the records within primary- 

area and overflow-area buckets and the ordering of the buckets in two equiv

alent layouts can be different. The reason is th a t even using the same bit- 

randomizing hash function, there may be different ways to map records into 

the address space according to their hash values.

L e m m a  1. Suppose all records are o f  a fixed length and the overflow records are 

stored in overflow-area buckets and are chained to some primary-area buckets. 

For any pairs of equivalent layouts, the following holds:

11
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Bucket 0:

Bucket 1:

Bucket 2:

Bucket 3:

(a)

i?4

(b)

1.

2 .

The proof can be derived from our definition of equivalent hash layouts. 

For two equivalent hash layouts with fixed length records, only the ordering 

of the records w ithin buckets and the ordering of the buckets can be different. 

These order differences can not affect the space requirements and average I/O s 

per probe. For records of variable lengths or when overflow records are handled 

using a  different strategy than  the one in Lemma 1, the storage overhead and 

the I /O  cost of two equivalent layouts are still expected to  be close (if not the

12

Figure 2.1: Two equivalent layouts

the space requirements, in terms of the number of primary-area and 

overflow-area buckets, of both layouts is the same,

the average number o f  I /O s  required fo r  a probe in both layouts is the 

same i f  every record has the same chance o f  being probed.

Bucket 0: 

Bucket 1: 

Bucket 2: 

Bucket 3:

Rq
R*
Ri
R y

R 2

Rs
Rg
R-s

R 4
Rg

R2
Rg
Ri
R.7
Rs
Rg

Rr,
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same). On the other hand, the construction costs of two equivalent layouts 

can be quite different. Consider the two layouts in Figure 2.1, and suppose 

the hash values of the records are those shown in Table 2.1.

Records Hash values
Rx (1 0 1 0)
R 2 (0 1 0 1)
Rs (1 1 1 1)
R\ (1 1 0 0)
r 5 (0 1 0 0)
R(x (1 0 0 0)
R- (0 1 1 0)
Rs (1 1 0 1)
Rg (1 0 1 1)

Table 2.1: Nine records with their hash values.

The hash file in Figure 2.1(a) is the result of inserting these records in the 

given order into a  linear hash file. There are 3 bucket splits and 3 records 

movements. If we fix the size of the buffer to  one page (for our illustration 

purpose), then the first three buckets m ust be fetched more than  once. The 

hash file in Figure 2.1(b) is the result of sorting the records based on the two 

least significant bits of their hash values (after reversing the positions of the 

bits) and filling the buckets sequentially. There is no bucket splits nor records 

movements, and each bucket is fetched only once.

2.2 O ptim al A lgorithm

Some of the m ajor costs in loading a hash index are associated with the bucket 

splits, record movements and fetching a bucket more than  once. We develop 

a notion of optim ality of a load algorithm to avoid these costs.

D e fin itio n  2. A load algorithm is s-optinral if it can find and use an ordering 

of the records such th a t loading the records in th a t order does not involve any 

bucket splits or record movements and it does not fetch a bucket after it is

13
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written.

This notion of optim ality does not provide us with an actual load algorithm  

bu t makes it clear th a t before a bucket is written, all records th a t belong to 

the bucket m ust be somehow grouped together. Furthermore, to avoid bucket 

splits and record movements, the final layout must be known before the da ta  

is actually loaded.

Our bulk loading algorithm  estimates both the distribution of the records 

and a layout th a t best fits this distribution. Details of our estim ations are 

discussed in Section 3. Our algorithm also sorts the records such th a t  the 

records th a t belong to  the same bucket are grouped together. An overview of 

our algorithm  is shown in Figure 2.2.

Layout sort — > buildparameters
e s t im a t io n

\
Dataset

d b J o a d  with  
additional parameters

Linear hash f i le

M o d i f ie d  vers ion o f  B erk e le y  DB 1

buffer

sort

buffer

u
load

Figure 2.2: Overview of our bulk loading

Figure 2.2 provides two different m ethods of bulk loading records into a 

linear hash index. The fist m ethod is our full algorithm (shown on top), which 

is used when we load a d a ta  set into an empty hash table. We predict the 

hash layout before loading, reorder the records in the d a ta  set and then write 

the records into the hash table. The hash table of this m ethod is a  static  hash

14
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table. The second m ethod (shown a t the bottom ) can be used with both empty 

and non-empty hash files, and is discussed in Chapter 4. This m ethod uses a 

buffer with a dynamic hash table. If we want to insert records incrementally 

into the hash index when they are received, the second m ethod is preferred. 

In this thesis, we implement the first m ethod independently, bu t integrate our 

second m ethod into Berkeley DB, which is an open source database library. 

The details of these two m ethods are discussed in the following sections.

2.3 Our A lgorithm

Algorithm 1 presents the details of our bulk loading method. Suppose the 

optim al number of buckets N  in the final hash layout is somehow estimated; 

the details of our estimation is discussed in the next chapter. For records 

in the da ta  set, the number of bits of the hash values for addressing can be 

calculated as [Zo^A j or [7052 A"|. We reorder the records in the d a ta  set 

according to their positions in the predictive final hash file, i.e. the records are 

sorted based on the right num ber of bits for of their hash values in a  reversed 

order. Finally, we insert these records into the hash table. There is no buckets 

splits or records movements in the last step because both the num ber of bits 

for addressing and the number of hash buckets in the final hash file are known.

In Algorithm 1, for each record, r  least significant bits of its hash value 

gives the address of the bucket where the record must be stored. Before the 

split point is reached, the algorithm  uses \log<>N] bits for addressing. At the 

split point, the number of bits used for addressing is reduced by one to  indicate 

th a t the buckets after th a t point are not split. W hen log2N  is an integer, the 

resulting hash file has the sta te  of being at the beginning (or the end) of a 

generation.

L e m m a  2. Algorithm, 1 is s-optimal.

15
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A lg o r ith m  1 Bulk Loading a  hash index

Estim ate the number of prim ary buckets in the hash file and denote it with 
N i

ri =  [Iocj2N \  
r2 = f log2N]
Sort the records on r2 least significant bits of their hash values in a reversed 
order;

Let p — N  — 2n denote the next bucket th a t will split

b =  0; {current bucket th a t  is being filled} 
r  =  r2]
w hile there are more records do

Get the next record R  w ith the hash value H r ]
Let h be the r  least significant bits of H r ]
Reverse the order of the bits in /i; 
if h > b (the  record belongs to  the next bucket} then  

W rite bucket b to the  hash file; 
b +  +;
if b > p {has reached the split point} then  

r = r X] 
end if  

end if
if  bucket b is not full then  

insert R  into bucket b; 
else

W rite bucket b to the hash file if it is not written; 
if there is an overflow bucket with enough room then  

insert R  into an overflow bucket; 
else

insert R  into a new overflow bucket;
link the overflow bucket to  bucket b or the other overflow bucket (if 
any);
W rite the overflow bucket when it gets full; 

end if  
end if 

end while

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is because there are 110 buckets splits and records movements and 

buckets are not accessed in the algorithm after they are written. The purpose 

of hashing is to distribute records random ly into the address space. We choose 

the last few bits as the sorting bits because these bits are less significant 

compared to  the first few bits of the hash values. For many hash functions, 

the fist few bits of the hash values they generated are the same.

Estim ating the number of prim ary buckets can be done w ithin on scan and 

while the records are being read for sorting, hence it involves no additional 

I/O s. Further to  sorting, the  d a ta  is read once and w ritten once and both are 

done sequentially. If we pipe the result of the sort to  our loading, there is no 

additional reading. Thus the  to tal cost of the algorithm  is the cost of sorting 

the records plus the cost of sequentially writing them .

17
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Chapter 3

Layout Param eter Estim ation

3.1 Layout Param eter E stim ation  based on a 
user specified I /O

An im portant part of our algorithm  is the prediction of a “good” hash layout 

before d a ta  is actually loaded. This prediction is not generally easy for a 

dynamic hash file since the final layout depends on both the distribution of 

the d a ta  and the order in which the records are inserted. Our goal in this 

section is to  find a hash layout with a user-specified average I/O  for retrieving 

a record.

A good hash layout should have a low average access cost while keeping the 

storage overhead small. Clearly, improving the access cost involves increasing 

the storage overhead and vice versa, because a compact hash file with a high 

record density has a greater I /O  cost per hash probe. To find a good trade-off, 

we use a  user-tunable I/O  cost and seek a layout th a t optimizes this function.

Our bulk loading algorithm is independent of the input ordering; we exploit 

the fact th a t the records in every bucket of a  final layout has their few least 

significant bits the same. We also look for the best layout (for some given 

param eters) th a t is equivalent to a final layout, bu t there may not be any 

ordering of the input th a t produces th a t particular layout via incremental 

insertions.

18
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Let L  denote the capacity of a bucket, i.e. the maximum number of records 

th a t can be stored in a  bucket. For variable length records, L  can be calculated 

as the ratio  between the bucket size in any units and the average record size 

again in the same units. W ithout loss of generality, suppose reading or writing 

a bucket involves one I/O , and th a t to access a record in a bucket, we need 

to  retrieve the whole bucket. Therefore, retrieving a record in a prim ary hash 

bucket requires one I/O , and retrieving a  record in an overflow bucket requires 

more than  one I/O .

We do our estim ation for the following two cases: (1) the hash function 

distributes the records uniformly at random  in the address space, and (2) the 

hash function is skewed toward a few addresses.

3.1 .1  L ayout E stim a tio n  for R an d om ly  D istr ib u ted  D ata

Let N  denote the num ber of prim ary buckets in the hash file. We want to  

find a  value of N  th a t optimizes the storage usage and still guarantees a  hash 

layout th a t has a user specified average cost for retrieving a  record. Suppose 

the hash function is chosen such th a t it random ly maps each record key into a 

k  b it hash value. W hen the records are random ly distributed into the address 

space, the  probability th a t an arb itrary  bucket in the final layout has x  records 

m apped to  it can be predicted using the following binomial distribution:

where n  is the to ta l num ber of records and C" =  n\/{x\{n  — a-)!). Com puting 

the expression in Equation 3.1 in practice is not easy. Instead, a good approx

im ation of th is function which is easier to  compute for large values of n  and 

N  can be given using the following Poisson distribution:

(3.1)

(3.2)

19
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where A =  n / N .  The param eter A can be treated as the fill factor of the hash 

file, which is the average num ber of records in a hash bucket. We can use 

Equation 3.2 to  estim ate the  distribution of records in the final hash layout. 

The expected num ber of buckets with x  records is N  * P(x).

split p o in t

Area 1

Area2

Area 3

2r

Figure 3.1: A linear hash file

Equation 3.2 is based on the assum ption th a t the records are distributed 

random ly in the “entire” address space. However, this assum ption often does 

not hold for linear hashing. Take the linear hash file in Figure 3.1 as an 

example, where the file consists of three regions with different record densities. 

Area 1 includes the buckets which are split; suppose this region has N\  buckets. 

Area 2 includes the buckets which are not yet split in the current generation; 

suppose this region has N 2 buckets. Area 3 also has N x buckets since every 

bucket in Area 1 has its buddy bucket in Area 3. There are two hash functions; 

r  b its are used for addressing a record in areas 1 and 3, whereas r  — 1 bits are 

used to  address a record in Area 2.

Suppose there are n records and N  hash buckets in the entire hash table.

20
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We have the following constraints:

n 1 +  n 2 + n 1 - n

Ni  +  N 2 =  2r =  2llos»*J 

From these equations, N \  and iV2 can be rew ritten in term s of N  as follows:

N i = N - 2 ^ Ni (3.3)

N 2 = 2 ^ ° ^ Ni+1) -  N  (3.4)

The fill factor Ai or the average number of records in a hash bucket of 

A rea 1 and Area 3 is

\ n  _ n  fo ^
1 =  2 * (M  +  N 2) ^  2L’°S2 wj+i t3' )

Plugging Ai in Equation 3.2, we can find the probability th a t a  bucket in 

Area 1 and Area 3 has a: records. The average cost to retrieve a record is the 

ratio  of the num ber of I /O s  to  retrieve all records and the num ber of records. 

Here, any possible buffering effect is not accounted for. Let Tb( i ) denote the 

num ber of I/O s to  retrieve all i records m apped to a prim ary-area bucket:

[i/Li
Tb(i) — J 2 ( i - j * L )  (3.6)

o

For example, with L, the capacity of a  hash bucket, set to  10, Tb{ 15) is 20; i.e., 

10 I/O s for retrieving the records th a t are physically stored in the primary- 

area bucket and 2*5 I/O s  for the records th a t are stored in an overflow-area 

bucket. Hence, the to ta l num ber of I/O s to  retrieve all records in Area 1 and 

Area 3 can be computed as:

OO
T 1(N)  = 2 * ' £ N 1 * p ( i )*Tb( i )  (3.7)

< = i

Similarly, the fill factor of Area 2 is:

A2 M + A2 2Li°s^J 
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and the to ta l number of I /O s to  retrieve all records in Area 2 is:

OO
T2( N ) ^ = ' £ N 2 * P ( i ) * T b { i ) (3.9)

Thus, the average num ber of I/O s to  retrieve a record from the whole hash

L e m m a  3. The average number of  I /Os,  f, is a monotonically non-increasing 

function of N; N  is also a monotonically non-increasing function o f f

Lemma 3 can be derived from the fact th a t when N  increases, some buckets 

in the hash file are split and the records in these buckets may be moved to 

the  new buckets. The density of the hash file becomes lower and the average 

I/O s per probe should also decrease or a t least rem ain the same. Given a 

desired number of I/O s, there is only one unknown variable in Equation 3.10 

which is N ,  bu t it is not easy to  solve the equation directly. Algorithm 2 

presents the steps for finding an optim al value of N.  Param eter Max  indicates 

the maximum value th a t m ust be examined to  find an optim al solution to the 

equation. In practical cases, our desired num ber of I /O s  cannot be too small 

or too large. Thus, we can do a binary search for N  G [1, n]; the extreme case 

N  =  1 is when all records are inserted into a  single bucket, and the extreme 

case N  = n  is when each bucket has only 1 record on average.

A lg o r ith m  2 Estim ate the num ber of hash buckets for random  data  

n : {number of records}
I /O :  {a user-supplied value which is greater than  1} 
f (N ) : { th e  average I/O  cost to retrieve one record}

Do a binary search for f ( N )  in the interval of [l,Max] to  find the smallest

table is:
f ( N )  = T m + m N )

n
(3.10)

Let f ( N )  = (T1(N)  + T2( N ) ) / n

N  where f ( N )  < =  I /O .
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L e m m a  4. Algorithm 2 correctly finds an optimal number of buckets N.

The proof can Ire easily derived from Lemma 3. As a. proof of concept, we 

randomly generated 10 million records, each with a 32-bit random hash value, 

and applied Algorithm 2 to find a hash layout with a user-specified bound on 

the expected number of I /O s for a hash probe. We also actually built the hash 

file and counted the average number of buckets th a t are accessed for a hash 

probe. The results are shown in Table 3.1. Given a user-supplied I/O , our 

predicted layout has a. real average I/O  th a t is very close to  the user-supplied 

I/O .

Table 3. Quality of our layout estim ation 'or ranc
User-supplied I/O 1.05 1.10 1.20
Real I /O 1.052 1.100 1.223

om data

3.1 .2  L ayout E stim a tio n  for Skew ed D a ta

The distribution of records in the address space can vary w ith the hash function 

th a t is chosen and the da ta  set th a t is being loaded. In general, we may not be 

able to  guarantee th a t a given hash function converts the keys into hash values 

randomly. Therefore, using our earlier analysis to estim ate a hash layout is 

questionable. A solution is to  construct a histogram  for each candidate class 

of equivalent layouts, w ith cell i of the histogram showing the tally of records 

th a t are going to be m apped to  bucket i. Given th a t each bucket has a fixed 

size, it is easy to find the exact number of both the overflow records and the 

empty slots.

A problem here is th a t we may not have enough memory to construct one 

such histogram. Given a layout th a t uses r  bits for addressing, the histogram 

m ust have 2r cells to accurately show the tallies of records in each bucket. For 

r  =  40, for instance, if we use two bytes to record a tally, we will need 2 TB
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of memory to construct a histogram. Clearly, this is not feasible for a large 

da ta  set. An alternative is to choose < r initial b its for addressing and 

construct a  histogram with 2r* cells. The value of r* can be chosen such th a t 

the histogram can fit in the available memory. Each cell of the histogram is 

associated with 2r~r' buckets and keeps the to ta l count of the records th a t are 

m apped to those buckets. If we can assume th a t the records th a t are mapped 

to a  histogram cell are random ly distributed within the buckets associated 

to  the cell, then we can use our earlier analysis for records within a cell. In 

particular, Equation 3.10 can be used to estim ate the num ber of I/O s needed to 

retrieve the records within a cell. The histogram  has 2n cells and N  denotes 

the num ber of buckets th a t  are allocated for the entire hash file, hence the 

num ber of buckets for each cell is N / 2 ri. Suppose the average I/O  cost to 

retrieve a record from cell j  is f j (); the average num ber of I/O s for the entire 

hash file is
2 ri_  fft .

= 2ri) 
j =i n

where n.j is the num ber of records in the j th cell and n  is the  num ber of records 

in the whole histogram.

Algorithm 3 presents the  steps for finding an optim al value of N  for skewed 

data. Since we know the tally  for each cell, /_,() can be computed using Equa

tion 3.10 for each histogram  cell j .  Param eter Max  indicates the maximum 

value th a t m ust be examined to find an optim al solution to  the equation. As 

before, Max  can be set to  n. Clearly, the larger the size of the histogram, the 

more accurate our estim ation of the skewness of the data. The limit is th a t 

the size of the histogram  cannot exceed the size of the allowable memory.

As a  proof of concept, we generated two da ta  sets w ith 10 million records 

each. Each record of the d a ta  set had a 32-bit hash value. The first 27 bits of 

the records in these two d a ta  sets are completely random  and the remaining 5
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A lg o r ith m  3 Estim ate the number of hash buckets for skewed d a ta

I /O :  {a user-supplied value which is greater than 1} 
ri\ {initial number of b its for addressing} 
r: {number of bits for addressing}
n: {total number of records}
7ij: {number of records in the j th cell in the histogram}
f f .  {the average I/O  cost of retrieving a record from the j tk cell of the
histogram}

Construct a histogram of the d a ta  set using r, initial bits for addressing. 

Let /(TV) =  Y?j=i yf * / j ( N / 2r')

Do a  binary search for f { N )  in the interval of [l,Max] to  find the smallest 
N  where f ( N )  <= I /O .

bits are got using two different methods. For one da ta  set, 5 least significant 

b its of the hash values generated using a Zipfian distribution [13] in which the 

frequency of the k th value was proportional to (1/A;)0, where 0 <  6 <  1 was 

the skew.

For the other da ta  set, 5 least significant bits of the hash values were 

generated using a binomial distribution with a biased coin, which means heads 

and tails have different probabilities when we flip a coin.

Algorithm 3 was applied on these d a ta  sets varying the initial num ber of 

bits The desired number of I/O s or the user-input I/O s was set to 1.10, bu t 

it could have been equally set to  any other number. Figures 3.2 and 3.3 show 

th a t  building a histogram for skewed d a ta  helps, and the benefit increases 

with the skewness of the data. Furtherm ore, the more space is allocated for 

a histogram , the closer our estimation is to  the real number of I/O s. Even a 

small histogram  can also reduce the effect of the skewness on the final result. 

In the example zipf distribution, a 23 =  8 bytes histogram  using 3 initial bits
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for addressing helps a lot which can reduce the gap between the user’s input 

I /O  and real I /O  from 0.52 to  0.27 when the skew 6 — 0.8.

0.7
-D - Zipf D istribution, 0 = 0 .8  

Zipf Distribution, 0 = 0 .6

0.6

ro o.5

-  - q

13 0.4

a .

0.3

0.2a .

0.1

Initial number of bits for addressing

Figure 3.2: Layout Estim ation for Zipf D istributed D ata

3.2 Layout Param eter E stim ation based on ac
cess cost and storage overhead

Instead of using a  user-specified I/O  value to predict the hash layout, another 

m ethod is to  use different penalty weights to balance the access cost and 

the wasted storage space and then predict a hash layout. This m ethod has 

the benefit when the users do not know what I /O  value they need. The 

overflow buckets and empty slots are assigned different penalty scores. We use 

a  user-tunable penalty function and seek a layout th a t optimizes this function. 

Since the  penalty weights of empty buckets and overflow slots are user-defined 

values, the hash layouts can easily shrink and grow with different param eters: 

increasing the penalty weights of empty buckets may cause a compact hash
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Figure 3.3: Layout Estim ation for Bernoulli D istributed D ata

file and vice versa. Also, our predicted layout is the hash file a t the beginning 

(or the end) of a generation, hence the  number of prim ary buckets (excluding 

overflow buckets) is 2r where r  is the number of bits used for addressing.

Suppose an empty slot in a bucket is penalized by E / L  and an overflow 

record is penalized by O / L  where E  and O are some user-defined scores; we 

discuss some settings of E  and O a t the  end of this section. Our goal is to find 

a  layout th a t minimizes the  overall penalty score. We do our estim ation in the 

following two cases: (1) the hash function distributes the records uniformly 

a t random  in the address space, and (2) the hash function is skewed toward a 

few addresses.

3.2 .1  Layout E stim a tio n  for R an dom ly  D istr ib u ted  D ata

Let N  denote the number of prim ary buckets in the hash file. We want to 

find a  value of N  th a t optimizes the overall penalty score. Suppose the hash
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function is chosen in a  way th a t it distributes the records randomly in the 

address space.

An approxim ation of this function which is easier to compute for large 

values of n  and N  can be given using the following Poisson distribution:

P(x)  =  e (3. 11)

where A =  n / N . The param eter A can be treated  as the fill factor of the hash 

file, which is the ratio  of the number of records and the number of buckets.

Using Equation 3.11, we can estim ate both the num ber of empty slots and 

the number of overflow records in the final layout. The expected number of 

buckets with i, records in them  is N  * P(i) ,  and the number of empty slots 

in one such bucket is L — i. Hence, the penalty score for empty slots can be 

computed as

Se(N) = y ' £ ( L - i ) * N * P ( i ) .  (3.12)
L  i = 0

Similarly the expected num ber of buckets w ith i overflow records m apped to 

them  is N  * P ( L  +  i). Therefore, the penalty score for overflow records can be 

computed as
O  00

* N * P ( L  + i). (3.13)
L  i=i

The overall penalty score for a given value of N  is

S ( N )  = S e(N)  + S0(N).  (3.14)

If the num ber of records to  be loaded is fixed, increasing the number of 

hash buckets N  should cause more empty buckets and less overflow buckets. 

Therefore, S e is a monotonic decreasing function and S a is a monotonic in

creasing function of the fill factor. Fig. 3.4 and Fig. 3.5 listed below are S e 

and S0 functions for 1 million random  records.

Fig. 3.6 is the overall penalty  score function for 1 million random  records. 

We want to find a value of N  th a t minimizes the overall penalty score. Consider
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Figure 3.4: Penalty score for empty slots of 1 million random  records
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Figure 3.5: Penalty score for overflow buckets of 1 million random  records
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the case where N  = 2r and r is the number of bits used for addressing. Since 

in practical settings, the number of bits used for addressing is usually small 

(e.g. less than 50), it is not hard to compute S( 2r) for all such values of r  

using Eq. 3.14 and find the value of r  th a t gives the minimum penalty score. 

We refer to  this value of r as the optim al number of bits for addressing.
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2 - >
h
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Fill fa c to r  =  n  /  N

Figure 3.6: Overall penalty  score of 1 million random  records

Algorithm  4 presents the steps for finding an optim al value of N.  Param eter 

Max  in Algorithm 4 indicates the maximum num ber of bits th a t m ust be 

examined to  find an optimal solution to  the equation. This number can vary 

depending on the values of E  and O.  In an extreme case where there is no 

penalty for overflow records, i.e. 0  =  0 and E  > 0, the optimal value of r  is 

zero; hence Max  can be set to zero. In another extrem e case where there is no 

penalty for empty slots, i.e. E  =  0 and O > 0, any value of r th a t results in 

no overflow records is optimal; hence Max  m ust be large enough to  guarantee
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A lg o r ith m  4 Optimizing the penalty score for random ly distributed d a ta

m i n s c o r e  <— oo {minimum penalty score} 
r  <— 0 {number of bits for addressing}

fo r i — 0 to Max do 
5  =  5e(2i) +  5 0(24) 
if  S  < m i n s c o r e  th e n  

min^score — S  
r  = i 

e n d  if 
e n d  fo r 
N =  2r

th a t there is no overflow records. In practical settings where both E  and O 

are positive values, Max  cannot be a large number.

3 .2 .2  Layout E stim ation  for Skew ed D a ta

If the given hash function can not distribute the records randomly, a histogram  

is also used for approxim ating the number of prim ary hash buckets in the final 

hash layout. We construct a  histogram for each candidate layout, with cell i 

of the histogram  showing the tally of records th a t are going to be m apped to 

bucket i. Given th a t each bucket has a fixed size, it is easy to  find the exact 

number of both the overflow records and the em pty slots. We can calculate a 

penalty score using Eq. 3.14 and pick the layout w ith the minimum score.

Similar to  our previous m ethod, the histogram  itself may be too large to 

fit in memory. An alternative is to  choose r,; <  r initial bits for addressing and 

construct a histogram  with 2ri cells. The value of r,- can be chosen such th a t 

the histogram  can fit in m ain memory. Each cell of the histogram is associated 

with 2r~ri buckets and keeps the total count of the records th a t are m apped 

to  those buckets. If we can assume th a t the records m apped to  each cell of the 

histogram  are random ly distributed w ithin the buckets associated to the cell, 

then we can use the Poisson distribution to predict the number of both overflow

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



records and empty slots w ithin each cell. The sum of the penalty  scores of 

all the cells gives the penalty score of the layout. Algorithm 5 presents our 

estim ation m ethod in pseudo code.

A lg o r ith m  5 Optimizing the penalty score for skewed d a ta

m i n s c o r e  <— oo {minimum penalty score)
/•j : {initial number of b its for addressing) 
rm : {number of more bits for addressing) 
r  = Ti + rm {number of bits for addressing)

Construct a histogram  of the d a ta  set using r,- initial bits for addressing

fo r j  = 0 to M a x  — rt do  
5  <— 0
fo r each cell c of the histogram  do

Set n  to  the number of records m apped to cell c;
S +  = S e(2j ) +  S 0(2j ) 

e n d  fo r
if  S  < m i n s c o r e  th e n  

m i n s c o r e  =  S  
rm = 3  

e n d  if 
e n d  fo r 
r  =  n  +  rm 
N  =  2r

Clearly, the larger the size of the histogram, the more accurate our estima

tion of the skewness of the data. The limit is th a t the size of the histogram  

cannot exceed the size of the  memory. Also the step to  find the minimum 

penalty  score requires scanning the histogram  many times and can be costly. 

An alternative is to  examine only a limited number of all possible values for 

for N.

An optim al layout in both  algorithms 4 and 5 can vary depending on the 

values of E  and O. If the storage space is more precious, we probably prefer 

more overflows records than  em pty positions; thus param eter O can be reduced 

and E  can be increased. This can save some storage space. However, if the

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



access time is more im portant, we probably prefer more em pty positions than 

overflow buckets; hence O  can be increased and E  can be reduced.

3.2 .3  P aram eter  se tt in g s  o f  bulk load ing

O ur bulk loading algorithm  uses the param eters E  and O to balance the access 

cost and the storage overhead. In an experiment to  show the effects of different 

settings of these variables, we tried to estim ate the best layout using our 

estim ation techniques in Section 3 for different settings of these variables.

We used a da ta  set w ith 10 million records and applied Algorithm 5 to 

estim ate the number of buckets. The capacity of a bucket was set to 10 records 

(i.e. L  =  10) and E  and O varied. We first fixed E  to  1 and varied O from 1 

to 10. As is shown in Figure 3.7, when the penalty score for an overflow record 

is increasing, the num ber of buckets N  and as a result the average num ber of 

bits used for addressing r  =  log2(N)  is gradually increasing.

Figure 3.8 shows the scenario where O is fixed to  1 and E  is varied to 

indicate th a t an empty slot is penalized more than an overflow record. Both 

the number of buckets and the average number of bits used for addressing 

are either decreasing or rem ain the  same, hence the hash file becomes more 

compact.

To measure the effect of these param eter settings on the actual query per

formance, we loaded the d a ta  using our bulk loading algorithm  and with the 

number of bits r set to  19, 20 and 21. This resulted in three hash files. We 

selected 100,000 random  queries from the da ta  set and posed them  to  each one 

of the hash files. Each query was posed 100 times and the average response 

tim e was recorded. For each hash file, we measured the average running time 

of a query and the average num ber of I/O s. To measure the num ber of I/O s, 

we counted the number of buckets th a t we needed to access for each query. 

Since there could not be much buffering effects for randomly-selected queries,
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the number of buckets th a t  needed to be accessed was a good indication of 

the number of I/O s. As is shown in Table 3.2, when the number of bits for 

addressing is increased from 19 to 21, the hash file becomes more query effi

cient; both the running tim e and the number of I/O s  are dropped, bu t this is 

for the cost of some additional disk space.

Table 3.2: Query cost varying the number of bits for addressing
r 19 20 21

running tim e (msec) 0.082 0.072 0.070
#  of I /O s 1.54 1.10 1.00

file size 1.21 GB 1.37 GB 2.48 GB

These experiments confirm th a t setting the param eters E  and O is indeed 

im portant in balancing the access cost and the wasted storage space, and th a t 

the performance of the hash file can be tuned as it is desired by properly 

setting these variables.
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In the rest of the experiments, we set E  = 2 and O = 1 to  indicate th a t an 

empty slot must be penalized twice as much as an overflow record; this setting 

is expected to produce a rather compact hash file. We also set the number of 

bits for addressing r  — round(log2 {N))  where N  is the estim ated number of 

buckets. The capacity of a bucket L =  10 and the number of records n  can 

vary from one experiment to  next.
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Chapter 4 

Improving Loading in Berkeley  
DB

There are efficient implementations of linear hashing in practice (e.g. Berkeley 

DB [5]). and dynahash [1]. Berkeley DB supports linear hashing through its 

so-called extended linear hashing [17]; it provides functions to  construct and 

search a linear hash index bu t does not support bulk loading. To use our bulk 

loading algorithm, we need to  construct a linear hash file th a t can be correctly 

recognized by the library. W ithout knowing the detailed file format and the 

overflow handling m ethod th a t is used, it is not easy to construct one such 

file. In this section, we take a different approach to bulk loading; we trea t 

the library as a black box and try  to  efficiently load data  using the external 

function calls th a t are provided. The function calls th a t are needed include 

a  function to insert a record and a function th a t takes a key and returns its 

hash value. This m ethod of loading in general can be useful in some of the 

systems th a t support linear hashing bu t do .not expose the details of their 

implementations.

Berkeley DB provides a load utility, called dbJoad, which when used to 

load data, reads one record a t a time and adds this record into the hash 

table. Below we list a few param eters of dbJoad utility th a t are useful in our 

experiments.
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-f Read from the specified input file instead of from the standard

input.

-T  The -T  option allows non-Berkeley DB applications to easily load 

tex t files into databases.

- t Specify the underlying access method. If no -t option is specified,

the database will be loaded into a database of the same type as was dumped; 

for example, a Hash database will be created if a Hash database was dum ped. 

In our experiment, obviously we set it to “hash” .

The following keywords axe supported for the -c command-line option to 

the dbJoad  utility.

db.pagesize (number) The size of database pages, in bytes. The minimum 

page size is 512 bytes, the  maximum page size is 64I< bytes, and the page size 

m ust be a  power of two. In our experiment, we use the  underlying linux 

filesystem I/O  block size, which is 4096bytes =  4K B .

hJTactor (number) The fill factor of the Hash database. The fill factor is 

an approxim ation of the num ber of records allowed to store in one bucket. In 

our experiment, since we know the size of the keys and d a ta  in our da ta  set, 

we set the fill factor using Berkeley D B’s recommended formula:

(pagesize — 32) /  (average-key .s ize  + average^da tasize  +  8)

h_nelem (number) The size of the  Hash database. In our experiment, 

th is param eter is set to the num ber of records in the da ta  set.

To integrate our sorting procedure into this utility, we buffer the input 

and sort the records inside the buffer based on their reversed hash values. The 

buffering partitions the input into smaller chunks, and the  sorting reorders the 

records in each partition  so th a t  the records in the same partition  which belong 

to the same or adjacent buckets are grouped together. Algorithm  6 presents 

our modified version of the load utility. We use linux’s qsort command to  sort
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the records in the buffer.

A lg o r ith m  6 Our modified version of dbJoad in Berkeley DB

Initialize the memory buffer 
w h ile  there are more records do

Read a record R  from the d a ta  set and add it to the buffer 
i f  the buffer is full th e n

Sort the records in the buffer based on their reversed hash values 
Insert all the records in the buffer into the hash table 
Clear the buffer 

e n d  if  
e n d  w h ile

Obviously, the size of the buffer can directly affect the bulk loading perfor

mance. The larger the buffer, the more records will be grouped according to 

their positions in the hash table. We may want to allocate as much buffer space 

as possible bu t we are often limited by the size of the main memory. Further

more, sorting a  few small partitions can be faster than  sorting the whole data  

set. Our experiments (reported in the next section) show th a t  even adding a 

small buffer can significantly improve the performance. The buffer used for 

sorting is always more effective than  the I /O  cache of the same size.

An alternative is to sort all the records, based on their reversed hash values, 

using an external sort utility and pipe the result to the original dbJoad utility. 

This has the benefit th a t the input ordering pretty  much corresponds to the 

ordering of the records in the hash file. We compare this solution to  the partial 

sorting buffering m ethod in our experiments.
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Chapter 5 

Experim ents

To show the scalability and the  performance improvements of our algorithms, 

we conducted experiments comparing our bulk loading to  both  our implemen

tation of a naive load algorithm  and the loading in Berkeley DB.

Our experiments were conducted on a  real d a ta  set of URLs. The data  

was extracted from a set of crawled pages in the Internet Archive ( [2], [4]) 

collection. A ttached to each URL was a 64-bit unique fingerprint which was 

produced using R abin’s fingerprinting scheme [15]. To experiment with larger 

keys, we used as our keys the ascii character encoding of each fingerprint; this 

gave us a 16-bytes key for each record. Unless sta ted  otherwise, we used a 

random  100-bytes character string for da ta  values. We also tried using URLs 

as our keys but the result was p retty  much the same and they  are not reported 

here. The records in our d a ta  set look as follows:

Keys D ata

00000000312E637A abcdefghijklmn.....

00000000382E746F abcdefghijklmn.....

00000000672E746F abcdefghijklmn.....

000000006C2E6E75 abcdefghijklmn.....

00000000762E6E75 abcdefghijklmn.....
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00000032712E74GF abcdefghijklmn.. 

00000032752E746F abcdefghijklmn.. 

00000038332E6E75 abcdefghijklmn.. 

0000004FDEC99112 abcdefghijklmn 

00000061312E706C abcdefghijklmn..

All our experiments were conducted on a Pentium  4 machine running Red 

H at 9, with a speed of 3.0GHz, a  memory of 2 GB, and a stripped array of 

three 7200 RPM  IDE disks. We used the version 4.2.52 of Berkeley DB, which 

was the latest a t the tim e of running our experiments.

For sorting in our algorithm s, we had the option to  sort the d a ta  by the 

right number of bits after the  right number of bits was estim ated. However, we 

decided not to do it for a few reasons. First, this required a tight integration 

of our layout estim ation with our sorting if we wanted to  avoid an ex tra  scan 

of the data. Second, there was not much improvement in term  of performance 

when the num ber of bits used for sorting was less than  the full hash values. For 

instance, our experiments w ith external sorting 180 million 130-byte records 

showed th a t a sort based on 16 bits takes 85 m inutes whereas a sort based on 

64 bits takes 87 minutes. Third, for the partial-sorting algorithm ( Alg. 6 ), 

using our approxim ation algorithm, the number of bits for addressing of the 

records in the buffer and th a t  of records in the final hash layout are differ

ent. W h at’s more, even for the records in the buffer, the number of bits for 

addressing is directly affected by the number of records in the buffer. Then, 

using different sizes of sorting buffers also requires different numbers of bits 

for sorting. Sorting the records based on the reversed hash value instead of 

the right number of bits can avoid a lot of troubles and the trivial performance 

difference can be om itted. Therefore, our reported experiments here all use
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sorting based on the full hash values.

For both efficiency and scalability reasons, we used external sorting when 

the entire d a ta  set needed to be sorted. In our experiments, we use linux’s 

sort command.

5.1 Perform ance com parison to  naive loading

As a baseline comparison to our bulk loading, we implemented a naive loading 

of a linear hash file which inserts one record at a time, and compared its 

performance to  our implementation of the loading algorithm  (Alg. 1, using a 

user-specified I/O  of 1.10). Both im plem entations use the same file format 

and overflow handling method.

We varied the size of the d a ta  set from 1 million to  50 million records. We 

couldn’t run the naive loading for larger da ta  sets; it was taking already more 

than  55 hours to  run it with 50 million records about 5.9 GB. The result of 

the comparison is reported in Fig. 5.1 and Table 5.1.

The X axis in the figure is the num ber of records in millions, and the Y 

axis is the improvement factor, in term s of running time, of our bulk loading 

algorithm  compared to the naive loading. Loading 10 million records, for 

instance, using our bulk loading algorithm  takes 3 m inutes and 16 seconds 

whereas it takes 129 minutes and 55 seconds to load the same d a ta  set using the 

naive algorithm. For 50 million records, using our bulk loading algorithm takes 

27 m inutes and 4 seconds whereas the naive algorithm  needs 3333 minutes and 

18 seconds. O ur algorithm is 123 times faster. Generally speaking, our bulk 

loading algorithm  outperforms the naive loading by two orders of magnitude, 

and its performance even gets be tte r for larger d a ta  sets. The reason is there 

are huge numbers of bucket splitting and record movements (read and write) 

in the naive loading. However, our bulk loading algorithm  performs external 

sorting and sequential writing. All the splitting and movements are avoided.
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Figure 5.1: Improvement factor varying the num ber of records for our bulk 
loading compared to  the naive loading

Table 5.1: Running time of our bulk loading compared to  a naive loading
Number of records 1M 5M 10M 20M 50M

Size of d a ta  set 118M 590M 1.18G 2.36G 5.9G
Bulk loading 0.17 min 1.40 min 3.27 min 10.15 min 27.07 min
Naive loading 3.17 min 49.80 min 129.92 min 752.43 min 3333.30 min
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5.2 Perform ance com parison to  th e  dbJoad  u til
ity in B erkeley D B

As another baseline for our comparison, we used the native Berkeley DB load 

utility and compared its performance to that of our modified version of the 

same utility and also our bulk loading algorithm.

5 .2 .1  Scalab ility  w ith  th e  size o f th e  d a ta  set

We varied the size of the da ta  set from 1 million to  20 million records and 

measured the loading tim e. The size of the sorting buffer in our modified 

version of the dbJoad u tility  was set to 300MB (our next experim ent shows how 

the buffer size can affect the load performance). On the other hand, Berkeley 

DB autom atically allocated 1 MB I/O  cache to dbJoad utility. The to ta l buffer 

size of our modified dbJoad utility was 301MB. To make the comparisons fair, 

we also set the I /O  cache of the native dbJoad u tility  to  301 MB. In the 

following experiment, all the param eters including db_pagesize, h Jfac to r and 

h_nelem of these two utilities are set to their default values by Berkeley DB. We 

couldn’t run the experiments for larger da ta  sets (such as 50 million records) 

with the original dbJoad u tility  of Berkeley DB because of the low performance 

of Berkeley DB in this case.

The result of the experiment is shown in Figure 5.2. W hen the da ta  set 

is only 1 million records (or 118 MB), the I/O  cache allocated to  the native 

version of the dbJoad u tility  is large enough to keep the whole d a ta  set and 

therefore, the whole hash table is built in the memory. In this scenario, our 

modified version of the dbJoad utility doesn’t outperform  the native dbJoad 

utility of Berkeley DB. W hen the da ta  set is 5 million, the size of the  da ta  set 

is more than  590 MB, and the whole d a ta  cannot fit in the sorting buffer of 

our modified dbJoad utility or the I /O  cache of the native dbJoad utility of
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Table 5.2: Loading records in the hash tables with different num ber of records
Number of Records 1M 5M 10M 20M

Running Time of our approach 1.53 min 13.20 min 59.02 min 299.08 min
Running Time of Berkeley DB 7.75 min 86.27 min 216.88 min 893.75 min

Berkeley DB. The results shows th a t sorting the records in the buffer based on 

the reversed hash values can improve the performance by a factor of 1.5. When 

the da ta  set contains more than  10 million records, our experiment shows th a t 

our modified dbJoad outperform s the native dbJoad u tility  in Berkeley DB by 

at least a factor of 3. The performance of our bulk loading algorithm  is better 

than  the other two approaches. It takes only 10 minutes and 23 seconds to  load 

the da ta  set with 20 million records while native dbJoad u tility  in Berkeley 

DB requires 1682 minutes and 1 seconds. This result shows the sorting-buffer 

is more effective than  the I /O  cache when loading using Berkeley DB. W hen 

the size of the memory is limited, we should allocate as much sorting-buffer 

as possible.

In Berkeley DB, the num ber of records to be loaded by the dbJoad utility 

can be specified by a param eter called “h_nelem.” W hen “hrnelem” is set, the 

dbJoad utility a ttem pts to  build the whole empty hash table a t the beginning 

instead of using the dynam ic hashing strategy. In our experiments, however, 

we did not notice any improvements on the performance of the native dbJoad 

utility after setting “h_nelem” in advance to load a d a ta  set w ith unsorted 

records.

5.2 .2  T h e effect o f  buffer size  on  th e  perform ance

As shown in Figure 5.2, when the da ta  set cannot be fully loaded into the 

memory, the sort buffer is always more effective than  the I /O  cache of the 

same size within the native dbJoad utility. In another experiment to  measure 

the effect of the sort buffer on the performance of our modified dbJoad utility,
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Figure 5.2: Running tim e varying the num ber of records

Table 5.3: Loading the hash index with different buffer sizes
Buffer Size 10M 50M 100M 300M 500M 1G

Total Cost (min) 106.62 39.08 28.68 23.65 18.15 19.53

we fixed the size of the d a ta  set to 10 million records and varied the sort 

buffer size from 100 MB to  1 GB. Each record contained a 16-bytes key and 

a  50-bytes da ta  field. T he default I /O  cache size of dbJoad was 1 MB. As is 

shown in Figure 5.3, increasing the buffer size improves the performance of 

the new dbJoad u tility  up to  a point where the whole d a ta  set can be fit in 

buffer. After this point, the  performance remains the same.

It is clear th a t the sort buffer size has a significant im pact on the running 

time of the algorithm. W hen the buffer size is increased from 10MB to 500MB, 

the loading time is decreased considerably. This is because when the buffer size 

is too small, d a ta  is sorted only within small segments and we can’t guarantee 

all the records which finally belong to  the same bucket are grouped together.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

100

90

70

O)
• u

30

20

1000400 500 600
B uffer s iz e  (in MB)

700 800 900100 200 300

Figure 5.3: Running tim e varying the buffer size for our modified dbJoad

However, as is shown in the figure, even allocating a modest-sized buffer (e.g. 

50MB) can significantly improve the performance. In the extreme case where 

the buffer size is greater than  600MB, the buffer is large enough to load all 

the records. The hash table can be built in memory, and increasing the buffer 

size has no more impact.

5.2 .3  Sortin g  data  in  advance

In another experiment, we sorted the records based on their reversed hash 

values using the external sort command in Linux and loaded the sorted data  

using the native dbJoad utility with and w ithout “h_nelem” setting. The 

results are compared to th a t of our bulk loading algorithm.

As is shown in Figure 5.4, setting the num ber of records “h_nelem" this 

tim e can improve the performance of the native dbJoad u tility by at least a 

factor of 3. W hen the d a ta  set contained 20 million records, the native dbJoad
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utility w ith a pre-specified number of elements took an order of magnitude less 

tim e than  the case when “h_nelem” was not provided. Combining the results 

with those in Figure 5.2, we can conclude th a t setting the number of records 

in advance can increase the performance only when the records are sorted by 

their reversed hash values. This is because it is after th is ordering th a t the 

load order becomes the same as the order in which the records sit in the hash 

table. Therefore, records movements between hash buckets are avoided.

In this experiment, we’ve also tried to set the “hJTactor” which is called 

the fill factor th a t represents the density of the hash file. Berkeley DB suggest 

to use the following formula to calculate the average number of records in one 

page. However, we did not notice any obvious improvement after setting  the 

fill factor.

(pagesize — 32) /  (average-key .s ize  +  average.data .size + 8)

120

native d b J o a d  with default se tting  
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Figure 5.4: Loading w ith sorted records 

48

with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.4: Loading with sorted records
Number of recrods 1M 5M 10M 20M
Total Cost with speci
fied h_nelem

0.74 min 2.47 min 5.2 min 10.90 min

Total Cost with de
fault setting

1.35 min 8.29 min 30.51 min 110.17 min

The performance of the native dbJoad utility with a pre-specified number of 

records is also comparable with th a t of our bulk loading algorithm. After the 

records are sorted based on their reversed hash values, both m ethods ju s t read 

the records from the data  set one by one and then write them  into the hash 

table. Buckets split and records movements don’t  occur. The only difference 

is th a t our bulk loading algorithm  use Alg. 3 to estim ate the layout before 

really building it.

Based on the above experiments with Berkeley DB, to load a d a ta  set into 

a linear hash index with Berkeley DB should follow the following 2 rules:

•  If we want to  load the records incrementally when they are received, the 

sorting-buffer strategy should be use. The size of the allocated sorting- 

buffer should be as large as possible.

•  If we want to  load the entire da ta  set once, we need to sort all the records 

based on their reversed hash values. Then load the sorted d a ta  set using 

dbJoad utility with the number of records specified.

5.3 Q uality of th e  hash file

It is clear from our earlier experiments th a t our bulk loading algorithm  can 

significantly reduce the loading time, but a question th a t arise is how a hash file 

generated using our bulk loading algorithm compares to a hash file constructed, 

for instance, using Berkeley DB. Reducing the loading time may not be th a t 

im portan t if the query response time is much longer.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We have proposed two cost functions to approximate the num ber of hash 

buckets in the final hash layout or the number of bits for addressing when 

hashing. In our first method, we use a user-tunable penalty function and try  

to  find a hash layout with a  user-specified average I/O  for retrieving a record. 

In our second method, we use E  and O as the penalty score for an em pty slot 

and an overflow record. Then we define a user-tunable penalty function to 

find a  good trade-off between the access cost and storage overhead.

We did some experiments using both of the above methods. In the exper

iment using the input I /O  m ethod to  compare the query response time, we 

loaded 10 million records into a hash file using both our bulk loading algorithm 

and our naive loading (as discussed earlier). To make a fair query cost com

parison, we forced the hash files in both cases to have the same load factors. 

We first generated a hash file using our bulk loading algorithm, w ith average 

I /O  — 1.10 per probe and calculated the load factor. We then used the same 

load factor to  generate another hash file for the same d a ta  set bu t using the 

naive loading algorithm.

We random ly selected 100,000 queries from the da ta  set and posed them  

to the  two hash files. For each query, we measured the running tim e and 

calculated the average running tim e for the 100,000 queries. Table 5.5 shows 

the result of the comparison.

As is shown in Table 5.5, when the size of the data  set and the load factor 

are fixed, the size of the two hash files are also the same. More im portantly, 

for each query the average number of I/O  accesses over our hash file is the 

same as th a t over the hash file built using the naive loading. The average 

query response times for the two hash files are also nearly the same. From this 

experiment, we can say th a t  the quality of the hash file built using our bulk 

loading algorithm is very close (if not identical) to  the hash file built using the 

naive loading.
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Table 5.5: Query cost comparison between the hash files (user-specified I/O )
Size of the 
hash file

Load factor Average 
query cost

Average I/O  
accesses

Bulk loading 1.37 GB 0.95 0.072 msec 1.10
Naive loading 1.37 GB 0.95 0.071 msec 1.10

We also compared the quality of the hash file built using bulk loading to 

the one generated using the dbJoad utility of Berkeley DB. The load factors for 

the two hash files were fixed to  0.47. This corresponded to I /O  = 1.04 in our 

bulk loading algorithm. The results are listed in Table 5.G. We can see th a t 

the query average response tim e for our algorithm  is much more less than  th a t 

of Berkeley DB. The reason is our algorithm  and Berkeley DB use different 

file formats. W h at’s more, Berkeley DB seems to  do some additional caching 

works while querying. W hen we ran the queries for the first tim e in Berkeley 

DB, it took more than  8 m inutes to  process 100,000 queries. However, it took 

only 1 second if we ran all the  100,000 queries again.

Table 5.6: Query cost comparison with Berkeley DB (user-specified I/O]
Size of the hash file Load factor Average query cost

Bulk loading 2.48 GB 0.47 0.070 msec
Berkeley DB 2.62 GB 0.47 4.80 msec

Our two m ethods to  predict the hash layout before loading only can af

fect the number of bits for addressing. Their bulk loading procedures are 

exactly the same. Therefore, if the load factors are the same, the hash file 

using penalty score m ethod of our bulking algorithm should also be very close 

(if not identical) to the hash file built using the naive loading. Our further 

experiments prove this. In the experiment using the penalty score m ethod to  

compare the query response time, we loaded 10 million records into a hash 

file using both  our bulk loading algorithm  and our naive loading (as discussed 

earlier). To make a fair query cost comparison, we forced the hash files in 

both cases to  have the same load factors. We first generated a hash file using
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our bulk loading algorithm, with param eters E  = 2 and 0  = 1 and calculated 

the load factor. We then used the same load factor to  generate another hash 

file for the same d a ta  set bu t using the naive loading algorithm. We randomly 

selected 100,000 queries from the d a ta  set and posed them to the two hash 

files. For each query, we m easured both the number of I/O s and the running 

time. For linear hashing, a query ideally should cost one I/O , but the actual 

cost is typically a bit more due to  the overflow records. As our measure of the 

number of I/O s, we count the number of buckets th a t are accessed for each 

query. This is reasonable since the queries are selected randomly and there 

cannot be much buffering effects. To measure the running time, we ran each 

query 100 tim es and calculated the average running time.

Table 5.7: Query cost comparison between the hash files (E /O )
Size of the 
hash file

Load factor Average 
query cost

Average I/O  
accesses

Bulk loading 1.37 GB 0.95 0.072 msec 1.10
Naive loading 1.37 GB 0.95 0.071 msec 1.10

As is shown in Table 5.7, using a penalty score function in our bulk loading 

m ethod has the same average I/O  accesses as the naive loading method. This 

result is the same as the user-specified average I/O  method. The average query 

response tim es for the two hash files are also nearly the same.

We also did the same experiment as th a t of the the user-specified average 

I/O  m ethod on Berkeley DB. The param eters are set as: E  = 1 and 0  = 9 

which result in a load factor 0.47. The results are listed in Table 5.8.

Table 5.8: Query cost comparison with Berkeley DB (E /O )
Size of the hash file Load factor Average query cost

Bulk loading 2.48 GB 0.47 0.070 msec
Berkeley DB 2.62 GB 0.47 4.80 msec
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Chapter 6 

R elated Work

Closely related to our bulk loading is the incremental d a ta  organization of 

Jagadish et al. [10] which delays the insertions into a  hash file. In this paper, 

they propose a “Stepped-Hash” algorithm, which collect the records in piles 

and merge them  with the main hash only after enough records are collected. 

D ata  in each pile is organized as a hash index and each bucket of the index 

has a block in memory. This idea of lazy insert is similar to  our Alg. 6. 

Both m ethods reorder the input records to  m atch the ordering of the hash 

file, hence reducing the num ber of random  I/O s. A difference is th a t we use 

in-memory sorting and they use in-memory hashing. In the Stepped-Hash 

m ethod, although records inside an in-memory hash bucket have the same 

value, there is no order a t all inside a  hash bucket. Records are m apped to 

random  positions in the final hash file. In our methods, records are sorted 

based on their reversed hash values. Thus the  records th a t are m apped to  the 

same location in the hash file are all adjacent. In other words, the order of 

the records in a in-memory block is the same of the order of these records in 

the final hash file. This provides a  slight benefit a t the load time. In fact, for 

a part of the d a ta  set, partial sorting is always be tte r than  partial hashing, 

because records are more organized using sorting. An advantage of these two 

m ethods is th a t both of them  support store d a ta  incrementally as it arrives.
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However, a lot of splitting and record movements still occur when records are 

inserted into a non-em pty hash table. In our experiment, 3 hours are used to 

load only 2 GB da ta  using Berkeley DB.

Our Alg. 1 is more efficient and is different. The entire da ta  is sorted in 

advance using external sorting which is typically fast. The to ta l cost of loading 

is the cost of sorting, i.e. 3N if there is enough memory to  store sqrt(N ) pages, 

plus N for writing the hash file. The key point is we approxim ate the number 

of buckets in the final hash layout even before loading actually is performed. 

Therefore, there are no bucket splitting or record movements and buckets are 

not fetched again after they are written. On a  da ta  set with 20 million records, 

Alg. 1 is 50 tim es faster than  our partial sort-based algorithm  (Alg. 6) which 

is comparable to lazy insertions of Jagadish’s Stepped-Hash algorithm.

Bercken et al. provide a generic approach to bulk loading m ultidimensional 

index structures [9]. Their m ethod is based on an abstract da ta  structure  called 

buffer-tree. The buffer-tree differs from the target index structure mainly in 

two points. First, each internal node of the buffer-tree has an additional 

buffer where records are tem porarily stored. Second, multiple insertions are 

processed sim ultaneously in the buffer-tree. W hen the number of records in 

the buffer exceeds a predefined threshold, the insertion processes of all records 

in the buffer advance to the next level of the tree. Standard routines for split

ting and merging pages are used. In their m ethod, sorting multidimensional 

da ta  according to  a predefined global ordering is avoided. Second, instead of 

inserting the record one by one, they insert multiple records simultaneously 

and m ultiple restructuring operations are also processed sim ultaneously in the 

tree. An example of how to apply this technique to R-tree was dem onstrated 

in their paper. For bulk loading R-trees, their approach requires 0 ( n  logm n) 

disk accesses in the worst case where n and m denote the num ber of da ta  pages 

and available main memory (in pages), respectively.
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Bercken’s work avoid sorting the high dimensional d a ta  set w ith a prede

fined global ordering. However, this m ethod is not easy to be applied to a 

hash index. Merging into a tree-based index is different from merging into 

a hash index. Two hash layouts may use different numbers of bits for ad

dressing although their bit-random izing hash functions are the same. Then 

merging them  may cost a lot of bucket split and movements. To avoid them, 

the num ber of hash buckets or the number of bits for addressing has to  be 

predicted before loading.

Bohm and Kriegel propose a generic bulk loading m ethod which allows the 

application of user-defined split strategies in high dimensional index construc

tion [3]. To determine the split dimension, they consider two cases: If the 

d a ta  subset fits in memory, the split dimension and subset size are obtained 

by com puting selectivities or variances from the complete d a ta  subset. O ther

wise, decisions are based on a sample of the subset which fits in memory and 

can be loaded w ithout too m any random  disk accesses.

Fenk et al. ’s work focus on bulk loading into a UB-Tree [6]. The UB-Tree is 

a  multidimensional clustering index which inherits all good properties of a B- 

Tree. Logarithmic performance guarantees are given for the basic operations 

of insertion, deletion and point query. The UB-Tree clusters d a ta  according to 

the space filling Z-curve and proposes a  new m ethod to partition  the d a ta  space 

into disjoint Z-regions. The Z-address which represents the position of a tuple 

in the Z-curve, determines the Z-region to  which the tuple belongs. The key 

idea of Fenk’s m ethod is do an external sort of the d a ta  set according to  their 

Z-addresses. Then B-tree standard  techniques can be used when loading. This 

m ethod can also be used for reorganizing UB-Trees and merging an existing 

UB-Tree with another UB-Tree or a new d a ta  set, because increm ental loading 

only differs slightly from initial loading into a  tree-based index. Both of them  

update  existing pages.
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Generally speaking, bulk loading into a  tree-based or hash index can be 

classified into two groups:

• Algorithms using a kind of partition merge strategy, which partition 

the d a ta  set into small parts th a t fit to main memory. The index is 

constructed in memory on this part of the d a ta  set and then merged 

into the final layout. Jagadish’s stepped-hash method, Bercken’s bulk 

loading algorithm into multidimensional index belong to  this group.

•  Algorithms which apply an external sorting to  reorder the d a ta  set and 

load the sorted da ta  into the index. Our bulk loading algorithm  ( Alg. 1) 

and Fenk’s bulk loading algorithm  into a UB-Tree belong to  this group.

Our partial algorithm ( Alg. 6) is a combination of the above two strategies.

We partition  the d a ta  set into small parts which fit to  main memory and sort 

the records in memory based on their reversed hash values.

Some bulk loading work has also been done in the area of Object oriented 

database. W iener et al. s tudy  the problem of bulk loading into Object-oriented 

and object-relational databases (OODB) and propose their late-invsort m ethod [18]. 

The problem is th a t the relationships among the objects make loading into an 

OODB rather slow. The d a ta  record of object A may show th a t there is a  rela

tionship between objects A and B. However, we can not assign an object ID to 

B when we read A because B may not have been read yet or it may have been 

read bu t is assigned a different ID. The inverse relationships (bidirectional 

relationships) exacerbate the problem. Inverse relationships are relationships 

th a t are m aintained in bo th  directions, so an update in one direction may 

cause a  change to  the other direction.

To solve the problem, W iener et al. build a later updated inverse todo list 

to  try  to  assign an OID when the d a ta  is read for the first time. Each todo list 

entry contains the OID of the object to be updated, the surrogate for the OID
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to  store in the object, and an U pdate offset a t which to store the relationship. 

Surrogates th a t refer to objects described later in the d a ta  set are not assigned 

an OID immediately, but updated  later. To avoid random  reads and updates, 

they also sort the todo list so th a t the order of the entries corresponds to the 

creation order of the objects in the database. This pre-allocation of OIDs can 

avoid updates in the first place. In their performance study, they dem onstrate 

th a t this could achieve an improvement of one to two orders of m agnitude over 

the naive algorithm.

However, further experim ents using larger da ta  sets show th a t the perfor

mance of late-invsort algorithm  degrades because the OIDs may be too large 

to  fit in memory. To address this problem, W iener e t al. later provide a 

Partitioned-List Approach [19]. The key idea is th a t the id map is stored 

as a persistent partitioned list. If the id map is too large to fit in memory, 

they split the id map and the todo list into into several partitions such th a t 

each partition  can fit in memory. Later, the todo list and inverse todo list are 

joined to create an update  list. Finally, the  update list are sorted by OID of 

the object to  update and write them  out in sorted runs. This algorithm has 

comparable performance to  late-invsort algorithm for small d a ta  sets bu t does 

not degrade for large d a ta  sets. W hen the id map fits in memory, the parti

tioned list algorithm  cost less than  twice of th a t of the in-memory. W hen the 

id map does not fit in memory, in-memory m ethod is inviable, partitioned-list 

m ethod is a t least an order of m agnitude faster.

Not all of the commercial database systems support hash indexes. To 

the best of our knowledge, hash indexes are not supported in DB2, Sybase 

and Informix. Hash indexes are supported in Oracle, Microsoft SQL Server, 

PostgreSQL, MySQL and Berkeley DB (as discussed earlier), bu t we are not 

aware of any bulk loading algorithm  for these indexes.
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Chapter 7 

Conclusions and Future Work

We have presented novel techniques for efficient bulk loading into a linear 

hash index. Our experiments confirm th a t our bulk loading algorithm im

proves upon alternative techniques, in term s of running time, by two orders 

of m agnitude. We have shown how our proposed algorithm  can be integrated 

into a commercial open source DBMS and have reported some of the improve

ments th a t  can be obtained. Another contribution of this thesis is using a 

histogram to predict a hash layout before actually loading the index.

Using a histogram  to predict the da ta  distribution before loading opens 

up a  few interesting research directions. The size of the memory th a t needs 

to  be allocated varies with the skewness of the data; Using a fixed space to 

build the histogram , for instance, may not be sufficient for a highly skewed 

d a ta  set. At the same time, loading a highly skewed d a ta  is expected to waste 

the disk space and generally is not recommended. An alternative could be to 

transform  the d a ta  (for instance using a different hash function) before loading. 

The trade-off between the allocated space for a histogram  and the skewness of 

the data  is not clear. Another issue is the type of the histogram th a t is being 

built. Instead of using a fixed-bucket width histogram , it might be better to 

use a multi-resolution approach th a t concentrates more histogram memory to 

regions of higher skew.
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Our algorithms can be applied or extended when the hash file is not empty. 

For instance, our modified version of the dbJoad utility can still be used when 

the hash file is not empty. Our algorithms may also be applied when a hashing 

scheme other than linear hashing is used. For instance, our ordering of the 

records can be useful in an extendible hash file and can avoid many of the 

random  accesses. Therefore, this m ethod is still expected to improve the 

performance.
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