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" ABSTRACT

The semilattice data model is a new model proposed by W. W. Armstrong. The
~
model has the ability to represent complex ob;ects at a conceptual level Lhrough a
Q.

non- normallzed relauonal ‘model allow:ng formation of tuples, sets, sequenccs, and
union types. Internally its use of special purpose codcs, called sémilattice codes, aims
at low da}nvredundancy" aod attemp(s to reduce th.e_need for disc .accesses by embed-
ding information about valdes referred toin the codes referring to them. A semilattvice-
_database management system (SL-DBMS) based on this model is under development at
the Department of Computing Science, University of A_Ibcrta. This the;is investigarcs
the requirements of the phy’sic,al level of the SL-DBMS. A single storage structure is
proposed for the physical ofganization of data in a SL-bBMS called the C-B'-tree. :
Three forms of this structure called the encoding C-B'-tree, decoding C- B -tree and

ﬂecondarv c-B° trce can be used for all kinds of operations in a SL-DBMS

i

An,algorithm for handhng page-overflows and underﬂows known as a pagln'mon
e
/

strategy, has been developed. This paglnatlon strate}g)‘ is also apphcable to other vari- .

¢
ants of vamable lenvth record B tree struct.urcs éxpenments indicate that this stra-
. ‘ ya :
tegy performs better than other pagmauon s(rategles so far l\nown

A feasnblllty study is done fy’ extendlng the propdsed physlcal modcl into an
pdapuve data structurlng 3)§Lem In such a system all the structuring of data is not ‘
specnﬁed orvp'erformed be mmal data load time, rather data gets orgamzed in a

r

more and more Cﬂi/(‘) nt nnnner as the usage patterns on data become clearcr
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~ Chapter 1

Introduction <

e SO0

1.1. The Problem_ R - ' -

A data model, in general consists of two elements :'a mathematlcal notation for

expressjng data and relatlonshlps and operations on data that serve to express queries
/

and other mampulauons of data. The three well known data modéls, namelx, rela-’

tional, network and" hlerarchlcal have been used in the great bulk of conﬁlerual data-

base systems. The semilattice data model is a new data model proposed by W.W.

~

;\rmstrong [Arm84].v It has the ability to represe.nt'cemp'lex object.s at a conceptual
level through a non-normalized relational inode] allowing formation ef tuples, sets,
. ) ‘ « .
sequences and union types. Internally, its use of, special Vpurpose codes, called semilat-'
tice codes, aims at low redundancy ax‘zd attempts?to i',educe the need for disk accesses

"by embedding information about values referred to in the codes Treferring to them.

Y »

.These are the two most important features of the model that make it dlffercnt from

other data models Both the conceptual and internal models are unportant since the

0

conceptual model needs the ‘mternal model to overcome problems of non-

normahzatlon Llﬁe Codd ] relational data ﬁm,del the semllatt:ce eonceptual non-

e ¢ Y

normahzed relauonal data model also is dlvorced from various lmplementauon con-

' , mderatxons (m drder to provxde a hlgh ’degree of data. mdependence) It prov:des !.he
'
user wnth a very hlgh level and entlrely non-procedural faclhty for’ data deﬁnmon,.

retrleval,' update, access .control, support ol_' v:eWs,,and:venﬁc_auon of various kinds of :

'~ ) R ."

© constraints. . C - . o

o
K

T ufj , . . . -
g0 : : e

approach- hmges on the demonstrat:on that 3 system can be bmlt whlch can be used in

a real envnronment to provnde a solutlon to a certam class of problems faced by the

database user commumty The lmplementatnon of 3 protot.ype database managemcnt“

- B
~ : . o e .

To flarge extent the acceptance and valuvof the semllattnce data model’

)



..& -‘

‘

s

system based upon the semilattice data model is currently in progress at the Depart-
ment of Computing Science, University of Alberta. The purgbse of this thesis is to
provide a description & the overall architecture of the proposed ];h\ysncal data model

for the semilattice data management system.

“

1. 2 An, OQtJme of the Proposed Physical Data Model

]
'

At the heart of the proposed physical model for the semllatuce DBMS is a data

structure called C- B -tree. The C-B ~tree structure is a vanant of tlie well known B-

tree strurture for mdox\ed ﬁlcs on secondary storage [BaM72]. ln genéral B tret; struc-

*
1 -

tures have the following festures! . .- -

AN N .
.

-

(1) Utilization of Secondary storage space bétter than 66% is maintained at all times. "

L ;3 o )
Storage space is dwmically allocated and rsclain;ed, and no service degradation
. . . [d %\, . . - . . - ) N
s N U L - . .
occurs when storage utilization becomes very high. ‘ _ :
P N ', . » . ) “ . . ) ;: PR Pt ’
R .. ‘ ’ . . . ot P | B
(2) “Randoin access réquires very few .physncaloblock accesses and is comparable to

. v
- e L - »
. . B
. s : s .

s 3

other random access methods”
- . . st

~

(3) Eﬁi‘éienl sequential processing of recored;s,is also allow'ed.

(4) Record deletions and msemons are eﬁicnently h‘andled usually keeping the(

»

N

modnﬁeatlon d? the structure localized. Updates allow mamtenance of the natural

o

order, of kéy_s‘i'for‘s,équeﬁtial processing and proper tree balance for fast random

. 3 o . . . L - B e o e
retrieval. o ' : e
) ‘ - . . . J &, -
‘In addition t6 these, the proposed C-B’-tfee structure has the following features:

(l) The structure is desngned to suppoft retneval on both pﬂmary and secondary

mdexes Also, combined’ mdexmg ona 'partncular kind of data hamely the semi-

\ . . . :

lpttme codes lS posuble . & R

(‘2) A combrbssnon scheme 1s¢employed that does not repeat a]:ey commou to many
- % ¥

records’' that resnde on the sage page There is no llmlt to the number of records

(s

. o . o ) .
¢ "°\. - e S [ ' . B [

. . . B . .
. . . . ~ B

~ . e ¢ -

i o7 s . T - P A A LI = N
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that may‘bave the same key and records having the same key ‘ma{'y'be‘distributed

" NS

over an arbitrary number of pages. S
(3) Variable-length ‘records and keys are allowed. This provides a great amount of
ﬂexibility in the representation of data.

~

(4) modiﬁed algorithm known as a pagmation strategy, is used for handlmg the
“distribufion of records ‘among nelghbohng pages in the event of page ov erﬂow or
page underflow. It has better performance than other_ prop'osed pagma‘tibn-straa_

k4

tegies for variable-lepgt h-record B-tree structures. "
1S A

The Adaptive Com ponent

A preliminary study is done for extending the above mentioned physical model

into what we call an Adaptive Data Structuring System(ADSS). In ADSS all the struc- -

. . : . . 5o ‘2 . .
turing of data is not done at the initial data load time, rather the data gets more and

ore efficiently organized as the usage patterns oh data become clearer. Tl \'ar’ioi_is
sfeps during the organization of data by ADSS are sbown in ﬁgure 1.1. T

'

-' )

The first step involves the specification of certain data orgamzations by the user
or the database admimstrator and mmal loadmg of data accordlng Lo ‘these sebemes

e

The second steE\_ entails the monitoring of actual system operauons.‘ Thc monlt.oring :
task provndes mformation about more freqnent usage patterns on the data Tbis may
help in ident.ifymg user requirements and critical performance areas. Durmg tbe next

step the momtored data is analyzed and decisions regardmg modiﬁed orgamzauons for

data are tal\en The ﬁnal step addresses the changes in the data structures and tumng

oo

(wnthm%he various degrees of freedom available) of the current, structures on tbc basis

of feedback recelved from the previous step and t,he consent of the database 8dm|n|s-

K . -

trator. The obJective is to opumize performance w:thin the exnsting system by reor-

R li

'gamzmg the database according to. the changmg mterests of its user communny .

0

;.
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) Flgure 1.1 Adaptive Orgamzatnon of Data

1. 3 Orgamzatlon of the Thesis

. Chaptcr‘2 of this thesis presents a review of the backgrbund material required for
‘“our subject. A brief review of the semilattice data model is preseﬁtéd. Two exﬁmpie
"semilattice database schemas are given. An instance of a database based upon each of
lhose schemas is given in Appendlx A. These example schemas are referred to
throughout the thesis to illustrate various points regarding the semilattice data model.
Next, we take a brief look at various data structures that are frequently used by data-
bgse systems and current trends in this arga.' Finally, a shoft review of the adaptive

Iz - )
techniques so far used in conjunction with database management systems is presented.

A storage structure, called the C-B'-tree and its associated access mechanisms

are presen’ted in chapter 3. The C-B’-tree structure is used for storing relatlons and
‘ ] ,

'othcr kinds of information assoc:ated w:th a semilattice database system. The pro-

pdsed storage structure and its, access mechanisms are analyzed in the light of the



X

.

requirem(“nts of a semilattice database system. Some experiments are performed in
order to arrive at a suitable pagination strategy for the C-B -trec. The theme of these
experiments is explained and their results are analyzed A new pagluauon 1tratcg\
called CS strategy is presented for variahts of variable- length-record B-trees, mcludmg

the C-B’-tree.

The purpose of‘ Chapter 4 is to describe the overall architecture of the proposed
adaptive physical model. Objectives of adaptive data orga-nization an&xplaincd.
Various components of the Adaptive dal,a_st"ljucturing system are brieﬂy {)cscribcd.
Two importast areas that need to be further looked into are xdentlﬁed Th(‘ﬂ(‘ are :
choice of secondary indexes, and attainment of better eficiency through introducing

controlled redundancy in the database. The issues that affect each of these decisions

are analyzed. Emphasis is on aspects that require more work in order to make the pro-

Y

posed ADSS complete. The last chapter of the thesis discusses the areas that n\«d

\

further work.

1.4. Indication of Original Contribution

The work in this thesis is a part of the larger effort that.is currcntly‘being made
in order to-develop the first 'prototype DBMS based on the semilattice data model
[Bob84, Arm84]. About a year of contemplation and discussions convinced us of the
prac}ical feastbility of the model. This thesis clearly‘ demons;rates this fact for the
physical ofganization of data and associated basic oberai‘i;ns necessary for a semilat-
uce database system. The description of the proposed model for this purpose is thc ‘

¢ K.
most important achievement of this Lhesns A single storage structure WhICh can be

eﬁicuently used for all kinds of query and update operatlons on a semilattice database

system is proposed. The main body of thls proposed structure has’ becn unplemented

under the 4.2 BSD UNIXT operatmg system at the Departmcnt of Computmg Scnence,

+UNIX is & trademark of AT&T Bell Laboratones



&

University of Alberta. The implementation consists of over 5000 lines of source code'
written in the C language.

A pagination strategy for the variable length record B-tree structure is proposed.
Experiments have shown that this strategy performs betltcr than other pagination
algorithms currently known.‘ This came as an offshoot of our mair; work of designing a
special kind of variable length B-tree structure, called the C-B’-tree for use with a

semilattice database system. In this context a new performance measure called data

. t
i

capacity for evaluating a pagination strategy is proposed.
The overall architecture of an adaptive data structuring system is descnibed
which can be used in conjunction with the above mentioned storage structure. An indi-

cation of future work needed to complete the design of the ADSS is given.
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2.1. Introduction

3

‘The subjeets chosen for review in ’Phis Cbapter“fall into three areas. Fixlst. a
review of the salient features of the semilattice data m.’o'd‘el is presented. For this, we
shall limit ourselves to two aspects of the model t'h?t are o’l’ﬁ_chiel’ c'onc'erl: for the
desig‘n‘ of the i)hyslcal data model. These aspects are : the ability of the eexﬁlattice

model to_represent large and complex objects,in a structured manner and its use of

3. \

semi- mcamngful internal codes in place of*kéys or physxcal pointers. Next a bird’s eye

view of the various kinds of data structures that are often employed by databaqes for
§ .

physncak orgamzatnon of data is prescnted. Lastly, a review of past and current..‘work

in the area of adaptive physical organization of data'is given. -

i

2.2. The Semilattice Model’

oy

e

‘Recently, many researchers have pointed towards the inadequacies of the normal- -

Sl

ized relational system for purposes such as ,L'e-’lxgmeering design. ‘applicatic;ns" and
graphics. A number of non-normalized relational systems have been described to
improve the situation [Har84, HNC84, AbB84, KKA8;1]. The semilattice data model

u v

also is a non- normalized relational data model WlllCll attempts to overcome the
difficulties with normalized relatlonal systems. lt uses the ‘relational data model in

such a way that large, complex objects can be effectively stored, rctrieved and manipu-

lated. )

According to the first normal form ol' tbe relatlonal data nmdel a relatlon is
allowed to have only atomic values in its domalns ln the. semllattlce data model a

domain is allowed to be an at,omlc value, a tuple a sequence or a set ol‘ values Also, .

the ty pe of walue assngned to an attribute may be one of a glven setof alternative

w? N



typcs; (e it is a union-type). The actual type of data is then indicated by a data
doscrietor' or tag value. One component of a disjoint union is allowed to have a null
tag. This means that if data is encountered whkich has no tag velue, it is conside;ed to
have a null tag. This is used for elaborating a database scheme without having to

reload all existing data of a certain type with a tag value.

2.2.1. Basic Definitions’

Identifier -
An identifier is a character string naming a type or a value. It is formed accord-
.o ® .
ing to a certain set of rules. s

Type

A type is a set of values plus an asgociated set of ‘operations on these values. The

Vs ' set of values are called the domain of the type.
L\ Types are cither basic (or atomic) or constructed. The basic types are: integer,
/ .

r;al, string of characters and boolean with the usual domains and operations.

, Type Expression .
13

. . C2
.

The type of a aata is"denoted by a type eéxpression. A type expression is either a
basic type or is formed by” applying an operator called type constructor to Of,h(’l.'
type cxpreseion:;‘ The available. type constructors are: set-scheme,\ sequence-
schome t€ple-scheme and dlSjOlnt-umOD scheme These type constructors xarel
denoted by structures like ({t, b <t > (ty, 83, -t and (¢, [t,]..] t,,.)

. ' re\'pectlvely where t o denote already deﬁned types.

For example, suppose the set of all nonempty stfrings is named "string”. Then
{string} represents the type whose domain is the set of all sets of strings and

'<'stfring> ‘denotes the type whose domain is the set of all ﬁn'i'te' sequences of strings."
) . ) . o -
v S . : e e

Similarly, (symbols:{string}.nameez<string>)’ represents the tuple-scheme in which

the domain of ‘ettri'bute 'symbols’ is the set of all sets. of strings and the domain of

P



'mames’ is the set of all finite sequences of strings. An example of disjoint-union-
scheme is the type (symbols:{str: ag} | names: <string>). A value of this type would
consist of the tag 'symbols’ or 'names’, and a value belonging to the domain of ‘sym-

bols’ or 'names’ respectively.

)

A type expression may be named using an identifier followed by an equal sign’
('=") followed by the type expression. Therefore, a type name is’ﬁalso a type expres-

sion.

The above definition of type is quite in accordance with the definition of data

type given in the literature related to programmlng languages [Ten81 ASU&8|. We

":;;»_ shall not descrlbe here the operations that are defined for a type. This has becn dis-
e

“cussed, to some extent, in Armstrong’s original paper [Arm&4] and further rcqcarcb on

4
4

this qub;ect 1s continuing.
\’ariablc

A variable is an identifier which can be assigned a value from a domain.

Constraints
: .

" Constraints prescribe allowable values for a variable.

Attribute

An attribute is an identifier that selects a component of a tuple_;cliemc.

Tuple - .
-x;/'/ . " - . . ’
i3 " A-tuple is a value constructed according to atuple_scheme.
Relation . ' N ol
. >
g - A relation is a value and is a set of tuples formed accordmg to a given
tuple_scheme

.

Gn en that the value assigned to an attribute can be arbltranly complex a tuple
can be an arbitrarily. complex object and can even reprcsent an entlre relauoﬂal data-

base In- the semllattlce ‘model, ‘ the tuple_schemewather than rclauon scbemc or

<
»

B g . v
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database scheme may be.regarded as fundamental. Hodfever, for the sake of denota-

tion, a relation name 10 Codd’s original ﬁxo‘del is here fepresented by the same name as
the tuple-seheme but w.ritten in upper-case letters. If two or more relations use the
same tuple_scheme, we must find an alternative notation fgr their names. A database
scheme then is a collection.oi’ relation schemes. witﬂ some inter-relational comnstraints.
The genei'a'liged form of the deﬁn.ition of domain allows us to capture the éssence of a
database scheme by using. a tuple_scheme v‘who-se attributes are the relation names
(including constraints which are then on the allowable tuples, i.e. database instances).

in this way a database instance in Codd's model becomes a single tuple in the semilat-

“tice model. The values of the attributes are relations.

%

-

2.2.2, Some Examples of Semilattice Database Schemes

In this section we_present -three ek;xmples of database schemes construct%daccord-
ing to the semilattice data model. These examples illustrate the applica,tipn of the
sémi'lat&jce data model in three quite different areafs of database application. However,
a reader may skip reading the last two examples without any significant loss in under-

standing of the rest-of the material in this thesis. -

(a) The Chip Database

Here is an example of a database scheme which d\estribes functional diagrams (or
. \‘ .

stick diagrams) of simple electronic circuits. A database schem® for this database in

\

‘the semiléttice'data_'model is sh‘qwn in ﬁgl‘xre 2.1,

oint = (x real y real)
OINT" pomt}
line -( omtl :point, pomt2 :point)
LINE ine} -

{FY(%O?‘I (s?;e?l;gog}l»ne})

Constralntq

1

. '(l) Values of pomtl and pomt? in relatton LINE are members of POINT.
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{2). Value of each member of shape in a tuple of POLYGON is a member of LINE.

(3) The sect of lines in each tuple of relation POLYGON describe a closed polygon.

block = (ent :entity, instance :integer, place :point)
BLOCK : {block} ’

Constraints:
(1) The value of place is 3 member of POINT. ) ) -

(2) The valueof ent is a member of ENTITY.

pin = (ent :entity, class :binary, pin¥ :integer,
place :point)
PIN {pm} .

Constraints:

P

{1) The value of place in each tuple of PIN is a member of POINT.

(2) The value of ent is a member of ENTITY.

connection = (blockl block inl :pin, block?2 :blolck.,
in2 :pin, con_seg :<line>
CONNECTION : {connecuon}

L}

Conpstraints:

(1) The values of blockl and block2 in each tuple of CONNECTION are each
- members of BLOCI\ - . *

. o & - °
(2) The values of pml and pin2in  each tuple of CO"JNECT!ON are each mcmbors of
PIN. ’

. #u,’, .

¥ S
(3) - In the value 0! con_geg each membs:f the sequence isa n&iglber of- jJNF

m;__ln the sequence of lines contained in each value of the attn"bute €0 eg the end
i S0 &, 4 .
pomt of a'line is the beginning point of the following line. - ’

., %

bas_entity = = (entid :integer, sh{spé :ﬁolygon, &8 ,;,_f
, . ports :{pin}) T
" BAS_ENTITY {bas_pnnty} : Ce

Constraints: ' .
(1) The value of shape is 2 member of POLYGON.

(2) Each member of the value of ports is a m’enib_gr of PIN.

com_fnuty = (entid inte fer shape polygon,
"components : {bloc orts {pin}, ~
X inter_ron iconnectronf
COM_ENTITY com_entity}.
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Cons‘traints:

(1) The value of shape is a member of POLYGON.

(2) Each member of the value of ports is a member of PIN.

(3) Each member of the value of component is a member of BLOCK. +

(4) Each member of the value of component is a member of CONNECTION.

(5) Anp entity can not -have itself as a component i.e. enfid of a COM_ENTITY should

be dlﬂ'erent from entsd of each of its component block

entit nt:bas_entityk_ent: com_,enhty)
ENT TY {-enuty

.Consltrvaiut:
0 The value of ent is a member of either BAS_ENTITY or COM_ENTITY.

/ Figure 2.1 Tuple_schemes and Relationg for the Chip Database

The rélations POll\T and LI'\E represent all the points and lmes respectlvely in
the diagram that are ol interest. The relation POLYGON descnbes the exterior shape
of each component in the c1rcultl These shapes are closed polygons in general The
relation BLOCK lists various instances of entities that are used as subcomponents in
some other entity. Various input and output pins are described by the relation PIN.
| "The relation CONN’ECTION describes thenpin connections among various blocks. The

attribute con_acg represents a sequence of lines that describe the connectmg route
between the two glven pins. The relatlon P‘\S_ENTITY describes basic cells of the
chip (2-input AND gate in the present case) whereas the r‘elatlon COM_ENTITY
describes compound cells i.e. cells that have other cells as theu' components The rela-
,tnon ENTITY then glves the overall descnptlon of an entlty in terms of its geometry, '
subcomponents and thelr lnterconnecuons It is expressed as a disjoint union ol’ the

BAS_ENTITY and the COM_ENTITY relatlons It is worth noting that no attempt

need be made to refer to entities by a partlcular key ln prmcrple any_one of several

'_pqsmble keys ‘could bé used. The semilattice conceptual model does not require_a., o,

y .
P .
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choice.

(b) The HVFC Database: -

Our next example of a database scheme is based on the exqmple of Happy Valley
Food Cooperatlve (H\/FC) database of Ullman[UllS?] The scheme of the HVFC data-.
base in Lhe semllattlce data model is given in figure 2.2. The relation MEMBER
ropresents the members of the HVFC and their account balances. Various items that
are supphed to the HVFC or thase sold to its members by HVFC along with thelr
prices are given bv the relatlon PRICED,JTEM A tuple of the ORDER relation
descrlbes an item ordered by a member. Each tuple.of the relation SUPPLIER

describes the set of items that are possibly supplied by a certain supplier.

" member (name char(30) address :char(50),
balance :integer) . :
MEMBER {member}

R Bnced_jtem = ltem char(20), price: integer)

RICED_TE {prlced_nem} - . | p
order = (order_no ‘integer, purchaser :member,_-

item : priced_jtem, quantity :integer) - 7
ORDER {order} {
L4

Constraints: L
I L
~(1) The value of purckaser is a member of MEMBER.
(2) The value of stem is a member of PRICED_JTEM.

suppller = (sname :char(20), address ‘cbar(SO)
{priced_jtem})
SUPPLIER : {supplier ‘ : : ' .

¢ N

Constraint: :
The value of stock is a subset of PﬁICEDJTEM.

\

hvfc = members ‘member} ,goods : {rnced_;tem}
. orders {order y suppliers :{supplier})-

F‘igur'e‘2.2 Tuple_échemes and Relations for tthVFC Database
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$

(c) The Graphics Database
The third example illustrates (figure 2.3) the specification as well as usefulness of ‘
the disjoint union scheme for domgins. It is taken from [Arm84). An object consists of

either a square or a rectangle. A picture is a'set of such objects.

oint = (x :real, y : real)
gOlNT : {point}

circle = (centre : point, radius : real)
CIRCLE : {circle}

Constraint:

The value of centre is a member of POINT. L .

rectangle = (lower_Jeft : point, upper_right : point)
RECTANGLI(:) : {rectangle}

. Constraints: .

(1 )‘ The value of lower_Jeft is a mel'nber of POINT‘

(2) The value of uppcr_n'gl\lt is a member of ROINT.

(3) The values of x and-y of lower_Jeft are l;ess than values of x and y respectively of
| upper_sight. ﬁ

object = (obj# : (circlefrectan l|e
OéJECT (: {gbjecg} g‘ )

‘Constraint:
The value of obj# is a member of either CIRCLE orh_R.ECTANGLE.

icture = pic# : {object} - ' s -
ICTURE (: {picture}’ ) . .

“ Const.i'aipt: '
'Thlebvalue of pic# is a member of OBJECT.

Figure 2.3 Tuple_schemes and Rélati.ons,fox‘ the Craphics Database

» - Co s ) : T . : \\ T



2.2.3. The Semilattice Condition

L

Before we can describe the mechanism of ‘referencing in the semilattice modet it

Is necessary to explain what is meant by the semilattice of a database. A directed

graph can be formed from variable names by using arcs whereby the variable at the |

upper end of the arc will, by convention, have as value an object which is a part of the
object which is the value of the variable at the lower end. In some 'casés, the object at

the lower end of the arc can be defined in terms of the objects at the upper ends of arcs
)

§ A

1 . - - y" - - . . - -
cdming into its scheme either as a union or as a join. Even if the relatlon at the lower
L@
end of several arcs cannpt be. deﬁned as a join or union in this way, lt mdlcates that

the ob_]ect at the lower énd refers to the values at the upper endl

FACULTY STAFF : - STUDENT

' DEPARTMENT_MEMBERS = disjoint-union
'

Figure 2.4 Definition of a Relation Usi%g Disjoint-union Scheme -

For example, the relation DEPAR’TMENT_MEMBERS (figure 2. 4) is'a dmomt
union of the relations FACULTY, STAFF, and STUDENTS The relauon employees in

figure 2.5 is.a umon of three smaller employee relatlons t.h,at represent employees at

dlﬂ'erent locations. Flgure 2.6 illustrates the formation of a relation that is not dcﬁned

in terms ‘of‘_ relatnons at. the upper level _ rather, the vrclauon

SUPPLIER..PART_QUANTITY refers to some of the tuples of SUPPLIER aud PART

relatlons
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Figyre 2.5 Definition of a Relatiopn as a Union of Relations
\

-,

In%general, the semilattice condition for forming a diagram .is the following: if the

values of two variables have a common part (e.g;). relations that are equal according to
. - . \

. « .
® % .

" . by ‘ : . . . h
the semantics of the database, up to renaming of attributes and__fiomams), then the
scheme for the common part must appear in the diagram.ﬁThe situation 'with subsets

1s analogous:.if "two relation variables R1, R2 correspond to relatidns having a non-

- P e a

. ¢mptly intersection, then their intersection R3 need only be stored once. The intersect-

. . ] y s ° B‘ . n .
tog part ofa relation would be stored as a reference to the relation of R3 (figure.27).

(SR

.

SUPPLIER } PART

SUPPLIER_PART_QUANTITY relation

A/
S . * -
Ty . .
: Figure 2.6 A Relation Referring to Tgdlf sfAn Other Relations
r"" 2
. H
* M
®
L4 .
\
) v ?
4 4
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)
v N
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Figure 2.7 Referring to a Common Par,t

2.2.4. Internal Structure of a Semilattice Database

-~
i

Brief codes like small integer numbers can be used internally to identify tuples in -
the smallest part-relations. Codes for tuples in a relation which contain qther tuples as.
values of attributes can be obtained by cMcatenating the codes defined !;or the projec-
tions with the assigned code fdr the uncoded part of_the tuple. For example, in the
instance of the Chip database given in Append;x ‘A, codes for tuples in relation LINE
are obtained by concatenating the corresponding codes fer painl; and pomnt? regpcc-
tively. Codes'"{or the vpart's of a union require a type discriminator, concatenated wiﬁ)
the c.ode for them'ember w'ivthi‘n"its part of the union. An cxample of this is the
ENTITY relation of the Chip database whe"t"‘e the null tag is used to indicate that the

tuple referred to belongs to the BAS_ENTITY relatlon and a tag value 1 is used to

mdlcate that it belongs to the COM_ENTITY relation.

One method of assigning a code for the uncoded part of the tuple is to assign a
relative code'w;ith respgcvt to tl;e already cpded part of the tuple. Tbev tode for the com;
‘ lplete tgpie then consists of a combination of codes for.all its part.s concatenated ia a
- certaid fixed order. This method of coding s called relatlve coding. For example codes
for tuples in the ORDER relation of the HVF‘C database are generated by this method;

the complete code for a tuple consists of a generated relative code for order-no and

quantity concatenated with codes for purchaser and stem. Another method of assign-

X
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ing codes to the tuples in a relation would be to assign fixed-length, unique identifiers
to' tuples. This scheme of code generation is called absolute coding. For example, this
molhod)p used for coding tuples of the SUPPLIER relation of the HVFC database. In
the relative coding scheme a code for a tuple contains more*informat.ion about the
parts of the tuple it represents. This might result in significant improvemeht in the
eficicncy of a daixtabase system because some prhcessing may be done on codes rather
than actual attribute values. In the absolute coding scheme the amount of processing
that can be done on codes only would be much less because of the lack of knowledge
about the values of the constituents of the tuple. However, the relatihve coding scheme
might result in arbitrarily long codes for the tuples which have non.-atomic domaihs
_ like sets, sequences etc. ‘in their tuple-schemes. Also, the process of generating codes
would require operations like comparing two comple'x su;u‘ctures of codes (e.g. two sets

of codes) for equality where the members of such a structure can in turn be structures

of some other kind and so on.

Although the semilattice data model does not involve itselt in specifying the

implementation-related details, we here propose the following convention for genera-

tion of codes for the tuples in a semilattice database system: *

A relative coding scheme is followed for coding the ‘tuptes' of a relation whose
tuple-scheme does not have sets or sequences as members of the domain of any
of its attnbutes An absolute codmg scheme is used for tuple-schemes that have

at least one such domam in their tuple-schemes

An i’psta-nce of a database based on the scheme of the Chip database is presenhed
in Appendiac-:A sect»ion A-i. Attributes or tuples whose values afe in the coded form
- are indicated with the presence of a slash(/) character.. For example A/ mdxcates .
. absolute code for A whereas A/B indicates code for A relatxve to B For the reasons

explamed above, ‘the tuples in POLYGON CONNECTION BAS_ENTITY and
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-

«

COM_ENTITY relations are coded according to the absolute coding scheme whereas

the other five relations in the database scheme are coded according to the relative cod-

-
.

ing scheme There 1s no referred to part in the tup-e-schemes for relations P(INNT and
'LINE. Therefore, the absolute coding for their tuples would be the séme as the rela-
tive coding. Section A-f of Appendix-A’ contait.ls an instance of a database basea on
" the HVFC datal;ase scheme. Again, relaLiVe\eedes are assigned to thc-tuples of the
‘MEMBER, ORDER and PRICED_ITEM relations whereas an ai)solute code is assigned -
to eacl; tuple in th¢ SUPPLIER relation. There is no relation corresponding to the

tuple-scheme hvfc since such a relation can be constructed from the other four stored

relations.

One of 't‘he key pointS in the setup of an internatstructure for a SLDB is that
because codes are used, the storage space required for building a new gecondary index
for a relation is small compared to what would be required if actual vglues are used.
The second.key point is that, again because codes are used, more useful data can, in
principle, be obtained per disc access. With proper clustering .of data thig should' be

- bereficial Tor perfprrinan‘ce.

2.2.5. Operations in the Semilattice Data Model

Opérations.of the relatioqal ﬂata model like selection, join, projection, cartesian
product, union, difference etc. have their analdogs in t;he semilattice data model. These
pper‘atibng .ha\"e been (ieﬁned keeping in mind the nc;n-normalized structure of tuple-
schemes in the semilattice data model. Instead of repeating the description of.lbesg
op.er?tion:; the reader is réferreq to the origiﬁa! papq [Arm84].

. The next section presenis "an bvérview of various data structures ‘gcn'"erally_

employed in physical data models of various database management systems.
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2.3. Classification of Data Str’ucturga for Databgse Management
"Systems. . .

The design of data.structures for a DI\BMS directly contributes to the usability
and rcs;')onsivone‘ss of a database system. The initial data structures used for data-
bases were sequential in nature - a sequentiol deck of cards or its image on magnetic
tapg. Insertions and deletions in this kind of data structure lead to at least one of two
undesirable con.sequences: the introduction of ad-hoc mechanisms (such as a flag to
indicate that a record still present should be considered as having been deleted, or
pointers to an overflow bucket which holds records that can not be squeezed into. their,
'right,ful place), and frequent expensive restructuring of the entire dota (typically when
the'numbcr of holes left by deletions, and overﬂm‘w' areas cr;ated by insertions, ‘have‘:’vl'

grown so large as to severely‘«i‘legrade performance).
\ L%

Direct access storage devices such as drum and disk made organizations such as

A

ISAM [IBM66] possible. These access methods usually permit access to each record in

two steps: first a directory is searched which points to the proper cylinder or track;
3 . '
second, this track is Searched sequentially. For static files this scheme is as fast as the

'hardwarc restrictions on disk accessing permit. For highly dynamic files index sequen-

tial structure could lead to very poor performante; instead of the two-step access to .

data, long linear chains of "overflow buckets” may be traversed.
g

éalan‘ced trees turned out to be a good solution for storing highly‘dynamic ﬁle:;'on
secondary. storage. The B-treeﬂ of Ba) er and McCrleght [BaM72] were the ﬁrst file
orgamzatlon schemes that addressed together the issues of storage efﬁclency and
dynamic adaptation of structure to fit data. A number of varlants of B-tree structure

, have been proposed smce then [Knu73 ’BaU77 McC77]

Multtdnmens:onal tree structures have been proposed which enable access 5 t0-a file

¢

on Tore than one attribute. Notable among these are the mul«tidimensional binary tree
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structure of Bentley [Ben75], multi-attribute tree (MAT) of Chang and Fu [ChF79)
and K-D-B-trees of Robinson [Rob81]. Although these structurcs offer the flexibility of
access to more than one attribute, a common shortcoming of these methods is that
they do'not fare welll in case of dynamic databases. For example, k-(l trees of Bentley
require that database be "clustered" in a preprocessing step. Similarly, reorganiza-

tional algornhms for K-D-B-trees have not yet been fully developed [Rob81]

Another kind of data structure whlch was based on key to—address transforma-

tion. called hashing. was discussed in 1969, giving O(1) access time to individual

¢ 1

records in a file [Ols69]. Oune of the major drawbacks -of hashing schemes is the static
storage allocation i.e. the size of the ﬁlé must be estimated in advance and storage
space must be allocated for the whole file. With dynamic files the‘perforluance ol' hash-
- ing schemes may become very bad: It may even becomclnecessary to rehash all thc.
records into a new file. Also, if the hashing scheme is not order-preserving it bec,orucs

unsuitable for answering range queries. Various kinds of hashing techniques are dis-
¢ . . \

‘cussed by Sorenson et al. [Sor78].

~ Ha ,hmg schemes for dynamic files have heen proposed by Knott [l\no?l) Larson

[Lar80], Litwin [Lit80] and Fagin et al. [FNP79]. A multidimensional hashing method

for static files was proposed by Rothnie and Lozauo [RoL74]. Another order-preserving

-

mulndrmensnonal hashmg method for static files has been proposed by Merrett ‘and

'
~

Otao [MeO78] ‘ SR ’

P‘arallel to the development pf the above mentioned dta structures, several other
less frequent,ly discussed and used data structures were developed. Some of the impor-

‘tant ones among them are multilist, controlled llstAleugth mulullst and cellular data

structures [TrS76]

" The work on data structures for databases can be classiffed in several ways. First,

there is a distinction between direct storage organizations [Ols69, Rqul, Lar80, Lii.8_0;

s !
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FWP79, Rol.74, MeO78] aad tree >structured organizations [Dumb6, IBMGG, BaM72,
Ben75, FiB75, LeWS80, LeY77, ChF79, Rob81].‘ This i1s a distinction between O(1)
access time and O(log n} access time. Second we can claasify these ‘data structures as
sifigle attribute access [Dum56‘,‘ BaM72, Ols69, Kno71, Lar80, Lit80, FNP79] and
multi-attribute access [Ben75, FiB75, LeW80, LeY77, ChF79, Rob81, RoL74, Meo78].
’I:hc third distinction is between static [Dum56, MeO78, OIS69, ROL74, and dynamic |
~ organizations [BaM72, Ben75, FiBZS{ LeW80, LeY77, ChF79, Rob81, Kno7l; Lar80,
Lit80, FNP79]. Lastly, order-preserving methods [BaM72, BeN75, FiB75, LeWsgo,
Le\"77, ChF79, Rob81, MeO78] are diseinguished from the others [Dum56, Ol'sﬁé,

~

Kno71, Lar80, Lit80, FNP79, Rol74].

2.3.1. Selecting Data Structure for a DBMS

On the basis of the “above-mentioned disti_nciions it is apparent that a storage-
efficient, dynamic, order-preserving, multi-attribupe direct access storage organization
would be an ideal choice for a DBMS._ Unfortunately none of the so far known data
“ organiz‘ation Qschemes fulﬁlls all these requirements. Therefore one of the most
“difficult decisions the |mplementors of a DBMS should take i the selection of data
- structures and access methods that should be prowded wnth the DBMS A survey of
access methods used in recent database management systems however, does mdlcate a

few mterestlng and definite trends.

r

First, bmost of the .systems offer moi'e than one eption to the datanase‘adminis’tra-
- tor l'or organlzatlon of data to sult different types of appllcatlons For example the
DBTG group recommended five optlons, called "locatlon modes , to the DBA {W|e77]
Thc lmplemen\tors of INGRES provnde three optlons for the orgamzatlon of relatlons
[SWK?B Sto80]. These options, are sequentlal (heap), hashed and. lndexednsequentlal

orgamzatlons. Both primary and secondary- indexes are supported.
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Second, the designers of most systems have elected to impllcmem a sequential
structure (i.e. a non-keyed structu;)\a{ong‘ with one or two keyed file structures.
Keyed file structurés which are more frequently chosen are hashed, indexed sequential
an;i invérted file structures. The multilist and cellular partitioned structures are less

frequently used.

Third, earlier systems placed a lot of emphasi‘s on storage space (RM/XRM
[Lor74], P}iT‘V [Tod76, Tod77], RDMS [StG74]). Multiple-byte character strings vs:cre
stored in an indirect manner. First, they were represented by numerical fixed length
identiﬁm;s which were later used as references to the original data. Possibly because of.
rapid decline in memory costs, this division of memory space no longer seems fashion-
able. In recent systems there is a trend to store variable-lengt.h ché-ractcr strings
directly (INGR’:ES [Sto76, Sto80], SYSTEM R [Ast76, Bla81l, Cha81] and ADABAS
[Atrg0]). |

Fourth, very few systems support some kind of compression/decompression

‘scheme in order to increase stogage space utilization. PRTV and INGRES are two such.

relational systems. INGRES 'supportsAdata compression as an option. A major ’dﬁgw-
back ~of such schemes is the high processing overhead by data

compréssion/decompression routines (20% of CPU time in case of PRTV). .

| 2.4. Physical Design Aidﬁ for "Orgariizatfion of Data

s .

One of the most difficult tasks a database administrator(DBA) must perform is .

the selection and périodic_ evaluation of access methods which would provide satisfac-

tory, if not bptinial_, performance of all applications. Although the decision of the DBA

in most cases is still based on his intuitive and qualitative impressions, there are some

simulation and analytic models available to assist in this task.-

The principal éxjigin of these works can be traced to the formal model for the list

- oriented data structures develdped.by Hsiao and Harary, [H3H70]. This @Qdcll views the
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user applications [TeD76).
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file as a collection of records organized on linked lists. A directory is used to model the
access to the records by'indilcating the record key values, the number of records con-

taining these keys, the number of lists each key is on, and a pointer to each list. Using

a simulation approach Cardenas built 4 system to aid in the selection of various file -

- .
structures. The selection is based on a set of user requirements and a given set of cost

equations for each file structure [Car75].

2

Severance, recognizing that the Hsiao-Harary model only addressed list type
record sequencing, extended the model to include a broader’class of structures [Sev72]:

He introduced a two parampeter (each two-valued) model to. describe physical record

accessing mechanisms- data direct, data indirect, pointer sequential, and address

sequential. Given the characterization of the database and a series of cost equations,

Severance developed a semi-heuristic search mechanism to identify the optimal design. .

In a major thec;retical brea_;kthrl;ug’h,- Yao formulated an analytic approach to
modeling storage structures in WlllCl] a single model and cost function could be used to
charactenze most storage organlzat,lou alternauves [YaM75 Yao77]. Sequential,
indexed- sequenual hashed multilist, and inverted orgamgatlons could all be definéd in

terms of the basic parameters of the general model .

s

\\
ae b -

T

The thebrctical work of Yao was extended and implement’ed to characterize exist-

mg storage organizations in ex:stmg envnronmen-ts A software package called the File

Desngn Analyzer (FDA) was developed to evaluate well-known file organizations in-

4

terms of.1/O processing tu‘ne and secondary. storage space required to service a set of

4

'

&



‘) ‘ 2.5‘. Monitoring, Analysis and Adaptation ofPhysical Organilntioniu

Monitoring is perhaps the most useful tool in the design of ;torage structures for
._d.atabases. A monitoring pz;ckage is needed to collect statistigs on the utilization of the
database access paths. Baséd upon the tnputs from this phase or changes in the ba'sjc
requirements it might be necessary to modify database structures. Here we shall limit
our discussion to modifications in the physical organization of data to the varjous pos-
sib;e degrees of freedom. Belford at the University of Illinois, proposed a monitoring
mechanism based upon well-known statistical gathering procedures [Bel75]. In this
preliminary study algorithms were invest)vigated to collect statistics on data usage pat-
terns exhibited by the application programs. They .are currently developing tests and

stimulations to evaluate and determine.the effect of various parameter choices on the

~ efficiency of the algorithms.

Two of the few’ reported implementations of DBMS monitors are by Kripos

| [Kri73] and by Oliver and Joyce|O1J76). Krinos describes a’mémitor implemented for
the United Aircraft Information Sygtem {UAIMS) whic’h compares the activities of

DBMS applicationé with non-DBMS z;pvplications. Oliver and Jhoycrc réport on their

experiences withh REGIS, the Relational Geﬂerél Information System. Their perfor-

~ mance monitor collected data about utilization of the REGIS command language.

Some of the works that address the issue of dynamic reorganization of data based
upon usage pattern analysis on data are described by C. T. Yu et al., Hammer and ;

Niamir, and Hammer and Chan. Hammer and Chan proposed a heuristic solution' to
A ) ' o

the problem of'selecting attributes on which secondary indexes should be created

A

[HaC76]. Hammer and .Niamir present a heuristic to divide a large fite with many
attributes into small files thh fewer attrlbutes {HaN?Q] The work of C. T Yu'et al
deals wnh an adaptive algonthm to cluster records into blocks for higher eﬂiclency

[Yu84]. Their algorithm is capable of detecu,ng changes in user‘s access patten;sland

- - ) 7
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then suggesting an appropriate assignment of records to blocks. -
\ ;

2.6. Conclusions ' )

The semilattice data model puts some specific requirements on the physical model
for a semilattice DBMS which are different from any other model. This is due to the
presence of non-atomic domains in tuple-schemes of a semilattice database system and
the use of the semilattice codes. Although there is a large variety of known data struc-
tures to choose from, there is little to help us in making a good choice. Most of the
pl;;ical design}ds make the impractical assumption of having the prior knowledge of
all of the applications for which a given-database system would be used. Also, the

practice of offering a myriad of data structures to a database administrator can at best

be described as a compromise strategy.

The following chapter describes a data structu}e which offers a great amount of
flexibility in storage of data. The fourth chapter indicates how this data structure can
be exploited to dynamically adapt the physical organization of data in a semilattice

.database system.



' Chapter 3

Storage Structure and Access Methods for a SLDB Syat:em

3.1. Introduction

~

The design of storage structures and access mechanisms has a major impact on
databasé system performance because.it ‘is at this level that actual implementation
takes place id physical storage. In the previous chapter, the basic features of the sermi-
lattice data model were disc‘ussed. This chapter analyzes the storage structure require-
ments of the data 4_mode|. A general format of stored records in a ée;nilattice datébase
system is described. A new variant of B-tree called compres'sed—B'-tree or C-B’-tree is
proposed for the organization of stored records into files. The results of some experi-
ments done regarding the pagination stxjategy of the variable-length B-tree structure
arc presented and their implicat'ions are analyzed. Finally, a new paéination strategy
(;a]led Combiﬁed Strategy(CS) for variable-length-record B-tre’gs is discussed. Experi-
mental results show that CS could result in significant performance improvement o.ver

the existing strategies, namely Equal Strategy (ES) and Minimum Strategy-(MS)
‘ : : R

[McCT7

3.2. Requirements Analysis ‘ e

As discussed in the previous chapter, in the semilattice data model, an attribute
is capable of representing a structured object. It allows non-atomic structures like
“sets, disjoint union of domains etc. to be members of the domain of an attribute. Also,

very often, the value of an attribute in a relation is obtained by referring to 'some:

other-tuple(s) in some other relati'qnlénd this-reférenée is done with the help of logical

codes. called-’semilattité codes’. These features put, some special requiremen)ts o the
storage structure schemes and thelr associated access mechamsms for a semllatuce
database system In order to analyze these requirements we shall very frequently refer

: to the two semllatuce database examples that were mtroduced in the prevnous cbaptcr.

i ' - : . '

. ) 27"
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(

the Chip database and the HVFC databdse.

3.2.1. Coding and Decoding .

A% described in the previous chapter, the physical representation of a tuple in a
semilattice database generally consists of two parts : a coded part, and an uncoded
part. The coded part consists of semilattice codes that represent values of attributes
belonging to tuples in other relations plus a relative code that is generated to
represent the uncoded part of the tuple. The unc@‘d part of a tuple consists of actual

(user-supplied) values of attributes.

This way of representing a tuple suggests that during \yarious kinds of query or
update operatjions, codes would be used quite frequently inste.ad of actual values. For
example, suppase we want to add a new tnple to the MEMBER relation of the HVFC
_ database. User snpplied values of name and balance would he inserted into the
MEMBER relation end a code would be generated for the newly inserted tuple. bcle!—
ing a t,uple from the ‘MEMBER‘ relation would render the associated code"nnused One
simple method to generate an unique code for every tuple in the relation is to use a
new mteger as code for ewerv ‘newly created tuple Therefore an obvious way to
1mp|ement this qtrategy would be to use posmve integers as &odes and keep track of |

—
the hlghcst value. of mteger which has been used for coding a tuple in a ;jrtlcular

| relation. Then the code assngned to a newly created tuple would be the next hlgher

integer. Let us call this next higheri mteger the next available c?)de

. The above-mentloned method for generating codes mlght lead to very long codes
Even for a relauvel) small relatlon on which update operations are very frequent the

: ‘generated codes for the newly inserted tuplés would" become very long A better way

of generatlng codes would be (1) to keep track of all the deallocated codes and re-use

them and (u) as explamed m the prevnous chapter, to generate a relauve code for a

< -

tuple in a tuple scheme that does not have a-set ora sequence as'a member of one of .'

H
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its attribute domains and to generate an absolute code for.a tuple in a tuple scheme
’

n

that has at least one such attribute domain.

AN

3.2.2. *Ope/r‘ations_ on a Semilattice Database

As with any other klnd ol'”database operatlons on the data of a semllattxce data-

base can be divided into two kinds - (i) Query operations, (ii) Update oyerauons
o
Query operations request retrleval of some.data from a database, whereas update

operations insert or delete data or request modification ol“the,' existing contents of a
database. o ,
_ .

A typical query processing procedure in a semilaitice database consists of three

phases. In the first phase codes for the user-supplied values are obtalned from the

/

database b) the DBMS. In the second phase, the query is processed ‘using mamly the

coded values found i in the peevxous phase and ﬁnally in the third phase these codes are

3 -

decoded and user is supplled with an answer to h|s query.

For example in the chip database, to ans’we-r the query "what all pins are there in-

the rectangular enclo‘sed reglon X,st X, and YisysY,®, ﬁrst a selecuon folIOWed

-

by a pro;ecuon on the relatlon POINT is made whlch would glve the codes of all t,fxe
points that lie in the specxﬁed regnon Let us call this temporary relat:on Tl The ‘méxt .\’“-

step would be to find the j join. of this relatlon wnth t,he relatlon PIN over the :xttnbute J

\

place The resultmg relat,lon (say T2) contains. t.uples each of whlch conslsts of the
class of the- pln pln number and, a code for its. place Now to pnnt the ansWer, placc

would have to. he decoded l'rom the relatxon POINT

Howevcr not alI quenes requlre all the three phases durmg thelr processnug Alscl - '
. 3 que%y could be processed in such a way Lhat. it mlght requlre a dlﬁerent combmatlon,
~or sequence of the above_mentloned three phases For example the query prlnt the
' lnames of all the members that have balance <= 310 would Dot requlre the second
and thlrd Phases R - SRS R B \

L)
N .. . ¥ oo
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‘ Therefore, in order to function efficiently, a database management‘system should
be equipped with data structures and access mechanisms that allow handling of all
kinds of likely retrieval requests with a reasonable effieiency. The following subsec-
tioﬁs discuss the three very common types of retrieval'?‘fequests and brieﬂy mention
otherg.‘ s , ' =

3.2.2.1. Exact Match Retrievals

t

The simplest type of query in a relational file is the exact match query - "is a
specific tuple {defined by its key) in the relation™ A point worth mentioning here is
t)ml the semilattice data-model does not rely upon the existence of keys in its relations

because keys might Preak dawn. Therefore, a query posed by a user is not regarded as

an cxact match query unless exact values of all the attributes of the desired tuple are
o ) specified. However, the semilattice code of a tuple can _be regarded -as a key or the

‘tuple identifier because a tuple can be uniquely identified by its semilattice code. Dur-

-
i

ing the processing of queries the code of a tuple may be used for retrie‘Ving data from
relations. As an examgyle, let us consider the query what all pms hg m the rectangular
‘regién bounded by Tl:‘z z—.\l, 1-—Xf., =Y, y=1,"" As dlscussed earher d\mng
phase three of processmg this query, the relation POINT is accessed to find actual
\alues of co-ordmates correspondmg to given codes for tuples @Qbe POINT relation.
Another instance of exact match query W!:llld be whel\values of aﬁ the attnbutes are
'sp'ec'lﬁed by the user. For example, xn. the chip database the pro_cessing of the query

f ~ "What is the class (input of output) of the pin located at-the point z = X, and

L = ", would include an exact match retrieval on the relation POINT.



3.2.2.2. Partial Match Retrievals

—

A more complicated type of query in a multi-attribute relational file is a partial.
match'query in which values of a subset of keys are specified. In general if a kc_vkhas k
attributes then in a partial match query the yalues of t of the k attributes (t < k) are
specified and retrieval of aU records that have those t values, independent of the other
(k-t) values, is request,éd:”Viewed in the context of a semi!;ttice(ﬁiatabasc ;S'meu;. a
partial match query would specify values of a set of -the ’a&u"ib'utes (coded or uncoded)
that form only a.proper subset of the key. For example in the HVFC database the
query “print the names of all the members ﬁith a balan(“e of $0.007 is a partial match
query on the relation member. As anoiher example fhe query“"How many orders have
been placed by m&&b'ers with a neg;‘ative'balance"? would require a p‘artia‘l match

v

retrieval on the relation MEMBER as well as the relation ORDER.

L]

3.2.2.3. Range Retrievals

In a range query we specify a range of values for several or all of the k attributes
of the the relation, and all records that have every value in'the proper range are then
reported as the answer. For example. one might be interested in querying a student

database to find all students with grade point average between 3.0 and 3.5, age

between 19 and 21 years, and parent’s income between $15,000 and $25,000.

3.2.2.4. cher i:inds of Retrievals

'fI‘he‘ tlgeg.kin;i@qf r'etrievgl reduests_tb’at’ have been investigated above are the »

most commonly discussed retri“evals, in databasé applications. However, éther l;inds of

retrieval requests_do occur. One such typé is a 'best match retrieval’ request. In some

database applications one would like to query ihe database and find that it contains
; ; _

) . .y . .
- exactly what one is looking for; a builder might hope to find that he has in his ware-

house ¢xactly the kind of steel beams he needs-for the current p;'ojcct. But often the
Y .

N
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dutabase would not contain the exact item. The user then will have to settle for a simi-

~

Jar item. The most similar item to the desired is usually called the "best match” or the
. ~

"ncarest neighbor” to the desired record. Here the "best” could be defined in terms of a

distance function, which could be based on a general description of attributes. More

formally, given a distance function D, a collection of points B ( in a k-dimensional

~space), and a point P (in that space), it is often desired to find P's nearest neighbor in

B. The nearest neighbor Q is such that

(¥ ReB){(R # Q)~|D(R,P) = D(Q.P)}
A similar query might ask for the K nearest neighbors of P (K> 1).

3.2.3. References in a Semilattice Database Sys\‘,erri

In a scmilattice database system, the value of an attribute in a tuple can refer to
tuple(s) in a diﬁcren{ relation. There are several implied assumptions for this kind of
reference. The first assumption (the uniqueness assumption) is thai the referenced
tuple i~ unique. I‘hxs is necessary in order to get a precise answer to the same query

when 1t v posed more than onge on the same instance of the database. The second

)

assumption (Che consistency assumption) is that the tuple being referenced should not

change as a result of the old tuple getting deleted and a new tuplé with the same code
- . . '

s

being inserted. This might happen if deleted codes are not handled properly. The third

assumption (the existence assumrption) is that the referenced tuple exists.
’ .

Any proposed data structure for the semilattice data model has to ensure that

‘

means for preserving the validity of these assumptions is provided.
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' 3.2.4. Summary of Requirements Analysis

In short apy proposed data structure for a semilattice database system should
‘

satisfy the following requirements:

(1) A dypamic mechanism should be provided for generating codes for newly inserted

tuples which is capable of re-using the-previously deleted codes.

(2) The proposed data structure should facilitate execution of various kinds of fre-
quently desired operations on a database with reasonable efficiency. This includes

query operations (exact match, partial match etc.) as well as update operations

(1nsort, delete etc.}.

{3} It should provide means to preserve and check the validity of all the above men-

‘tioned implied assumptions for references to other tuples,

3.3. Compressed-[?'-tree : The Proposed Data Structure

ln.tlm section a variant of the B-tree data structuro 18 pr;>po.<(‘d for use in semi-
fattice d'xtdb'ne system en\lronm‘ent% Originally, B-trees were studied in the early
1070s by P'nor and MecCreight [Ba‘\i 2). The B-tree structure showed earl\ promm-
for ofﬁcnonlx%torage of very large indexes on secondary storage and allowed very fast
random.’ retribval of records. New variants of B-tree structures and their applications
continue to e;"\olvc. The general characteristics of a B-tree structure were .disg'ussrd in

“chapter 2. A study by Comer [Com79] discusses basic B-trees and many of théir vari-

. )

ants. Y : - -

\

A variaot of xhe fixed-length-record B-tree structure suitable for variable length
records was mtroddced by McCreight in 1977 [McC77] Our Comprcssed B-tree struc-

ture is based on thxs\ structure.” It i is named Compressed-B’ ~tree structure bccauae (i) /
\

it uses a data compression scheme (to be descrlbed later) (u) it mamtams a mlmmu%

of 86°¢ <torage eIﬁcnencw a propertv of B’-trees. The C-B‘-tree structure differs from
|
P

\ | -



34

the structure proposed by McCreight in the following ways:

(1) All records réfide only at leaves. Node pages consist only of keys and pointers,

1.c. aroad-map to enable rapid location of records.

(2) Al the pages at a certain level are ordered. In addition, all the pages at the leaf /

level are Bidircctionally linked as shown in figure 3.1.
(3) The structure is designed to support retrieval on primary as well as secondary

keys.

The Root Page ‘ . A

f;. Child Page
Pointer

Node pages

]

Other Levels of Node Pages

¢

b - - - - -

N\ "Left aod Right Neighbor

Page‘PoinLers :

Figure 3.1 Structure of C-B'-tree

4
ar

(4) \\'hep used for retrieval on a secondary key, a compression scheme is. employed

-~ which does not repeat a key common to.many records that reside on the same

. page. There is no limit to the number of records that have the‘samev key and

—
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records having the same key value may be distributed over an arbitrary number

of pages.
(5) The pagination strategy is modified Whichresults in a significant performance
improvement over the strategy proposed by McCreight[McC77].

»

3.3.1. Description of C-B’-tree Structure

A 'C‘-B'-tre}“ structure i3 a generalization over B*-iree and B'-tree variants of B-
tree. The recof/ds may have variable lengths. Also, the index could be on a primary
key ﬁel?or lon a secondary key neld. For the purpose of C-Bf-tree structure, a record
consis(s of two parts : a key part which could be either a semilattice code, or some
domain which can be ordered (e.g., integer numbers) and a data part wb\ch might be
some property of the key. or might be a pointer to- another record in the dPtabaqe ete.
Since we are dealing with a structure whlcb can support retrieval on primary as weil as
<econd ity Key fields several records may have the same key value but no two recnrd~

in the same C-B° -tree are allowed to have the same key value as well as the same data

field value. A C-B’-tree with page length of p words (or bytes) has the following pro-

Y

*

Q,perties:
(a) U onh child pnage ponnters are followed then, each path from the root node to a
leaf node has the same length h, the height of the C-B’-tree (i.e. h is the number ”

of nodes from the root node to the leaf nqde both inclusive).
. . ¢t

{b) In a node page the sum of Iengths of all key parts and lnter-page pomters cannot

exceed P words and (except for the root page) can be no less than p/2 words

Slmxlarly. in a leaf page the sum of lengths of all key parts and data parts cannot

-

exceed ; words and can be (except for the root page) no less than p/2 words

(¢) For each non-root and non-leaf page P, the average number of words used per

offspring page of P is at least 2p/3.
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{d) The root may have at least one key part and.two imter-page pointers or at least

oné complete record.
vy

3.3.1.1. Structure of Interpage-pointer, Datg Paﬁ and Key Part

The structures to represent an interpage-pointer, thé krey part of a record and
the data part of‘a record in the C-B’-trée are shown in ﬁgm;s 3.2(a), 3.2(b), and 3,2((‘)—
ro:cpectivel_vA All indicated lengths are in bytes. An inter-page pointer could be used to

point to a neighboring page or to a child page.

3.3.1.2. Structureof & Non-leaf (or Node) Page
The general structure of a non-leafl page of a C-B’-tree is shown in figure 3.3.
Py P... etc. are child page pointers which point either to non-leaf or leaf pages. For
* brevity pointer; to m:ighboring pages are not Sh)()%n. ko, K,....etc. represent values of
key part- of records. m. n. r, t and, z are arbitrary positive integer‘ numbersﬂ. A non-
.l(':xf page is structured according t;) the following rules:
(a) Keys ' within .a. page are sorted in ascending order of Vva'lue, ie.
/\</\</\<1\,+,"'.. ‘ \ ‘ >' B
- (b) All the child page-pointers that occur before the key value K, point to pages that

5

»lead to leaf pages with key \alues less than or equal to K.

(é) All thc thild page pointers situated bet;een K, and ii',+l,- (except posciblv the

last child | page pointer P, , ) lead to pages contammg only key mlues equal to

K,. The child page pomter Praiy leads to at Ieast one page whlch has at least
_one recowng a key value equal to K.

Q)
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Length of ¢
che . of l.)e Pointer Value
Following Field= L
Je—t  1Byte L Bytes
Figure 3.2(a): Structure of an Interpage Pointer .
Length of the Length of the Key Val
Following Field=1 Following Field=L ey Value -
b 1 B)‘t(e | Bytes -l L Bytes

Figure 3.2(b): Structure of a Key Part

—————y

Length of the -

Following Field=1

Length of the
Following Field=1L

Data value(s)

b ] B)( ¢

—

| Bytes

—_— ], By(cs

Figure 3.2(c): Structure of a D4ta Part

Figure 2.2

ﬁu_.

Structure of an Interpage Pointer, Key Part and Data part
A}

1 ,
- 3.3.1.3. The Structure of a Leaf Page

The general structure of a leaf page of a C-B’-tree is shown in figure 3.4. Again

K, K. ..

etc. represent the values of -the key parts of records whereas D, ;s (j and k

are positive integers) represent data parts. The foliowing rulestgovern the structure of

a leaf page:

/

(é) Keys thhm the same page are orgamzed in ascendlng order of . value. le

" Ko<K,< -

(b) A complete record can be formed b\ combmmg a data part with the ]((" part that

lmmcdnatel\ precedes it.

- <K <A,H

- .

4
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An example of C-B -tree is shown in figure 3.5. A star (*) represents a child page

pointer whereas a # represents a.data part. Key values are represented by integers.

Ky Py 1 P2 m

> . . . >

Po o Ko Pral ... B,

» B »

n

>

&

r+2,z

P .
K2 ... Kr r+l,1f . . . r+l,t r+1

'

Figure 3.3 .Structure of a Non-lcaf Page

D K K D D
1.,m . 2 n n,l n,p

Figure 3.4 Structure of a Leafl Page

3.4. Ope_rations ona C-_B:-t_ree

Because of variable léngth recoxfds.ana use of the compression scheﬁxe outlined‘v’
above, the algorithms for various operations like .se,ar'"ch, insert, delete etc. in a C-B'-
tree are s.omevéhat, diﬂérenp from those in a B-tree witfx fixed length records. Also, dur-
ilig inscfti;:n or delct‘ionwof a record, a'phénomenon called anomalous overflow or
underflow might tal&e plac‘e.;_ This‘ph"e!iomet‘lo‘h caxvmot‘occur in a B-tree with fixed
length record§. This phenpomenon :s explai;ied later. Here, first ofb all, some te‘rminolégy

for the C-B”-tree is defined.
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Figure 3.5 An Example of C-B'-tree

A Scroll is exactly like either a nonloaf or leaf page of a C-B’-tree page but it i«
;mt, con'<trained in length, while a C-B‘—tree page must contain between p/2 and p
words (p is the size of the page). A boundary point is either the beginning of a k.ey
palt or beginning of a data part (beginniog point of child page. poin‘ter.i’o case of a
node page) that is not imm'ediate‘ly preceded by a key part. A sequence of boundary
poims‘on the scroll determine a feasible pagination of the scroll if each sequence of
scroll }ecords that lie“properl'y between the beginning posit-ion of the scroll and the
first boundary point, the last boundary “point and the> end positioo o‘f the scroll, ."and |
beiween each pan- of consecuuve boundary pomts all form valid C- B -trcc pages, ie.,
all contain between p/2 and p words. A pa.gmn.tlon -trutegy is an algorithm for’

) choosing from a scroll a particular sequence of boundary points that determin.é a feasi-

. ble paginatioo df the scroll.

A noteworthy pomt here is that when a scroll is paginated into scveral pages, tbc v
combined occupled length of all the pages into which the scroll is spln could be greater

than the original length of the scroll. This is due to the fact that for every data part
§ . .
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(or clinld page pointer), the associated key part must reside én the same page. There—_
fore. if a data part (or a child page pointer) is selected as a boundary point, the key
- associated with this data part (child page pointer) is inserted before splitting the
scroll. This point will become clearer from the example shown below. When the séroll
of figure 3.6(a) is split into the three pages as shown in f‘igure 3.6(b), the common keys

8 and 11 are supplied at the beginning of the second and third page respectively.

LN

%

REFWFF TTHAF 12F

Figure 3.6(a) °

I HFFF ' I 3??“7 l lll##l‘?##l
Lo Figure 3.6(b) .

Figure 3.6 Composition and Pagination of a Scroll

Similarly. when certain pages are combined to form a scroll, the length of the
resulting scroll could be less than the combined occupied length qT all the pages. For
example, when the three pages shown in figure 3.6(b) are combined into the scroll as
slm\\jn in fizure 3.6(a). the lengtb of’the scrobll would be less than the combined occu- v

- pied lepgth of the pages. ‘
. . Now wcvare in a position to examine the algorithms for vax%ious operations on C-

4

B’-tree.

o -
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3.4.1. Search Operation

Itandom search for the desired records’%?wa_vg begins at the root page. If the page
that is currently being searched is a pode page, it is searc.hed sequentially until either
the end of the page is reached or, a keyt part is encquntered whose key. value is greater
~than the key g'alue of the desired records. If the end of page is reached then the last
child page pon“‘)ter is followed. Otherwise, if a key part is encountered whose key value
is greater t)/[; the key value of the desired record(s) then the chlld page pomter(

Ynuitaiatay prececing this key part is followed.
L)

If the page bemg searched is a leaf page. the page is sequentially searched uunl a

keyepart with a km \dluc higher thdn the given key value i3 encountered. If end of

page is reached before such a kev part is encountered then there is no record with 1hg

v

given key Value. Otherwise. if the value of the key part immediately preceding the
curreml}\(-.\ part is not the same as the given key value then there is no record with the
ginven key value I the value of the key part ixﬁmcdi'mely' preceding th(*‘curr(-m key
. . . . f ,
part is the same as the given key valuc, the rf*cbrd is returned for_(:bec_kingﬂ'tbe values

o

of fields ir; the data part

. . v

The random wsearch aleorithm works®in such a way that if there are several
g S y t er

-

record~ having the given. key value then the record that js situated-rightmost in the

tree is picked first. Now, since the pages of the C-B'-tree that are at the same level are

linked both ways, the search for the rest of the records havmg the glven key value "

proceede leftwards and all records are returned for further exammatlon untll a record

.

is found with a different key value. = L Cow

4 .

For examp!e, in the C-B’-tree of ﬁgure 3.5‘ let us suppbsc the records With the

key value of 23 are desnred In the root page end of page is reached beforc we arnvc at '

the key value higher than 23. Therefore. the last child pointer is followcd At the.

second level_. again, the end of page is reached before a key value higher't_han ".’3‘is

3,
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encoumer(‘d \@g’dm the last child page pointer is followed. Now, at the next level.

which l\thc lca?»:lewl the page is searched until the key value 47 is encountereds
A\
Therefore the record previous to this key part 1s examined. Thls 1s a record with key

value 23. The record is returned. Now, since this record is the first record in the
| -
current page, the page to the left of the current page is examined for more records

with the giveﬁ key value. In this page five more records with the given key value are
found. Since again the ﬁrstArecord in the current page ha; the given'ke’y value. the
page situated to the left of it is examined for more records, where one more record
with the given key value is found. After that, a record with the key value of 18 is

encountered. Further search fox more records having the given key value then stops.
¢ 1\ '1 ' ' A
. \ A
3.4.2. Insert Operation %, SN

s

To insert 3 record into a C-B'-Aree, first a search is made for it. If the record

\ [
ulrr:ad\ exists. an error condition is retu\xned. Otherwise, the record is inserted in the
‘ \ ¢q~
rurront page. Insertion of a record might éiuse a page P to overﬁow In that case a

5

scroll connctmg of at most two neighboring s?l\llng pageé\and the page P is made The
% ) .

order of preference in the selection of ne:gbbormkg;:es is shown in ﬁgure,ﬂ3.7. In some

at case @ scroll consisting of only

b < . . ; ‘

~ cascs there may not be a third sibling page of P. Int
two,sjbl’ing pages is made. An attempt is made 'to pa&inaté this §croll without increas-
5 v

ing the tolal number of pages m the tree. If it succeeds,mthe opq\rauon of insertion is -~ ¢
'complete Otherwise, a new scroll consxsung of elther pages P and P2, or pages P and

P, (and also the mtrervenmg key parts in case P is a node page) i is made. T.hls scroll is
then =plxt into three pageq This sg& mlght cause an ovgrﬂgm (mmnndﬂﬂg!i«m“,,;;
N , S :

some caseﬂ) which is handled recurswe!v _ : .
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P P P: Pa -
. . \ P}) PQVP: '
N Order of Preference: ) Po, Fy, Por F, P;, P,
(3) Pl, P OI" P Pz

Figure 3.7 Selectnon of l\elghbormg Pages for Making a Scroll

N . . “

4

3.4.3. Delete Operation

The operation of deleting a record from the C-B’-tree is.handled-in a way that is
‘quite similar to the ins-ert operation. If the desired reeord i3 not fqund, ap error condi-
,'llol; is returned. If the record is fou.nd. it is deleted. If lhis’ deletion does not cause the
current page. P. to underfiow, the operation of deletibn is c’onlplete. O(her“me ascroll

,cdnsisting of ut most two neighboring sibling pages (and intervening key part from the
! A 5 ‘

Jparent page. if page P is an internal node). as described in case of insert operation, js

' ¢
made. Now. an attempt is made to pagmate this scroll so as to deerease the !onl

1

pumber of pages in the tree b) one. Thxs mlght cause-a parent page to underﬁow (or»

" even ov egflow in some cases) a situation that is handled recurslveh Otherwuc the

<croll is pagnmted into lhree pages

4 . K - L —

3.4.4. Anomalous Overﬂows and Undei'ﬂows '

o

ln a.C-B’-tree. a parent page P sometlmes may overﬂow (underﬂow) whcn a
réecord is: deleted from (m,sened mto) one of lts clnld pages or, aacroll cons:sung of two o
“or three chnldren pages of P (and mtervenlng key parts in case children pages are node,

'

Ppages) is repagmated Tlns is called anomalous overﬂow (underﬂowl Thn phenomcnon

s also posqlble in B-trees w:th vanable length records However it ha.a not been ‘

]

explained earlxer. S

Let us consider the tree shown in figure 3.8(a). A record. with key value K is

inserted at the end of _p'a.g‘e’D which makes it-overflow. The tree after rep"agl‘n’at-iqn.‘ef" -

1

-

(f
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records in pages B.C. and D is ;st;Wn in figure 3.8(b). Now if the length of key K is less
than the length of Ay then it s possable that page A could underﬂow This m.gb( bap-
pen if the leng(h of (K, + K, + K) is less than p/2. This is an example of an
anomalous und:rﬂow Sxmnlarly, deletion of a record from a page P and subsequent
paglrnan;n of a scroll consisting of P and one or two nexghbonng pages of P may cause

the parent page of P to overflow. L .

-k "Ry K KRS |

F:igure 3.8(a)

o] FF o e FFRF Jue

Figure 3.8(b)

Figure 3.8 Partof a C-B’-tree to .'Illu.stifate Anomalous Underflow

0



'3.5. Organization of a SLDB Relation into C-B -tree Files

In ordcr‘ to meel various requirements outlined in section 3.3, t.'be data and othet
associated information of a SLDB relation is organized into three different forms of C-
B’-tree files. Each of these forms is designed to meet a specific part of the require-
ments. These forms are : ki) encoding C—B'-tfce file, (ii) decoding C-B'-treé file and
'i(i>ii) secondary index C-B"-tree file. The structure and purpose_of ez‘\ch_of these files is

explained in the following subsections. It should be noted however. that only the

Lo . . !
decoding file is required to represent all the information in a relation. The other two

kinds of files are there for greater efficiency.

3.5.1. The Encoding C-B'-tree File
A diflerent encoding file is associated with each of the relations of a SLDB aystem.

.

The purpose of the encoding file'is to facilitate efficient generation of a code for a
. >

- s

.newly inserted.tuple of the relation and re-use of the deallocated codes. From an

encoding point of view the relations in a SLDB system can be classified into two types:

relations whose tuples are coded using the absolute coding scheme and relations whose

tuples are coded using the relative coding scheme. These coding schemes and reasons

! ’
for selecting a particular coding scheme for coding tuples in a given relation were

explained in Chapter 2. . ..

Let us first consider the case where an absolute code is assigned to each tuple of
~a relation. The encoding file for such a relation has codes or tuple identifiers as keys.

There is no data part. All the deallocated codes plus a special integer number called
. 4 . . R

' )

‘next available code’ form the Pecords of the encoding file.

Initially, when there are no tuples in Che relation, the tree has only one key with
value equal to zero. This, key indicates the 'mext available code'. As records are
inserted. this key is incremented. Now if a tuple which had the bighest code value in

the relation (i.e. less by one than the 'next available code’) is deleted from the relation

L]

P
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then the value of the ‘pext available code’ is decremented by one. If a different tuple is
deleted. the deallocated code is simply insert(?d in the proper order into the e.ncoding
file Later, when a new 'tuble is inserted into the relation, the smallest key value is
deleted from the encoding file and is used as code or tuple identifier for the newly
ipserted tuple. This kind of garbage collection on codes permits the use of shorter

codes than would be otherwise. pdésible in a dynamic database.

For example. let us.considcr a relation which hag some non\-atomic domain(s) in
its t‘uple-schemc (o.g.v th;SUPPLIER relation described earlier in this chapter). The
evolution of the cncc;d;ng C-B’-tree file for tfis r.elation'is shown iﬁ figure 3.97. Ini-
tially. the file contains one key with value zero (fig. 53.9(3)). Figu.re 3.11(b) shows the
contents of the file after continuous insertion of .'ten. records. Let us suppose records
‘with codes 0.3.5.7. and & are deleted f'rorﬁ the relatviou‘. The resulting structure of ‘the
encoding C-F'-tree file is sh’own in figure 3.9(c). assuming that a tree page can hold at

most two keys and three interpage pointers. Now the tuple with the code 9 js deleted.

Since 9 is the highest code used, the next availzble code is decremented. This is shown

-
.7

in figure 3.G(d). Now if a new record is inserted. the smallest code 0 is deleted from the

encoding file and used as the code for the newly i‘nsertedvt'uple (fig. 3.9(e)).

Handiing of the process of code .generation and re-use of Aeallocated codes is
sligbtlv more complica't.ed in the case of relations whose tuples are ‘cod"ed uﬁng the
rel.nnc codmg scheme. This is because of the fact that the generated codeis relative
“to the v alue of all the referenced attrlbutes For example let us consnder the mstance‘of 4
ORDER relation of the HVFC database given in Appendix A A single code is gen- .

erated for ordcr-no and quanh‘ty relative to the codes for purchaser and stem.
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Figure 3.9 Evolution of an Encoding File

In such cases the comblned codes for the referenccd data (ln a certain order) con-

stitute the key for a record in the encoding file whereas each of the assbclatcd deallo-

cated codeq forms the data- For example, in the cncodlng file for the ORDER relation

of HVFC databa%e concatenated codes for purchaser and- llem are the kcys and thc
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data are codes for order-no and guantity. When a new tuple is inserted into the reiia‘
tion the combined code for its referenced parts is used as the key to search the encotl-
ing C-f"-tree If the search fails then a record with the given key and the integer 1 as
data is inserted into the cncoding file and code O is used as relative code for the tuple.
If there i1s only onec record having the given key value, the value of its data part is
incremented by one. If there is more than dne record having,the given key, the record
with the lo“ est value of data part is deleted and this value i s used as relative code for”
th\c chrted tuple. When a tuple is deleted, the referenced code of the deleted tuple is
used as key to search the associated encoding file. If ‘the relative code for this tuple is
onc less than.the next available code for the éiven referenced code, the value of the
.noxt:v available code is decremented by one. If the value of the next available code is 1.

the record is deleted from the file. otherwise, the record with the given key value and

1< associated relative code as data are inserted into the encoding ﬁic._nﬂ

3.5.2. The Decoding C-B"-tree File

Each rer:ition in a SLDB system has one decoding C-B.-tree file associated with
it The ‘d(rodmc files in a SLDB sy <lem are perhaps the most frequenth searched ﬁleg
during \anou< query and update procedures. The ke)s for a decodmg ﬁle are made up
of tho co/ plete codes or tuple-ndentnﬁers of the tuples in the relation. ln case a tuple-
" identifier is composed of a combmatlon of codes, the order in which the codes of vari-
ous attributes are concatenated is specxﬁed in the knowledge base (or data dlcttonary)
of the database system. For example in the SUPPLIER relation of the HVFC data-

| base a single code serves as a tuple ldentlﬁer whereas in the ORDER relauon of the

- same databaﬂe the codes for purchaaer and stem together with a smgle generated rela-

tive code for order-no and quanhly in some specnﬁcd order can be used as the tuple-
identificr. g +

The data part for a decoding tree is made up of the values of the attributes _in-the
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uncoded part of the tuple together with some optional information e.g. the codes for
‘ Q

the tuples in other relation(s) where this tuple is referred to. The possibility of storing

various kinds of optional'inform'ation‘ within the data part of a tuple will be explored,

in detail; in the next chapter.

3.5.3. The Secondary Index C-B"'-tree File

A relation in a SLDB system can have an optional number of secondary index C-
B’-tree files with up to a maximum of one secondary index file for each attribute. A
coded or uncoded attribute of the relation may be used as the key for a secondary

" index file. The data part comsists of a set of tuple identifiers or complete codes of all

the tuples baving the given secondary key value.

3.5.4. Using the C-B’-tree r?iles i

En¢oding ﬁ.les are used for -the process of allocalting codes for the newly inserted
tuples and re-use of deallocated Vcodes as explamed earlier. The process of answering a
query depends very much on the type or composmon of the query. Decoding files can

G
be used to answer exact match queries that specify complete codes or tuple ld(‘nllﬁ(‘r.\

, . ' 3 - : L
The ,process of answering an exact match query that specifies the'value of all th(- attri-

N s ‘
butes. a partial match query or a range query is handled in a similar manner. lf a

query ﬂpemﬁes a value (or a range of values) for one or more at.tnbutes of a relatlon for

which secondary index ﬁles exist, the llsts of codescprresp'ondmg to the values of these -

attnbutes are fetched. I\ext these hsts of codes are processed (by taking unlon ,lnter- -

section etc ‘depending upon the nature of t,he query) ‘In order to get the list of codes
“for the target tuples These tupTes are then accessed using the decodmg file assogiated
thh the relation. ln case the query does not specify the value of any of the attributes

, of the relation for _whlch a secondary file exists, target‘tuples are found by sequentially

searching the leaf level of the decoding file.

-



50

The préposod organization of a SLDB relation can be effectively used for checking
and maintaining the validity of three previously mentioned assumptions regarding
refemnces to tuples in‘ other relations, namely: the uniqueness assumption, the
cosistency assumption. and the existence assumption. The very method of generatrng
codes for the newl~y inserted tuples ensures that a referenced tuplevis unique. The

second assumption that the referenced tuple should not change as a result of an old

tuple being deleted and a new tuple being inserted in its place with the same codes, is

. Lo
very much tied up with the semar.ics of update operations in a SLDB system. There-

fore the solution to the problem of checking the validity of this assumption rests in the
bands of the logical part of the ddtabase management system. However,‘ it is very
likely that when a tuple in a SLDB relation is deleted or modified, the tuples that refer
to the deleted/modified tuple would have to be accessed (for deletion, modification -
ctc.). Accessing all tuples that refer to a given tuple can be made efficient by storing a
list of codes of :all»;uch\tuples as optional inform‘ation along with tlr;e data part of.tl.]c
tupl(_’. The validity r)f the third assﬁmption (1.e. the -exist.enre assumption) can be

maintained at the cost of a few more accesses at the time of each insert. delete and

update operation.

3.8. 'Experimentation;'with thelmple'men,ted Structure . |

The C~ B‘ tree structure has been lmplemented under 4.2 BSD Unix operatmg

system at. University of Alberta The host language is C It has been’ implemented

' usmg the ﬁle structure and mput-output system provided by the Unix operatmg sys-
L4

.

tem. An actual phy «ncal block of the C-B’-tree also includes some overhead mforma-
tion such as the type of t.he page (node or leaf) the number of bytes of data present in
the page, sn_bhn_g page pomters etc..In order to determme a aultable paging strategy‘ for
tb'e-C-B"-trec ‘.;everal exr)eri'mgnts were performed. Tﬁeir results are also applicable th
other variants ovf B-tree wiith.}'a‘ria'ble' length rrcords, These experiménts and their -

4
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results areexplained in the following subsections.

As expldined earlier. a pagination strategy is an algorithm for choosing from a

scroll a particular sequence of boundary points that determlne a feasible pagination of
the scroll. A stralghtforwardrstrategv 13 to divide the scroll into pages of as- equal sn.e
. as possible wltho'ut splitting a record. Thns strategy is normally used with B-trccs'hav-
ing fixed-length records. It is called ES strategy. In case of variable-length B-irees it
meaps minimizing the difference between the size of the; largest page of the pagination

and the size of its smallest page.

.

.-\'nother pagination strategy, called MS, is based upoAn the general principle that
shallow est trees result from banng the shortest kevs nearer to lbe root and longer keys
nearer to the leaf Ie\ el. To lllustrale this principle let us consider lhe following ordered
sequence of 25- keys : bbb, ¢, ee, f, gg. b ... w, xx, y, 22, 9. A possible arrangement of
these keye into C-B’-trec is shown in figure 3.10(a). Jt is assumed'that each page has
space for six characters. Further, for the sake of simplicity, it is assumed thal the

'

‘imorpage pointers do' not occupy space. Another .possible organization for the same

data is shown in figure 3. lO(b) In the Iatler organization shorter ke\s have been used

i node pages. This has resulted in a shallower tree whlch iD- turn lmphcs fewer

accesses pcr search (on a\‘erage).

Formally. the MS; strategy can be defined :'13 a pagination strategy whichv chooseés
: ; pagination that minimizes the sum of the lengths of t.he boundary keys that are
)returned to the parent page. -This deﬁnmon of the MS strategy is correct for a
variable-length B’ -tree that does not use any kmd of compressmn scheme Since in the
C-B’-tree the data compressnon also aﬂ'ects the size of the parent. page the definition of
MS strategy should be modlﬁed‘. In this case the MS strategy would choose a paginai

tion that simply 'minimizes the size of the resulting parent page. .
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Figure 3.10(a)

Figure 3'.130(b) - -

Fiéure 3.10 "Eﬂ'ect of Keeping Smaller Keys Nearer to the Root Level s \
. | C
\/ ‘ - Results of McCreight's ‘eXperiinents to cdmpare thegperfdi-mance of.thé ES‘ and
MS strategies: :S,rg shoﬁn in table 3.1 and Labie 3.2. In this experiment 33,381 records .
with an aVe;5g¢ size of 12.0 l;ytcsl were inserted into a B'-‘t,rech using the MS strategy.

" The same insertion sequence was performed in another B’-tree using the ES strateg_gj

3
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Spice Level Avg. # of Avg.

Effic. - " | Rec. Pages | Recs./ t
Length Page

1120 1(Root) | 12 chars. | 1 1

pages 2 12.8 2 177,

or space 3 12.5 36 29.0

efficiency | 4(leaf) 12.0 1081 29.9

of 82% :

Table 3.1 Performance of the ES Strategy

Space Level Avg. # of Avg.

Effic. Rec. Pages | Recs./
~{J.ength _ | Page

1141 ‘1(Root) | 7.0 chars. | 1 28

pages . | 2 9.5 29 37.3

or space 3(leaf) 12.1 1111 29.0

) efficiency
of R1°¢.

=

._AT‘ahlo 3.2 Performpnce éf‘the MS Strategy

“ ‘ [
The statistics hown in table 3.1 and table 3.2 support*the fact that the MS stra-
tegy helps to produce shallower trees as céxﬁpéred to the ES 'stratég)x Another obser-
vation is the shghtly higher Spa(:é efficiency resulting from the ES strategy. Pcrbaf)s‘it
is difficult to associate any statistical s.igniﬁcance with one observatiﬁn of such a small
difference. Howg\-er. if the _ESAsiralegy is consistently found mo’re space efficient than’
the MS strategy. it would be a si'gniﬁcant conclusion since it would mean more. space

for records at the léaf level and, more signiﬁcantly, more space for keys and pointers at
node Ieve‘ls‘and conséquently shallower trees. Experiments were done to veriiy this
point.. Two C-B itrees we‘re built using the MS and ES strategies respectively. A fixed
number of records ip.the same sequence were»i»nscrted, into _Cac‘h' tree. The same experi-
,ment was repeated for different block sizes. The resulting statistics are shown in table

3.2 These results evince that the ES strategy is in general more space efficient than

the MS strategy.



1. The CS Pagination Strategy

In this section a modified version of the MS strategy called CS strategy for Com-
bined Strategy) is presented. The CS strategy exploits the higher space efficiency
faature of the ES strategy. According to the MS strategy the pagination that results in

the smallest page size of the parent page is selected. However, it ddes not offer any
) .

Jurther choice between two candidate paginations that yield the same parent page size.

The CS str‘ateg'): on Li}e other hand looks into the size of the f)ages produ'ced‘ by two
paginations that yield the same size of the parent page and the pagmatlon which is
closer lo having equal pdée sizes is preferred. For instance, Ie& ui wuppo':e Py is the
best among so far examined paginations of a given scroll and P, is the pagination
currently under (Ka/mxnzilion. If the pagination deﬁm;d by P, results i,n a parent page
whose size is less than the parent page size given by paginetiop Py, }he pagination P,
replaces P, as the best pagination. If P, an.d P, result in the same size of the parent
page, the pagmdllon which has a Smaller difference between its Iargest page and smal-
lest page will be proferred \mcc in addition to promotmg smaller ke\s nearer to the
root lm el. the CS strategy also attempt« to divide the scroll into pages of as equal size
as possnble i can be hoped that it would -bave ngher space efﬁcnency than the MS

str:nteg)' and would also result in shallower trees than both ES and C$ strategies.

3.8.1.1. ‘Perform'a.nce Evaljation

’

Several expenments were performed in order to evaluate the performance of the

- ES. MS.\and CS strategies. In all tbese experiments randomly generated dlﬂ'erent

integer- numbers were used as l\e}s The key lengths were varied by paddmg these

“integer num bcrs on the left by a random pumber of zeros. In this manner keys whosc

- lengths \aned from 7 to 21 were gene’rated The node pages had nterpage pomteré‘

that were ﬁte .byvtes long To snmp]rfy analysis same amount of space was left for
™~
dumm\ data parts in leal pages. Also, the same amount of space (18 b'. tes) was left in

Q

N
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e . . .
buth node and leafl pages for overhead information. In each of the experiments three
C-H -trees were built using the ES. MS. and CS strategy respectively. For a particy-
. . . ¢
lar experiment the same insertion sequence was used for building up each of the three

(rees,

» .

The first set of experiments was performed in order to verify the assumption that

the ES strategy is slightly more space efficient than the MS strategy. The results of

these experiments are-shown in table 3.3. _ .

Block ES Strategy \ MS strategy

Size Node | Leaf | Overall | Node { Leaf | Overall
370 | 80.4 | 82.9 82.7 79.7 | 82.2 82.0
384 80.2 | 82.2 | 82.1 77.0 | 80.6 80.4°
448 79.2 | 84.9 84.6 789 | 83.4 83.2
512 &1.3 | 85.2 85.0 80.9 | 83.0 82.9

Table 3.2 C‘bmparision of Space Efficiency of the Two Strategics

c

o~

In the second set of experiments the growth of three C-B’-trees using the ES, MS

.

and CS strategies respectively was a%alyzed in detail. A block size of 512 bvtes was

choscn for each of the trees. These statistics are shown in table 3.4 through table 3.9.

© The first snapshot of the three trees was taken after the of insertion of 12,811 keys. By .

this time the number of ]evelsvin the ES tree had grown to four.ﬁhereas number of lev-’
els 1n the MS and CS trees was three. The next snapshot was taken afier the insertion
of 21.853 keys. At this time both the MS and ES trees had four levels whereas the ES__ '.

tree had only‘three levels. -



Space Level Avg. # of Avg.
Effic. Rec. Pages | Recs./

Length | Page
625 1(Root) | 20 chars. | 1 1
pages 2 14.96 2 12.50
or space 3 14.97 27 21.03
efficiency | 4(leaf) 14.50 595 21.53
of 85.04% ~ ,

Table 3.4 Statistics of ES Tree After/lnse(gion of 12,811

Space - . | Level Avg. | #of | Avg.
Effic. Rec. ‘| Pages | Recs./

‘Length Page
834 1(Root) | 7.80 chars. |1 21 .
pages 2 : 9.91 22 26.77
or space 3(leaf) 14.5 611 20.96
efficiecncy :

of 82.93¢

Table 3.5 Statistics of MS Tree After Insertion of 12,811 Records

Space- | Level Avg. #of | Avg.
Effic. o 1 Rec. Pages | Recs./

_ Length | Page
631 HRoot) | 8.76 chars. | 1 21.00
pages 2 10.29 22 26.63
or space 3(leaf) | 14.50 608 21.07
1 efficiency ' L
{of 83.38C¢

Table 3.6 Statistics of CS Tree After Inserfio:n of,l2,811. Records

f
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Leve)

Space Avg. #of | Avg.
Effic. Rec. Pages | Recs./
: Length Page

1076 1(Root) | 17.0 chars. | 1 2.0
pages 2 16.91 3 15.0
or space 3 14.94 48 20.33
efficiency |'4(leaf) ] 14.48 1024 | 21.34
of 84.19% : ‘ .

Table 3.7 Statistics of ES Tree After Insertion of 21,853 Records

Space Level Avg. # of Avg.
Effic. Rec. Pages | Recs./

Length Page
1084 1{Root) | 8.0 chars. | 1 1.0
pages 2 8.91 2 17.5 .
or space 3 | 10.14 37 27.21
eficiency | 4(leaf) 14.48 1044 20.93
of 82687 ' . i

5.8 Statistics of MS Tree After Insertion of 2“1,853 Record-

Level

Space Avg. #of | Avg.
Effic. Rec. Pages | Recs./
Length Page
1059. 1(Root) | 8.11 chars. | 1 34.0
pages 12 . 10.24 35 28.22
{orspace | 3(leal) | 14.48 1023 | 21.36
efficiency |’ L
of 84 575

3

Table 3.9: Statistics of'CS‘Tree,ALter Insertion of 21,853 Records

-

The access cost of a tree (deﬁned as the average number of page accesses required
in order to search a key) depends upon. the ﬁumber of lcvels in the tree. Let us sup-:
pose two- page buﬂ'ers ‘are. used durmg searchlng (one permanently dedncat.ed to the.
root page and the other avallable for readmg other pages) " the tree bunldmg process '_
were <topped at 10 .000 ke\< all three -trees would ha»e an equal arce« cost of 2. On

the other hand at the end of xnsejuon of 21 803 keys the MS and ES trces have an

/ ’
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access cost of 3 whereas the access cost for the <CS tree is still 2. This means an
improvement of 509 in case of the CS tree. Ho-wever, the extent of improvement wil|
also dépend upon the ‘number of page buffers avnilable in memory. Let us assume 16
page bnhers_ are used and‘rtnese page buffers are allocated to those pages whose proba-
bility of access is the highest. This means that in case of the ES tree the root page all

the 3,pages at the second level and 11 pages at the third level will be assngned per-

manom buffers. Therefore the number of page-in operations per search would be
: —

approxm}ul(‘h ( )X 2+( )X1=1 77. In case of the MS tree root plus both the

pages at the <econd le'vel aﬂa 12 of the pages at the third level will be assigned per-

. manent buﬂors. so average number of page-in operations per search would be

v

D

;; )X >+(—)x 1=1.6> This means an 1mprovement of about 5.65% over the ES

tree. On tho other band in'ca the CS_tree root plus 14 of the pages at the second

*

fevel will be assizned permanent buffers. The a\erage number of .page in operations |,

per search' would therdore be (—,)X‘2+(—)X1?= l—.6. This means an tmprovement of

'.I. e

1.27 over the MS tree and.an lmpnmement of 9.6% over the ES tree: Thls Is quité in

4
¢

[
L

\\ ¢.define. data capaclty as-another measure of the performance of a pagination
stmteg\ For a given height of the tree the data capacnty of a tree can be measured as
the manmum number of words that the tree can hold without requiring an increase in
its helght lee the access cost measure the data capacxty measure alsovdepends upon
the pagmanon strateg\ used for generating the tree the nature of data, its insertion
~Asequence and the block- snze used However, the data capacnty measure g;ves a better
performance measure of a strategy since it does not depend upon the ponnt where the

tree building process is stopped Also, the data capacity of a tree does .ot depend

upon the amount of other resources (such as page buﬂers in case -of access cost) that

: are available for searchlng the tree. However, the two measures are not unr_elated as’
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the data capacity in fact measures the ability of a pagination strategy to generate

shallow trees, and a shallow tree in turn means smaller access cost.

The data capacity for three C-B -trees generated usingﬂtbe ES, MS and CS stra-
tegies respectivelf was estimated for the same kind of data as described in section

6.1.1. The same insertion sequence was used in generating each of the trees. The

results of this experiment are shown in table 3.10 where data capacity has been
: ®

exprssed in terms of number of records and the average record length is 14.5 bytes.

Block- | ES MS CS So impv.

size Strategy | Strategy | Strategy | with CS
. 320 2789 4743 4953 4.3
' 384 4406 8548 9151 7.0
448 7297 14727 16093 9.2
A $12 127686 21779 23452 » 7.7

Tuble 3.10 Comparision of Data Capacity of the Three Strategies

e
Block- | Node | Leaf [ Overall
size Level | Level | Level
320 80.4 |. 829 82.7
384 80.2 |.82.2 82.1
o 448 | 79.2 | 849 | 848
512 81.3 | 85.2 85.0

M

Table 3.11 Space Efficiency of the ES Strategy

Block- | Node | Leaf | Overall
size Level | Level | Level
-1 320 79.7 82.2 82.0
384 77.0 80.6 80.4
448 78.9 83.4 83.2
512 .| 80.9 | 83.0 -82.9
T &

Table 3.12 Space Efficiency of the MS Strate@



3.7. S.t,orage Efficiency and Pagination Strategy

Block- | Node | Leaf Overall

' size Level | Level Level

7320 79.0 | 82.0 82.0

. 384 81.7 80.8 80.8 !
448 873 82.8 82.8
512 82.6 | 834 83.4

Table 3.13 Space Efficiency of the CS Strategy

b

This last experiment is concerned with comparing the three strategies for their

storage efficiencies. For each block size, three C-B’-trees were generated using the ES;

Ms, and CS strategies. In each case the same 15,000 keys were inserted in the same

- sequence. The results of this experiment are given in table 3.11 through table 3. 13 On

the hasis of these results we can draw the following general conclusnom

(1

For the internal node pages the CS strategy seems to have the highest storage
efficicncy followed by the ES strategy. This is possible because in addition to pro-
moting shorter records toward levels that are xfearer to the root page.. the CS stra-
tegy also tends 1o divide pages into equal sizes. These smaller records tend to get

-

packed much more compactly thap longer records as in the case of the ES stra-

tegy. Also. since these pages are more likely to be equal than in case of the MS

strategy. the internal néde level of the'CS trée benefits from the slight]v better
storage efficiency of the ES strategy. This small dlﬁerence consequently results in
a sngmﬁcant amprowement in the data capacity of a tree generated using the CS

strategy. : A , :

_As far as the overall storage efficiency and the storage eﬁcnency at the leaf level

@

are concerned the ES strategy appears more space eﬁiclent than MS and CS stra-

_tegies. There is almost no diflerence between storage eﬂicnenc) of the CS and MS

- strategies. Logically, the CS strategy should have sligh’tl)" better overall storage

»

Vi
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eﬁ"xcicn?_v since it has the highest storage efficiency at the internal node level.
However. it appears that sinlce in a C-B-tree a small fractioﬁ of the total data is
stored at the internal pode level, a slightl_;' higher storage efficiency at the inter-
nal node level is not able to contribute much towards the overall stofagc
efficiency. Also, the two strategies are so close in their storage efficiencies tFat
even the allocation of a couple of pages for C-B"-tree files of as small sizes as ours
has< sigpificant eflect upon the overall storag,e eﬁicilel“]cy'orlupon the storage

efficiency at the leaf level.

3.8. Conclusions

A singlé s(orége structure and its as:;ociated access mechanisms presented in this
chapter can support all kinds of operations on a semilattice database system. Gen-
erally. database man‘agement systems offer more than one option for the organization
of data to suit various kinds o!" applicatio;ls. Hoﬁever. since his is only the Phase Zero
. of the development of a semilattice database management system, it would be

‘ o |
worthwhile to wait for the experience gained by running this prototype DBMS in a real
cnviron‘m;’nl before we embark upoh any kind of extension or modification of the exist-
ing physical data organization facilities. Recent experience ;vith the dgvelopmenf of
some other experimental database management systems indicates that experience
gained during the use of the initial implementation 4in‘ a l:eal environmeﬁt provides

invaluable insights into the rgquiréments of the DBMS as“ﬁell as the shortcomings of\
the running system [Ch381,' SEP77, Sto80]. | |

The CS pagination strategy presented in tl;is chapter cert‘ai'nly has an edge over
the MS strategy. The results are based upoﬁ experiments done with the C-B’-tree.
However, it is not difficult to.realize »that these results also‘app_ly, to other variants‘ of
\-ariable;-iength record B-tree structures e.g; the B’-t;{.:e, préﬁx B-tree etc. The extent’

of improvement is likely to depend upon the blocking factor as well as the range of

”

-
‘

¥
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possible key lengths. The determination of the exact nature of this dependence is left

3

for future work. However, our speculation is that the improvement in performance by

4

using the CS strategy increases with increasing blocking factor*or decreasing range of
possible key lengths until a saturation state is attained after which further increase ip

blocking factor ot decrease in the range of possible key lengths does not yield any

further improvement.



Chapter 4

An Adaptive Data.Structuring System: Feasibility Analysis

4.1. Introduction

One of the mostldiﬂi‘cult taeks faced.by a database administrator is to select ‘the
access methods for a database system. Most of the t?me his/her decigiods are based on
intuitions and qualitative impressions. The design aids avéi!able for this task assume
prior knewledge of most or all the applications for whi_ch the database system would
be used along wit‘lr their relative frequencies of use. ln‘practice this is rarély the case.
In most of the real world database environments that serve the interests of a variety of
users, the usage of the database cannot be fully determined at.the system design stage.

Also. in some cases the pattern of usage may change as interests of users develop.

\ometlmes 1t mnght even necessitate restructuring of the complete) database system.
{ Y

r { .
. This chapter presents the design of an adaptive data structuring scheme (.-\D.\'.\')
1 , ,
“ 1

to alle\'iate these problems. The C-B’-tree structure presented in the last chapter was
designed Reepmg thn goal in mind. The work presented in this chapter is preliminary

in nature and therefore limited to nging an overview of the prop‘ose‘d design and doing ”
: . . . . . ‘ - . . - . e
a feasibility analysis. No algorithms for performing the specific steps are given.- How- E

ever, wherever necessary, guidelines are given and related works by other researchers
) , 4

are cited.

.4.2. A"daptive Da.ta. Structuring Syst‘em

ﬂThe adaptne data’structurmg system is a self- organmng data structunng system

4

in whxch all the structurmg of data is is not- Speclﬁed or performed at the initial data _
load time, rather data gets orgamzed in a more and more eﬂiclent manncr as tbe usage
patterns on data become clearer. _ADSS is capable of handling certain e‘x_eeptnonal con--

.

ditions in the data, e.g. the breakdown of a functional d'epend'ency. A further fcature
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of the system is that incremental reorganization of data is possible. Of course, any

-~ )
change in the organization of data does not aflect the conceptual scheme of the data-
L ]

base system.

The principal c;)mppnents of ADSS in conjunction with other components of our
proposed prototype semilattice database mana.’ge‘ment system are shovjn in figure 4.1.
The logical part of the database mahagement system consists of a request interpreter
and ‘alsemantics checker. All accesses to the semilattice database are through thé .
. request. interpretler. This includes accessts by users'to data stored in the database as
well as various kinds of accesses by the database administrator. The r\equest inter-
preter SUpports an interactive query language as wéll as running of pre-compiled appli-
“cation programs Various constraints on the data in a database syster"n are checked an;i

cnforced by the semantics checker. The request interpreter and semantics checker are

currently under development. Further details on these can be found in [Bob&4). Other
. . - ’ .4 ; .

components shown in the ficure 4.1 are briefly described below.

r
¥

lisér . DBA

A ' T
Request Expert Design.
Inter- h ~ System
preter - .
y Knowledge
‘Base,
Semantics. e ot
Checker . : Database
» , Data Structuring.
— - ' Tools

Ty

Figure 4.1 Semilattice Database Managem.ent‘Systex’n



4.2.1. Knowledge Base or Metadata

The knowledge base or metadata essentially consists of semilattice relations
which store information about actual data in a semilattice database system. Storing

this information in the form of semilattice relations has the following advantages:

(1) The same routires can be used for accessing data in the knowledge base as well ‘as

) . \
the actual database.

\

(2) The request interpreter and semantics checker can be used for manipulating

information in the knowledge base.

o
A knowledge base should include the following information. about the database-

fa) Logical structure of each relation
(b) Present physical organization of data in each relation

(¢} Meaning of duta stored in each relation. Meanings are stored in simple textual
2

'

form and are for human use only.

{(d)" Various constraints upon the data, e.g. various functional, multivalued and join

dependeancies etc. . '

T #

/

{e) A set of data usage patt,ergaand their frequencies of occurrence.

(f) A set of pending.data reorganization decisions

»

“No doubt information would continue to be added or deleted as the system under-
. L : /R
.goes further development. ./

"



4.2.2, Datab;se

The dara;ase consists of the actual data stored by the user. The data is stored in
the form of sémilattice relations whose conceptual structure is visible to a user. D:;t’a
in these relations is organized'in thé form of three kinds of C-B’-tree files as described
in the previols cbapter In order to provide a large degree of freedom in organizing
data using th (‘ B’-tree structure, the records for a relation in a decoding file are cop-

ceptually dmded into what we call partlnons. The goal bebind the concept of parti-

tioning a de@dmg file is explamed below.

4.2.2.1.. Partitions within a Decoding File

i

lecords in a decoding C-B’-tree file associated with a relation are conceptually
divided into partmom Records of a decoding file belongmg to two different partmom
ml"hl differ in thmr phy sxeal structure or the optional information they carry. PL\%ncal

structures of records in all partitions associated with a decoding file are described by a

-
h

relation'in the knowledge base.

The concept of creating conceptual partitions has the following advantages:

-

(11 Kecords in the same decoding file can be structured diﬁerén{ly.

(2) Incremental reorganization of data in a decoding file is possible. This is essential

-

for a very large database, one which cannot be taken off-line for reorganization.

(3) "1t is possible to describe some exceptional conditions associated with a certain *

IS

tuple by using a different record Tormat.



. are ‘explained below,

‘described in C,haptcﬁ.'} as the secondary C-B’-tree ile. Also, ina semilattice dat,abase

4.2.3. Data Structuring Tools

These are low level procedures for storing. retrieving, updating and restructuring

data in a semilattice database system. These are accessed via The Expert Design Sys-

‘tem.

4.2.4. Expert Design System r

‘

The expert design system (E.D.S.) contains algorithms for monitoring the data-
O )
base usage. storing the relevant statistics in the knowledge base ah aking decisions
(8 .
regarding reorganization of data. Decisions regarding reorganization of data are stored

in the knowledge base. The database administrator may from time to time invoke data

structuring tools for executing the reorganizational decisions. Although there are many
4

. kinds of data reorganizational issues’ that sbould be resolved in a real database

environment. we choose the following two problems as a first cut at the problem of

adaptive reorganization of data in a semilattice database environment: !

(1) Selection of domains of a relation for whick secondary index files should exist.

(2) Seleclion of data that should be redundantly copied into a relation from ‘other

. relations in the database in order.to improve response time,

LN
»

The two 1ssues as well as their importance in a semilattice database environment

4.2.4.1. Selection of Secondary Indexes

.

Index selection is one of the most complex problems in the entire database design -

process. The index selqciionl problem can be defined as the problem of choosing pri-

mar_v keys, secondary keys, and in conﬁgurations, in order to eﬂect a reasonably

good database qyetem perfprmance for all types of apphcatwn* The index

stem‘has alrcady been

conﬁguratlon for our semllatuce database@nag

i

o
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environwent, no primary keys are assumed to exist and one is allowed to create and
mahe proper use of any set of secondary indexes with equal ease. Therefore, the prob-

lem entirely reduces to one of choosing secondary indexes.

Clearly. the presence of a secondary index file for a particular domain cap
improve the execution of many queries that reference that domain; on the other hand,

e

maintenance of such an index has costs that slow down the performance oLdatab ._/
updates. insertions ;and deletions. Roughly spea.king, a domain that is mﬁ/cl; more fre-
quently referenced than modified is a good candidate for index mafﬁtenance. he
choice ofr which domains (if any) té select for this purpose should be doné vfith gic: a
good choice can significantly improve the performance of the system, while a badgelec-
tion cau seriousl)‘ degrade it Olue goal of our. expert design system should be to make-a -

. o, . . . . . -
good choice of those domains fo[r which secondary indexes are maintained, based on

. how the datais actually used A .
‘ ~In optimal secondar_v»key sclebtion one chooses a’set of domains that optimize the
.datsbase system performance. P>rform ance is measured in terms of the various costs
e.g. retrieve and update l/O time, CPU ow'erhea'd., storagé space, or some spbset of
these costs. In practice i:owevcr. although some héuristics he‘xist for index sele;tion,
there is no oﬂ]cicnr algorithm ,’to arrive at an optimal index sclection.' Come‘r has
/

shown that no algorithm for this purpose has better than 2" steps; because it is a

- potentially difficult problem.[ComYS]'.' | ‘ —

B '4.254“.1;,1.::.!Previous Work on Index Sele‘ction

A mﬁnber of researchers hme prouded analytical solui:ons to the problem under
‘\anous kinds of snmphfvmg assumptions. T\otable among these are studies b) Stone-
+braker [’Stm~1]. Sch‘k’olmck [Sch75]' and Klng [Kin74). Practical soluticns'to the prob-
lom were inv esugated b\ Farley and- Schuster [FaS75] and Hammer and Chan [HaC76] %

ln the %tud) b\ Farley and Schuster, the domains to be mvert,ed are selected by
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analyzing a typical set of queries submitted to the system. The work l;\' liammer and
Chan comes closest to our goal of identifying usage patterns on the data and utilizing
this kno“!edge for the purpose of selecting a good set of secondary indexes. The ‘opera-
tion of their prototype system cande described as follows. The specification of data-
base interactions, By both interactive users and application programs, is cx;iressed ina

pon-procedural language. This is first translated into an internal representation made

v

up of calls to system level modules. The language processor has available to it a model

of the current state of the database, which contains, among other things, a list of the
R /L
currently maintained secondary indexes. plus various information about these indexes.

Using this information. the language processor can choose the best strategy for pro-

cessing each databuase operation in the current environment. Statistics-gathering

modules are embedded within the system modules that interpret the object code of the
= .

’

language processor. These mechanisms are used to record data concerning the execu-
. . . . ’ -

-

‘tiop of ‘every database transaction. When the /reorganizational c‘omponent of the sys.

il

tem is invoked (which occurs at fixed mtervals of ume) the statistical’ lnformatlon

gathered over the preredmg interval is com'bmed wnth statistics from prevnous inter- *

. S

v al~ and is used to obtam a forecast of the access requlremen of the upcomlug inter-

l In addition. a projected assessment of various characterlstxcs of data durmg the
next mtcn/a%‘made A near opumal set of dofnains for vhlch indexes should be main-
tained is then‘determmed heunsucally Opumahty here means ‘with respect to total
cost, takrmnto account the expense of index st.oragc and maintenance. This mlmmal

_cost is then compared with the pro;ccted cost for the exlstlng set of mdexcs Databasc
reorgamnization is performed only if the cost benefit is great cnough to cover the reor-

-

ganization cost as well as the cost of applncauon program retranslatnon

In 'general.' ai;y practlcal heuristi_g approach for ﬁndiirg'a good solution to the

index selection problem should include the following three basic steps in its process:
. L n ) . . R . - .

Y
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(1) Monitor the frequencies of accesses and updates of various domains

(2) Ehlminate bad choices for creating the secondary indexes. Domains that are very

infrequently accessed can be safely eliminated. This reduces the size of the prob-

lem space.

(3) Select a subset of domains for maintaining secondary indexes that gives a solution
of acceptable quality.
4.2.4.2. Level of Redundancy in a Database
. :
Proper clustering of data can make a significant difference in the efficiency of a

database system because it takes groups of data that are to be frequently accessed

together and allows them to be stored physically in 3 way that maximizes sequential

.. . B . 9
arcess and minimizes rsndom access.

‘According to the semilattice condition for designing the logical structure qf a
database. if two relation schemes Ry and k: have a common part R,, then the scheme
for the .common part R, must appear in the logical desig‘n of the database. The com- .
mon part R, then appears in the scheme of R, and R, as a reference io appropriate ,
tuple( ).in relauon R.. Thls form of reference t’the parts’ of an object in the logical -

/ .

. scheme may roqunre qoxhe kind of physical clustermg of mformauon or cop)mg infor-
mation redundantl\ into a relation in order to lmprove the performance of the system
For example, m the HVFC database if mosL of the querles; oft /the ORDER relatlon,
requlre retneval of mformauon rcgardmg the member who ordered an item then it is

beneficial- to’ copv the information regardlng the member in the ORDER relatlon as

well However copyiag mformatnon in thls _way also has a ncgatlve side effect. Every

time the MEMBER relat.lon is updatcd a correspondmg change in the ORDER re]a-
tion is reqmred as nell Therefore such copylng of mformauon should be done w:th o
- caut:on The other reﬁfg‘aulzatlonal issue that should be resolved in thls context is Lhe

R number of places a certain plece of mformauon should be copied. For example in the
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Chip database. in the CONNECTION relation, if we want to know the location of con-
nection segments joining a particular pair of ping, then relations LINE and POINT
should be accessed. Now the question is whether the value of”co‘ofdinatcs from the
POINT relation should be copied into 'thg LINE relation or t ”‘e CONNECleN rela-
tio‘n. or at both places or at peither. In each case the goal is: to ma;cimire system per-

formance.

LN

In general, optimal clustering is difficult to achieve in"la complex imcgl_'atedzdata-
base where data accessed by diﬁerenl application programs overlap, and tradeofls
‘between sequential and random access must be evaluate@ In a semllatllce databage
environment. lf a particular relation refers to n other relations then there are 2" ways

in which iuformation can be redundantly copied into this relation Similarly, if there is
: r’ .
a hierarchy ol' n relanom In a semllattlce ﬂ?&abase scheme tben thére are 20 wan in

which lnformauon from the relation at root of this hlerach) can be coplcd into other

‘relatiops in the hierarchy. i
. ' T

4.2.4.2.1. Previous‘ Work on"Some Rez}ted Probléma

.« k <

%lthourh the problem of redundantlr co§.mg data in the abme mcutloned |

manner is specifically a problem of the semilatti

lar data part’mng and clustermg problems exist with other kmds of database sys-

tems. The record clustel‘mg problem l'or hlerarchlcal databases has ‘been studled by M

o

Schkolmck [Sch77). The essentxal dnﬂ'erence between hls approach and our problem is

that in his problem Schkolmck conslders clustenng of records wnthout lntroducmg any

Y . 1

‘redundanc\ lf there are n record t) pes, then his method takes time. pmppruoual to n.

'Hn approach takes the \lew that a tree wnth root X can be regarded as a subtree ol' 3.

g larger tree wnh root y. Tberefore lt is possnble to dcvelop 3 beunsut procedun that‘ .

B ehmmates non- optnmal clustenngs in the subtree at x from further consudcrauon in the' :

E whole tree At } The same approach can bc apphed to a hmned degree to network".’-

'

database management svstem. simi-

?
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databases. A more general and much. more complex metho&)Iogy for CODASYL record

¢ )

pl.scemou( an(k{area deslgn using heurNxc algorithms, a graph theoretic model and-an

optimization techmque has been mwestngaled ‘but not validated in an operatmg

N I

environment [TeP R2]. - . )
A d\ namic approach for data clustering has been distussed by Belford [BelS\&] lu

I3

her approach, the usage of databasp i momtored and a matnx Qs gene;ated Each
. column uf Q,corresponds‘t‘o'a ;')‘art‘i r attribute. ’I_‘helba"" row of Q is a b'rqaf}'\'\ihlor
P, indicaﬁng the set of records ret.riev;d by the query pattern i. A "nearest centroid
algorithm™ 1= useci for generatiné query patterus Py Pa. - from the observed quuriés .

¢y g....... Thése query.patterns reflect associatioh among attributes that are often

required simultaneously. An attribute may be assigned to several such clusters (and so

e

In this ‘cpsr".- however. the ovorall'eﬂ]mencv of the system may be better served df occa-

oo
R4 i .

S
siotial répotman of records ¢ urrenxh e\pvnments are being performed by Belford in

* v

¢ ardor to ascertam the impact of certamyarameters on the algorlthm b ° )
c " .A-}-n ) ! i . e.
o .y . : & 4 o , :
. 4.3. Conclusion : Co - _
. - , AU S . e )

f . . p
y

. . - . T ' : .\ TN .

The purpose of this chapter was tb study the ‘practical feagjbility of dypamic reor-
9 . . P P S ’ H s o e -
<L Lo PR S

gani'z‘ati.on of.‘ﬂata in a semilattrice c[atfab_a"%e fsysteni. The results of previous work by

" other- rmurcheH in this dxrectxon are encouragmg The desngn of the C- B - tree

3

- ' . structure has been made keepmg this- Iong term goal in mxn‘d The concept of- paru-v

§* noumv a C- B structure would allow us to do one of the above mentloned reorgamza-

.\ tions (spemﬁcad,lv ' cop)mg da&a l:edundantly) in an mcremental fashwn ‘The possibil-

L n\ of mcorporatmg other: lunds of»d) uamxc reorgamzatlons in the scheme has been left ‘

. - R '

for future worl\ E : LT ‘ S .
- S
. ) - , ‘0.
. , \
. - .
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Chapter 5

Directions for Future Work and Conclusion

e

The work prescnted in this thesis is a part of the larger eflort currently being
made at the Department of Computing Science, University of Alberta in order to

develop the first prototype database management system based on the semilattice data

model. The thesis clearly demonstrates the feasibility of implementing ;chcmes for the
physical organiz:rt.ion of data ana various ba.sic operations needed fr)r a semilattice’
database system. A" singlerdata structure called C-B’-tree has been proposed for all
kinds of basic access operations in the database system\This data structure has been

- implemented under the 4.2 BSD UNIX operating system running on a VAX 11/780°

"

machine in the department. Schemes have been proposed for gcnergting semilattice
codes for tuples and. for recycling dca-l'located codes. A .;igniﬁcan( side effect of
dmelopmg the C- B -tree structure is the de\clopment of a new stntcg\ for redistri-
bu(mv records among nelghbormg pages in tase of a page underhow or overflow in a
“variable- length-record B-tree, E\penmems have shown that this s(ratcg\ “orks better

than previously known %Lmtemes for the same, purpose Fmallv a prchmmary study
&

bas been done in order to explore the posmbnlity of dynamic&l__v reorganizing data in a

semtlattice database system.

. A+

However, it has not been possible to deal with some of the issues-to our full satis-

\

faction and.there‘fore the work of this thesis can be exté‘nded in the f,ollow§ng w_'ays:

Flrst it might be necessary t6 extend or modlfy the proposed access mcthods for

the semlldmce DBMS q)stem In order to do thls, however it would be worth whllc to

E

wait for the insights gained by runnmg the prototvpe system [ChaSl SEP77, St080]

. Second, the procmsmg of range qucnes and ncughborhood scarch querlcs is not

Y

handlcd very sMnsfacLonl) One reason for- thls 1S lhat, semilattice. codes do not

o
3%
L%

Lt \A_\ it 2 trade mark of Dlgn\l Equxpmcm Corporatlon ‘ o
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preserve the natural order of values of any of the components they represent. The
situation may be somcwhat'improved by generating codes that preserve the natural
order on a single attribute or a combination of attributés. Some such techniques may
be found in [Sor78]‘. |

Tbir(i, in our data structure, combined indexing has on)y begn implemented for
semilattice codes. However, the implementation of combingd indexes in general was

not copsidered. Sometimes the presence of such indexes improves the performance of

'

the system [TeF82]. Also. we did not consider implementing higher level semilattice
operations directly. Some related work in this direction for relational databases has

been described by Gotleib|Got75] and Blasgen and Eswaran[BIE77].

Fourth, the CS pagination strategy presented in the thesis shows about 5% to

10 improvement over the MS strategy. It seems that the extent of improvement

o

“depends upon factors like blocking, distribution of possible key lengths -etc; however
the pature of this dependence was not determined. In order to do this, many more

experiments need to be done on our implemented  C-B°-tree structure.

. \) . N » . . . ’ N - .‘
Finally.“com lotm the design of the proposed adaptive data structurm system
p g 4 p p g

is a major task. The study by Blasgen and Eswaran durmg the design of System R

l. .

[BIL:77] shows thdl i0 relanonal database svstems ‘physical clustering of logically adja-
e ’
“cent items is a critical performance ‘parameter: ln the absence of such clusterings

_methods that depend upon somng the records themselves seem to be the al orlthm of

.choice. \anous eﬂ’orts by researchers for achlev;ng these ends dynam ally were

.

described in the previous cbapter The algorlthms for thls depend upon the
4,

: tureﬁ and access paths svanlable for processmg a query and the utilization of these

.paths by theiquery decomposition and optimization algorithms.s

»

e._ ) B . ‘ "
A Al
. -
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. 'ttla.po‘logy_ of this- circuit. -Tu'ple-sche'mes' for POLYGON, .'.CO'NN'ECT'IOI'\I;,'";'/

7

The database schemes for the Chip FC database were given in

- '

N ‘ . |
Chapter 2 (section 2.2:2). An instance of database based on each of.these schemes is..

presented here. The name of an :tttribute or tuple whose \'gluc is give'n”in coded form"
is indicated with a slash (/) characte;. For exafnple:, A/ meaﬁ_s «codes for tuples of the
relation A; similarly. A,.M/N,...P stands for code for attributes (A, ..., M) relative to
values of gttributes (N, ..., P). ' | .

s

1.1. An Instance of the Chip Database

.o . ) .
The database scheme presented in Chapter 2 can be used to describe the
o

functional diagrams of simple electroni€ components. For example figure-A.l

T .t . . . 3 " s
illustrates the making of a 4-AND gate in terms of three 2-AKD gates.

ES . . v ..
v . -

..Figl’u:'e Al;d_ 'S'trgcpure-of a 4-AND Gé,te L

L4

The instance of the chip database given in Table A-1 through A-VIl describes the _

‘BAS_’EZ\’TITYT and COM_ENTITY relations con;ain.-"ohe or ‘more aitributes with
- . J L Ve . N ,’ .

- y

domains whose members are sets of sequences. Therefore tuples of these relations are -

ot . . -

J

L]

=2
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assigned absolute codes. Relative codes are generated for the tuples in the other five

‘rejations. In storing the gelation ENTITY the null tag is used to indicate that the

_reffered to tuple belongs to the B‘AS_ENT]TY relation and a‘tag value of 0 is used for

reflering to a tuple in the COM_ENTITY relation.

X

IS
-

x:real | y:real { POINT/
0 0 0
0 3 1
0 1 2
o Mo 3
0 | 13 4
0 17 S
0 33 .6
0 37 7
0 50 8
10 0 9
10 5 | 10
10 | 10 11
10 | 13 12
10 17 .

10 | 30 | f%
10 33 15
10 37 14
20 | 15| 17
20- | 35 ;ig
25 15—1~19

" 25 - 23 120
25 27 21
25 | 35 - 99
30 | 20 | 23
30 93 | 24
30 27 C23
40 25 T 26

150 0 27 ,
’ 50 | .25, 28 1.

50 . 50 . 29 -

‘Table A1.1 The Relation "POINT"

-

s




~Table AL3 The Relation "POLYGON" ~ 1 |

pointl: | point2: | LINE/
point point
0 3 0.3
3 11 3:11

}7
.18
19 -
21
20
21
26

A 15 6:15

-9 11:9
0 9:0
8 0:8
29 8.29
- 2T 29:27
0 270
12. 4:12
13 5:13

16 -. | 7:16
19 17:19
22 18:22 |
.20 19:20 |
22 A 21:22
24 20:24
25 21:25
28 | 26:28

4

_Table A1.2 The Relation "LINE" -

-~ .
« N

polveon:fiine}

POLYGON/

0:3, 3:11, 1129, 9:0 0

10:8. 8:29, 29:97, 27:0 | 1. )

. .

4

N

‘| édtid:

integer

instance:
integer
e

place: | (entid, - | BLOCK/ |t

point | instamce)/

loocol

K . . place T LE
3 ; . (11:0): .
7 [(14:0) 7

jloooo

" Table AL4 The Relation "BLOCK

~

|
A

R

o H280) P

'3
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Table AL.8 The:Relation "COM_ENTITY"

b L .

\ \ 84
/ -
entid: | class._] pin#: place: | (entid,class, | PIN/
integer | binary | integer oint | pin#)/place :
0 0 1 |1 0 - |10
0 0 2 2 0 1 2:0
0 1 3 10 . 0 10:0
0:0 0 1 4 0 4:0
\ . 1.0:0 0 2 5 0 5:0
- 10:0 0 3 6 0 6:0
“loo 0 4 7 0 7:0°
0:0 1 $ 28 0 28:0
Table A1.5 The Relation "PIN"
’ .
blockl: | pinl: | block2: | pin2: [.con-seg: 'CONNECT]OW
> block in block pin <line> "’ L ]
0:0 4:0 11:0 1:0 4:12 0 '
0:0 §:0 11:0 2:0 5:13 IR
0:0 6:0 --{ 14:0 150, [ 6:15, 2
0:0 [ 7:0 .| 14:0 2:0 ‘| 718 3
11:0 | 10:0 | 23:0 1.0 | (1719, |4
DR B 19:20, W
. 20:24) ' i
14:0 . 10:0 23:0 2:0 (18:22, S5 -
292:21,
21:23) \
'23:0 10:0 | 0:0 8.0 26:28 (6
Table A1.8 The Relation "CONNECTION"
_ . ;-
. ‘ b : ' . . : . . :
|entid: - shape:,. | ports: |'BAS_ENTITY/
integer | polygon | {pin} S '
100 0 (1:0,2:0,10:0) ]| 0° i
v“ . R l'. . " . - _a ] o
1 Table A1.7 The Relation "BAS_ENTITY"
TR & |
__ejntid; sli»ap’fe;_f ‘| components:”| ports: - inter_con: - | COM.ENTITY/
integer | polygon | {block} - | {pin} {commection} | ... . .
1 1 (11:0,14:0, "} (4:0,5:0,6:0, . -0,1,2,3, 1o N
' _#4.23:0) . |7:028:0) [456) [ <.



1.2. A;’l Ihs};ance of the I'“IV'FCY Databaae

(b_ent:bascent, | ENTITY/
e k_ent:com_ent : - .
0. o . |
10:0 e 0:0 - . i
. . C ® ’J' S ' _
Table A1.9 Th# Relation "ENTITY" ) _
ST e o e P
< . ‘ .- < X
‘ .

Here again, relat;ve codes are’ asSlgned to the tuplcs of t.he MEMBER ORDER

and PR]C‘ED_]TE\i relations whereas an absolute code is assxgned to each tuple in the l"» .

SUPPLIER relation. - s T
. ' » . ] . T ‘ . @
v | name: address: . balance: | MEMBER/ |- - ‘ ' R
char(30) char(50) _real .
Brooks, B. | 7, Apple Rd. ++10.50 {0. e x4
Field, W. " | 43, Cherry Ln. | 0 Tl Lo
Robin. R. | 12.. Heather St. | -123.45 | 2. . ‘
Har. W. | 65, Lark Rd. | -43.30 . |3 P L
uﬁ; ) ‘ ! 4‘ . ° .;" f. UL "_
_ _Table A1.10 The Relation. "MEMBER" * b ‘
‘[itém: . -| price: | PRICEDJTEM/
jchar(20) | real | - o D R
: Granola. 120, |0 t o, ; RN
- |Lettuce | 0.89 |1 : “
: |Sf. seeds | 1.09 |2 .
v . |Whey * {070 3. &
o ‘{Cutds | o080 14 = - %
.. v |U.Flour {0685 |5 ,
Granola 1125016 '
o |Lettuce 10797 |7 -0 .
' .. & - | Whey 0.79 |8
e e |Sfseeds [ 109 |9
‘Table ALil The Relation "PRICEDJTEM"
v ) v. ) \ .
" ‘l%l_ "~ 5‘ ! .

. Ji‘,:
e



. o0

A
order_no: | purchaser: | item: quantity:: | (order_no, ORDER/
integer |, member | priced_jitem | integer | ‘quantity)/
. ‘ ‘ (purchaser,
y \ e 1 item)
1 0 0’ Y5 0 " [0:00
2 0 =5 10 0 0:5:0
\ 3 -2 6 - 3 0 2:6:0
M 4 3. 3 5 0 3:3:0
) 2 9 2 0 2:9:0
6 2 7 8 ) 2:7:0
' Table A1.12 The Relation "ORDER"
) sp- e ‘ - saddr:?ﬂs': : ‘ stock: | SUPPLIER/
L cha‘rlﬁ‘é) ‘ _ | {pricedjtem} | . ,

Sunshine Produce | 16 River St.. - 1(0,1,2) 20

Purity Food Stuff { 180 Industrial Rd. (3,4,5,6) 1

Tasti Supplv Co." | 17 River St. {7,8.9) 2

Table A1.13 The Relation "SUPPLIER"
£
]
. ' ° -



